A MATHEMATICAL ANALYSIS OF THE KINETICS OF VIRAL INACTIVATION

National Environmental Research Center
Office of Research and Development
U.S. Environmental Protection Agency
Cincinnati, Ohio 45268

A MATHEMATICAL ANALYSIS OF THE KINETICS OF VIRAL INACTIVATION

Ву

Robert M. Clark Betty Lou Grupenhoff George C. Kent

Water Supply Research Laboratory

Program Element No. 1CB047

NATIONAL ENVIRONMENTAL RESEARCH CENTER OFFICE OF RESEARCH AND DEVELOPMENT U.S. ENVIRONMENTAL PROTECTION AGENCY CINCINNATI, OHIO 45268

REVIEW NOTICE

This report has been reviewed by the National Environmental Research Center, Cincinnati, and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

FOREWORD

Man and his environment must be protected from the adverse effects of pesticides, radiation, noise and other forms of pollution, and the unwise management of solid waste. Efforts to protect the environment require a focus that recognizes the interplay between the components of our physical environment—air, water, and land. The National Environmental Research Centers provide this multidisciplinary focus through programs engaged in

- studies on the effects of environmental contaminants on man and the biosphere, and
- a search for ways to prevent contamination and to recycle valuable resources.

This report describes a mathematical model which can be used to characterize the response of viruses to a disinfecting agent. Not only is the model itself presented, but a technique is described which can be used to estimate the model's parameters. Both the model and the estimation technique are being used to analyze experimental information resulting from disinfection studies.

A. W. Breidenbach, Ph.D.
Director
National Environmental
Research Center, Cincinnati

ACKNOWLEDGEMENTS

Dr. P. V. Scarpino, Professor of Environmental Engineering, University of Cincinnati, provided guidance and assistance throughout all phases of this work.

Mr. Arthur F. Hammonds of the Water Supply Research Laboratory, NERC-Cincinnati, EPA, and Mr. Richard L. Manning, Office of Water Programs, Office of Air and Water Programs, EPA, Washington, D. C., assisted in the data processing work presented in this paper.

Miss Jacqueline E. A. Kent assisted in the development of and programming of several of the equations utilized in this analysis.

Ms. Catherine Hall, University of Cincinnati, assisted in the preparation of this manuscript.

Miss Gruppenhoff is employed as an engineer by General Electric Company in Cincinnati; Mr. Kent is employed by the Office of Water Programs, Office of Air and Water Programs, EPA, Washington, D. C.

A MATHEMATICAL ANALYSIS OF THE KINETICS OF VIRAL INACTIVATION

INTRODUCTION

Pathogenic enteric viruses transmitted via the water route present a potential hazard to public health because of their resistance to natural or artificial disinfection mechanisms. More than 100 different strains of enteric viruses, causing such diseases as poliomyelitis, meningitis, jaundice, and gastroenteritis, are excreted in human feces. The six major groups of enteroviruses responsible for these diseases are polioviruses, coxsackieviruses A and B, echoviruses, adenoviruses, infectious hepatitis, and reoviruses. Since these viruses are able to survive in sewage, natural waters, and water supplies, they may pose a health threat, particularly as wastewater reuse becomes more common. 1, 2

Of constant concern to public health officials is the ability of viruses to pass through water treatment plants. The chlorine levels must be adequate, not only for bacterial disinfection but for viral inactivation as well. As a result of the need for constant concern over proper disinfection levels, much research effort has been devoted to the study of the basic disinfection mechanisms.

Chick was probably the first investigator to attempt to understand the laws of disinfection by applying the principles of first-order kinetics to bacteria and spore inactivation. Only the experiments with anthrax spores conformed to first-order kinetics, whereas bacteria apparently followed another pattern of inactivation. Subsequent studies have obtained results that confirmed first-order kinetic inactivation for bacteria.

Many research investigations have been directed toward the study of the inactivation of viruses and enteric organisms. As a result of these studies, the process of inactivation has been found to be dependent on the time of contact between the organisms and disinfecting agent, concentration of disinfecting agent, temperature, and pH. In addition, viruses may form clumps of varying sizes and may cause aberrations due to their existence in inactivation systems. One approach to studying the interaction of these various factors is to develop a kinetic model that will systematically account for them. The development of such a model and its application are discussed in this paper.

MODEL DEVELOPMENT

One of the major features in this model is the consideration of clumping or aggregation and its effect in explaining the devitalization process and associated aberrations. For purposes of this model, it is assumed that the virions exist either as individual particles in a suspension or as aggregates or clumps made up of two or more particles. 5 Each individual particle or aggregate will form a plaque-forming unit (PFU) before the viral suspension is subjected to a disinfecting It is impossible to determine whether a PFU represents a single infective unit. If the suspension contains single particles as well as clumps of various sizes, the disinfection process will continue until the last particle in the largest clump is devitalized. When the clump is completely devitalized, a PFU is destroyed, but it is obvious that a distribution of different size clumps will lead to a non-uniform destruction of PFU's thereby causing some unusual shapes in the disinfection curve.

In this discussion, it will be assumed that this distribution of infective units represents the state of the suspension. The percentage of aggregates or clumps of all sizes which have been disinfected at any time represents the Nth state; the percentage of undisinfected single particles represents the N-1st state, etc. For illustrative purposes, let us assume a suspension in which the maximum clump size is composed of three viral particles and with clumps composed of two particles as well as single particles. Following our convention, state 1 is the percentage of undisinfected aggregates with three virions; state 2, the percentage of undisinfected aggregates with two virions; state 3, the percentage of undisinfected single particles; and state 4, the total percentage of aggregates (clumps of 1, 2, and 3 viral particles) that have been devitalized at any point in time. Obviously, under the action of a disinfectant, assuming ideal conditions, state 4 would increase as the process continues until state 4 would be 100 percent.

We can impose a frequency distribution on the various states in effect, assigning a percentage of the total plaque-forming capability to each state. The initial condition of state $4(S_4)$ must equal 0 percent at time equal to zero or before the disinfectant acts. The percentage of undisinfected singles plus the percentages of clumps with two particles plus the percentage of clumps with three particles would equal 100 percent when time equals zero.

Associated with each state is a decay rate, $k_{\dot{1}}$, that represents the probability of interaction of the destructive agent with the undisinfected singles or aggregate. The process of devitalization is assumed to take place in the following manner: The

clumps of three virions are reduced to two surviving virions, and the clumps of two are reduced to one surviving virion all the way along the chain of states until the clumps are no longer infective and are registered as a decrease in total PFU.

The set of differential equations that describes the devitalization process, where $S_i (i = 1 . . . 4)$, the percent of plaqueforming capability at each state is:

$$\frac{dS_1}{dt} = -k_1 S_1$$

$$\frac{dS_2}{dt} = k_1 S_1 - k_2 S_2$$

$$\frac{dS_3}{dt} = k_2 S_2 - k_3 S_3$$

$$\frac{dS_4}{dt} = k_3 S_3$$
(1)

These are a set of linear first-order differential equations. The parameters k_i (i=1 . . . 4) represents the devitalization rate with $k_4=0$, and S_4^0 is the initial condition of state i with $S_4^0=0$ at t=0.

The solution to Equation 1 is as follows:

$$S_{4} = k_{1}k_{2}k_{3}S_{1}^{0} \left[\frac{e^{-k_{1}t}}{(-k_{1})(k_{3}-k_{1})(k_{2}-k_{1})} + \frac{e^{-k_{2}t}}{(-k_{2})(k_{3}-k_{2})(k_{1}-k_{2})} + \frac{e^{-k_{3}t}}{(-k_{3})(k_{2}-k_{3})(k_{1}-k_{3})} + \frac{1}{(k_{3})(k_{2})(k_{1})} \right]$$

$$+ k_{2}k_{3}S_{2}^{0} \left[\frac{e^{-k_{2}t}}{(-k_{2})(k_{3}-k_{2})} + \frac{e^{-k_{3}t}}{(-k_{3})(k_{2}-k_{3})} + \frac{1}{(k_{3})(k_{2})} \right]$$

$$- S_{3}^{0} \left[e^{-k_{3}t} - 1 \right]. \tag{2}$$

The general closed form solution to a set of differential equations as illustrated by Equation 1 is given by the following: 5

$$S_{i} = \sum_{j=1}^{i} \sum_{n=1}^{i} \frac{(k_{j} \cdot k_{j+1} \cdot \cdot \cdot k_{i-1}) (e^{-k_{n}t}) (S_{j}^{0})}{(k_{i} - k_{k}) (k_{i-1} - k_{k}) \cdot \cdot \cdot (k_{j} - k_{k})}$$
(3)

where k > j. When j=k, $(k_j-k_k) = 1$.

When expressed as percent survival, the equation could be written as percent survival = $100 - S_i$, where S_i is the last or final state to be considered.

Figure 1 illustrates schematically the change taking place during an experiment. Devitalized virus in an aggregate are represented by a broken circle. In a devitalization chain, the value for k_i , which indicates the rate of transition from one state into the next, differs for each state. There are also differences between chains. For example, k_3 in the first chain may be smaller than k_3 in the second chain. This might be attributed to different geometric configurations and resulting interferences. We will assume, however, that k_3 is an average reaction rate for state 3 in all of the decay chains.

Equation 2 can be reformulated in the following manner:

$$S_4 = C_0 + C_1 e^{-k_1 t} + C_2 e^{-k_2 t} + C_3 e^{-k_3 t}$$
 (4)

where,

$$C_{1} = \frac{-k_{2}k_{3}S_{1}^{0}}{(k_{3}-k_{1})(k_{2}-k_{1})}$$

$$C_{2} = \frac{-k_{1}k_{3}S_{1}^{0}}{(k_{3}-k_{2})(k_{1}-k_{2})} - \frac{k_{3}S_{2}^{0}}{(k_{3}-k_{2})}$$

$$C_{3} = \frac{-k_{1}k_{2}S_{1}^{0}}{(k_{2}-k_{3})(k_{1}-k_{3})} - \frac{k_{2}S_{2}^{0}}{(k_{2}-k_{3})} - S_{3}^{0}$$

$$C_{0} = S_{1}^{0} + S_{2}^{0} + S_{3}^{0}$$
(5)

We know that as $t \rightarrow \infty$, $S_4 \rightarrow 100$ percent; therefore, $C_0 \rightarrow 100$ percent.

Equation 4 forms the basis for the mathematical model of the kinetics of viral inactivation we wish to examine. However, to use this equation, we must be able to estimate its parameters.

Figure 1. Schematic illustration of the physical change taking place in a suspension of virions under the influence of a devitalizing agent. Devitalized virus in a clump is represented by a broken circle. The values for λ indicate the rates of transition from one state into the next in a devitalization chain. Si is the initial percent of plaque-forming capability in state i.

ESTIMATION OF PARAMETERS

If we were to rewrite Equation 4 in terms of percent survival, we would have the following:

$$100\% - S_4^0 = -C_1 e^{-k_1 t} - C_2 e^{-k_2 t} - C_3 e^{-k_3 t}$$
 (6)

or

$$\bar{y} = -c_1 e^{-k_1 t} - c_2 e^{-k_2 t} - c_3 e^{-k_3 t}$$
 (7)

where $\overline{y} = 100\% - S_4^0$.

For simplicity, we shall assume that our observations are equidistant, as in Figure 2, and that the difference in the successive abscissa values is h. With the use of our three-term example, we find the value of the ith ordinate at $t_0 + (i-1)h$, where t_0 is the value of y_0 at t_0 , is then:

$$\overline{y}_i = -c_1 \exp[-k_1 t_0 + (i-1)h] - c_2 \exp[-k_2 t_0 + (i-1)h]$$

$$-c_3 \exp[-k_3 t_0 + (i-1)h]$$
(8)

or, if we make the following substitutions:

$$e^{-k_1h} = u_1;$$

$$e^{-k_1h} = u_2;$$

$$e^{-k_1h} = u_3;$$

$$-c_1 \exp[-k_1t_0 + (i-1)h] = f_1;$$

$$-c_2 \exp[-k_2t_0 + (i-1)h] = f_2;$$

$$-c_1 \exp[-k_3t_0 + (i-1)h] = f_3;$$

then, for five equidistant measurements, we have:

$$f_1 + f_2 + f_3 = y_i$$

 $f_1u_1 + f_2u_2 + f_3u_3 = y_{i+1}$

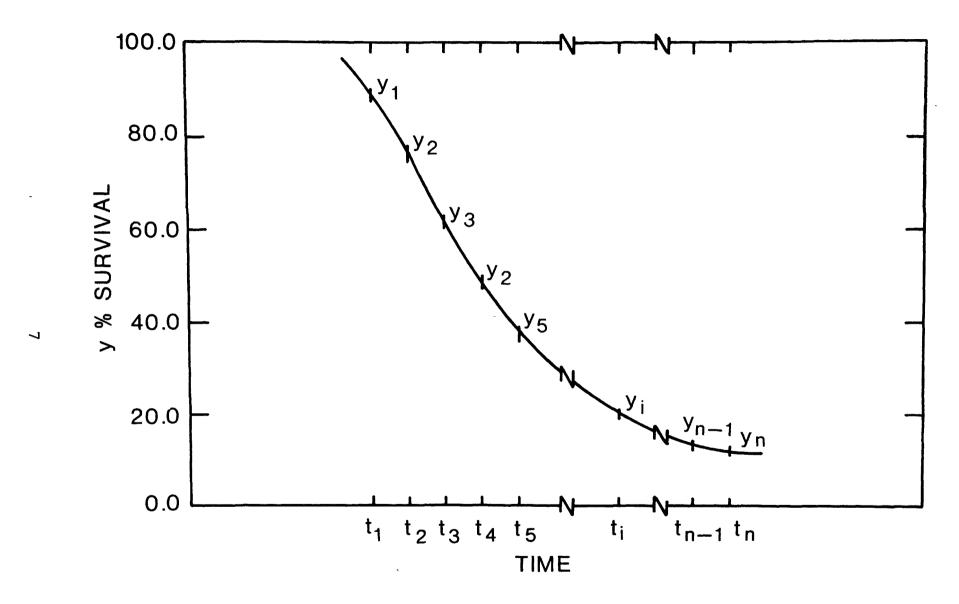


Figure 2. Equally distant values for percent survival versus time.

$$f_{1}u_{1}^{2} + f_{2}u_{2}^{2} + f_{3}u_{3}^{2} = y_{i+2}$$

$$f_{1}u_{1}^{3} + f_{2}u_{2}^{3} + f_{3}u_{3}^{3} = y_{i+3}$$

$$f_{1}u_{1}^{4} + f_{2}u_{2}^{4} + f_{3}u_{3}^{4} = y_{i+4}$$
(9)

In general, the set of equations for N observations would be as shown below:

$$f_{1} + f_{2} + f_{3} = y_{0}$$

$$f_{1}u_{1} + f_{2}u_{2} + f_{3}u_{3} = y_{1}$$

$$f_{1}u_{1}^{2} + f_{2}u_{2}^{2} + f_{3}u_{3}^{2} = y_{2}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$f_{1}u_{1}^{N-1} + f_{2}u_{2}^{N-1} + f_{3}u_{3}^{N-1} = y_{N-1}$$
(10)

which would necessarily be satisfied identically. If the constants u_1 , u_2 , and u_3 were known (or preassigned), Equations 10 would comprise N linear equations in the three unknowns f_1 , f_2 , and f_3 , and be solved exactly if N=3 or approximately by least squares if N>3.

However, if the u's are also to be determined, at least six equations are needed, and a difficulty occurs because the equations are non-linear in the u's. This difficulty can be minimized by the following method.

Let u_1 , u_2 , and u_3 be the roots of the algebraic equation:

$$u^{3} - a_{1}u^{2} - a_{2}u - a_{3} = 0 (11)$$

so that the left-hand member of Equation 11 is identified with the product $(u-u_1)(u-u_2)(u-u_3)$. To determine the coefficients a_1 , a_2 , a_3 , we multiply the first line in Equation 10 by a_3 , and the second line by a_2 , and the third line by a_1 , and the fourth line by -1, and add the results. If use is made of the fact that each u satisfies Equation 11, the result is seen to be of the form:

$$y_3 - a_1 y_2 - a_2 y_1 - a_3 y_0 = 0$$
 (12)

A set of N-4 additional equations of similar type is obtained in the same way by starting instead successively with the second, third . . . (N-3)th equations. In this way, we find that Equations 10 and 11 imply the N-3 linear equations: 8

$$y_{2}a_{1} + y_{1}a_{2} + y_{0}a_{3} = y_{3}$$

$$y_{3}a_{1} + y_{2}a_{2} + y_{1}a_{3} = y_{4}$$

$$\vdots$$

$$y_{N-2}a_{1} + y_{N-3}a_{2} + \cdots + y_{N-4}a_{3} = y_{N-1}$$
(13)

Since the ordinates y_k are known if N=6, this set generally can be solved directly for a_1 , a_2 , and a_3 , or it can be solved approximately by the method of least squares if N>6.

In theory, after the a's are determined, the u's are found as the roots of Equation 11 and may be real or complex. Equation 10 then becomes linear and the f's can be determined from the first n of these equations or preferably by applying a least-squares technique applied to the entire set.

We have examined the situations in which there are only three terms to analyze in Equation 2. However, most often the situation will occur when there are n terms in the equation to be solved. This would take the form as follows:

$$S_n = C_0 + C_1 e^{-k_1 t} + C_2 e^{-k_2 t} + \dots + C_{n-1} e^{-k_{n-1} t}$$
 (14)

Assuming that there are N points equally spaced at t=0, 1, 2, 3 . . . N-1, and following the logic described in this paper, we get a set of equations similar to Equations 8:

Again, following the logic described earlier, we have the following N-n linear equations where the columns of data are labeled 1 through n+1.

(1) (2) (3) (n) (n+1)

After the a's have been determined by least squares, the values for the c's can be found as roots of the following equation:

$$u^{n} - a_{1}u^{n-1} - a_{2}u^{n-2} - \dots - a_{n-2}u - a_{n} = 0$$
 (17)

And once the u's have been found, the f's can be found from Equation 15.

The application of this approach presumes that the number of terms that make up the model is known. Generally this number is unknown, and a major part of the analysis becomes the estimation of the optimum number of terms describing the disinfection process. Even if the number of terms is known, the solution to Equation 17 is often complex because of estimation errors in determining the coefficients. To make this analysis usable, we must be able to determine the number of terms (number of states) that make up the inactivation process. The following section describes a technique for estimating the number of components that "best" describe the inactivation process.

OPTIMAL NUMBER OF TERMS

To determine the proper number of terms that will describe the inactivation process, we would formulate the set of linear equations shown in Equation 16. In this set, the column labeled n+l is the response or dependent variable, and the columns 1 through n are the independent variables. Using step-wise regression, we regress the independent variables (1 through n) against the n+lst or dependent variable. As each variable is forced into the equation, a value for its coefficient is calculated. Each coefficient has an associated sign. When the signed coefficient is substituted into Equation 17, it is possible that an equation with alternating signs may result; for example, Equation 17 might look as follows:

$$a_0 u^n - a_1 u^{n-1} + a_2 u^{n-2} - \dots + a_{n-2} u - a_n = 0$$
 (18)

According to Des Cartes' rule of signs:

The number of positive real roots of a real albegraic equation either is equal to the number N_a of sign changes in the sequence a_0 , a_1 , a_2 , . . . a_n of coefficients where vanishing terms are disregarded or it is less than N_a by a positive even integer.

Since the decay coefficients in Equation 14 are the positive real roots in Equation 18, we can use Des Cartes' rule to give us an indication as to the number of terms which optimally describes the inactivation process. We will assume that when the number of terms in the regression equation is one more than the number of sign changes, the optimal number of terms has been identified, and the variables in the regression equation are to be used in calculating $k_{\rm h}$. The approach will be discussed beginning with the identification of the optimal number of terms.

We can illustrate this approach by assuming a model of three terms as follows:

$$y = 20.00e^{-0.10t} + 30.00e^{-0.30t} + 50.00e^{-0.50t}$$
 (19)

Table 1 (Page 12) contains values for Equation 19 which have been generated at intervals of t=0.50 to simulate a disinfection curve. Table 2 illustrates the way in which these data are organized to solve for the coefficients in Equation 17. As shown in Equation 16, a matrix of data points is established with n dependent variables. In this case, 27 independent variables have been constructed. The value of $y_1 = 100.00$ is the first value in the upper left-hand corner of the matrix, and the value $y_{27} = 5.7660$ is the first value for the dependent variable. The second value for the first independent value is $y_1 = 83.7858$, and the second value for $y_{28} = 5.4274$. This same pattern is repeated throughout the matrix.

Table	2.	MATRIX	OF	DATA	FOR	REGRESSION	ANALYSIS

Var 1	Var 2	• •	•.	Var n	 Var 28
100.00	83.786				5.7660
83.786	70.648				5.4274
2.0359	1.9338				0.5203
1.9338	1.8370				0.4949

t	e ^{-0.100t}	e ^{-0. 300t}	e-0.500t	у	t	e-0, 100t	e-0. 300t	e-0. 500t	у	t	e-0.100t	e - 0. 300t	e-0. 500t	у
0.00	20.0000	30. 0000	50. 0000	100.0000	13.00	5. 4506	0. 6072	0.0751	6. 1330	26. 00	1. 4854	0.0122	(: 39°	1.4978
0. 50	19. 0245	25. 8212	38. 9400	83. 7858	13, 50	5. 1848	0. 5226	0. 0585	5. 7660	26. 50	1.4130	0.0105	0. J. Go	1.4236
1.00	18. 0967	22. 2245	30. 3265	70. 6478	14.00	4. 9319	0. 4498	0.0455	5. 4274	27. 00	1.3441	0.0091	0. 0006	7.3532
1.50	17. 2141	19. 1288	23.6183	59. 9613	14. 50	4.6914	0. 3872	0. 0355	5. 1141	27. 50	1. 3785	0.0078	0. 0000	1.2864
2.00	16. 3746	16. 4643	18. 3939	51. 2329	15.00	4. 4626	0. 3332	0. 0276	4. 8235	28.00	1.2162	0.0067	0.0000	1.2229
2. 50	15. 5760	14. 1710	14. 3252	44. 0722	15. 50	4. 2449	0. 2868	0.0215	4. 5533	28. 50	1.1568	0. 0058	0.0000	1.1627
3. 00	14. 8163	12. 1970	11.1565	38. 1699	16.00	4. 0379	0.2468	0.0167	4. 3016	29. 00	1.1004	0.0049	0. 0000	1.1054
3. 50	14. 0937	10.4981	8.6887	33. 2806	16. 50	3. 8410	0. 2125	0.0130	4. 0665	29. 50	1.0467	0.0043	0. 0000	1.0511
4.00	13.4064	9. 0358	6. 7667	29. 2090	17. 00	3. 6536	0. 1829	0. 0101	3. 8467	30. 00	0. 9957	0. 0037	0. 0000	0. 9994
4. 50	12. 7525	7. 7772	5. 2699	25. 7997	17. 50	3. 4754	0. 1574	0. 0079	3. 6408	30. 50	0. 9471	0.0031	0. 0000	0. 9503
5. 00	12. 1306	6. 6939	4.1042	22. 9287	18.00	3. 3059	0.1354	0.0061	3. 4476	31.00	0. 9009	0. 0027	0. 0000	0. 9037
5. 50	11.5390	5. 7615	3. 1963	20. 4969	18, 50	3. 1447	0.1166	0.0048	3. 2661	31.50	0. 8570	0.0023	0. 0000	0. 8594
6. 00	10. 9762	4. 9589	2. 4893	18. 4245	19.00	2. 9913	0.1003	0. 0037	3. 0954	32. 00	0. 81 52	0. 0020	0. 0000	0. 8172
6. 50	10. 4409	4. 2682	1.9387	16. 6478	19. 50	2.8454	0.0863	0.0029	2. 9347	32. 50	0.7754	0.0017	0. 0000	0. 7772
7. 00	9. 9317	3. 6736	1.5098	15. 1152	20.00	2. 7067	0. 0743	0. 0022	2. 7833	33, 00	0.,7376	0.0015	0. 0000	0. 7391
7. 50	9. 4473	3. 1619	1.1758	13. 7852	20, 50	2. 5747	0.0640	0.0017	2. 6404	33. 50	0. 7016	0.0012	0. 0000	0. 7029
8.00	8. 9865	2. 7215	0. 91 57	12. 6239	21.00	2. 4491	0.0550	0.0013	2. 5055	34.00	0.6674	0.0011	0. 0000	0. 6585
8. 50	8. 5483	2. 3424	0.7132	11.6039	21.50	2. 3296	0.0474	o. 0010	2. 3781	34. 50	0. 6349	0.0009	0.0000	0.6358
9.00	8. 1313	2. 0161	0. 5554	10. 7030	22.00	2. 2160	0.0408	0.0008	2. 2577	35. 00	0.6039	0.0008	0. 0000	0.6047
9. 50	7. 7348	1. 7353	0.4325	9. 9027	22. 50	2.1079	0. 0351	0.0006	2. 1437	35. 50	0. 5744	0.0007	0.0000	0. 5752
10.00	7. 3575	1.4936	0. 3368	9. 1881	23.00	2.0051	0. 0202	0.0005	2.0359	36.00	0. 5464	0. 0006	0. 0000	0. 5470
10. 50	6. 9987	1. 2855	0. 2623	8. 5467	23. 50	1.9073	0. 0260	0.0003	1. 9338	36. 50	0.5198	0.0005	0. 0000	0. 5203
11.00	6. 6574	1.1064	0. 2043	7. 9682	24.00	1.8143	0. 0223	0.0003	1.8370	37. 00	0. 4944	0.0004	0. 0000	0. 4949
11.50	6. 3327	0. 9523	0. 1591	7. 4443	24. 50	1.7258	0. 0192	0.0002	1. 7453					
12.00	6. 0238	0.8197	0. 1239	6. 9675	25. 00	1. 6417	0.0165	0. 0001	1.6584					
12. 50	5. 7301	0. 7055	0. 0965	6. 5321	25. 50	1. 5616	0.0142	0. 0001	1. 5760					

Table 3 contains the results of the application of the stepwise regression program to the matrix of data in Table 2. The equations resulting from each step are as follows:

$$x^{28} - 0.9418x^{27} = 0$$
 (20)

$$x^{28} - 1.1223x^{27} + 0.1402x^{23} = 0$$
 (21)

$$x^{28} - 1.1420x^{27} + 0.1565x^{23} - 0.000089x^{1} = 0$$
 (22)

$$x^{28} + 0.0318x^{27} - 0.9398x^{23} + 0.07968x^{8} - 0.01124x^{1} = 0$$
 (23)

Equation 22 combines the maximum number of sign changes with the minimum number of variables in the equation and is, therefore, selected as the equation governing the number of terms in the disinfection equation. This matches identically with the three terms used in the simulated data. After the best estimate has been made of the number of terms which makes up the data, the next step in the analysis is to estimate the decay coefficients in the equation. This step is described in the following section.

Table 3. RESULTS OF REGRESSION ANALYSIS USING DATA FROM TABLE 2

Step	Var	Coefficient
1	27	0.94179753
2	23 27	-0.14022224 1.12226027
3	1 23 27	0.00008941 -0.15649791 1.14201651
4	1 8 23 27	0.01124259 -0.07967716 0.93985016 -0.03183525

ESTIMATION OF PARAMETERS

Decay Rates

Based on the data in Table 1, the parameters for Equation 19 can be estimated using the techniques outlined in Appendix A. The first decay coefficient to be calculated will be that associated with variable x^{23} and the calculation is as follows:

$$\frac{[(x^{24} - r_1 x^{23}) - (x^2 - r_1 x^1)]}{(23 - 1)} =$$

$$-\left[\frac{(x^{24}-r_1x^{23})-(x^{28}-r_1x^{27})}{(23-27)}\right] \tag{24}$$

Substituting the average values for x^{28} , x^{27} , x^{24} , x^{23} , x^2 , and x^1 , into Equation 24 yields the following values for r:

$$r_1 = 0.85$$
 (25)

where

$$r_1 = e^{-k_1 h} \tag{26}$$

From Equation 26, we can calculate k_1 as follows:

$$k_1 = -\ln(r_1)/h$$
 (27)
 $k_1 = -\left[\ln(0.85)\right]/0.50$
 $k_1 = 0.32$

The decay coefficient associated with variable x^{1} is calculated as follows:

$$\ln(r_2) = \ln(x^2) - \ln(2x^1 - x^2)$$

$$\ln(r_1) = -0.24$$
(28)

Substituting into Equation 27 for k_2 we get the following:

$$k_2 = (0.24)/0.50$$
 (29)
 $k_2 = 0.48$

The decay coefficient associated with variable \mathbf{x}^{27} is calculated as follows:

$$\ln(r_3) = \ln(x^{28}/x^{27})$$

$$\ln(r_3) = \ln(0.95)$$
(30)

Substituting into Equation 27 for k, we get the following:

$$k_3 = (0.05)/0.50$$

 $k_3 = 0.10$

Coefficients

Once the decay rates in Equation 19 have been estimated, the values for the coefficients are relatively easy to obtain. Values for each exponential term can be caluclated at the appropriate time interval and these values regressed against the values of y in Table 1. Stepwise regression can then be used to estimate the coefficients (Appendix D).

EXAMPLE INACTIVATION PROBLEM

To illustrate the utilization of this technique, it will be applied to experimental data collected from a series of electromicroscopy investigations conducted by Gordon Sharp at the University of North Carolina. Sharp prepared electron micrographs of dilute preparations of T7 virus that had been subjected to a devitalizing agent.

Figure 3 shows the inactivation curve, and Table 4 contains the distribution of T7 coliphage particles resulting from these experiments. Column 1 of Table 4 lists the group size of the aggregates, that is, the number of particles in each clump of virus. Column 2 lists the number of groups in the suspension, and Column 3 lists the number of particles in each group. Column 4 lists the percent of plaque-forming capability that each group represents in the suspension. For example, there are 770 groups in the suspension, but 610/770 or 79.1 percent of them are groups of single viral particles, and 116/770 or approximately 15.1 percent of them are groups of two viral particles, etc.

Table 4. T7 VIRUS DATA

Group size	Number of groups	Number of particles	Plaque-forming capability (%)
1	610	610	79.22
2	116	232	15.06
3	24	72	3.12
4	12	48	1.56
5	6	30	0.78
6	1	6	0.13
18	1	18	0.13
Total	770	1,016	100.00

INACTIVATION OF COLIPHAGE T7 BY ULTRAVIOLET RAYS

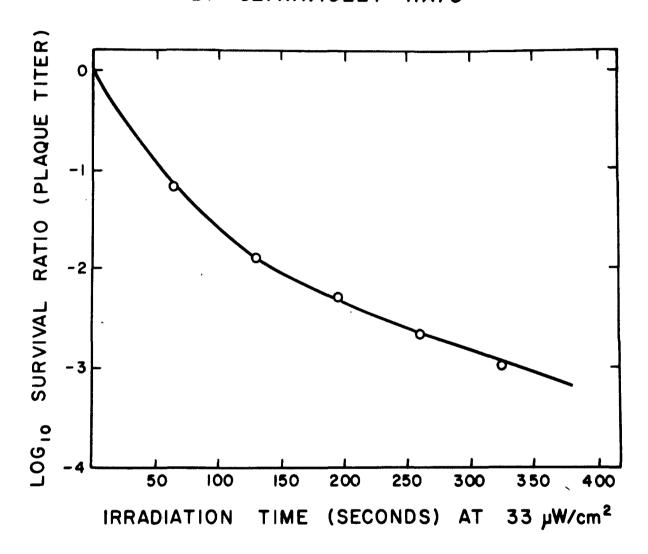


Figure 3. Inactivation of coliphage

Table 5 contains the data from Figure 3, at intervals of 5 seconds, arranged in 10 columns of data. Table 6 contains the coefficients associated with each set of variables as they enter the stepwise regression equation. It is obvious from the alternating signs that six variables will describe the inactivation process. The decay coefficients per minute calculated from the techniques outlined in Appendix A are as follows:

$$r_1 = 1.56$$
 (32)
 $r_2 = 2.12$
 $r_3 = 2.32$
 $r_4 = 2.68$
 $r_5 = 2.83$
 $r_6 = 4.68$

Each of these values represents a k_i in Equation 14, and each value of $e^{-k_i t}$ can be generated at various intervals of t by the program in Appendix B. If all six values of $e^{-k_i t}$ represented by Equation 32 are regressed against the values for y as obtained from the graph in Figure 3 then Table 7 contains the values for their coefficients. Using the program in Appendix C, the values for each predicted S_i (percentage of plaque-forming capability) can be calculated. The predicted and actual values are shown in Table 8.

When the regression is performed, the values shown in Table 7 result. At the fourth step of the regression, the corrected R^2 begins to decrease which is an indicator that the regression should be terminated at that point, and step 3 is, therefore, used as the last step in the regression analysis. Equation 5 and the program contained in Appendix C, where $k_1 = 1.56$, $k_2 = 2.83$, and $k_3 = 4.68$, yields the following values for S_i : $S_3 = 73.97$ %, $S_2 = 15.51$ %, and $S_1 = 11.30$ %. Physically, this means that there are 73.97% singles, 15.51% doubles, and the rest of the particles amount to approximately 11.30%. The comparison between the results obtained from the model and the electron micrographs is shown in Table 8. The agreement seems reasonable.

Table 5. DATA FROM DISINFECTION CURVE

Var 1	Var 2	Var 3	Var 4	Var 5	Var 6	Var 7	Var 8	Var 9	Var 10
100.00000	79.00000	58.00000	45.00000	36.50000	28.50000	25.00000	19.80000	17.50000	15.00000
79.00000	58.00000	45.00000	36.00000	28.50000	25.00000	19.80000	17.50000	15.00000	13.00000
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
000.16500	00.16000	00.15500	00.15000	00.14000	00.13500	00.13000	00.12000	00.11000	00.10500
000.16000	00.15500	00.15000	00.14000	00.13500	00.13000	00.12000	00.11000	00.10500	00.10000

Table 6. RESULTS OF REGRESSION ANALYSIS USING DATA FROM TABLE 5

Step	Var	Coefficient
1	9	0.84449432
2	6 9	0.16137199 0.57866191
3	6 8 9	0.22635578 -0.22446799 0.73339338
4	5 6 8 9	-0.14587300 0.36096394 -0.35799450 0.95901767
5	4 5 6 8 9	0.12430537 -0.26913616 0.29413744 -0.36433149 1.01961917
6	1 4 5 6 8 9	-0.03634866 0.29008852 -0.30158431 0.22952950 -0.50623862 1.13438561
7	1 4 5 6 7 8 9	-0.03743081 0.32109643 -0.43943162 0.20853501 0.25010067 -0.67970749 1.22741919

Table 7. RESULTS OF REGRESSION
USING DR. SHARP'S INACTIVATION DATA

Step	Var	Coefficient	Corrected R ² as a percent	t value
1	2	96.77	99.501	117.26
2	2 6	89.08 6.64	99.549	32.05 2.88
3	1 2 6	58.89 4.12 37.77	99.933	19.67 0.92 20.82
4	1 2 4 6	61.68 -10.82 15.24 34.70	99.932	6.69 -0.23 0.32 3.55

Table 8. COMPARISON BETWEEN MODEL OUTPUT
AND ELECTRON MICROGRAPHS

Group size	Percent plaque-forming capability (counted)	Percent plaque-forming capability (predicted)
1	79.22	73.97
2	15.06	15.51
3 + 4 + 5 + 6 + 18	5.82	11.30

SUMMARY AND CONCLUSIONS

The kinetics of viral inactivation have been examined from a rational point of view. A mathematical model based on the radionuclide chain decay concept was formulated and a solution technique developed that allows for estimations of the optimal number of terms in the equation and for estimating the equation's parameters. With the use of data derived from electron microscopy, the model was tested and achieved reasonable results.

Based on this discussion, it is obvious that the postulated mathematical model and its solution techniques are superior to others that have been formulated. The approach outlined in this report not only determines the number of aggregate groups in the suspension, but the values for decay coefficients as well. There are some deficiencies in this approach, however, and it is important that these be considered. The approach suggested here is statistical in nature and is, therefore, subject to experimental error in the various estimations made. More importantly, the estimates of aggregate size and concentration are blind. That is, if this approach estimates three terms as optimal, there is no way to provide information on the make-up of these aggregate groupings. They might be clumps of single, double, and triple particles, or clumps of 20, 21, and 25 particles. The values for the decay coefficients may give some insight as to clump size, but these insights are hardly sufficient. This technique must be coupled with a physical assay approach incorporating electron microscopy. A research project that combines the elements of mathematical analysis with electron microscopy is currently underway.

APPENDIX A

In this appendix, the mathematical justification for the techniques used in the section entitled "Estimation of Parameters" is developed. Table 9 contains the first three values for the individual terms which make up the variables 1, 2, 23, 24, 27, and 28, as shown in Table 2. The first variable to enter the stepwise regression equation is x^{27} , as shown in Equation 20. Looking at variables 27 and 28 in Table 9, it is obvious that the term labeled f3 dominates variable 27 and is most highly correlated with variable 28, while the terms f_1 and f_2 in variable 27 are relatively insignificant. The next variable to enter the stepwise regression equation is variable 23, and it can be seen that terms f₂ and f₃ in variable 23 are significant but that term f_1 is insignificant, and finally in variable 1, terms f_1 , f_2 , and f3, are all significant. It can be concluded from this that a variable enters the regression equation when one of the terms which comprise it is significant enough to alter the rate of change of the entering variable. Therefore, we would expect that variables would enter the regression equation with alternating signs associated with their coefficients, since the entrance of each variable into the equation signifies a significant change in the functions slope. Moreover, we would expect that the variables entering the equation with alternating signs represents the maximum change in the slope of the function with respect to the other variables in the regression equation. Using Equation 19 as an example, we would, therefore, attempt to find a ui such that bn in the following equation is a maximum relative to its adjacent variables:

$$f_1(u_1^{n+1} - u_i u_1^n) + f_2(u_2^{n+1} - u_i u_2^n + f_3(u_3^{n+1} - u_i u_3^n) = b_n$$
 (33)

or in a more simple form, we would attempt to find a u_i such that b_{23} is a maximum relative to b_1 and b_{27} in the following set of equations:

$$x^{2} - u_{i}x^{1} = b_{1}$$
 (34)
 $x^{24} - u_{i}x^{23} = b_{23}$
 $x^{28} - u_{i}x^{27} = b_{27}$

Table 9. FIRST THREE VALUES FOR SELECTED VARIABLES

Var	Time	C ₁ e ^{-0.500t} *	C ₂ e ^{-0.300t} †	C ₃ e ^{-0.100t} ‡	У
1	0	50.0000	30.0000	20.0000	100.0000
	0.5	38.9400	25.8212	19.0245	83.7858
	1.0	30.3265	22.2245	18.0967	70.6478
2	0.5	38.9400	25.8212	19.0245	83.7858
	1.0	30.3265	22.2245	18.0967	70.6478
	1.5	23.6183	19.1288	17.2141	59.9613
23	11.0	0.2043	1.1064	6.6574	7.9682
	11.5	0.1591	0.9523	6.3327	7.4443
	12.0	0.1239	0.8197	6.0238	6.9675
24	11.5	0.1591	0.9523	6.3327	7.4443
	12.0	0.1239	0.8197	6.0238	6.9675
	12.5	0.0965	0.7055	5.7301	6.5321
27	13.0	0.0751	0.6072	5.4506	6.1330
	13.5	0.0585	0.5226	5.1848	5.7660
	14.0	0.0455	0.4498	4.9139	5.4274
28	13.5	0.0585	0.5226	5.1848	5.7660
	14.0	0.0455	0.4498	4.9139	5.4274
	14.5	0.0355	0.3872	4.6914	5.1141

^{*}f₁. †f₂. ‡f₃.

Therefore, u; can be calculated from the following equation:

$$\frac{(x^2 - u_i x^1) - (x^{24} - u_i x^{23})}{(1 - 23)} = \frac{(x^{24} - u_i x^{23}) - (x^{28} - u_i x^{22})}{(23 - 27)}$$
(35)

since we know that ${\tt b}_n$ is a maximum round the point ${\tt x}^{23}.$ Table 10 confirms that this is in fact the case for variable 23.

2 1	24 23	28 27
x ² - u ₂ x ¹	$x^{24} - u_2 x^{23}$	x ²⁸ - u ₂ x ²⁷
-2.2800	0.5839	0.4857
-1.4613	0.5583	0.4449
-0.7931	0.5000	0.4569

Table 10. bn FOR SELECTED VALUES OF ui

For variables x^1 and x^{27} , this computation is impossible since there are no variables which can be used to make a computation similar to Equation 2.

However, for the decay coefficient associated with \mathbf{x}^1 , the following equation can be developed using the properties of infinite series:

$$u_i^n(x^2 - u_i x^1) \rightarrow u_i^{n+1}(x^1 - x^2) \text{ as } n \rightarrow \infty$$
 (36)

Therefore,

$$\ln(u_i) = \ln(x^2) - \ln(2x^1 - x^2)$$
 (37)

For the decay coefficient associated with \mathbf{x}^{27} , the following relationship can be developed:

$$u_{i}^{n}x^{28} - u_{i}^{n+1}x^{27} \rightarrow 0 \text{ as } n \rightarrow \infty$$
 (38)

Therefore,

$$ln(u_i) = ln(x^{28}) - ln(x^{27})$$
 (39)

APPENDIX B

PROGRAM FOR GENERATING VALUES OF e-kit

AT GIVEN INTERVALS OF t

```
DIMENSION 4(15),8(15),C(15)
   MR = 1
   MW = 15
5 READ(MR,10)T,N
10 FORMAT(F5.2, 12)
   IF (N)70,70,15
15 READ(MR, 20)(A(J), J=1, N)
   READ(MR, 20)(C(J), J=1, N)
20 FORMAT(10F8.0)
   E=2.71828
   S=0.0
   Y = 0.0
   WRITE(MW, 25)
25 FORMAT('1'//26x,'-XT')
   WRITE(MW,30)
30 FORMAT(25X, 'E
                     TABLE 1
   WRITE(MW, 35)
35 FORMAT(25X, '----')
   WRITE(MW, 40)(A(J), J=1, N)
40 FORMAT(//10X, 3(3X, 1-1, F5.3, 1T1))
   WRITE(MW,45)
45 FORMAT(5X, 'T', 6X, 'E', 2(9X, 'E'), 12X, 'Y')
50 DO 60 I=1,N
55 B(I)=C(I)*E**(-\Delta(I)*S)
60 Y=Y+8(I)
   WRITE(MW, 65) S_{*}(B(K), K=1, N), Y
65 FORMAT(/3X,F5.2,2X,11F10.4)
   S=S+T
   Y = 0.0
                        5,50,50
   IF (B(1)-.0001)
10 STOP
   END
```

APPENDIX C

PROGRAM FOR CALCULATION Si

```
001
    DIMENSION A(16), B(16), S(10), TEMP(10), STOR(10)
                                                                           396
  2 READ (1,5)N
  5 FCRMAT (12)
    IF(N)8,42,8
                                                                           004
  8 READ (1,10)A,8
                                                                           005
 10 FORMAT (8F10.3/8F10.3)
                                                                           006
    DC 41 I≃1.N
                                                                           006A
    TEMP(1)=1.0
    STOR(1)=1.0
                                                                           006B
    00 30 J=1,N
                                                                           007
    IF(I-J)15,30,15
                                                                           800
 15 TEMP(1)=TEMP(1)*(A(J)~A(1))
                                                                           009
    STOR(1)=STOR(1)*A(J)
                                                                           010
 30 CONTINUE
                                                                           011
                                                                           012
    U1=TEMP(1)/STOR(1)
    IF(I-1)45,35,45
                                                                           013
 35 S(1)=B(1)*U1
                                                                           014
 WRITE (3,40) S(1)
40 FORMAT ('1'///' S(1) = ',F12.2///)
                                                                           015
    GO TO 41
                                                                           017
 45 TEMP(2)=1.0
                                                                           017A
    STCR(2)=1.0
                                                                           0178
    DO 65 J=1,N
                                                                           018
    IF(I-J)50,65,50
                                                                           019
 50 STOR(2)=STOR(2)+A(J)
                                                                           020
    TEMP(2) = TEMP(2) * (A(J) + A(I))
                                                                           021
 65 CONTINUE
                                                                           022
    U2=STOR(2)+S(1)/TEMP(2)
                                                                           023
    IF(I-2)80,70,80
                                                                           024
 70 S(2)=(B(2)-U2)+U1
                                                                           025
    WRITE (3,75) S(2)
                                                                           026
 75 FORMAT (' S(2) = ',F12.2///)
                                                                           027
    GO TO 41
                                                                           028
 80 TEMP(3)=1.0
                                                                           028A
    STOR(3)=1.00
                                                                           028B
    DO 100 J=2,N
                                                                           029
    IF(I-J)85,100,85
                                                                           030
 85 STOR(3)=STCR(3)*A(J)
                                                                           031
    TEMP(3)=TEMP(3)*(A(J)-A(I))
                                                                           032
100 CONTINUE
                                                                           033
    U3=STOR(3)*S(2)/TEMP(3)
                                                                           034
    IF(I-3)115,105,115
                                                                           035
105 S(3)=(B(3)-U2-U3)*U1
                                                                           036
    WRITE (3,110) S(3)
                                                                           037
110 FCRMAT (' S(3) = ',F12.2///)
                                                                           038
    GO TO 41
                                                                           039
115 TEMP(4)=1.0
                                                                           039A
    STOR(4)=1.0
                                                                           0398
    DO 135 J=3.N
                                                                           040
    IF(I-J)120,135,120
                                                                           041
120 STCR(4)=STCR(4)*A(J)
                                                                           042
    TEMP(4) = TEMP(4) * (A(J)-A(I))
                                                                           043
135 CONTINUE
                                                                           044
    U4=STOR(4)*S(3)/TEMP(4)
                                                                           045
    IF(I-4)150,140,150
                                                                           046
140 S(4)=(B(4)-U2-U3-U4)*U1
                                                                           047
    WRITE (3,145) S(4)
                                                                           048
145 FORMAT ( ! S(4) = ',F12.2///)
                                                                           049
                                                                           050
    GO TO 41
                                                                           050A
150 TEMP(5)=1.0
    STOR(5)=1.0
                                                                           050B
```

```
DO 170 J=4,N
                                                                            051
    If(I-J)155,170,155
                                                                            052
155 STOR(5)=STOR(5)+A(J)
                                                                            053
    TEMP(5) = TEMP(5) * (A(J) - A(I))
                                                                            054
170 CONTINUE
                                                                            055
    U5=STOR(5)*S(4)/TEMP(5)
                                                                            056
    IF(I-5)185,175,185
                                                                            057
175 S(5)=(B(5)-U2-U3-U4-U5)*U1
                                                                            058
    WRITE (3,180) S(5)
                                                                            059
180 FCRMAT (' S(5) = ',F12.2///)
                                                                            060
    GO TO 41
                                                                            061
185 TEMP(6)=1.0
                                                                            061A
    STOR(6)=1.0
                                                                            061B
    DO 205 J=5.N
                                                                            062
    IF(I-J)190,205,190
                                                                            063
190 STOR(6)=STOR(6) +A(J)
                                                                            064
    TEMP(6) = TEMP(6) * (A(J) + A(I))
                                                                            065
205 CONTINUÉ
                                                                            066
    U6=STOR(6)*S(5)/TEMP(6)
                                                                            067
    If(I-6)220,210,220
                                                                            068
210 S(6)=(8(6)+U2-U3-U4-U5+U6)*U1
                                                                            069
    WRITE (3,215) S(6)
                                                                            070
215 FCRMAT ( ! S(6) = 1,F12.2///)
                                                                            071
    GG TO 41
                                                                            072
220 TEMP(7)=1.0
                                                                            072A
    STOR(7) = 1.0
                                                                            072B
    DO 240 J=6,N
                                                                            073
     IF(I-J)225,240,225
                                                                            074
                                                                            075
225 STOR(7)=STOR(7)*A(J)
    TEMP(7) = TEMP(7) * (A(J) - A(I))
                                                                            076
     CONTINUE
                                                                            077
                                                                            078
    U7 = STOR(7) + S(6) / TEMP(7)
                                                                            079
     IF(I-7)255,245,255
245 S(7) = (B(7) - U2 - U3 - U4 - U5 - U6 - U7) *U1
                                                                            080
    WRITE (3,250) S(7)
                                                                            081
                                                                            082
250 FURMAT ( S(7) = 1,F12.2///)
                                                                            083
    GO TO 41
                                                                            083A
255 TEMP(8)=1.0
                                                                            083B
     STOR(8)=1.0
                                                                            084
    00 275 J=7,N
                                                                            085
     IF(I-J)260,275,260
                                                                            086
260 STCR(8)=STCR(8)*A(J)
                                                                            087
     TEMP(8) = TEMP(8) * (A(J) - A(I))
                                                                            088
275 CONTINUE
     U8=STOR(8)*S(7)/TEMP(8)
                                                                            089
                                                                            090
     IF(I-8)290,280,290
280 S(8)=(B(8)-U2-U3-U4-U5-U6-U7-U8)+U1
                                                                            091
                                                                            092
    WRITE (3,285) S(8)
                                                                            093
285 FORMAT (' S(8) = ',F12.2///)
                                                                            094
     GO TO 41
                                                                            0944
290 TEMP(9)=1.0
                                                                            0948
     STOR(9) = 1.0
                                                                            095
    DO 300 J=8,N
                                                                            096
     IF(I-J)295,300,295
                                                                            097
295 STOR(9)=STOR(9)*A(J)
                                                                            098
    TEMP(9) = TEMP(9) * (A(J)-A(I))
                                                                            099
300 CONTINUE
                                                                            100
    U9=STOR(9) *S(8)/TEMP(9)
                                                                            101
     IF(I-9)315,305,315
305 S(9)=(8(9)-U2-U3-U4-U5-U6-U7-U8-U9)*U1
                                                                            102
                                                                            103
    WRITE (3,310) S(9)
```

310	FORMAT (' $S(9) = F12.2///)$	104
	GC TO 41	105
315	TEMP(10)=1.0	105A
	STOR(10)=1.0	105B
	00 325 J=9.N	106
	IF(I-J)320,325,320	107
320	STOR(10)=STOR(10)*A(J)	108
	TEMP(10) = TEMP(10) + (A(J) - A(I))	109
325	CONTINUE	110
	U10=STOR(10)*S(9)/TEMP(10)	111
	IF(I-10)41.330.41	112
330	S(10)=(B(10)-U2-U3-U4-U5-U6-U7-U8-U9-U10)*U1	113
-	WRITE (3,335) S(10)	114
335	FORMAT (' S(10) = ',F12.2///)	115
	CONTINUE	116
-	GD TO 2	116A
42	STOP	117
	END	118

APPENDIX D

STEPWISE REGRESSION PROGRAM

```
C.
      1130 STEPWISE MULTIPLE REGRESSION PROGRAM, 3/14/66
                                                                                 0010
      PHASES 1 AND 2 CAN BE OVERLAID TO CONSERVE CORE. THE STEPS TO
C
                                                                                 0020
C
      READY PHASES 1 AND 2 FOR OVERLAY ARE
                                                                                 0030
         1. SET UP A COMMON AREA CONSISTING OF RIJ, XBAR, SIGMA, FIN,
С
                                                                                 0040
C
         FOUT, OBS, NVAR, NOBS, NINDV, IRES, IFA.
                                                                                 0050
         2. SET SIGMA AND DATA EQUIVALENT IN PHASE 2.
C
                                                                                 0060
C
          3. REPEAT PHASE 1 DEFINE FILE STATEMENT IN PHASE 2.
                                                                                 0070
          4. REMOVE STATEMENT 101-3 FROM PHASE 1 AND INSERT IT
C
                                                                                 0800
         BEHIND DIMENSION COMMENTS CARD IN PHASE 2.
C
                                                                                 0090
Ç
      PHASE 1. TRANSFORM ORIGINAL DATA, COMPUTE AND PRINT MEANS.
                                                                                 0100
      STANDARD DEVIATIONS, AND SIMPLE CORRELATION COEFFICIENTS.
¢
                                                                                 0110
C
      DIMENSIONS
                                                                                 0120
      IMPLICIT REAL #8 (A-H,C-Z)
      DIMENSION DATA(30), CONST(12), ITRAN(30), JTRAN(30), KTRAN(30), LTRAN(3
                                                                                 0130
     101
                                                                                 0140
      DIMENSION RIJ(30,30), XBAR(30), SIGMA(30), AID(18)
                                                                                 0150
      DIMENSION SIGB(30), B(30), ID(30)
                                                                                 0160
      EQUIVALENCES
Ç
                                                                                 0170
      EQUIVALENCE (SIGMA(1), DATA(1))
                                                                                 0180
C
                                                                                 0190
      DEFINE DATA FILE
      DEFINE FILE 10(1000,60,U,IFA)
      STATEMENT LABEL 101 IS NOT REFERENCED. IT MARKS THE FIRST EXECUTABLE STATEMENT OF THE SOURCE PROGRAM.
                                                                                 0210
С
                                                                                 0220
       ICOM IS FIXED DECIMAL REPRESENTATION OF ALPHABETIC COMMA.
                                                                                 0230
C
  101 ICOM=27456
                                                                                 0240
                                                                                 0250
С
       INITIALIZE DATA FILE
                                                                                 0260
       IFA=1
                                                                                 0270
С
      READ I.D.
       READ(1,1, END=999) (AID(I), I=1,18)
    1 FORMAT(18A4)
                                                                                 0300
      READ CONTROL CARD
C
      READ(1,2)NVIN,NVAR,NOBS,NTRAN,NCONS,FIN,FOUT, IRES
                                                                                 0310
    2 FORMAT(212,14,212,2F6.3,11)
                                                                                  331
       IF(FIN-FOUT)1020,690,690
                                                                                 0340
  690 IF(NTRAN)1000,730,700
                                                                                 0350
      READ TRANSFORMATION CARDS
  700 READ(1,71)(ITRAN(I), JTRAN(I), KTRAN(I), LTRAN(I), I=1, NTRAN)
                                                                                 0360
                                                                                 0370
   71 FORMAT(3612)
                                                                                 0380
       IF (NCONS) 1000, 730, 720
                                                                                 0390
      READ CONSTANT CARD
                                                                                 0400
  720 READ(1,72)(CCNST(I), I=1,NCUNS)
                                                                                 0410
   72 FORMAT(12F6.3)
                                                                                 0420
       INITIALIZE.
C
                                                                                 0430
  730 OBS=NOBS
                                                                                 0440
      NINDV=NVAR-1
                                                                                 0450
      00 90 I=1,NVIN
      XBAR(1)=0.0
                                                                                 0470
       00 90 J=1.NVIN
                                                                                  0480
   90 RIJ(I,J)=0.0
       READ DATA, FORM SUMS VECTOR, SUMS OF SQUARES MATRIX
                                                                                  0490
C
                                                                                  0500
      DO 110 I=1,NOBS
                                                                                 0510
      READ(1,3)(DATA(J),J=1,NVIN)
    3 FORMAT(12F6.0)
                                                                                  0530
       IF (NTRAN) 1000, 860, 750
                                                                                  0540
       TRANSFORMATION OF RAW DATA
                                                                                  0550
  750 DO 850 M=1.NTRAN
                                                                                  0560
      II=ITRAN(M)
                                                                                  0570
       JJ=JTRAN(M)
                                                                                  0580
      KK=KTRAN(M)
                                                                                  0590
      LL=LTRAN(M)
                                                                                  0600
      GO TO (760,770,780,790,800,810,820,830,840),II
```

```
C
                                                                                0610
      X(J)=X(K)
  760 DATA(JJ)=DATA(KK)
                                                                                0620
      GO TO 850
                                                                                0630
С
      X(J) = -X(K)
                                                                                0640
  770 DATA(JJ)=-0ATA(KK)
                                                                                0650
      GC TO 850
                                                                                0660
С
      X(J) = LOG X(K)
                                                                                0670
  780 DATA(JJ)=DLOG(DATA(KK))
                                                                                0680
                                                                                0690
      GO TO 850
                                                                                0700
C
      X(J)=1/X(K)
  790 DATA(JJ)=1.0/CATA(KK)
                                                                                0710
      GO TO 850
                                                                                0720
      X(J)=X(K)+X(L)
                                                                                0730
  BOO DATA(JJ)=DATA(KK)+DATA(LL)
                                                                                0740
      GC TO 850
                                                                                0750
С
                                                                                0760
      X(J)=X(K)*X(\Gamma)
  810 DATA(JJ)=DATA(KK)*DATA(LL)
                                                                                0770
                                                                                0780
      GO TO 850
C
      X(J)=X(K)/X(L)
                                                                                0790
  820 DATA(JJ)=DATA(KK)/DATA(LL)
                                                                                0800
      GO TO 850
                                                                                0810
C
      X(J)=X(K)+C(L)
                                                                                0820
  830 DATA(JJ)=DATA(KK)+CGNST(LL)
                                                                                0830
      GO TO 850
                                                                                0840
      X(J)=X(K)+C(L)
                                                                                0850
  840 DATA(JJ)=DATA(KK)*CCNST(LL)
                                                                                0860
  850 CONTINUE
                                                                                0870
  860 IF(IRES)870,880,870
                                                                                0880
      WRITE DATA FILE
                                                                                0890
  870 WRITE(10'IFA)(CATA(J), J=1, NVAR)
  880 DO 100 J=1,NVAR
                                                                                0910
      XBAR(J) = XBAR(J) + DATA(J)
                                                                                0920
      DO 100 K=1,NVAR
                                                                                0930
  100 RIJ(J,K)=RIJ(J,K)+DATA(J)*DATA(K)
                                                                                0940
  110 CONTINUE
                                                                                0950
С
      COMPUTE STANDARD DEVIATIONS*SQR ROUTE (OBS-1)
                                                                                0960
      DO 120 I=1,NVAR
                                                                                0970
  120 SIGMA(I)=(RIJ(I,I)-XBAR(I)*XBAR(I)/OBS)**.5
                                                                                0980
С
      COMPUTE CORRELATION MATRIX
                                                                                0990
      DG 130 I=1,NVAR
                                                                                1000
      DO 130 J=1, NVAR
                                                                                1010
  130 RIJ(I,J)=(RIJ(I,J)-XBAR(I)*XBAR(J)/OBS)/(SIGMA(I)*SIGMA(J))
                                                                                1020
      COMPUTE MEANS AND STANDARD DEVIATIONS
                                                                                1030
      DO 140 I=1,NVAR
                                                                                1040
      XBAR(I)=XBAR(I)/OBS
                                                                                1050
  140 SIGMA(I)=SIGMA(I)/(OBS-1.0)**.5
                                                                                1060
      SKIP TO NEW PAGE, WRITE I.D., AVERAGES, STANDARD DEVIATIONS,
C
                                                                                1070
      AND SIMPLE CORRELATION MATRIX.
                                                                                1080
      WRITE(3,65)(AIC(I),I=1,18)
                                                                                1090
   65 FORMAT('1',18A4)
                                                                                1100
      WRITE(3,51)
                                                                                1110
   51 FORMAT('OAVERAGES')
                                                                                1120
      WRITE(3,52)(I,XBAR(I),ICOM,I=1,NINDV),NVAR,XBAR(NVAR)
                                                                                1130
   52 FORMAT (4(' VAR(', I2, ')=', F13.2, A1))
                                                                                1140
      WRITE(3.53)
                                                                                1150
   53 FORMAT('OSTANDARD DEVIATIONS')
                                                                                1160
      WRITE(3,52)(I,SIGMA(I),ICOM,I=1,NINDV),NVAR,SIGMA(NVAR)
                                                                                1170
      WRITE(3.55)
                                                                                1180
   55 FORMAT('OSIMPLE CORRELATION COEFFICIENTS')
                                                                                1190
      DG 150 I=1, NINDV
                                                                                1200
      WRITE(3,56)(I,J,RIJ(I,J),ICOM,J=I,NINDV),I,NVAR,RIJ(I,NVAR)
                                                                                1210
```

```
56 FCRMAT (4(' VARS(',12,',',12,')=',F10.3,A1))
                                                                             1220
  150 CONTINUE
      PHASE 2. PERFORM STEPWISE CALCULATIONS AND PRINT RESULTS.
C
                                                                             1230
C
      DIMENSIONS
                                                                             1240
С
      INITIALIZE
                                                                             1250
      DO 190 [=1.NVAR
                                                                             1260
      SIGB(I)=0.0
                                                                             1270
  190 B(I) = 0.0
                                                                             1280
      NENT=0
                                                                             1290
      DF=08S-1.0
                                                                             1300
      NSTEP=-1
                                                                             1310
      TRANSFORM SIGMA VECTOR FROM STANDARD DEVIATIONS TO SQUARE
                                                                             1320
      ROOTS OF SUMS OF SQUARES.
                                                                             1330
      DC 310 I=1,NVAR
                                                                             1340
  310 SIGMA(I)=SIGMA(I)*(OBS-1.0)**.5
                                                                             1350
     BEGIN STEP NUMBER NSTEP.
                                                                             1360
  200 NSTEP=NSTEP+1
                                                                             1370
      STDEE=((RIJ(NVAR, NVAR)/DF)**.5)*SIGMA(NVAR)
                                                                             1380
      DF=DF-1.0
                                                                             1390
      IF(DF)1010,1010,205
                                                                             1400
  205 VMIN=0.0
                                                                             1410
      VMAX=0.0
                                                                             1420
      NIN=0
                                                                             1430
C
      FIND MINIMUM VARIANCE CONTRIBUTION OF VARIABLES IN REGRESSION
                                                                             1440
      EQUATION. FIND MAXIMUM VARIANCE CONTRIBUTION OF VARIABLES
C
                                                                             1450
       NOT IN REGRESSION EQUATION.
                                                                             1460
      DO 300 I=1.NINDV
                                                                             1470
  210 VI=RIJ(I,NVAR)*RIJ(NVAR,I)/RIJ(I,I)
                                                                             1490
      IF(VI)240,300,220
                                                                             1500
  220 IF(VI-VMAX)300,300,230
                                                                             1510
  230 VMAX=VI
                                                                             1520
                                                                             1530
      NMAX = I
                                                                             1540
      GO TO 300
                                                                             1550
  240 NIN=NIN+1
                                                                             1560
      ID(NIN)=I
      COMPUTE REGRESSION COEFFICIENT AND ITS STANDARD DEVIATION.
                                                                             1570
C
      B(NIN)=RIJ(I,NVAR)*SIGMA(NVAR)/SIGMA(I)
                                                                             1580
                                                                             1590
      SIGB(NIN) = (STDEE * RIJ(I, I) * * . 5)/SIGMA(I)
                                                                             1600
      IF(VMIN)250,260,1000
                                                                             1610
  250 IF(VI-VMIN)300,300,260
                                                                             1620
  260 VMIN=VI
                                                                             1630
      I=/IMN
                                                                             1640
  300 CONTINUE
                                                                             1650
      IF(NIN)1000,460,400
                                                                             1660
      COMPUTE CONSTANT TERM.
                                                                             1670
  400 BSUBO=XBAR(NVAR)
                                                                             1680
      DO 410 I=1,NIN
                                                                             1690
      J=ID(I)
                                                                             1700
  410 BSUBO=BSUBO-B(I)*XBAR(J)
                                                                             1710
      IF(NENT)1000,480,420
                                                                             1720
      OUTPUT FOR VARIABLE ADDED
                                                                             1730
  420 WRITE(3,57)NSTEP,K
   57 FORMAT( OSTEP NUMBER , 12,10X, ENTER VARIABLE , 12)
                                                                             1740
      DEPV = NSTEP
                                                                             1750
  425 WRITE(3,58)STDEE
   58 FORMAT( STANDARD DEVIATION OF RESIDUALS= +, F16.3)
                                                                             1760
                                                                             1761
      SDPRM=(STDEE/XBAR(NVAR)) *100.
                                                                             1762
      WRITE(3,49)SDPRM
   49 FORMAT( STD. DEV. AS PERCENT OF RESPONSE MEAN= 1, F10.3)
                                                                             1763
                                                                             1770
      R=(1.-RIJ(NVAR, NVAR))**.5
      RSQ = R**2.
```

```
RSQP = RSC * 100.
      WRITE(3,59) RSCP
   59 FORMAT( PERCENT VARIATION EXPLAINED R-SQ= .F15.3)
                                                                               1773
      CRSQ = 1.-((1.-RSQ)*(CBS-1.))/(DBS+DEPV-1.)
      CRSQP = CRSQ * 100.
      WRITE(3,84) CRSQP
  84 FORMAT( * CORRECTED R-SQ AS A PERCENT= *, F20.3)
                                                                               1800
      IDFN=OBS-DF-2.0
                                                                               1810
      IDFD=DF+1.0
      F=(SIGMA(NVAR)**2-(STDEE**2)*(DF+1.0))/((DBS-DF-2.0)*STDEE**2)
                                                                               1820
      WRITE(3,66) IDFN, IDFD, F
                                                                               1830
   66 FORMAT(' GOODNESS OF FIT OR OVERALL F,F(',13,',',13,')=',F8.3)
                                                                               1840
                                                                               1850
      WRITE(3,60)BSUBC
                                                                               1860
   60 FORMAT( * CONSTANT TERM= 1,18x, F16.8)
      WRITE(3,61)
                                                                               1870
   61 FORMAT ( OVAR
                                                                 T VALUE
                                                                               1880
                          COEFF
                                              STD DEV
                                                                               1881
     1)
      WRITE(3,62)
                                                                               1890
   62 FORMAT( *
                                                                               1900
                                               COEFF!)
                                                                               1910
      DG 430 I=1,NIN
      J=IO(I)
                                                                               1920
      T=8(1)/SIGB(1)
                                                                               1930
                                                                               1940
      WRITE(3.63) ID(I).B(I).SIGB(I).T
   63 FORMAT(' ',13,F18.8,F20.8,F18.8)
                                                                               1950
  430 CONTINUE
C
      COMPUTE F LEVEL FOR MINIMUM VARIANCE CONTRIBUTION VARIABLE
                                                                               1960
C
      IN REGRESSION EQUATION.
                                                                               1970
      FLEVL=VMIN*DF/RIJ(NVAR, NVAR)
                                                                               1980
      IF(FOUT+FLEVL)460,460,450
                                                                               1990
      INITIALIZE FOR REMOVAL OF VARIABLE K FROM EQUATION.
                                                                               2000
  450 K=NMIN
                                                                               2010
      NENT=0
                                                                               2020
      DF=DF+2.0
                                                                               2030
      GO TO 500
                                                                               2040
C
      COMPUTE F LEVEL FOR MAXIMUM VARIANCE CONTRIBUTION VARIABLE
                                                                               2050
С
      NOT IN EQUATION.
                                                                               2060
  460 FLEVL=VMAX*DF/(RIJ(NVAR, NVAR)-VMAX)
                                                                               2070
      IF(FLEVL-FIN)600,600,470
                                                                               2080
      INITIALIZE FOR ENTRY OF VARIABLE K INTO EQUATION.
                                                                               2090
  470 K=NMAX
                                                                               2100
      NENT=K
                                                                               2110
      GO TO 500
                                                                               2120
      OUTPUT FOR VARIABLE DELETED
                                                                               2130
С
  480 WRITE(3.64)NSTEP.K
                                                                               2140
   64 FORMAT(*OSTEP NUMBER *,I2,10X,*DELETE VARIABLE *,I2)
                                                                               2150
      GO TO 425
                                                                               2160
      UPDATE MATRIX
                                                                               2170
  500 DC 540 I=1.NVAR
                                                                               2180
      IF(I-K)510,540,510
                                                                               2190
  510 DO 530 J=1.NVAR
                                                                               2200
      IF(J-K)520,530,520
                                                                               2210
  520 RIJ(I,J)=RIJ(I,J)-RIJ(I,K)*RIJ(K,J)/RIJ(K,K)
                                                                               2220
  530 CONTINUE
                                                                               2230
  540 CONTINUE
                                                                               2240
                                                                               2250
      DO 560 J=1,NVAR
      IF(J-K)550,560,550
                                                                               2260
  550 RIJ(K,J)=RIJ(K,J)/RIJ(K,K)
                                                                               2270
                                                                               2280
  560 CONTINUE
      DO 580 I=1.NVAR
                                                                               2290
      IF(I-K)570,580,570
                                                                               2300
  570 RIJ(I,K)=-RIJ(I,K)/RIJ(K,K)
                                                                               2310
```

```
580 CONTINUE
                                                                               2320
     RIJ(K,K)=1.0/RIJ(K,K)
                                                                               2330
     GO TO 200
                                                                               2340
 600 IF(IRES)610,640,610
                                                                               2350
     PRINT RESIDUALS
                                                                               2360
 610 IFA=1
                                                                               2370
      WRITE(3,67)
                                                                               2380
  67 FORMAT('0 OBS
                           ACTUAL
                                     ESTIMATE
                                                  RESIDUAL
                                                                NORMAL')
                                                                               2390
      WRITE(3,69)
                                                                               2391
  69 FORMAT( •
                                                                DEVIATE')
                                                                               2392
      DO 630 K=1,NGBS
                                                                               2400
      READ(10 * IFA) (DATA(1), I=1, NVAR)
                                                                               2410
      EST=BSUBO
                                                                               2420
      DO 620 I=1,NIN
                                                                               2430
      J=ID(I)
                                                                               2440
 620 EST=EST+B(I)*DATA(J)
                                                                              2450
      RESID = DATA(NVAR)-EST
                                                                              2460
      XNORD = RESID/STDEE
                                                                              2461
      IF(DABS(XNORD)-3.)91,92,92
                                                                               2470
   91 IF(DABS(XNORD)-2.)93,94,94
                                                                               2471
   92 WRITE(3,30)K,DATA(NVAR),EST,RESID,XNORD
                                                                               2480
   30 FORMAT( ', 14, 4F12.2, ***)
                                                                               2481
      GO TO 630
                                                                               2482
   94 WRITE(3,31)K,DATA(NVAR),EST,RESID,XNORD
                                                                               2483
   31 FORMAT(' ',14,4F12.2,' *')
                                                                               2484
                                                                              2485
      GO TO 630
                                                                              2486
   93 WRITE(3,68)K,DATA(NVAR),EST,RESID,XNORD
   68 FORMAT(* ',14,4F12.2)
                                                                               2487
                                                                               2490
  630 CONTINUE
                                                                              2500
      NORMAL END OF JOB
                                                                              2501
  640 GD TO 101
  999 CALL EXIT
      ERROR. NIN, NENT, VMIN, NCONS, OR NTRANS IS NEGATIVE. CHECK
                                                                              2520
С
      FOR CONTROL CARD ERROR.
                                                                               2530
C
1000 STOP1
             DEGREES OF FREEDOM =0. EITHER ADD MORE DATA OBSERVATIONS OR
                                                                               2550
С
      ERROR
      DELETE ONE OR MCRE INDEPENDENT VARIABLES. SAMPLE SIZE MUST EXCEED
                                                                               2560
      NUMBER OF INDEPENDENT VARIABLES BY AT LEAST 2.
                                                                               2570
C
                                                                               2580
 1010 STOP2
      ERROR. F LEVEL FOR INCOMING VARIABLE IS LESS THAN F LEVEL FOR
                                                                               2590
                                                                               2600
      CUTGOING VARIABLE.
                                                                               2610
 1020 STOP4
      END
```

REFERENCES

- Berg, G., "Virus Transmission by the Water Vehicle,"
 Viruses, Health Lab Science, 3:86 (1966).
- 2. Berg, G., "Virus Transmission by the Water Vehicle," III. Removal of Viruses by Water Treatment Procedures, Health Lab Science, 3:170 (1966).
- 3. Chick, H., "An Investigation of the Laws of Disinfection," Journal of Hygiene, 8:92 (1908).
- 4. Berg, G.; Clark, R. M.; Berman, D.; and Chang, S. L.,
 "Aberrations in Survival Curves," Transmission of Viruses
 by the Water Route, Interscience Publishers, a division
 of John Wiley and Sons, New York, New York, pp. 235-240
 (1967).
- 5. Clark, R. M., and Niehaus, J. F., "A Mathematical Model for Viral Devitalization," <u>Transmission of Viruses by the Water Route</u>, Interscience Publishers, a division of John Wiley and Sons, New York, New York, pp. 241-245 (1967).
- 6. Clark, R. M., "A Mathematical Model of the Kinetics of Viral Devitalization," <u>Mathematical Biosciences 2</u>, pp. 413-423 (1968).
- 7. Willers, A., FR, Practical Analysis, Dover, New York (1948).
- 8. Hildebrand, F. B., <u>Introduction to Numerical Analysis</u>, McGraw-Hill, New York, New York (1956).
- 9. Draper, N., and Smith, H., Applied Regression Analysis, John Wiley and Sons, New York, New York (1967).
- 10. Sharp, G. D., "Electron Microscopy and Viral Particle Function," <u>Transmission of Viruses by the Water Route</u>, Interscience Publishers, a division of John Wiley and Sons, New York, New York, pp. 193-217 (1967).

TECHNICAL REPORT DATA (Please read Instructions on the reverse before completing)				
1, REPORT NO.	2.	3. RECIPIENT'S ACCESSION NO.		
EPA-670/2-74-067		S, HEGH TENY S AGGESTION		
4. TITLE AND SUBTITLE		5. REPORT DATE		
A MATHEMATICAL ANALYSIS OF THE KINETICS OF VIRAL INACTIVATION		August 1974; Issuing Date		
		6. PERFORMING ORGANIZATION CODE		
7. AUTHOR(S)		8. PERFORMING ORGANIZATION REPORT NO.		
Robert M. Clark, Betty	,			
and George C. Kent		Ì		
9. PERFORMING ORG ANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT NO. 1CB047;		
National Environmental Research Center		ROAP 21AQE; Task 10		
Office of Research and Development		11. CONTRACT/GRANT NO.		
U.S. Environmental Pro				
Cincinnati, Ohio 4526	58			
12. SPONSORING AGENCY NAME AND ADDRESS		13. TYPE OF REPORT AND PERIOD COVERED		
		14. SPONSORING AGENCY CODE		
Same as above]			
15. SUPPLEMENTARY NOTES				

16. ABSTRACT

Pathogenic enteric viruses transmitted via the water route present a potential hazard to public health because of their resistance to natural or artificial disinfection mechanisms. Of constant concern to public health officials is the ability of viruses to pass through water treatment plants. Therefore, many research investigations have been directed toward the study of the inactivation of viruses and enteric organisms. This report describes a mathematical model which can be used to characterize the response of viruses to a disinfecting agent. Not only is the model presented, but a technique is described which can be used to estimate the model's parameters. Both the model and the estimation technique are being used to analyze experimental information resulting from disinfection studies.

17. KEY WORDS AND DOCUMENT ANALYSIS			
a. DESCRIPTORS	b. IDENTIFIERS/OPEN ENDED TERMS	c. COSATI Field/Group	
Computation, Computers, *Mathe- matical models, *Viruses, Linear regression, Disinfection, *Electron microscopy	Exponential decay, *Inactivation	12A 13B	
18. DISTRIBUTION STATEMENT	19. SECURITY CLASS (This Report) UNCLASSIFIED	21. NO. OF PAGES	
RELEASE TO PUBLIC	20. SECURITY CLASS (This page) UNCLASSIFIED	22. PRICE	