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FOREWORD

Man and his environment must be protected from the adverse
effects of pesticides, radiation, noise and other forms of
pollution, and the unwise management of solid waste. Efforts
to protect the environment require a focus that recognizes
the interplay between the components of our physical envi-
ronment--air, water, and land. The National Environmental
Research Centers provide this multidisciplinary focus through
programs engaged in

® studies on the effects of environmental contaminants on
man and the biosphere, and

® a search for ways to prevent contamination and to recycle
valuable resources.

This report describes a mathematical model which can be used
to characterize the response of viruses to a disinfecting
agent. Not only is the model itself presented, but a tech-
nique is described which can be used to estimate the model's
parameters. Both the model and the estimation technique are
being used to analyze experimental information resulting from
disinfection studies.

A. W. Breidenbach, Ph.D.

Director

National Environmental
Research Center, Cincinnati
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A MATHEMATICAL ANALYSIS OF THE KINETICS OF VIRAL INACTIVATION

INTRODUCTION

—

Pathogenic enteric viruses transmitted via the water route
present a potential hazard to public health because of their
resistance to natural or artificial disinfection mechanisms.
More than 100 different strains of enteric viruses, causing
such diseases as poliomyelitis, meningitis, jaundice, and
gastroenteritis, are excreted in human feces. The six major
groups of enteroviruses responsible for these diseases are
polioviruses, coxsackieviruses A and B, echoviruses, adeno-
viruses, infectious hepatitis, and reoviruses. Since these
viruses are able to survive in sewage, natural waters, and
water supplies, they may pose a health threat, particularly
as wastewater reuse becomes more common.-’

Of constant concern to public health officials is the ability

of viruses to pass through water treatment plants. The chlorine
levels must be adequate, not only for bacterial disinfection

but for viral inactivation as well. As a result of the need

for constant concern over proper disinfection levels, much
research effort has been devoted to the study of the basic
disinfection mechanisms.

Chick was probably the first investigator to attempt to under-
stand the laws of disinfection by applying the principles of
first-order kinetics to bacteria and spore inactivation.3 Only
the experiments with anthrax spores conformed to first-order
kinetics, whereas bacteria apparently followed another pattern
of inactivation. Subsequent studies have obtained results

that confirmed first-order kinetic inactivation for bacteria.

Many research investigations have been directed toward the
study of the inactivation of viruses and enteric organisms.
As a result of these studies, the process of inactivation

has been found to be dependent on the time of contact between
the organisms and disinfecting agent, concentration of disin-
fecting agent, temperature, and pH. In addition, viruses may
form clumps of varying sizes and may cause aberrations due

to their existence in inactivation systems.4 One approach

to studying the interaction of these various factors is to
develop a kinetic model that will systematically account for
them. The development of such a model and its application
are discussed in this paper.



MODEL DEVELOPMENT

One of the major features in this model is the consideration

of clumping or aggregation and its effect in explaining the
devitalization process and associated aberrations. For pur-
poses of this model, it is assumed that the virions exist
either as individual particles in a suspension or as aggregates
or clumps made up of two or more particles.5 Each individual
particle or aggregate will form a plague-forming unit (PFU)
before the viral suspension is subjected to a disinfecting
agent. It is impossible to determine whether a PFU represents
a single infective unit. If the suspension contains single
particles as well as clumps of various sizes, the disinfection
process will continue until the last particle 'in the largest
clump is devitalized. When the clump is completely devitalized,
a PFU is destroyed, but it is obvious that a distribution of
different size clumps will lead to a non-uniform destruction

of PFU's thereby causing some unusual shapes in the dlSlnfec—
tion curve.

In this discussion, it will be assumed that this distribution
of infective units represents the state of the suspension.

The percentage of aggregates or clumps of all sizes which
have been disinfected at any time represents the Nth state;
the percentage of undisinfected single particles represents
the N-1lst state, etc. For illustrative purposes, let us
assume a suspension in which the maximum clump size is com-
posed of three viral particles and with clumps composed of
two particles as well as single particles. Following our
convention, state 1 is the percentage of undisinfected aggre-—
gates with three virions; state 2, the percentage of undisin-
fected aggregates with two virions; state 3, the percentage of
undisinfected single particles; and state 4, the total per-
centage of aggregates (clumps of 1, 2, and 3 wiral particles)
that have been devitalized at any point in time. Obviously,
under the action of a disinfectant, assuming ideal conditions,
state 4 would increase as the process continues until state 4
would be 100 percent.

We can impose a frequency distribution on the various states

in effect, assigning a percentage of the total plaque—forming
capability to each state. The initial condition of state 4(S )
must equal 0 percent at time equal to zero or before the dlSln—
fectant acts. The percentage of undisinfected singles plus

the percentages of clumps with two particles plus the percentage
of clumps with three particles would equal 100 percent when

time equals zero.

Associated with each state is a decay rate, kj, that represents
the probability of interaction of the destructive agent with

the undisinfected singles or aggregate. The process of devital-
ization is assumed to take place in the following manner: The



clumps of three virions are reduced to two surviving virions,
and the clumps of two are reduced to one surviving virion all
the way along the chain of states until the clumps are no longer
infective and are registered as a decrease in total PFU.

The set of differential equations that describes the devitali-
zation process, where S;j(i =1 . . . 4), the percent of plaque-
forming capability at each state is:

as;

I = ~ kisi1

g%z = k187 - koS

ggé = ko989 = k383

%%i = K35 (1)

These are a set of linear first-order differential equations.
The parameters ki (i = 1 . . . 4) represents the devitalization
rate with k4 = 0, and Sg is the initial condition of state i
with 8§ = 07at £ = 0.

The solution to Equation 1 is as follows:

S | +
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The general closed form solution to a set of differential
equations as illustrated by Equation 1 is given by the fol-
lowing:
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where k>j. When j=k, (kj—kk) = 1.

Whan o -pressed as percent survival, the equation could be
written as percent survival = 100 - S, where S is the last
or final state to be considered.

Figure 1 illustrates schematically the change taking place
during an experiment. Devitalized virus in an aggregate are
represented by a broken circle. In a devitalization chain,
the value for kj, which indicates the rate of transition from
one state into the next, differs for each state.® There are
also differences between chains. For example, k3 in the first
chain may be smaller than k3 in the second chain. This might
be attributed to different geometric configurations and re-
sulting interferences. We will assume, however, that k3 is an
average reaction rate for state 3 in all of the decay chains.

Equation 2 can be reformulated in the following manner:
e—klt

e—kzt e—k3t

s4 =cO +Cl +C2 +c3 (4)
where,
0
c —k2k3sl
1 (k3—kl)(k2-kl)
0 0
o - klk3sl _ k382
2 (k3—k2) (kl'kz) ('1'557155)
- 0 0
. - ki k,S i k,S, I
3 (k2—k3)(kl*k3) (k2~k3) 3
_ &0 0 0
co.,sl+52+s3 (5)

We know that as t-e, S4+100 percent; therefore, CO+100 percent.

Equation 4 forms the basis for the mathematical model of the
kinetics of viral inactivation we wish to examine, However,
to use this equation, we must be able to estimate its param-
eters.
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Figure 1. Schematic illustration of the physical change
taking place in a suspension of virions under
the influence of a devitalizing agent.
Devitalized virus in a clump is represented by
a broken circle. The values for A indicate the
rates of transition from one state_into the
next in a devitalization chain. Sg is the
initial percent of plaque-forming capability
in state 1i.



ESTIMATION OF PARAMETERS

If we were to rewrite Egquation 4 in terms of percent survival,
we would have the following:

_ o _ _ —klt _ ~kot _ -k3t
100% S4 = Cle C2e C3e (6)
oY
§ - “Cle—klt - Cze—kzt - C3e“k3t (.7)

where v = 100% - 82.
FPor simplicity, we shall assume that our observations are
equidistant, as in Figure 2, and that the difference in the
successive abscissa values is h. With the use of our three-
term example, we find the value of the ith ordinate at .
to + (i-1)h, where t, is the value of y, at to, is then:

’y'i = -C; expl-kyt, + (i-1)h] - C, expl-k,t, + (i-1)h]
-C, expl-kyt, + (i-1)h] (8)

or, if we make the following substitutions:

e"klh

= uy;
e k1h - u,;
e~kih Uy;
-C, expl-kty + (i-1)h] = £;
~-C, e#p[—kzt0 + (i-1)h] = £,
-C, expl-k,t, + (i-1)h] = f,;

then, for five equidistant measurements, we have:

fl + f2 + f3 =Y,

£up * fauy + faug =y,
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Figure 2. Equally distant values for percent survival versus time.



2 2 2
£ * Fpup * £3u5 = v5,, |
3 3 3
fiug + fyuy + fyuy =y,
4 4 4
£iu; + £yu, + f3u3 = Yi,g (9)

In general, the set of equations for N observations would be
as shown below:

fl + f2 + f3 = YO

£ ul + f2u2 + f3u3 = y1

1
2 2 2 _
flu1 + f2u2 + f3u3 =Y,
N-1 N-1 N-1 _
fiuy T+ fouy, T+ faugy U= v g (10)

which would necessarily be satisfied identically. If the con-
stants uj, uj, and u3 were known (or preassigned), Equations 10
would comprise N linear equations in the three unknowns f;, £f,,
and f3, and be solved exactly if N=3 or approximately by

least squares if N>3.

However, if the u's are also to be determined, at least six
equations are needed, and a difficulty occurs because the
equations are non-linear in the u's. This difficulty can be
minimized by the following method.

Let Uy, Uyy and uj be the roots of the algebraic equation:

u” - ayu’ - a,u - ay = 0 (11)

so that the left-hand member of Equation 11 is identified with
the product (u-uj) (u-ujy) (u-ujz). To determine the coefficients
aj, az, a3z, we multiply the first line in Equation 10 by as,
and the second line by a;, and the third line by aj, and the
fourth line by -1, and add the results. If use is made of the
fact that each u satisfies Equation 11, the result is seen to
be of the form:

Yy = 81¥, T a,y) -~ a3y, = 0 (12)



A set of N-4 additional equations of similar type is obtained

in the same way by starting instead successively with the second,
third . . . (N-3)th equations. 1In this way, we find that
Equations 10 and 11 imply the N-3 linear equations:

Y2y t Y3, + ¥pa3 = ¥4

Y381 +* ¥y, + yja5 =

i
o
S

. . . . . L] 3 . . L3 -

+ ... (13)

YN-281 * Yy-322 YN-4%3 T Yyn-1
Since the ordinates yx are known if N=6, this set generally
can be solved directly for aj, a3, and a3, or it can be solved
approximately by the method of least squares if N>6.

In theory, after the a's are determined, the u's are found as

the roots of Equation 11 and may be real or complex. Equation 10
then becomes linear and the f's can be determined from the first
n of these equations or preferably by applying a least-squares
technigue applied to the entire set.

We have examined the situations in which there are only three
terms to analyze in Equation 2. However, most often the situ-
ation will occur when there are n terms in the equation to be
solved. This would take the form as follows:

_ -kt -kot
Sn = CO + Cle + Cze + ... Cn—l

-kp-1t

e (14)

Assuming that there are N points equally spaced at t=0, 1, 2,
3. . . 0N-1, and following the logic described in this paper,
we get a set of equations similar to Equations 8:

fl + f2 + f3 + ... + fn = yo
flul + f2u2 + f3u3 + ...+ fnun =¥y
2 2 2 _
flul + f2u2 + f3u3 4+ ... + fnun = y2
N-1 N-1 N-1 N-1 _
flul + f2u2 + f3u3 I fnun = Yy-1 (15)

Again, following the logic described earlier, we have the fol-
lowing N-n linear equations where the columns of data are

labeled 1 through n+l.



(1) (2) (3) (n) (n+1)

Yp-181 ¥ Y08y T ¥Yp o83 F «eo ¥ ¥, =¥,
Yod1 * Ypo13p t Y083t ..o v Y8, T Y

. . . . L] - . . L] - L] . . 3 . 3 - L]

. (16)

YN-231 * Yy-33p * Yy-4®3 t YNen-1%n T Yn-1
After the a's have been determined by least squares, the.values
for the c¢'s can be found as roots of the following equation:

n n-1 n-2 _
u - ... -a _,u-a =0 (17)

And once the u's have been found, the f's can be found from
Equation 15. ’

The application of this approach presumes that the number of
terms that make up the model is known. Generally this number
is unknown, and a major part of the analysis becomes the esti-
mation of the optimum number of terms describing the disinfection
process. Even if the number of terms is known, the solution to
Equation 17 is often complex because of estimation errors in
determining the coefficients. To make this analysis usable,

we must be able to determine the number of terms (number of
states) that make up the inactivation process. The following
section describes a technique for estimating the number of
components that "best" describe the inactivation process.

OPTIMAL NUMBER OF TERMS

To determine the proper number of terms that will describe

the inactivation process, we would formulate the set of linear
equations shown in Equation 16. In this set, the column
labeled n+l is the response or dependent variable, and the
columns 1 through n are the independent variables. Using
step-wise regression, we regress the independent variables

(1 through n) against the n+lst or dependent variable.? as
each variable is forced into the equation, a value for its
coefficient is calculated. Each coefficient has an associated
sign. When the signed coefficient is substituted into Equa-
tion 17, it is possible that an equation with alternating
signs may result; for example, Equation 17 might look as
follows:

agu’ - aju + aju - ... ta _ou-a = 0 (18)

10



According to Des Cartes' rule of signs:

The number of positive real roots of a
real albegraic equation either is equal
to the number N, of sign changes in the
sequence ag, ay, az, « . . ap of co-
efficients where vanishing terms are
disregarded or it is less than Nz by

a positive even integer.

Since the decay coefficients in Equation 14 are the positive
real roots in Equation 18, we can use Des Cartes' rule to

give us an indication as to the number of terms which optimally
describes the inactivation process. We will assume that when
the number of terms in the regression equation is one more

than the number of sign changes, the optimal number of terms
has been identified, and the variables in the regression equa-
tion are to be used in calculating kn. The approach will be
discussed beginning with the identification of the optimal
number of terms.

We can illustrate this approach by assuming a model of three
terms as follows:
-0.10t

-0.30t -0.50¢t

y = 20.00e + 30.00e + 50.00e (19)
Table 1 (Page 12) contains values for Equation 19 which have
been generated at intervals of t=0.50 to simulate a disinfection
curve. Table 2 illustrates the way in which these data are
organized to solve for the coefficients in Equation 17. As
shown in Equation 16, a matrix of data points is established
with n dependent variables. 1In this case, 27 independent
variables have been constructed. The value of y] = 100.00 is
the first value in the upper left-hand corner of the matrix,
and the value yj;7 = 5.7660 is the first value for the dependent
variable. The second value for the first independent value is
y1 = 83.7858, and the second value for Yog = 5.4274. This same

pattern is repeated throughout the matrix.

Table 2. MATRIX OF DATA FOR REGRESSION ANALYSIS

—
Var 1 Var 2 e« « .. Var n . . e Var 28
100.00 83.786 5.7660
83.786 70.648 5.4274
2.0359 1.9338 0.5203
1.9338 1.8370 0.4949

S T R e R I s IS
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Table 1. VALUES FOR EQUATION 19 AT INTERVALS OF t=0.5

. 0-0-100t  -0.300t _-0.500t o-0- 100t -0 300t -0, 500¢

e-O.lOOt e-O. 300; e'o."‘500t v

y t

(AN

0.00  20.0000 30. 0000 50. 0000 100. 0000 13.00 5.4506 0.6072 0.0751 6.1330 26.00 1.4854 0.0122 ¢ : 5%° 1.4978
0. 50 19. 0245 25,8212 38. 9400 83. 7858 13,50 5.1848 0.5226 0.0585 5. 7660 26.50 1.4130 0.0105 G, otovu 1.4236
1.00 18.0967 22,2245  30.3265 70. 64178 14.00 4.9319 0. 4498 0. 0455 5.4274 27.00 1. 3441 0.0091 0. 0600 7.3532
1.50 17.2141 19.1288 23.6183. 59.9613 14.50 4.6914  0.3872 0.-0355 5.1141 217.50 1.3785 0.0078 0. 0000 1.2864
2.00 16. 3746 16.4643 18. 3939 51.2329 15.00 4.4626  0.3332 0.0276  4.8235 28.00 1.2162  0.0067 0. 0000 1.2229
2. 50 15.5760 14.1710 14. 3252 44.0722 15.50 4.2449 0.28568 0.0215  4.5533 28.50 1.1568 0.0058 8. 0000 1.1627
3.00 14. 8163 12.1970 11.1565 38.1699 16,00 4.0379  0.2468 0.0167 4.3016 29.00 1.1004  0.0049 0. 0000 1.1054
3.50 14. 0937 10. 4981 8.6887 33.2806 16,50 3.8410 0.2125 0.0130 4.0665 29. 50 1. 0467 0. 0043 0. 0000 1.0511
4.00 13.4064 9. 0358 6. 7667 29. 2090 17,00 3.6536 0.1829 0.0101 3. 8467 30.00 0.9957 0.0037 0. 0000 0. 9994
4. 50 12. 71525 7.77172 $.2699 25.7997 17.50 3.4754¢ 0.1574  0.0079  3.6408 30.50 0.9471 0.6031 0. 0000 0. 9503
5.00 12.1306 6. 6939 4.1042 22.9287 18.00 3.3059 0.1354  0.0061 ) 3. 4476 31.00 0.9009  0.0027 0. 0000 0.9037
5. 50 11.5390 5. 7615 3.1963 20. 4969 18. 50 3.1447 0.1166  0.0048 3. 2661 31.50 0.8570  0.0023 0. 0000 0. 8594
6.00 10. 9762 4.9589 - 2.4893 18. 4245 19.00 2.9913 0.1003 0.0037 3.0954 32,00 0.8152 0.0020 0. 0000 0.8172
6.50 10. 4409 4.2682 1.9387 16. 6478 19.50 2.8454 0.0863 0. 002,9 2.9347 32.50 0.7754 0.0017 0. 0000 0.7772
7.00 9.9317 3.6736 1.5098 15.1152 20.00  2.7067 0.0743 0.0022 2.7833 33.00 0.7376 0.0015 0. 0000 0.7391
7.50 9.4473 3.1619 1.1758 13. 7852 20,50 2.5747 0.0640 0.0017  2.6404 33.50 o0.7016 0.0012 0. 0000 0.7029
8.00 8. 9865 2. 7215 0.9157 12, 6239 21.00  2.449) 0.0550 0.0013  2.5055 34.00 0.6674 0.0011 0.0000 0.6535
8. 50 8. 5483 2.3424 0.7132 11. 6039 21,50 2.3296 0.0474 0.0010 2.3781 34.50 0.6349  0.0009 0. 0000 0. 6358

9.00 8.1313 2.0161 0. 5554 10. 7030 22.00 2.2160 0.0408 0.0008  2.2577 35.00 0.6039 0.0008 0. 0000 0. 6047

9.50 7.7348 1.7353 0.4325 9. 9027 22.50 2.1079 0.0351 0.0006  2.1437 35.50 0.5744  0.0007 0. 0000 0.5752
10. 00 7.3575 1.4936 0.3368 9.1881 23.00 2,005} 0.0202 0.0005 2.0359 ~ 36.00 0.5464 0. 0006 0. 0000 0. 5470
10. 50 6. 9987 1.2855 0.2623 8. 5467 23.50 1.9073 0.0260  0.0003 1.9338 36. 50 0.5198  0,0003 0. 0000 0.5203
11.00 6.6574 1.1064 0.2043 7.9682 24.00 1.8143 0.0223  0.0003 1.8370 37.00 0.4944 0.0004 0. 0000 0.4949
11.50 6. 3327 0.9523 0.1591 7.4443 24.50  1.7258 0.0192  0.0002 1.7453
12.00 6.0238 0.8197 0.1239 6. 9675 25.00 1. 6417 0.0165 0.0001 1. 6584

12.50 5.7301 0. 7055 0.0965 6. 5321 25, 50 1.5616 0.0142 0, o001 1. 5760




Table 3 contains the results of the application of the step-
wise regression program to the matrix of data in Table 2.
The equations resulting from each step are as follows:

28 7

x?% - 0.9418x%7 = 0 (20)
%28 - 1.1223x27 + 0.1402x23 = 0 (21)
x%8 - 1.1420x%7 + 0.1565x23 - 0.000089x} = 0  (22)

%28 + 0.0318x%7 - 0.9398x?3 + 0.07968x% - 0.01124x% = 0 (23)

Equation 22 combines the maximum number of sign changes with
the minimum number of variables in the equation and is, there-
fore, selected as the equation governing the number of terms
in the disinfection equation. This matches identically with
the three terms used in the simulated data. After the best
estimate has been made of the number of terms which makes up
the data, the next step in the analysis is to estimate the
decay coefficients in the equation. This step is described
in the following section.

Table 3. RESULTS OF REGRESSION ANALYSIS
USING DATA FROM TABLE 2

Step Var Coefficient
1 27 0.94179753
2 23 -0.14022224

27 1.12226027

3 1 0.00008941
23 -0.15649791

27 1.14201651

4 1 0.01124259
8 -0.07967716

23 0.93985016

27 -0.03183525

ESTIMATION OF PARAMETERS

Decay Rates

Based on the data in Table 1, the parameters for Equation 19
can be estimated using the techniques outlined in Appendix A.
The first decay coefficient_to be calculated will be that
associated with variable,x23 and the calculation is as follows:

13



[(x24 _ r1x23> _ (xz _ rlxl)]
(23 - 1) =
_ {(x24 -y x23) _ (xzs - X27)]
1 1 (24)
23 = 27)

. . ‘ 2
Substituting the average values for x28, x27, x24, x23, x~, and

X+, into Equation 24 yields the following values for r:

r, = 0.85 (25)

where

r o~k1h (26)
1
From Equation 26, we can calculate k1 as follows:

ki = - ln(rl)/h (27)
kl = - [1In(0.85)1/0.50
kl = 0.32

The decay coefficient associated with variable xl is calculated
as follows: ‘

1 2

In(x%) - 1n(2x! - x%) (28)

ln(rz)

- 0.24

i

ln(rl)

Substituting into Equation 27 for k2 we get the following:

ky, = (0.24)/0.50 (29)

k2 = 0.48

The decay coefficient associated with wvariable x27 is calculated
as follows:

1n(x28 /x%7y (30)

ln(r3)

1n(0.95)

ln(r3)

Substituting into Equation 27 for k3 we get the following:
ky = (0.05)/0.50
k3 = 0.10

14



Coefficients

Once the decay rates in Equation 19 have been estimated, the
values for the coefficients are relatively easy to obtain.
Values for each exponential term can be caluclated at the
appropriate time interval and these values regressed against
the values of y in Table 1. Stepwise regression can then be
used to estimate the coefficients (Appendix D).

EXAMPLE INACTIVATION PROBLEM

To illustrate the utilization of this technique, it will be
applied to experimental data collected from a series of
electromicroscopy investigations con?ucted by Gordon Sharp
at the University of North Carolina.i0 Sharp prepared
electron micrographs of dilute preparations of T7 virus
that had been subjected to a devitalizing agent.

Figure 3 shows the inactivation curve, and Table 4 contains
the distribution of T7 coliphage particles resulting from
these experiments. Column 1 of Table 4 lists the group size
of the aggregates, that is, the number of particles in each
clump of virus. Column 2 lists the number of groups in the
suspension, and Column 3 lists the number of particles in
each group. Column 4 lists the percent of plaque-forming
capability that each group represents in the suspension.

For example, there are 770 groups in the suspension, but
610/770 or 79.1 percent of them are groups of single viral
particles, and 116/770 or approximately 15.1 percent of them
are groups of two viral particles, etc.

Table 4. T7 VIRUS DATA

Group Number of Number of PIune—formi:;
size groups particles capability (%)
1 610 610 79.22
2 116 232 15.06
3 24 72 ©3.12
4 12 48 1.56
5 6 30 0.78
6 1 6 0.13
18 1 18 0.13
Total 770 1,016 100.00
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LOG,, SURVIVAL RATIO (PLAQUE TITER)

INACTIVAT/ION OF COLI/IPHAGE T,
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Figure 3. Inactivation of coliphage
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Table 5 contains the data from Figure 3, at intervals of

5 seconds, arranged in 10 columns of data. Table 6 contains
the coefficients associated with each set of variables as
they enter the stepwise regression equation. It is obvious
from the alternating signs that six variables will describe
the inactivation process. The decay coefficients per minute
calculated from the techniques outlined in Appendix A are

as follows:

I3

ry = 1.56 (32)
r, = 2.12
ry = 2.32
r, = 2.68
re = 2.83
e = 4.68

Each of theﬁe values represents a kj in Equation 14, and each
value of e Xit can be generated at various intervals of t by
the program in Appendix B. If all six values of e kit repre-
sented by Equation 32 are regressed against the values for y
as obtained from the graph in Figure 3 then Table 7 contains
the values for their coefficients. Using the program in
Appendix C, the values for each predicted S; (percentage of
plagque-forming capability) can be calculated. The predicted
and actual values are shown in Table 8.

When the regression is performed, the values shown in Table 7
result. At the fourth step of the regression, the corrected
R? begins to decrease which is an indicator that the regression
should be terminated at that point, and step 3 is, therefore,
used as the last step in the regression analysis. Equation 5
and the program contained in Appendix C, where k7 = 1.56,

ko = 2.83, and k3 = 4.68, yields the following values for Sj:
S3 = 73.97%, S = 15.51%, and S3 = 11.30%. Physically, this
means that there are .73.97% singles, 15.51% doubles, and the
rest of the particles amount to approximately 11.30%. The
comparison between the results obtained from the model and
the electron micrographs is shown in Table 8. The agreement

seems reasonable.

17



8T

Table 5. DATA FROM DISINFECTION CURVE

Var 1 Var 2 Var 3 Var 4 Var 5 var 6 Var 7 var 8 Var 9 var 10

o

1060.00000 79.00000 58.00000 45.00000 36.50000 28.50000 25.00000 19.80000 17.50000 15.00000

79.00000 58.00000 45.00000 36.00000 28.50000 25.00000 19.80000 17.50000 15.00000 13.00000

. - . . . - . . . .

000.16500 00.16000 00.15500 00.15000 00.14000 00.13500 00.13000 00.12000 00.11000 00.10500
000.16000 00.15500 00.15000 00.14000 00.13500 00.13000 00.12000 00.11000 00.10500 00.10000




Table 6. RESULTS OF REGRESSION ANALYSIS
USING DATA FROM TABLE 5

Step - Var Coefficient

1 9 0.84449432

2 0.16137199

0.57866191

[NeJe)}

0.22635578
-0.22446799
0.73339338

O 00

-0.14587300
0.36096394
-0.35799450
0.95901767

oo u

0.12430537
-0.26913616
0.29413744
-0.36433149
1.01961917

O 00Oy UlLd

-0.03634866
0.29008852
~0.30158431
0.22952950
-0.50623862
1.13438561

O 0o oY Ut i

-0.03743081
0.32109643
-0.43943162
0.20853501
0.25010067
~0.67970749
1.22741919

O 00 ~JOY UL
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Table 7. RESULTS OF REGRESSION
USING DR. SHARP'S INACTIVATION DATA

Corrected R2
Step Var Coefficient as a percent t value

1 2 96.77 99.501 117.26
2 2 89.08 99.549 32.05
6 6.64 2.88
3 1 58.89 99.933 19.67
2 4.12 0.92
6 37.77 20.82
4 1 61.68 99.932 6.69
2 -10.82 -0.23
4 15.24 0.32
6 34.70 3.55

Table 8., COMPARISON BETWEEN MODEL OUTPUT
AND ELECTRON MICROGRAPHS

Percent Percent
plagque-forming plagque-forming
capability capability
Group size (counted) (predicted)
1 79.22 73.97
2 15.06 15.51
3+4+ 5+ 6 + 18 5.82 11.30

SUMMARY AND CONCLUSIONS

The kinetics of viral inactivation have been examined from a
rational point of view. A mathematical model based on the
radionuclide chain decay concept was formulated and a solution
technique developed that allows for estimations of the optimal
number of terms in the equation and for estimating the equation's
parameters. With the use of data derived from electron micros-
copy, the model was tested and achieved reasonable results.
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Based on this discussion, it is obvious that the postulated
mathematical model and its solution technigues are superior

to others that have been formulated. The approach outlined

in this report not only determines the number of aggregate
groups in the suspension, but the values for decay coefficients
as well. There are some deficiencies in this approach, however,
and it is important that these be considered. The approach
suggested here is statistical in nature and is, therefore,
subject to experimental error in the various estimations made.
More importantly, the estimates of aggregate size and concen-
tration are blind. That is, if this approach estimates three
terms as optimal, there is no way to provide information on

the make-up of these aggregate groupings. They might be clumps
of single, double, and triple particles, or clumps of 20, 21,
and 25 particles. The values for the decay coefficients may
give some insight as to clump size, but these insights are
hardly sufficient. This technique must be coupled with a
physical assay approach incorporating electron microscopy.

A research project that combines the elements of mathematical
analysis with electron microscopy is currently underway.
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APPENDIX A

In this appendix, the mathematical justification for the
techniques used in the section entitled "Estimation of
Parameters" is developed. Table 9 contains the first three
values for the individual terms which make up the variables
1, 2, 23, 24, 27, and 28, as shown in Table 2. The first
variable to enter the stepwise regression equation is x27,

as shown in Equation 20. Looking at variables 27 and 28 in
Table 9, it is obvious that the term labeled f3 dominates
variable 27 and is most highly correlated with variable 28,
while the terms f£; and f) in variable 27 are relatively
insignificant. The next variable to enter the stepwise
regression equation is variable 23, and it can be seen that
terms fy and f3 in variable 23 are significant but that term
f1 is insignificant, and finally in variable 1, terms fj, £f3,
and f3, are all significant. It can be concluded from this
that a variable enters the regression equation when one of
the terms which comprise it is significant enough to alter
the rate of change of the entering variable. Therefore, we
would expect that variables would enter the regression equation
with alternating signs associated with their coefficients,
since the entrance of each variable into the equation signifies
a significant change in the functions slope. Moreover, we
would expect that the variables entering the equation with
alternating signs represents the maximum change in the slope
of the function with respect to the other variables in the
regression equation. Using Equation 19 as an example, we
would, therefore, attempt to find a uj such that by, in the
following equation is a maximum relative to its adjacent
variables:

n+l

n+l n+1
fl(ul

n n n, _
uiul) + f2(u2 - usu, + f3(u3 - uiu3) = bn (33)
or in a more simple form, we would attempt to find a uj such

that by3 is a maximum relative to by and b27 in the following
set of equations:

2 1 _
x- - uix = b1 (34)
24 23 _
X - uix = b23
28 27 _
b4 - uix = b27
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Table 9.

FIRST THREE VALUES FOR SELECTED VARIABLES

Var Time C,e 0-°00t, o-0.300t ,-0-100t v

1 0 50.0000 30.0000 20.0000 100.0000

0.5 38.9400 25.8212 19.0245 83.7858

1.0 30.3265 22,2245 18.0967 70.6478

2 0.5 38.9400 25,8212 19.0245 83.7858

1.0 30.3265 22,2245 18.0967 70.6478

1.5 23.6183 19.1288 17.2141 59.9613

23 11.0 0.2043 1.1064 6.6574 7.9682

11.5 0.1591 0.9523 6.3327 7.4443

12.0 0.1239 0.8197 6.0238 6.9675

24 11.5 0.1591 0.9523 6.3327 7.4443

12.0 0.1239 0.8197 6.0238 6.9675

12.5 0.0965 0.7055 5.7301 6.5321

27 13.0 0.0751 0.6072 5.4506 6.1330

13.5 0.0585 0.5226 5.1848 5.7660

14.0 0.0455 0.4498 4.9139 5.4274

28 13.5 0.0585 0.5226 5.1848 5.7660

14.0 0.0455 0.4498 4.9139 5.4274

14.5 0.0355 0.3872 4.6914 5.1141
*f£1.
t£o.
3£3-
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Therefore, uj can be calculated from the following equation:

2 24 23 24 23 28 22
X - )

- uixl) - (x - ougx ) _ (x - ux ) = | u; X (35)
(1T =~ 23) - (23 = 27)

(x

since we know that bp is a maximum round the point x23.

Table 10 confirms that this is in fact the case for variable 23.

Table 10. by FOR SELECTED VALUES OF uj

<2 - u2x1 24 _ uzx23 28 _ uzx27
~2.2800 0.5839 0.4857
—i.4613 0.5583 0.4449
-0.7931 0.5000 0.4569

For variables xl and x27, this computation is impossible since
there are no variables which can be used to make a computation
similar to Equation 2.

However, for the decay coefficient associated with xl, the
following equation can be developed using the properties of
infinite series: .

ur.l(x2 - u.xl) > uI:H'l(xl - x2) as n > « (36)
i i i
Therefore,
In(y,) = In(x?) - In(2x - x°) (37)

For the decay coefficient associated with x27, the following
relationship can be developed:

n_28 n+l_ 27
u;x - u, X

1 + 0 as n » « (38)

Therefore,

28

In(u;) = In(x*%) - 1n(x27) (39)
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APPENDIX B

PROGRAM FOR GENERATING VALUES OF e-kit

AT GIVEN INTERVALS OF t

DIMENSION A(15),8(15),C(15)
MR = 1
MW = 15
5 READ(MR,10) TN
L0 FORMATI(F5,.2,12)
IF (N)70,70,15
15 READIMR,20)(A(J)yJ=1,4N}
READIMR,20)(C(J)yd=14N)
20 FCRMAT(10F8.0)
E=2.71828
$=0.0
¥Y=0.0
WRITE(MW,25)
25 FORMAT('L'//26X,'-XT"*)
WRITE(MW,30)

30 FURMAT(25X,'E TABLE")
WRITE(MW,35)
35 FORMAT(25Xyt=-=emwmmm—— ")

WRITE(MW,40) (A(J)ed=1,N)
40 FORMAT(//10Xy 3{(3X,*'~14F5.3,'T*'))
WRITE(MW,45)
45 FORMAT(SX,'T',6Xe"E®y 2{9Xs'ET)12X,'Y")
50 DO 60 I=1,N
95 B{I)=C(I)«Eun(~A(])%S)
60 Y=Y+B(I)
WRITE(MW,65) Se(BIK),K=1,N),Y
©5 FORMAT(/3X4F5.2,2Xs11F10.4)
S=S5+T
Y=0.0
IF (B(1)-.0001) 5450450
10 STOP
END
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15

30

35
40

45

50

65

10
75

80

85

100

105
110

115

120

135

140
145

150

APPENDIX C

PROGRAM FOR CALCULATION Si

OIMENSION A(16)48U16),S(203,TEMP(10),STOR(10}

READ (145N

FCRMAT (12)
IF(N}8,42,8

READ (1,10}A,8

FORMAT (8F10.3/8F10.3)
OC 41 I=1,N
TEMP(1)=1.0
STOR(1)=1.0

D0 30 J=I,N
IF(I-J)15,30415
TEMPUL)=TEMP(L)«{A(J)~A(1)])
STOR(1)=STOR(1)#A(J}
CCONTINUVE
UlL=TEMP(1}/STOR(1)
[F{I~1)45,35445
S{1)=B(1)=ul

WRITE (3,40) S(1)

FORMAT ('1///7/°% St1) = "4F12.2/7/)

GO TO 41

TEMP(2)=1.0

STCR{2)=1.,0

DO 65 J=1,N

IF{I-J)504565,50
STOR(2)=STCR(2)#A(J)
TEMPI2)=TEMP(Z)#(A(J)~ALI))
CONTINUE
U2=STOR(2)*S(1)/TEMP(2)
IF(1-2)80,70,80
S{2)=(B{2)~-U2)*Ul

WRITE (3,75) S(2)

FORMAT (' S(2) = *,Fl2.2///)
GC TO 41

TEMP{3)=1.0

STOR(3)=1.00

DO 100 J=2,N
IF(1-J)85,100,85
STOR(3)=STCR(3)#A(J)
TEMP(3)=TEMP(3) = (A(J)-ALI))
CONTINUE
U3=STOR(3)*S(2)/TEMP(3)
IF{1-3)1115,105,115
S(3)=(B(3)-U2~U3)eUl .
WRITE (3,110) S(3)

FCRMAT (' SI(3) = *,Fl2.2///)
G0 TO 41

TEMP(4)=1.0

STOR(4)=1.0

DO 135 J=3,N
IF(I-J)120,4135,120
STCR(4)=STCR(4)*A(J)
TEMP(4)=TEMP(4)#(A(J)-A(1))
CONTINUE
U4=STOR{4)=5(3)/TEMP(4)
1F(I-4)150,140,150
S(4)=(B(4)~U2-U3-U4)eUl
WRITE (3,145) S(4)

FORMAT (' S(4) = " ,WFl2.2///7)
GO TO 41

TEMP(5)=1.0

STOR{S5)=1.0
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001
(o4
003

004
005
006
006A
0068
007
008
009
010
011
012
013
014
015

017
017a
o178
0ls
019
020
o021’
022
023
024
025
026
Q27
028
028A
0288
029
030
031
032
033



155

170

175
180

185

190

205

210
215

220

225

240

245
250

255

260

215

280
285

290

DO 170 J=4,N
IF(I-J)155,170,155
STOR(S)=STOR(S)#A(J)
TEMPUIS)=TEMP (L)« (A(J)=-ALT))
CONTINUE
US=STOR(5)*S(4)/TEMP(5)
IF(I-5)185,175,185
S{51=(B(5)~-U2-U3-Ub-U5)*U1
WRITE (3,180) S(5)
FCRMAT (' S(5) = Y,F12.2///)
GO TO 41
TEMP(6)=1.0
STOR(6)=1.0
0O 205 J=5,N
IF(I-J1190,205,190
STOR(6)=STOR{6I*#A(J)
TEMP(6)=TEMP{G) % (A(J)~A(T})
CONTINUE
U6=STOR(6)#S{5)/TEMP(6)
1F({1-6)220,2104220
S(6)=(B(6)-U2-U3-Us-US~Ub6) UL
WRITE (3,215) S(6)
FURMAT (' S(6) = *,F12.2//7)
GG TO 41
TEMP(T)=1.0
STOR(7)=1.0
DO 240 J=6,N
IF(1-4)225,240,225
STOR(7)=STOR(7)*A(J)
TEMP(T)=TEMP(T)#(A(J)I-ALI))
CONTINUE
U7=STOR(T)=S(6)/TEMP(T)
IF{1-7)255,245,255
S(7)=(B(7)-U2-U3-U4=U5-U6-UT)#U1
WRITE (3,250) S(7)
FORMAT (' S(7) = *,Fl2.2//7)
GO TO 4l
TEMP(8)=1.0
STOR(8)=1.0
00 275 J=7,N
IF(1-J)260,275,260
STCR(8)=STOR{8) #A(J)
TEMP(8)=TEMP(8)*(A(J)=ALI))
COGNTINUE
U8=STOR(8)*S(7}/TEMP(8)
IF(1-8)290,280,290
S(8)=(B(8)-U2-U3-U4-U5-U6-UT-UB)*UL
WRITE (3,285) S(8)
FORMAT (' S(8) = ",F12.2///)
GO TO 4l
TEMP{9)=1.0
STOR(9)=1.0
DO 300 J=8,N
IF£(1~J)295,300,295
STOR(9)=STOR{9)*A(J)
TEMP(9)=TEMP(G )& (A(J)-ALIL))
CONTINUE
U9=STOR(9)#S(8)/TEMP(9)
IF(1-9)315,305,315
$S(9)=(B(9)-U2-U3-U4-U5-L6-UT~UB~UI) U1
WRITE (3,310) S{9)
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051
052
053
054
055
056
057
058
059
060
061
oola
0618
062
063
064
065
066
067
068
069
Q7¢
071
0r2
072A
0728
073
074
075
076
077
078
079
080
o8l
082z
083
083A
0838
084
085
086
087
(41-1.]
089
090
091
092
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094
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0948
0995
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099
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310

315

320

330

335
41

42

FORMAT (' S(9) = ',Fl2.2//7)
GC T0 41

TEMP(10)=1.0

STOR(10)=1,0

00 325 J=9.N
IF(1-31320,325,320
STOR(10)=STOR(10)=A(J)
TEMP(10)=TEMP{LO)=(A(J)-A(T))
CONTINUE
U10=STOR(10)#S{9)/TEMP(10)
IF(1-10)41,330,41
S(10)={B(10)-U2-U3-Ubs=~U5~Ub=UT~U8~U9-UL0) Ul
WRETE (3,335) S(10)

FORMAT (' S(10) = *,F12.2///)
CONTINUE

GO 70 2

STOP

END
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OO0 OoONO0

o0 o o

(a3

101

690
700
71

120
T2

730

90

750

APPENDIX D

STEPWISE REGRESSION PROGRAM

1130 STEPWISE MULTIPLE REGRESSION PRUGRAM, 3/14/66
PHASES 1 AND 2 CAN BE UVERLAID TO CONSERVE CCORE. THE STEPS TG
READY PHASES 1 AND 2 FOR OVERLAY ARE
1. SET UP A COMMON AREA CONSISTING OF RIJ,XBAR,SIGMA,FIN,
FOUT,0BSsNVAR,NOBS 4 NINDV 4 IRES, [FA.
2. SET SIGMA AND DATA EGQUIVALENT IN PHASE 2.
3. REPEAT PHASE 1 DEFINE FILE STATEMENT [N PHASE 2.
4. REMOVE STATEMENT 101-3 FROM PHASE 1 AND INSERT IT
BEHIND DIMENSION COMMENTS CARD IN PHASE 2.
PHASE 1. TRANSFORM ORIGINAL DATA, COMPUTE AND PRINT MEANS,
STANDARD DEVIATIONS, ANC SIMPLE CCRRELATION COEFFICIENTS.
DIMENSIONS
IMPLICIT REAL#8(A=H,C~7)
D:MENSION DATA(30)4CONST(12) 5 ITRANE30),JTRAN(30) +KTRAN(30),LTRAN(3
10
DIMENSION RIJ(30,30),XBAR{30), SIGMA(30),Al0(18)
DIMENSION SIGB(30),B(30),ID(30})
EQUIVALENCES
EQUIVALENCE (SIGMA(1),DATA(L))
DEFINE DATA FILE
DEFINE FILE 10(1000,60,U,IFA)
STATEMENT LABEL 101 IS NOT REFERENCED. IT MARKS THE FIRST
EXECUTABLE STATEMENT OF THE SDURCE PRDGRAM,
ICCM IS FIXED DECIMAL REPRESENTATION OF ALPHABETIC COMMA.
1COM=27456
INITIALIZE DATA FILE
IFA=1
READ [«D. '
READ(ly1, END=999) (AID(I),I+1,18)
FORMAT(18A4)
READ CONTROL CARD
READ(12)NVIN NVAR,NUBS ¢y NTRAN,NCONS,»FIN,FOUT,IRES
FORMAT(212,14421242F6.3511)
IF(FIN-FOUT)1020,690,690
IF(NTRAN)1000,730,700
READ TRANSFCRMATIGN CARDS
REAC(Ls 71 CITRAN(T) y JTRANCE) oKTRAN(I) yLTRAN(T) ¢ E=1)NTRAN)
FORMAT(3612)
IF INCONS) 1000,730,720
READ CONSTANT CARD
READ(1,72) (CCNST(I),1=1,NCONS}
FORMAT(12F643)
INITIALIZE.
ORS=NO8S
NINDV=NVAR-1
00 90 I=1,NVIN
XBAR([}=0.0
00 90 J=1,NVIN
RIJ(I,J)=0.0
READ DATA, FORM $UMS VECTOR, SUMS OF SQUARES MATRIX
DO 110 I=],NCBS
READ(1,3) (DATALJ) ¢ 3=1,NVIN)
FORMAT(12F6.0)
IF (NTRAN}1000,86Q,750
TRANSFORMATICON OF RAW DATA
DC 850 M=1,NTRAN
11=1TRAN(M)
JJ=JTRAN(M)
KK=KTRAN{M)
=LTRAN(M)
éé #a (760,770, 7804790,800,810,820,830,840),11
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0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120

0130
0140
0150
0160
0170
0180
0190

0210

0220

0230
0240
0250
0260
0270

0300
0310

33
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450

0470
0480
0490
0500
0510

0530
0540
0550
0560
0570
0540
0590
0600



760

170

780

790

BOO

810

820

430

840
850
860
870
880

100
110

120

130

140

65

51

52

53

X{J)=X(K)

DATA(JJIY=DATA(KK)

GO TO 850

X(J)==X(K)

DATA(JI)I=-DATALKK)

GC TO 850

X{(J)=L0G X(K})

DATA(JJ)=DLOG(DATA(KK))

GG TO 850

X(J)=1/X(K)

DATA(JJ)=1.0/CATA(KK)

GO TO 850

X{I)=XIK +X (L)

DATA(JJI)=DATA(KK)+DATA(LL}

GC TC 850

X{JI=X{K)=X(L)

DATA(JJ)=DATA(KK)*DATA(LL)

GO TO 850 '

X{J)=X{K)/X(L)

DATA(JJI)=CATA(KK)/DATAILL)

GO0 10O 850

X(J)r=X(K)+C (L)}

DATA(JJ)=DATA(KK)+CCNSTI(LL)

GO TO 850

XEJ)=X(K)=C(L)

DATA(JJI)=DATAI{KK)*CCNST(LL)

CONTINUE

IF(IRES)BT70,880,870

WRITE DATA FILE
WRITE(1O'IFA)(CATA{J)+J=1,NVAR)

00 100 J=1,.NVAR

XBAR{J)=XBAR(J)+DATA(J)

DO 100 K=1,NVAR
RIJUJyKI=RIJ(JoKI+DATA(J)#DATA(K)

CONTINUE

COMPUTE STANDARD DEVIATIONS+SQR ROUTE (0BS-1}
DO 120 I=1,NVAR
SIGMALT)=(RIJ(I,I)~XBAR(I)%XBAR(I)/OBS)=#.5
COMPUTE CORRELATION MATRIX

DC 130 I=14NVAR

DO 130 J=1,NVAR
RIJITHII=A(RTIJ(I,J)-XBAR(I})#XBAR(J)/0BS)/(SIGMA(I)=SIGMA(J))
COMPUTE MEANS AND STANDARD DEVIATIONS

DO 140 I=1,NVAR

XBAR(I)=XBAR(I)/0BS
SIGMA(I)=SIGMA(I)/(0OBS~1.0)%#,5

SKIP TO NEW PAGEs, WRITE 1.De.y AVERAGES, STANDARD DEVIATIONS,
AND SIMPLE CCRRELATICN MATRIX.
WRITE(3,65)(AIC(1),1=1,18)

FORMAT('1',184A4)

WRITE(3,51)

FORMAT ( *OAVERAGES")
WRITE(3,952)(I,XBAR(I)yICCMyI=1,NINDV),NVAR,XBAR(NVAR)
FGRMAT {4(' VAR(',yI24%)="4F13.2,A1))
WRITE(3,53)

FORMAT (*OSTANDARD DEVIATIONS'}
WRITE(3,52)(I,SIGMA(I),ICOM,I=1,NINDV),NVAR,SIGMA(NVAR)
WRITE(3,55)

FORMAT('OSIMPLE CORRELATION COEFFICIENTS')
DG 150 I=1,NINDV
WRITE(3¢56)(13J,RIJ(I4J)oICOMsJ=T1,NINDV),oIyNVAR,RIJ(I,NVAR)}
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0610
0620
0630
0640
0650
0660
0670
0680
0690
0700
0710
0720
0730
0740
0750
0760
0770
0780
0790
0800
0810
0820
0830
0840
0850
0860
0g70
0880
0eso

0910
0920
0930
0940
0950
0960
0970
0980
0990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
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[eN el el

190

310

200

205

210

220
230

240

250
260

300

400

410

420

57

425

58

49

FCRMAT (4(' VARS(®,12,¢,1 )z

CONT INUE ) vtaty12,0) +F10.3,A1))

PHASE 2. PERFQORM STEPWISE 5
DIFENS, oG CALCULATIONS AND PRINT RESULTS.
INITIALIZE

OO0 190 [=1,NVAR

SIGB(I)=0.0

B(l)=0.0

NENT=0

OF=0BS-1,0

NSTEP==-1

TRANSFORM SIGMA VECTCR FROM STANDARD DE

ROCTS OF SUMS CF SQUARES. VIATIONS TO SQUAKE
DC 310 I=1,NVAR

SIGMA(I)=SIGMA(1)*(CBS=-1.0)*%.5

BEGIN STEP NUMHRER NSTEP,

NSTEP=NSTEP+]
STOEE={(RIJINVARsNVAR)}/DF ) #%,5)#SIGMA(NVAR}

DF=DF~1.0

IF(CF)1010,1010,205

VMIN=0.0

VMAX=0.0

NIN=0Q

FIND MINIMUM VARIANCE CCNTRIBUTION OF VARIABLES IN REGRESSION

EQUATION. FINU MAXIMUM VARIANCE CONTRIBUTION OF VARIABLES
NOT IN REGRESSION EQUATION.

DO 300 I=1,NINDV

VI=RIJ(IyNVAR)%RIJ(NVAR,I)/RIJ(I, 1)

I1F(V]I)240,300,220

IF(VI-VMAX}300,300,230

VMAX=V]

NMAX=1

GO TO 300

NIN=NIN+1

ICININY=1

COMPUTE REGRESSION COEFFICIENT AND ITS STANDARD DEVIATION.

BININ)=RIJ({I,NVAR)*SIGMA(NVAR)/SIGMAL(L)
SIGB(NIN)=(STDEE*RIJ(I,1)%%.5)/SIGMALT)
IF(VMINI250,260,1000 “
[F(VI-VMIN)}300,300,260

VMIN=VI

NMIN=1

CONTINUE

IF(NIN)1000,460,400

COMPUTE CONSTANT TERM.

BSUBO=XBAR (NVAR)

DO 410 I=1,4,NIN

J=10(1)

BSUBO=BSUBO-B (I} *=XBAR(J)

IF(NENT)1000,480,420

QuTPUT FOR VARIABLE ADCED

WRITE(3,57INSTEP,K

FORMAT(*OSTEP NUMBER *,12,10X,'ENTER VARIABLE ',12)

DEPV = NSTEP

WRITE(3,58)STDEE

FORMAT(® STANCARD CEVIATION OF RESIDUALS='4F16.3)

SOPRM={STDEE/XBAR(NVAR) ) *100.

WRITE(3,49)SNDPRM

FORMAT(' STD. DEV. AS PERCENT OF RESPONSE MEAN=*,F10.3)

R=z(1.~RIJINVAR,NVAR) }#2,5

RSQ = R#s#2,
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RSQP = RS{ # 100.
WRITE(3,59) RSGP
59 FCRMAT(* PERCENT VARIATION EXPLAINED R-SQ=',F15.3)
CRSQ = 1.~((1.~RSQ}*#(CHBS=~1.))/(0OBS~DEPV~1.)
CRSQP = CRSC = 100,
WRITE(3,84) CRSGP
84 FORMAT (' CORRECTED R-SG AS A PERCENT=',F20.3)
IDFN=0BS-CF-2.0
IDFD=DF+1.0
F={SIGMA(NVAR) ##2-(STDEE##2 )% (DF+1.0))/ ({0OBS~DF-2.0)#STDEE##2)
WRITE(3,66)IDFN,IDFD,F
66 FORMAT(' GOOCNESS OF FIT OR OVERALL FoF(*y134',',13,')=%,F8,3)
WRITE(3,60)BSUBL
60 FORMAT({* CONSTANT TERM=',18X,F16.8)
WRITE(3,61)
61 FORMAT(*OVAR COEFF STD DEV T VALUE!
1)
WRITE(3,62)
62 FORMAT(?* COEFF')
DG 430 I=1,NIN
J=10(1)
T=8{1)/SIGB(I)
WRITE(3,63)ID(I)4B(I1),SIGB(]I),T
63 FORMAT(' *',13,F18.8,F20.8,F18,8)
430 CONTINUE
CCOMPUTE F LEVEL FOR MINIMUM VARIANCE CONTRIBUTION VARIABLE
IN REGRESSICN EQUATICN.
FLEVL=VMIN=DF/RIJ(NVARyNVAR)}
IF(FOUT+HLEVL )460,460,450
INITIALIZE FOR REMOVAL OF VARIABLE K FROM EQUATIUN.
490 K=NMIN
NENT=0
DF=CF+2.0
GO TO 500
CCMPUTE F LEVEL FOR MAXIMUM VARIANCE CONTRIBUTION VARIABLE
NOT IN EQUATICN.
460 FLEVL=VMAX#DF/(RIJINVAR,NVAR)-VMAX)
IF(FLEVL-FIN)600,6004,470
INITIALIZE FOR ENTRY OF VARIABLE K INTO EQUATION.
470 K=NMAX
NENT=K
GO TO 500
QUTPUT FOR VARIABLE DELETED
480 WRITE(3,64)INSTEP,.K
64 FORMAT(*OSTEP NUMBER *,12,10X,*DELETE VARIABLE *,12)
GO TO 425
UPDATE MATRIX
%00 DC 540 I=1,NVAR
IF(I-K)510,540,510
510 DO 530 J=1,NVAR
IF(J-K1520,530,520
520 RIJ(I4J)=RIJ{IsJ)-RIJIIK)®RIJ(KyJI/RIJ(K,K}
530 CONTINUE
540 CONTINUE
D8 560 J=1,NVAR
IF{J-K)550,560,550
550 RIJ(KyJ)=RIJ{KyJI/RIJ{K,K)
560 CONTINUE
DO 580 I=1,NVAR
[FII-K)570+580,570
570 RIJ(I,K)==RIJ(I,KI/RIJ(K,K)
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CONTINUE
RIJIKyKI=1e0/RTIJIK,K)
GO TO 200
IF(IRES)610,640,610
PRINT RESIDUALS

IFA=1

WRITE(3,67)

FORMAT('0 (OBS ACTUAL ESTIMATE RESIDUAL NORMAL ')
WRITE(3,69)

FORMAT (* DEVIATE")

DC 630 K=1,NC8S

READ(1O*IFA)(DATA(1),I=14NVAR)

EST=BSUBD

DO 620 I=1,NIN

J=10(1)

EST=EST+B(I1)*CATA(J)

RESID = DATAINVAR)-EST

XNORD = RESID/STDEE

IF(DABS(XNORD)-3,)91,92,92

IF(DABS(XNOREG)=-2.193,94,94

WRITE(3,30)KyDATA(NVAR) ,EST,RESID,XNORD

FORMAT (' ¢, 14,4F12.,2,' #xt)

GO TO 630

WRITE(3,31)}Ky0ATA(NVAR) ESTyRESIDXNORD .

FORMAT (' ' ,14,4F12.24" #Y)

GO TO 630

WRITE(3,6B)K,DATA(NVAR) EST,RESTID,XNORD

FORMAT(' ',14,4F12.2)

CONTINUE

NORMAL END OF JCB

GO TO 101

CALL EXIT

ERRGCR. NIN, NENTy VMINy NCONS, OR NTRANS IS NEGATIVE. CHECK
FOR CONTROL CARD ERRCR.

STOP1

ERROR CEGREES CF FREEDGCM =0. EITHER ADD MORE DATA OBSERVATIONS OR
DELETE ONE CR MCRE INDEPENDENT VARIABLES. SAMPLE SIZE MUST EXCEED
NUMBER OF INDEPENDENT VARIABLES BY AT LEAST 2.

5TQP2

ERROR. F LEVEL FOR INCOMING VARIABLE IS LESS THAN F LEVEL FCR
CUTGOING VARIABLE.

STOP4

END
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