United States Environmental Protection Agency Industrial Environmental Research Laboratory Research Triangle Park NC 27711 EPA-600/2-79-185 August 1979

Research and Development



# Cost Effectiveness Model for Pollution Control at Coking Facilities



#### RESEARCH REPORTING SERIES

Research reports of the Office of Research and Development, U.S. Environmental Protection Agency, have been grouped into nine series. These nine broad categories were established to facilitate further development and application of environmental technology. Elimination of traditional grouping was consciously planned to foster technology transfer and a maximum interface in related fields. The nine series are:

- 1. Environmental Health Effects Research
- 2. Environmental Protection Technology
- 3. Ecological Research
- 4. Environmental Monitoring
- 5. Socioeconomic Environmental Studies
- 6. Scientific and Technical Assessment Reports (STAR)
- 7. Interagency Energy-Environment Research and Development
- 8. "Special" Reports
- 9. Miscellaneous Reports

This report has been assigned to the ENVIRONMENTAL PROTECTION TECHNOLOGY series. This series describes research performed to develop and demonstrate instrumentation, equipment, and methodology to repair or prevent environmental degradation from point and non-point sources of pollution. This work provides the new or improved technology required for the control and treatment of pollution sources to meet environmental quality standards.

#### **EPA REVIEW NOTICE**

This report has been reviewed by the U.S. Environmental Protection Agency, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policy of the Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161.

## Cost Effectiveness Model for Pollution Control at Coking Facilities

by

William F. Kemner

PEDCo Environmental, Inc. 11499 Chester Road Cincinnati, Ohio 45242

Contract No. 68-02-2603, Task No. 44 and Contract No. 68-02-3074, Task No. 6 Program Element No. 1AB604

EPA Project Officer: Larry G. Twidwell

Industrial Environmental Research Laboratory
Office of Environmental Engineering and Technology
Research Triangle Park, NC 27711

Prepared for

U.S. ENVIRONMENTAL PROTECTION AGENCY Office of Research and Development Washington, DC 20460

#### DISCLAIMER

This report is furnished to the Environmental Protection Agency by PEDCo Environmental, Inc., Cincinnati, Ohio, in fulfillment of EPA Contract No. 68-02-2603, Task No. 44 and EPA contract No. 68-02-3074, Task 6. It describes the initial development and use of a cost optimization model for control of emissions from coke ovens. The cost model has been developed so that it will accommodate new information that becomes available on control cost, control systems, and emission levels. The data presented in this report and now used in the model are considered to be the best currently available. Because some areas of knowledge are continually developing, however, some engineering estimates are used to facilitate the development and refinement of the model.

The contents of the report reproduced herein are as received from the contractor. The opinions expressed are those of the authors and do not necessarily reflect the views of the EPA. Mention of company or product names is not to be considered as an endorsement by the authors or the EPA.

#### TABLE OF CONTENTS

|      |                                           |                                                                                                                                                                                                             | Page                                         |
|------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Disc | laime                                     | er.                                                                                                                                                                                                         | ii                                           |
| List | of F                                      | 'igures                                                                                                                                                                                                     | v                                            |
| List | of T                                      | Cables                                                                                                                                                                                                      | vii                                          |
| Ackn | owled                                     | gement                                                                                                                                                                                                      | viii                                         |
| 1.0  | Intr                                      | oduction                                                                                                                                                                                                    | 1                                            |
|      | Refe                                      | erences                                                                                                                                                                                                     | 3                                            |
| 2.0  | Mode                                      | el Structure                                                                                                                                                                                                | 4                                            |
|      |                                           | Data Requirements<br>Control Cards                                                                                                                                                                          | 6<br>13                                      |
| 3.0  | Emis                                      | sion Factors                                                                                                                                                                                                | 20                                           |
|      | 3.1<br>3.2<br>3.3                         | Source 2Coke Pushing Operations Source 3Quench Towers with Clean H <sub>2</sub> O; Source                                                                                                                   | 22<br>25                                     |
|      | 3.4<br>3.5<br>3.6                         | Source 5Topside Leaks                                                                                                                                                                                       | 27<br>29<br>31                               |
|      | 3.7<br>3.8<br>3.9<br>3.10<br>3.11<br>3.12 | New Combustion Stack Source 7Coke Handling Source 8Coal Preheat Source 9Coal Preparation Source 10Coal Storage Source 11Pipeline Charging Source 12Redler Conveyor Charging Source 13Hot-Larry-Car Charging | 31<br>32<br>33<br>34<br>35<br>35<br>37<br>39 |
|      | Pofo                                      | rongos                                                                                                                                                                                                      | 41                                           |

#### TABLE OF CONTENTS (continued)

|          |                                                                                  | Page     |
|----------|----------------------------------------------------------------------------------|----------|
| 4.0 Cost | Methodology                                                                      | 44       |
|          | Standards and Assumptions<br>Procedure for Cost Estimating                       | 44<br>49 |
| Refe     | erences                                                                          | 57       |
| 5.0 Cont | crol Systems                                                                     | 58       |
| 5.1      | General Specifications                                                           | 58       |
| Refe     | erences                                                                          | 81       |
| 6.0 Batt | tery Data Base (Dataset 3)                                                       | 82       |
| Refe     | erences                                                                          | 96       |
| 7.0 Mode | el Formulation                                                                   | 97       |
| 8.0 Resu | ılts                                                                             | 101      |
| Appendix | A - Example Computer Printouts for Cost<br>Functions Presently Included in Model | A-1      |
| Appendix | B - Example Computer Printout for Cost Update Program                            | B-1      |

#### FIGURES

| No. | •                                                                                   | Page |
|-----|-------------------------------------------------------------------------------------|------|
| 1   | Schematic Diagram of Overall Computing Scheme                                       | 5    |
| 2   | Card Format for Emission FactorsDataset 1                                           | 8    |
| 3   | Card Format for Cost Function Coefficients and Efficiency                           | 12   |
| 4   | Card Formats for Datasets 4, 5, and 6                                               | 14   |
| 5   | Sample Output Report of Coke Oven Optimization Model                                | 15   |
| 6   | Format for the Control Cards                                                        | 16   |
| 7   | Relationship of Emission Sources in a Typical<br>Byproduct Coke Plant               | 45   |
| 8   | Flow Plan and Material Balance of a Representative<br>Coke Byproduct Recovery Plant | 46   |
| 9   | Worksheet for Estimating Capital Costs                                              | 52   |
| 10  | Cross Section of Coke-side Shed                                                     | 62   |
| 11  | Conventional Quench Tower Baffles                                                   | 65   |
| 12  | Simplified Pictorial Diagram of a Dry Quenching System                              | 66   |
| 13  | Door Hood Arrangement                                                               | 68   |
| 14  | Dust-suppression Spray System at Car Dump                                           | 73   |
| 15  | Permanently Installed Spray Stanchions Around<br>Perimeter of Coal Piles            | 75   |
| 16  | Total Particulate Emissions from Coke Quenching                                     | 77   |
| 17  | Coke Plant Wastewater Treatment System                                              | 80   |

#### FIGURES (continued)

| No. |                                                                                 | Page |
|-----|---------------------------------------------------------------------------------|------|
| 18  | Battery Data Card Format                                                        | 90   |
| 19  | Capital Cost of Control Options for Wet Coal Charging                           | 106  |
| 20  | Cost Per Pound of Particulate Removal for Control Options for Wet Coal Charging | 107  |
| 21  | Total Annualized Cost as a Function of Overall Efficiency                       | 114  |

#### TABLES

| No. |                                                                  | Page |
|-----|------------------------------------------------------------------|------|
| 1   | Summary of Uncontrolled Emission Factors                         | 7    |
| 2   | Control Options by Source                                        | 10   |
| 3   | Relationships of Size and Other Parameters, Coke<br>Oven Battery | 48   |
| 4   | Typical Items Included in Investment Costs for Control Devices   | 51   |
| 5   | Annualized Operating Cost Factors for Control Systems            | 54   |
| 6   | Rates Used in the Cost Model                                     | 55   |
| 7   | Coke Plants Using Process Water for Quenching                    | 79   |
| 8   | Coke Oven Model - Battery Data Base                              | 84   |
| 9   | Plant ID Codes                                                   | 91   |
| 10  | Total Capital and Annualized Costs for Control<br>Options        | 103  |
| 11  | Total Uncontrolled Emissions                                     | 105  |
| 12  | Model Output for Baseline of No Control                          | 108  |
| 13  | Model Output for 95 Percent Overall Particulate Reduction        | 109  |
| 14  | Model Output for 80 Percent Overall Particulate Reduction        | 111  |
| 15  | Model Output for 85 Percent Overall Particulate Reduction        | 112  |
| 16  | Model Output for 90 Percent Overall Particulate Reduction        | 113  |
| A-1 | Cost Function Coefficients for Control Options                   | A-2  |

#### ACKNOWLEDGEMENT

Many individuals have been helpful in developing this report. Mr. Andrew Trenholm of Office of Air Quality, Planning and Standards (OAQPS) provided invaluable assistance in developing emission factor and control efficiency estimates and in reviewing control system specifications. Mr. John Pratapas of Economics Analysis Branch (EAB) reviewed the approach used for calculating capital and annualized cost estimates. The assistance of the Project Officer, Dr. Larry Twidwell, is also gratefully acknowledged.

Mr. William Kemner served as Project Director, and Dr. Terrance Briggs as Project Manager. Ms. Beth Fairbairn and Mr. Steve Tomes of PEDCo did the computer programming and Mr. Gary Saunders conducted much of the data development effort.

#### SECTION 1

#### INTRODUCTION

The characterization and control of coke oven emissions have been of intense interest and study for some 10 years. Originally, focus was directed primarily toward visible emissions because most coke oven emissions are fugitive in nature. additional data became available on the complex chemical structure and health effects of both the particulate and gaseous emissions, however, attention shifted to the organic components contained therein. Because the environmental control of the coke oven process and its associated operations requires the evaluation of numerous options and because technology and new information are continually developing, the Environmental Protection Agency (EPA) contracted PEDCo Environmental, Inc., to develop a computer model that could calculate the cost and emission levels for any combination of controls. Even more important, the model should be able to calculate the lowest-cost mix of controls for the various sources to meet a given overall level of emissions. The model should also answer the reverse problem by calculating the lowest overall emission level that can be attained at a given total cost. The model may be used to optimize, i.e., minimize, either annualized cost or total capital costs.

Intended to be an engineering tool for evaluating various control strategies on a continuing basis, the model is designed to operate on the EPA computer at the National Computer Center in Research Triangle Park, North Carolina. It accommodates data on four key pollutants: particulate matter (defined herein as front-half--Method 5), benzene soluble organics (BSO), benzo-apyrene (BaP), and benzene. The model includes the coke oven

battery, the coal storage and preparation steps, the quenching and coke screening operations, and the byproduct plant. It addresses both conventional batteries and preheated coal batteries. Various studies are under way to characterize the emissions from the byproduct operations, but the model now contains very limited information regarding this source.

The model utilizes three distinct types of data, referred to as "datasets." Each dataset can be updated and manipulated separately. Dataset 1 covers the uncontrolled emission rates for each pollutant, Dataset 2, capital and annualized costs and the control efficiency of various controls, and Dataset 3, the population of the coke oven batteries (e.g., battery height, capacity, and number of ovens).

Although a precise definition of the coke oven population was not a prime objective of this project, the definition provided by Dataset 3 is sufficiently comprehensive to be representative of both the metallurgical and foundry coke segments of the industry.

The model includes an auxiliary computer program that can update costs to account for such factors as inflation, changing utility rates, and changing labor costs.

The reader of this report is assumed to have a relatively comprehensive knowledge of coking operations and the concomitant emission problems and control schemes. The references at the end of this section are recommended reading for those who desire such background material.

#### REFERENCES FOR SECTION 1

- 1. Draft of Standards Support and Environmental Impact State-ment, Volume I: Proposed National Emission Standards By-product Coke Oven Wet-coal Charging and Topside Leaks. U.S. Environmental Protection Agency, Research Triangle Park, North Carolina. June 1978.
- 2. Arthur D. Little, Inc. Steel and the Environment. A Cost Impact Analysis. May 1975.
- 3. Kemner, W., et al. Control of Emissions from Dry Coal Charging at Coke Batteries. Prepared for U.S. EPA under Contract 68-02-2603, Task 28, January 1979.
- 4. Technical Guidance for Control of Industrial Process Fugitive Particulate Emissions. EPA-450/3-77-010. March 1977.
- 5. Barnes, T.M., H.W. Lownie, Jr., and J. Varga. Summary Report on Control of Coke Oven Emissions to the American Iron and Steel Institute. Batelle Columbus Laboratories. December 31, 1973.

#### SECTION 2

#### MODEL STRUCTURE

As shown in Figure 1, the coke model has four essential elements:

- 1. The data management element reads the required information, determines the mode of operation, and translates the input data into the proper format for the optimization element.
- 2. The optimization element calculates the lowest cost for achieving a given level of emissions or the lowest level of emissions that can be achieved at a given cost. Note that optimization is on one pollutant at a time; however, the results for other pollutants are calculated in each case.
- 3. The deterministic mode element calculates specific cases without regard to optimization, e.g., the total cost to industry for putting ESP's on all coke oven stacks.
- 4. The print element prints the output reports in the desired format.

It will be noted that the optimization model is built around the standard 80-column punched card. Although this approach is somewhat outdated by today's computer technology standards, it offers certain advantages at this stage of model development. The main advantage is that the user can actually keep the data cards in his posession and keep track of the data as they are changed. The entire system can later be converted to real time operation from a remote terminal.



Figure 1. Schematic diagram of overall computing scheme.

#### 2.1 DATA REQUIREMENTS

#### Emission Factors (Dataset 1)

Fourteen air emission sources and four pollutants are presently considered. A total of 64 uncontrolled emission factors are required because two sources have alternate factors. The emission factors used are shown in Table 1. It should be noted that data for coke oven emissions are very sparse for most sources and the factors shown in Table 1 represent only a starting point used for the purpose of proceeding with model development. The reliability of many of the factors is very low and is discussed more fully in Section 3. The term "uncontrolled" is not easily defined in the case of coke ovens, but for purposes of this project, it represents the conditions existing at the majority of batteries in the late 1960's. Although this definition still leaves much room for judgment, it eliminates totally uncontrolled conditions that could prevail if a coking process were operated with no concern whatever for emissions.

Because estimates of many of the emission factors have been based on limited data, provision has been made for easy updating to accommodate future refinements by use of the card format shown in Figure 2. The 16 cards (i.e., 14 sources, 2 with alternate factors) representing the emission factors comprise Dataset 1 input to the model (Figure 1). These emission factor cards also contain the space to write the name for the source for convenient identification. (The alphabetic names for new sources and control options that appear on the computer output must be entered into the computer using cards identified in the users' manual.) The derivation of emission factors is discussed in detail in Section 3.

#### Cost Functions (Dataset 2)

All cost functions are expressed as  $Y = AX^B$ , where Y is annualized cost in dollars and X is tons of coke capacity. Total capital cost is also provided as a function  $Y = AX^B$ . Capital and

### TABLE 1. SUMMARY OF UNCONTROLLED EMISSION FACTORS (1b/ton of coal)

(See Section 3 for discussion of each factor)

| Source   |                                     |                    | Polluta               | int                    |                      |
|----------|-------------------------------------|--------------------|-----------------------|------------------------|----------------------|
| code No. | Emission source                     | TSPª               | <b>B</b> S0           | BaP                    | Benzene              |
| 1        | Larry car charge (wet coal)         | 1.0 <sup>b</sup>   | 1.15                  | 0.002 <sup>c</sup>     | 0.5                  |
| 2        | Coke pushing <sup>e</sup>           | 2.0 <sup>f</sup>   | 0.08 <sup>f</sup>     | 4×10 <sup>-5 f</sup>   | 0.006 <sup>f</sup>   |
| 3        | Quench, clean water                 | 1.7 <sup>f,g</sup> | 1.7x10 <sup>-3b</sup> | 1.4x10 <sup>-4b</sup>  | 3x10 <sup>-5 c</sup> |
| 4        | Doors                               | 0.46               | 0.5 <sup>b</sup>      | 0.003 <sup>b</sup>     | 0.02 <sup>b</sup>    |
| 5        | Topside leaks                       | 0.2 <sup>d</sup>   | 0.25 d                | 0.001 d                | 0.005 <sup>d</sup>   |
| 6        | Combustion stack (old) <sup>h</sup> | 1.3 <sup>d</sup>   | 0.006 <sup>d</sup>    | 6x10 <sup>-5 d</sup>   | 0 <sup>d</sup>       |
| 7        | Coke handling                       | 1.0 <sup>d</sup>   | Od                    | 0 d                    | od                   |
| ' ક      | Coal preheat                        | 7.05 <sup>b</sup>  | 1.05 <sup>b</sup>     | 3.9x10 <sup>-4 c</sup> | 0.014 <sup>c</sup>   |
| 9        | Coal preparation                    | υ.5 <sup>d</sup>   | o <sup>d</sup>        | o <sup>d</sup>         | o <sup>d</sup>       |
| 10       | Coal storage                        | 0.15 <sup>d</sup>  | 0 d                   | 0 d                    | Od                   |
| 13       | Pipeline charge (dry coal)          | 0.016 <sup>d</sup> | 0.019 <sup>d</sup>    | 3.5x10 <sup>-5 d</sup> | 0.008 <sup>d</sup>   |
| 12       | Redler conveyor (dry coal)          | 0.010 d            | 0.006 d               | 1.1x10 <sup>-5</sup> d | 0.0049 d             |
| 13       | Hot larry car (dry coal)            | 0.017 <sup>d</sup> | 0.019 <sup>d</sup>    | 3.5x10 <sup>-5 d</sup> | 0.008 <sup>d</sup>   |
| 14       | Byproduct                           | o <sup>c</sup>     | 0.3 <sup>c</sup>      | o <sup>c</sup>         | 0.2 <sup>c</sup>     |
| 15 -     | Combustion stack (new) h            | 0.13 <sup>d</sup>  | 6x10 <sup>-4 d</sup>  | 6x10 <sup>-6 d</sup>   | o d                  |
| 16       | Quench, dirty water                 | 3.2 <sup>f,g</sup> | 6.4x10 <sup>-3b</sup> | 3.1x10 <sup>-4b</sup>  | 2.6×10 <sup>-4</sup> |

<sup>&</sup>lt;sup>a</sup> All TSP values derived from the front half of Method 5 or an equivalent method.

 $<sup>^{\</sup>mbox{\scriptsize b}}$  One or more tests conducted, moderate confidence in accuracy.

<sup>&</sup>lt;sup>C</sup> Test data available but inconclusive, low confidence in accuracy.

<sup>&</sup>lt;sup>d</sup> No test data available. Emission factor calculated from other sources, very low confidence in accuracy.

 $<sup>^{\</sup>mathbf{e}}$  For dry coal charging, lower values may be appropriate (see text).

 $<sup>^{</sup>m f}$  Several tests conducted, good correlation between data, good confidence in numerical accuracy.

 $<sup>^{9}</sup>$  Two cases are considered: "clean" water and "dirty" water. Existing data are used to select the appropriate emission factor.

h Emissions depend on the maintenance history and age of the battery. The term "new" designates a well maintained battery with effective patching and maintenance programs. The term "old" designates the opposite. The population is subdivided on the assumption that batteries under 15 years old are new and over 15 years old are old. This approach is questionable, but in the absence of site-specific data, it is a starting point. Sensitivity analysis can be used to investigate the significance of various assumptions.



Figure 2. Card format for emission factors--Dataset 1.

annualized cost functions are provided for both new and retrofit installations.

The cost function matrix has the following dimensions:

Sources - Maximum of 20 (16 presently assigned)

Alternative control options--A maximum of nine per source, including uncontrolled

Table 2 lists the control options by source. The efficiencies shown are initial estimates only and are subject to The model provides for up to eight total control options for each source, but only a total of 41 are considered at this time. Although control efficiency is discrete in some cases and continuous in others, discrete levels have been used in the model for simplification. The total control option matrix capability is therefore 20 x 9, which produces a potential maximum of 180 "A" values and 180 "B" values for annualized and capital cost for both new and retrofit installations. Figure 3 shows the card format for A and B values. These cards are introduced as Dataset 2 (see Figure 1). As new control options are added or existing ones modified, the appropriate cost functions are added to Dataset 2. Most of the cost functions now in the model were calculated by PEDCo, using a separate computer program that is not part of the optimization model for coking facilities. calculation of costs is discussed in detail in Sections 4 and 5.

#### Coke Oven Battery Data (Dataset 3)

This dataset contains the coke capacity, physical size, and existing control equipment information for each individual battery. It is described more fully in Section 6.

#### Cost Update Program

The cost update program is separate from the optimization model. Its purpose is to enable the user to recalculate annualized and capital costs by using different utility rates, labor rates, and overhead factors and accounting for inflation.

TABLE 2. CONTROL OPTIONS BY SOURCE

|               |                          | Control        |                                                                                       | 7                    | TSP,                 | <del></del>          |                      | BSO,<br>iciency      |                      | % off                | RaP,<br>iciency      |                      |                      | Benzene,<br>fficienc | ·                    |                                                                         |
|---------------|--------------------------|----------------|---------------------------------------------------------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------------------------------------------------------|
| Source<br>No. | Source                   | No.a           | Control option                                                                        |                      |                      |                      | capture              |                      | total                | capture              | removal              | total                |                      |                      |                      | Remarks                                                                 |
| 01            | Larry car<br>charging    | 01<br>02       | Uncontrolled<br>Modified car,<br>steam, boot                                          | 80.0                 | NA                   | 0.0<br>80.0          | 80.0                 | NA                   | 0.0<br>80.0          | 80.0                 | NA                   | 0.0<br>80.0          | 80.0                 | NA                   | 0.0                  |                                                                         |
|               |                          | 03             | New car, steam,<br>boot                                                               | 99.0                 | NA                   | 99.0                 |                                                                         |
|               |                          | 04             | Retrofit second<br>main + option<br>03                                                | 99.5                 | NA                   | 99.5                 |                                                                         |
| 02            | Coke pushing             | 01<br>02       | Uncontrolled<br>Controlled<br>coking                                                  | 60.0                 | NA                   | 0.0<br>60.0          | 19.0 h avg.<br>coking time vs.<br>17.5 h base.<br>Not appl. for         |
|               |                          | 03             | Shed + ESP 95%                                                                        | 90.0                 | 95.0                 | 85.5                 | 90.0                 | 50.0                 | 45.0                 | 90.0                 | 50.0                 | 45.0                 | 90.0                 | 50.0                 | 45.0                 | foundry batteries Shed options include 90% capture of one- half of door |
|               |                          | 04             | Shed + scrubber                                                                       |                      | 95.0                 | 85.5                 | 90.0                 | 55.0                 | 49.5                 | 90.0                 | 55.0                 | 49.5                 | 90.0                 | 55.0                 | 49.5                 | emissions                                                               |
|               |                          | 05<br>06<br>07 | 95% - 30 in.AF<br>Enclosed car<br>Shed + ESP 99%<br>Shed + scrubber<br>99% - 50 in.AF | 90.0<br>90.0<br>90.0 | 98.0<br>99.0<br>99.0 | 88.2<br>89.1<br>89.1 | 90.0<br>90.0<br>90.0 | 60.0<br>50.0<br>60.0 | 54.0<br>45.0<br>54.0 | 90.0<br>90.0<br>90.0 | 40.0<br>50.0<br>60.0 | 36.0<br>45.0<br>54.0 | 90.0<br>90.0<br>90.0 | 60.0<br>50.0<br>60.0 | 54.0<br>45.0<br>54.0 |                                                                         |
| 03            | Quenching clean<br>water | 01<br>02<br>03 | Uncontrolled<br>Baffles<br>Diverted flow<br>baffles                                   | 100.0                | 70.0<br>90.0         | 0.0<br>70.0<br>90.0  | 100.0<br>100.0       | 70.0<br>90.0         | 0.0<br>70.0<br>90.0  | 100.0                | 70.0<br>90.0         | 0.0<br>70.0<br>90.0  | 100.0<br>100.0       | 0.0<br>0.0           | 0.0<br>0.0<br>0.0    |                                                                         |
|               |                          | 04             | Dry quenching                                                                         | 100.0                | 98.0                 | 98.0                 | 100.0                | 99.0                 | 99.0                 | 100.0                | 99.0                 | 99.0                 | 100.0                | 99.0                 | 99.0                 | Includes option<br>5 on source 2                                        |
| 04            | Doors                    | 01<br>02       | Uncontrolled<br>Cleaning and<br>maintenance                                           | 60.0                 | NA.                  | 0.0                  | 60.0                 | NA                   | 0.0                  | 60.0                 | NA.                  | 0.0<br>60.0          | 60.0                 | NA                   | 0.0<br>60.0          |                                                                         |
|               |                          | 03             | High pressure                                                                         | 80.0                 | NA                   | 80.0                 | Includes door                                                           |
|               |                          | 04             | Door hood and<br>scrubber -<br>30 in. AP +                                            | 75.0                 | 95.0                 | 88.5                 | 75.0                 | 60.0                 | 78.0                 | 75.0                 | 60.0                 | 78.0                 | 75.0                 | 50.0                 | 65.0                 | Option 6 is same<br>as 4 but 1 side<br>only                             |
|               |                          | 05             | 02<br>Door hood +<br>scrubber -<br>60 in. AP +<br>02                                  | 85.0                 | 98.0                 | 93.3                 | 85.0                 | 70.0                 | 83.8                 | 85.0                 | 70.0                 | 83.8                 | 85.0                 | 60.0                 | 72.0                 | Option 7 is same<br>as 5 but 1 side<br>only                             |
| 05            | Topside                  | 01<br>02       | Uncontrolled<br>Luting and                                                            | 90.0                 | NA                   | 0.0<br>90.0          | 90.0                 | NA                   | 0.0                  | 90.0                 | NA.                  | 0.0<br>90.0          | 90.0                 | NA                   | 0.0<br>90.0          | Not applicable to pipeline                                              |
|               |                          | 03             | cleaning<br>Luting and                                                                | 95.0                 | NA                   | 95.0                 | 95.0                 | NA                   | 95.0                 | 95.0                 | NA                   | 95.0                 | 95.0                 | NA.                  | 95.0                 | batteries that                                                          |
|               |                          | 04             | maintenance<br>New lids and<br>castings + 02                                          | 97.0                 | NA                   | 97.0                 | separately                                                              |

NA - Not applicable.

TABLE 2 (continued)

| Source |                            | Control option             | i                                                                                | \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \ | TSP,<br>efficienc | : y                                 | % eff                            | BSO,<br>iciency              |                                     | % eff                            | BaP,<br>iciency              |                                     |                                  | enzene,<br>ficienc           | y                                   |                               |
|--------|----------------------------|----------------------------|----------------------------------------------------------------------------------|-----------------------------------------|-------------------|-------------------------------------|----------------------------------|------------------------------|-------------------------------------|----------------------------------|------------------------------|-------------------------------------|----------------------------------|------------------------------|-------------------------------------|-------------------------------|
| No.    | Source                     | No.a                       | Control option                                                                   | capture                                 | removal           | total                               | capture                          | removal                      | total                               |                                  |                              | total                               | capture                          |                              |                                     | Remarks                       |
| 06     | Combustion stack<br>-old   | 01<br>02<br>03<br>04<br>05 | Uncontrolled<br>Oven patching<br>Dry ESP 90%<br>Dry ESP 98%<br>Baghouse 98%      | 100.0<br>100.0<br>100.0<br>100.0        | 90.0<br>98.0      | 0.0<br>80.0<br>90.0<br>98.0<br>98.0 | 100.0<br>100.0<br>100.0<br>100.0 | 80.0<br>50.0<br>60.0<br>50.0 | 0.0<br>80.0<br>50.0<br>60.0<br>50.0 | 100.0<br>100.0<br>100.0<br>100.0 | 80.0<br>50.0<br>60.0<br>50.0 | 0.0<br>80.0<br>50.0<br>60.0<br>50.0 | 100.0<br>100.0<br>100.0<br>100.0 | 80.0<br>50.0<br>60.0<br>50.0 | 0.0<br>80.0<br>50.0<br>60.0<br>50.0 |                               |
| 07     | Coke handling              | 01<br>02                   | Uncontrolled<br>Enclosures +<br>baghouse 997                                     | 90.0                                    | 99.0              | 0.0<br>89.1                         | NA.                              | NA                           | 0.0<br>NA                           | NA NA                            | NA NA                        | 0.0<br>NA                           | NA                               | NA                           | 0.0<br>NA                           |                               |
| 80     | Coal preheater             | 01<br>02<br>03<br>04<br>05 | Uncontrolled<br>Scrubber-15 in.<br>Dry ESP 95%<br>Scrubber-30 in.<br>Dry ESP 99% | 100.0<br>100.0<br>100.0<br>100.0        | 95.0<br>98.0      | 0.0<br>95.0<br>95.0<br>98.0<br>99.0 | 100.0<br>100.0<br>100.0<br>100.0 | 60.0<br>45.0<br>60.0<br>50.0 | 0.0<br>60.0<br>45.0<br>60.0<br>50.0 | 100.0<br>100.0<br>100.0<br>100.0 | 60.0<br>45.0<br>60.0<br>50.0 | 0.0<br>60.0<br>45.0<br>60.0<br>50.0 | 100.0<br>100.0<br>100.0<br>100.0 | 50.0<br>45.0<br>50.0<br>50.0 | 0.0<br>50.0<br>45.0<br>50.0<br>50.0 |                               |
| 09     | Coal preparation           | 01<br>02                   | Uncontrolled<br>Enclosure and<br>baghouse-99%                                    | 98.0                                    | 99.0              | 0.0<br>97.0                         | NA<br>NA                         | NA<br>NA                     | NA<br>NA                            | NA<br>NA                         | NA<br>NA                     | NA<br>NA                            | NA<br>NA                         | NA<br>NA                     | NA<br>NA                            |                               |
| 10     | Coal storage<br>yard       | 01<br>02<br>03             | Uncontrolled<br>Water truck<br>Unload sprays &<br>water truck                    | 0.0<br>60.0<br>75.0                     | NA<br>NA<br>NA    | 0.0<br>60.0<br>75.0                 | NA<br>NA<br>NA                   | NA<br>NA<br>NA               | NA<br>NA<br>NA                      | NA<br>NA<br>NA                   | NA<br>NA<br>NA               | NA<br>NA<br>NA                      | NA<br>NA<br>NA                   | NA<br>NA<br>NA               | NA<br>NA<br>NA                      |                               |
|        |                            | 04                         | Coal pile<br>sprays                                                              | 90.0                                    | NA NA             | 90.0                                | NA                               | NA                           | NA                                  | NA                               | NA                           | NA                                  | NA NA                            | NA NA                        | NA                                  |                               |
| 11     | Pipeline charg-<br>ing     | 01<br>02                   | Uncontrolled<br>Operation and<br>maintenance                                     | 90.0                                    | NA                | 0.0<br>99.0                         | 99.0                             | NA                           | 0.0<br>99.0                         | 99.0                             | NA NA                        | 0.0<br>99.0                         | 99.0                             | NA                           | 0.0<br>99.0                         |                               |
| 12     | Redler charging            | 01<br>02                   | Uncontrolled<br>Operation and<br>maintenance                                     | 99.0                                    | NA.               | 0.0<br>99.0                         | 99.0                             | NA                           | 0.0<br>99.0                         | 99.0                             | NA.                          | 0.0<br>99.0                         | 99.0                             | NA.                          | 0.0<br>99.0                         |                               |
| 13     | Hot larry car<br>charging  | 01<br>02                   | Uncontrolled<br>Operation and<br>maintenance                                     | 99.0                                    | NA                | 0.0<br>99.0                         | 99.0                             | NA                           | 0.0<br>99.0                         | 99.0                             | NA                           | 0.0<br>99.0                         | 99.0                             | NA                           | 0.0<br>99.0                         |                               |
| 14     | Byproduct<br>plant         | 01<br>02                   | Uncontrolled<br>Maintenance                                                      | NA                                      | NA.               | 0.0<br>NA                           | 80.0                             | NA.                          | 0.0                                 | 80.0                             | NA.                          | 0.0<br>80.0                         | 80.0                             | NA.                          | 0.0                                 |                               |
| 15     | Combustion stack<br>-new   | 01<br>02                   | Uncontrolled<br>Oven patching                                                    | 80.0                                    | NA NA             | 0.0<br>80.0                         | 80.0                             | NA                           | 0.0<br>80.0                         | 80.0                             | NA.                          | 0.0<br>80.0                         | 80.0                             | NA.                          | 0.0                                 |                               |
| 16     | Quenching -<br>dirty water | 01<br>02<br>03<br>04       | Uncontrolled<br>Baffles<br>Clean water + 02<br>Diverted flow<br>baffles +        | 100.0<br>100.0<br>100.0                 | 85.0              | 0.0<br>70.0<br>85.0<br>95.0         | 100.0<br>100.0<br>100.0          | 35.0<br>75.0<br>85.0         | 0.0<br>35.0<br>75.0<br>85.0         | 100.0<br>100.0<br>100.0          | 80.0                         | 0.0<br>35.0<br>80.0<br>85.0         | 100.0<br>100.0<br>100.0          | 0.0<br>75.0<br>75.0          | 0.0<br>0.0<br>75.0<br>75.0          |                               |
|        |                            | 05                         | clean water<br>Dry quenching <sup>c</sup>                                        | NA                                      | 99.0              | 99.0                                | NA                               | 99.0                         | 99.0                                | NA                               | 99.0                         | 99.0                                | NA                               | 99.0                         | 99.0                                | Includes options on Source 2. |

These code numbers are also used to indicate existing control in columns 21-60 of the load card for data set 3 shown in Figure 4.

b Options 6 and 7 are used by the model when a shed is selected to avoid double accounting for capture of coke-side door emissions.

C The cost for this option in this case also includes the cost of water treatment for the water that otherwise would be used for quenching.



Figure 3. Card format for cost function coefficients and efficiency.

The input to the cost update program consists of the capital cost and utility and labor requirements for three sizes of batteries (or plants as applicable). A rate card contains the various rates and factors that can vary. The program will extend rates, calculate overhead expenses and capital recovery, and finally, calculate regression equations for capital and annualized cost as a function of capacity, according to equations of the form:

$$Y = AX^B$$

This program is run only if new rates are needed. Figure 4 shows the card formats for the Datasets 4, 5, and 6 which are the input data to the cost update program. Appendix B contains an example run of the cost update program. The output cards of the cost update program represent the input cost function cards for the optimization model.

#### 2.2 CONTROL CARDS

The model has three basic modes of operation:

- 1. Deterministic
- 2. Optimized cost, fixed emissions
- 3. Optimized emissions, fixed cost

The control cards serve as the interface between the user's "questions" and the model structure.

Mode 1 is the most straightforward. Its objective is to calculate the cost of a given strategy without regard to optimization. A control efficiency and a control option are specified for each source (or for one source). Figure 5 shows the output. The only reason the quenching and combustion stack sources appear twice is because two different uncontrolled emission factors are used for each in the model as described earlier. The costs and emissions for these sources are additive. Figure 6 shows the formats of the control cards. (Not all columns of the Number 1 card are necessary for Mode 1.)



Figure 4. Card formats for Datasets 4, 5, and 6.

#### COKE OVEN OPTIMIZATION

B NOT IN OPTIMIZATION

OBJECTIVE COST CALCULATION, NO OPTIMIZATION 75.1 % OVERALL EFFICIENCY POLLUTANT: BAP BASE YEAR 1979 BASELINE: COST ADJUSTED FOR EXISTING CONTROLS

|                         |              | (LBS/T  | CONTRO<br>ON COAL |       | MISSION | S<br>(TONS/ | rear)     |            |                       | CONTROLLED COST (MILLION BOLLARS) |            |  |
|-------------------------|--------------|---------|-------------------|-------|---------|-------------|-----------|------------|-----------------------|-----------------------------------|------------|--|
| SOURCE                  | TSP          | BSO     | BAP               | BEN   | TSP     | BSO         | BAP       | BEN        | CONTROL SCHEME        | CAPITAL                           | ANNUALIZED |  |
| LARRY CAR CHARGING      | .01          | .0110   | .0000             | .0050 | 496     | 545         | 0         | 248        | NEW CAR, STEAM, BOOT  | 303.6                             | 164.7      |  |
| COKE PUSHING            | <b>02.00</b> | .0800   | .0000             | .0060 | 109463  | 4378        | 2         | 328        | UNCONTROLLED          | .0                                | .0         |  |
| QUENCHING - CLEAN WATER | 81.70        | .0017   | .0001             | .0000 | 41049   | 41          | 3         | 0          | UNCONTROLLED          | .0                                | .0         |  |
| DOORS                   | # .16        | .2000   | .0012             | .0080 | 8757    | 10946       | 65        | 437        | CLEANING & MAINT.     | .0                                | 173.8      |  |
| TOPSIDE                 | .02          | .0250   | .0001             | .0005 | 1094    | 1368        | 5         | 27         | LUTING & CLEANING     | .0                                | 57.2       |  |
| COMBUSTION STACK - OLD  | #1.30        | .0060   | .0001             | .0000 | 48840   | 225         | 2         | 0          | UNCONTROLLED          | .0                                | .0         |  |
| COKE HANDLING           | <b>01.00</b> | .0000   | .0000             | .0000 | 54731   | 0           | 0         | 0          | UNCONTROLLED          | .0                                | .0         |  |
| COAL PREHEATER          | 87.05        | 1.0500  | .0004             | .0140 | 35925   | 5350        | 1         | 71         | UNCONTROLLEB          | .0                                | .0         |  |
| COAL PREPARATION        | ● .50        | .0000   | .0000             | .0000 | 27365   | 0           | 0         | 0          | UNCONTROLLED          | .0                                | .0         |  |
| COAL STORAGE YARD       | W .15        | .0000   | .0000             | .0000 | 8209    | 0           | 0         | 0          | UNCONTROLLED          | .0                                | .0         |  |
| PIPELINE CHARGING       | .02          | .0190   | .0000             | .0080 | 49      | 59          | 0         | 24         | UNCONTROLLED          | .0                                | .0         |  |
| REDLER CHARGING         | .01          | .0060   | .0000             | .0049 | 13      | 7           | 0         | 6          | UNCONTROLLED          | .0                                | .0         |  |
| MOT LARRY CAR CHARGING  | ● .02        | .0190   | .0000             | .0080 | 10      | 12          | 0         | 5          | UNCONTROLLED          | .0                                | .0         |  |
| BY-PRODUCTS PLANT       | .00          | .0600   | .0000             | .0400 | 0       | 3283        | 0         | 2189       | MAINTENANCE           | .0                                | 17.4       |  |
| COMBUSTION STACK - NEW  | ■ .13        | .0006   | .0000             | .0000 | 2231    | 10          | 0         | 0          | UNCONTROLLED          | .0                                | .0         |  |
| QUENCHING - DIRTY WATER | ● .48        | .0016   | .0001             | .0001 | 14680   | 48          | 1         | 1          | CLEAN WATER & BAFFLES | 278.1                             | 168.1      |  |
| TOTAL UNC.              | 0 1          | 2.235   | .006              | 181   | 508238  | 122149      | 337       | 37577      |                       |                                   |            |  |
| EXISTING CONTROL        | 7.3          | 2.233   | .006              | .000  | 388402  |             | 254       | 17656      |                       | 297.5                             | 197.1      |  |
| EXISTING EFFICIENCY     |              |         |                   |       | 23.6    | 37.7        | 24.6      | 53.0       |                       | 277.3                             | 177.1      |  |
| DASELINE CONTROL        |              |         |                   |       | 508237  |             | 337       | 37577      |                       | .0                                | .0         |  |
| BASELINE EFFICIENCY     |              |         |                   |       | .0      | .0          | .0        | .0         |                       | . •                               | . •        |  |
| TOTAL CONTROLLED        |              |         |                   |       | 352920  | 26278       | B4        | 3341       |                       | 581.7                             | 581.2      |  |
| PERCENT CONTROLLED      |              |         |                   |       | 30.6    |             | 75.1      | 91.1       |                       | 301.7                             | 301.2      |  |
| TENDENT CONTROLLED      |              |         |                   |       | 30.0    | 70.5        | , , , , , | ,          |                       |                                   |            |  |
| EXISTI                  |              | TOTAL   | UILNE 1           | 2221  | ,       | TOTAL BA    |           | NEW<br>S 0 | TOTAL OVENS O         |                                   |            |  |
| TOTAL BATTERIES         | 216          | IGINE   | DVENS 1           | 2221  | ,       | UINC BE     | CK1E      | 3 V        | IDINE UVENJ V         |                                   |            |  |
| TOTAL CAPACITY          | 109494       | 267 TO  | NS COAL           |       | 1       | TOTAL CA    | PACITY    |            | O TONS COAL           |                                   |            |  |
|                         | 76623        | 1000 TO | NS COKE           |       |         |             |           |            | O TONS COKE           |                                   |            |  |

Figure 5. Sample output report of coke oven optimization model.

#### 

4 MODE: 1=DETERMINISTIC; B BASE YEAR OF DATA

2=MINIMUM ANNUALIZED COST, RESTRICT EMISSIONS
3=MINIMUM EMISSIONS, RESTRICT ANNUALIZED COST
4=MINIMUM CAPITAL COST, RESTRICT EMISSIONS
5=MINIMUM EMISSIONS, RESTRICT CAPITAL COST

#### CONTROL CARD 2



1) THROUGH (20) FIXED CONTROL OPTION FOR EMISSION SOURCES 1 THROUGH 20

#### CONTROL CARD 3



- 1 BASELINE CODE
- (2) THROUGH (21) BASELINE CONTROL OPTION FOR SOURCES 1 THROUGH 20 RESPECTIVELY

Figure 6. Format for the control cards.

In Mode 2, the optimization routine is called into use. The user first specifies the sources that are to be fixed at a control level (i.e., as in Mode 1); the remaining sources will be optimized. A total control level expressed as percent efficiency for a given pollutant is specified and the lowest cost (either capital or annualized) combination that will meet that level is calculated. If some sources are specified to be uncontrolled and not included in the optimization, the user must take these emissions into account by lowering the total control efficiency. Otherwise, an infeasible solution can result because the remaining controlled sources may not meet the total allowable level. The output is similar to that in Figure 5. A symbol (#) appears by each source that was fixed, and these do not enter into the optimization.

In both modes the number two control card can be used to set a control level for any given source equal to uncontrolled, in which case the cost is zero. In effect, this enables certain sources to be removed from the optimization analysis.

The base year specified on Control Card 1 is merely a reference date to be printed on the output report. If, for example, the run is a projection for 1985 and projected new batteries have been added to the battery data base, the base year will be 1985. Presently, no new batteries are included in the battery data base and the base year is 1979.

Mode 3 is the opposite of Mode 2. A cost limitation (either capital or annualized) is entered, and the optimization program determines the lowest emission rate for the specified pollutant. It is probably necessary to run Mode 1 and Mode 2 before running Mode 3 to have some idea of what constitutes a reasonable total cost.

The comments portion of the printout will contain messages indicating unreasonable conditions, input errors, or solutions beyond the bounds of the program. For example, if the emission restriction (Mode 2) cannot be achieved by the control systems

available to the program, the printout will give a message to that effect.

Control Card 3 controls the baseline used for most calculations. The baseline codes are as follows:

| Code | Baseline                                                                                                                                                                                                                                                                                   |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Uncontrolled; i.e., all costs are calculated with no regard to existing controls or existing State Implementation Plan (SIP) requirements.                                                                                                                                                 |
| 2    | Existing control; costs are adjusted by not counting the cost of controls already installed.                                                                                                                                                                                               |
| 3    | SIP; i.e., costs are adjusted by not counting the cost of controls required by SIP whether they are actually installed or not. No account is taken for existing controls which exceed SIP requirements.                                                                                    |
| 4    | Average SIP; this option is the same as Option 3, but for convenience of data preparation only one SIP definition is used and applied to every plant; whereas as in Option 3 the specific SIP must be entered on each battery card depending on the state in which the battery is located. |
| 5    | This is a combination of 2 and 3. The costs are adjusted by not counting the cost of controls already installed or the cost of controls required by SIP whichever is greater.                                                                                                              |
| 6    | Average SIP and existing; this option is the same as Option 5 but only one SIP definition is used and applied to every plant.                                                                                                                                                              |

Note that no entries are required beyond field one for the baseline Options 1 and 2 because no distinction is made between sources in these options. For baseline Options 3 and 5, the control option codes corresponding to SIP must be entered on the coke oven battery data cards rather than using Control Card 3.

Currently the model does not attempt to account for costs of tear-out. If, for example, the optimum alternative differs from that already installed in a given plant, no tear-out costs are included. Nor does the model address incremental costs for moving

from one control scheme to a higher-cost scheme. If, for example, existing control is a shed and scrubber and the optimum alternative is a shed and ESP, the full cost of the optimum alternative is included rather than just the cost of the ESP.

In Figure 5, line 1 displays the total weighted uncontrolled emissions expressed in lbs/ton of coal and total tons. Lines 2 and 3 display the total tons of emissions and percent efficiency respectively for existing controls. Lines 4 and 5 display the total tons of emissions and percent efficiency respectively for the baseline controls which are in the optimum solution. Lines 6 and 7 display the total tons of emissions and percent efficiency for the optimum solution. The costs shown on line 2 represent the value of existing controls. The costs shown on line 4 represent the cost of the controls contained in the optimum solution which are already installed or assumed to be installed as designated by the baseline.

The costs shown on line 6 represent the cost of the controls in the optimum solution which exceed the baseline control level. The sum of these two lines therefore represents the total value of the controls in the solution.

#### SECTION 3

#### EMISSION FACTORS

For the 16 emission sources identified, emission factors were developed for each of the four pollutants: particulates, BSO, BaP, and benzene. To the extent possible, results from emission tests were used to establish these emission factors. When explicit data were unavailable, an attempt was made to derive an emission rate from other available information and assumptions. If an emission factor could not be developed by either of these approaches, an engineering estimate was made as accurately as possible. All the matrix numbers had to be provided (even if estimated) so that initial runs of the model could be completed. As new data become available, the values in the matrix (Table 1) can be updated to reflect more accurately the nature of emissions from byproduct coke ovens. If estimates have a broad confidence range, model runs can be made for various values to examine sensitivity.

Data were obtained from PEDCo's files, EPA reports, articles in various journals, and emission test reports. A literature search provided considerable information on coke oven emission sources and methods of reducing emissions; however, little actual test data or emission factors were available in comparison with the total number of potential emission sources. When actual numerical values were reported, they were used. The level of precision used in reported results was retained herein, but this does not imply that the value is precise when used as a general emission factor for all batteries. This is not surprising because it is difficult to sample these emission sources, most of which are fugitive in nature. Nevertheless, the literature did

provide considerable information on control techniques and what could be expected from them.

Because most emissions from the 16 sources are fugitive in nature, they do not lend themselves readily to Method 5 sampling techniques. Two commonly used techniques are single-point sampling with a Method 5 sampling train and sampling a fugitive plume with a High-Vol sampler. Sampling is sometimes attempted at isokinetic conditions, even though it often is difficult to achieve. Generally sample results are merely corrected to reflect isokinetic sampling. These methodologies appear to yield as reliable data as can be expected.

Using test data to develop emission factors requires several assumptions. The first is that the results of the test are representative of the emissions found at the entire battery (e.g., charging emissions do not differ significantly from one oven to another if the same sampling procedures are followed). In the case of door emission tests, one notable exception would be if test results were obtained on only one door; the fact that the one door tested was leaking does not indicate that all the doors leak. Another exception would be the sampling results from a single green push; one push does not necessarily represent all the coke pushes of that battery.

The second assumption is that the emissions from the battery tested are representative of the industry as a whole. Although it would be ideal to have test results from various plants for confirmation, it must be assumed that the values from the test used are the best currently available and are representative of battery emissions within the entire industry.

Several problems are unresolved. One is the matter of equivalency of two different sampling methodologies. Although some difference can be expected between the results of the Method 5 train and the Hi-Vol method (depending on the parameters of the emission stream sampled), they are similar enough to be considered equivalent methods. Another problem is the definition of TSP. Generally, a reference to a particulate catch means the

front half of a Method 5 train (or its equivalent). Total suspended particulate (or TSP), however, implies both the front half and back half of a Method 5 train particulate catch (or the equivalent). Because the definition of particulate matter is generally a function of temperature, emission factors derived on the basis of a front-half catch and those derived from both a front- and back-half catch would differ significantly. definition would tend to affect the predicted control efficiencies, particularly when discussing TSP. It is likely that many of the control devices on the optional control systems would not "see" the particulate captured in the back half of the sampling train because it would be gaseous in form as it passed through the control device and would condense some time later. another problem concerns the different methods used to test the various organic species to determine emission rates. Nevertheless, the variability between samples appears to have a greater effect than the differences in sensitivities and biases of the analytical methods because the different analytical methods are believed to yield essentially the same results.

The nature and magnitude of the biases on test results for each of the identified emission sources are discussed. Also discussed are the specific assumptions and references used to arrive at each emission factor. The general assumptions and comments just covered apply to nearly all the emission sources. For ease in predicting control efficiencies, particulate emission factors are given either as the front-half or equivalent value.

#### 3.1 SOURCE 1--LARRY CAR CHARGING (WET COAL)

#### Particulates

A baseline of emissions must be established when referring to larry car charging. For the purposes of discussion, "uncontrolled" is assumed to mean that a minimal amount of control is applied during charging and minimal effort is expended to reduce emissions from wet coal charging. (This generally reflects the situation in the industry about 10 years ago.) On this premise, an uncontrolled emission factor of 1 lb particulate/ton of coal charged has been estimated by EPA in the draft Standard Support and Environmental Impact Statement (SSEIS) for charging. It is not known whether this number represents what could be expected to be captured by the total Method 5 train or just the front-half particulate catch. If this factor represents only the front half, actual total uncontrolled particulate is likely to be 1.96 lb/ton coal because it is assumed that the ratio of particles collected in the front half and back half of a train are about equal. This was the case in the testing of an experimental larry car during a joint project between the American Iron and Steel Institute (AISI) and the EPA. The back half proved to be approximately 0.96 of the mass of the front half.

The results of four tests revealed a controlled emission rate of 0.017 lb/ton coal (front half) for stage charging. It should be noted that these four tests were conducted anisokinetically, then corrected to reflect isokinetic conditions. A total particulate factor, calculated on the basis of the front-half catch, is 0.033 lb/ton coal. 2,3

A standard Wilputte larry car tested as part of the AISI/EPA program was found to have an emission level of 0.14 lb/ton coal (front-half, 10-test average) when tested by the same method as the experimental larry car. The test values could be in error as much as an order of magnitude, but less error is expected because of the sample size of ten. These latter tests were used as a guide in assigning a control efficiency for conventional stage charging.

#### Benzene Soluble Organics

The AISI/EPA particulate test revealed that BSO comprised 57 percent of the front-half catch and 60 percent of the back-half, and it can generally be assumed that BSO comprises 55 to 60 percent of the total particulate catch without significant

chance of error. 1,2,4 With the use of the BSO/particulate ratios above, the calculated emission factors from the AISI/EPA test are as follows:

Uncontrolled 1.1 lb/ton coal
AISI/EPA larry car 0.019 lb/ton coal

#### Benzo-a-Pyrene

A significant variation in the levels of BaP was detected in the samples tested. Although the number of samples tested was not statistically large enough to derive a highly reliable emission factor, the AISI samples in which BaP was observed indicated an "average" of 2 x 10<sup>-5</sup> lb/ton coal.<sup>1,2</sup> An emission factor for BaP of 0.002 lb/ton coal has been calculated on the basis of ambient data and the ratio of BaP and BSO.<sup>1,4,5</sup> This latter value is considered more reliable because of the large sample size and is used in the model.

#### Benzene

No explicit data on the magnitude of benzene emissions were found in the references noted above; however, an emission factor was calculated on the basis of the results of two tests of cokeside shed emissions and a test on coke-oven door emissions. 6-9

These tests indicate that benzene emissions are equivalent to 25 to 50 percent of the front-half particulate emission rate. (This is not to say benzene is captured in the front-half.) Assuming an emission rate for benzene equivalent to 50 percent of the front-half catch, the following emission factors are calculated:

Uncontrolled 0.5 lb/ton coal

AISI/EPA larry car 0.008 lb/ton coal
These rates are highly variable for door emissions, however, and
using these estimates to derive an emission factor for charging
emissions provides a low-confidence estimate.

#### 3.2 SOURCE 2--COKE PUSHING OPERATIONS

#### Particulates

Several data sources were available to use in the calculation of an emission factor for coke pushing operations.  $^{6,7,8,10,11}$ The magnitude of pushing emissions varies, depending on test methodology and "greenness" of the push. The sources used were a report on tests using Hi-Vol samplers suspended in the plume and one on sampling isokinetically. 12-14 Results from tests using a Method 5 sampling train or sampling the stack of a cokeside shed appeared somewhat low and biased (a certain amount of dilution could bias the results on the low side). The two coke pushing operations tested were in close agreement. One of the batteries used an enclosed push car with hooding to capture the particulate. 13-15 The enclosed car was controlled by a scrubber; and a standard Method 5 sampling train was used to sample the scrubber inlet and outlet. A Hi-Vol sampler was placed above the hood to capture the fugitive emissions. The total emission rate of particulate was estimated by combining the results of the Hi-Vol sampler and the scrubber inlet.

The emission rate from pushes that were moderately green averaged approximately 2.0 lb particulate/ton coal. Because little condensible matter was found in proportion to the particulate captured (i.e., back-half vs. front-half), a separate emission factor for a front-half and back-half TSP need not be calculated. For clean pushes an emission factor of 0.7 lb particulate/ton coal appears appropriate.

The significance of the clean push emission factor involves two separate items. First, the use of dry coal charging appears to provide uniform coking while reducing coking time. When running this optimization model it may be appropriate for the coke pushing emission factor to be selected on the basis of whether wet coal or dry coal methods are employed. Second, an often discussed alternative or control option is to increase the average coking time and establish some minimum coking time before

pushing takes place. Such an option might reduce emissions in cases where battery operators otherwise would cut short the coking time, but indications are that the greenness of the push is more closely related to the oven characteristics and heating integrity than to coking time. <sup>12</sup> Although further study is needed, it is conceivable that some ovens in need of maintenance could not thoroughly "coke-out" the coal charge regardless of coking time. The greenness of the push after some specified minimum coking time might therefore be used as an indicator that an oven needs maintenance.

#### Benzene Soluble Organics

An emission factor for BSO as condensibles in the coke pushing operations was based on a test of the hooded coke car used in the Ford/Koppers demonstration project. 13,14 The emission rate was determined to be 0.08 lb BSO/ton coal for pushes that were moderately green, and a BSO emission factor of 0.03 lb BSO/ton coal was determined for clean pushes. These rates are based on the assumption that most of the condensible material captured is BSO. Although tests of coke-side sheds indicate that the amount of BSO generated is somewhat higher than these rates, it is believed that other factors (such as door leaks) biased the results. 4,6,7,8 Results of another test for coke pushing emissions, which will be available in several months, may confirm the stated emission factors.

#### Benzo-a-Pyrene

Emissions of BaP were detected by sampling with cyclohexane and analyzing by GC/MS. An emission rate of  $4 \times 10^{-5}$  lb BaP/ton coal was established. It should be noted that the emissions of BaP were not reduced by passage through the venturi scrubber used at the plant, even though the emission level is very low. Although door leaks tend to interfere with the results, tests of the coke-side shed confirm the relatively low level of emissions.  $^{4,6,7,8}$ 

#### Benzene

The tests of the Ford/Koppers scrubber-controlled quench car showed a small amount of benzene released during coke pushing operations. The average of six tests was 0.008 lb  ${\rm C_6H_6/ton}$  coal (actually benzene and homologues). The actual rate of benzene only is expected to be in the range of 0.006 to 0.008 lb/ton coal. For clean pushes, benzene emissions could be as low as 0.0005 lb/ton, but they are expected to average 0.001 lb/ton coal. These factors are based on tests of the Ford/Koppers system.  $^{13,14}$ 

3.3 SOURCE 3--QUENCH TOWERS WITH CLEAN H<sub>2</sub>O; SOURCE 16--WITHOUT CLEAN H<sub>2</sub>O

#### Particulates

Considerable data have become available on the magnitude and nature of coke quench tower emissions. 17-21 Besides the interest in the various types of control options, considerable interest has developed in quenching with clean versus dirty water. Emission factors for quenching with both clean and dirty water are discussed.

The development of an emission factor for particulate from quench towers is based primarily on the work of Edlund et al., 18,19 and on a data comparison from a recent report by Midwest Research Institute (MRI). The results of the various tests vary widely; however, a data comparison was made primarily between Method 5 tests and Hi-Vol sampling techniques. It is difficult to maintain isokinetic sampling rates in the gas stream because the moisture content varies widely, but isokinetic sampling may be maintained "over the average." The difference in quench tower designs and other variables make it difficult to quantify the bias. Uncontrolled emissions from quench towers refer to the use of natural draft towers without baffles or other control devices to capture the emissions from wet quenching. The following particulate emission factors (to be used in the model) are based

on Edlund et al.: $^{18,19}$  1.7 lb particulate/ton coal (clean  $^{\rm H}_2{}^{\rm O}$ ) 3.2 lb particulate/ton coal (dirty H<sub>2</sub>O). These numbers are slightly higher than the averages from MRI, but they are well documented and fall well within the range of variation observed for the various tests. There appears to be no direct correlation between particulate emissions from quenching and the greenness of a push.

## Benzene Soluble Organics

Many of the tests performed were also for the purpose of quantifying emissions of organic materials. Again, variations were similar to those observed for particulate emissions. example, some test results from "clean" water quenches showed higher emission rates than results from "dirty" water quenches. 20 The emission factors shown below, however, are based on recent test 17,21 results from a quench tower where the concentration of BSO in the gas stream was found to be about 1000 times less than the concentration of particulate matter during clean water quenches. Furthermore, dirty water quenches showed a concentration of BSO four times higher than that found in clean water quenches. 17,21 Based on these ratios, the emission factors for BSO to be used in the model are:

1.7 x  $10^{-3}$  lb BSO/ton coal (clean  $\mathrm{H}_2\mathrm{O}$ ) 6.4 x  $10^{-3}$  lb BSO/ton coal (dirty  $\mathrm{H}_2\mathrm{O}$ )

## Benzo-a-Pyrene

Several tests made of the emissions of BaP showed some variations, but the absolute variation was small. The appearance of these variations may be due to the low levels of BaP present, which approach the detection limits of the sampling methodology. On the other hand, the data appeared to be consistent with the particulate data because dirty water quenches had about twice the level of pollutant emission as clean water quenches. 17,21 following emission factors were indicated:

1.4 x  $10^{-4}$  lb BaP/ton coal (clean  $H_2O$ )
3.1 x  $10^{-4}$  lb BaP/ton coal (dirty  $H_2O$ )

Emissions of BaP, which are not found in every sample, appear to be related somewhat to the greenness of the push.

#### Benzene

Data are limited regarding benzene emissions. Only two grab samples are available, and the data do not explicitly indicate whether these samples were taken during clean or dirty water quenches. Although the reliability of these values is extremely poor, they are used with the assumption that a higher level of benzene will be found in dirty water quenches:

 $3 \times 10^{-5}$  lb/ton coal (clean  $H_2O$ ) 2.6  $\times 10^{-4}$  lb/ton coal (dirty  $H_2O$ )

#### 3.4 SOURCE 4--DOOR EMISSIONS

## Particulates

Considerable data are available on emissions from doors during the coking cycle. 6-10,22,23 It can normally be assumed that any door emissions that occur will be greatest during and immediately after oven charging. 5,9 One test indicated that most emissions occur within the first 8 hours of the coking cycle. a discussion of door emissions, it is difficult to define "uncontrolled" emissions. Two methods might be used to determine uncontrolled emissions. First, uncontrolled door emissions may be defined as emissions occurring because of failure to clean the oven doors thoroughly after each cycle. Such failure results in improperly sealed doors. Uncontrolled emissions might also result from failure to immediately remove damaged and warped doors from service for repairs at the end of a cycle. A second definition of uncontrolled emissions might be based on the number of doors leaking (e.g., no more than 40%). Thus, "uncontrolled" is not necessarily a measure of effort, but rather of results. A series of two tests were performed using an enclosure hood around the door and a Hi-Vol sampler. An emission rate of 0.025 to 0.04 lb/ton coal can be calculated from these data, 9 but this value

seems low in view of available data from tests of coke-side sheds and door emission sheds with prototype gas cleaning equipment. 23 These latter data produced an uncontrolled emission factor of 0.4 lb/ton coal, which will be used in the model. This factor is based on the assumption that emissions from both sides of the battery are essentially the same and that approximately 40 percent of the doors leak when "uncontrolled."

## Benzene Soluble Organics

A considerable portion of the door emissions is BSO; the BSO may actually exceed the front-half particulate emissions. The data from most of the tests indicate a factor of 0.25 lb BSO/ton coal may be appropriate for emissions from the doors on one side of a battery. This value is supported both by tests on a single door and by tests of continuous background emissions in a coke-side shed. The values obtained from the shed are more significant in that they consider the average of all leaks from one side of the battery. Again, it is assumed that the emission rates from both sides of the battery are equal, resulting in a total emission rate of 0.5 lb BSO/ton coal.

## Benzo-a-Pyrene

Based on most of the data available from stack tests and comments from EPA, an BaP emission factor of 0.003 lb BaP/ton coal appears appropriate, although some data indicate a lower level of emissions is possible.  $^{1,4,6-9}$  If 40 percent of the coke battery doors are leaking, it is believed that the emissions from doors would be equal to or greater than that for "uncontrolled" larry car charging.

## Benzene

Emissions of benzene can represent a significant portion of the condensible particulate matter during the initial portion of the coking cycle, but these emissions appear to decrease rapidly over the first 2 to 3 hours. Averaged over the entire coking cycle and from several ovens, benzene emissions appear large at first, then decrease considerably in magnitude. <sup>9</sup> The results from both an individual door test and tests of a coke-side shed indicate an emission factor of 0.01 lb  $C_6H_6$ /ton coal for one side of the battery. <sup>6-9</sup> For both sides (assuming both emit equally) the emission factor is 0.02 lb  $C_6H_6$ /ton coal.

#### 3.5 SOURCE 5--TOPSIDE LEAKS

Although no test data are available for reliable quantification of topside emissions, it is likely that they are similar in composition to door emissions. It is also likely that such emissions are less than half those from door leaks. 1,4 The rationale for this assumption is that the area through which topside emissions may escape is roughly half that of the doors, oven pressure is generally lower, and the emissions are more easily controlled (e.g., by luting or replacement of warped lids). Emissions occur primarily from charging lids and standpipe caps. 1,4 The following emission factors will be used for the model:

Particulate 0.2 lb/ton coal
BSO 0.25 lb/ton coal
BaP 0.001 lb/ton coal
Benzene 0.005 lb/ton coal

These uncontrolled emission factors are based on the assumption that a minimal amount of manpower is devoted to topside maintenance.

3.6 SOURCE 6--OLD COMBUSTION STACK; SOURCE 15--NEW COMBUSTION STACK

## Particulates

Although data are available for calculating emission factors for combustion stacks, they are currently considered confidential and cannot be used in this study. Enough information was provided to estimate the level of emissions, however. When use of the data is permitted, they should be incorporated into the matrix of emission factors.

An average particulate emission factor for all combustion stacks is estimated to be 0.7 lb/ton coal. The range of values is wide, however, with old battery stacks showing higher emissions because of oven cracks and subsequent leakage into the flues. Nevertheless, the values are expected to be well within the range of 1.3 lb/ton coal for the old stack and 0.13 lb/ton coal for the new stack. The values are known to be about an order of magnitude apart.

## Benzene Soluble Organics

Emissions of BSO are expected to be small from combustion stacks: 0.006 lb/ton coal from old stacks, and 0.0006 lb/ton coal from new stacks.

## Benzo-a-Pyrene, Benzene

Emissions of BaP range from  $6 \times 10^{-5}$  lb/ton coal from old stacks to  $6 \times 10^{-6}$  lb/ton coal from new stacks. Very little benzene is believed to be emitted because it is probably combusted. Therefore, benzene emissions are considered to be zero.

## 3.7 SOURCE 7--COKE HANDLING

#### Particulates

No explicit data were found on which to quantify emissions from coke handling, but it is assumed that the coke is cooled sufficiently to prevent hydrocarbon emissions. Further, it is expected that larger particulate matter from sizing and screening operations would contribute greatly to the total particulate mass. Therefore, an emission factor of 1.0 lb/ton coal has been estimated. This value is twice that found for coal preparation.

#### 3.8 SOURCE 8--COAL PREHEAT

#### Particulates

Data from several tests of coal preheating systems are used to indicate the level of emissions to be expected from the preheater. 25,26 More data are needed to improve the data base and should be added as they become available.

The particulate emission factor is based on the results of two series of emissions tests in which production rates and drying temperatures varied. Particulate emissions appear to relate primarily to the rate of coal drying, and there is a slight correlation between emissions and gas temperatures. An average uncontrolled emission rate was developed over six test runs with the various production/temperature combinations and was determined to be 7.05 lb particulate/ton coal. The relationship between production rate and emissions/ton coal appears to be inversely proportional. "Uncontrolled emissions" refers to the use of no control device after initial separation of the preheated coal from the gas stream.

#### Benzene Soluble Organics

The level of organic emissions (taken as BSO) was also tested during the particulate tests and average emissions were determined to be 1.05 lb/ton coal for six tests. More recent data indicate a slightly higher emission rate, but this factor will be used until more information becomes available. Although not enough data are available to define accurately the relationship between gas temperature and the rate of organic emissions, the emission rate appears to increase exponentially with higher production rates. Organic emissions also appear to increase with gas temperature.

## Benzo-a-Pyrene

Recent data on BaP emissions indicate that emissions from the preheater scrubber outlet are approximately 2.0 x  $10^{-4}\ 1b$ 

BaP/ton coal.  $^{26}$  Based on an assumed scrubber efficiency of 50 percent for BaP, the uncontrolled emission rate would be 3.9 x  $10^{-4}$  lb BaP/ton coal. Although the absolute variation of the emission rates tends to be small, the percentage variation is quite high.

## Benzene

Data concerning benzene emissions are confusing at best.  $^{26}$  Recent data indicate benzene emissions to be higher at the scrubber outlet than at the inlet, which would indicate a "negative" efficiency for benzene scrubbing, but no other source for benzene has been found that would clarify this. The outlet values will be used to determine an emission factor for the model. These values should be considered of low reliability, however, until the results are explained. One possible explanation is that the data sets might be reversed. Because insufficient data were provided to calculate a benzene emission factor directly, the known ratio between benzene and BSO had to be used. Based on the ratio between benzene and BSO hydrocarbons from this test (factor = 0.0130 x BSO), benzene emissions are estimated to be 0.014 lb  $C_6H_6/\text{ton coal}$ .

#### 3.9 SOURCE 9--COAL PREPARATION

## Particulates

Coal preparation is generally defined as the crushing, screening, and sizing of coal prior to charging of the ovens. Included are the emissions from handling and material transfer points. Coal dust is the predominant particulate emission. Normally no hydrocarbons are emitted because insufficient heat is supplied to cause any carbonization of the coal. It is assumed that the coal has been washed and separated from the burden material at the coal mine prior to its transport to the coke battery. Two sources indicate that with minimal controls (i.e.

hooding, water sprays), the expected particulate level is approximately 0.5 lb particulate/ton coal. This includes all transfer and crushing points. 27,28 Uncontrolled emissions have the potential to be as high as 10 lb particulate/ton coal.

## 3.10 SOURCE 10--COAL STORAGE

#### Particulates

The only pollutant of concern from this source is particulate because it is assumed that the other pollutants either do not occur or are below detectable levels. The amount of particulate emissions from coal storage piles is usually a function of the size and shape of the storage pile, the wind speed, and the amount of material movement on the pile. 29 Thus a site-specific value would need to be assigned for the storage pile at each plant. PEDCo has performed several surveys on emissions from storage piles. 29,30 Based on the assumption that the storage pile will be relatively inactive and that wind erosion is the primary cause of fugitive emissions, the emission factor would be 0.10 to 0.15 lb/ton coal. If loading onto the storage pile, traffic around the pile, and loadout of material are considered, the emission factor would be in the range of 0.4 to 0.5 lb/ton coal. The former value will be used in the model. If the total activity on or around the piles is applicable, the higher value can be used.

#### 3.11 SOURCE 11--PIPELINE CHARGING (PREHEATED DRY COAL)

#### Particulates

Theoretically, emissions from pipeline charging could be near zero. In most cases, however, theoretical and actual values differ significantly at the batteries observed to date. In most pipeline charging operations, both operation and maintenance practices and engineering design factors have contributed to the level of emissions that have been observed. 16

No formal tests have been made of emissions caused by pipeline charging. The charging hole lids and standpipe elbow covers are the major emission points. (Door leaks can also be a significant source of pollutants; these are discussed under Source 4.) The emission factors presented below are arrived at by relating a mass/time emission factor to visible emissions, using a mass/time constant of 0.0015 lb particulate/second of observed emissions. This factor is based on observation of the AISI/EPA larry car emissions. 2,3,16 Based on this factor, an average of approximately 0.55 lb/charge was observed at the "worst case" battery. It is assumed here that the characteristics of charging emissions are the same as those observed for the AISI/EPA larry car charg-If the quantity of coal charged to the oven is assumed to be equivalent to 35 tons of wet coal, the emission factor is calculated to be 0.016 lb/ton coal. 16 This value would be equivalent to that captured by the front half of a Method 5 sampling train. A total particulate emission factor of 0.031 lb/ton coal can be developed for a front and back half if it is assumed that characteristics are the same as those for the emissions of the AISI/EPA larry car charging. The assumptions used for calculating emission factors for dry coal charging are broad, and the results derived must be considered tenuous. The computations show that emission factors for pipeline charging and the AISI/EPA larry car charging are comparable. Informal observations also show that pushes from batteries using dry coal tend to be cleaner (i.e., the coal is more completely "coked") than those from batteries using wet coal. This factor has not been quantified in the model.

## Benzene Soluble Organics

If it is assumed that emission characteristics are similar for BSO from both wet and dry coal charging and that BSO comprises 60 percent of the total particulate emissions, the calculated emission factor would be 0.019 lb BSO/ton coal. The assumed value of 60 percent is slightly higher than that observed

at the AISI/EPA test; however, the preheated coal may produce more volatile organic compounds during charging because of its higher temperature.

## Benzo-a-Pyrene

Because both the emission factors and the assumed emission characteristics are similar to those of the AISI/EPA larry car, the BaP/BSO ratio for wet coal charging is used to derive an emission factor of  $3.5 \times 10^{-5}$  lb BaP/ton coal.

#### Benzene

For similar reasons, the benzene emission factor to be used in the model is 0.008 lb  $C_6H_6/{\rm ton}$  coal.

#### 3.12 SOURCE 12--REDLER CONVEYOR (PREHEATED COAL) CHARGING

No formal emission tests have been performed on the Redler conveyor system. An emission factor has been developed, however, on the basis of several visible emission observations. Based on seconds of observed emissions, the emission factor is estimated to be 0.35 lb/ton charge. Assuming an equivalent 35 tons of wet coal/charge, the emission factor is 0.01 lb/ton coal. 16

Particulate emissions were observed primarily from the charging ports and from the conveyor/chute junction. Emissions from the charging ports are not expected to differ significantly from those produced by the AISI/EPA larry car. <sup>16</sup> Emissions from the conveyor/chute junction, however, appear to be mostly relatively large coal particles which could increase the weight of total particulate emissions. <sup>16</sup> These emissions should not increase the emission factor above 0.03 lb/ton coal.

An emission factor based on total particulate emissions (front- and back-half) is expected to range from 0.0148 to 0.0168 lb/ton coal, primarily because of condensible emissions from the charging ports. (This is assuming that  $\sim 1/2$  of the total emissions are from the charging ports, that the back-half emissions

would be 96 percent of the mass of the front-half, and that the total of any other emission sources is added.)

## Benzene Soluble Organics

Emissions of BSO are expected to be less than those from pipeline and larry-car charging because the ratio of BSO to total front-half and back-half particulate is lower. The change in this ratio is due to the relative short periods of visible emissions that have been observed from the charging ports where the BSO is assumed to originate. Charging port emissions represent 0.0098 lb/ton (estimated) of particulate; if 60 percent of the particulate fraction is assumed to be due to BSO, emissions are calculated to be 0.006 lb BSO/ton coal.

## Benzo-a-Pyrene

Because of the small quantity of BSO emitted, emissions of BaP are expected to be less than half that expected for the worst case for wet-coal larry car charging, or 0.0005 lb BaP/ton coal; and they could average as low as  $1.1 \times 10^{-5}$  lb BaP/ton coal. The latter value will be used in the model because it is believed to be more representative of actual emissions.

#### Benzene

Emissions of benzene are difficult to quantify. Based on the assumption that benzene emissions originate from the charging port and that the emission factor is 25 percent of that for total particulate emissions from the charging port (0.0098), the emission factor becomes 0.0025 lb  $C_6H_6/\text{ton coal}$ . At 50 percent of the total particulate from the charging port, the emission factor becomes 0.0049 lb  $C_6H_6/\text{ton coal}$ . This higher value will be used in the model.

The preceding emission factors are only estimates; there are no test data to substantiate them. Dry coal charging should improve the level of pushing emissions because of the greater number of "clean" pushes resulting from more complete coking; it

should also provide the potential for lower levels of charging emissions.

## 3.13 SOURCE 13--HOT-LARRY-CAR CHARGING (PREHEATED DRY COAL)

Although no data are available on which to base emission factors for any of the four pollutants, these emissions are not expected to be significantly higher than those from wet-coal charging. Because the equipment will be new, the hot larry car should perform as well or better than the AISI/EPA larry car. <sup>16</sup> Therefore, the following emission factors are to be used:

- 0.017 lb particulate/ton coal
- 0.033 lb total particulate/ton coal
- 0.019 lb BSO/ton coal
- $3.5 \times 10^{-5}$  lb BaP/ton coal
- 0.008 lb  $C_6H_6/\text{ton coal}$

The value for total particulate emissions is not used in the model, but it is shown for general information.

#### 3.14 SOURCE 14--BYPRODUCT RECOVERY PLANTS

It is difficult to quantify the emissions from coke-oven by-product-recovery plants. The main difficulties are the numerous fugitive sources and the significant differences in the type of byproduct recovery practiced from plant to plant. The approach taken to quantification of emissions was to select a plant that appeared to be representative of a majority of the byproduct recovery plants. Because not all sources of emissions have been tested and reliable emission data are not readily available, the estimates presented here are rough, and represent only the summation of estimates for various areas in a typical byproduct plant. The pront-half Method 5 particulate emissions are believed to be zero.

The primary pollutants appear to be organics, but no useful data are available except on benzene. During processing, the coke-oven gas is cooled to a sufficiently low temperature to

condense the various hydrocarbons that make up the benzene soluble organics. Therefore only those with relatively high volatility should be emitted as fugitive emissions. Based on test data and estimates, benzene emission are calculated to be at least 0.2 lb/ton coal. It is possible some constituents of BSO (such as naphthalene) are emitted at very high levels and contribute at least 0.3 lb BSO/ton coal. This value will be used in the model until more specific data become available. Although BaP levels are unknown, they should be relatively low because of the condensation effect mentioned above. For the purposes of the model, BaP emissions will be considered zero.

#### REFERENCES FOR SECTION 3

- 1. Draft of Standards Support Environmental Impact Statement. Volume 1: Proposed National Emission Standards, Byproduct Coke Oven Wet-Coal Charging and Topside Leaks. Emission Standards and Engineering Division, U.S. EPA, Research Triangle Park, N.C. June 1978.
- 2. Coke Oven Charging Emission Control Test Program. Vol. 1. EPA-650/2-74-062. July 1974.
- 3. Coke Oven Charging Emission Control Test Program--Supplemental Observations. EPA-650/2-74-062A. September 1974.
- 4. Trenholm, A.R., and L.L. Beck. Assessment of Hazardous Organic Emissions from Slot Type Coke Oven Batteries. ESED, U.S. EPA, March 16, 1978.
- 5. Personal communication from A.R. Trenholm, ESED, U.S. EPA, March 21, 1979.
- 6. Source Testing of a Stationary Coke Side Enclosure. EPA-340/1-76-012. 1976.
- 7. Great Lakes Carbon Corporation. Study of Coke Side Coke-Oven Emissions. EPA-340/1-77-014A. Vol. 1: Source Testing of a Stationary Coke Side Enclosure. St. Louis, Missouri. 1977.
- 8. Great Lakes Carbon Corporation. Study of Coke Side Coke-Oven Emissions. EPA-340/1-77-014A. Vol. 2: Source Testing of a Stationary Coke Side Enclosure. St. Louis, Missouri.
- 9. Sampling and Analysis of Coke Oven Door Emissions. EPA-600/2-77-213. 1977.
- 10. Paley, L.R., and R.J. Powals. Assessment of the Fugitive Particulate Emissions Escaping from a Coke-Side Shed. (Date and Publication Date Unknown).

- 11. Paley, L.R., M. Antell, V.W. Hanson, and R.J. Powals. Were the Measured Emission Rates Representative of a Coke Battery's Typical Emissions? Presented at the Joint APCA/Source Evaluation Society Meeting, Dayton, Ohio, September 19, 1975.
- 12. Jacko, R.B., D.W. Neuerdorf, and J.R. Blandford. Purdue University, West Lafayette, Indiana 47907. Plume Parameter and Particulate Emissions from the Byproduct Coke Oven Pushing Operation. Presented at the 71st APCA Conference, Houston, Texas, June 25-30, 1978. APCA No. 78-9.4.
- 13. Emissions Testing and Evaluation of Ford/Koppers Coke
  Pushing Control System. Vol. 1: Final Report. EPA-600/277-187A. 1977.
- 14. Emissions Testing and Evaluation of Ford/Koppers Coke
  Pushing Control System. Vol. 2: Appendices. EPA-600/2-77187B. 1977.
- 15. Roe, E.H., and J.D. Patton. Coke Oven Pushing Emission Control System. Journal of the Air Pollution Control Association, 25(4):379-382. April 1975.
- 16. PEDCO Environmental, Inc. Control of Emissions from Dry Coal Charging at Coke Oven Batteries. (Preliminary Draft). Prepared for U.S. EPA, IERL, OAQPS, Durham, N.C., under Contract No. 68-02-2603, Task 28. October 1978.
- 17. Dowling, M.P., J.D. Jeffry, and A.H. Laube. York Research Corporation, Stamford, Connecticut. Reduction of Quench Tower Emissions. Presented at the 71st APCA Conference, Houston, Texas, June 25-30, 1978. APCA No. 78-9.2.
- 18. Edlund, C., A.H. Laube, and J.D. Jeffry. U.S. EPA, Washington, D.C. Effects of Water Quality on Coke Quench Tower Particulate Emissions. Presented at the 70th APCA Conference, Toronto, Ontario, Canada, June 20-24, 1977. APCA No. 77-6.3.
- 19. Laube, A.H., J. Jeffry, and C. Edlund. Characterization of Pollutants Exiting Quench Towers. Presented at the 4th National Conference on Energy and the Environment, Cincinnati, Ohio, October 3-7, 1976. pp. 260-267.
- 20. Midwest Research Institute. Engineering Analysis of Emission Controls for Wet Quench Towers. Prepared for ESED, U.S. Environmental Protection Agency, Research Triangle Park, N.C., under Contract No. 68-02-2609, Task 7.

- 21. Rudolph, J.L., and C.E. Rechsteiner. Analysis of Samples from Coke Quench Tower Emissions. (Draft). Prepared by Arthur D. Little, Inc., for York Research Corporation. November 1978.
- 22. Study of Concepts for Minimizing Emissions from Coke-Oven Door Seals. EPA 650/2-75-064. 1975.
- 23. Barrett, R.E., and P.R. Webb. Effectiveness of a Wet Electrostatic Precipitator for Controlling POM Emissions from Coke Oven Door Leakage. Presented at the 71st Annual Meeting of the Air Pollution Control Association, Houston, Texas, June 25-30, 1978.
- 24. Air Pollution in the By-Product Coke Industry. Chapter II: Dust and Fume Generation in the Iron and Steel Industry. Russian Translation, MIR. 1977.
- 25. Betz Environmental Engineers. An Emission/Efficiency Evaluation of the A-5 Coke Oven Battery North Pre-Heat Bleed Venturi Scrubber System at the Aliquippa Works of the Jones and Laughlin Corporation. Pittsburgh, Pennsylvania, January 1977 and May 1977 (two tests).
- 26. York Research Corporation. Draft data from coal preheater tests at J&L Steel (Aliquippa Plant). EPA/IERL. July-August 1978.
- 27. Background Information for Standards of Performance: Coal Preparation Plants. Volume 1: Proposed Standards. EPA-450/2-74-021a. October 1974.
- 28. Inspection Manual for Enforcement of New Source Performance Standards: Coal Preparation Plants. EPA-340/1-77-022. November 1977.
- 29. Survey of Fugitive Dust from Coal Mines. EPA-908/1-78-003. February 1978.
- 30. PEDCo Environmental, Inc. Technical Guidance for Control of Industrial Process Fugitive Particulate Emissions. EPA-450/3-77-010. March 1977.
- 31. Research Triangle Institute. Environmental Assessment of Coke By-Product Recovery Plants. EPA 600/2-79-006, NTIS PB 293278/AS. 1979.

#### SECTION 4

#### COST METHODOLOGY

#### 4.1 STANDARDS AND ASSUMPTIONS

#### Cost Standards

Three basic costs have been determined: (1) total installed capital cost, (2) annual operating cost, and (3) annualized cost. These costs reflect 4th quarter 1978 dollars. The procedures for calculating installed capital costs for control equipment are presented in Section 4.2, as are the details of the capital recovery factor, the items included in the cost estimates, unit prices for labor, and other such information.

## Process Standards

The flow diagram of a typical coke plant (Figure 7) and the corresponding flow diagram of a byproduct plant (Figure 8) indicate the scope of the processes included in the model.

The following constants are used the control cost calculations:

| Useful life of battery     | 40 years                                                                      |
|----------------------------|-------------------------------------------------------------------------------|
| Days in year               | 365                                                                           |
| Hours in day               | 24                                                                            |
| Coke oven gas/ton wet coal | 11,500 ft <sup>3</sup>                                                        |
| Bulk density of wet coal   | 50 lb/ft <sup>3</sup>                                                         |
| Bulk density of dry coal   | 44 lb/ft <sup>3</sup>                                                         |
| Coking time                | 17.5 h for furnace coke<br>24.0 h for foundry coke<br>12.5 for preheated coal |



Figure 7. Relationship of emission sources in a typical byproduct coke plant.



Basis: the scale factor to Dunlop and McMichael (36) is 550

Figure 8. Flow plan and material balance of a representative coke byproduct recovery plant.

Rounded

|      | Doors                             | Self-sealing (no luted doors)                                 |  |
|------|-----------------------------------|---------------------------------------------------------------|--|
|      | Wet coal moisture                 | 6 percent                                                     |  |
|      | Excess flushing liquor            | 45 gal/ton wet coal                                           |  |
|      | Quench water requirement          | 150 gal/ton coke                                              |  |
|      | Coke/coal yield                   | 70 percent                                                    |  |
|      | Percent of gas used for underfire | 40 percent                                                    |  |
| Flow | rates:                            |                                                               |  |
|      | Enclosed hot car, acfm            | 75,000                                                        |  |
|      | Enclosed shed, acfm               | (0.67) x volume                                               |  |
|      | Volume of shed                    | 35.6 ft <sup>3</sup> /ft of length per ton of coke pushed (T) |  |
|      | Length of shed (L)                | 4 ft x (No. of ovens) + 20 ft                                 |  |
|      | Wet quenching, acfm               | 30,800 x T                                                    |  |
|      | Dry quenching, acfm               | 88 x (tons of coke/day)                                       |  |
|      | Combustion stack, acfm            | 59 x (tons of coal/day) at 450°F @ 100% excess air            |  |
|      | Coal preheater stack, acfm        | $16,900 \times (10^6 \text{ tons of coal/year})$              |  |

## Temperatures:

The exhaust temperatures used are as follows:

| Source           | Temperature, | ٥F |
|------------------|--------------|----|
| Charging         | 180          |    |
| Pushing          | 300          |    |
| Quenching        | 200          |    |
| Doors            | 120          |    |
| Topside          | 120          |    |
| Combustion stack | 450          |    |
| Coal preheater   | 180          |    |

Table 3 shows the relationship between key oven parameters used to translate capacity data into the physical size data needed to determine certain costs. For example, oven volume is the key parameter for sizing larry-car hoppers, tons of coke per push is the key parameter for sizing an enclosed hot car, and oven height is a key parameter for determining shed cost. These

TABLE 3. RELATIONSHIPS OF SIZE AND OTHER PARAMETERS, COKE OVEN BATTERY
Basis: 50 ovens

| Oven height, m               | 3       | 4       | 6       |
|------------------------------|---------|---------|---------|
| Oven volume, ft <sup>3</sup> | 540     | 720     | 1390    |
| Tons coke/push               | 8.5     | 12.0    | 25.0    |
| Without preheat              |         |         |         |
| Coking time, h               | 17.5    | 17.5    | 17.5    |
| Pushes/day                   | 68.6    | 68.6    | 68.6    |
| Tons coke/yr <sup>a</sup>    | 213,000 | 300,000 | 626,000 |
| With preheat                 |         |         |         |
| Coking time, h               | 12.5    | 12.5    | 12.5    |
| Pushes/day                   | 96      | 96      | 96      |
| Tons coke/yr <sup>a</sup>    | 296,000 | 420,000 | 876,000 |

 $<sup>^{\</sup>rm a}{\rm Directly}$  proportional to number of ovens and inversely proportional to coking time.

relationships were used in calculating the cost functions for model input. For convenience the cost equations are expressed as a function of capacity. Because most batteries fall into one of the three categories shown in Table 3, the use of capacity as the cost variable is reasonable.

Two "interactions" are recognized in the model. An interaction is defined as a control of one source that effects control of another source. The interactions are as follows:

- The use of shed control on the pushing source effects control of coke-side door emissions. The removal efficiency is the same as that for pushing emissions except that only the coke-side door emissions are captured.
- The use of dry quenching on the quenching source effects control of pushing emissions because dry quenching utilizes an enclosed hot car. The cost of dry quenching also includes the cost of water treatment at those plants that would otherwise use dirty water for quenching.

#### 4.2 PROCEDURE FOR COST ESTIMATING

Estimates for coke making systems are divided into two major categories, capital costs and annualized costs. Capital costs include such things as basic equipment and installation costs, contractors' fees, and taxes. Estimates are sometimes obtained directly from vendors and published information, or they may be based on engineering experience and judgment. Some elements of annualized costs also can be obtained from published information or other documented sources, whereas other elements (e.g., annualized overhead) must be calculated because they are dependent on capital costs.

The direct operating cost estimates in this report are based on engineering judgment unless otherwise noted. They reflect 4th quarter 1978 dollars based on the Chemical Engineering Plant Cost Index.

## Capital Costs

Capital costs represent the total investment required to install a new control system. General factors that must be considered for any type of control device are total equipment cost, piping and ductwork, insulation, painting, and the like. Table 4 lists typical items included in investment costs of air pollution control systems.

System-specific factors affecting costs must also be considered. For coke oven systems these are capture method, temperature, effect on byproduct quality (if applicable), fuel storage (if applicable), and construction interest charges. Not included are production losses due to control equipment installation and startup and research and development costs.

The worksheet presented as Figure 9 organizes all capital investment cost factors for control systems into direct and indirect costs. Factors for the components in each group are calculated either as a function of the basic cost of the equipment or material (obtained from vendor quotations) or calculated specifically from engineering estimates (e.g., cubic yards of concrete required for foundations).

#### Annualized Costs

Total annualized costs include direct operating costs, capital charges, and overhead charges.

Direct operating costs include such items as utilities (fuel oil, natural gas, electricity, process water, etc.), operating labor (both direct and supervisory), maintenance and supplies (labor and material), and solid waste disposal.

Capital charges include depreciation, interest, administrative overhead, property taxes, and insurance. Depreciation and interest are computed from the total capital cost by using a Capital Recovery Factor (CRF), the value of which depends on the

# TABLE 4. TYPICAL ITEMS INCLUDED IN INVESTMENT COSTS FOR CONTROL DEVICES

Total equipment cost, f.o.b. site

Device control instrumentation

Piping and duct work

Electrical equipment (motors, starters, conduits, etc.)

Insulation

Painting

Concrete and steel for foundations and support structures

Labor for equipment installation and materials application

Site preparation and building modifications

Construction management and supervision (contractor's fees)

Contingencies

Engineering and inspection

Startup

Freight charges for equipment and materials

Taxes and insurance

## SUMMARY

| PEDCO ENVIRONMENTAL DESCRIPTION DATE |                                               |                 |          |          |          |
|--------------------------------------|-----------------------------------------------|-----------------|----------|----------|----------|
| PROJECT NOBY                         |                                               |                 |          |          |          |
| DESCR                                | RIPTION                                       | DETAIL<br>SHEET | MATERIAL | LABOR    | TOTAL    |
| DIREC                                | T COSTS                                       |                 |          |          |          |
| 1.                                   | Equipment                                     |                 |          |          |          |
| 2.                                   | Instrumentation                               |                 |          |          |          |
| 3.                                   | Piping                                        |                 |          |          |          |
| 4.                                   | Electrical                                    |                 |          |          |          |
| 5.                                   | Foundations                                   |                 |          |          |          |
| 6.                                   | Structural                                    |                 |          |          |          |
| 7.                                   | Sitework                                      |                 |          |          |          |
| 8.                                   | Insulation                                    |                 |          |          |          |
| 9.                                   | Painting                                      |                 |          |          |          |
| 10.                                  | Buildings                                     |                 |          |          | -        |
| 11.                                  |                                               |                 |          |          |          |
| 12.                                  |                                               |                 |          |          |          |
| 15.                                  | DIRECT SUBTOTAL                               |                 |          |          |          |
|                                      |                                               |                 |          |          |          |
|                                      | ECT COSTS                                     |                 |          |          |          |
| 21.                                  | Field Overhead                                |                 |          |          |          |
| 22.                                  | Contractor's Fee                              |                 | 1        |          |          |
| 23.                                  | Engineering                                   |                 |          |          |          |
| 24.                                  | Freight                                       |                 |          |          |          |
| 25.                                  | Offsite                                       |                 |          |          |          |
| 26.                                  | Taxes (5% x material)                         |                 |          | <u> </u> |          |
| 27.                                  | Allowance For Shakedown                       |                 |          |          |          |
| 28.                                  | Spares                                        | İ               |          |          |          |
| 29.                                  |                                               |                 |          |          |          |
| 30.                                  | TAND I DECOME CULTUMORY                       |                 |          |          |          |
| 31.                                  | INDIRECT SUBTOTAL                             | ,               |          |          | <u>-</u> |
| 35.                                  | SUBTOTAL (20% of line 25)                     |                 |          |          |          |
| 41.                                  | Contingency (20% of line 35)                  |                 |          |          |          |
| 42.                                  | Interest During Construction (10% of line 35) |                 |          |          |          |
| <u></u>                              |                                               |                 |          |          |          |
| 45.                                  | TOTAL                                         |                 |          |          |          |

Figure 9. Worksheet for estimating capital costs.

operating life of the system and on the interest rate.\* For example, a CRF of 13.2 percent per year of the total capital costs is allowed for a system with a 15-year life expectancy and an interest rate of 10 percent. Property taxes and insurance are fixed together at 2.0 percent of the total capital cost per year. Administrative overhead charges are also fixed at 2.0 percent of the total capital cost.

Table 5 presents annualized operating cost factors used for control systems. Table 6 lists the specific rates used for computing the annualized costs for this particular study.

## Modified/Reconstructed Facilities

The cost of installing a control system in an existing plant that has been modified, reconstructed, or expanded (given the same exhaust gas parameters) is greater than in a new plant because of special design considerations, more complex piping requirements, etc. It is difficult to estimate additional installation costs or retrofit penalty because many things are peculiar to an individual plant. Such factors as lack of space, additional ducting, and additional engineering have been considered here.

The location of the control system is governed by the configuration of the existing equipment. Long ducting runs from ground level to the control device and to the stack are sometimes required, depending on the location of the process or stack. Placing the control equipment above ground, which often requires steel structural support, may increase costs. Other cost components that may be increased because of space restrictions and plant configuration are contractor's fees and engineering fees. Under normal conditions these fees are estimated at 15 percent and 10 percent, but they can be expected to increase to 20 percent and 15 percent for a retrofit. Fees vary according to

<sup>\*</sup> CFR =  $\frac{i(1+i)^n}{(1+i)n-1}$  where i = interest rate (decimal factor) and n = economic life of asset (No. years)

## TABLE 5. ANNUALIZED OPERATING COST FACTORS FOR CONTROL SYSTEMS

```
Direct operating costs
 Utilities:
    Fuel oil
    Coal
    Natural gas
    Electricity
 Operating labor:
    Direct and supervisory (assume X shifts/day and X days/year to calcu-
     late hours/day)
 Maintenance:
    Labor
    Materials
 Supplies:
    Labor
    Materials
 Solid waste disposal
 Water treatment costs
Capital charges
  Depreciation and interest
 Administrative overhead
  Property taxes
  Insurance
Recovery credit adjustments
```

TABLE 6. RATES USED IN THE COST MODEL

| Item                                  | 4th Quarter, 1978 dollars         | Source |
|---------------------------------------|-----------------------------------|--------|
| Water                                 | 0.161/1000 gal                    | a      |
| Electricity                           | 0.0266/kWh                        | a      |
| Steam                                 | 4.13/M 1b                         | b      |
| No. 2 oil                             | 0.42/gal                          | b      |
| Natural gas                           | 2.80/1000 ft <sup>3</sup>         | . р    |
| Coke oven gas                         | 1.39/ <b>1000</b> ft <sup>3</sup> | Ь      |
| Direct labor                          | 15.22/h                           | a      |
| Supervisory labor                     | 18.26/h                           | b      |
| Compound MR dust control              | 3.69/gal                          | С      |
| Bag cost (Lt 275°F)                   | 0.28/ft <sup>2</sup>              | d      |
| Bag cost (Gt 275°F)                   | 0.44/ft <sup>2</sup>              | d      |
| Sodium hydroxide                      | 360/ton (100% basis)              | е      |
| Polyelectrolyte                       | 2.48/gal                          | f      |
| Solid waste disposal                  | 8.25/ton                          | d      |
| Payroll overhead                      | 20% of payroll                    | d      |
| Plant overhead                        | 50% of labor and supplies         | d      |
| Interest rate                         | 10%                               | d      |
| Administration overhead               | 2% of installed cost              | d      |
| Property taxes and insurance overhead | 2% of installed cost              | d      |

<sup>&</sup>lt;sup>a</sup>TBS (Reference 2).

<sup>&</sup>lt;sup>b</sup>Calculated by PEDCo from rates in Reference 2.

<sup>&</sup>lt;sup>C</sup>PEDCo Fugitive Dust Report. EPA-450/3-77-010. Reference 3.

 $<sup>^{\</sup>rm d}$ Estimated by PEDCo.

e<sub>Reference 4.</sub>

f<sub>Reference 5.</sub>

locale, difficulty of the job, the risks involved, and current economic conditions. PEDCo estimated the fees cited.

The required additional ducting varies considerably with plant configuration, but for purposes of this study, it is estimated that approximately 50 percent more ducting is required for a retrofitted control system.

Additional labor will be required to tie the system into the process, probably at premium-time wage rates (assumed to be double the straight-time pay).

When these additional cost factors are applied, the cost of retrofit installations generally runs about 20 percent higher than the cost of new installations; specific retrofit penalties are estimated individually for each module in the PEDCo cost model. Retrofit is not feasible in some plants, and these cases must be treated on a site-specific basis. The systems which are the most difficult to deal with as retrofits are dry coal charging and dry quenching. In the case of dry coal charging, there is the additional problem of apportioning cost between pollution control and increased production capability. Dry coal charging systems are included in the model only if they already are installed; retrofits to existing batteries are not included. Dry quenching is included with the provision that it may be not feasible for all plants.

## Annualized Cost of Control Systems

The annualized costs of control systems for modified/re-constructed facilities are calculated in a manner similar to that for new facilities. The cost components that are based on capital costs are about 10 to 20 percent higher than those for new facilities.

#### REFERENCES FOR SECTION 4

- 1. Research Triangle Institute. Environmental Assessment of Coke By-Product Recovery Plants. EPA 600/2-79-006, NTIS PB 293278/AS. 1979.
- 2. Temple, Barker & Sloane. Analysis of Economic Effects of Environmental Regulations on the Integrated Iron & Steel Industry EPA-230/3-77-015B, July 1977.
- 3. Technical Guidance for Control of Industrial Process Fugitive Particulate Emissions. Prepared for EPA by PEDCo Environmental, Inc. March 1977. EPA-450/3-77-010.
- 4. Chemical Marketing Reporter, October 9, 1978.
- 5. Personal communication between W. Kemner of PEDCo and D. Pietruszka of Betz Co., Trevose, Pennsylvania, 19047. June 1978.

#### SECTION 5

#### CONTROL SYSTEMS

This section provides a general description of each control option listed in Section 2 (Table 2). Further details such as exhaust temperature, duct diameter, and flow rate for each size of battery and plant are presented in the computer printouts for each control option in Appendix A. This section also provides a summary of capital and annualized costs for each option.

The cost estimates presented are based on engineering estimates by PEDCo, unless otherwise noted. Where applicable, the procedures described in Section 4.2 are used to derive the costs. For those control options that involve additional manpower or changes in operation and maintenance (rather than equipment), costs represent estimates of additional manhours required (sometimes based on related work previously performed by PEDCo).

#### 5.1 GENERAL SPECIFICATIONS

## Source 1--Larry Car Charging

Control Option 2: Modified Car, Steam, and Smoke Boot--

Modification costs are based on a standard four-hopper larry car. The basic modifications are the addition of a gooseneck cleaner, hydraulics for independent drop sleeve operation, a suction pipe (U-tube), stainless steel cones for hoppers, heat shields, new hopper discharge assemblies allowing independent operation, and a fume pipe for ventilation from the U-tube on Port 4 to Port 1. Costs also include all necessary engineering,

assembly, and installation. Estimates are based on the assumption that the existing car is relatively new and that modifications are feasible. It is also assumed that headroom at the coal bunker is adequate. Estimates do not consider OSHA requirements for filtered air supply.

The steam supply considered in this option consists of a pressure regulating station, a 4-inch header along the battery, 1-inch takeoffs at each standpipe, and steam injection jets and the attendant miscellaneous piping, insulation, and installation.

Although the baseline for "uncontrolled" probably represents a battery already supplied with steam, it is assumed that the supply is not adequate to provide the quantity, pressure control, or the reliability necessary for good stage charging.

The final portion of this option involves a smoke seal for the leveling bar. The operating costs cover one additional lidman per shift (to insure timely lid replacement and luting) and one pipefitter on day shift to provide preventive maintenance for steam nozzle and liquor spray. Steam requirement is estimated at 24 lb/ton coke.

Control Option 3: New Car, Steam, Smoke Boot--

The new car included in Option 3 controls affords greater control because it is more reliable, and includes such design improvements as a gravity feed butterfly valve (Carbotek), and "two ovens-away drafting."

The car basically consists of four hoppers with flow control valves and drop sleeves, fume pipes between Ports 1 and 4 and Port 4 two ovens away, hydraulic slide gates, and gooseneck cleaner.

The battery steam supply and smoke boot are also included.

Many site-specific details of design will increase or decrease the cost from plant to plant. Furthermore, site-specific problems such as three-hole batteries, coal bunker clearance, warped battery tops, and off-battery-limit steam supply problems are not considered in the cost estimates.

The operating costs include the same additional manpower as described for Option 2. The additional costs for treating the condensed steam are not included, nor are potential losses due to deleterious effects of steam on tar quality (these should be addressed later in the refining of the fully developed model).

Control Option 4: Retrofit of Second Collecting Main Plus Option 3--

This option applies only to batteries with one collecting main, and includes the same features as Option 3 plus the retrofit of a second main. The estimate for the latter is based on the cost data in Reference 1. The reference does not indicate specifically what is included, but it is assumed that the second collecting main includes standpipes and goosenecks, collecting main, crossover mains across the battery top, steam and liquor spray systems, and a pressure regulating system. Such an installation is probably not feasible for batteries nearing the end of their useful life.

An additional refinement of the model could restrict usage of this option for older batteries because battery age is included in the battery data base. The model should also account for the probable decrease in door emissions afforded by a double collecting main, but presently this factor is ignored.

## Source 2--Pushing

Control Option 2: Controlled Coking--

This option involves no capital cost--only annual operating costs. These include one additional man per shift for monitoring flue temperature and coking time. The major portion of the costs is based on an increase in average coking time of 17.5 to 19 hours. This represents an 8 percent loss in capacity (given that demand is at capacity). Lost production is valued at \$110/ton of coke. For a battery with a capacity of 400,000 tons/year, the cost is  $(0.08) \times (400,000) \times (\$110)$ , or \$3,520,000. At capacity utilization ratios below 92 percent, the cost thus calculated is

theoretically zero, but periodic need for maximum output would still entail some lost production.

Control Options 3 and 6: Shed and Electrostatic Precipitator (ESP); Control Options 4 and 7: Shed and Scrubber--

The control efficiencies of the ESP are translated into cost by the relationship between efficiency and collection area shown below: <sup>2</sup>

|               | Plate area,                              |  |  |  |
|---------------|------------------------------------------|--|--|--|
| Efficiency, % | Plate area, $ft^2/1000$ acfm of gas flow |  |  |  |
| 99.9          | 385                                      |  |  |  |
| 99.0          | 240                                      |  |  |  |
| 95.0          | 188                                      |  |  |  |

The larger the plate area, the higher the control efficiency and the greater the control cost.

Aside from this factor, the general specifications for both of the shed ESP systems are identical as described here. The length of the shed is 4 feet per oven plus 20 feet of overhang. The exhaust volume is calculated according to the equation:

Exhaust volume in acfm = 1.67 (shed volume)

shed volume = 35.6 (L)(T)

where

L = length of shed and

T = tons of coke per push

The shed includes foundations, columns, sheeting, internal lighting, and exhaust main along the length of the shed and under the exhaust main, an access walkway through shed. Figure 10 is a simplified cross section of the shed.

The shed system includes the shed, the ESP, the fan and drive, connecting duct work, the exhaust stack, and control dampers at the fans. As is the case for all air-moving systems, fan redundancy is 100 percent for fans smaller than 500 bhp and 50 percent over 500 bhp. For example, if the total horsepower required is 400 bhp, two 400 bhp fans are provided. For a total requirement of 1000 bhp, three 500 bhp fans are provided. Fan drive horsepower is based on standard air density of 0.075 lb/ft<sup>3</sup> to allow for cold starts.



Figure 10. Cross section of coke-side shed.

The redundancy of the ESP is 20 percent of the plate area required. The ESP's are insulated and covered and include dust-handling hoppers and conveyors. Duct diameters are based on a duct velocity of 4000 ft/min. Stack diameters are based on a stack velocity of 3000 ft/min. The 300 ft of duct work for the shed is unlined and uninsulated carbon steel, as is the 100-ft stack. Fans are induced-draft and centrifugal with radial-tipped blades, and are rated for material handling (MH). The totally enclosed motors are drip-proof and have oil-cooled bearings as required. The fan electrical system includes motor starters, louver operators, annunciators and related switches, and wiring. No allowance is made for additional substations or increasing plant electrical capacity.

The only difference in the scrubber systems is that the ESP is substituted with an unlined stainless steel venturi scrubber and mist eliminator. Total system pressure drop is 50 in.  $\rm H_2O$  for a 99 percent TSP collection efficiency and 30 in.  $\rm H_2O$  for a 95 percent collection efficiency. (These are initial estimates only and can be refined later.) The L/G ratio of the scrubbing liquor is 7.9. Wastewater is recycled through a treatment system, which includes a clarifier-vacuum filter section, a wastewater recirculating pump, and a makeup water pump. It is assumed that this system will have a 5 percent blowdown rate to an existing water treatment system for removal of dissolved compounds such as phenol and cyanide.

The shed systems are assumed to capture coke-side door emissions in addition to 90 percent of the pushing emissions. Coke-side door emissions are assumed to be 50 percent of total door emissions.

Control Option 5: Enclosed Hot Car--

The enclosed hot car used in this option is described in the literature and in Reference 2. Equipment costs are based on a rough quote by Chemico; indirect costs were added by PEDCo. No separate allowance is made for reenforcement or modification of

the bench or for modification of the quench tower or wharf except as they might be included in a gross estimate represented by the retrofit factor. The Chemico car was chosen from a variety of designs to represent this general class of control. Additional variations can be added to the model if desired.

## Source 3--Quenching Clean Water

## Control Option 2: Wooden Baffles--

The cost of quench tower controls is a function of the number of quench towers in the plant rather than of coking capacity. Because specific data are not available on the number of quench towers required, it is assumed that one quench tower can handle up to 900,000 tons/yr of coke production. Figure 11 shows the scope of this option.

#### Control Option 3: Diverted Flow Baffles--

The total installed capital cost of a diverted-flow, baffled quench tower was estimated by PEDCo based on a brochure from Firma Carl Still. The estimate includes baffles, water system, and quench tower extension. It does not include dismantling of an existing tower and total replacement by a new quench tower. Operating costs are calculated to be about 10 percent of the total capital cost. The number of quench towers required is calculated as indicated under Option 2.

#### Control Option 4: Dry Quenching--

Costs are based on a system such as that shown in simplified form in Figure 12, which was derived from a brochure by American Wagner Biro Company. This system includes enclosed pushing hardware, which is accounted for in the model; i.e., when dry quenching is used, pushing control is put at level 5. Because no U.S. plants use dry quenching and the steam generated might not be useful to the plant, the potential steam credit is not considered here. If it were, the annualized cost would become negative, which would complicate the optimization model. If desired, however, the cost update program can be used to generate





# TYPICAL BAFFLE ARRANGEMENT

Figure 11. Conventional quench tower baffles.



Figure 12. Simplified pictorial diagram of a dry quenching system.

revised cost functions for dry quenching, which do account for steam credit. There are some relatively small plants (less than 100,000 tons of coke per year) in the data base for which dry quenching is probably not feasible. It is also questionable whether the present cost function is applicable in this small range. These issues can be further investigated as a later refinement.

#### Source 4--Doors

Control Option 2: Cleaning and Maintenance--

This option involves no capital cost. The annual operating cost is based on the addition of two men/shift for cleaning, door inspection, and repair. Maintenance costs also include the cost of door replacement at a rate of 10 percent per year.

Control Option 3: High Pressure Water Cleaning--

This option entails the installation of two (one per side) high-pressure water-cleaning machines, either on the existing pusher and door machines or on a separate car. Costs are based on a rough quote by Industrial High Pressure Systems, Inc. It is assumed that the existing pusher and door machine operators will operate the cleaning units. The option requires the addition of one man/shift for troubleshooting and inspection. Cost of replacement doors is the same as for control Option 2.

Control Options 4 and 5: Door Hood and Scrubber --

The scrubber, duct work, fans, and auxiliaries used in this control option are generally of the same specification as previously described. An unlined stainless steel venturi is used with a mist eliminator. The scrubber efficiency at 30 in.  $\rm H_2O$  pressure drop is estimated to be 95 percent; at 60 in.  $\rm H_2O$ , 98 percent. The water treatment system is the same as described under Source 2. The duct length included is 150 ft plus the length of ducts along both sides of the battery calculated as four feet per oven per side. Stack height is 100 feet. Both are constructed of unlined, uninsulated, carbon steel. Figure 13 presents a sketch of the system and indicates the required flow







DOOR FACE AREA = (1.5 ft)  $\times$  (4 ft) = 6 ft<sup>2</sup> NUMBER OF OVENS EXHAUSTED AT ANY GIVEN TIME = 6 FACE VELOCITY = 200 ft/min FOR 75% CAPTURE FACE VELOCITY = 250 ft/min FOR 85% CAPTURE FLOW RATE (ONE SIDE) = (6 ft<sup>2</sup>)  $\times$  (6)  $\times$  (200 ft/min) = 7200 acfm

TEMPERATURE = 100°F
FLOW RATE = 6800 scfm
FLOW RATE (BOTH SIDES) = 13,600 scfm FOR 75% CAPTURE
= 17,000 scfm FOR 85% CAPTURE

Figure 13. Door hood arrangement.

a IN ACTUAL PRACTICE, DUCT WOULD BE OF VARYING DIAMETER AND REQUIRE SOME DAMPER ARRANGEMENT TO DISTRIBUTE FLOW ALONG LENGTH OF BATTERY. THE COST ESTIMATE IS NOT OF SUFFICIENT DETAIL TO RECOGNIZE SUCH DETAILS. DUCT COST THEREFORE IS BASED ON A CONSTANT DIAMETER.

rate. Also included in the cost of this option are the costs described under Option 2.

### Source 5--Topside

supplies.

Control Options 2 and 3: Luting, Cleaning and Maintenance—
These two control options entail no capital costs and differ only in degree. Option 2 includes one additional man/shift for inspection and luting of lids and standpipes (in addition to the lidman and larry car operator). For Option 3, additional maintenance hours are added for grouting lid seats and standpipe bases and replacing faulty lids and caps. The cost estimate is

based on an additional 1000 hours/year of labor plus the cost of

Control Option 4: New Lids and Seats--

The cost of this option includes one additional man/shift for inspection and luting of lids and standpipes plus an additional capital cost for new lids and seats at a rate of four lids per oven. This option is not applicable to preheated coal batteries.

## Source 6--Combustion Stack (Old)

Control Option 2: Oven Patching--

The arbitrary definition of "old" combustion stack is based on a battery age of 15 years or older. This option involves the cost of 5900 maintenance hours per year for oven spraying and patching on a regular basis and one additional man around the clock for inspection and adjustments to the heating system. No capital costs are included.

Control Options 3 and 4: Dry ESP--

The control efficiencies of ESP's are related to cost in that higher efficiencies require larger collection areas, as shown below: 2

|               | <pre>Plate area,</pre>                             |
|---------------|----------------------------------------------------|
| Efficiency, % | Plate area, ft <sup>2</sup> /1000 acfm of gas flow |
| 90.0          | 232                                                |
| 98.0          | 450                                                |

General ESP specifications are the same as those described under Source 2. The length of duct allowed is 150 ft; duct work is brick lined carbon steel. In the case of retrofits, it is assumed that the duct is tied into the existing flue and the existing stack is used. A booster fan with a total static pressure capacity of 6 in. H<sub>2</sub>O is added. The flow rate for this source is calculated as:

## acfm = 59 x tons coal/day

with an exhaust temperature of 450°F. This flow is based on a stoichiometric calculation for coke oven gas with 100 percent excess air. Costs for flue gas conditioning are not included. A separate ESP system is provided for each battery although, in specific cases, it might be feasible to use a common ESP for adjacent batteries. Because of space limitations and problems with duct tie-in, the retrofit of an ESP to underfire stacks may not always be possible. The ability to shut the gas off to an existing battery long enough to accomplish tie-in without damaging oven refractories is a site-specific problem and is not addressed in this study.

#### Control Option 5: Baghouse --

This option is the same as Options 3 and 4 except that a fabric filter is substituted for the ESP. Temperature to the baghouse is limited by increasing the rate of air flow sufficiently to reduce the temperature from 450° to 275°F. The resulting flow rate is about 1.85 times that flow used for Options 3 and 4. The air-to-cloth ratio used is 3.0.

### Source 7--Coke Handling

### Control Option 2: Enclosures and Baghouse--

Specific details of this control system for emissions from coke handling will vary from plant to plant. The generalized

system used in the model consists of a plain carbon steel hood over the primary screen and five conveyor transfer point enclosures vented to a fabric filter having an air-to-cloth ratio of 6.0. Duct work is unlined, uninsulated, plain carbon steel of variable length depending on plant size. The average length is 75 ft. An exhaust fan with a static pressure rating of 8 in. H<sub>2</sub>O is included. Flow rate is based on standard ventilation formulas for hoods and appropriate conveyor belt widths. The control system is rated to accommodate the total coking capacity of a plant and is based on the assumption that a common coke-handling station serves all batteries. This is a safe assumption because only a few plants have widely separated groups of batteries and more than one handling and loadout station. The system does not include controls at the coke wharf.

## Source 8--Coal Preheater

Control Options 2 and 4: Wet Scrubber --

The control options for this source are applicable only to those few batteries that have coal preheating systems. The two scrubber options are identical except in pressure drop requirement and concomitant fan capacity. Both scrubbers are stainless steel and contain corrugated-baffle mist eliminators. Both options include 100 ft of carbon steel duct work and a 100-ft stack. Flow rate (in acfm) is calculated according to the following formula:

$$acfm = 16,900 \times (\frac{tons of coal/year}{1,000,000})$$

Control Options 3 and 5: Dry ESP--

These options are similar to the scrubber options except they call for ESP's rather than wet scrubbers. No data are available on the collection area required for coal preheater exhaust. Based on the assumption that preheater particulate emissions are similar to underfire stack emissions, the following values are used: <sup>2</sup>

|               | Plate area                   |
|---------------|------------------------------|
| Efficiency, % | $ft^2/1000$ acfm of gas flow |
| 95.0          | 324                          |
| 99.0          | 538                          |

# Source 9--Coal Preparation

Control Option 2: Enclosures and Baghouse--

The sources of coal preparation emissions are the crushing, mixing, and transfer steps that occur between the initial coal-receiving station and the coal storage bunkers at the battery. The size of the control system is determined by the coal capacity of the plant. The system includes six conveyor transfer-point hoods vented to a fabric filter having an air-to-cloth ratio of 6.0. Duct length varies with plant size, but the average is 250 ft. The system also includes an exhaust fan with a static pressure capacity of 8 in. H<sub>2</sub>O.

# Source 10--Coal Storage Yard

## Control Option 2: Spray Truck--

This option consists of a standard tractor trailer outfitted with a spray system and water storage tank. The estimated efficiency rating is 60 percent, but little data are available on dust control of coal storage piles. It is assumed that the truck would be used during periods of dry weather or windy conditions to suppress emissions at these most critical times. Operating costs include driver time, dust suppressant chemicals, and truck maintenance.

## Control Option 3: Unloading Sprays and Spray Truck--

In addition to a spray truck, control Option 3 includes a spray system at the car dumper (or barge unloading station). The system is shown in Figure 14. Control efficiency should be increased from 60 to 75 percent with the application of option. This increase is based not only on the suppression of emissions during dumping, but also on the assumption that application of a dust suppressant provides more thorough and longer lasting control than water spraying alone.



Figure 14. Dust-supression spray system at car dumper.

## Source 10--Coal Storage

Control Option 4: Coal Pile Sprays--

This control option (shown in Figure 15) is much more expensive than Options 2 and 3. It consists of permanently installed spray stanchions around the perimeter of the coal piles. These stanchions can be regulated at a central pump house. The lines are insulated and heated for winter operation. The size of the system is based on the amount of storage area required (based on a coal pile storage density of 0.28 ton/ft<sup>2</sup>). The control options for Source 10 are based on total plant capacity. Cost estimates are independent of battery characteristics.

# Source 11--Pipeline Charging; Source 12--Redler Conveyor Charging; and Source 13--Hot Larry Car Charging

Control Option 2: Operation and Maintenance--

Information concerning controls for dry-coal charging systems (Sources 11, 12, and 13) is limited. These sources represent topside emissions from batteries charged with dry coal. Emission controls for such sources as doors and stacks are the same as those in conventional batteries. The control of emissions from hot larry car loading at the coal bunker is not considered because there is only one such battery and controls were included in its design.

A recent study of pipeline-charged batteries and Redler-charged batteries suggests such controls as additional steam aspiration, better seals at discharge ports, and slower charging rates. Because specific controls have not been selected, however, a capital cost cannot be determined. Cost estimates present only an annual operating cost based on the addition of one topside worker for inspection, luting, and minor maintenance of lids, standpipes, and the pipeline or conveyor.





Figure 15. Permanently installed spray stanchions around perimeter of coal piles.

## Source 14 - Byproducts Plant

Control Option 2: Maintenance--

No control systems or procedures have yet been developed for the control of air emissions from byproduct plants. So that a working model recognizing this potential emission source could be provided, a control option consisting of 8760 hours/year of inspection and maintenance has been used. This includes valve packing, tank patching, and repair of pipe leaks, and should produce a control efficiency of 80 percent. These data are artificial data, however, and are used only to provide a complete dataset for the model.

## Source 15--Combustion Stack (New)

Control Option 2: Oven Patching--

The designation of a battery stack as "old" or "new" is arbitrary and is used only to help explain broad variations in uncontrolled emissions. If site-specific data classifying each stack according to emission level were available, the designation of age as a parameter could be eliminated. Oven patching is the same as the control option described for old battery stacks, and it is the only control option used for new stacks because more extensive measures are not necessary.

#### Source 16--Quenching With Dirty Water

Control Option 2: Wooden Baffles--

This option is identical to that shown in Figure 11 (for Source 3, Option 2).

Control Option 3: Clean Water and the Use of Baffles--

The most definitive study available on the subject of emissions from quenching is by Edlund. <sup>5</sup> The study addresses only particulate emissions. Figure 16 illustrates the relationship between emissions and dissolved solids in the quench water. Determining the total dissolved solids for each plant is beyond



Figure 16. Total particulate emissions from coke quenching.  $^{5}$ 

the scope of this project, but it is known that the composition of process water varies from plant to plant, as does the ratio of process water to quench water. The total amount of process water also varies. Table 7 (extracted from a preliminary summary of Effluent Guidelines 308 Questionnaire Data) shows these variations.

The variations in quench water composition and the many different water treatment methods used require some assumptions for simplification:

- 1. Plants are designated as using either clean water or dirty water for quenching. The particulate emission rates are assumed to be 1.7 lb/ton of coal for clean water and 3.2 lb/ton of coal for dirty water.
- 2. The control scheme for treating dirty water (instead of using it for quenching) is an ammonia distillation column using caustic soda, a bio-oxidation plant with 3-day retention time, and activated carbon filters for polishing. An incinerator is included for incinerating the ammonia vapors, although these could be recovered and converted to useful byproduct. A flow sheet of this system is presented in Figure 17. It is assumed that water thus treated becomes acceptable effluent and that river water (i.e., clean water) is used for quenching.
- 3. The quantity of water to be treated is assumed to be 150 gal/ton of coke. (It should be noted that the control option of dry quenching must include the treatment of the dirty water that would otherwise have been used for quenching). The plant is sized for 50 percent excess capacity to enable recovery from outages.
- 4. When dry quenching and wastewater treatment are used in combination, it is assumed the steam generated by the dry quenching system is used to displace the steam requirement of the water treatment system.

Although these are significant assumptions that could affect the usefulness of the model, they are necessary to establish a starting point. More detailed data and additional control schemes can be factored into the model at some later date.

The other control options for quenching have already been described.

TABLE 7. COKE PLANTS USING PROCESS WATER FOR QUENCHING

| Reference<br>No. | Company           | Location            | lxcess<br>NH <sub>3</sub> liquor | Benzol<br>plant | Final<br>cooler | Barometric<br>Fundenser | Desulfur-<br>izer | Other <sup>a</sup> | Total,<br>gal/min | Process wastewater as % of total quench volume | Process<br>wastewater<br>in gal/tor |
|------------------|-------------------|---------------------|----------------------------------|-----------------|-----------------|-------------------------|-------------------|--------------------|-------------------|------------------------------------------------|-------------------------------------|
| 0012A            | Alabama B.P.      | Tarrant, Ala.       |                                  |                 | 145             |                         |                   |                    | 145               | 11,1                                           | 93                                  |
| 01128            | Bethlehem         | Lackawanna, N.Y.    |                                  |                 | 120             | 100                     |                   | 5                  | 225               | 5.6                                            | 50                                  |
| 0112C(Rose)      | Bethlehem         | Johnstown, Pa.      | 18                               | 14              | 5               |                         |                   | 5                  | 42                | 12.9                                           | 60                                  |
| 0112C(Frank)     | Bethlehem         | Johnstown, Pa.      | 58                               | 64              | 10              |                         | =                 | 28                 | 160               | 11.1                                           | 74                                  |
| 01120            | Bethlehem         | Chesterton, Ind.    |                                  |                 | 505             | 230                     | 765               | 270                | 1770              | 53.9                                           | 493                                 |
| 0256٤            | Cyclops-FMP DET.  | Portsmouth, Ohio    | 110                              |                 |                 |                         |                   |                    | 110               | 98.1                                           | 139                                 |
| <b>02</b> 808    | Philadelphia Coke | Philadelphia, Pa.   |                                  |                 | 70              |                         |                   |                    | 70                | 18.3                                           | 121                                 |
| 0384(#2)         | Inland            | E. Chicago, Ind.    |                                  | 295             | 125             |                         |                   | 10                 | 430               | 16.7                                           | 100                                 |
| 0384(#3)         | Inland            | E. Chicago, Ind.    |                                  |                 |                 |                         |                   | 100                | 100               | 13,8                                           | 90                                  |
| 0432A            | J&L               | Aliquippa, Pa.      | 166                              | 104             | 125             | 28                      |                   | 70                 | 493               | 64.5                                           | 323                                 |
| 0448A            | Kaiser            | Fontana, Calif.     | 97                               | 42              | 1               |                         |                   |                    | 140               | 43.8                                           | 49                                  |
| 0464E            | Koppers           | Bessemer, Ala.      |                                  |                 | 150             |                         |                   |                    | 150               | 57.6                                           | 144                                 |
| <b>05</b> 84C    | National          | Granite City, 111.  | 52                               |                 | 10              |                         |                   |                    | 62                | 7,1                                            | 51                                  |
| 0584F(Main)      | National          | Weirton, W. Va.     |                                  | 32.5            | 29              |                         |                   |                    | 61.5              | 22.1                                           | 39                                  |
| 0684A            | Republic          | Youngstown, Ohio    | 100                              | 20              | 5               |                         |                   | 30                 | 155               | 11.1                                           | 81                                  |
| 0684B            | Republic          | Warren, Ohio        | 50                               | 50              | 10              |                         |                   | 20                 | 130               | 16.3                                           | 146                                 |
| 0684F(1)         | Republic .        | Cleveland, Ohio     |                                  | 209             |                 |                         |                   |                    | 209               | 62.1                                           | 93                                  |
| 0684F(2)         | Republic          | Cleveland, Ohio     |                                  | 56              |                 | ·                       |                   | ĺ                  | 56                | 28.3                                           | 42                                  |
| 0732A            | Shenango          | Neville Island, Pa. |                                  |                 | 80              |                         |                   |                    | 80                | 16.2                                           | 73                                  |
| 0856F            | USS               | Fairless Mills, Pa. |                                  |                 | 2.5             | 5                       |                   | 100                | 107.5             | 10.3                                           | 52                                  |
| 0856N            | uss               | Lorain, Ohio        | 167                              | 73              |                 | 71                      |                   | 1                  | 311               | 72.8                                           | 103                                 |
| 0860B            | USS               | Gary, Ind.          | 278                              |                 | 174             | , ,                     |                   |                    | 452               | 7.6                                            | 65                                  |
| 0.464            | USS               | Geneva, Utah        | 90                               | 75              | 100             |                         |                   |                    | 265               | 70.7                                           | 106                                 |
| 0948A            | YS&T              | Campbell, Ohio      | 90                               | 61              | 175             |                         |                   |                    | 326               | 92.2                                           | 123                                 |

<sup>&</sup>lt;sup>a</sup> includes larry car scrubber wastewaters, shed scrubbers, gas holder seals, preheater condensates, designs and seals on gas mains, and miscellaneous floor drains.



Figure 17. Coke plant wastewater treatment system.

#### REFERENCES FOR SECTION 5

- Draft of Standards Support and Environmental Impact Statement. Volume I: Proposed National Emission Standards Byproduct Coke Oven Wet Coal Charging and Topside Leaks. U.S. EPA, Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina. June 1978.
- 2. Development of Air Pollution Control Cost Functions for the Integrated Iron and Steel Industry. (Draft) Prepared by PEDCo Environmental, Inc., Cincinnati, Ohio, for the U.S. EPA, Office of Air Quality Planning and Standards, Washington, D.C., under Contract No. 68-01-4600. September 1978.
- 3. Midwest Research Institute. Study of Coke Oven Battery Stack Emission Control Technology Volume II, Control Methods. Prepared for Emission Standards and Engineering Division. U.S. EPA Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina. EPA Contract 68-02-2609, Task 5. March 1979.
- 4. PEDCo Environmental, Inc. Control of Emissions from Dry Coal Charging at Coke Oven Batteries. Prepared for U.S. EPA, Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina. EPA Contract 68-02-2603, Task 28. October 1978.
- 5. Edlund, Carl, A.H. Laube, and J. Jeffrey. Effects of Water Quality on Coke Quench Towers Particulate Emissions.
- 6. Personal communication with Mr. Bernie Bloom, DSSE, Washington, D.C. to W. Kemner, PEDCo. September 14, 1978.

#### SECTION 6

#### BATTERY DATA BASE (DATASET 3)

This dataset provides a record of the following for each battery in the United States:

Company location code

Date installed or date of last major rebuilding

Number of ovens

Capacity, tons of coke/year

Type of charging used

Oven height

Number of collecting mains

Control equipment in place

These data are used as input to the model to determine total coke industry emissions and the costs to control them.

The data base for coke oven batteries was assembled from a variety of documents, some of which provide conflicting information. 1-6 Most of the capacity data is from Reference 1. Where given data conflicted, PEDCo used its own expertise and knowledge of the industry to select data values for use in the model. For most of the foundry coke batteries, the main data source was Reference 6.

The scope of this project does not cover the development of a detailed data base for the U.S. coking industry, but it was necessary to prepare a reasonably accurate census to estimate control costs.

Input of the battery data is arranged so that it can be updated easily as additional data become available. Although some of the data are estimated and some may be outdated, most of

the industry is correctly represented in the census, and the aggregate costs calculated from the current data base should be representative.

Table 8 represents the data base provided to the model. Figure 18 shows the data coding form used to change or update the data base. Table 9 presents the plant ID codes used for the data coding form.

Total industry cost for a given control option and efficiency are calculated generally as:

Industry cost = 
$$\sum_{i=1}^{n} A \cdot X_{i}^{B}$$

where A and B = cost coefficients from the cost model

X; = capacity (tons coke/year) for battery i

n = total number of batteries

Company names are used only for convenience in coding and keeping track of the data. This study is not source-specific, and company names will not appear in the model printout.

In this model, plant capacity has generally been used as the variable in determining control costs. Certain costs, however, are not strictly a function of capacity. Shed cost, for example, is a function of oven height and number of ovens. In the case of quench towers, on the other hand, cost is proportional to the size and number of towers. The slight inaccuracies introduced by the use of capacity as the cost variable, however, are not of major concern in this stage of model development. In the case of quench tower baffles, it is assumed that one quench tower can handle up to 2500 tons of coke per day. For coal yards, coal preparation, coke processing, and byproduct plants, the model calculates costs for entire plants rather than individual batteries (i.e., X<sub>i</sub> becomes the total capacity of all batteries in a plant).

Certain other site-specific factors could affect cost. For example, the economy of scale gained by combining two or more adjacent batteries under a common control device to control

TABLE 8. COKE OVEN MODEL BATTERY DATA BASE

| PLANT | lnst. | NU.    | CUKE<br>Capacity | CHARGING  | HEIGHT   | PuSn         | QUENCH  | NO. COLL.  |
|-------|-------|--------|------------------|-----------|----------|--------------|---------|------------|
| NU    | DATE  | UVENS  | HYVENUT          |           | (METERS) | CUNTHOL      | WATER   | MAINS      |
| 1     | 1966  | <br>>> | 220000.          | LAKHY CAR | 3        | NONE         | CLEAN   | 1          |
| 1     | 1967  | 55     | \$50000.         | LARHY CAR | 3        | NONE         | CLEAN   | ī          |
| 5     | 1750  | 15     | 80000.           | LARRY CAR | 4        | NONE         | CLEAN   | 1          |
| 2     | 1441  | 25     | 130000.          | LARHY CAN | 4        | NONE         | · CLEAN | ŧ          |
| 2     | 1941  | 25     | 130000.          | LAHHY CAH | 4        | NONE         | CLEAN   | 8          |
| 2     | 1952  | 76     | 540000.          | LARHY CAH | 4        | NONE         | CLEAN   | , <b>2</b> |
| 2     | 1401  | 45     | 240000.          | LARRY CAR | 4        | NONE         | CLEAN   | 1          |
| 2     | 1976  | 57     | 670000.          | LAHRY CAH | •        | ENCLUSED CAR | CLEAN   | . 2        |
| 5     | 1477  | 57     | 670000.          | LAHNY CAR | •        | ENCLUSED CAR | GLEAN   | 2          |
| •     | 1942  | 47     | 190000.          | LANNY CAR | •        | SHED         | CLEAN   | 1          |
| •     | 1953  | 15     | 190000.          | LAHHY CAK | 4        | SHED         | CLEAN   | 1          |
| 5     | 1941  | 51     | 400000.          | LARRY CAR | 3        | NONE         | OIRTY   | 1          |
| 5     | 1942  | 51     | 400000.          | LANKY CAN | 3        | NUNE         | DINTY   | 1          |
| 5     | 1953  | 60     | 440000.          | LARRY CAN | 4        | NONE         | DIRTY   | 1          |
| 5     | 1976  | 80     | 890000.          | LARRY CAR | •        | OTHER        | DINTA   | 5          |
| 6     | 1915  | 63     | 260000.          | LARRY CAR | 3        | NONE         | CLEAM   | 1          |
| •     | 1418  | 6.3    | 260000.          | LARKY CAR | 3        | NONE         | CLEAN   | ì          |
| •     | 1450  | 6.3    | 260000.          | LARRY CAR | 3        | NONE         | CLEAN   | 1          |
| •     | 1955  | 6.5    | 260000.          | LAHRY CAR | 3        | NONE         | CLEAN   | 1          |
| •     | 1454  | 63     | 250000.          | LARRY CAR | 3        | NONE         | CLEAN   | 1,         |
| •     | 1936  | 60     | <b>560000</b> .  | LARRY CAR | 3        | NONE         | CLEAN   | 1          |
| •     | 1941  | 61     | 310000.          | LAKKY CAR | •        | NONE         | CLEAN   | 1          |
| •     | 1948  | 61     | 310000.          | LARRY CAR | •        | NONE         | CLEAN   | 3          |
| •     | 1950  | 65     | 350000.          | LAHRY CAR | •        | NONE         | CLEAN   | 2          |
| •     | 1952  | 65     | 350000.          | LARRY CAR | •        | NONE         | CLEAN   | 3          |
| •     | 1955  | 65     | 350000.          | LARRY CAR | •        | NONE         | CLEAN   | S          |
| •     | 1457  | 65     | 350000.          | LARHY CAR | •        | NONE         | CLEAM   | 2          |
| 7     | 1941  | 76     | 450000.          | LANNY CAN | •        | NONE         | DINTY   | 1          |
| 7     | 1943  | 76     | 450000.          | LARHY CAN | •        | NONE         | DINTY   | , i        |
| 7     | 1943  | . 57   | 300000.          | LARRY CAR | 4        | NONE         | DIRTY   | 1          |
| 7     | 1944  | 57     | 300000.          | LARRY CAR | •        | NONE         | DIRTY   | 1          |
| 7     | 1425  | 76     | 495000.          | LANRY CAR | •        | NONE         | DINTY   |            |
| 7     | 1965  | 76     | 495000.          | LANKY CAR | •        | NONE         | DIRTY   | 3          |
| 7     | 1970  | 76     | 900000.          | LARMY CAN | •        | MONE         | DIRTY   | 1          |
| •     | 1946  | 74     | 420000.          | LARNY CAN | 4        | NONE         | DIRTY   | 1          |
| •     | 1969  | 62     | 1170000.         | LARRY CAR | •        | OTHER        | DIRTY   | 1          |
| 4     | 1472  | 85     | 1270000.         | LARRY CAR | •        | OTHER        | DIRTY   | 2          |
| 10    | 1400  | 51     | 150000.          | LAHRY CAN | •        | NONE         | DIRTY   | 3          |
| 10    | 197€  | 65     | 580000.          | LANKT CAN | 4        | NONE         | DIKTA   | 2          |
| 10    | 1974  | 47     | 290000.          | LARRY CAR | 4        | NONE         | OIRTY   | \$         |
| 11    | 1947  | 21     | 80000.           | LARRY CAR | 5        | NONE         | CLEAN   | 1          |

(continued)

TABLE 8 (continued)

| PLANT  | INST. | NU.       | CURE<br>Capacity<br>Tuns/yr | CHARGING  | HEIGHT   | PUSH         | OUENCH    | NO. COLL   |
|--------|-------|-----------|-----------------------------|-----------|----------|--------------|-----------|------------|
| NU<br> | UATE  | uvtns     |                             |           | (METERS) | COMTHOL      | MATER     | BAIAN      |
| 11     | 1946  | •3        | 250000.                     | LANNY CAN | 3        | NONE         | CLEAN     | 1          |
| 11     | 1955  | 3.0       | 120000.                     | LAHRY CAM | 3        | NONE         | CLEAM     | i          |
| 15     | 1964  | 70        | 420000.                     | LANNY CAR | •        | HOME         | DIRTY     | 1          |
| 13     | 1962  | •1        | 460000.                     | LANNY CAN | •        | OTHER        | CLEAM     | 1          |
| 13     | 1405  | 61        | 460000.                     | LARHY CAR | •        | OTHER        | CLEAN     | . 1        |
| 13     | 1963  | 52        | 200000.                     | LARHY CAR | •        | OTHER        | CLEAN     | 1          |
| 13     | 1964  | 45        | 340000.                     | LAHRY CAN | •        | OTHER        | CLEAM .   | 1          |
| 13     | 1972  | -13       | 100000.                     | LARRY CAR | •        | OTHER        | CLEAM     | 1          |
| 14     | 1949  | 49        | 440000.                     | LARRY CAR | •        | OTHER        | DINTY     | 1          |
| 14     | 1953  | 21        | 240000.                     | LAHRY CAH | •        | DTHER        | DINIA     | <b>1</b> . |
| 14     | 1961  | •1        | 280000.                     | LARHY CAR | •        | OTHER        | DIHTY     | 1          |
| 15     | 1957  | 7 u       | 430000.                     | LARRY CAN | •        | OTHER        | DINTY     | 1          |
| 15     | 1957  | 78        | 450000.                     | LARRY CAM | 4        | OTHER        | DISTY     | 1          |
| 15     | 1970  | 85        | 1060000.                    | LARRY CAR | •        | UTHER        | DIRTY     | 1          |
| 16     | 1950  | •5        | 320000.                     | LAHRY CAR | •        | NONE         | PTRIO     | 1          |
| 16     | 1456  | <b>#7</b> | 460000.                     | LANRY CAN | •        | NONE         | DIRTY     | 1          |
| 16     | 1958  | 67        | 460000.                     | LAHHY CAN | •        | NONE         | DIRTY     | 1          |
| 10     | 1458  | <b>67</b> | 460000.                     | LANRY CAR | •        | NONE         | DIRTY     | 2          |
| 10     | 1970  | 51        | 550000.                     | LAHHY CAR | •        | NUNE         | DIHTY     | 1          |
| 16     | 1474  | 56        | 910000.                     | PIPELINE  | •        | BHED         | DINTY     | 1          |
| 16     | 1978  | <b>69</b> | 1100000.                    | PIPELINE  | •        | ENCLOSED CAR | DIRTY     | 2          |
| 17     | 1455  | 57        | 500000.                     | LANNY CAN | •        | OTHER        | CLEAN     | 1          |
| 17     | 1956  | 50        | 320000.                     | LAHRY CAH | 4        | NONE         | CLEAN     | 1          |
| 17     | 1457  | 50        | 320000.                     | LARHY CAH | •        | NUNE         | CLEAN     | 1          |
| 10     | 1953  | 79        | 470000.                     | LARRY CAR | •        | NONE         | CLEAN .   | 1          |
| 1.0    | 1460  | 59        | 370000.                     | LAHNY CAN | •        | NONE         | CLEAM     | . 1        |
| 16     | 1461  | 59        | 370000.                     | LAKHY CAR | 4        | NONE         | CLEAN     | 1          |
| 10     | 1961  | . 59      | 370000.                     | LAHRY CAH | •        | NUNE         | CLEAN     | 1          |
| 10     | 1461  | 59        | 370000.                     | FUHHA CAH | •        | NONE         | CLEAN     | 1.         |
| 19     | 1945  | 106       | 590000.                     | LAHRT CAN | •        | NUNE         | DIATY     | 1          |
| 19     | 1446  | 146       | 590000.                     | LANNT CAN | 4        | NONE         | PIRTY     | 1          |
| 19     | 1451  | 54        | 320000.                     | LANNY CAN | 4        | NONE         | DIHIA     | 1          |
| 19     | 1476  | 56        | 1040000.                    | PIPELINE  | 6        | SHLD         | DINTA     | 1          |
| ٤١     | 1446  | 45        | <10000.                     | LARRY CAR | 4        | NUNE         | DIRTY     | š          |
| 51     | 1942  | 45        | 210000.                     | LANKY CAN | •        | NUNE         | DINTY     | S          |
| 41     | 1444  | 45        | 210000.                     | LANKY CAK | 4        | NUNE         | DIRTY     | Š          |
| 51     | 1453  | 45        | 210006.                     | LANNY CAN | •        | NUNE         | DINTY     | 5          |
| \$1    | 1953  | 45        | 210000.                     | LANNY CAN | •        | NUNE         | DIRTY     | 2          |
| 51     | 1460  | 45        | 210000.                     | LARRY CAR | 4        | NUNE<br>NUNE | DINTA     | 5          |
| ς I    | 1460  | 45        | 210000.                     | LANNY CAN | •        | NUNE         | O I M I I | •          |
|        | 1444  | 34        | <b>~~~~~~</b>               | LANNY CAN | 4        | NUNE         | CLEAN     | 1          |

(continued)

| PLANT<br>NU | UATE    | NU.<br>OVENS | CUKE<br>CAPACITY<br>TUNB/YH | CHANGING  | HEIGHT | PUBH<br>CONTROL | QUENCH<br>WATER | MO. COLL<br>Mains |
|-------------|---------|--------------|-----------------------------|-----------|--------|-----------------|-----------------|-------------------|
| 26<br>      | 1447    | 39           | 220000.                     | LAHRY CAN | •      | NONE            | CLEAM           | 1                 |
|             | 1944 .  | 40           | 340000.                     | LANKY CAN | •      | NUNE            | DINTY           | 1                 |
| 24          | 1949    | 30           | 50000.                      | LARRY CAR | •      | NUNE            | DIATY           | 3                 |
| 24<br>24    | 1950    | 40           | 340000.                     | LAHRY CAR | 4      | NUNE            | · DINTA         | 1                 |
| 24          | 1450    | 65           | 440000.                     | LAHRY CAR | •      | NUNE            | DIRTY           | 1                 |
| 24          | 1960    | 59           | 400000.                     | LARRY CAR | 4      | NONE            | DIRTY           | 2                 |
| 64          |         | •            | •                           |           |        |                 | 0.024           | 2                 |
| 25          | 1952    | 6.3          | 440000.                     | LARRY CAR | 4      | NONE            | DIRTY .         | 5                 |
| 52          | 1952    | 6.5          | 440000.                     | LARRY CAR | 4      | NONE            | DIKTY           | 5                 |
| 52          | 1957    | 51           | 350000.                     | LAHRY CAH | 4      | NONE            | DIATY           | 2                 |
| 52          | 1958    | 51           | 350000.                     | LARHT CAR | 4      | NONE            | DINTY           | ā                 |
| 52          | 1950    | 51           | 350000.                     | LARRY CAN | 4      | NONE            | DIRTY           | •                 |
| 26          | 1976    | 51           | 350000.                     | LARRY CAN | •      | NONE            | DIRTY           | 2                 |
| 21          | 1955    | 31           | 210000.                     | LARRY CAR | •      | NONE            | DIHTY           | 1                 |
|             | -       | 15           | 500000.                     | LAHRY CAN | •      | SHED            | CLEAN           | 1                 |
| 20          | 1945    | 75           | 300000                      |           |        |                 |                 |                   |
| 30          | 1943    | 65           | 430000.                     | LARHY CAR | 4      | NONE            | CLEAM           |                   |
| 54          | 1952    | 65           | 390000.                     | LARRY CAN | 4      | NONE            | CLEAN           | 1                 |
| <b>29</b>   | 1965    | 65           | 430000.                     | LARHY CAR | 4      | NONE            | CLEAN           | 1                 |
| E V         | ,,,,,   |              | •                           |           |        |                 | A1474           | 2                 |
| 51          | 1951    | 67           | 550000.                     | LARRY CAH | •      | NONE            | DINTY           | į                 |
| 31          | 1951    | 87           | 550000.                     | LARMY CAR | 4      | NUNE            | DIRTY           | •                 |
| -•          | • • • • |              |                             |           | _      | NONE            | CLEAN           | 2                 |
| 35          | 1924    | 61           | 270000.                     | LANKY CAR | •      | NONE            | CLEAN           | ž                 |
| 52          | 1924    | 61           | 270000.                     | LARRY CAR | •      | NONE            | CLEAN           | Ž                 |
| 35          | 1450    | 61           | 270000.                     | LAHHY CAR | •      | NONE            | CLEAN           | ā                 |
| 32          | 1948    | 85           | 360000.                     | LARRY CAR | 3      | NONE            | CLEAN           | Ž                 |
| 32          | 1450    | 61           | 270000.                     | LAHHY CAR | •      | NONE            | CLEAM           | Ž.                |
| 35          | 1950    | 61           | 270000.                     | LANNY CAN | •      | NONE            | CLEAN           | Š                 |
| 35          | 1454    | 64           | 340000.                     | LANRY CAR |        | NONE            | CLEAN           | 2                 |
| 36          | 1454    | . 64         | 340000.                     | LAHRY CAR | 7      | NONE            | CLEAN           | 2                 |
| 32          | 1454    | 64           | 340000.                     | LAHRY CAN |        | NUNE            | CLEAN           | 2                 |
| 32          | 1955    | 64           | 340000.                     | LANNY CAN |        | NONE            | CLEAN           | 2                 |
| 32          | 1955    | 64           | 340000.                     | LANNY CAN |        | NUNE            | CLEAN           | 2                 |
| 56          | 1455    | 64           | 540000.                     | LARRY CAR | 3      | NUNE            | CLEAN           | 5                 |
| 35          | 1957    | 64           | 340000.                     | LANKY CAN | 7      | NONE            | CLEAN           | 2                 |
| 35          | 1457    | 64           | 340000.                     | LAHRY CAN | 7      | NONE            | CLEAN           | 2                 |
| 32          | 1450    | 64           | 340000.                     | LANNY CAN | 7      | NUNE            | CLEAN           | 2                 |
| 32          | 1415    | 67           | 630000.                     | LARRY CAR | 7      | SHED            | CLEAN           | 5                 |
| 32          | 1973    | 67           | 640000.                     | LARRY CAR |        | NUNE            | CLEAN           | 5                 |
| 52          | 1976    | 67           | 630000.                     | LANKY CAN |        | NONE            | CLEAN           | 2                 |
| 52          | 1477    | 67           | 650000.                     | LARMY CAR | •      |                 |                 | _                 |
|             |         | <b>L</b> O   | 250000.                     | LANNY CAN | 5      | NUNE            | DINTY           | 1                 |
| 5.5         | 1947    | 59           | 230000.                     | LANNY CAR | 3      | NUNE            | DIRTY           | 1                 |
| 5.5         | 1447    | 59           |                             | LANNY CAN | _      | NONE            | ALMID           | 1                 |
| 3.5         | 1947    | 59           | <b>230000</b> •             | ERNNI CAN | •      | •               |                 |                   |

TABLE 8 (continued)

|             |       |              | CURE                |           |                 |                 |                 |                    |
|-------------|-------|--------------|---------------------|-----------|-----------------|-----------------|-----------------|--------------------|
| PLANT<br>NU | INST. | NU.<br>UVĖNS | CAPACITY<br>Tuns/YR | CHANGING  | HEIGHT (METERS) | PUSH<br>CUNTHOL | QUENCH<br>WATER | MO. COLL.<br>Mains |
| 53          | 1955  |              | 250000.             | LANKY CAN | 3               | NONE            | DIRTY           | 1                  |
| 33          | 1955  | 59           | 230000.             | LANNY CAN | š               | NOHE            | DINTY           | i                  |
| 33          | 1956  | 59           | 230000.             | LANNY CAN | š               | NUNE            | DINTY           | :                  |
| 33          | 1957  | 59           | 230000.             | LANNY CAN | 3               | NUNE            | DINTY           | ż                  |
|             |       |              |                     |           |                 |                 | •               |                    |
| 36          | 1949  | 77           | 350000.             | LANNY CAN | 5               | NUNE            | DIRTY           | 5                  |
| 36          | 1951  | 77           | 320000.             | LAHRY CAR | 3               | NONE            | DIHTY           | 2                  |
| 36          | 1951  | 77           | 250000.             | LARKY CAR | 3               | NONE            | DIRTY           | i                  |
| 36          | 1954  | 77           | \$20000.            | LAHHY CAR | 3               | NUNE            | DIMIA .         | 1                  |
| 36          | 1454  | 17           | 320000.             | LAHRY CAR | 3               | NUNE            | DINIA           | 1                  |
| 36          | 1970  | 85           | 900000.             | LAHHY CAR | •               | NONE            | DINTA           | 1                  |
| 36          | 1975  | 57           | 430000.             | REULEA    | •               | ENCLOSED CAR    | DINTA           | 3                  |
| 36          | 1976  | 51           | 930000.             | HEDLER    | •               | ENCLUSED CAN    | DIRTY           | 5                  |
| 19          | 1952  | 11           | 400000              | LAHNY CAN |                 | NUNE            | CLEAN           | •                  |
| 34          | 1952  | "            | 400000.             | LANNY CAN | ì               | NONE            | CLEAN           | i                  |
| 39          | 1950  | 6.5          | 400000.             | LANNY CAN |                 | NUNE            | CLEAM           | •                  |
| 39          | 1978  | 57           | 900000.             | HOT L.C.  |                 | OTHER           | CLEAN           | ż                  |
| 34          | 1770  | 31           | 700000              | NOT L.C.  | •               | UTHER           | CLEAN           | •                  |
| 40          | 1450  | 6.3          | 320000.             | LARHY CAR | 4               | NONE            | DIRTY           | 2                  |
| 40          | 1950  | 6.5          | 320000.             | LAHRY CAR | •               | NUNE            | DINTY           | 2                  |
| 40          | 1950  | 63           | 320000.             | LANKY CAR | 4               | NONE            | DIRTY           | 2                  |
| 40          | 1950  | 6.5          | 320000.             | LANNY CAR | •               | NONE            | DINTA           | 2                  |
| 41          | 1947  | 53           | 350000.             | LARRY CAR | 4               | NONE            | DIRTY           | 1                  |
| 41          | 1447  | 53           | 350000.             | LARRY CAR | i i             | NONE            | DINTY           | i                  |
| 41          | 1951  | 61           | 400000.             | LAHHY CAR | T T             | NONE            | DINTY           | i                  |
| 41          | 1454  | 91           | ∠70000.             | LAHHT CAH |                 | NUNE            | DINTY           | i                  |
| 41          | 1956  | i            | 270000.             | LARHY CAR |                 | NUNE            | DINTY           | i                  |
| 41          | 1973  | •7           | 1350000.            | LAHHY CAR | •               | OTHER           | CLEAN           | į                  |
| -           |       |              | •                   | _         |                 |                 |                 | •                  |
| 42          | 1946  | 53           | 250000.             | LARHY CAR | 4               | NONE            | CLEAN           | 1                  |
| 42          | 1925  | 6.5          | 300000.             | LANKY CAN | •               | NONE            | CLEAN           |                    |
| 42          | 1951  | 47           | 180000.             | LANNY CAN | 3               | NONE            | CLEAN           | 3                  |
| 42          | 1955  | 47           | 180000.             | LAHHY CAH | 5               | NUNE            | CLEAN           | 3                  |
| 42          | 1964  | 51           | 190000.             | LARRY CAR | 5               | NUNE            | CLEAN           | i i                |
| 42          | 1976  | 79           | 800000.             | LARRY CAR | •               | NUNE            | CLEAN           | 2                  |
| 45          | 1445  | 74           | 550000.             | LARMY CAN | •               | NONE            | CLEAN           | 1                  |
| 43          | 1956  | 19           | 140000.             | LARHY CAN | •               | NUNE            | CLEAN           | 1                  |
|             |       |              |                     |           | a               | 845B            | 01474           | 1                  |
| 44          | 1400  | 45           | 570000.             | LANNY CAN | 5               | SHED            | DINTA           | •                  |
| 45          | 1454  | 76           | 460000.             | LANNY CAN | 4               | NONE            | DIRTY           | 5                  |
| 45          | 1455  | 7 0          | 460000.             | LAHHY CAR | •               | NUNE            | DINTY           | 2                  |
| 45          | 1958  | 76           | 460000.             | LAHRY CAR | 4               | NONE            | DIHTY           | 2                  |
|             | 1452  | 75           | 460000.             | LANNY CAN | <b>A</b>        | NUNE            | CLEAN           | 1                  |
| 46          | 1956  | 75           | 460000.             | FARKA CAN | 7               | NUNE            | CLEAN           | i                  |
| 46          |       | 67           | -                   | _         |                 | NONE            | CLEAN           | i                  |
| 46          | 1461  | 01           | 535000.             | LAHHY CAH | -               | HUNE            | CECAN           | •                  |

(continued)

TABLE 8 (continued)

| PLANT | 1831. | NU.   | CURE<br>CAPACITY | CHANGING  | HE IGHT  | PUSH    | QUENCH  | NO. COLL |
|-------|-------|-------|------------------|-----------|----------|---------|---------|----------|
| NU    | DAIF  | UVENS | TUNS/TR          |           | (METENS) | CONTROL | Hatan   | BHIAM    |
| 45    | 1473  | 30    | 75000.           | LARNT CAN | •        | NUNE    | CLEAN   | 1        |
| 48    | 1973  | 50    | 75000.           | LARRY CAR | •        | NONE    | CLEAN   | i        |
| 49    | 1917  | ••    | 254000.          | LARHY CAR | 4        | NUME    | CLEAN   |          |
| 49    | 1941  | 76    | 548000.          | LAHHY CAH | •        | NONE    | CLEAN   | 1        |
| 49    | 1455  | 24    | 145000.          | PIPELINE  | •        | NONE    | CLEAN   | 1        |
| 50    | 1443  | 55    | 185000.          | LANKY CAN | 4        | OTHER   | CLEAN . | 1        |
| 50    | 1952  | 23    | 120000.          | LARHY CAN | •        | OTHEN   | CLEAN   | 1        |
| 65    | 1950  | 35    | 250000.          | LARHY CAR | •        | NONE    | DIRTY   | a a      |
| 65    | 1952  | 35    | 250000.          | LARHY CAN | •        | NUNE    | DIATA   | S        |
| 65    | 1958  | 35    | 250000.          | LARHY CAN | •        | NONE    | DINTY   | 3        |
| 77    | 1916  | 24    | 50000.           | LANNY CAN | 3        | NUNE    | DIRTY   | 1        |
| 17    | 1941  | 50    | 56000.           | LAHRY CAR | 3        | NONE    | DIRTY   | 1        |
| 61    | 1962  | ••    | 326000.          | LARHY CAR | 4        | NONE    | CLEAN   | 1        |
| 45    | 1953  | 76    | 469000.          | LARKY CAR | 4        | NONE    | CLEAN   | . 1      |
| 45    | 1967  | 70    | 797000.          | LARRY CAR | 5        | NONE    | CLEAM   | 1        |
| 86    | 1972  | 23    | 82000.           | LANNY CAN | 4        | NUNE    | DINTY   | 1        |
| **    | 1912  | 53    | 82000.           | LAHRY CAR | 4        | NONE    | DIRTY   | 1        |
| 87    | 1950  | 74    | 340000.          | LARRY CAR | •        | NONE    | DIRTY   | 1        |
| ••    | 1408  | 70    | 674000.          | PIPELINE  | •        | NONE    | CLEAN   | 1        |
| 49    | 1926  | 40    | 119000.          | LAHRY CAH | 4        | NONE    | CLEAN   | 1        |
| ••    | 1429  | 40    | 119000,          | LARRY CAR | 4        | NONE    | CLEAN   | 1        |
| 44    | 1941  | 41    | 121000.          | LAHHY CAH | 4        | NONE    | CLEAN   | 1        |
| 49    | 1946  | . 47  | 140000.          | LAHRY CAN | •        | NONE    | CLEAN   | 1        |
| 70    | 1974  | 40    | 117000.          | LARHY CAN | 5        | OTHER   | DIRTY   | 1        |
| 90    | 1974  | . ••  | 175000.          | LAHRY CAR | 3        | OTHEN   | DIRTY   | 1        |
| 91    | 1951  | 51    | 316000.          | LARRY CAR | •        | NONE    | CLEAN   | 1        |
| 91    | 1964  | 50    | 316000.          | LANKY CAN | 4        | NONE    | CLEAN   | 1        |
| 41    | 1967  | 50    | 316000.          | LANNY CAN | •        | NONE    | CLEAN   | 1        |
| 92    | 1952  | U     | 360000.          | LANKY CAR | 0        | NUNE    | DIRTY   | 1        |
| 92    | 1961  | 95    | 56600v.          | LARMY CAN | 3        | BHED    | CLEAN   | 1        |
| 95    | 1919  | 65 -  | 192000.          | LAHRY CAH | 3        | NONE    | CLEAN   | 1        |
| 94    | 1956  | 20    | 44000.           | LAHRY CAR | 3        | NONE    | CLEAN   | 1        |
| 94    | 1956  | 40    | 88000.           | LAHHY CAR | 3        | NONE    | CLEAN   | 1        |
|       | 1920  | 17    | 48000.           | LARRY CAR | 4        | NONE    | DINTY   | 1        |

(continuea)

TABLE 8 (continued)

| PLAN1<br>NU | INSI.<br>Date | NU.        | CURE<br>CAPACITY<br>TUNS/YR | CHARGING  | HEIGHT     | PUSH<br>CUNTHOL | QUENCH<br>WATER | NO. COLL.<br>Mains |
|-------------|---------------|------------|-----------------------------|-----------|------------|-----------------|-----------------|--------------------|
|             |               | ••••••     |                             |           | ********** |                 |                 | ***********        |
| 45          | 1450          | 25         | 150000.                     | LAHRY CAH | 4          | NUNE            | DINTY           | 1                  |
| 95          | 1452          | 25         | 7900u.                      | LANNY CAN | 4          | NONE            | DINTY           | 1                  |
| 95          | 1944          | 20         | 95000.                      | LANNY CAN | •          | NUNE            | DIKTA           | 1                  |
| 95          | 1944          | 30         | 102000.                     | LANKY CAR | 4          | NONE            | DIHTY           | 3                  |
| 95          | 1425          | 30         | 120000.                     | LANKY CAN | 4          | NONE            | · DIRTY         | 1                  |
| 45          | 1969          | 38         | 153000.                     | LARRY CAR | 4          | NUNE            | DINTY           | 1                  |
| 96          | 1956          | ••         | 234000.                     | LANNY CAN | 3          | NUNE            | DIRTY           | 1                  |
| 97          | 1420          | 60         | 232000.                     | LANNY CAN | 4          | NONE            | CLEAN           | 1                  |
| 97          | 1450          | <b>6</b> 0 | 232000.                     | LARRY CAR | 4          | NUNE            | CLEAN           | 1                  |
| 97          | 1450          | 50         | 116000.                     | LANKY CAN | •          | NONE            | CLEAN           | 1                  |
| 97          | 1955          | 30         | 116000.                     | LARRY CAR | •          | NUNE            | CLEAN           | 1                  |
| 47          | 1957          | 60         | 232000.                     | LANNY CAN | 4          | NUNE            | CLEAM           | 1                  |
| 98          | 1951          | 58         | 287000.                     | LARRY CAR | 3          | NONE            | DIATY           | 1                  |
| 90          | 1452          | 57         | 282000.                     | LARRY CAN | 3          | NONE            | DIRIA           | 1                  |
| 99          | 1941          | ₹5         | 110000.                     | LANRY CAN | 4          | NONE            | DIRTY           | 1                  |
| 99          | 1951          | 29         | 128000.                     | LANNY CAR | •          | NONE            | DIRTY           | 1                  |
| 99          | 1452          | 25         | 64000.                      | LARRY CAR | 3          | NONE            | DINTY           | 1                  |
| ••          | 1964          | 78         | 500000.                     | PIPELINE  | •          | NONE            | DIRTY           | 1                  |

TOTAL PLANTS 59
TOTAL BATTERIES 216
TOTAL UVENS 12221.
TOTAL CAPACITY 76625.E+03



Figure 18. Battery data card format.

TABLE 9. PLANT ID CODES

| Plant ID <sup>a</sup> | Company                               |
|-----------------------|---------------------------------------|
| 01                    | Keystone Coke, Conshohocken, Pa.      |
| 02                    | Armco, Middletown, Ohio               |
| 04                    | Armco, Houston, Tex.                  |
| 05                    | Bethlehem, Bethlehem, Pa.             |
| 06                    | Bethlehem, Sparrows Point, Md.        |
| 07                    | Bethlehem, Lackawanna, N.Y.           |
| 08                    | Bethlehem, Johnstown, Pa.             |
| 09                    | Bethlehem, Burns Harbor, Ind.         |
| 10                    | CFI, Pueblo, Colo.                    |
| 11                    | Crucible, Midland, Pa.                |
| 12                    | Empire Detroit, Portsmouth, Ohio      |
| 13                    | Ford, Rouge Works, Detroit, Mich.     |
| 14                    | Granite City, Granite City, Ill.      |
| 15                    | Great Lakes Steel, Detroit, Mich.     |
| 16                    | Inland, East Chicago, Ind.            |
| 17                    | Interlake, South Chicago, Ill.        |
| 18                    | J & L, Pittsburgh, Pa.                |
| 19                    | J & L, Aliquippa, Pa.                 |
| 21                    | Kaiser, Fontana, Calif.               |
| 22                    | Lonestar Steel, Texas                 |
| 24                    | Republic, Mahoning Valley Dist., Ohio |
| 25                    | Republic, Cleveland, Ohio             |
| 27                    | Republic, Central Alloy Dist., Ohio   |
| 28                    | Republic, South Chicago, Ill.         |
| 29                    | Republic, Gulfsteel, Ala.             |
| 31                    | USS, Fairless Hills, Pa.              |
| 32                    | USS, Homestead Clairton, Pa.          |
| 33                    | USS, Lorain, Cuyahoga, Ohio           |
| 36                    | USS, Gary, Ind.                       |
| 39                    | USS, Fairfield, Ala.                  |
| 40                    | USS, Geneva, Utah                     |
| (continued)           |                                       |
|                       | • •                                   |

TABLE 9 (continued)

| Plant ID <sup>a</sup> | Company                               |
|-----------------------|---------------------------------------|
| 41                    | Weirton Steel, Weirton, W. Va.        |
| 42                    | Wheeling Pitt, Steubenville, Ohio     |
| 43                    | Wheeling Pitt, Monesson, Pa.          |
| 44                    | Wisconsin, South Chicago, Ill.        |
| 45                    | YST, Campbell, Youngstown, Ohio       |
| 46                    | YST, East Chicago, Ind.               |
| 48                    | Indiana Gas, Terre Haute, Ind.        |
| 49                    | Allied, Ironton, Ohio                 |
| 50                    | Koppers, Erie, Pa.                    |
| 65                    | Shenango, Neville Island, Pa.         |
| 77                    | Chatanooga Coke & Chem., Tenn.        |
| 81                    | Allied, Buffalo, N.Y.                 |
| 85                    | Allied, Ashland, Ky.                  |
| 86                    | Diamond Shamrock, Painesville, Ohio   |
| 87                    | Eastern Fuel Assoc. Philadelphia, Pa. |
| 88                    | Allied Chemical, Detroit, Mich.       |
| 89                    | Citizens Gas, Indianapolis, Ind.      |
| 90                    | Milwaukee Solvay, Milwaukee, Wis.     |
| 91                    | Donnar Hanna, Buffalo, N.Y.           |
| 92                    | Missouri Coke, St. Louis, Mo.         |
| 93                    | Koppers, St. Paul, Minn.              |
| 94                    | Empire Coke, Holt, Ala.               |
| 95                    | Koppers, Bessemer, Ala.               |
| 96                    | Sharon, Fairmont, W. Va.              |
| 97                    | Jim Walter, Birmingham, Ala.          |
| 98                    | USS Duluth, Minn.                     |
| 99                    | ABC, Tarrant, Ala.                    |

 $<sup>^{\</sup>rm a}$ Plant ID numbers are not sequential.

battery stacks has not been considered. Also, the number of spare hot cars required in a multibattery plant is less in proportion to capacity than the number at an isolated plant having one battery. Such site-specifics are not considered in this project.

### New Versus Existing Batteries

To evaluate projected growth (or decline) in the industry, the user may add battery data cards corresponding to the projected growth, or delete the battery cards for projected retirements.

New battery cards must be filled out even though the data may be speculative. It is not sufficient just to enter simply 10 percent growth; the user must decide, for example, that there will be 10 new batteries by 1985, that they will be 60-oven batteries 6 meters high and that they will be equipped with some specific controls. Only if specific plans for a given plant are known is the plant ID entered. In the case of retirements the user simply removes the battery card from the card deck.

The primary distinction between "new" and "existing" in the model is the use of new or retrofit cost functions.

### Existing Installed Equipment

Columns 21 to 60 of the battery data card (Figure 18) are 20 two-digit fields corresponding to the twenty sources considered. Only 16 are now used. The code numbers to be entered in these fields correspond to the control option codes. The first column of each two digit field contains the desired baseline code and the second column contains the existing control code.

Because the control level (control efficiency and exact control equipment) of a given plant may not be the same as those designated in the options used, the user must be careful to select the code for the control option that most closely corresponds to the existing equipment or control program.

In the computer program, the code is used for one of two purposes:

- 1. To correct total industry cost (or total cost for any given industry subset) by eliminating the cost of a control option for those plants where the option is already in use.
- 2. To allow the use of a control baseline (e.g., SIP) whereby only costs above this baseline are considered. The same baseline can be used for every battery. A single card for all batteries can be used to avoid having to enter the same codes on each of the more than 200 battery cards. This card is designated as Control Card 3, described in Section 2.

As an example of the first purpose, assume Battery 1 has already installed a new larry car for stage charging and has good stage charging practice. The card for this battery would then contain a Code 3 in the charging columns (Column 22). Consequently, in the program to determine the cost of charging controls for this plant, the only costs calculated will be those for controls achieving control levels greater than level 3. "Tearout" costs (i.e., for removal of existing controls) are not considered in the present model.

A more complicated example arises when the existing controls achieve an efficiency close to that described in the options but are represented by different hardware. If a battery already has a shed and scrubber, for example, it is probably better to consider this comparable in achieving a given level of control rather than equivalent to the specific hardware configuration. For this reason, the control options are ordered according to degree of efficiency. This permits the user to select the option that achieves the highest level he considers appropriate. The computer will disregard the cost of all options equal to or less than the option selected for the given battery.

The approach in the second purpose is similar, but the concept is different. In this case the user establishes a baseline of control below which control costs are not considered whether installed or not. For example, if the baseline for

charging control is modified larry cars for stage charging, no costs will be calculated for control options achieving control levels below those of larry car modification. The battery card in this case would contain a Code 2 in the charging columns (Column 21). In the extreme, if the highest control option were selected as the baseline for every source, no costs would be calculated. If the user wanted costs for inspection only, they could be obtained by making a computer run with "uncontrolled" as the baseline.

#### REFERENCES FOR SECTION 6

- 1. Industry Response to Section 308 Effluent Guidelines Questionnaires 1976-1977.
- Pictrucha, W.E., and R.L. Deily. Steel Industry in Brief: Databook USA, 1977. Institute for Iron and Steel Industries, Green Brook, New Jersey.
- 3. Iron & Steel Works Directory of the United States and Canada. American Iron and Steel Institute. 1977.
- 4. Air and Water Compliance Summary for the Iron and Steel Industry. U.S. Environmental Protection Agency, Office of Enforcement. October 20, 1977.
- 5. World Steel Industry Data Handbook, Vol. 1. The United States, 33 Magazine 1978, McGraw Hill, 1221 Avenue of the Americas, New York, New York 10020.
- 6. Kulujian, N.J. By-Product Coke Battery Compliance Evaluation. Prepared for U.S. Environmental Protection Agency, DSSE by PEDCo Environmental, Inc. June 1975. EPA Contract No. 68-02-1321, Task 13.

#### SECTION 7

#### MODEL FORMULATION

The first step in the model is the calculation of total industry control costs. In the discussion of this calculation, mathematical nomenclature has been defined as follows:

| i = the emission sou | rce | (i = | 1 | • | • | • | I | ) |
|----------------------|-----|------|---|---|---|---|---|---|
|----------------------|-----|------|---|---|---|---|---|---|

$$j = the pollutant$$
 ( $j = 1 . . . J$ )

$$n = the specific battery$$
  $(n = 1 . . . N)$ 

E = the annual emissions, in tons/year

C = the annualized cost (or capital cost)

e<sub>iik</sub> = the control efficiency

 $X_n$  = the capacity of battery n in tons coke/year

 $\text{U}_{\text{ij}} = \text{the uncontrolled emission factor in lbs/ton coal}$  Note that for some sources such as coke handling,  $\text{X}_{n}$  actually represents capacity for all batteries in a given plant.

Then  $C_{\mbox{ijkn}}$  represents a specific dollar value calculated from the general cost function:

$$C_{ijkn} = A_{ijk} X_n^B ijk$$

where A = y intercept, B = slope

Note that 
$$C_{ilkn} = C_{i2kn} = C_{i4kn}$$

i.e., the cost of a specific control system does not vary by pollutant.

Similarly, 
$$E_{ijkn} = \left[\frac{(100 - e_{ijk})}{100} (U_{ij}) (X_n/.7)\right] / 2000$$

but, 
$$E_{i1kn} \neq E_{i2kn} \neq E_{i3kn} \neq E_{i4kn}$$

The C and E matrices are calculated from the input datasets. Note that k=1 will represent no additional control. Therefore,  $C_{\mbox{ijln}}=\mbox{zero}$  by definition and

$$E_{iiln} = [(U_{ii})(X_n/.7)] \div 2000$$

The total emission restriction (Mode 2) is entered as an overall percent efficiency, represented by R<sub>j</sub>. This will be converted to  $\rho_j$ , an annual quantity, by the equation:

$$\rho_{j} = (1 - \frac{R_{j}}{100}) \quad (\sum_{n=1}^{N} \sum_{i=1}^{I} E_{ijn, k = 1})$$

The total cost restriction (Mode 3) will be entered as a total dollar amount, T.

Finally, note that not all i exist for every n. Therefore, the C and E matrices are not full.

The next step is to compress the total C and E matrices to a total industry basis, i.e., eliminate the n dimension. Let C' and E' represent the total industry:

$$C'_{ijk} = \sum_{n=1}^{N} C_{ijkn}$$

Again noting that  $C'_{i1k} = C'_{i2k} = C'_{i3k} = C'_{i4k}$ 

Similarly,

$$E'_{ijk} = \sum_{n=1}^{N} E_{ijkn}$$

and 
$$E'_{ijk} \neq E'_{i2k} \neq E'_{i3k} = E'_{i4k}$$

Furthermore, E' can be treated as four separate matrices,  $E'_{ik}$  for j = 1,  $E'_{ik}$  for j = 2, etc.

The data is now reduced to two simple matrices:

C<sub>ik</sub> and E<sub>ik</sub> for each j

To find the optimum combination of controls, consider Mode 2, the restriction being total emissions,  $\rho_j$ , and the objective being to find lowest cost. Another matrix, Y, must now be introduced. The values of Y will be either one or zero. A one will indicate that a control option, k, is selected and a zero will indicate that the control option is not selected. The Y matrix is a mathematical device to solve the optimization and has no significance from an engineering standpoint. For example,

let 
$$Y_{ik} = Y_{14} = 1$$

this means Control Option 4 on Emission Source 1 is part of the optimum solution.

If this is so, then by definition, all other Y's for source l are zero:

$$Y_{11} = Y_{12} = Y_{13} = Y_{15} = Y_{16} = Y_{1k} = 0$$

That is, a source can only be controlled by one option at a time.

The statement of the problem in matrix form is therefore:

Minimize  $\Sigma CY$  for a given j subject to  $\Sigma Y = 1$  for all i and  $\Sigma EY \stackrel{\leq}{\circ} \rho$  for a given j and  $Y \stackrel{\geqslant}{\circ} 0$  for all i

In expanded form:

minimize 
$$C_{11}Y_{11} + C_{12}Y_{12} + \dots + C_{1k}Y_{1k} + C_{21}Y_{21} + \dots + C_{2k}Y_{2k} + \dots + C_{ik}Y_{ik}$$

subject to 
$$Y_{11} + Y_{12} + Y_{13} + \dots + Y_{1k} = 1$$
  
 $Y_{21} + Y_{22} + Y_{23} + \dots + Y_{2k} = 1$ , etc. for each i

and: 
$$E_{11}^{Y}_{11} + E_{12}^{Y}_{12} + \cdots + E_{1k}^{Y}_{1k} + E_{21}^{Y}_{21} + \cdots + E_{2k}^{Y}_{2k} + \cdots + E_{ik}^{Y}_{ik} \stackrel{\leq}{\sim} \rho_{j}$$

and  $Y_{ik} \geqslant 0$  for every i and k

The optimal solution to this problem will be determination of the Y matrix. The Y matrix in turn will define a k value for each i (i.e., a control option for each emission source that will result in the overall minimum cost for meeting a total emission restriction). Note that any given k may equal 1, i.e., no control. In general, the program will select those alternatives which reduce emissions the most and cost the least.

After the optimum solution is found, the Y matrix will be superimposed onto the E matrices for the other pollutants to determine the emissions of the pollutants that were not restricted. To the optimum totals the program will add the costs and emissions for those sources previously excluded from the optimization (by using the No. 2 cards described in Section 1) to get total industry costs and emissions.

The statement for Mode 3 is very similar:

Minimize  $\Sigma EY$ subject to:  $\Sigma CY \le T$ and  $\Sigma Y = 1$ and  $Y \ge 0$ 

The same approach as described above is used in this case also. Operation of the model in Modes 2 and 3 is identical regardless of whether annualized cost or capital cost is the subject of optimization.

The greatest value of the model is its ability to supply rapid answers to "what if" questions. The model has great flexibility, and its user can easily examine its sensitivity to variations in the emission factors and control costs by simply changing the input data.

Controls for any given emission source can be fixed at a predetermined level and the source can thus be removed from the optimization procedure. The battery data base can be set up to represent all batteries or any subset of batteries. For example, furnace coke producers can be separated from foundry coke producers.

#### SECTION 8

#### RESULTS

The function of the model is to calculate emissions and emission control costs and to select a set of controls that will meet a given emission restriction at the lowest cost. Conceptually, this is as if the "bubble concept" were applied to all the coke plants in the United States. Section 2 describes the many variations of the basic scheme.

An example best illustrates the logic of the model. The data base for this example consists of the 216 coke oven batteries presented in Section 6, the uncontrolled emission factors presented in Table 1, and the control options and their efficiencies presented in Table 2. Annualized and capital cost functions associated with the control options are shown in Appendix A.

Figure 19 is a graphic presentation of the capital cost functions for the three control options applicable to Source 1, wet coal charging. These values are based on tons of coke capacity for a 60-oven battery. An increase in the number of ovens would increase the cost because certain elements of the capital cost (e.g., steam lines and number of standpipes) are directly proportional to the number of ovens. Every cost function represented in Appendix A could be plotted as shown on Figure 19.

Figure 20 shows the annualized cost per pound of particulate removed for the same three options. The spacing of the curves is related to both the relative costs of the options and the relative efficiencies. Although Option 3 is more costly than Option 2, the curves are very close because the efficiency of

Option 3 is 99 percent compared with only 80 percent for Option 2. The 99.5 percent efficiency of Option 4, on the other hand, represents an improvement of only 0.5 percent over Option 3, but the cost is much higher. Each option for each source could be analyzed in a similar manner.

Table 10 presents the capital and annualized cost matrix calculated for the present data base. Table 11 presents the uncontrolled emissions matrix. These matrices and the appropriate control efficiencies could be used to generate curves like those in Figures 19 and 20 for each source.

The function of the optimization model is to analyze all such curves and find the lowest cost combinations. In this section, the examples deal with minimizing annualized cost, but the approach is identical for capital cost. Table 12 is the model output for a case of no control on any source. This provides a convenient frame of reference for uncontrolled emission quantities. The table shows that pushing is the largest single source of uncontrolled particulate emissions, although the total of quenching (with clean water and with dirty water) is slightly larger. Charging is by far the largest single source of both BSO and benzene emissions.

Table 13 is the model output to meet a restriction calling for an overall particulate control at least 95 percent efficiency, which requires the highest possible control level on every source except dry coal charging and the byproducts plant. The latter two are excluded from the solution by the model because their contributions to particulate emissions are very low; in fact, particulate emissions from the byproducts plant are zero. Total annualized costs for the industry are \$1,396,000,000 and total capital costs (retrofit) are \$2,887,000,000. It should be noted that the model seeks to minimize annualized costs in the examples presented in this section. In this example the costs do not take into account any control that may already exist, as indicated by the baseline notation in the tables. That is, the costs are theoretical costs based on no controls on any battery.

TABLE 10. TOTAL CAPITAL AND ANNUALIZED COSTS FOR CONTROL OPTIONS (in millions of dollars)

| Source/control option             | Total capital cost | Total annualized cost |
|-----------------------------------|--------------------|-----------------------|
| Wet coal charging                 |                    |                       |
| Modified larry car                | 91                 | 124                   |
| New larry car                     | 304                | 165                   |
| New larry car and second main     | 649                | 254                   |
| Coke pushing                      |                    |                       |
| Controlled coking                 | 0                  | <b>99</b> 3           |
| Shed + ESP with 95% eff.          | 905                | 295                   |
| Shed + scrubber with 95% eff.     | 1277               | <b>4</b> 89           |
| Enclosed hot car                  | 1164               | 314                   |
| Shed + ESP with 99% eff.          | 973                | 307                   |
| Shed + scrubber with 99% eff.     | 1330               | 538                   |
| Quenching, clean water            |                    |                       |
| Conventional baffles              | 7                  | 2.4                   |
| Diverted flow baffles             | 53                 | 14                    |
| Dry quenching                     | 424                | 111                   |
| Doors                             |                    |                       |
| Cleaning and maintenance          | 0                  | 174                   |
| High pressure water cleaning      | 90                 | 189                   |
| Hoods + scrubber with 95% eff.    | 386                | 464                   |
| Hoods + scrubber with 98% eff.    | 439                | 481                   |
| Topside                           |                    |                       |
| Luting and cleaning               | 0                  | 57                    |
| Luting, cleaning, and maintenance | 0                  | 109                   |
| New lids                          | 22                 | 63                    |
| Combustion stack, old             |                    |                       |
| Oven patching                     | 0                  | 89                    |
| Dry ESP with 90. eff.             | 411                | 153                   |
| Dry ESP with 98, eff.             | 544                | 176                   |
| Fabric filter with 98% eff.       | <b>32</b> 3        | 112                   |

(continued)

TABLE 10 (continued)

| Source/control option                                                                                                            | Total capital cost           | Total annualized cost    |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|
| Coke handling<br>Enclosures + fabric filter                                                                                      | 40                           | 17                       |
| Coal preheater Scrubber with 95% eff. Dry ESP with 95% eff. Scrubber with 98% eff. Dry ESP with 99% eff.                         | 11.7<br>10.5<br>12.1<br>12.7 | 9<br>5<br>10<br>6        |
| Coal preparation<br>Enclosures + fabric filter                                                                                   | 29                           | 13                       |
| Coal storage<br>Water spray truck<br>Unloading sprays + spray truck<br>Coal pile sprays                                          | 17<br>30<br>148              | 8<br>11<br><b>69</b>     |
| Pipeline charging<br>Operating and maintenance program                                                                           | o                            | 3                        |
| Redler charging<br>Operating and maintenance program                                                                             | 0                            | 0.7                      |
| Hot larry car charging<br>Operating and maintenance program                                                                      | 0                            | 0.3                      |
| Byproduct plant<br>Maintenance program                                                                                           | 0                            | 17                       |
| Combustion stack, new<br>Oven patching                                                                                           | 0                            | 20                       |
| Quenching, dirty water Conventional baffles Clean water + conventional baffles Clean water + diverted flow baffles Dry quenching | 9<br>278<br>341<br>800       | 3.5<br>168<br>184<br>251 |

105

TABLE 11. TOTAL UNCONTROLLED EMISSIONS (tons/year)

|                            | Pollutant Pollutant |        |     |         |  |  |  |  |  |  |
|----------------------------|---------------------|--------|-----|---------|--|--|--|--|--|--|
| Emission source            | Particulates        | BSO    | BaP | Benzene |  |  |  |  |  |  |
| Wet coal charging          | 49,600              | 54,600 | 100 | 24,800  |  |  |  |  |  |  |
| Coke pushing               | 109,500             | 4,400  | 2   | 330     |  |  |  |  |  |  |
| Quenching with clean water | 41,000              | 41     | 3   | 1       |  |  |  |  |  |  |
| Doors                      | 21,900              | 27,400 | 164 | 1,100   |  |  |  |  |  |  |
| Topside                    | 10,900              | 13,700 | 55  | 274     |  |  |  |  |  |  |
| Combustion stack, old      | 43,800              | 225    | 2   | 0       |  |  |  |  |  |  |
| Coke handling              | 54,700              | 0      | 0   | 0       |  |  |  |  |  |  |
| Coal preheater             | 35,900              | 5,400  | 2   | 71      |  |  |  |  |  |  |
| Coal preparation           | 27,400              | 0      | 0   | 0       |  |  |  |  |  |  |
| Coal storage               | 3,200               | 0      | 0   | 0       |  |  |  |  |  |  |
| Pipeline charging          | 50                  | 60     | a   | 25      |  |  |  |  |  |  |
| Redler charging            | 13                  | 8      | a   | 7       |  |  |  |  |  |  |
| Hot larry car charging     | 11                  | 12     | a   | 5       |  |  |  |  |  |  |
| Byproducts plant           | 0                   | 16,400 | 0   | 10,900  |  |  |  |  |  |  |
| Combustion stack, new      | 2,200               | 10     | a   | 0       |  |  |  |  |  |  |
| Quenching with dirty water | 97,900              | 196    | 10  | 8       |  |  |  |  |  |  |

aLess than one ton per year.



Figure 19. Capital cost of control options for wet coal charging.

Figure 20. Cost per pound of particulate removal for control options for wet coal charging.

## TABLE 12. MODEL OUTPUT FOR BASELINE OF NO CONTROL

#### COKE OVEN OPTIMIZATION

OBJECTIVE: MINIMUM ANNUALIZED COST RESTRICTION: .02 OVERALL EFFICIENCY POLLUTANT: BSO BASE YEAR 1979
BASELINE: ASSUMING NO SIP OR EXISTING CONTROLS

|                         | CONTROLLED EMISSION<br>(LDS/TOW COAL) |        |       |              | HISSIONS         | 3<br>(TOMB/Y | EAR)               |                |                | CONTROLLED COST (MILLION DOLLARS) |              |  |
|-------------------------|---------------------------------------|--------|-------|--------------|------------------|--------------|--------------------|----------------|----------------|-----------------------------------|--------------|--|
| SOURCE                  | TSP                                   | BSO    | BAP   | DEN          | TSP              | BSO          | BAP                | BEN            | CONTROL SCHEME | CAPITAL                           | ANNUAL I ZED |  |
| LARRY CAR CHARGING      | 41'.00                                | 1.1000 | .0020 | .5000        | 49635            | 34599        | 99                 | 24817          | UNCONTROLLED   | .0                                | .0           |  |
| COKE PUSHING            | ₩2.00                                 | .0800  | .0000 | .0060        | 109463           | 4378         | 2                  | 328            | UNCONTROLLED   | .0                                | .0           |  |
| QUENCHING - CLEAN WATER | #1.70                                 | .0017  | .0001 | .0000        | 41049            | 41           | 3                  | 0              | UNCONTROLLED   | .0                                | .0           |  |
| DOORS                   | ■ .40                                 | .5000  | .0030 | .0200        | 21892            | 27365        | 164                | 1094           | UNCONTROLLED   | .0                                | .0           |  |
| TOPSIDE                 | .20                                   | .2500  | .0010 | .0050        | 10946            | 13682        | 54                 | 273            | UNCONTROLLED   | .0                                | -0           |  |
| COMBUSTION STACK - OLD  | 81.30                                 | .0060  | .0001 | .0000        | 48840            | 225          | 2                  | 0              | UNCONTROLLED   | .0                                | .0           |  |
| COKE HANDLING           | #1.00                                 | .0000  | .0000 | .0000        | 54731            | 0            | 0                  | 0              | UNCONTROLLED   | .0                                | .0           |  |
| COAL PREHEATER          | #7.05                                 | 1.0500 | .0004 | .0140        | 35925            | 5350         | 1                  | 71             | UNCONTROLLED   | .0                                | .0           |  |
| COAL PREPARATION        | ₩ .50                                 | .0000  | .0000 | .0000        | 27365            | 0            | 0                  | 0              | UNCONTROLLED   | .0                                | .0           |  |
| COAL STORAGE YARD       | .15                                   | .0000  | .0000 | .0000        | 8209             | 0            | 0                  | 0              | UNCONTROLLED   | .0                                | .0           |  |
| PIPELINE CHARGING       | ● .02                                 | .0190  | .0000 | .0080        | 49               | 59           | 0                  | 24             | UNCONTROLLED   | .0                                | .0           |  |
| REDLER CHARGING         | .01                                   | .0060  | .0000 | .0049        | 13               | 7            | 0                  | 6              | UNCONTROLLED   | .0                                | .0           |  |
| HOT LARRY CAR CHARGING  | ₽ .02                                 | .0190  | .0000 | .0080        | 10               | 12           | 0                  | 5              | UNCONTROLLED   | .0                                | .0           |  |
| BY-PRODUCTS PLANT       | ■ .00                                 | .3000  | .0000 | .2000        | 0                | 16419        | 0                  | 10946          | UNCONTROLLED   | .0                                | .0           |  |
| CONBUSTION STACK - NEW  | .13                                   | .0006  | .0000 | .0000        | 2231             | 10           | 0                  | 0              | UNCONTROLLED   | .0                                | .0           |  |
| QUENCHING - DIRTY WATER | #3.20                                 | .0064  | .0003 | .0003        | 97871            | 195          | 9                  | 7              | UNCONTROLLED   | .0                                | .0           |  |
| *****                   |                                       |        |       | 4 <b>n</b> 4 | F00070           | 100740       | 777                | 11511          |                |                                   |              |  |
| TOTAL UNC.              | 7.3                                   | 2.235  | .006  | .000         | 509238<br>388402 | 76172        | 33 <i>7</i><br>254 | 37577<br>17656 |                | 297.5                             | 197.1        |  |
| EXISTING CONTROL        |                                       |        |       |              |                  | 37.7         |                    | 53.0           |                | 277.3                             | 177.1        |  |
| EXISTING EFFICIENCY     |                                       |        |       |              | 23.6             |              | 24.6<br>337        | 37577          |                |                                   | •            |  |
| BASELINE CONTROL        |                                       |        |       |              | 508237           |              | .0                 |                |                | 0                                 | .0           |  |
| BASELINE EFFICIENCY     |                                       |        |       |              | .0<br>508238     | 122740       |                    | .0<br>37577    |                | .0                                | .0           |  |
| TOTAL CONTROLLED        |                                       |        |       |              |                  |              | 337<br>.0          | 3/3//          |                | .0                                | ٠,٧          |  |
| PERCENT CONTROLLED      |                                       |        |       |              | .0               | .0           | .0                 | .0             |                |                                   |              |  |

EXISTING
TOTAL BATTERIES 216 TOTAL OVENS 12221 TOTAL BATTERIES O TOTAL OVENS
TOTAL CAPACITY 109494267 TONS COAL

76623000 TONS COKE

NEW
TOTAL CAPACITY O TOTAL OVENS COAL
TOTAL CAPACITY O TONS COAL
O TONS COKE

N NOT IN OPTIMIZATION

## TABLE 13. MODEL OUTPUT FOR 95 PERCENT OVERALL PARTICULATE REDUCTION

### COKE OVEN OPTIMIZATION

OBJECTIVE: NININUM ANNUALIZED COST RESTRICTION: 95.0% OVERALL EFFICIENCY POLLUTANT: TSP

BASE YEAR 1979
BASELINE: ASSUMING NO SIP OR EXISTING CONTROLS

|                                |     | (LBS/T | CONTRO<br>ON COAL |       | HISSIONS<br>(TONS/YEAR) |        |            |                |                            | COMTROLLED COST (MILLION DOLLARS) |            |  |
|--------------------------------|-----|--------|-------------------|-------|-------------------------|--------|------------|----------------|----------------------------|-----------------------------------|------------|--|
| SOURCE                         | TSP | 990    | BAP               | DEN   | TSP                     | 990    | BAP        | DEN            | CONTROL SCHEME             | CAPITAL                           | ANNUALIZED |  |
| LARRY CAR CHARGING             | .01 | .0055  | .0000             | .0025 | 248                     | 272    | 0          | 124            | NEW CAR, SECOND MAIN       | 649.3                             | 253.6      |  |
| COKE PUSHINB                   | .22 | .0440  | .0000             | .0033 | 11931                   | 2408   | 1          | 180            | ENCLOSED HOT CAR           | .0                                | .0         |  |
| QUENCHING - CLEAN WATER        | .03 | .0000  | .0000             | .0000 | 820                     | 0      | 0          | 0              | DRY QUENCHING              | 423.9                             | 111.4      |  |
| DOORS                          | .03 | .0810  | .0005             | .0056 | 1466                    | 4433   | 26         | 306            | DOOR HOOD, SCRUBBER 98%    | 439.1                             | 481.1      |  |
| TOPSIDE                        | .01 | .0075  | .0000             | .0002 | 328                     | 410    | 1          | 8              | NEW LIDS & CASTINGS        | 21.8                              | 63.0       |  |
| COMBUSTION STACK - OLD         | .03 | .0030  | .0000             | .0000 | 976                     | 112    | 1          | 0              | BAGHOUSE, 98%              | 323.2                             | 111.6      |  |
| COKE HANDLING                  | .11 | .0000  | .0000             | .0000 | 5965                    | 0      | 0          | 0              | ENCLOSURES + BAGHOUSE      | 40.0                              | 16.5       |  |
| COAL PREHEATER                 | .07 | .5250  | .0002             | .0070 | 359                     | 2675   | . 0        | 35             | ESP 99%                    | 12.7                              | 5.8        |  |
| COAL PREPARATION               | .02 | .0000  | .0000             | .0000 | 820                     | 0      | 0          | 0              | ENCLOSURE + BAGHOUSE - 99% | 29.1                              | 12.7       |  |
| COAL STORAGE YARD              | .02 | .0000  | .0000             | .0000 | 820                     | 0      | 0          | 0              | COAL PILE BPRAYS           | 147.9                             | 68.6       |  |
| PIPELINE CHARBING              | .02 | .0190  | .0000             | .0080 | 49                      | 59     | 0          | 24             | UNCONTROLLED               | .0                                | .0         |  |
| REDLER CHARGING                | .01 | .0060  | .0000             | .0049 | 13                      | 7      | 0          | 6              | UNCONTROLLED               | .0                                | .0         |  |
| NOT LARRY CAR CHARBINS         | .02 | .0190  | .0000             | .0080 | 10                      | 12     | 0          | 5              | UNCONTROLLED               | .0                                | .0         |  |
| BY-PRODUCTS PLANT              | .00 | .3000  | .0000             | .2000 | 0                       | 16419  | 0          | 10946          | UNCONTROLLED               | .0                                | .0         |  |
| COMBUSTION STACK - NEW         | .03 | .0001  | .0000             | .0000 | 446                     | 2      | 0          | 0              | OVEN PATCHING              | .0                                | 20.1       |  |
| QUENCHING - DIRTY WATER        | .03 | .0001  | .0000             | .0000 | 978                     | 1      | 0          | 0              | DRY QUENCHING              | 799.5                             | 251.4      |  |
| TOTAL UNC.<br>Existing Control | 9.3 | 2.235  | .006              | .686  |                         | 76172  | 337<br>254 | 37577<br>17656 |                            | 297.5                             | 197.1      |  |
| EXISTING EFFICIENCY            |     |        |                   |       | 23.6                    | 37.7   | 24.6       | 53.0           |                            |                                   |            |  |
| DASELINE CONTROL               |     |        |                   |       |                         | 122348 | 337        | 37577          |                            | .0                                | .0         |  |
| BASELINE EFFICIENCY            |     |        |                   |       | .0                      | .0     | .0         | .0             |                            | 2004 4                            | 4705 8     |  |
| TOTAL CONTROLLED               |     |        |                   |       | 25238                   |        | 32         | 11638          |                            | 2886.6                            | 1395.8     |  |
| PERCENT CONTROLLEB             |     |        |                   |       | 95.0                    | 78.1   | 90.5       | 69.0           |                            |                                   |            |  |

| EXISTING                              | NEU               |             |   |  |  |  |  |
|---------------------------------------|-------------------|-------------|---|--|--|--|--|
| TOTAL BATTERIES 216 TOTAL OVENS 12221 | TOTAL BATTERIES 0 | TOTAL OVENS | 0 |  |  |  |  |
| TOTAL CAPACITY 109494267 TONS COAL    | TOTAL CAPACITY    | O TOWS COAL |   |  |  |  |  |
| 76623000 TONS COKE                    |                   | O TONS COKE |   |  |  |  |  |

# NOT IN OPTIMIZATION

When dry quenching is selected as the control for quenching emissions, no cost is assigned to the enclosed car option for pushing emissions because the equivalent of an enclosed car is included in the cost of the dry quenching system. For small batteries (less than 100,000 tons of coke per year) further examination of the cost functions for dry quenching is required because they are not necessarily applicable in this small size range. If a shed is selected as the control option for pushing emissions, the cost of door hoods is reduced to the extent that they are not used on the coke-side doors. Otherwise there would be a double accounting of the control cost for coke-side doors.

Cost is overstated when the options selected include a scrubber and wastewater recirculation. This occurs because each battery is treated independently. An example would be a plant with four batteries, on which both door hoods and a wastewater recirculation system are provided for each battery. In such a scheme it is likely that one common water system could be installed to serve all four batteries for less than the cost of four separate water systems. Similarly, if a shed and scrubber were installed for control of pushing emissions and coke-side door emissions and a hood system was installed for pusher-side doors, the water system (and perhaps the scrubber itself) could be designed to handle both sources.

Although the existing model could be modified to address these issues, specific assumptions would be required.

Tables 14, 15, and 16 represent the model output for the same kind of problem except that the control efficiency restrictions are set at 80, 85, and 90 percent, respectively. In these cases, certain sources can use lower-level control schemes, and the total cost is decreased. Figure 21 shows total cost as a function of efficiency, based on the results shown on Tables 13 through 16.

## TABLE 14. MODEL OUTPUT FOR 80 PERCENT OVERALL PARTICULATE REDUCTION

### COKE OVEN OPTIMIZATION

OBJECTIVE: MINIMUM ANNUALIZED COST RESTRICTION: 80.0% OVERALL EFFICIENCY POLLUTANT: TSP BASE YEAR 1979
BASELINE: ASSUMING NO SIP OR EXISTING CONTROLS

|                         |      | /1 BC /T | CONTRO  |       | HISSION |         |      |       | CONTROLLED COST (MILLION DOLLARS) |         |            |
|-------------------------|------|----------|---------|-------|---------|---------|------|-------|-----------------------------------|---------|------------|
|                         |      | (185/1   | UM LUAL | ,     |         | (TOMS/Y | EAKI |       |                                   | (MILEIU | M DOCLARS) |
| SOURCE                  | TSP  | BSO      | BAP     | BEN   | TSP     | 390     | BAP  | BEN   | CONTROL SCHEME                    | CAPITAL | ANNUALIZED |
| LARRY CAR CHARGING      | . 20 | .2200    | .0004   | .1000 | 9927    | 10919   | 19   | 4963  | MODIFIED CAR, STEAM, BOOT         | 90.6    | 124.0      |
| COKE PUSHING            | .22  | .0440    | .0000   | .0033 | 11931   | 2408    | 1    | 180   | SHED + ESP 99%                    | 972.9   | 307.0      |
| QUENCHING - CLEAN WATER | .17  | .0002    | .0000   | .0000 | 4104    | 4       | 0    | 0     | DIVERTED FLOW BAFFLES             | 58.0    | 14.0       |
| 900RS                   | .40  | .5000    | .0030   | .0200 | 21892   | 27365   | 164  | 1094  | UNCONTROLLED                      | .0      | .0         |
| TOPSIDE                 | .20  | .2500    | .0010   | .0050 | 10946   | 13682   | 54   | 273   | UNCONTROLLED                      | .0      | .0         |
| COMBUSTION STACK - OLD  | .03  | .0030    | .0000   | .0000 | 976     | 112     | •    | 0     | BAGHOUSE, 98%                     | 323.2   | 111.6      |
| COKE HANDLING           | .11  | .0000    | .0000   | .0000 | 5965    | 0       | 0    |       | ENCLOSURES + BABHOUSE             | 40.0    | 16.5       |
| COAL PREHEATER          | .07  | .5250    | .0002   | .0070 | 359     | 2675    | 0    | 35    | ESP 991                           | 12.7    | 5.0        |
| COAL PREPARATION        | .02  | .0000    | .0000   | .0000 | 820     | 0       | 0    | 0     | ENCLOSURE + BAGHOUSE - 99%        | 29.1    | 12.7       |
| COAL STORAGE YARD       | .04  | .0000    | .0000   | .0000 | 2052    | 0       | 0    | 0     | UNLOAD SPRAYS + WATER TRUCK       | 29.6    | 11.4       |
| PIPELINE CHARGING       | .02  | .0190    | .0000   | .0080 | 49      | 59      | 0    | 24    | UNCONTROLLED                      | .0      | .0         |
| REDLER CHARGING         | .01  | .0060    | .0000   | .0049 | 13      | 7       | 0    | 6     | UNCONTROLLED                      | .0      | .0         |
| HOT LARRY CAR CHARGING  | .02  | .0190    | .0000   | .0080 | 10      | 12      | 0    | 5     | UNCONTROLLED                      | .0      | .0         |
| BY-PRODUCTS PLANT       | .00  | .3000    | .0000   | .2000 | 0       | 16419   | 0    | 10946 | UNCONTROLLED                      | .0      | .0         |
| COMBUSTION STACK - NEW  | .13  | .0006    | .0000   | .0000 | 2231    | 10      | 0    | 0     | UNCONTROLLED                      | .0      | .0         |
| QUENCHING - DIRTY WATER | .96  | .0019    | .0001   | .0003 | 29361   | 58      | 2    | 7     | BAFFLES                           | 7.3     | 3.5        |
| 707AL 11M6              |      | 0 376    | 001     | 404   | FADO70  | 422340  | •••  | 7     |                                   |         |            |
| TOTAL UNC.              | y.3  | 2.235    | .006    | . 686 | 509238  |         | 337  | 37577 |                                   | 207 6   | 467 (      |
| EXISTING CONTROL        |      |          |         |       | 388402  |         | 254  | 17656 |                                   | 297.5   | 197.1      |
| EXISTING EFFICIENCY     |      |          |         |       | 23.6    | 37.7    | 24.6 | 53.0  |                                   |         | •          |
| BASELINE CONTROL        |      |          |         |       |         | 122348  | 337  | 37577 |                                   | .0      | .0         |
| BASELINE EFFICIENCY     |      |          |         |       | 0.      | .0      | .0   | .0    |                                   | 1848 -  | 404 5      |
| TOTAL CONTROLLED        |      |          |         |       | 100644  | 73737   | 245  | 17539 |                                   | 1565.3  | 606.5      |
| PERCENT CONTROLLED      |      |          |         |       | 80.2    | 39.7    | 27.3 | 53.3  |                                   |         |            |

| EXISTING                              | NEU                     |          |  |  |  |  |  |
|---------------------------------------|-------------------------|----------|--|--|--|--|--|
| TOTAL BATTERIES 216 TOTAL OVENS 12221 | TOTAL BATTERIES O TOTAL | OVENS 0  |  |  |  |  |  |
| TOTAL CAPACITY 109494267 TOMS COAL    | TOTAL CAPACITY 0 T      | ONS COAL |  |  |  |  |  |
| 76623000 TONS COKE                    | 0 т                     | ONS COKE |  |  |  |  |  |

N NOT IN OPTIMIZATION

## TABLE 15. MODEL OUTPUT FOR 85 PERCENT OVERALL PARTICULATE REDUCTION

### COKE OVEN OPTIMIZATION

ODJECTIVE: MINIMUM ANNUALIZED COST RESTRICTION: 85.0% OVERALL EFFICIENCY POLLUTANT: TSP

BASE YEAR 1979
BASELINE: ASSUMING NO SIP OR EXISTING CONTROLS

|                         |      |        | CONTRO  | LLED E | MISSION       | S       |       |       |                                | CONTROLLED COST |            |  |  |
|-------------------------|------|--------|---------|--------|---------------|---------|-------|-------|--------------------------------|-----------------|------------|--|--|
|                         |      | (LBS/T | ON COAL |        |               | (TOMS/) | (EAR) |       |                                |                 | M DOLLARS) |  |  |
| SOURCE                  | TSP  | BSO    | BAP     | BEN    | TSP           | 350     | BAP   | BEN   | CONTROL SCHEME                 | CAPITAL         | ANNUALIZED |  |  |
| LARRY CAR CHARBING      | . 20 | .2200  | .0004   | .1000  | 9927          | 10919   | 19    | 4963  | MODIFIED CAR, STEAM, BOOT      | 90.6            | 124.0      |  |  |
| COKE PUSHING            | .22  | .0440  | .0000   | .0033  | 11931         | 2408    | 1     |       | SHED + ESP 99%                 | 972.9           | 307.0      |  |  |
| QUENCHING - CLEAN WATER | .17  | .0002  | .0000   | .0000  | 4104          | 4       | 0     | 0     | DIVERTED FLOW BAFFLES          | 58.0            | 14.0       |  |  |
| DOORS                   | .40  | .5000  | .0030   | .0200  | 21892         | 27365   | 164   | 1094  | UNCONTROLLED                   | .0              | .0         |  |  |
| TOPSIDE                 | .20  | .2500  | .0010   | .0050  | 10946         | 13682   | 54    | 273   | UNCONTROLLED                   | .0              | .0         |  |  |
| COMBUSTION STACK - OLD  | .03  | .0030  | .0000   | .0000  | 976           | 112     | 1     | 0     | DAGHOUSE, 98%                  | 323.2           | 111.6      |  |  |
| COKE HANDLING           | .11  | .0000  | .0000   | .0000  | 5965          | 0       | 0     | 0     | ENCLOSURES + BAGHOUSE          | 40.0            | 16.5       |  |  |
| COAL PREHEATER          | .07  | .5250  | .0002   | .0070  | 359           | 2675    | 0     | 35    | ESP 99%                        | 12.7            | 5.8        |  |  |
| COAL PREPARATION        | .02  | .0000  | .0000   | .0000  | 820           | 0       | 0     | 0     | ENCLOSURE + BAGHOUSE - 99%     | 29.1            | 12.7       |  |  |
| COAL STORAGE YARD       | .04  | .0000  | .0000   | .0000  | 2052          | 0       | 0     | 0     | UNLOAD SPRAYS + WATER TRUCK    | 29.6            | 11.4       |  |  |
| PIPELINE CHARGING       | .02  | .0190  | .0000   | .0080  | 49            | 59      | 0     | 24    | UNCONTROLLED                   | .0              | .0         |  |  |
| REDLER CHARGING         | .01  | .0060  | .0000   | .0049  | 13            | 7       | 0     | 6     | UNCONTROLLED                   | .0              | .0         |  |  |
| NOT LARRY CAR CHARBING  | .02  | .0190  | .0000   | .0080  | 10            | 12      | 0     | 5     | UNCONTROLLED                   | .0              | .0         |  |  |
| BY-PRODUCTS PLANT       | .00  | .3000  | .0000   | .2000  | 0             | 16419   | 0     | 10946 | UNCONTROLLED                   | .0              | .0         |  |  |
| COMBUSTION STACK - NEW  | .13  | .0006  | .0000   | .0000  | 2231          | 10      | 0     | 0     | UNCONTROLLED                   | .0              | .0         |  |  |
| QUENCHING - DIRTY WATER | .16  | .0010  | .0000   | 1000.  | 4893          | 29      | 1     | 1     | CLEAN WATER, BIV. FLOW BAFFLES | 341.1           | 183.6      |  |  |
| ••••                    |      |        | •••     |        | <b>500070</b> | 400740  |       | ****  |                                |                 |            |  |  |
| TOTAL UNC.              | 9.3  | 2.235  | .006    | . 686  | 508238        |         | 337   | 37377 |                                | 207 5           |            |  |  |
| EXISTING CONTROL        |      |        |         |        | 388402        |         | 254   | 17656 |                                | 297.5           | 197.1      |  |  |
| EXISTING EFFICIENCY     |      |        |         |        | 23.6          | 37.7    | 24.6  | 53.0  |                                |                 | •          |  |  |
| BASELINE CONTROL        |      |        |         |        |               | 122348  | 337   | 37577 |                                | .0              | .0         |  |  |
| BASELINE EFFICIENCY     |      |        |         |        | .0            | .0      | .0    | .0    |                                |                 | 30/ /      |  |  |
| TOTAL CONTROLLED        |      |        |         |        | 76176         | 73707   | 244   | 17533 |                                | 1897.1          | 786.6      |  |  |
| PERCENT CONTROLLED      |      |        |         |        | 85.0          | 39.8    | 27.6  | 53.3  |                                |                 |            |  |  |

| EXISTING                              | NEU               |             |   |  |  |  |  |
|---------------------------------------|-------------------|-------------|---|--|--|--|--|
| TOTAL BATTERIES 216 TOTAL OVERS 12221 | TOTAL BATTERIES 0 | TOTAL OVENS | 0 |  |  |  |  |
| TOTAL CAPACITY 109494267 TOWS COAL    | TOTAL CAPACITY    | O TONS COAL |   |  |  |  |  |
| 76623000 TONS COKE                    |                   | O TONS COKE |   |  |  |  |  |

N NOT IN OPTIMIZATION

## TABLE 16. MODEL OUTPUT FOR 90 PERCENT OVERALL PARTICULATE REDUCTION

#### COKE OVEN OPTIMIZATION

OBJECTIVE: MINIMUM ANNUALIZED COST RESTRICTION: 90.0% OVERALL EFFICIENCY POLLUTANT: TSP

BASE YEAR 1979
BASELINE: ASSUMING NO SIP OR EXISTING CONTROLS

|                                        |     |        | CONTRO  | LLED E | MISSION     | S             |           |             |                             | CONTROLLED COST |            |  |
|----------------------------------------|-----|--------|---------|--------|-------------|---------------|-----------|-------------|-----------------------------|-----------------|------------|--|
|                                        |     | (LBS/T | ON COAL | .)     |             | (TOMS/)       | (EAR)     |             |                             |                 | N BOLLARS) |  |
| SOURCE                                 | TSP | BSO    | BAP     | BEN    | TSP         | 890           | BAP       | BEN         | CONTROL SCHEME              | CAPITAL         | ANNUALIZED |  |
| LARRY CAR CHARGING                     | .01 | .0110  | .0000   | .0050  | 496         | 545           | 0         | 248         | NEW CAR, STEAM, BOOT        | 303.6           | 164.7      |  |
| COKE PUSHING                           | .23 | .0408  | .0000   | .0031  | 12366       | 2234          | 1         | 167         | ENCLOSED HOT CAR            | 429.2           | 135.4      |  |
| QUENCHING - CLEAN WATER                | .17 | .0002  | .0000   | .0000  | 4104        | 4             | 0         | 0           | DIVERTED FLOW BAFFLES       | 58.0            | 14.0       |  |
| DOORS                                  | .40 | .5000  | .0030   | .0200  | 21892       | 27365         | 164       | 1094        | UNCONTROLLED                | .0              | .0         |  |
| TOPSIDE                                | .01 | .0075  | .0000   | .0002  | 328         | 410           | 1         | 8           | NEW LIDS & CASTINGS         | 21.8            | 63.0       |  |
| COMBUSTION STACK - OLD                 | .03 | .0030  | .0000   | .0000  | 976         | 112           | 1         | 0           | BAGHOUSE, 98%               | 323.2           | 111.6      |  |
| COKE HANDLING                          | .11 | .0000  | .0000   | .0000  | 5965        | 0             | 0         | 0           | ENCLOSURES + DAGHOUSE       | 40.0            | 16.5       |  |
| COAL PREHEATER                         | .07 | .5250  | .0002   | .0070  | 359         | 2675          | 0         | 35          | ESP 99%                     | 12.7            | 5.8        |  |
| COAL PREPARATION                       | .02 | .0000  | .0000   | .0000  | 820         | 0             | 0         | 0           | ENCLOSURE + BAGHOUSE - 99%  | 29.1            | 12.7       |  |
| COAL STORAGE YARD                      | .04 | .0000  | .0000   | .0000  | 2052        | 0             | 0         | 0           | UNLOAD SPRAYS + WATER TRUCK | 29.6            | 11.4       |  |
| PIPELINE CHARGINB                      | .02 | .0190  | .0000   | .0080  | 49          | 59            | 0         | 24          | UNCONTROLLED                | .0              | .0         |  |
| REDLER CHARGING                        | .01 | .0060  | .0000   | .0049  | 13          | 7             | 0         | 6           | UNCONTROLLED                | .0              | .0         |  |
| HOT LARRY CAR CHARGING                 | .02 | .0190  | .0000   | .0080  | 10          | 12            | 0         | 5           | UNCONTROLLED                | .0              | .0         |  |
| BY-PRODUCTS PLANT                      | .00 | .3000  | .0000   | .2000  | 0           | 16419         | 0         | 10946       | UNCONTROLLED                | .0              | .0         |  |
| COMBUSTION STACK - NEW                 | .03 | .0001  | .0000   | .0000  | 446         | 2             | 0         | 0           | OVEN PATCHING               | .0              | 20.1       |  |
| QUENCHING - DIRTY WATER                | .03 | .0001  | .0000   | .0000  | 978         | 1             | 0         | 0           | DRY QUENCHING               | 799.5           | 251.4      |  |
| ************************************** |     | 2 215  | 221     | 404    | E00270      | 122740        |           | 17877       |                             |                 |            |  |
| TOTAL UNC.                             | 7.3 | 2.235  | .006    | .000   | 508238      |               | 337       | 37577       |                             | 207 €           | 407.4      |  |
| EXISTING CONTROL                       |     |        |         |        |             | 76172<br>37.7 | 254       | 17656       |                             | 297.5           | 197.1      |  |
| EXISTING EFFICIENCY                    |     |        |         |        | 23.6        |               | 24.6      | 53.0        |                             | •               |            |  |
| DASELINE CONTROL                       |     |        |         |        |             | 122348        | 337       | 37577       |                             | .0              | .0         |  |
| BASELINE EFFICIENCY                    |     |        |         |        | .0<br>50862 | .0<br>49851   | .0<br>170 | .0<br>12538 |                             | . 2046.8        | 004 4      |  |
| TOTAL CONTROLLED                       |     |        |         |        | 90.0        | 59.3          |           |             |                             | , 2V40.8        | 806.6      |  |
| PERCENT CONTROLLED                     |     |        |         |        | 70.0        | JY.3          | 49.6      | 66.6        |                             |                 |            |  |

| EXISTINO                              | NEU                           |   |  |  |  |  |  |
|---------------------------------------|-------------------------------|---|--|--|--|--|--|
| TOTAL BATTERIES 216 TOTAL OVENS 12221 | TOTAL BATTERIES 0 TOTAL OVENS | 0 |  |  |  |  |  |
| TOTAL CAPACITY 109494267 TOMS COAL    | TOTAL CAPACITY 0 TONS COAL    |   |  |  |  |  |  |
| 76623000 TOWS COKE                    | O TOWS COKE                   |   |  |  |  |  |  |

# NOT IN OPTIMIZATION



Figure 21. Total annualized cost as a function of overall efficiency.

Clearly these examples represent only a few of the cases that can be evaluated. Furthermore, the results for other pollutants and emission factors, control cost functions, and battery subsets have not been examined. These are among the many possibilities that remain for the users of the model.

### APPENDIX A

# EXAMPLE COMPUTER PRINTOUTS FOR COST FUNCTIONS PRESENTLY INCLUDED IN MODEL

Complete and detailed printouts for each control option have been provided to the Project Officer as data supplements for the three plant sizes. Table A-l is a summary of all the cost functions. This appendix also includes summary pages for each control option for the large plant. Each set of pages is arranged in ascending order according to source number and control option number (as indicated at the top of every page). The first page contains general information and the second page describes the control system. The third page summarizes the capital cost (if applicable) and the fourth page summarizes the annualized cost.

TABLE A-1. COST FUNCTION COEFFICIENTS FOR CONTROL OPTIONS<sup>a</sup> (cost in fourth quarter 1978 dollars)

|                                    |          |           |        | <u>stallation</u> , |        |             |            | stallation  |        |
|------------------------------------|----------|-----------|--------|---------------------|--------|-------------|------------|-------------|--------|
| Source control option              | Basis    | Capital   | cost   | Annualize           |        | Capita      |            | Annualize   |        |
| fi<br>X vi                         |          |           |        | coefficient         |        | coefficient |            | coefficient |        |
| - <del></del>                      | X value  | Α         | В      | A                   | В      | A           | В          | A           | В      |
| Wet coal charging                  | Battery  |           | i      |                     |        |             |            |             |        |
| Modified larry car                 | 1        | 290,539.2 | 0.0250 | 227,751.9           | 0.0762 | 319,187.0   | 0.0251     | 230,194.8   | 0.0761 |
| New larry car                      |          | 2,784.7   | 0.4882 | 68,022.8            | 0.1934 | 3,064.5     | 0.4882     | 63,015.2    | 0.2014 |
| New larry car & second main        | 1        | 326,894.4 | 0.1935 | 341,620.2           | 0.1117 | 293,877.1   | 0.2046     | 320,512.5   | 0.1178 |
| Coke pushing                       | Battery  |           |        |                     | ļ      |             |            |             |        |
| Controlled coking                  |          | l 0       | 1 0    | 25.7                | 0.9593 | 0           | 0          | 25.7        | 0.9593 |
| Shed and ESP, 95%                  |          | 17,498.8  | 0.4228 | 3,177.5             | 0.4737 | 22,052.2    | 0.4141     | 3,659.2     | 0.4670 |
| Shed and scrubber, 95%             |          | 25,028.5  | 0.4223 | 7,752.5             | 0.4439 | 30,128.9    | 0.4166     | 8,519.4     | 0.4403 |
| Enclosed hot car                   |          | 423,778.8 | 0.1938 | 70,214.2            | 0.2354 | 466,163.3   | 0.1938     | 76,212.7    | 0.2332 |
| Shed and ESP, 99%                  | i        | 14,710.7  | 0.4422 | 2,907.6             | 0.4836 | 18,452.7    | 0.4337     | 3,345.8     | 0.4771 |
| Shed and scrubber, 99%             |          | 23,357.7  | 0.4310 | 5,243.8             | 0.4823 | 28,061.2    | 0.4254     | 5,825.5     | 0.4776 |
| Quenching, clean water             | Plant    |           |        |                     |        |             | <b> </b> . |             |        |
| Conventional baffles               | 1        | 1.7       | 0.8412 | 0.4                 | 0.8750 | 2.1         | 0.8412     | 0.4         | 0.8707 |
| Diverted flow baffles              | i        | 82.6      | 0.7119 | 9.5                 | 0.7714 | 107.5       | 0.7119     | 12.7        | 0.7621 |
| Dry quenching <sup>b</sup>         |          | 771.8     | 0.7065 | 87.6                | 0.7683 | 848.9       | 0.7065     | 96.8        | 0.7651 |
| • ,                                | <b>\</b> | / //      | 0.7003 | , 07.0              | 0.7003 | ) 040.3     | 0.7003     | , ,,,,      | 0.7031 |
| loors .                            | Battery  | 1         | l      | }                   |        | ì           | 1          |             | i      |
| Cleaning and maintenance           | l        | 0         | 0      | 804,801.2           | 0      | 0           | 0          | 804,801.2   | 0      |
| High pressure water cleaning       |          | 414,499.8 | 0      | 876,701.5           | 0      | 414,499.8   | 0          | 876,701.5   | 0      |
| Door hoods, scrubber, 95,          | 1        | 18,558.0  | 0.3453 | 954,615.0           | 0.0624 | 21,613.0    | 0.3487     | 880,426.2   | 0.0708 |
| Door hoods, scrubber, 98%          | 1        | 21,562.1  | 0.3441 | 879,789.9           | 0.0715 | 25,298.2    | 0.3465     | 812,304.1   | 0.0800 |
| Door hoods, scrubber, 95 one side  |          | 13,431.0  | 0.3409 | 106,371.0           | 0.0431 | 15,000.0    | 0.3443     | 998,158.0   | 0.0496 |
| Door hoods, scrubber, 98, one side | 1        | 11,682.0  | 0.3620 | 863,212.0           | 0.0614 | 13,625.0    | 0.3638     | 808,202.0   | 0.0682 |
| opside                             | Battery  |           |        |                     |        | ļ           |            |             |        |
| Luting and cleaning                | 1        | 0         | 0      | 264,900.1           | 0      | 0           | 0          | 264,900.1   | 0      |
| Luting, cleaning, and maintenance  | 1        | 0         | 0      | 503,300.4           | 0      | 0           | 0          | 503,300.4   | 0      |
| New lids, luting, and cleaning     |          | 81,100.0  | 0      | 300,799.9           | 0      | 105,399.9   | 0          | 304,299.8   | 0      |
| ombustion stack, old               | Battery  |           |        |                     |        | }           |            |             | }      |
| Oven patching                      | 1        | 0         | 0      | 503,300.4           | 0      | 0           | 0          | 503,300.4   | 0      |
| Dry ESP, 90%                       | I        | 2,534.3   | 0.5283 | 5,373.4             | 0.3994 | 2,976.1     | 0.5306     | 5,061.8     | 0.4101 |
| Dry ESP, 98%                       | l        | 2,609.3   | 0.5484 | 3,989.6             | 0.4333 | 3,085.1     | 0.5500     | 3,800.7     | 0.4440 |
| Fabric filter, 98%                 | 1        | 418.3     | 0.6518 | 551.5               | 0.5543 | 515.9       | 0.6504     | 546.8       | 0.5616 |

(continued)

TABLE A-1 (continued)

|                                                                                        |                |                                          |                                                  | stallation                                     |                                      |                                          |                                      | stallation                                    |                                      |
|----------------------------------------------------------------------------------------|----------------|------------------------------------------|--------------------------------------------------|------------------------------------------------|--------------------------------------|------------------------------------------|--------------------------------------|-----------------------------------------------|--------------------------------------|
| Source control option                                                                  | Basis          |                                          |                                                  | Annualized cost coefficient                    |                                      | Capital cost<br>coefficient              |                                      | Annualiz                                      |                                      |
|                                                                                        | for<br>X value |                                          | T R                                              | COETTI                                         | Clent<br>B                           | Coeff11                                  | Cient<br>B                           | coeffi<br>A                                   | cient<br>B                           |
|                                                                                        |                |                                          | <del>                                     </del> |                                                |                                      | <del></del>                              |                                      | <del></del>                                   | В                                    |
| Coke handling<br>Enclosures and fabric filters                                         | Plant          | 196.0                                    | 0.5789                                           | 111.2                                          | 0.5612                               | 207.7                                    | 0.5823                               | 112.9                                         | 0.5629                               |
| Coal preheater Scrubber, 95% Dry ESP, 95% Scrubber, 98% Dry ESP, 99%                   | Battery        | 2,083.4<br>1,869.5<br>2,051.3<br>1,944.9 | 0.4691<br>0.4688<br>0.4724<br>0.4799             | 131,626.3<br>52,969.1<br>102,188.8<br>41,863.8 | 0.1515<br>0.1785<br>0.1719<br>0.2006 | 2,244.9<br>2,007.5<br>2,211.2<br>2,095.3 | 0.4704<br>0.4702<br>0.4737<br>0.4811 | 123,839.7<br>49,467.6<br>96,494.4<br>38,805.0 | 0.1574<br>0.1855<br>0.1755<br>0.2084 |
| Coal preparation<br>Enclosures and fabric filter                                       | Plant          | 682.6                                    | 0.4686                                           | 2,893.9                                        | 0.3108                               | 693.2                                    | 0.4746                               | 2,710.6                                       | 0.3180                               |
| Coal storage Water spray truck Water spray truck and unloading sprays Coal pile sprays | Plant          | 159,450.1<br>314,191.3<br>42.5           | 0.0341<br>0.0245<br>0.7780                       | 76,052.9<br>101,422.0<br>13.4                  | 0.0428<br>0.0443<br>0.8097           | 179,919.7<br>372,093.4<br>53.3           | 0.0336<br>0.0231<br>0.7695           | 79,334.9<br>110,347.1<br>14.8                 | 0.0422<br>0.0424<br>0.8055           |
| Pipeline charging<br>Operating and maintenance program                                 | Battery        | 0                                        | 0                                                | 539,800.0                                      | 0                                    | 0                                        | 0                                    | 593,800.0                                     | 0                                    |
| Redler charging<br>Operating and maintenance program                                   | Battery        | 0                                        | 0                                                | 358,100.3                                      | 0                                    | 0                                        | 0                                    | 358,100.3                                     | 0                                    |
| Hot larry car charging<br>Operating and maintenance program                            | Battery        | 0                                        | 0                                                | 264,900.1                                      | 0                                    | 0                                        | 0                                    | 264,900.1                                     | 0                                    |
| Byproducts plant<br>Maintenance program                                                | Plant          | 0                                        | 0                                                | 300,000.0                                      | 0                                    | 0                                        | 0                                    | 300,000.0                                     | 0                                    |
| Combustion stack, new oven patching                                                    | Battery        | 0                                        | 0                                                | 503,300.4                                      | 0                                    | 0                                        | 0                                    | 503,300.4                                     | 0                                    |
| Quenching, dirty water Conventional baffles Conventional baffles and clean water       | Plant          | 1.7                                      | 0.8412                                           | 0.3                                            | 0.8944                               | 2.1                                      | 0.8412                               | 0.4                                           | 0.8888<br>0.6724                     |
| water<br>Diverted flow baffles and clean<br>water<br>Dry quenching <sup>C</sup>        |                | 11,753.1                                 | 0.4319                                           | 348.3<br>352.8<br>838.3                        | 0.6848<br>0.6894<br>0.6503           | 21,656.8<br>13,599.2                     | 0.4328                               | 436.3<br>440.6<br>967.5                       | 0.6724<br>0.6779<br>0.6448           |

a Cost = AXB; X = tons of coke/year.
 b Annualized cost does not account for potential steam credit.
 c Annualized cost does not account for potential steam credit except for steam used in water treatment.

## INDEX TO COST SHEETS

| Source                                                                                                                 | <u>Option</u>                                  | Page                                                                          |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------|
| Larry car charging                                                                                                     | 2 3                                            | A-5<br>A-9                                                                    |
| Coke pushing                                                                                                           | 4<br>2<br>3<br>4<br>5<br>6                     | A-13<br>A-17<br>A-20<br>A-24<br>A-28<br>A-32                                  |
| Quenching, clean water                                                                                                 | 7                                              | A-36<br>A-40<br>A-44<br>A-48                                                  |
| Doors                                                                                                                  | 2<br>3<br>4<br>2<br>3<br>4<br>5                | A-52<br>A-55<br>A-59<br>A-63<br>A-67                                          |
| Topside                                                                                                                | 7<br>2<br>3<br>4<br>2<br>3                     | A-71<br>A-75<br>A-78<br>A-81                                                  |
| Combustion stack, old                                                                                                  | 4                                              | A-85<br>A-88<br>A-92<br>A-96                                                  |
| Coke handling<br>Coal preheater                                                                                        | 5<br>2<br>2<br>3<br>4<br>5<br>2<br>2<br>3      | A-100<br>A-104<br>A-108<br>A-112                                              |
| Coal preparation<br>Coal storage                                                                                       | 5<br>2<br>2<br>3<br>4                          | A-116<br>A-120<br>A-124<br>A-128<br>A-132                                     |
| Pipeline charging Redler charging Hot larry car charging Byproducts plant Combustion stack, new Quenching, dirty water | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>3<br>4<br>5 | A-136<br>A-139<br>A-142<br>A-145<br>A-148<br>A-151<br>A-154<br>A-158<br>A-162 |

|                                       |                                        |                                         |                        |             | TION  |
|---------------------------------------|----------------------------------------|-----------------------------------------|------------------------|-------------|-------|
| PPSES:                                | 501.                                   | LARRY CAR                               | CHARGING               | COKE        | 5     |
| CAPACII                               | Υ:                                     | .708                                    | MILLION TUNS/          | YEAR        |       |
| PARTICL                               | LATE                                   |                                         |                        |             |       |
|                                       |                                        | 1.000000                                | LBS/TON COAL           |             |       |
|                                       |                                        |                                         | LBS/TON CUAL           |             | 80.02 |
|                                       |                                        |                                         | LBS/HR                 |             |       |
| <b>BS</b> 0                           | ······································ |                                         |                        |             |       |
|                                       | DAD IN:                                | 1.100000                                | LBS/TON COAL           |             |       |
| AL                                    | LOWABLE                                | 000005. :                               | LBS/TON COAL           | EFFICIENCY: | 80.0% |
|                                       |                                        | 25.41                                   |                        |             |       |
| BAP                                   |                                        |                                         |                        |             |       |
| LC                                    | AD IN:                                 | .002000                                 | LBS/TON COAL           |             |       |
| AL                                    | LOWABLE                                | : .000400                               | LBS/TON COAL           | EFFICIENCY: | 80.0% |
|                                       |                                        | .05                                     | LBS/HK                 |             |       |
| BENZENE                               |                                        |                                         |                        |             |       |
|                                       |                                        |                                         | LBS/TON COAL           |             |       |
| AL                                    | LOWABLE                                |                                         | LBS/TON COAL<br>LBS/HR | EFFICIENCY: | 80.0% |
|                                       |                                        |                                         |                        |             |       |
| DUST CO                               | LLECTED                                | PER DAY:                                | 1.1 TONS               | DRY)        |       |
| TEMP ()                               | T OF PR                                | DCESS:                                  | 180. F                 |             |       |
|                                       |                                        | ATURE:                                  | 180. F                 |             |       |
|                                       | .OW:                                   |                                         | 70. F                  |             |       |
| ACFM FL                               | .Ow:                                   | 0. AT                                   | 180. F                 |             |       |
| L/G RAT                               | 10:                                    |                                         | . 0                    |             |       |
|                                       | · -                                    | FLOW:                                   |                        |             |       |
|                                       | WATER                                  | -                                       | 0. GPM                 |             |       |
| SUSPEND                               | ED SULI                                | DS OUT:                                 | 0. MG/L                | %SOLIDS:    | .0    |
|                                       |                                        |                                         |                        |             |       |
|                                       |                                        |                                         |                        |             |       |
|                                       |                                        |                                         |                        |             |       |
|                                       |                                        |                                         |                        | •           |       |
| · · · · · · · · · · · · · · · · · · · |                                        |                                         |                        |             |       |
|                                       |                                        |                                         |                        |             |       |
|                                       |                                        | *************************************** |                        |             |       |
|                                       |                                        |                                         |                        |             |       |
|                                       |                                        |                                         |                        |             |       |

A-5

| PPSES: 501. LARRY CAR CHA                                | RGING COKE 2              |
|----------------------------------------------------------|---------------------------|
|                                                          | ·                         |
| CONTRUL SYSTEM CONFIGURATION                             | ı:                        |
|                                                          |                           |
| LARRY CAR<br>LEVELING BAR SMOKE SEAL                     |                           |
| STEAM SUPPLY                                             |                           |
|                                                          |                           |
| FEET OF ADDITIONAL DUCT:                                 | 0. DIAMETER: 0.           |
| TOTAL PRESSURE DROP:<br>0 FANS & 0. HP EACH              | 0. INCHES                 |
| O FANS & O. HP EACH                                      | SPARE FAN CAPACITY: 0.%   |
| OPERATING HOURS AT FULL HP: OPERATING HOURS AT REDUCED H |                           |
| STACK HEIGHT:                                            | IP: 0.<br>0. DIAMETER: 0. |
| NO. OF OVENS                                             | 60.                       |
| OVEN HEIGHT                                              | 6.0 METERS                |
| OVEN VOLUME                                              | 1348. CUBIC FEET          |
| TONS COKE/PUSH AVG. COKING TIME, HRS.                    | 24.<br>17.5               |
| NU. CYCLES/DAY                                           | 82.                       |
|                                                          | 50. LBS/CUBIC FT.         |
| YIELD                                                    | .70                       |
| TUNS COAL/YEAR                                           | 1011967.                  |
|                                                          |                           |
|                                                          |                           |
|                                                          |                           |
|                                                          |                           |
|                                                          |                           |
|                                                          |                           |
|                                                          |                           |
|                                                          |                           |
|                                                          |                           |
|                                                          |                           |
|                                                          |                           |
|                                                          |                           |
|                                                          |                           |
|                                                          |                           |
|                                                          | •                         |
|                                                          |                           |
|                                                          |                           |
|                                                          |                           |
|                                                          |                           |
|                                                          |                           |
|                                                          |                           |
| <u> </u>                                                 |                           |
|                                                          |                           |

## CAPITAL CUST:

|                                    |           |      | OPTION       |              |                                        |     |
|------------------------------------|-----------|------|--------------|--------------|----------------------------------------|-----|
| PPSES: 501. LARRY CAR CHARGING     | COI       | KE   | 5            |              |                                        |     |
| CAPACITY:                          | S/YEAR    |      |              |              |                                        |     |
|                                    |           |      |              |              |                                        |     |
| TOTAL COST (COST BASIS IS 110.00)  | X OF JUNE | 1977 | DOLLARS      | FOR          | 4078                                   | COS |
| CATEGORY                           | COST IN   | DOLL | ARS          | ************ | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |     |
| *** DIRECT COST ***                |           |      |              |              |                                        |     |
| EQUIPMENT OR MATERIAL              | 110500.   |      |              |              |                                        |     |
| INSTRUMENTATION                    | 0.        |      |              |              |                                        |     |
| PIPING                             | 15000.    |      |              |              |                                        |     |
| ELECTRICAL                         | 7500.     |      |              |              |                                        |     |
| FOUNDATIONS                        | 0.        |      |              |              |                                        |     |
| STRUCTURAL                         |           |      |              |              |                                        |     |
| SITE WORK                          | 0.        |      |              |              |                                        |     |
| INSULATION                         | 18100.    |      |              |              |                                        |     |
| PROTECTIVE CUATING BUILDINGS       | 400.      |      |              |              |                                        |     |
| EQUIPMENT/MATERIAL LABOR           |           |      |              |              |                                        |     |
| DIRECT COST SUBTOTAL               |           |      | 4200.        |              |                                        |     |
|                                    |           |      | 7.5.7.4      |              |                                        |     |
| *** INDIRECT CUST ***              |           |      |              |              |                                        |     |
| FIELD OVERHEAD                     | 30400.    |      |              |              |                                        |     |
| CONTRACTORS FEE                    | 17900.    |      |              |              |                                        |     |
| ENGINEERING                        | 51600.    |      |              |              |                                        |     |
| FREIGHT                            |           |      | <del> </del> |              |                                        |     |
| OFFSITE WORK                       | 0.        |      |              |              |                                        |     |
| TAXES                              | 8200.     |      |              |              |                                        |     |
| SHAKEDUWN                          | 4600.     |      |              |              |                                        |     |
| SPARES                             | 5600.     |      |              |              |                                        |     |
| CONTINGENCY INDIRECT COST SUBTOTAL | 65200.    |      | 5900.        |              |                                        |     |
| INDIAELI COSI SUBIDIAL             |           |      | 27VX         | <del></del>  | ·                                      |     |
| INTEREST DURING INSTALLATION       | DN        | 1    | 6700.        |              |                                        |     |
| TOTAL COST                         |           | 40   | 6800.        |              |                                        |     |
| TOTAL COST WITH RETROFIT           |           | 44   | 7500.        |              |                                        |     |
|                                    |           |      |              |              | · · · · · · · · · · · · · · · · · · ·  | _   |
|                                    |           |      |              | <del></del>  |                                        |     |
|                                    |           |      |              |              |                                        |     |
|                                    |           |      |              |              |                                        |     |
|                                    |           |      |              |              |                                        |     |
|                                    |           |      |              |              |                                        |     |
|                                    |           |      |              | <del>-</del> | <del></del>                            |     |
|                                    |           |      |              |              |                                        |     |
|                                    |           |      |              |              |                                        |     |

|                             |                                   | UNITS OPTION         |                   |
|-----------------------------|-----------------------------------|----------------------|-------------------|
| PPSES: 501. LA              | RRY CAR CHARGING                  | COKE 5               |                   |
| CAPACITY:                   | .708 MILLION TOP                  | NS/YEAR              | <del></del>       |
| CATEGORY                    | QUANTITY                          | RATE                 | ANNUAL COST       |
|                             | *** UTILI                         | IES ***              |                   |
| WATER                       | 0. MGAL/YR                        | \$ .1595/1000 GAL    |                   |
| ELECTRICITY                 | O. KWH/YR                         | \$ .0266/KWH         | 0.                |
| STEAM                       | 17001. MLBS/YR                    | 5 4.0920/MLBS        | 69600.            |
| FUEL                        | U. GAL/YR                         | \$ .4180/GAL         | 0.                |
|                             | *** OPERATING                     | LABOR ***            |                   |
| DIRECT                      | 8760. HRS/YR                      | \$14.34/HR           | 125700. (         |
| SUPERVISION                 | 1752. HRS/YR                      | \$17.20/HR           | 30100. (          |
|                             | *** MAINTENANCE                   | & SUPPLIES ***       |                   |
| DIRECT LABOR                | 5200. HRS/YR                      |                      | 74600. (          |
| SUPERVISION                 | 1040. HRS/YR                      | \$17.20/HR           | 17900. (          |
| MATERIALS                   |                                   |                      | 36700. (          |
| SUPPLIES                    |                                   |                      | 19400. (          |
| WATER TREATMENT SOLID WASTE |                                   |                      | 0.                |
| DISPOSAL                    | O TONZYP                          | \$ 8.25/TON          | 0.                |
| DISTOOKL                    | V. 1017 TR                        | 3 0 E 37 TON         | V •               |
| DIRECT OPERAT               | ING COST                          |                      | 374000.           |
| PAYROLL OVERH               | EAD =20.0% OF A+B+0               | ;+D                  | 49700.            |
| PLANT UVERHEA               | D =50.0% OF A+B+C+C               | )+E+F                | 152200.           |
| TOTAL OPERATI               |                                   |                      | <b>5</b> 75900.   |
|                             | T IN DOLLARS PER TO               |                      | .81               |
|                             |                                   | ON OF DUST COLLECTED | 1422.72           |
|                             | T AS PERCENT OF CAR               | PITAL COST           | 128.7             |
|                             | TIME IN WEEKS E OF SYSTEM IN YEAF |                      | <u>52.</u><br>25. |
| KWH PER TON                 |                                   | <b>(3</b>            | •0                |
|                             | ERY (11.02% OF TUTA               | LI CAPITAL)          | 49300.            |
|                             | N OVERHEAD ( 2.0%                 |                      | 9000.             |
|                             | S & INS. ( 2.0% OF                |                      | 9000.             |
|                             | ZED COST - RETROFIT               |                      | 643200.           |
|                             | - NEW                             |                      | 636900.           |

|                                                |                                         |                         |                                               | UNITS OF    |               |
|------------------------------------------------|-----------------------------------------|-------------------------|-----------------------------------------------|-------------|---------------|
| PPSES:                                         | 501.                                    | LARRY CAR               | CHARGING                                      | COKE        | 3             |
| CAPACI                                         | TY:                                     | .708                    | MILLION TONS/                                 | YEAR        |               |
| DADTIC                                         | ATE                                     |                         |                                               |             |               |
| PARTIC                                         |                                         | 1 000000                | LBS/TON COAL                                  |             |               |
|                                                |                                         |                         | LBS/TON COAL                                  |             | :00 07        |
| •                                              | FEOMMOLE                                |                         | LBS/HR                                        | EFFICIENCY. | 77,04         |
|                                                |                                         |                         | <b>L</b> DO7 1110                             |             |               |
| <b>BS</b> 0                                    |                                         |                         |                                               |             |               |
|                                                |                                         |                         | LBS/TON COAL                                  |             |               |
| A                                              | LLOWABLE                                |                         | LBS/TON COAL                                  | EFFICIENCY: | 99.0%         |
|                                                |                                         | 1.27                    | LBS/HR                                        |             |               |
| BAP                                            |                                         |                         |                                               |             |               |
|                                                | OAD IN:                                 | 0002000                 | LBS/TON COAL                                  |             |               |
|                                                |                                         |                         | LBS/TON" COAL                                 |             | 99.0%         |
|                                                |                                         |                         | LBS/HR                                        |             |               |
|                                                | _                                       |                         |                                               |             |               |
| BENZEN                                         |                                         | <b>FAAAA</b>            | . 5.5.47.54: 60.43                            |             |               |
|                                                |                                         |                         | LBS/TON COAL                                  |             | 00 08         |
| ^                                              | LLUMADLE                                |                         | LBS/TON COAL<br>LBS/HR                        | EFFICIENCY: | 99.0%         |
|                                                |                                         | • • • •                 | 2507                                          |             |               |
| *540 O                                         | of oo                                   | 0.0000                  | 400 #                                         |             |               |
|                                                | <u>ut of Pr</u><br>t temper             |                         | 180. F<br>180. F                              |             |               |
|                                                | T TEMPER                                | ATURE:                  | 180. F                                        |             |               |
| EXHAUS<br>SCFM F                               | T TEMPER                                | ATURE:                  | 180. F                                        |             | · <del></del> |
| SCFM F                                         | T TEMPER LOW: LOW:                      | ATURE:  O. AT           | 180. F<br>70. F<br>180. F                     |             |               |
| SCFM F<br>ACFM F<br>L/G RA                     | T TEMPER LOW: LOW: TIO:                 | ATURE:  O. AT  O. AT    | 180. F<br>70. F<br>180. F                     |             |               |
| SCFM F<br>ACFM F<br>L/G RA<br>PROCES           | T TEMPER LOW: LOW: TIO:                 | O. AT O. AT FLOW:       | 180. F<br>70. F<br>180. F<br>.0<br>0. GPM     | ,           |               |
| SCFM F ACFM F L/G RA PROCES COOLIN             | T TEMPER LOW: LOW: TIO: S WATER G WATER | O. AT O. AT FLOW: FLOW: | 180. F<br>70. F<br>180. F                     |             | .0            |
| SCFM F<br>ACFM F<br>L/G RA<br>PROCES<br>COOLIN | T TEMPER LOW: LOW: TIO: S WATER G WATER | O. AT O. AT FLOW: FLOW: | 180. F<br>70. F<br>180. F<br>0. GPM<br>0. GPM |             | .0            |
| SCFM F<br>ACFM F<br>L/G RA<br>PROCES<br>COOLIN | T TEMPER LOW: LOW: TIO: S WATER G WATER | O. AT O. AT FLOW: FLOW: | 180. F<br>70. F<br>180. F<br>0. GPM<br>0. GPM |             | .0            |
| SCFM F<br>ACFM F<br>L/G RA<br>PROCES<br>COOLIN | T TEMPER LOW: LOW: TIO: S WATER G WATER | O. AT O. AT FLOW: FLOW: | 180. F<br>70. F<br>180. F<br>0. GPM<br>0. GPM |             | •0            |
| SCFM F<br>ACFM F<br>L/G RA<br>PROCES<br>COOLIN | T TEMPER LOW: LOW: TIO: S WATER G WATER | O. AT O. AT FLOW: FLOW: | 180. F<br>70. F<br>180. F<br>0. GPM<br>0. GPM |             | .0            |
| SCFM F<br>ACFM F<br>L/G RA<br>PROCES<br>COOLIN | T TEMPER LOW: LOW: TIO: S WATER G WATER | O. AT O. AT FLOW: FLOW: | 180. F<br>70. F<br>180. F<br>0. GPM<br>0. GPM |             |               |
| SCFM F<br>ACFM F<br>L/G RA<br>PROCES<br>COOLIN | T TEMPER LOW: LOW: TIO: S WATER G WATER | O. AT O. AT FLOW: FLOW: | 180. F<br>70. F<br>180. F<br>0. GPM<br>0. GPM |             | . 0           |
| SCFM F ACFM F L/G RA PROCES COOLIN             | T TEMPER LOW: LOW: TIO: S WATER G WATER | O. AT O. AT FLOW: FLOW: | 180. F<br>70. F<br>180. F<br>0. GPM<br>0. GPM |             | •             |
| SCFM F<br>ACFM F<br>L/G RA<br>PROCES<br>COOLIN | T TEMPER LOW: LOW: TIO: S WATER G WATER | O. AT O. AT FLOW: FLOW: | 180. F<br>70. F<br>180. F<br>0. GPM<br>0. GPM |             | .0            |
| SCFM F<br>ACFM F<br>L/G RA<br>PROCES<br>COOLIN | T TEMPER LOW: LOW: TIO: S WATER G WATER | O. AT O. AT FLOW: FLOW: | 180. F<br>70. F<br>180. F<br>0. GPM<br>0. GPM |             |               |
| SCFM F<br>ACFM F<br>L/G RA<br>PROCES<br>COOLIN | T TEMPER LOW: LOW: TIO: S WATER G WATER | O. AT O. AT FLOW: FLOW: | 180. F<br>70. F<br>180. F<br>0. GPM<br>0. GPM |             |               |
| SCFM F<br>ACFM F<br>L/G RA<br>PROCES<br>COOLIN | T TEMPER LOW: LOW: TIO: S WATER G WATER | O. AT O. AT FLOW: FLOW: | 180. F<br>70. F<br>180. F<br>0. GPM<br>0. GPM |             | .0            |
| SCFM F<br>ACFM F<br>L/G RA<br>PROCES<br>COOLIN | T TEMPER LOW: LOW: TIO: S WATER G WATER | O. AT O. AT FLOW: FLOW: | 180. F<br>70. F<br>180. F<br>0. GPM<br>0. GPM |             |               |
| SCFM F<br>ACFM F<br>L/G RA<br>PROCES<br>COOLIN | T TEMPER LOW: LOW: TIO: S WATER G WATER | O. AT O. AT FLOW: FLOW: | 180. F<br>70. F<br>180. F<br>0. GPM<br>0. GPM |             |               |
| SCFM F<br>ACFM F<br>L/G RA<br>PROCES<br>COOLIN | T TEMPER LOW: LOW: TIO: S WATER G WATER | O. AT O. AT FLOW: FLOW: | 180. F<br>70. F<br>180. F<br>0. GPM<br>0. GPM |             |               |
| SCFM F<br>ACFM F<br>L/G RA<br>PROCES<br>COOLIN | T TEMPER LOW: LOW: TIO: S WATER G WATER | O. AT O. AT FLOW: FLOW: | 180. F<br>70. F<br>180. F<br>0. GPM<br>0. GPM |             |               |

CAPITAL COST: UNITS OPTION PPSES: 501. LARRY CAR CHARGING COKE 3 CAPACITY: .708 MILLION TONS/YEAR (COST BASIS IS 110.00% OF JUNE 1977 DOLLARS FOR 4078 COST TOTAL COST CATEGORY COST IN DOLLARS \*\*\* DIRECT COST \*\*\* EQUIPMENT OR MATERIAL 1222600. INSTRUMENTATION 0. 0. PIPING ELECTRICAL 0. FOUNDATIONS 0. STRUCTURAL 0. SITE WORK 0. 17000-INSULATION PROTECTIVE COATING BUILDINGS EQUIPMENT/MATERIAL LABOR 117700. 1357300. DIRECT COST SUBTOTAL \*\*\* INDIRECT COST \*\*\* FIELD OVERHEAD 39100. CONTRACTORS FEE 19100. ENGINEERING 14500. FREIGHT 18000. OFFSITE WORK 0. 57000. TAXES SHAKEDOWN 6100. 57100. SPARES CONTINGENCY 297200. INDIRECT COST SUBTOTAL 508100. INTEREST DURING INSTALLATION 136600. TOTAL COST 2002000. TOTAL COST WITH RETROFIT 2202200.

## GENERAL INFORMATION: UNITS OPTION PPSES: 501. LARRY CAR CHARGING 3 COKE CONTROL SYSTEM CONFIGURATION: LARRY CAR LEVELING BAR SMOKE SEAL STEAM SUPPLY FEET OF ADDITIONAL DUCT: O. DIAMETER: O. TOTAL PRESSURE DROP: 0. INCHES 0. HP EACH O FANS @ SPARE FAN CAPACITY: OPERATING HOURS AT FULL HP: 8760. OPERATING HOURS AT REDUCED HP: STACK HEIGHT: 0. DIAMETER: 0. NO. OF OVENS 60. OVEN HEIGHT 6.0 METERS OVEN VOLUME 1348. CUBIC FEET TONS COKE/PUSH 24. AVG. CUKING TIME, HRS. 17.5 NO. CYCLES/DAY 82. BULK DENSITY 50. LBS/CUBIC FT. .70 YIELD TONS COAL/YEAR 1011967. A-11

## OPERATING COST:

| CAPACITY: .708  CATEGORY QUA  NATER ELECTRICITY STEAM 1700 | CHARGING  MILLION TOP  NTITY  *** UTILIT  O. MGAL/YR  O. KWH/YR | RATE          | 3        | ANNUAL COST   |
|------------------------------------------------------------|-----------------------------------------------------------------|---------------|----------|---------------|
| CATEGORY QUA                                               | *** UTILI1                                                      | RATE          |          | ANNUAL COST ( |
| NATER ELECTRICITY STEAM 1700                               | *** UTILI1                                                      | TIES ***      |          | ANNUAL COST   |
| ELECTRICITY<br>STEAM 1700                                  | O. MGAL/YR                                                      |               |          |               |
| ELECTRICITY<br>STEAM 1700                                  | -                                                               |               |          |               |
| STEAM 1700                                                 | O. KWH/YR                                                       | \$ .1595/10   | OO GAL   | 0.            |
|                                                            |                                                                 | \$ .0266/KW   | Н        | 0.            |
| FUEL                                                       | 1. MLBS/YR                                                      |               |          | 69600.        |
|                                                            | O. GAL/YR                                                       | \$ _4180/GA   |          | 0             |
|                                                            | ** OPERATING                                                    | LABOR ***     |          |               |
| DIRECT 876                                                 | O. HRS/YR                                                       | \$14.34/HR    |          | 125700. (/    |
| _                                                          | 2. HRS/YR                                                       | \$17.20/HR    |          | 30100. (8     |
|                                                            |                                                                 |               |          |               |
| ***                                                        | MAINTENANCE                                                     | & SUPPLIES ** | <u> </u> |               |
| DIRECT LABOR 620                                           | O. HRS/YR                                                       | \$14.34/HR    |          | 88900. ((     |
|                                                            | O. HRS/YR                                                       | \$17.20/HR    |          | 21300. (      |
| MATERIALS                                                  |                                                                 |               |          | 43900. (8     |
| SUPPLIES                                                   |                                                                 |               |          | 23100. (      |
| WATER TREATMENT                                            |                                                                 |               |          | 0.            |
| SOLID WASTE                                                |                                                                 |               |          | _             |
| DISPOSAL                                                   | O. TON/YR                                                       | \$ 8.25/TON   |          | 0.            |
| DIRECT OPERATING COS                                       | 7                                                               |               |          | 402600.       |
| PAYROLL OVERHEAD =20                                       | .02 OF A+B+0                                                    | C+D           |          | 53200.        |
| PLANT OVERHEAD =50.0                                       | % OF A+B+C+D                                                    | )+E+F         |          | 166500.       |
| TOTAL OPERATING COST                                       |                                                                 |               |          | 622300.       |
| OPERATING COST IN DO                                       |                                                                 |               |          | .88           |
| OPERATING COST IN DO                                       | <del></del>                                                     |               | LECTED   | 1242.31       |
| OPERATING COST AS PE                                       |                                                                 | FIAL CUST     |          | 28.3<br>80    |
| ESTIMATED LIFE OF SY                                       |                                                                 | 96            |          | 25.           |
| KWH PER TON CAPAC                                          |                                                                 | ``            |          | .0            |
| CAPITAL RECOVERY (11                                       |                                                                 | AL CAPITAL)   |          | 242600.       |
| ADMINISTRATION OVERH                                       |                                                                 |               | AL)      | 44000.        |
| PROPERTY TAXES & INS                                       |                                                                 | •             |          | 44000.        |
| TOTAL ANNUALIZED COS                                       |                                                                 | <u> </u>      |          | 952900.       |
|                                                            | - NEW                                                           |               |          | 922900.       |

## GENERAL INFURMATION: UNIIS OPTION PPSES: 501. LARRY CAR CHARGING CUKE CAPACITY: .708 MILLION TONS/YEAR PARTICULATE LOAD IN: 1.000000 LBS/TON COAL ALLOWABLE: .005000 LBS/TON COAL EFFICIENCY: 99.5% .58 LBS/HR **BS**0 LOAD IN: 1.100000 LBS/TON COAL ALLOWABLE: .005500 LBS/IUN COAL EFFICIENCY: 99.5% .64 LBS/HR HAP LUAD IN: .UUZUUU LBS/TUN COAL ALLUWABLE: .000010 LBS/TON COAL EFFICIENCY: 99.5% .UU LBS/HR BENZENE LOAD IN: .500000 LESTION COAL ALLUWABLE: .002500 LBS/TON COAL EFFICIENCY: 99.5% .29 LBS/HR DUST COLLECTED PER DAY: 1.4 TONS(DRY) TEMP OUT OF PROCESS: 180. F EXHAUST TEMPERATURE: 180. F U. AT 70. F SCFM FLUW: ACFM FLUW: U. AT 180. F L/G HATID: \_\_0\_\_ PRUCESS WATER FLUW: U. GPM COULING WATER FLOW: 0. GPM SUSPENDED SULIDS OUT: 0. MG/L XSOLIDS: .0

| PPSES: 501. LARRY CAR CHARG                                | ING                                   | CUKE         | OPTION   |
|------------------------------------------------------------|---------------------------------------|--------------|----------|
| Trocov Solia Entri on Charle                               | 2.00                                  | OUNE         | <b>~</b> |
|                                                            |                                       |              |          |
| CONTROL SYSTEM CONFIGURATION:                              |                                       |              | ·        |
| LARRY CAR                                                  |                                       |              |          |
| LEVELING BAR SMUKE SEAL                                    |                                       |              |          |
| SECOND COLLECTING MAIN                                     |                                       |              |          |
|                                                            |                                       |              |          |
| FEET OF ADDITIONAL DUCT:                                   | 0.                                    | DIAMETER:    | 0.       |
| TOTAL PRESSURE DROP:                                       | 0. IN                                 |              |          |
| O FANS & U. HP EACH S                                      |                                       | CAPACITY:    | 0,2      |
| OPERATING HOURS AT FULL HP: OPERATING HOURS AT REDUCED HP: | •                                     |              |          |
| STACK HEIGHT:                                              |                                       | DIAMETER:    | 0 -      |
| NO. OF OVENS                                               | 60.                                   |              |          |
| OVEN HEIGHT                                                | 6.0 M                                 | ETERS        |          |
| OVEN VOLUME                                                |                                       | UBIC FEET    |          |
| TONS COKE/PUSH                                             | 24.                                   |              |          |
| AVG. CUKING TIME, HRS.                                     | 17.5                                  |              |          |
| NO. CYCLES/DAY BULK DENSITY                                | 82.                                   | BS/CUBIC F   |          |
| YIELD                                                      | .70                                   | POLCOBIC L   | •        |
|                                                            | 11967.                                |              |          |
|                                                            |                                       |              |          |
|                                                            |                                       |              |          |
|                                                            |                                       |              |          |
|                                                            |                                       |              |          |
|                                                            |                                       |              |          |
|                                                            |                                       |              |          |
|                                                            |                                       |              |          |
|                                                            |                                       |              |          |
|                                                            |                                       |              |          |
|                                                            |                                       |              |          |
|                                                            |                                       |              |          |
|                                                            |                                       |              |          |
|                                                            |                                       |              |          |
|                                                            |                                       |              |          |
|                                                            |                                       |              |          |
|                                                            |                                       |              |          |
|                                                            |                                       |              |          |
|                                                            |                                       |              |          |
|                                                            |                                       |              |          |
|                                                            |                                       |              |          |
|                                                            |                                       |              |          |
|                                                            |                                       | <del> </del> |          |
|                                                            |                                       |              |          |
|                                                            | · · · · · · · · · · · · · · · · · · · |              |          |
|                                                            |                                       |              |          |

## CAPITAL CUST:

|                                  | UNITS OPTION                    |
|----------------------------------|---------------------------------|
| PPSES: 501. LARRY CAR CHARGING   | COKE 4                          |
| CAPACITY: .708 MILLION YON       | S/YEAR                          |
| TOTAL COST (COST BASIS IS 110.00 | % OF JUNE 1977 DULLARS FOR 4078 |
| CATEGORY                         | COST IN DULLARS                 |
| *** DIRECT COST ***              |                                 |
| EQUIPMENT OR MATERIAL            | 2410600.                        |
| INSTRUMENTATION                  | 0.                              |
| PIPING                           |                                 |
| ELECTRICAL                       | 0.                              |
| FDUNDATIONS                      | 0.                              |
| STRUCTURAL                       | · ·                             |
| SITE WORK INSULATION             | 0.<br>17000.                    |
|                                  | 0.                              |
| BUILDINGS                        | v .                             |
| EQUIPMENT/MATERIAL LABOR         |                                 |
| DIRECT COST SUBTUIAL             | 2545300.                        |
| *** INDIRECT CUST ***            |                                 |
|                                  | 158300.                         |
| CUNTRACTURS FEE                  | 138300.                         |
| ENGINEERING                      | 252900.                         |
| FREIGHT                          |                                 |
| OFFSITE WORK                     | 19900.                          |
|                                  | 116600.<br>125300.              |
|                                  | 116700.                         |
| CONTINGENCY                      | 690500.                         |
| INDIRECT COST SUBTOTAL           | 1696100.                        |
| INTEREST DURING INSTALLATI       | ON 196000.                      |
| TUTAL CUST                       | 4437400.                        |
| TOTAL COST WITH RETROET          | 4637600.                        |
|                                  |                                 |
|                                  |                                 |
|                                  | •                               |
|                                  |                                 |
|                                  |                                 |
|                                  |                                 |
|                                  |                                 |
|                                  |                                 |
| A-15                             |                                 |

## OPERATING CUST:

| RRY CAR CHARGING  708 MILLION TOP | CUKE 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| .708 MILLION TO                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                   | NS/YEAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| GUANTITY                          | RATÉ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ANNUAL COST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| *** UTILI                         | TIES ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| O MCALZYR                         | \$ 1595/1000 CAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| •                                 | • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | υ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 69600.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| U. GAL/YR                         | \$ .4180/GAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| *** OPERATING                     | G LABOR ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8760. HRS/YR                      | \$14.34/HR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 125700.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1752. HRS/YR                      | \$17.20/HR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| *** MAINTENANCE                   | & SUPPLIES ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 11600 MEC/VD                      | 61/1 3/1/40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 166400.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                   | - ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 39900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 82600.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43300.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| U. TON/YR                         | \$ 8.25/TUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ING COST                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 557600.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FAD =20.01 DF A+B+1               | C+D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 72400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 244000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NG COST                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 874000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IN DULLARS PER TO                 | ON PRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1736.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                   | ₹5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                   | AL CAPITAL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 510900.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 92800.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 92800.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1570500.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| - NEW                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1540300.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                   | U. MGAL/YR  U. KWH/YR  170U1. MLBS/YR  U. GAL/YR   *** OPERATING  876U. HRS/YR  1752. HRS/YR  1160U. HRS/YR  232U. HRS/YR  232U. HRS/YR  U. TUN/YR  ING CUST  EAD =20.02 OF A+B+C+C  NG CUST  IN DULLARS PER TO  IN DULLARS PER TO  I AS PERCENT UF CAN  I IN DULLARS PER TO  I AS PERCENT UF CAN  I IN DULLARS PER TO  I AS PERCENT UF CAN  I IN DULLARS PER TO  I AS PERCENT UF CAN  I IN DULLARS PER TO  I AS PERCENT UF CAN  I IN DULLARS PER TO  I AS PERCENT UF CAN  I IN DULLARS PER TO  I AS PERCENT UF CAN  I IN DULLARS PER TO  I AS PERCENT UF CAN  I IN DULLARS PER TO  I AS PERCENT UF CAN  I IN DULLARS PER TO  I AS PERCENT UF CAN  I IN DULLARS PER TO  I AS PERCENT UF CAN  I IN DULLARS PER TO  I AS PERCENT UF CAN  I IN DULLARS PER TO  I AS PERCENT UF CAN  I IN DULLARS PER TO  I AS PERCENT UF CAN  I IN DULLARS PER TO  I AS PERCENT UF CAN  I IN DULLARS PER TO  I AS PERCENT UF CAN  I IN DULLARS PER TO  I AS PERCENT UF CAN  I IN DULLARS PER TO  I AS PERCENT UF CAN  I IN DULLARS PER TO  I AS PERCENT UF CAN  I IN DULLARS PER TO  I AS PERCENT UF CAN  I IN DULLARS PER TO  I AS PERCENT UF CAN  I IN DULLARS PER TO  I AS PERCENT UF CAN  I IN DULLARS PER TO  I AS PERCENT UF CAN  I IN DULLARS PER TO  I AS PERCENT UF CAN  I IN DULLARS PER TO  I AS PERCENT UF CAN  I IN DULLARS PER TO  I AS PERCENT UF CAN  I IN DULLARS PER TO  I AS PERCENT UF CAN  I IN DULLARS PER TO  I AS PERCENT UF CAN  I IN DULLARS PER TO  I AS PERCENT UF CAN  I IN DULLARS PER TO  I IN DULLARS PER TO  I IN DULLARS PER TO  I AS PERCENT UF CAN  I IN DULLARS PER TO  I IN DULLARS PER TO  I AS PERCENT UF CAN  I IN DULLARS PER TO  I IN DULLARS | 17001. MLBS/YR \$ 4.0920/MLBS  U. GAL/YR \$ .4180/GAL  *** OPERATING LABOR ***  6760. HRS/YR \$14.34/HR 1752. HRS/YR \$17.20/HR  *** MAINTENANCE & SUPPLIES ***  11600. HRS/YR \$14.34/HR 2320. HRS/YR \$17.20/HK  U. TON/YR \$14.34/HR 2320. HRS/YR \$17.20/HK  O. TON/YR \$1.00/HK  ING COST  EAD =20.02 OF A+B+C+D  D =50.02 OF A+B+C+D+E+F  NG COST  I IN DOLLARS PER TON OF DUST CULLECTED I AS PERCENT OF CAPITAL COST  IME IN WEEKS E UF SYSTEM IN YEARS CAPACITY ERY (11.022 UF TOTAL CAPITAL) N OVERHEAD ( 2.02 OF TOTAL CAPITAL) N OVERHEAD ( 2.02 OF TOTAL CAPITAL) N OVERHEAD ( 2.02 OF TOTAL CAPITAL) NED COST = RETHOFIT |

| PPSES: 502.                                | COKE PUSH            | ING                    | UNITS OP<br>COKE |             |
|--------------------------------------------|----------------------|------------------------|------------------|-------------|
| ., 0201                                    | <b>3</b> 5 KZ , 55 K |                        | CONE             | •           |
| CAPACITY:                                  | .708                 | MILLION TONS/          | YEAR             |             |
| BARTICIN ATC                               |                      |                        |                  |             |
| PARTICULATE LUAD IN:                       | 2.000000             | IRS/TON COAL           |                  |             |
|                                            |                      | LBS/TON COAL           | EFFICIENCY:      | 60.01       |
|                                            | 92.42                | <del>-</del>           |                  |             |
|                                            |                      |                        |                  |             |
| BSO                                        |                      |                        |                  |             |
|                                            |                      | LBS/TON COAL           | FFF101FN04.      | / /\        |
| ALLUMABLE                                  |                      | LBS/TON COAL<br>LBS/HR | EFFICIENCY:      | 60,0%       |
|                                            | 3.10                 | FD3/UK                 |                  |             |
| BAP                                        |                      |                        |                  |             |
| LUAD IN:                                   |                      | LBS/TON COAL           |                  |             |
| ALLUWABLE                                  |                      | LBS/TON COAL           | EFFICIENCY:      | 60.0%       |
|                                            | .00                  | LBS/HR                 |                  | ·           |
| BENZENE                                    |                      |                        |                  |             |
|                                            | .006000              | LBS/TON CUAL           |                  |             |
|                                            |                      | LBS/TON COAL           | EFFICIENCY:      | 60.0%       |
|                                            |                      | LBS/HR                 |                  |             |
|                                            |                      |                        |                  |             |
| DUST COLLECTED                             | PER DAY:             | 1.7 TONS (             | DRY)             |             |
| TEMP OUT OF PRO                            | aress.               | 700 F                  |                  |             |
| EXHAUST TEMPERA                            |                      |                        |                  |             |
|                                            |                      |                        |                  |             |
| SCFM FLOW:                                 |                      | 70. F                  |                  |             |
| ACFM FLUW:                                 | U. AT                | <b>3</b> 00. F         |                  |             |
|                                            |                      | •                      |                  |             |
| L/G RATIO:                                 |                      |                        |                  |             |
| PROCESS WATER FLOW:<br>COOLING WATER FLOW: |                      | O. GPM                 |                  |             |
| SUSPENDED SOLIC                            |                      | U. MG/L                | *SOLIDS:         | • 0         |
|                                            |                      |                        |                  |             |
| •                                          |                      |                        |                  |             |
|                                            |                      |                        |                  |             |
|                                            |                      |                        |                  |             |
|                                            |                      |                        |                  |             |
|                                            |                      |                        |                  |             |
|                                            |                      |                        |                  |             |
|                                            |                      |                        |                  |             |
|                                            |                      |                        |                  | •           |
|                                            |                      | •                      |                  |             |
| ***************************************    |                      |                        |                  | <del></del> |
|                                            |                      |                        |                  |             |
|                                            |                      |                        |                  |             |
|                                            |                      |                        |                  |             |

## GENERAL INFORMATION:

| PPSES: 502. COKE PUSHING                      | UNITS OPTION                     |
|-----------------------------------------------|----------------------------------|
| Fraca. Suc. Cure Puanting                     | COKE 5                           |
|                                               |                                  |
| CONTROL SYSTEM CONFIGURATION:                 |                                  |
| CONTROLLED COKING                             |                                  |
|                                               |                                  |
| FEET OF ADDITIONAL DUCT: TOTAL PRESSURE DROP: | O. DIAMETER: O.                  |
| TOTAL PRESSURE DROP:  0 FANS 0 0. HP EACH SP  | O. INCHES PARE FAN CAPACITY: 0.7 |
| OPERATING HOURS AT FULL HP:                   | 8760.                            |
| OPERATING HOURS AT REDUCED HP:                |                                  |
| STACK HEIGHT:<br>NU. OF OVENS                 | 60.                              |
| OVEN HEIGHT                                   | 6.0 METERS                       |
| OVEN VOLUME                                   |                                  |
|                                               | 24.<br>17.5                      |
| NO. CYCLES/DAY                                | 82.                              |
| BULK DENSITY                                  | 50. LBS/CUBIC FT.<br>.70         |
| YIELD TONS CUAL/YEAR 10:                      | 11967.                           |
|                                               |                                  |
|                                               |                                  |
|                                               |                                  |
|                                               |                                  |
|                                               |                                  |
|                                               |                                  |
|                                               |                                  |
|                                               |                                  |
|                                               |                                  |
|                                               |                                  |
|                                               |                                  |
|                                               |                                  |
|                                               | ·                                |
|                                               |                                  |
|                                               | •                                |
|                                               |                                  |
|                                               |                                  |
|                                               |                                  |
|                                               |                                  |
|                                               |                                  |
|                                               |                                  |
|                                               |                                  |
|                                               |                                  |

| PPSES: 502. C   | OKE PUSHING                        | COKE 2                                |              |
|-----------------|------------------------------------|---------------------------------------|--------------|
| CAPACITY:       | .708 MILLION TON                   | IC/VEAU                               |              |
| LBEALLIII       | A TVO PILLIUN TUN                  | SZIEAR                                |              |
| CATEGORY        | QUANTITY                           | RATE                                  | ANNUAL COST  |
|                 | *** UTILIT                         | IES ***                               |              |
| WATER           | Û. MGAL/YK                         | \$ .1595/1000 GAL                     | 0            |
| ELECTRICITY     | O. KWH/YR                          | \$ .0266/KWH                          | 0.           |
| STEAM           | U. MLBS/YR                         | \$ 4.0920/MLBS                        | 0.           |
| FUEL            | 0. GAL/YR                          | \$ .4180/GAL                          | <u> </u>     |
|                 | *** OPERATING                      | LABOR ***                             |              |
| DIRECT          | 6760. HRS/YR                       | \$14.34/HR                            | 125700.      |
| SUPERVISION     | 1752. HRS/YR                       | \$17.20/HR                            | 30100.       |
|                 | *** MAINTENANCE                    | 8 SUPPLIES ***                        |              |
| DIRECT LABOR    | U. HRS/YR                          | \$14.34/HR                            | 0.           |
| SUPERVISION     | U. HRS/YR                          | \$17,20/HR                            | <u>0 •</u> _ |
| MATERIALS       |                                    |                                       | 0.           |
| SUPPLIES        |                                    |                                       | 6857100.     |
| WATER TREATMENT |                                    |                                       |              |
| SULID WASTE     | A TON 245                          | F B 35 (TON                           | 0            |
| DISPOSAL        | 0. TON/YR                          | \$ 8.25/TON                           | 0.           |
| DIRECT OPERA    | TING COST                          |                                       | 7012900.     |
| PAYRULL OVER    | 31200.                             |                                       |              |
| PLANT OVERHE    | 3506500.                           |                                       |              |
| TOTAL OPERAT    | 10550600.                          |                                       |              |
|                 | ST IN DOLLARS PER TO               |                                       | 14,8         |
|                 |                                    | N OF DUST COLLECTED                   | 17376.3      |
|                 | ST AS PERCENT OF CAP               | ITAL CUST                             | • (          |
|                 | TIME IN WEEKS FE OF SYSTEM IN YEAR | ) c                                   | 8.           |
| KWH PER TON     | CAPACITY                           | (5                                    | 99.          |
|                 | VERY (10.00% OF TOTA               | LI CAPITAL)                           | 0.           |
|                 | ON OVERHEAD ( 2.0% O               |                                       | 0.           |
|                 | ES & INS. ( 2.0% OF                | · · · · · · · · · · · · · · · · · · · | 0.           |
|                 | IZED COST - RETROFIT               | - ·                                   | 10550600.    |
|                 | - NEW                              |                                       | 10550600.    |
|                 |                                    |                                       |              |

| PPSES: 502.               | COKE PUSH   | ING     |             | UNITS OF    | 3                                       |
|---------------------------|-------------|---------|-------------|-------------|-----------------------------------------|
|                           |             |         |             |             |                                         |
| APACITY:                  | .798        | MILLION | TONS/       | YEAR        |                                         |
| ARTICULATE                |             |         |             |             | •                                       |
|                           | 2.000000    | LBS/TON | COAL        |             |                                         |
| ALLOWABLE                 | 290000      | LBS/TON | COAL        | EFFICIENCY: | 85.5%                                   |
|                           | 35.26       | LBS/HR  |             |             | ,                                       |
| <b>\$</b> 0               |             |         |             |             |                                         |
|                           | .080000     | LBS/TON | COAL        |             |                                         |
|                           |             |         |             | EFFICIENCY: | 45.0%                                   |
|                           | 5.35        | LBS/HR  |             |             |                                         |
| AP                        |             |         |             |             |                                         |
|                           | .000040     | LBS/TON | COAL        |             |                                         |
| ALLOWABLE                 |             | _       | COAL        | EFFICIENCY: | 45.0%                                   |
|                           | .00         | LBS/HR  |             |             | <del></del>                             |
| ENZENE                    |             |         |             |             |                                         |
| LOAD IN:                  |             |         |             |             | ·                                       |
| ALLOWABLE                 |             |         | CUAL        | EFFICIENCY: | 45.0%                                   |
|                           | .40         | LBS/HR  |             |             |                                         |
| UST COLLECTED             | PER DAY:    | 2.4     | TONS        | DRY)        |                                         |
| EMP OUT OF PR             | OCESS:      | 300.    | <b>5</b>    |             |                                         |
| XHAUST TEMPER             |             | 150.    |             |             |                                         |
| CFM FLOW: 31              | 7000- AT    | 70.     | •           |             |                                         |
| CFM FLOW: 36              | 5000. AT    |         |             |             | *************************************** |
|                           |             |         |             |             |                                         |
| /G RATIO:                 |             | 0       |             |             |                                         |
| ROCESS WATER OOLING WATER |             | 0. (    |             |             |                                         |
| USPENDED SOLI             |             |         | GPM<br>MG/L | *SOLIDS:    | • 0                                     |
| <u> </u>                  | . <u> </u>  |         | 10/         |             |                                         |
|                           |             |         |             |             |                                         |
|                           |             |         |             |             |                                         |
|                           |             |         |             |             |                                         |
|                           |             |         |             |             | - <u></u>                               |
|                           |             |         |             | •           |                                         |
|                           |             |         |             |             |                                         |
|                           |             |         |             |             |                                         |
|                           | <del></del> |         |             |             |                                         |
|                           |             |         |             |             |                                         |
|                           |             |         |             |             |                                         |

|         | P /- >  | Anus minimus    |           |                                       | OPTION                                  |                    |
|---------|---------|-----------------|-----------|---------------------------------------|-----------------------------------------|--------------------|
| PPSES:  | 502.    | COKE PUSHING    |           | COKE                                  | 3                                       |                    |
| CONTROL | SYSTEM  | 1 CONFIGURATION | v :       |                                       |                                         |                    |
| ES      | Ρ       |                 |           | <del> </del>                          |                                         |                    |
|         | KE OVEN | SHED            |           |                                       |                                         |                    |
|         | N AND D |                 |           |                                       |                                         |                    |
| ÐU      | CTWORK  |                 |           |                                       |                                         |                    |
|         | ACK     |                 |           |                                       |                                         |                    |
|         |         | LING HUPPER &   | CONVEYORS |                                       |                                         |                    |
|         | MPERS   |                 |           |                                       |                                         |                    |
| FA      | N AND E | RIVE ELECTRICA  | NL .      |                                       |                                         |                    |
| 664. 18 | 0       | TOTAL PLATE     | ADEAD     | 22000 60 5                            | 7 2 20% 6840                            | <b>C.</b> C. L. C. |
|         |         | DNAL DUCT:      |           |                                       |                                         |                    |
| TOTAL P | RESSURE | DROP:           | 12.       |                                       |                                         |                    |
|         |         | HP EACH         |           |                                       | 50.1                                    |                    |
|         |         | S AT FULL HP:   |           |                                       |                                         |                    |
|         |         | S AT REDUCED H  |           |                                       |                                         |                    |
| STACK H | EIGHT:  | _               | 100.      | DIAMETER                              | : 12.                                   |                    |
|         |         |                 | 60.       |                                       |                                         |                    |
| OVEN HE | IGHT    |                 | 6.0       | METERS                                |                                         |                    |
| OVEN VO |         |                 |           | CUBIC FEET                            |                                         |                    |
|         |         |                 |           |                                       |                                         |                    |
|         |         | ME, HRS.        | 17.5      |                                       |                                         |                    |
| NO. CYC |         |                 | 82.<br>50 |                                       | ET                                      |                    |
| AIETD   |         |                 | .70       |                                       | F 1 •                                   |                    |
| TONS CO |         | }               | 1011967.  | •                                     |                                         |                    |
|         |         |                 |           |                                       |                                         |                    |
|         |         |                 |           |                                       |                                         |                    |
|         |         |                 |           |                                       |                                         |                    |
|         |         |                 |           |                                       | *************************************** |                    |
|         |         |                 |           |                                       |                                         |                    |
|         |         |                 |           |                                       |                                         |                    |
|         |         |                 |           |                                       |                                         |                    |
|         |         |                 |           |                                       |                                         |                    |
|         |         |                 |           | ·                                     | •                                       |                    |
|         |         |                 |           |                                       |                                         |                    |
|         |         |                 |           | · · · · · · · · · · · · · · · · · · · |                                         |                    |
|         |         |                 |           |                                       |                                         |                    |
|         |         |                 |           |                                       |                                         |                    |
|         |         |                 |           |                                       |                                         |                    |
|         |         |                 |           |                                       |                                         |                    |
|         |         |                 |           |                                       |                                         |                    |

| CAPITAL CUST:                          | UNI         | TS (        | PTION        |             |      |     |
|----------------------------------------|-------------|-------------|--------------|-------------|------|-----|
| PPSES: 502. COKE PUSHING               | COI         | KE          | 3            |             |      |     |
| CAPACITY: .708 MILLION TO              | NS/YEAR     |             |              |             |      |     |
| TOTAL COST (COST BASIS IS 110.0        | 00% OF JUNE | 1977        | DOLLARS      | FOR         | 4078 | cos |
|                                        |             |             |              |             |      |     |
| CATEGORY                               | COST IN     | DOLL        | ARS          |             |      |     |
| *** DIRECT COST ***                    |             | <del></del> | <del> </del> |             |      |     |
| EQUIPMENT OR MATERIAL                  |             |             |              |             |      |     |
| INSTRUMENTATION                        | 0.          |             |              |             |      |     |
| PIPING                                 |             |             |              |             |      |     |
| ELECTRICAL                             | 71900.      |             |              |             |      |     |
| FOUNDATIONS                            | 15500.      |             |              |             |      |     |
| SIRUCTURAL                             | 7900.       |             |              |             |      |     |
| SITE WORK<br>Insulation                | 59900.      |             |              |             |      |     |
| PROTECTIVE COATING                     | 9600        |             |              |             |      |     |
| PROTECTIVE COATING BUILDINGS           | 8800.       |             |              | <del></del> |      |     |
| EQUIPMENT/MATERIAL LABOR               |             |             |              |             |      |     |
| DIRECT COST SUBTOTAL                   | · · ·       |             | 0500.        |             |      |     |
| DIRECT COST SOCIOTAL                   |             |             |              |             |      |     |
| *** INDIRECT COST **                   | : <b>*</b>  |             |              |             |      |     |
| FIELD OVERHEAD                         |             |             |              |             |      |     |
|                                        | 261400.     |             | ·····        |             |      |     |
|                                        | 237100.     |             |              |             |      |     |
| FREIGHT                                |             |             |              |             |      | •   |
| OFFSITE WURK                           | 48100.      |             |              | - <u>-</u>  |      |     |
| TAXES                                  | 98000.      |             |              |             |      |     |
| SHAKEDUWN                              | 95000.      |             |              |             |      |     |
| SPARES                                 | 89200.      |             |              |             |      |     |
| CONTINGENCY                            | 829900.     |             |              |             |      |     |
| INDIRECT COST SUBIOTAL                 |             | 210         | 1200.        |             |      |     |
| INTEREST DURING INSTALLAT              | TION        | 42          | 9600.        |             |      |     |
| TUTAL COST                             |             | 521         | 1300.        |             |      |     |
| TOTAL COST WITH RETROFIT               |             | 584         | 0000.        |             |      |     |
|                                        |             |             |              |             |      |     |
|                                        |             |             |              |             |      |     |
|                                        |             |             |              |             |      |     |
|                                        |             |             |              |             |      |     |
| —————————————————————————————————————— |             |             |              | ·           |      |     |
|                                        |             |             |              |             |      |     |
| A-22                                   |             |             |              |             |      |     |

| PPSES: 502. CO              | OKE PUSHING                      | UNITS OPTION COKE 3 |                    |
|-----------------------------|----------------------------------|---------------------|--------------------|
|                             |                                  |                     |                    |
| CAPACITY:                   | .708 MILLION TON                 | IS/YEAR             |                    |
| CATEGORY                    | QUANTITY                         | RATE                | ANNUAL COST        |
|                             | *** UTILIT                       | IES ***             |                    |
| WATER                       | O. MGAL/YR                       | \$ .1595/1000 GAL   | 0.                 |
| ELECTRICITY                 | 8677492. KWH/YR                  |                     | 231000.            |
| STEAM                       | 0. MLBS/YR                       | \$ 4.0920/MLBS      | 0.                 |
| FUEL                        | U. GAL/YR                        | \$ .4180/GAL        | 0,                 |
|                             | *** OPERATING                    | LABOR ***           |                    |
| DIRECT                      | 8760. HRS/YR                     | \$14.34/HR          | 125700.            |
| SUPERVISION                 | 1752. HRS/YR                     | \$17.20/HR          | 30100.             |
|                             |                                  |                     |                    |
|                             | *** MAINTENANCE                  | & SUPPLIES ***      |                    |
| DIRECT LABOR                | 11867. HRS/YR                    | -                   | 170200.            |
| SUPERVISION                 | 2373, HRS/YR                     | \$17.20/HR          | 40800,             |
| MATERIALS                   |                                  |                     | 86800.             |
| SUPPLIES TOTALMENT          |                                  |                     | 44700.             |
| WATER TREATMENT SOLID WASTE |                                  |                     | 0                  |
| DISPUSAL                    | 865. TON/YR                      | \$ 8.25/TON         | 7100.              |
| DIRECT OPERAT               | TING CUST                        |                     | 736400.            |
| PAYROLL OVER                | 1EAD =20.0% OF A+B+C             | ;+D                 | 73400.             |
| PLANT OVERHER               | AD =50.0% OF A+B+C+D             | )+E+F               | 249200.            |
|                             | ING COST                         |                     | 1059000.           |
|                             | BT IN DOLLARS PER TO             |                     | 1,4                |
|                             |                                  | N OF DUST COLLECTED | 1223.9             |
|                             | ST AS PERCENT OF CAP             | PITAL COST          | 18.1               |
|                             | TIME IN WEEKS                    |                     | 130.               |
| ESTIMATED LIF               | FE OF SYSTEM IN YEAR             | (5                  | 20.                |
|                             | CAPACITY<br>/ERY (11.75% OF TOTA | I CARITAL )         | 12.2               |
|                             | ON OVERHEAD ( 2.0% O             |                     | 686000.<br>116800. |
|                             | ES & INS. ( 2.0% OF              |                     | 116800.            |
|                             | ZED COST - RETROFIT              | • •                 | 1978600.           |
|                             | - NEW                            |                     | 1879500.           |
|                             |                                  |                     |                    |

| DDEF |      | 502                                   | COKE        | DIIGH    | TNG    |              | UNITS<br>COKE |       | A A                                   |
|------|------|---------------------------------------|-------------|----------|--------|--------------|---------------|-------|---------------------------------------|
| PPSE | .5 • | 306.                                  | LUNE        | PUSH     | IND    |              | LUNE          |       | •                                     |
| CAPA | CII  | Y:                                    | <u> </u>    | .708     | MILLID | N TONS       | YEAR          |       |                                       |
| •••  |      |                                       |             |          |        |              |               |       |                                       |
|      |      | LATE                                  | 2 00        | 0000     | LBS/TO | N COAL       |               |       |                                       |
|      |      |                                       |             |          | L83/10 |              |               | r V z | 45.51                                 |
|      |      |                                       |             |          | LB8/HR |              | 21140201      |       | ~23407                                |
| BSO  |      |                                       |             |          |        | <del> </del> |               |       |                                       |
|      | LO   | AD IN:                                | .08         | 0000     | LBS/TO | N COAL       |               |       |                                       |
|      | AL   | LOWABL                                |             |          |        |              | EFFICIEN      | CY:   | 49.5%                                 |
|      |      |                                       | 4           | .91      | LBS/HR |              |               |       |                                       |
| BAP  |      |                                       |             |          |        |              |               | _     |                                       |
|      |      |                                       |             |          | LBS/TO |              |               |       |                                       |
|      | AL   | LOWABL                                | _           |          |        |              | EFFICIEN      | CY:   | 49.5%                                 |
|      |      |                                       | <del></del> | •00      | LBS/HR |              |               |       |                                       |
| BENZ |      |                                       | _           |          |        | _            |               |       |                                       |
|      |      |                                       |             |          | LBS/TO |              | PPF-4-5       | • •   | A.O. F.:-                             |
|      | AL   | LUMABL                                |             |          |        |              | EFFICIEN      | UY:   | 44.5%                                 |
|      |      |                                       | •           | • 3 (    | LBS/HR |              |               |       |                                       |
| DUST | CO   | LLECTE                                | D PER D     | AY:      | 2.     | 4 TONS       | DRY)          |       | <del></del>                           |
| TEMP | OH   | T OF P                                | ROCESS:     |          | 30.0 _ | F            |               |       |                                       |
|      |      |                                       |             |          | 100.   |              |               |       |                                       |
|      | _    |                                       |             |          |        |              |               |       |                                       |
| SCFM | FL   | DW: 3                                 | 45000,      | <u> </u> | 70,    | <u>F</u>     |               |       |                                       |
| AUFM | FL   | OM: 3                                 | 65000.      | AI       | 100.   | ۲            |               |       |                                       |
| L/G  | RAT  | 10:                                   |             |          | 7.     | 9            |               |       |                                       |
| PROC | ESS  | WATER                                 | FLOW:       |          | 2738.  | GPM          |               |       |                                       |
|      |      | WATER                                 |             |          |        | 6PM          |               |       |                                       |
| SUSP | END  | ED SOL                                | IDS OUT     | :        | 124.   | MG/L         | *SOLIDS       | ŧ     | 0                                     |
|      |      |                                       |             |          |        |              |               |       |                                       |
|      |      |                                       |             |          |        |              |               |       |                                       |
|      |      |                                       |             |          |        |              |               |       |                                       |
|      |      |                                       |             |          |        |              |               |       | · · · · · · · · · · · · · · · · · · · |
|      |      |                                       |             |          |        |              |               |       |                                       |
|      |      | · · · · · · · · · · · · · · · · · · · |             |          |        |              |               |       |                                       |
|      |      |                                       |             |          |        |              |               |       |                                       |
|      |      |                                       |             |          |        |              |               |       | <del></del>                           |
|      |      |                                       |             |          |        |              |               |       | ,                                     |
|      |      |                                       |             |          |        |              |               |       |                                       |
|      |      |                                       |             |          |        |              |               |       |                                       |
|      |      |                                       |             |          |        |              |               |       |                                       |

|                                                          | UNITS OPTION       |
|----------------------------------------------------------|--------------------|
| PPSES: 502. COKE PUSHING                                 | COKE 4             |
| CONTROL SYSTEM CONFIGURATION                             | :                  |
| · VENTURI SCRUBBER                                       |                    |
| COKE OVEN SHED                                           |                    |
| MIST ELIMINATOR                                          |                    |
| FAN AND DRIVE                                            |                    |
| DUCTWORK                                                 |                    |
| STACK WASTEWATER RECYCLE SYST                            | FM                 |
| DAMPERS                                                  |                    |
| WASTE WATER RETURN SYST                                  | EM                 |
| WATER PUMPING SYSTEM                                     |                    |
| FAN AND DRIVE ELECTRICA                                  | L                  |
| FEET OF ADDITIONAL DUCT:                                 |                    |
| TOTAL PRESSURE DROP:                                     | 30. INCHES         |
| 3 FANS @ 1436. HP EACH                                   |                    |
| OPERATING HOURS AT FULL HP: OPERATING HOURS AT REDUCED H |                    |
| STACK HEIGHT:                                            | 100. DIAMETER: 12. |
| NO. OF OVENS                                             | 60.                |
|                                                          | 6.0 METERS         |
| OVEN VOLUME                                              | 1346. CUBIC FEET   |
| TONS COKE/PUSH AVG. COKING TIME, HRS.                    | 24.                |
| NO. CYCLES/DAY                                           | 17.5<br>82.        |
| BULK DENSITY                                             | 50. LBS/CUBIC FT.  |
| YIELD                                                    |                    |
| TONS COAL/YEAR                                           | 1011967.           |
|                                                          |                    |
|                                                          |                    |
|                                                          |                    |
|                                                          |                    |
|                                                          | •                  |
|                                                          |                    |
|                                                          |                    |
|                                                          |                    |
|                                                          |                    |
|                                                          |                    |

|                                                   |                                       |      |         |          |                                       |               | OPTION      |             |      |             |
|---------------------------------------------------|---------------------------------------|------|---------|----------|---------------------------------------|---------------|-------------|-------------|------|-------------|
| PPSES: 502.                                       | COKE PUSHI                            | iG . |         |          | CO                                    | KE            | 4           |             |      |             |
| CAPACITY:                                         | .708                                  | ILLI | ON TONS | /YEA     | \R                                    |               |             |             | 1    |             |
| TOTAL COST                                        | (COST BASIS                           | IS   | 110.002 | OF       | JUNE                                  | 1977          | DOLLARS     | FOR         | 4078 | COST        |
|                                                   |                                       |      |         |          |                                       |               |             |             |      |             |
| CATEGORY                                          |                                       |      |         | CUS      | 51 1N                                 | DOLL          | AKS         |             |      |             |
|                                                   | REA DIRECT                            |      |         |          |                                       |               |             |             |      |             |
|                                                   | OR MATERIAL                           | •    |         |          | 500.                                  |               |             |             |      |             |
| INSTRUME                                          |                                       |      |         |          | 900.                                  |               |             |             |      |             |
|                                                   |                                       |      |         |          |                                       |               | <del></del> |             |      | <del></del> |
| ELECTRICA                                         |                                       |      |         |          | 500.                                  |               |             |             |      |             |
| FOUNDATIO                                         | JNS<br>AL                             |      |         |          | 500.                                  |               |             |             |      |             |
|                                                   |                                       |      |         |          | -                                     |               | <del></del> |             |      |             |
| SITE WORK<br>Insulation                           | <b>\</b>                              |      |         | 11       | 000.                                  |               |             |             |      |             |
| PROTECTION                                        | ON<br>VE COATING                      |      |         | 20       | 3400                                  |               |             |             |      |             |
| BUILDING                                          | E LUATING                             |      |         | 7.0      | 600.                                  |               | <del></del> |             |      |             |
|                                                   | ,<br>T/MATERIAL L/                    | ane. |         |          |                                       |               |             |             |      |             |
|                                                   | CT COST SUB                           |      |         |          |                                       |               | 9200        |             |      |             |
| #AN                                               |                                       | UIAL |         |          |                                       |               | 7EVV        |             |      |             |
|                                                   | *** INDIRECT                          | CO   | ST ***  |          |                                       |               |             |             |      |             |
| FIELD OVE                                         | RHEAD                                 |      |         | 457      | 700.                                  |               |             |             |      |             |
|                                                   | ORS FEE                               |      |         |          | 400.                                  |               |             |             |      |             |
| ENGINEER                                          | ING                                   |      |         | 396      | 500.                                  |               |             |             |      |             |
| FREIGHT                                           |                                       |      |         | 91       | 800.                                  |               |             |             |      |             |
| OFFSITE W                                         | ORK                                   |      |         | 72       | 800.                                  |               |             |             |      |             |
| TAXES                                             |                                       |      |         | 145      | 800.                                  |               |             |             |      |             |
| SHAKEDOWN                                         | <u> </u>                              |      |         | 136      | 400.                                  |               |             |             |      | <del></del> |
| SPARES                                            |                                       |      |         |          | 400.                                  |               |             |             |      |             |
| CONTINGER                                         | IC Y                                  |      |         | 1131     | 000.                                  |               |             |             |      |             |
| INDI                                              | RECT COST SI                          | BIDI | AL      |          |                                       | 279           | 7800.       |             |      | <del></del> |
| INTE                                              | EREST DURING                          | INST | ALLATIO | N        |                                       | 56            | 3500.       | •           |      |             |
| TOTA                                              | L COST                                |      |         |          | · · · · · · · · · · · · · · · · · · · | 741           | 0500.       |             |      |             |
| 701/                                              | L COST WITH                           | REIR | OFIT    |          |                                       | 825           | 9100.       |             |      |             |
|                                                   |                                       |      |         |          |                                       |               |             |             |      |             |
|                                                   |                                       |      |         |          |                                       | · <del></del> |             | <del></del> | ·    | ·           |
|                                                   |                                       |      |         |          |                                       | · ·           |             |             |      |             |
|                                                   |                                       |      |         |          |                                       |               |             |             |      |             |
|                                                   | · · · · · · · · · · · · · · · · · · · |      |         |          |                                       |               | •           |             |      |             |
|                                                   |                                       |      |         |          |                                       | ·             | _           |             |      |             |
|                                                   |                                       |      |         |          |                                       |               |             |             |      |             |
| *** <del>**********************************</del> |                                       |      |         | <u>-</u> |                                       |               |             |             |      |             |
|                                                   | · = -                                 |      |         |          |                                       |               |             | <del></del> |      |             |

| ERATING COST:   |                                   |                     |                     |
|-----------------|-----------------------------------|---------------------|---------------------|
| PPSES: 502.     | COKE PUSHING                      | UNITS OPTION COKE 4 |                     |
|                 |                                   |                     |                     |
| CAPACITY:       | .708 MILLION TON                  | IS/YEAR             |                     |
| CATEGORY        | DUANTITY                          | RATE                | ANNUAL COST (S      |
|                 | *** UTILIT                        | IES ***             |                     |
| WATER           | 273402. MGAL/YR                   | 8 .1595/1000 GAL    | 43600               |
| ELECTRICITY     | 18980168. KWH/YR                  | \$ .0266/KWH        | 505300.             |
| STEAM           | O. MLBS/YR                        | _                   | 0.                  |
| FUEL            | O. GAL/YR                         |                     | 0,                  |
| ·               | *** OPERATING                     | LABOR ***           |                     |
| DIRECT          | 8760. HRS/YR                      | \$14.34/HR          | 125700. (A)         |
| SUPERVISION     | 1752. HRS/YR                      | \$17.20/HR          | 30100. (B)          |
|                 | *** MAINTENANCE                   | & SUPPLIES ***      |                     |
| DIRECT LABOR    | 17163. HRS/YR                     | \$14.34/HR          | 246200. (C)         |
| SUPERVISION     | 3433, HRS/YR                      | \$17.20/HR          | 59100, (0)          |
| MATERIALS       |                                   |                     | 191100. (E)         |
| SUPPLIES        |                                   |                     | 110200. (F)         |
| MATER TREATMENT |                                   |                     |                     |
| SOLID WASTE     |                                   |                     |                     |
| DISPOSAL        | 1730. TON/YR                      | \$ 8.25/TON         | 14300.              |
| DIRECT OPER     | ATING COST                        |                     | 1325600.            |
| PAYROLL OVE     | RHEAD =20.0% OF A+B+C             | +D                  | 92200.              |
| _               | EAD =50.0% OF A+B+C+D             | )+E+F               | 381200.             |
| TOTAL OPERA     | -                                 |                     | 1799000.            |
|                 | OST IN DOLLARS PER TO             |                     | 2,54                |
|                 | OST IN DOLLARS PER TO             |                     | 2079.21             |
|                 | OST AS PERCENT OF CAP             | TITAL COST          | 21.8                |
|                 | Y TIME IN WEEKS                   |                     | 130                 |
| KWH PER TON     | IFE OF SYSTEM IN YEAR<br>Capacity |                     | 15.<br><b>2</b> 6.8 |
|                 | DVERY (13.15% OF TOTA             | I CAPTTAL T         | 1085900.            |
|                 | ION OVERHEAD ( 2.0% O             |                     | 165200.             |
|                 | KES & INS. ( 2.0% OF              |                     | 165200.             |
|                 | IZED COST - RETROFIT              |                     | 3215300             |
|                 | - NEW                             |                     | 3069700.            |

#### GENERAL INFORMATION: UNITS OPTION PPSES: 502. COKE PUSHING COKE CAPACITY: .708 MILLION TONS/YEAR PARTICULATE LOAD IN: 2.000000 LBS/TON COAL EFFICIENCY: \*88.2% ALLOWABLE: .236000 LBS/TON COAL 88.45 LBS/HR B\$0 LOAD IN: .080000 LBS/TON COAL ALLOWABLE: .036800 LBS/TON COAL EFFICIENCY: 54.0% 13.79 LBS/HR BAP .000040 LBS/TON COAL LOAD IN: ALLOWABLE: .000026 LBS/TON COAL EFFICIENCY: 36.0% .01 LBS/HR BENZENE -006000 LBS/TON COAL LOAD IN: .002760 LBS/TON COAL EFFICIENCY: 54.0% ALLOWABLE: 1.03 LBS/HR DUST COLLECTED PER DAY: 2.4 TONS(DRY) TEMP OUT OF PROCESS: 300. F 100. F EXHAUST TEMPERATURE: SCFM FLOW: 71000. AT 70, F ACFM FLOW: 75000. AT 100. F ACFM FLOW: L/G RATIO: .0\_ 0. GPM PROCESS WATER FLOW: 0. GPM COOLING WATER FLOW: 0. MG/L SUSPENDED SOLIDS OUT: XSOLIDS: .0

# GENERAL INFORMATION: UNITS OPTION PPSES: 502. COKE PUSHING COKE 5 CONTROL SYSTEM CONFIGURATION: ENCLOSED HOT CAR FEET OF ADDITIONAL DUCT: DIAMETER: 5. 0. TOTAL PRESSURE DROP: 0. INCHES O FANS @ O. HP EACH SPARE FAN CAPACITY: 0.X OPERATING HOURS AT FULL HP: 2700. OPERATING HOURS AT REDUCED HP: 5900. STACK HEIGHT: O. DIAMETER: O. NO. OF OVENS 60. OVEN HEIGHT 6.0 METERS OVEN VOLUME 1348. CUBIC FEET TONS COKE/PUSH 24. 17.5 AVG. COKING TIME, HRS. NO. CYCLES/DAY 82. BULK DENSITY 50. LBS/CUBIC FT. .70 YIELD TONS COAL/YEAR 1011967. A-29

## CAPITAL COST:

| TPITAL COST.                          |                  |                                         |          |         | OPTION                                |              |             |                                       |
|---------------------------------------|------------------|-----------------------------------------|----------|---------|---------------------------------------|--------------|-------------|---------------------------------------|
| PPSES: 502.                           | COKE PUSHING     |                                         | COI      | KE      | 5                                     |              |             |                                       |
| CAPACITY:                             | .708 MIL         | LION TONS                               | YEAR     |         |                                       |              |             |                                       |
| TOTAL COST                            | (COST BASIS 1    | S 110.00%                               | OF JUNE  | 1977    | DOLLARS                               | FOR          | 4078        | COST                                  |
| CATEGORY                              |                  |                                         | COST IN  | ווחת    | ARS                                   |              |             |                                       |
|                                       |                  |                                         |          | JULE.   |                                       |              |             |                                       |
|                                       | *** DIRECT C     |                                         |          |         |                                       |              |             |                                       |
|                                       | OR MATERIAL      | •                                       | 3841700. |         |                                       |              |             |                                       |
| INSTRUMENT                            |                  |                                         | 0.       |         |                                       |              |             |                                       |
| ELECTRICAL                            |                  |                                         | 0.       |         | <del></del>                           | <del></del>  |             |                                       |
| FOUNDATION                            | •                |                                         | 0.       |         |                                       |              |             |                                       |
| -                                     |                  |                                         |          |         |                                       |              |             |                                       |
| SITE WORK                             |                  | *************************************** | 0.       |         |                                       |              |             | · · · · · · · · · · · · · · · · · · · |
| INSULATION                            |                  |                                         | 0.       |         |                                       |              |             |                                       |
|                                       | COATING          |                                         |          |         |                                       |              |             |                                       |
| BUILDINGS                             |                  |                                         | 0.       |         |                                       |              |             |                                       |
| <del>-</del> -                        | MATERIAL LABO    | )R                                      |          |         |                                       |              |             |                                       |
|                                       | T COST SUBTOT    |                                         | _        | 386     | 4800.                                 |              |             |                                       |
|                                       |                  |                                         |          |         |                                       |              |             |                                       |
|                                       | ** INDIRECT      | •                                       |          |         |                                       |              |             |                                       |
|                                       | RHEAD            |                                         |          |         |                                       |              |             |                                       |
| CONTRACTOR                            |                  |                                         | 3800.    |         |                                       |              |             |                                       |
| ENGINEERIN                            |                  |                                         | 55000.   |         |                                       |              |             |                                       |
|                                       |                  |                                         |          |         |                                       | <del> </del> |             |                                       |
| OFFSITE WO                            | ) RK             |                                         | 0.       |         |                                       |              |             |                                       |
| TAXES                                 |                  |                                         | 192400.  |         |                                       |              |             |                                       |
|                                       |                  |                                         | 192400.  |         | · · · · · · · · · · · · · · · · · · · |              | <del></del> |                                       |
| SPARES<br>Contingen(                  | • •              |                                         | 38500.   |         |                                       |              |             |                                       |
|                                       | RECT COST SUBT   | OTAL                                    | 877500.  | 1 7 7 1 | 3800.                                 |              |             |                                       |
| ABUIT                                 | CL ( LUS   SUD ) | VIAL                                    |          |         | <u> </u>                              |              |             |                                       |
| INTER                                 | REST DURING IN   | ISTALLATIO!                             | V        | 524     | 4400.                                 |              |             |                                       |
| TOTAL                                 | COST             |                                         |          | 5768    | 3000.                                 |              |             |                                       |
| TOTAL                                 | COST WITH RE     | TROFIT                                  |          | 6344    | 1800.                                 |              |             | . <del> </del>                        |
|                                       |                  |                                         | ·        |         |                                       |              |             |                                       |
|                                       |                  |                                         |          | *       |                                       |              |             |                                       |
| · · · · · · · · · · · · · · · · · · · |                  |                                         |          |         |                                       |              |             |                                       |
|                                       |                  |                                         |          |         |                                       |              |             |                                       |
|                                       |                  |                                         |          |         | · ·                                   |              |             |                                       |
|                                       |                  |                                         |          |         |                                       |              |             |                                       |
|                                       |                  |                                         |          |         |                                       |              |             |                                       |
|                                       |                  |                                         |          |         |                                       |              | ····        |                                       |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                       | PTION       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------|-------------|
| PPSES: 502. C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OKE PUSHING                        | COKE                                  | 5           |
| CAPACITY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .708 MILLION TO                    | NS/YEAR                               |             |
| CATEGORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | QUANTITY                           | RATE                                  | ANNUAL COST |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *** UTILI1                         | TIES ***                              |             |
| WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6375 MGAL/YR                       | <b>s</b> .1595/1000                   | GAL 1000.   |
| ELECTRICITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4173. KWH/YR                       | \$ .0266/KWH                          | 100.        |
| STEAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0. MLBS/YR                         | \$ 4.0920/MLBS                        | 0.          |
| FUEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 672958 GAL/YR                      | \$ ,4180/GAL                          | 281300.     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *** OPERATING                      | LABOR ***                             |             |
| DIRECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0. HRS/YR                          | \$14.34/HR                            | 0. (        |
| SUPERVISION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O. HRS/YR                          | \$17.20/HR                            | 0. (        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *** MAINTENANCE                    | & SUPPLIES ***                        |             |
| DIRECT LABOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8000. HRS/YR                       | \$14.34/HR                            | 114800. (   |
| SUPERVISION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1600. HRS/YR                       | \$17,20/HR                            | 27500. (    |
| MATERIALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |                                       | 114800. (   |
| SUPPLIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |                                       | 38600. (    |
| WATER TREATMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                       |             |
| SOLID WASTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                                       |             |
| DISPOSAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1785. TON/YR                       | \$ 8.25/TON                           | 14700.      |
| DIRECT OPERA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TING COST                          |                                       | 592800.     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HEAD =20.0% OF A+B+C               |                                       | 28500.      |
| and the second s | AD =50.0% OF A+B+C+D               | )+E+F                                 | 147900.     |
| TOTAL OPERAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |                                       | 769200.     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ST IN DOLLARS PER TO               |                                       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ST IN DOLLARS PER TO               |                                       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ST AS PERCENT OF CAP               | PITAL CUST                            | 12.1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TIME IN WEEKS FE OF SYSTEM IN YEAR | ) e                                   | 104.        |
| KWH PER TON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    | (3                                    | 20.<br>41.8 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VERY (11.75% OF TOTA               | AL CARTTAL Y                          | 745300.     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ON OVERHEAD ( 2.0% (               |                                       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ES & INS. ( 2.0% OF                |                                       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IZED COST - RETROFI                |                                       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | · · · · · · · · · · · · · · · · · · · |             |

|                |           |                   | · · · · · · · · · · · · · · · · · · · | UNITS OP     | TION                                  |
|----------------|-----------|-------------------|---------------------------------------|--------------|---------------------------------------|
| PPSES: 502.    | COKE PUSH | ING               |                                       | COKE         | 6                                     |
| CAPACITY:      | .708      | MILLION           | TONS/                                 | YEAR         |                                       |
|                |           |                   |                                       |              | •                                     |
| PARTICULATE    | 3 000000  | LDC/TON           | CO.A.)                                |              |                                       |
|                | 2.000000  |                   |                                       | EFFICIENCY:  | 80 17                                 |
| MELUMADEC      |           | LBS/HR            | CUAL                                  | CFF 161ENG1+ | 07.14                                 |
| 350            | <u> </u>  |                   |                                       |              |                                       |
|                | .080000   | LRS/TON           | COAL                                  |              |                                       |
|                | •         |                   |                                       | EFFICIENCY:  | 45.07                                 |
| <u> </u>       |           | LBS/HR            | <u> </u>                              |              |                                       |
| IAP            |           |                   |                                       |              |                                       |
|                | .000040   | LBS/TON           | CUAL                                  |              |                                       |
| ALLOWABLE      |           | LBS/TON           |                                       | EFFICIENCY:  | 45.0%                                 |
|                |           | LBS/HR            | -                                     |              |                                       |
| BENZENE        |           |                   |                                       |              |                                       |
|                | .006000   |                   |                                       |              |                                       |
| ALLOWABLE      |           | LBS/TON<br>LBS/HR | COAL                                  | EFFICIENCY:  | 45.0%                                 |
| UST COLLECTED  | DED DAY.  | 2 5               | TONS (                                | NDV1         |                                       |
|                |           |                   | •                                     |              |                                       |
| EMP OUT OF PR  |           | 300.              |                                       |              | · · · · · · · · · · · · · · · · · · · |
| XHAUST TEMPER  | ATURE:    | 150.              | F                                     |              |                                       |
| CFM FLOW: 31   |           |                   |                                       |              | · · · · · · · · · · · · · · · · · · · |
| CFM FLOW: 36   | 5000. AT  | 150.              | F                                     |              |                                       |
| /G RATIO:      |           | 0                 |                                       |              |                                       |
| PROCESS WATER  | FLOW:     | 0.                |                                       |              |                                       |
| COOLING WATER  | FLOW:     | 0.                | 6PM                                   |              |                                       |
| SUSPENDED SOLI | DS OUT:   | 0,                | MG/L                                  | XSOLIDS:     | 0                                     |
|                |           |                   |                                       |              |                                       |
|                |           |                   |                                       |              |                                       |
|                |           |                   |                                       |              |                                       |
| · <u></u>      |           |                   |                                       | •            |                                       |
|                |           |                   |                                       |              |                                       |
|                |           |                   |                                       |              |                                       |
|                |           |                   |                                       | :            |                                       |
|                |           |                   |                                       |              |                                       |

| PPSES: 502. COKE PUSI     | UNITS OPTION HING COKE 6                  |
|---------------------------|-------------------------------------------|
| •                         |                                           |
| CONTROL SYSTEM CONFIGURA  | ATION:                                    |
| ESP                       |                                           |
| COKE OVEN SHED            |                                           |
| •                         |                                           |
| DUCTWORK                  |                                           |
| STACK                     |                                           |
| DUST HANDLING HUPPE       | ER & CONVEYORS                            |
| DAMPERS                   |                                           |
| FAN AND DRIVE ELECT       | TRICAL                                    |
| SCA: 240. TOTAL (         | PLATE AREA: 105000. SQ.FT. @ 20% SPARE CA |
| FEET OF ADDITIONAL DUCT   | : 300, DIAMETER: 11.                      |
| TOTAL PRESSURE DROP:      | 12. INCHES                                |
| 3 FANS @ 575. HP EACH     | SPARE FAN CAPACITY: 50.%                  |
|                           | HP: 8322,                                 |
| OPERATING HOURS AT REDUC  |                                           |
|                           | 100. DIAMETER: 12.                        |
| NO. OF OVENS  OVEN HEIGHT | 6.0 METERS                                |
| OVEN VOLUME               | 1348. CUBIC FEET                          |
|                           | 24                                        |
| AVG. COKING TIME, HRS.    |                                           |
| NO. CYCLES/DAY            | 62.                                       |
| BULK DENSITY              | 50. LBS/CUBIC FT.                         |
| YIELD                     | .70                                       |
| TUNS COAL/YEAR            | 1011967.                                  |
|                           |                                           |
|                           |                                           |
|                           |                                           |
|                           |                                           |
|                           |                                           |
|                           |                                           |
|                           | 4-14-14-14-14-14-14-14-14-14-14-14-14-14  |
|                           | ·                                         |
|                           |                                           |
|                           |                                           |
|                           |                                           |
|                           |                                           |

CAPITAL COST:

| CAPITAL COST:                    |                | UNIT    | S            | OPTION       |                                       |             |             |
|----------------------------------|----------------|---------|--------------|--------------|---------------------------------------|-------------|-------------|
| PPSES: 502. COKE PUSHING         |                | COK     | E            | 6            |                                       |             |             |
| CAPACITY: .708 MILLION TON       | S/YEAR         |         |              |              |                                       |             |             |
| TOTAL COST (COST BASIS IS 110.00 | x OF J         | UNE     | 1977         | DOLLARS      | FOR                                   | 4078        | COS         |
| CATEGORY                         | COST           | IN      | DOLL         | ARS          |                                       |             |             |
| *** DIRECT COST ***              |                |         |              |              |                                       |             |             |
| EQUIPMENT OR MATERIAL            | 18761          | 00.     |              |              |                                       |             |             |
| INSTRUMENTATION                  |                | 0.      |              |              |                                       |             |             |
| PIPING                           |                | 0.      |              |              |                                       |             |             |
| ELECTRICAL                       | 8110           |         |              |              |                                       |             |             |
| FOUNDATIONS                      | 1620           | 00.     |              |              |                                       |             |             |
| STRUCTURAL                       | 8121           | 00.     |              |              |                                       |             |             |
| SITE WURK                        | 910            | 00.     |              |              |                                       |             |             |
| INSULATION                       | 6890           | 00.     |              |              |                                       |             |             |
| PROTECTIVE CUATING               | 1050           |         |              |              |                                       |             |             |
| BUILDINGS                        | 101            |         |              |              |                                       |             |             |
| EQUIPMENT/MATERIAL LABOR         | 7540           |         |              |              |                                       |             |             |
| DIRECT COST SUBTOTAL             |                |         | 290          | 7200.        |                                       |             |             |
|                                  |                |         |              | •            |                                       |             |             |
| *** INDIRECT COST ***            |                |         |              |              |                                       |             |             |
| FIELD OVERHEAD                   |                |         |              |              |                                       |             |             |
| CONTRACTORS FEE                  | 28746          |         |              |              |                                       |             |             |
| ENGINEERING                      | 25930          | -       |              |              |                                       |             |             |
| FREIGHT                          |                |         |              |              |                                       |             |             |
| OFFSITE WORK                     | 548            |         |              |              |                                       |             |             |
| TAXES                            | 10540          |         |              |              |                                       |             |             |
| SHAKEDUWN<br>SPARES              | 10620          |         |              |              |                                       |             | <del></del> |
| CONTINGENCY                      | 10040<br>90070 |         |              |              |                                       |             |             |
| INDIRECT COST SUBTOTAL           |                |         | 230          | 1000.        |                                       |             |             |
|                                  |                |         |              |              |                                       |             |             |
| INTEREST DURING INSTALLATI       | ION            |         | 47           | 2100.        |                                       |             |             |
| TOTAL COST                       |                | BT14    | 568          | 0300.        | · · · · · · · · · · · · · · · · · · · |             |             |
| TOTAL COST WITH RETROFIT         |                |         | 635          | 5900.        |                                       |             |             |
|                                  |                |         |              |              |                                       |             |             |
|                                  |                | <u></u> | <del> </del> |              |                                       | <del></del> |             |
|                                  |                |         | •            |              |                                       |             |             |
|                                  |                |         |              |              |                                       |             |             |
|                                  |                |         |              | <del> </del> |                                       |             | <del></del> |
|                                  |                |         |              |              |                                       |             |             |
|                                  |                |         |              |              |                                       |             |             |
|                                  |                |         | <del></del>  |              |                                       |             |             |
| A-34                             |                |         |              |              |                                       |             |             |

| CAPACITY:  CATEGORY  WATER ELECTRICITY STEAM | QUANTITY                           | NS/YEAR<br>RATE  | ANNUAL COST ( |
|----------------------------------------------|------------------------------------|------------------|---------------|
| WATER<br>ELECTRICITY                         |                                    | RATE             | ANNUAL COST ( |
| WATER<br>ELECTRICITY                         | *** UTILI                          |                  |               |
| ELECTRICITY                                  | WAK DITET                          | 7750             |               |
| ELECTRICITY                                  |                                    | ITES MAN         |               |
|                                              | U. MGAL/YR                         | \$ .1595/1000 GA | L0            |
| STEAM                                        | 9151822. KWH/YR                    | \$ .0266/KWH     | 243600.       |
|                                              | U. MLBS/YR                         | \$ 4.0920/MLBS   | 0.            |
| FUEL                                         | U, GAL/YR                          | \$ ,4180/GAL     | 0.            |
|                                              | *** OPERATING                      | LABOR ***        |               |
| DIRECT                                       | 8760. HRS/YR                       | \$14.34/HR       | 125700. (A    |
| SUPERVISION                                  | 1752. HRS/YR                       | \$17.20/HR       | 30100. (B     |
|                                              | *** MAINTENANCE                    | & SUPPLIES ***   |               |
| DIRECT LABOR                                 | 11867. HRS/YR                      | \$14.34/HR       | 170200. (C    |
| SUPERVISION                                  | 2373. HRS/YR                       | \$17.20/HR       | 40800. (D     |
| MATERIALS                                    |                                    |                  | 86800. (E     |
| SUPPLIES                                     |                                    |                  | 44700. (F     |
| NATER TREATMENT                              |                                    |                  | 0.            |
| SULID WASTE                                  |                                    |                  |               |
| DISPOSAL                                     | 902. TON/YR                        | \$ 8.25/TUN      | 7400.         |
| DIRECT OPERA                                 | TING COST                          |                  | 749300.       |
| PAYHOLL OVER                                 | HEAD =20.0% OF A+B+0               | C+D              | 73400.        |
|                                              | AD =50.0% UF A+B+C+0               | D+E+F            | 249200.       |
| TOTAL OPERAT                                 |                                    |                  | 1071900.      |
|                                              | ST IN DOLLARS PER TO               |                  | 1.51          |
|                                              | ST IN DOLLARS PER TO               |                  |               |
|                                              | ST AS PERCENT OF CAR               | PITAL CUST       | 16.9          |
|                                              | TIME IN WEEKS FE OF SYSTEM IN YEAR | D 6              | 130.<br>20.   |
| KWH PER TUN                                  |                                    | 13               | 12.9          |
|                                              | VERY (11.75% OF TOTA               | AL CAPITAL)      | 746600.       |
|                                              | ON OVERHEAD ( 2.0% (               |                  | 127100.       |
|                                              | ES & INS. ( 2.0% OF                |                  | 127100.       |
|                                              | IZED COST - RETROFT                |                  | 2072700.      |
|                                              | - NEW                              |                  | 1966300.      |

GENERAL INFORMATION: UNITS OPTION PPSES: 502. COKE PUSHING COKE 7 CAPACITY: .708 MILLION TONS/YEAR PARTICULATE LOAD IN: 2.000000 LBS/TON COAL ALLOWABLE: .218000 LBS/TON COAL EFFICIENCY: 89.1% 26.51 LBS/HR B50 LOAD IN: .080000 LBS/TON COAL ALLOWABLE: .036800 LBS/TON COAL EFFICIENCY: 54.0% 4.47 LBS/HR BAP LOAD IN: .000040 LBS/TON COAL .000018 LBS/TON COAL EFFICIENCY: 54.0% ALLOWABLE: .00 LBS/HR BENZENE LOAD IN: .006000 LBS/TON COAL ALLOWABLE: .002760 LBS/TON COAL EFFICIENCY: 54.0% . .34 LBS/HR DUST COLLECTED PER DAY: 2.5 TONS (DRY) 300. F TEMP OUT OF PROCESS: 100. F EXHAUST TEMPERATURE: SCFM FLOW: 345000, AT 70, F ACFM FLOW: 365000. AT 100. F L/G RATIO: 7.9 PROCESS WATER FLOW: 2738. GPM COULING WATER FLOW: 0. GPM SUSPENDED SOLIDS OUT: 124. MG/L %SOLIDS: .0

## GENERAL INFORMATION: OPTION UNITS PPSES: 502. COKE PUSHING COKE 7 CONTROL SYSTEM CONFIGURATION: VENTURI SCRUBBER COKE OVEN SHED MIST FLIMINATOR FAN AND DRIVE DUCTWORK STACK WASTEWATER RECYCLE SYSTEM DAMPERS WASTE WATER RETURN SYSTEM WATER PUMPING SYSTEM FAN AND DRIVE ELECTRICAL FEET OF ADDITIONAL DUCT: 300. DIAMETER: 11. 50. INCHES TOTAL PRESSURE DROP: SPARE FAN CAPACITY: 50.7 3 FANS @ 2394. HP EACH OPERATING HOURS AT FULL HP: 8322. OPERATING HOURS AT REDUCED HP: 0. 100. STACK HEIGHT: DIAMETER: 12. NO. OF OVENS 60. OVEN HEIGHT 6.0 METERS OVEN VOLUME 1348. CUBIC FEET TONS COKE/PUSH 24. AVG. COKING TIME, HRS. 17.5 NO. CYCLES/DAY 82. BULK DENSITY 50. LBS/CUBIC FT. .70 YIELD TONS COAL/YEAR 1011967.

#### CAPITAL COST: UNITS OPTION PPSES: 502. COKE PUSHING COKE 7 CAPACITY: .708 MILLION TONS/YEAR (COST BASIS IS 110.00% OF JUNE 1977 DOLLARS FOR 4078 COST .-TOTAL COST CATEGORY COST IN DOLLARS \*\*\* DIRECT COST \*\*\* EQUIPMENT OR MATERIAL 2727900. INSTRUMENTATION 51900. PIPING 235000. ELECTRICAL 316500. FOUNDATIONS 95800. STRUCTURAL 126200. SITE WORK 11000. INSULATION 23400. PROTECTIVE COATING .00585 BUILDINGS 38600. EQUIPMENT/MATERIAL LABOR 628400. DIRECT COST SUBTOTAL 4282900. \*\*\* INDIRECT COST \*\*\* FIELD OVERHEAD 462200. CONTRACTORS FEE 250700. ENGINEERING 396500. FREIGHT 92400 OFFSITE WORK 73300. TAXES 157500. 148900. SHAKEDOWN SPARES 119300. CONTINGENCY 1185700. 2886500. INDIRECT COST SUBTOTAL INTEREST DURING INSTALLATION 604600. TOTAL COST 7774000. TOTAL COST WITH RETROFIT 8658900.

| PPSES: 502. (   | OKE PUSHING                                    | UNITS OPTION<br>COKE 7 |              |
|-----------------|------------------------------------------------|------------------------|--------------|
| CAPACITY:       | .708 MILLION TON                               | IS/YEAR                |              |
| CATEGORY        | QUANTITY                                       | RATE                   | ANNUAL COST  |
|                 | *** UTILIT                                     | IES ***                |              |
| WATER           | 273402. MGAL/YR                                | \$ .1595/1000 GAL      | 43600        |
| ELECTRICITY     | 31514320 KWH/YR                                | \$ .0266/KWH           | 838900.      |
| STEAM           | 0. MLBS/YR                                     | \$ 4.0920/MLBS         | 0.           |
| FUEL            | O. GAL/YR                                      | \$ .4180/GAL           | 0            |
|                 | *** OPERATING                                  | LABOR ***              |              |
| DIRECT          | 8760. HRS/YR                                   | \$14.34/HR             | 125700. (4   |
| SUPERVISION     | 1752, HRS/YR                                   | \$17.20/HR             | 30100. (E    |
|                 | *** MAINTENANCE                                | & SUPPLIES ***         |              |
| DIRECT LABOR    | 17763. HRS/YR                                  | \$14.34/HR             | 254800. (0   |
| SUPERVISION     | 3553 HRS/YR                                    |                        | 61100. (     |
| MATERIALS       |                                                |                        | 197600. (E   |
| SUPPLIES        |                                                |                        | 112800. (F   |
| WATER TREATMENT |                                                |                        | 0.           |
| SOLID WASTE     |                                                |                        |              |
| DISPOSAL        | 1803. TON/YR                                   | \$ 8.25/TON            | 14900.       |
| DIRECT OPERA    | TING COST                                      |                        | 1679500.     |
|                 | HEAD =20.0% OF A+B+C                           |                        | 94300.       |
|                 | AD = 50.02 OF A+B+C+D                          | )+E+F                  | 391100.      |
| TOTAL OPERAT    |                                                |                        | 2164900.     |
|                 | ST IN DOLLARS PER TO                           |                        | 3,06         |
|                 | IST IN DOLLARS PER TO<br>IST AS PERCENT OF CAP |                        | 2401.01      |
|                 | TIME IN WEEKS                                  | TIME COST              | 25.0<br>130. |
|                 | FE OF SYSTEM IN YEAR                           | 98                     | 15.          |
| KWH PER TON     | CAPACITY                                       | . 0                    | 44.5         |
| · · · · · ·     | VERY (13.15% OF TOTA                           | L CAPITAL)             | 1138400.     |
|                 | ON OVERHEAD ( 2.0% 0                           |                        | 173200.      |
| PROPERTY TAX    | ES & INS. ( 2.0% OF                            | TOTAL CAPITAL)         | 173200.      |
| TOTAL ANNUAL    | IZED COST - REJROFIT                           |                        | 3649700      |
|                 | - NEW                                          |                        | 3498000.     |

| PPSES: 503.     | DUENCHING | - PIEAN           | WATED  | UNITS OP    | 2<br>110N |
|-----------------|-----------|-------------------|--------|-------------|-----------|
| PP3E3: 303.     | DUENCHING | - LLEAN           | MAIER  | LUNE        | 2         |
| CAPACITY:       | 2.834     | MILLION           | TONS   | /EAR        |           |
| PARTICULATE     |           |                   |        |             |           |
|                 | 1.700000  | LBS/TON           | COAL   |             |           |
| ALLOWABLE       | .510000   | LBS/TON           | COAL   | EFFICIENCY: | 70.0%     |
|                 | 235.66    | LBS/HR            |        |             |           |
| <b>BS</b> 0     |           | - <del></del>     |        |             |           |
| LOAD IN:        | .001700   | LBS/TON           | COAL   |             |           |
| ALLOWABLE       | .000510   |                   | COAL   | EFFICIENCY: | 70.0%     |
|                 | .24       | LB\$/HR           |        |             |           |
| BAP             |           |                   |        |             |           |
| LOAD IN:        |           | LBS/TON           |        |             |           |
| ALLOWABLE       | _         |                   | COAL   | EFFICIENCY: | 70.0%     |
|                 |           | LBS/HR            |        |             |           |
| BENZENE         |           |                   |        |             |           |
|                 | .000030   |                   |        |             |           |
| ALLOWABLE       |           | LBS/TON<br>LBS/HR | COAL   | EFFICIENCY: | .0%       |
|                 |           |                   |        |             |           |
| DUST COLLECTED  | PER DAY:  | 6.6               | TONS ( | ORY)        |           |
| TEMP OUT OF PRI | OCESS:    | 200.              | E      |             |           |
| EXHAUST TEMPER  | ATURE:    | 200.              | F      |             |           |
| SCFM FLOW: 56   | 5000 AT   | 70.               | F      |             |           |
| ACFM FLOW: 70   |           |                   |        |             |           |
| L/G RATIO:      |           |                   |        |             |           |
| PROCESS WATER I | FLOW:     | 0.                | GPM    |             |           |
| COOLING WATER I |           | 0.                |        |             |           |
| SUSPENDED SOLI  | S OUT:    | 0.1               | 4G/L   | %SOLIDS:    | . 0       |
|                 |           |                   |        |             |           |
|                 |           | . <del></del>     |        |             | ····      |
|                 |           |                   |        |             |           |
|                 |           |                   |        |             |           |
|                 |           |                   |        |             |           |
|                 |           |                   |        | •           |           |
|                 | ,         |                   |        |             |           |

# GENERAL INFORMATION: UNITS OPTION PPSES: 503. QUENCHING - CLEAN WATER COKE 2 CONTROL SYSTEM CONFIGURATION: QUENCH TOWER BAFFLES FEET OF ADDITIONAL DUCT: DIAMETER: 15. TOTAL PRESSURE DROP: 0. INCHES O. HP EACH O FANS a SPARE FAN CAPACITY: 0.7 OPERATING HOURS AT FULL HP: 8760. OPERATING HOURS AT REDUCED HP: 0. O. DIAMETER: O. STACK HEIGHT: 60. NO. OF OVENS 6.0 METERS OVEN HEIGHT OVEN VOLUME 1348. CUBIC FEET TONS COKE/PUSH 24. AVG. COKING TIME, HRS. 17.5 NO. CYCLES/DAY 82. 50. LBS/CUBIC FT. BULK DENSITY .70 YIELD 4047868, TONS COAL/YEAR

| PPSES: 503. QUENCHING - CLEAN W. | UNITS OPTION ATER COKE 2       |
|----------------------------------|--------------------------------|
| PPSES. 303. GUENCHING - CLEAN W. | TIEN CONE E                    |
| CAPACITY: 2.834 MILLION T        | INS/YEAR                       |
| TOTAL COST (COST BASIS IS 110.   | 00% OF JUNE 1977 DOLLARS FOR 4 |
| CATEGORY                         | COST IN DOLLARS                |
| *** DIRECT COST **               | ·                              |
| EQUIPMENT OR MATERIAL            | 114100.                        |
| INSTRUMENTATION                  | 0.                             |
| PIPING                           | 30800.                         |
| ELECTRICAL                       | 6200.                          |
| FOUNDATIONS                      | 900.                           |
| STRUCTURAL                       | 0.                             |
| SITE WORK                        | 600.                           |
| INSULATION                       | 0.                             |
| PROTECTIVE COATING               | 900.                           |
| BUILDINGS                        | 0.                             |
| EQUIPMENT/MATERIAL LABOR         | 80300.                         |
| DIRECT COST SUBTOTAL             | 233800.                        |
|                                  |                                |
| *** INDIRECT COST *              |                                |
| FIELD OVERHEAD                   | 45400.                         |
| CONTRACTORS FEE                  | 27900.                         |
| ENGINEERING                      | 35100.                         |
| FREIGHT<br>OFFSITE WORK          | 4400.                          |
| TAXES                            | 0.<br>5700.                    |
|                                  | 1300.                          |
| SHAKEDOWN<br>SPARES              | 3500.                          |
| CONTINGENCY                      | 71400.                         |
| INDIRECT COST SUBTOTAL           | 194700.                        |
| INTEREST DURING INSTALLA         | TION 10700.                    |
| TOTAL COST                       | 439200.                        |
| TOTAL POST WITH DETROFT          | 571000.                        |
|                                  | ·                              |
|                                  |                                |
|                                  |                                |
|                                  |                                |
|                                  |                                |
|                                  |                                |
| •                                |                                |
|                                  |                                |

| PPSES: 503. QU          | JENCHING - CLEAN WAS                 | UNITS OPTION<br>TER COKE 2 |                    |
|-------------------------|--------------------------------------|----------------------------|--------------------|
| CAPACITY:               | 2.834 MILLION TO                     | NS/YEAR                    |                    |
| CATEGORY                | QUANTITY                             | RATE                       | ANNUAL COST (      |
|                         | *** UTILIT                           | TIES ***                   |                    |
| WATER                   | O. MGAL/YR                           | 3 .1595/1000 GAL           | 0.                 |
| ELECTRICITY             | O. KWH/YR                            | S .0266/KWH                | 0.                 |
| STEAM                   | U. MLBS/YR                           | \$ 4.0920/MLBS             | 0.                 |
| FUEL                    | O. GAL/YR                            | \$ 4180/GAL                | 0.                 |
|                         | *** OPERATING                        | LABOR ***                  |                    |
| DIRECT                  | 0. HRS/YR                            | \$14.34/HR                 | 0. (4              |
| SUPERVISION             | 0. HR\$/YR                           | \$17.20/HR                 | 0. (8              |
|                         | *** MAINTENANCE                      | & SUPPLIES ***             |                    |
| DIRECT LABOR            | 1200. HRS/YR                         | \$14.34/HR                 | 17200. ((          |
| SUPERVISION             | 240. HRS/YR                          | \$17.20/HR                 | 4100. ([           |
| MATERIALS               |                                      |                            | 8600. (8           |
| SUPPLIES                |                                      |                            | 4500. (F           |
| WATER TREATMENT         |                                      |                            | <u>0.</u>          |
| SOLID WASTE<br>DISPOSAL | 4817. TON/YR                         | \$ 8.25/TON                | 39700.             |
| DIRECT OPERAT           | ING COST                             |                            | 74100.             |
| PAYROLL OVER            | 1EAD =20.0% DF A+B+C                 | C+D                        | 4300.              |
|                         | D =50.0% OF A+B+C+D                  |                            | 17200.             |
| TOTAL OPERATI           | ING COST                             |                            | 95600.             |
|                         | ST IN DOLLARS PER TO                 |                            |                    |
| •                       |                                      | ON OF DUST COLLECTED       | 39.69              |
|                         | ST AS PERCENT OF CAP                 | PITAL COST                 | 16.7               |
|                         | TIME IN WEEKS<br>E OF SYSTEM IN YEAR | ) c                        | <u> 26.</u><br>20. |
| KWH PER TON             |                                      | (3                         | .0                 |
|                         | ERY (11.75% OF TOTA                  | N CAPITAL)                 | 67100.             |
|                         | N OVERHEAD ( 2.0% C                  |                            | 11400.             |
|                         | S & INS. ( 2.0% OF                   |                            | 11400.             |
| TOTAL ANNUAL            | ZED COST - RETROFI                   |                            | 185500.            |
|                         | - NEW                                |                            | 164800.            |
|                         |                                      |                            |                    |
|                         |                                      | <u> </u>                   |                    |

| GENERA       | L INF    | ORMATION                                | v:                                      |             |         |             |         |           |
|--------------|----------|-----------------------------------------|-----------------------------------------|-------------|---------|-------------|---------|-----------|
| PP           | SES:     | 503.                                    | QUENCHING                               | - CLEAN     |         | UNITS OF    |         |           |
|              |          |                                         |                                         |             |         |             |         |           |
| UA           | PAUL!    |                                         |                                         | MILLIUN     |         | EAR         |         |           |
| PA           | RTICU    | JLATE                                   |                                         |             |         |             |         |           |
|              | L0       | DAD IN:                                 | 1.700000                                | LBS/TON     | COAL    | EEETCTENCV. |         |           |
| •            | AL       | LOWABLE                                 |                                         | COOLIGIA    | COAL    | EFFICIENCY: | 90.0%   |           |
|              |          |                                         | 78.55                                   | LBS/HR      |         |             |         |           |
| 88           | <u> </u> |                                         |                                         |             |         |             |         |           |
|              |          | AD IN:                                  | .001700                                 | LBS/TON     | COAL    |             |         |           |
|              |          |                                         |                                         |             | _       | EFFICIENCY: | 90,0%   |           |
|              |          |                                         | .08                                     | LBS/HR      |         |             |         |           |
| D.A.         | _        |                                         |                                         |             |         |             |         |           |
| BA           |          | AD THE                                  | .000140                                 | L D C / TON |         |             |         |           |
|              | A:       | LOWARLE:                                | .000140                                 | LBS/TON     | COAL    | EFFICIENCY: | 90.07   |           |
|              |          |                                         |                                         |             |         |             |         |           |
| arrandina ya |          |                                         |                                         | _ <b>_</b>  |         |             |         | · · · · · |
|              | NZENE    |                                         |                                         |             |         |             |         |           |
|              | LO       | DAD IN:                                 | ,000030                                 | LBS/TON     | COAL    |             |         |           |
|              | AL       | LOWABLE:                                |                                         |             | CUAL    | EFFICIENCY: | .02     |           |
|              |          |                                         | • 0 1                                   | LBS/HR      |         |             |         |           |
| UQ           | ST CO    | LLECTED                                 | PER DAY:                                | 8.5         | TONS (D | RY)         |         |           |
|              |          |                                         |                                         |             |         | , <b>.</b>  |         |           |
|              |          |                                         | CESS:                                   |             |         |             |         |           |
| EX           | HAUST    | TEMPERA                                 | TURE:                                   | 150.        | F       |             |         |           |
| ور           | EM FI    | Ow: 566                                 | .000 AT                                 | 7.0         | c       |             |         |           |
| AC AC        | FM FL    | .OW: 651                                | TAAT                                    | 150.        | r<br>F  |             |         | •         |
|              |          | , , , , , , , , , , , , , , , , , , , , | ,,,,                                    |             |         |             |         |           |
| L/           | G RAT    | 10:                                     |                                         | 0           |         |             |         |           |
|              |          |                                         | LOW:                                    |             |         |             |         |           |
|              |          | WATER F                                 |                                         | 907         |         | %SOLIDS:    | •       |           |
| 30           | SECIMI   | LU JULII                                | 73 001+                                 | 70,1 •      | MU/L    | *30[103+    | , • A . | • •       |
|              |          |                                         |                                         |             |         |             |         |           |
|              |          |                                         |                                         |             |         | <u> </u>    |         |           |
|              |          |                                         |                                         |             |         |             |         |           |
|              |          |                                         |                                         |             |         |             |         |           |
|              |          |                                         |                                         |             |         |             | •       |           |
|              |          |                                         |                                         |             |         |             |         |           |
|              |          |                                         |                                         |             |         |             |         |           |
|              |          |                                         |                                         |             |         |             |         |           |
|              |          |                                         |                                         |             |         |             |         |           |
|              |          |                                         | - · · · · · - · - · - · - · - · - · - · |             |         |             |         |           |
|              |          |                                         |                                         |             |         |             |         |           |
|              |          |                                         |                                         |             |         |             |         |           |
|              |          | · · · · · · · · · · · · · · · · · · ·   |                                         |             |         |             |         |           |
|              |          |                                         |                                         |             |         |             |         |           |
|              |          |                                         |                                         |             | ·       |             |         |           |

A-44

|              | DDCEC.                        | <br>507                               | DIENCHTAG                               | CLEAN WATER                | UNITS _    | OPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------|-------------------------------|---------------------------------------|-----------------------------------------|----------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | PPSES.                        | 202.                                  | ANEWCHING -                             | LLEAN WATER                | LUKE       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | CONTROL                       | SYSTEM                                | CONFIGURATI                             | ON:                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | QU                            | ENCH TO                               | MER BAFFLES                             |                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                               |                                       |                                         | 0.<br>0. IN                |            | : 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              | OPERATI                       | NG HOUR                               | HP EACH<br>S AT FULL HP<br>S AT REDUCED | <b>8760.</b>               | CAPACITY:  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · <u>-</u> - | STACK H                       | EIGHT:<br>OVENS                       |                                         | 60.                        |            | : _0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              | OVEN HE<br>OVEN VO<br>TONS CO | LUME                                  | <u></u>                                 | 6.0 M<br>1348. C           |            | and the second s |
|              | AVG. CO<br>NOCYC              | KING TII<br>LES/DAY                   | ME, HRS.                                | 17.5                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | BULK DE<br>YIELD<br>TONS CO   | NSITY<br>AL/YEAR                      |                                         | 50. LI<br>.70<br>.4047868. | BS/CUBIC F | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                               |                                       | <del></del>                             |                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                               |                                       |                                         |                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                               | <b>-</b> · ·                          |                                         |                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                               |                                       |                                         |                            | ·          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| . <u>.</u>   |                               |                                       |                                         |                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                               |                                       |                                         |                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                               |                                       |                                         |                            |            | 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              |                               |                                       |                                         |                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                               |                                       |                                         | <u></u>                    | · .        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                               |                                       |                                         |                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                               | · · · · · · · · · · · · · · · · · · · |                                         |                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                               |                                       |                                         |                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| PRESS: 503. QUENCHING - CLEAN WATER CUKE 3  CAPACITY: 2.834 MILLIUN TUNS/YEAR  TOTAL COST (COST BASIS IS 110.00% OF JUNE 1977 DOLLARS FOR 4078 COST  CATEGORY COST IN DOLLARS  *** DIRECT LOST ***  EQUIPMENT OR MATERIAL 928400. INSTRUMENTATION 30840. PIPING 13240. ELECTRICAL 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                                                                                                                                                                                                                                                               | CAPITAL CUST:  |                 | UNIT                                  | S OPTION                                     |               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|---------------------------------------|----------------------------------------------|---------------|
| TOTAL COST (COST BASIS IS 110.00% OF JUNE 1977 DOLLARS FOR 4078 COST  ***.DIRECT. COST ***  EQUIPMENT OR MATERIAL 928400. INSTRUMENTATION 30800. PIPING 132404. ELECIRICAL 0. FOUNDATIONS U. SITE WORK 8800. INSULATION 7900. PROTECTIVE COATING 3500. BUILDINGS 0. EQUIPMENT/MATERIAL LABOR 654700. DIRECT COST SUBIOTAL 1647300.  *** INDIRECT COST *** FIELD OVERHEAD 0. CONTRACTORS FEE 338600. EMGINEERING 244200. FREIGHT 0. OFFSITE WORK 48400. SPARES 48400. SPARES 48400. SPARES 48400. SPARES 48400. INTEREST DURING INSTALLATION 155100.  TOTAL COST WITH RETKOFIT 4233600. | PPSES: 503. QU | ENCHING - CLEAN | WATER CUK                             | <b>3</b>                                     |               |
| CATEGORY   COST IN DOLLARS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CAPACITY:      | 2.834 MILLION   | TUNS/YEAR                             |                                              |               |
| ### DIRECT COST ***  EQUIPMENT OR MATERIAL 928400. INSTRUMENTATION 30800. PIPING 13200. ELECTRICAL 0. FOUNDATIONS 0. SITRUCTURAL 0. SITE WUPK 8800. INSULATION 7900. PROTECTIVE COATING 3500. BUILDINGS 0. EQUIPMENT/MATERIAL LABOR 654700. DIRECT COST_SUBTOTAL 1647300.  *** INDIRECT CUST *** FIELD OVERHEAD 70400. CONTRACTORS FEE 338800. ENGINEETING 244200. FREIGHT 0. OFFSITE WUPK 44000. SPARES 44000. SPARES 44000. SPARES 44000. INDIRECT COST_SUBTOTAL 155100.  TOTAL COST_WITH NETROFIT 4233600.                                                                          | TOTAL COST (C  | OST BASIS IS 11 | 0.00% OF JUNE                         | 1977 DOLLARS                                 | FOR 4078 COST |
| EQUIPMENT OR MATERIAL 928400. INSTRUMENTATION 30800. PIPING 13200. ELECTRICAL 0. FOUNDATIONS 0. SIRUCTURAL 0. SITE WURK 8800. INSULATION 7900. PROTECTIVE COATING 3500. BUILDINGS 0. EQUIPMENT/MATERIAL LABUR 654700. DIRECT COST. SUBTOTAL 1647300.  *** INDIRECT COST *** FIELD OVERHEAD 70400. CONTRACTORS FEE 358800. ENGINEERING 244200. FREIGHT 0. OFFSITE WORK 44000. TAXES 48000. SHAKEDOWN 26400. SPARES 44000. CUNTINGENCY 638000. INDIRECT COST SUBTOTAL 1454200.  INTEREST DURING INSTALLATION 155100.  TOTAL COST WITH RETRUFIT 4233660.                                  | CATEGORY       | ·               | COST IN                               | DOLLARS                                      |               |
| EQUIPMENT OR MATERIAL 928800. INSTRUMENTATION 30800. PIPING 13200. ELECTRICAL 0. FOUNDATIONS 0. SIRUCTURAL 0. SITE WORK 8800. INSULATION 7900. PROTECTIVE COATING 3500. BUILDINGS 0. EQUIPMENT/MATERIAL LABUR 654700. DIRECT COST *** FIELD OVERHEAD 70400. CONTRACTORS FEE 38800. ENGINEERING 244200. FREIGHT 0. OFFSITE WORK 44000. TAXES 48400. SHAREDOWN 26400. SHAREDOWN 26400. SHAREDOWN 638000. INDIRECT COST SUBTOTAL 195100.  TOTAL COST SUBTOTAL 195100.                                                                                                                     | **             | * DIRECT_COST_  | <b>*</b> * *                          |                                              |               |
| INSTRUMENTATION   30800   PIPING   13200   ELECTRICAL   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EQUIPMENT OR   | MATERIAL        | 928400.                               |                                              | ı             |
| PIPING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TNSTRUMENTAT   | TON             | 30800                                 |                                              |               |
| ELECTRICAL FOUNDATIONS 0. STRUCTURAL 0. SITE WURK 8800. INSULATION PROTECTIVE COATING BUILDINGS 0. EQUIPMENT/MATERIAL LABUR DIRECT COST_SUBTOTAL  EX** INDIRECT COST *** FIELD OVERHEAD CONTRACTORS FEE 338800. ENGINEERING ENGINEERING OFFSITE WURK 44000. TAXES 48400. SHAKEDOWN SPARES CUNTINGENCY INDIRECT COST_SUBTOTAL  INTEREST DURING INSTALLATION TOTAL COST_WITH RETRUFIT 4233600.                                                                                                                                                                                           |                |                 |                                       |                                              |               |
| FOUNDATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                 |                                       |                                              | - ·           |
| STRUCTURAL   0     SITE WURK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                 | · · · · · · · · · · · · · · · · · · · |                                              |               |
| SITE WURK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del>-</del>   |                 | -                                     |                                              |               |
| INSULATION 7900. PROTECTIVE COATING 3500. BUILDINGS 0. EQUIPMENT/MATERIAL LABUR 654700. DIRECT COST SUBJOTAL 1647300.  *** INDIRECT COST *** FIELD OVERHEAD 70400. CONTRACTORS FEE 338800. ENGINEEPING 244200. FREIGHT 0. OFFSITE WURK 44000. TAXES 48400. SHAKEDOWN 26400. SPARES 44000. CONTINGENCY 638000. INDIRECT COST SUBTOTAL 1454200.  INTEREST DURING INSTALLATION 155100.  TOTAL COST WITH RETRUFIT 4233600.                                                                                                                                                                 | - /            |                 |                                       |                                              | •             |
| ## PROTECTIVE COATING ## 3500.  ## BUILDINGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                 | =                                     |                                              |               |
| BUILDINGS EQUIPMENT/MATERIAL LABUR DIRECT COST SUBTOTAL  *** INDIRECT COST ***  FIELD OVERHEAD CONTRACTORS FEE 338800. ENGINEERING ENGINEERING OFFSITE WURK TAXES A8400. SHAKEDOWN SPARES CUNTINGENCY INDIRECT COST SUBTOTAL  INTEREST DURING INSTALLATION TOTAL COST WITH RETROFIT  4233600.                                                                                                                                                                                                                                                                                          |                |                 |                                       |                                              |               |
| ### INDIRECT COST ***  FIELD OVERHEAD 70400.  CONTRACTORS FEE 358800.  ENGINEERING 244200.  FREIGHT 0.  OFFSITE WORK 44000.  TAXES 48400.  SPARES 44000.  CONTINGENCY 638000.  INDIRECT COST SUBTOJAL 1454200.  TOTAL COST WITH RETRUFIT 4233600.                                                                                                                                                                                                                                                                                                                                      |                | OATING _        | 3500.                                 |                                              |               |
| ### INDIRECT COST ###  FIELD OVERHEAD 70400.  CONTRACTORS FEE 338800. ENGINEERING 244200. FREIGHT 0.  OFFSITE WORK 44000. TAXES 48400. SHAKEDOWN 26400. SPARES 44000. CONTINGENCY 638000.  INDIRECT COST SUBTOTAL 1454200.  TOTAL COST 3256600.  TOTAL COST WITH RETRUFIT 4233600.                                                                                                                                                                                                                                                                                                     |                |                 | 0.                                    |                                              |               |
| ### INDIRECT COST ###  FIELD OVERHEAD 70400.  CONTRACTORS FEE 338800. ENGINEERING 244200. FREIGHT 0.  OFFSITE WORK 44000. TAXES 48400. SHAKEDOWN 26400. SPARES 44000. CONTINGENCY 638000.  INDIRECT COST SUBTOTAL 1454200.  TOTAL COST 3256600.  TOTAL COST WITH RETRUFIT 4233600.                                                                                                                                                                                                                                                                                                     | EQUIPMENT/MA   | TERIAL LABOR    | 654700.                               |                                              |               |
| ### INDIRECT COST ###  FIELD OVERHEAD 70400. CONTRACTORS FEE 338800. ENGINEERING 244200. FREIGHT 0. OFFSITE WORK 44000. TAXES 48400. SHAKEDOWN 26400. SPARES 44000. CONTINGENCY 638000.  INDIRECT COST SUBTOTAL 1454200.  INTEREST DURING INSTALLATION 155100.  TOTAL COST 3256600.  TOTAL COST WITH RETRUFIT 4233600.                                                                                                                                                                                                                                                                 | DIRECT         | COST_SUBTOTAL   |                                       | 1647300.                                     |               |
| FIELD OVERHEAD CONTRACTORS FEE 338800. ENGINEERING PREIGHT 0. OFFSITE WURK 44000. TAXES 48400. SHAKEDOWN SPARES 44000. CONTINGENCY INDIRECT COST SUBTOTAL  INTEREST DURING INSTALLATION TOTAL COST TOTAL COST WITH RETROFIT 4233600.                                                                                                                                                                                                                                                                                                                                                   |                |                 |                                       |                                              |               |
| FIELD OVERHEAD 70400. CONTRACTORS FEE 338800. ENGINEERING 244200. FREIGHT 0. OFFSITE WURK 44000. TAXES 48400. SHAKEDOWN 26400. SPARES 44000. CONTINGENCY 638000. INDIRECT COST SUBTOTAL 1454200.  INTEREST DURING INSTALLATION 155100.  TOTAL COST 3256600.  TOTAL COST WITH RETROFIT 4233600.                                                                                                                                                                                                                                                                                         | ***            | INDIRECT COST   | ***                                   |                                              |               |
| CONTRACTORS FEE 338800. ENGINEERING 244200. FREIGHT 0. OFFSITE WURK 44000. TAKES 48400. SPARES 44000. CONTINGENCY 638000. INDIRECT COST SUBTOJAL 1454200.  INTEREST DURING INSTALLATION 155100.  TOTAL COST 3256600.  TOTAL COST WITH RETROFIT 4233600.                                                                                                                                                                                                                                                                                                                                |                |                 |                                       |                                              |               |
| ENGINEERING 244200. FREIGHT 0. OFFSITE WURK 44000. TAXES 48400. SHAKEDOWN 26400. SPARES 44000. CONTINGENCY 638000. INDIRECT COST SUBTOTAL 1454200.  INTEREST DURING INSTALLATION 155100.  TOTAL COST 3256600.  TOTAL COST WITH RETRUFIT 4233600.                                                                                                                                                                                                                                                                                                                                       | CONTRACTORS    | EEE             |                                       |                                              |               |
| FREIGHT 0.  OFFSITE WURK 44000.  TAXES 48400. SHAKEDOWN 26400. SPARES 44000.  CUNTINGENCY 638000.  INDIRECT COST SUBTOJAL 1454200.  INTEREST DURING INSTALLATION 155100.  TOTAL COST 3256600.  TOTAL COST WITH RETKOFIT 4233600.                                                                                                                                                                                                                                                                                                                                                       |                | ree             |                                       |                                              |               |
| OFFSITE WURK TAXES 48400. SHAKEDOWN 2-6400. SPARES 44000. CUNTINGENCY 638000. INDIRECT COST SUBTOJAL 1454200.  INTEREST DURING INSTALLATION 155100.  TOTAL COST 3256600.  TOTAL COST WITH RETROFIT 4233600.                                                                                                                                                                                                                                                                                                                                                                            |                |                 |                                       |                                              |               |
| TAXES SHAKEDOWN SPARES CONTINGENCY CONTINGENCY INDIRECT COST SUBTOJAL  INTEREST DURING INSTALLATION  TOTAL COST  TOTAL COST  TOTAL COST WITH RETROFIT  4233600.                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                 |                                       |                                              |               |
| SHAKEDOWN SPARES 44000. CONTINGENCY 638000. INDIRECT COST SUBTOTAL 1454200.  INTEREST DURING INSTALLATION 155100.  TOTAL COST 3256600.  TOTAL COST WITH RETRUFIT 4233600.                                                                                                                                                                                                                                                                                                                                                                                                              |                |                 | •                                     |                                              |               |
| SPARES CONTINGENCY 1NDIRECT COST SUBTOTAL 1454200.  INTEREST DURING INSTALLATION 155100.  TOTAL COST 3256600.  TOTAL COST WITH RETRUFIT 4233600.                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                 |                                       |                                              |               |
| CONTINGENCY INDIRECT COST SUBTOJAL  INTEREST DURING INSTALLATION  TOTAL COST  TOTAL COST WITH RETRUFIT  4233600.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                 |                                       |                                              | **            |
| INTEREST DURING INSTALLATION 155100.  TOTAL COST 3256600.  TOTAL COST WITH RETROFIT 4233600.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                 |                                       |                                              |               |
| INTEREST DURING INSTALLATION 155100.  TOTAL COST WITH RETROFIT 4233600.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CONTINGENCY    |                 | 638000.                               |                                              |               |
| INTEREST DURING INSTALLATION 155100.  TOTAL COST 3256600.  TOTAL COST WITH RETROFIT 4233600.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INDIREC        | T COST SUBTOTAL |                                       | 1454200.                                     |               |
| TOTAL COST WITH RETRUFIT 4233600.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                 |                                       |                                              |               |
| TOTAL COST WITH RETRUFIT 4233600.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | INTERES        | T DURING INSTAL |                                       | 155100.                                      |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TOTAL C        | OST             |                                       | 3256600.                                     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TOTAL C        | OST WITH RETRUF | IT .                                  | 4233600.                                     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                 |                                       |                                              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                 | -                                     |                                              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ·····          |                 |                                       |                                              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                 |                                       |                                              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                 |                                       | and the second discussion when the second of |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                 |                                       |                                              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                 |                                       |                                              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>       |                 |                                       |                                              |               |

| PPSES: 503. Q   | UENCHING - CLEAN WA           | TER COKE 3                             | · <del>-</del> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------|-------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CAPACITY:       | 2.834 MILLION TO              | NS/YEAR                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CATEGORY        | QUANTITY                      | RATE                                   | ANNUAL COST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| •               | *** UTILI                     | TIES ***                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | 0. MGAL/YR                    | \$1595/1000 GAL                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ELECTRICITY     |                               | \$ .0266/KWH                           | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| STEAM           |                               | \$ 4.0920/MLBS                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FUEL            | 0, GAL/YR                     | \$4180/GAL                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| . <u> </u>      | *** OPERATING                 | G LABOR ***                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.1050.1        |                               | - A                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DIRECT          | U. HRS/YR                     | \$14.34/HR                             | Ů. ( <i>l</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SUPERVISION     | U. HRS/YR                     | \$17 <u>.</u> 20/HR                    | O• (F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                 | *** MAINTENANCE               | &_SUPPLIES ***                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DIRECT LABOR    | 4000 HRS/YR                   | \$14.34/HR                             | 57400. ((                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SUPERVISION_    | BOU. HRS/YR                   | \$17.20/HR                             | 13800. (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MATERIALS       |                               |                                        | 114800. (6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SUPPLIES        |                               |                                        | 27900. (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| WATER TREATMENT |                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SULID WASTE     |                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | 6193. TON/YR                  | \$ 8,25/1UN                            | 51100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DIRECT OPERA    | TING CUST                     |                                        | 265000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PAYROLL OVER    | HEAD = 20.0% OF A+B+          | C+D                                    | 14200.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PLANT UVERHE    | AD =50.0% OF A+B+C+1          | D+E+F                                  | 107000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TOTAL OPERAT    | -                             |                                        | 386200.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                 | ST IN DOLLARS PER TO          |                                        | • 1 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                 | ST IN DOLLARS PER TO          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | ST AS PERCENT OF CAR          | PITAL COST                             | 9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| · ·             | TIME IN WEEKS                 |                                        | 52.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| KWH PER TON     | FE OF SYSTEM IN YEAR CAPACITY | 4.5                                    | 20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                 | VERY (11.75% OF TOTA          | AL CADITAL)                            | .0<br>497300.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                 | ON OVERHEAD ( 2.0%            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | ES & INS. ( 2.0% OF           |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | IZED COST - RETROFT           |                                        | The state of the s |
|                 | - NEW                         | ······································ | 898900.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                 | <u>.</u>                      |                                        | <del></del> : -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|              |                                       |             |               |         |                                         | UNITS       |         |
|--------------|---------------------------------------|-------------|---------------|---------|-----------------------------------------|-------------|---------|
| PPS          | s:                                    | 503.        | DUENCHING     | - CLEAN | WATER                                   | COKE        | 4       |
| CAP          | CII                                   | y:          | 2.834         | MILLION | TONS/                                   | EAR         |         |
| DADI         | T T C 11                              | LATE        |               |         |                                         |             |         |
|              |                                       |             | 1.700000      | LRS/TON | COAL                                    |             |         |
|              |                                       |             |               |         |                                         | EFFICIENCY  | : 98.07 |
|              | ~_                                    |             | 15.71         |         | 0042                                    | 21,1312,131 |         |
| <b>B\$</b> 0 |                                       |             |               |         | <del></del>                             |             |         |
| 500          | ιn                                    | AD TN:      | .001700       | LBS/TON | COAL                                    |             |         |
|              |                                       |             |               |         |                                         | EFFICIENCY  | : 99.01 |
|              |                                       |             |               | LBS/HR  |                                         |             |         |
| BAP          |                                       |             |               |         |                                         |             |         |
|              |                                       | AD IN:      | .000140       | LBS/TON | COAL                                    |             |         |
|              |                                       |             |               |         |                                         | EFFICIENCY  | : 99.0% |
|              | ···                                   | <del></del> |               | LBS/HR  |                                         |             |         |
| BENZ         | ZENE                                  |             |               |         |                                         |             |         |
|              |                                       |             | .000030       |         |                                         |             |         |
|              | AL                                    | LOWABLE     |               |         | COAL                                    | EFFICIENCY  | : 99.0% |
|              |                                       |             | . •00         | LBS/HR  |                                         |             |         |
| DUST         | CO                                    | LLECTED     | PER DAY:      | 9.2     | TONS (                                  | RY)         |         |
| TEME         |                                       | T 05 800    | CESS:         | 200 1   | •                                       |             |         |
|              |                                       |             | TURE:         |         |                                         |             |         |
| E A III      | ,001                                  | TEM EN      | · · O · · E · | 2000    |                                         |             |         |
| SCF          | 1 FL                                  | OW: 549     | 000. AT       | 70. 1   | <b>:</b>                                |             |         |
| ACF          | 1 FL                                  | OW: 683     | 5000. AT      | 200.    |                                         |             |         |
| L/G          | RAT                                   | 10:         |               | 0       |                                         |             |         |
|              |                                       |             | LOW:          |         |                                         |             |         |
|              |                                       | WATER F     |               | 0.      |                                         |             |         |
| SUSF         | PEND                                  | ED SOLI     | S OUT:        | 0,      | 4G/L                                    | XSOLIDS:    | . 0     |
|              |                                       |             |               |         |                                         |             |         |
|              | · · · · · · · · · · · · · · · · · · · |             |               |         | *************************************** |             |         |
|              |                                       |             |               |         |                                         |             |         |
|              |                                       |             |               |         | <u>-</u>                                |             |         |
| •            |                                       |             |               |         |                                         |             |         |
|              |                                       |             | <u> </u>      |         |                                         |             |         |
|              |                                       |             |               |         |                                         |             |         |
|              |                                       |             |               |         | - 4.2                                   |             |         |
|              |                                       |             |               |         |                                         |             |         |
|              |                                       |             |               | ····    |                                         |             |         |
|              |                                       |             |               |         |                                         |             |         |

| PPSES    | 503.        | QUENCHING  | - CLEAN WA                              | TER                                   | COKE          | OPTION<br>4                            |  |
|----------|-------------|------------|-----------------------------------------|---------------------------------------|---------------|----------------------------------------|--|
|          | SYSTEM      | CONFIGURAT | ION:                                    |                                       | <del></del>   |                                        |  |
| DR       | Y BUENCH    | IING       |                                         |                                       |               |                                        |  |
|          |             |            |                                         |                                       |               |                                        |  |
| PEET UP  | AUUIIII     | DROP:      | 0                                       | ). Thick                              | IAMETER:      | 15.                                    |  |
| O FAME   | TESSURE     | HP EACH    | SDADE                                   | FAN CA                                | ES<br>Pactty: | 0. *                                   |  |
|          |             | AT FULL H  |                                         |                                       | PACITI        | U . A                                  |  |
|          |             | AT REDUCE  |                                         |                                       |               |                                        |  |
| STACK MI | FIGHT:      | A NEDOCE   | 111111111111111111111111111111111111111 | ) n                                   | TAMETED.      | 0                                      |  |
| NO. OF ( |             |            | 60                                      |                                       | AND LEN.      |                                        |  |
| A        |             |            | 6                                       | O MET                                 | FRS           |                                        |  |
| DVEN VOI | UME         |            | 1348                                    | CUA                                   | IC FEFT       | ······································ |  |
| TONS CO  | (E/PUSH     |            | 24                                      | i .                                   | <u> </u>      | ······································ |  |
| AVG. CO  |             |            |                                         | 7.5                                   |               |                                        |  |
|          |             |            |                                         |                                       |               |                                        |  |
| BULK DE  |             |            | 50                                      | LBS                                   | /CUBIC F      | Τ.                                     |  |
| YIELD    |             |            |                                         |                                       |               | _                                      |  |
|          | AL/YEAR     |            | 4047868                                 | 3.                                    |               |                                        |  |
|          |             |            |                                         |                                       |               |                                        |  |
|          |             |            |                                         |                                       |               |                                        |  |
|          |             |            |                                         |                                       |               |                                        |  |
|          |             |            |                                         |                                       |               |                                        |  |
|          |             |            |                                         |                                       |               |                                        |  |
|          |             |            |                                         |                                       |               |                                        |  |
|          |             |            |                                         |                                       |               |                                        |  |
|          |             |            |                                         |                                       |               |                                        |  |
|          |             |            |                                         |                                       |               |                                        |  |
|          |             |            |                                         |                                       |               |                                        |  |
|          |             |            |                                         |                                       |               |                                        |  |
|          | <del></del> |            |                                         |                                       |               |                                        |  |
|          |             |            |                                         |                                       |               |                                        |  |
|          |             |            |                                         |                                       |               |                                        |  |
|          |             |            |                                         |                                       |               |                                        |  |
|          |             |            |                                         | · · · · · · · · · · · · · · · · · · · |               |                                        |  |
|          |             |            |                                         |                                       |               |                                        |  |
|          |             |            |                                         |                                       |               |                                        |  |
|          |             |            |                                         |                                       |               |                                        |  |
|          |             |            |                                         |                                       |               |                                        |  |
|          |             |            |                                         |                                       |               | •                                      |  |
|          |             |            |                                         |                                       |               |                                        |  |
| :        |             |            |                                         |                                       |               | -                                      |  |
| :        |             |            |                                         |                                       |               |                                        |  |
|          |             |            |                                         |                                       |               |                                        |  |
|          |             |            |                                         |                                       |               |                                        |  |
|          |             |            |                                         |                                       |               |                                        |  |
|          |             |            |                                         |                                       |               | •                                      |  |
|          |             |            |                                         |                                       |               |                                        |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UNITS OPTION                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| PPSES: 503. QUENCHING - CLEAN WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TER COKE 4                          |
| CAPACITY: 2.834 MILLION TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NS/YEAR                             |
| TOTAL COST (COST BASIS IS 110.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0x OF JUNE 1977 DOLLARS FOR 4078 CO |
| CATEGORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | COST IN DOLLARS                     |
| *** DIRECT COST ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |
| EQUIPMENT OR MATERIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9365400.                            |
| INSTRUMENTATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.                                  |
| PIPING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.                                  |
| ELECTRICAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.                                  |
| FOUNDATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.                                  |
| STRUCTURAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.                                  |
| SITE WORK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.                                  |
| INSULATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.                                  |
| PROTECTIVE COATING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.                                  |
| BUILDINGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.                                  |
| EQUIPMENT/MATERIAL LABOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |
| DIRECT COST SUBTOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13860700.                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
| *** INDIRECT COST **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |
| FIELD OVERHEAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2409500.                            |
| CONTRACTORS FEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1591300.                            |
| ENGINEERING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 476500.                             |
| FREIGHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.                                  |
| OFFSITE WORK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 404600.                             |
| TAXES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 449500.                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 674300.                             |
| SPARES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 71900.                              |
| CONTINGENCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4890900.                            |
| INDIRECT COST SUBTOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10968500.                           |
| INTEREST DURING INSTALLAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ION 3103700.                        |
| TOTAL COST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27932900.                           |
| TOTAL COST WITH RETROFIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30726200.                           |
| JUINE DES MILITIME INSTITUTE OF THE PROPERTY O |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |

| PPSES: 503.              | QUENCHING - CLEAN WA                    | UNITS OPTION<br>TER COKE 4 | -             |
|--------------------------|-----------------------------------------|----------------------------|---------------|
| CAPACITY:                | 2.834 MILLION TO                        | NS/YEAR                    |               |
| CATEGORY                 | QUANTITY                                | RATE                       | ANNUAL COST ( |
|                          | *** UTILI                               | TIES ***                   |               |
| WATER                    | O. MGAL/YR                              | \$ .1595/1000 GAL          | 0.            |
| ELECTRICITY              | 22668064. KWH/YR                        | \$ .0266/KWH               | 603400.       |
| STEAM                    | 0. MLBS/YR                              | - '                        | 0.            |
| FUEL                     | 0. GAL/YR                               | \$ .4180/GAL               | 0.            |
|                          | *** OPERATIN                            | G LABOR ***                |               |
| DIRECT                   | 8760. HRS/YR                            | \$14.34/HR                 | 125700. (A    |
| SUPERVISION              | 1752. HRS/YR                            | \$17.20/HR                 | 30100. (8     |
|                          | *** MAINTENANCE                         | & SUPPLIES ***             |               |
| DIRECT LABOR             | 62337. HRS/YR                           | \$14.34/HR                 | 894200. (0    |
| SUPERVISION              | 12467 . HRS/YR                          | \$17.20/HR                 | 214500. (D    |
| MATERIALS                |                                         |                            | 447100. (E    |
| SUPPLIES                 |                                         |                            | 233400. (F    |
| WATER TREATMEN           | T                                       |                            | 0.            |
| SOLID WASTE              |                                         |                            |               |
| DISPOSAL                 | 3372. TON/YR                            | \$ 8.25/TON                | 27800.        |
| DIRECT OPE               | RATING COST                             |                            | 2576200.      |
| PAYROLL OV               | 252900.                                 |                            |               |
| PLANT OVER               | 972500.                                 |                            |               |
| TOTAL OPER               | 3801600.                                |                            |               |
| <u>OPERATING</u>         | 1.34                                    |                            |               |
| OPERATING                | 1127.44                                 |                            |               |
| OPERATING                | 12.4                                    |                            |               |
|                          | ON TIME IN WEEKS                        |                            | 130.          |
|                          | LIFE OF SYSTEM IN YEAR<br>N CAPACITY    | RS                         | 25.           |
| KWH PER TO               | 8.0                                     |                            |               |
| CAPITAL RE               | 3385000.                                |                            |               |
| ADMINISTRA<br>PROPERTY T | 614500.                                 |                            |               |
|                          | 614500.<br>8415600.                     |                            |               |
| JUIAL ANNU               | ALIZED COST - RETROFI'<br>- NEW         |                            | 7996300.      |
|                          | *************************************** |                            |               |
|                          |                                         |                            |               |
|                          |                                         |                            |               |

| DDCCC                   | • En#                       | DOOPS     |                  |             | S<br>IION |
|-------------------------|-----------------------------|-----------|------------------|-------------|-----------|
| rrses                   | 504.                        | UUUKS     |                  | COKE        | C         |
| CAPAC                   | ITY:                        | .708      | MILLION TONS     | YEAR        |           |
|                         | <b>. .</b>                  |           |                  |             | •         |
| _                       | CULATE                      | E0000     | I DE /TON COA    |             |           |
|                         | ALLOWABLE                   |           | LBS/TON COAL     | EFFICIENCY: | 40 08     |
|                         | ALLUMADLE                   | •         | LBS/HR           | EFFILIENCIA | 60.0A     |
| BSO                     |                             |           |                  |             |           |
|                         | LOAD TN:                    | -500000   | LBS/TON COAL     |             |           |
|                         |                             |           |                  | EFFICIENCY: | 60.07     |
|                         | TILLY INVEST                |           | LBS/HR           |             |           |
| BAP.                    |                             |           |                  |             |           |
|                         | LOAD IN:                    | .003000   | LBS/TUN COAL     |             |           |
|                         |                             |           |                  | EFFICIENCY: | 60.0%     |
|                         |                             |           | LBS/HR           |             |           |
| BENZE                   | NE                          |           |                  |             |           |
|                         | LOAD IN:                    |           | LBS/TON COAL     |             |           |
|                         | ALLOWABLE                   |           |                  | EFFICIENCY: | 60.0%     |
|                         |                             | .46       | LBS/HR           |             |           |
| DUST                    | COLLECTED                   | PER DAY:  | .4 TONS          | DRY)        |           |
|                         |                             |           |                  |             |           |
|                         |                             | DCESS:    | 120. F           | <del></del> |           |
| EXHAU                   | ST TEMPER                   | A I UKE : | 120. F           |             |           |
|                         | FLOW:                       |           | 70. F            |             |           |
|                         |                             | O. AT     | 120. F           |             |           |
| ACFM                    | FLOW:                       |           |                  |             |           |
|                         |                             |           | .0               |             |           |
| L/G R                   | FLOW: ATIO: SS WATER        | FLOW:     | 0. GPM           |             |           |
| L/G R<br>PROCE<br>COOLI | ATIO:<br>SS WATER ING WATER | FLOW:     | 0. GPM<br>0. GPM |             |           |
| L/G R<br>PROCE<br>COOLI | FLOW: ATIO: SS WATER        | FLOW:     | 0. GPM           | *SOLIDS:    | • 0       |
| L/G R<br>PROCE<br>COOLI | ATIO:<br>SS WATER ING WATER | FLOW:     | 0. GPM<br>0. GPM | %SOLIDS:    | • 0       |
| L/G R<br>PROCE<br>COOLI | ATIO:<br>SS WATER ING WATER | FLOW:     | 0. GPM<br>0. GPM | %SOLIDS:    | • 0       |
| L/G R<br>PROCE<br>COOLI | ATIO:<br>SS WATER ING WATER | FLOW:     | 0. GPM<br>0. GPM | %SOLIDS:    | • 0       |
| L/G R<br>PROCE<br>COOLI | ATIO:<br>SS WATER ING WATER | FLOW:     | 0. GPM<br>0. GPM | %SOLIDS:    | • 0       |
| L/G R<br>PROCE<br>COOLI | ATIO:<br>SS WATER ING WATER | FLOW:     | 0. GPM<br>0. GPM | XSOLIDS:    | .0        |
| L/G R<br>PROCE<br>COOLI | ATIO:<br>SS WATER ING WATER | FLOW:     | 0. GPM<br>0. GPM | *SOLIDS:    | .0        |
| L/G R<br>PROCE<br>COOLI | ATIO:<br>SS WATER ING WATER | FLOW:     | 0. GPM<br>0. GPM | %SOLIDS:    | • 0       |
| L/G R<br>PROCE<br>COOLI | ATIO:<br>SS WATER ING WATER | FLOW:     | 0. GPM<br>0. GPM | %SOLIDS:    | • 0       |
| L/G R<br>PROCE<br>COOLI | ATIO:<br>SS WATER ING WATER | FLOW:     | 0. GPM<br>0. GPM | %SOLIDS:    | .0        |
| L/G R<br>PROCE<br>COOLI | ATIO:<br>SS WATER ING WATER | FLOW:     | 0. GPM<br>0. GPM | XSOLIDS:    | .0        |

# GENERAL INFORMATION: UNITS OPTION PPSES: 504. DOORS COKE 2 CONTROL SYSTEM CONFIGURATION: COKE OVEN DOOR CLEAN & MAINT FEET OF ADDITIONAL DUCT: DIAMETER: 0. INCHES TOTAL PRESSURE DROP: O FANS D O. HP EACH SPARE FAN CAPACITY: 0,X OPERATING HOURS AT FULL HP: 8760. OPERATING HOURS AT REDUCED HP: 0. STACK HEIGHT: O. DIAMETER: O. NO. OF OVENS 60. OVEN HEIGHT 6.0 METERS OVEN VOLUME 1348. CUBIC FEET TONS COKE/PUSH 24. AVG. COKING TIME, HRS. 17.5 NO. CYCLES/DAY 82.\_\_ BULK DENSITY 50. LBS/CUBIC FT. .70 YIELD 1011967. TONS COAL/YEAR A-53

| PPSES: 504.     |                               |                          |                                       |
|-----------------|-------------------------------|--------------------------|---------------------------------------|
| CAPACITY:       | .708 MILLION TOP              | NS/YEAR                  |                                       |
| CATEGORY        | QUANTITY                      | RATE                     | ANNUAL COST (                         |
|                 | *** UTILI                     | TIES ***                 | · · · · · · · · · · · · · · · · · · · |
| WATER           | O. MGAL/YR                    | \$ .1595/1000 GAL        | 0.                                    |
| ELECTRICITY     | O. KWH/YR                     | \$ .0266/KWH             | 0.                                    |
| STEAM           | 0. MLBS/YR                    |                          | 0.                                    |
| FUEL            | Q. GAL/YR                     | \$ .4180/GAL             | 0.                                    |
|                 | *** OPERATING                 | S LABOR ***              |                                       |
|                 |                               |                          |                                       |
| DIRECT          | 0. HRS/YR                     | \$14.34/HR               | 0. (/                                 |
| SUPERVISION     | 0. HRS/YR                     | \$17.20/HR               | 0. (6                                 |
|                 | *** MAINTENANCE               | & SUPPLIES ***           |                                       |
| DIRECT LABOR    | 17520. HRS/YR                 | *10 70/UD                | 251300. (c                            |
| SUPERVISION     | 3504. HRS/YR                  | \$14.34/HR<br>\$17.20/HR | 60300. ([                             |
| MATERIALS.      | 3304. HR3/1R                  | \$17,EU/HK               | 125400. (6                            |
| SUPPLIES        |                               |                          | 58000. (F                             |
| WATER TREATMENT |                               |                          |                                       |
| SOLID WASTE     |                               |                          |                                       |
| DISPOSAL        | O. TON/YR                     | \$ 8.25/TON              | 0.                                    |
| DIRECT OPERA    | ATING COST                    |                          | 495000.                               |
| PAYROLL OVER    | 62300.                        |                          |                                       |
| PLANT OVERHE    | 247500.                       |                          |                                       |
| TOTAL OPERAT    | 804800.                       |                          |                                       |
| OPERATING CO    | 1.14                          |                          |                                       |
| OPERATING CO    | 5301.89                       |                          |                                       |
| OPERATING CO    | • 0                           |                          |                                       |
|                 | 99.                           |                          |                                       |
| KWH PER TON     | FE OF SYSTEM IN YEAR CAPACITY |                          | • 0                                   |
|                 | OVERY (10.00% OF TOTA         | AL CAPITAL)              | 0.                                    |
| ADMINISTRATI    | 0.                            |                          |                                       |
| PROPERTY TAX    | 0.                            |                          |                                       |
| TOTAL ANNUAL    | 804800.                       |                          |                                       |
| IVIAL_AUIUVI    | - NEW                         |                          | 804800.                               |

## GENERAL INFORMATION: UNITS OPTIUN PPSES: 504. DOORS COKE CAPACITY: .708 MILLION TONS/YEAR PARTICULATE LOAD IN: .500000 LBS/TON COAL ALLOWABLE: .100000 LBS/TON COAL EFFICIENCY: 80.0% 11.55 LBS/HR BSO .500000 LBS/TON COAL LOAD IN: ALLOWABLE: .100000 LBS/TON COAL EFFICIENCY: 80.0% 11.55 LBS/HR BAP. LOAU IN: .003000 LBS/TON COAL ALLOWABLE: .000600 LBS/TON COAL EFFICIENCY: 80.0% .07 LBS/HR BENZENE .010000 LBS/TON COAL LOAD IN: .002000 LBS/TON COAL ALLOWABLE: EFFICIENCY: 80.0% .23 LBS/HR DUST COLLECTED PER DAY: .6 TONS (DRY) TEMP OUT OF PROCESS: 120. F EXHAUST TEMPERATURE: 120. F SCFM FLOW: U. AT 70. F 120. F ACFM FLOW: .0 L/G RATIO: 0. GPM PROCESS WATER FLOW: CUULING WATER FLOW: 0. GPM SUSPENDED SOLIDS OUT: 0. MG/L XSOLIDS: .0

# GENERAL INFORMATION: UNITS OPTION PPSES: 504. DOURS COKE CONTROL SYSTEM CONFIGURATION: COKE OVEN DOOR CLEAN & MAINT FEET UF ADDITIONAL DUCT: DIAMETER: 0. TOTAL PRESSURE DROP: 0. INCHES 0 FANS & 0. HP EACH SPARE FAN CAPACITY: 0.X OPERATING HOURS AT FULL HP: 8760. OPERATING HOURS AT REDUCED HP: 0. DIAMETER: 0. STACK HEIGHT: 0.\_\_ NO. OF OVENS 60. OVEN HEIGHT 6.0 METERS 1348. CUBIC FEET OVEN VOLUME TONS COKE/PUSH 24. AVG. COKING TIME, HRS. 17.5 NO. CYCLES/DAY 82. BULK DENSITY 50. LBS/CUBIC FT. .70 YIELD TUNS COAL/YEAR 1011967.

CAPITAL CUST:

|                                       | UNITS OPTION                            |
|---------------------------------------|-----------------------------------------|
| PPSES: 504. DOORS                     | COKE 3                                  |
| CAPACITY:                             | IONS/YEAR                               |
| TOTAL 2007 (2007 01070 70 110         |                                         |
| TOTAL COST (COST BASIS IS 110.        | .00% OF JUNE 1977 DOLLARS FOR 4078 CUST |
| CATEGORY                              | COST IN DOLLARS                         |
| *** DIRECT COST **                    | nt <del>d</del>                         |
| EQUIPMENT OR MATERIAL                 | 251900.                                 |
| INSTRUMENTATION                       | 0.                                      |
| PIPING                                | <u> </u>                                |
| ELECTRICAL                            | 0.                                      |
| FOUNDATIONS                           | 0.                                      |
| STRUCTURAL                            |                                         |
| SITE WORK                             | 0.                                      |
| INSULATION                            | 0.                                      |
| PROTECTIVE COATING                    |                                         |
| BUILDINGS<br>EQUIPMENT/MATERIAL LABUR | 0.                                      |
| DIRECT COST SUBTOTAL                  |                                         |
| DANEET EGGT GODTOTAL                  |                                         |
| *** INDIRECT COST                     | R ft ft                                 |
| FIELD OVERHEAD                        | 7000.                                   |
| CONTRACTORS FEE                       | 3000.                                   |
| ENGINEERING                           | 17500.                                  |
| FREIGHT                               |                                         |
| OFFSITE WORK                          | 0.                                      |
| TAXES                                 | 12500.                                  |
| SHAKEDOWN                             | 2300.                                   |
| SPARES                                | 12000.<br>63900.                        |
| CONTINGENCY                           | 119700.                                 |
| INDIRECT COST SUBJUIRE                | 4171VV                                  |
| INTERES! DURING INSTALL               | ATION 29600.                            |
| TUTAL COST                            | 414500.                                 |
| TOTAL COST WITH RETROFIT              | 414500.                                 |
| JUINE GOOT HATTI NETRO! I             | 717277                                  |
|                                       |                                         |
|                                       |                                         |
|                                       |                                         |
|                                       |                                         |
|                                       |                                         |
|                                       |                                         |
|                                       |                                         |
| A-57                                  |                                         |
| <b>h</b> -37                          |                                         |

| PPSES: 504. DC  | ORS                               | UNITS OPTION COKE 3  |             |
|-----------------|-----------------------------------|----------------------|-------------|
| -PADACITY+      | 708 MILLION TO                    | NC /VEAD             |             |
| CAPACITY:       | 708 MILLION TO                    | S/IEAR               |             |
| CATEGORY        | QUANTITY                          | RATE                 | ANNUAL COST |
|                 | *** UTILI                         | ILES ***             |             |
| WATER           | U. MGAL/YR                        | \$ .1595/1000 GAL    | 0.          |
| ELECTRICITY     | U. KWH/YR                         | \$ .0266/KWH         | 0.          |
| STEAM           | 0. MLBS/YR                        | \$ 4.0920/MLBS       | 0.          |
| FUEL            | O. GAL/YR                         | \$ .4180/GAL         | 0.          |
|                 | *** OPERATING                     | S LABOR_**           |             |
|                 |                                   |                      |             |
| DIRECT          | 17520. HRS/YR                     | \$14.34/HR           | 251300.     |
| SUPERVISION     | 3504, HRS/YR                      | \$17,20/HR           | 60300.      |
|                 | *** MAINTENANCE                   | & SUPPLIES ***       |             |
| DIRECT LABOR    | 4500. HRS/YR                      | \$14.34/HR           | 64500.      |
| SUPERVISION     | 90U. HRS/YR                       | \$17.20/HR           | 15500.      |
| MATERIALS       |                                   |                      | 82300.      |
| SUPPLIES        |                                   |                      | 16800.      |
| WATER TREATMENT |                                   |                      | 0.          |
| SOLID WASTE     |                                   |                      |             |
| DISPUSAL        | U. TON/YR                         | \$ 8.25/TON          | 0.          |
| DIRECT OPERAT   | ING COST                          |                      | 490700.     |
| PAYHOLL OVERH   | EAD =20.0% OF A+8+1               | C+0                  | 78300,      |
| PLANT OVERHEA   | D =50.0% OF A+6+C+1               | )+E+F                | 245400.     |
| TOTAL OPERATI   |                                   |                      | 814400.     |
|                 | T IN DOLLARS PER TO               |                      | 1.          |
|                 |                                   | ON OF DUST COLLECTED | 4023.       |
|                 | T AS PERCENT OF CAL               | ·                    | 196.        |
|                 | TIME IN WEEKS E OF SYSTEM IN YEAR |                      | 80.<br>25.  |
| KWH PER TON     |                                   | ***                  | £5.         |
|                 | ERY (11.02% OF TOTA               | AL CAPITAL)          | 45700.      |
|                 | N OVERHEAD ( 2.0% )               |                      | 8300.       |
|                 | S & INS. ( 2.0% OF                |                      | 8300.       |
|                 | ZED COST - RETROFI                |                      | 876700.     |
|                 | - NEW                             |                      | 876700.     |
|                 |                                   |                      |             |
|                 |                                   |                      |             |
|                 |                                   |                      |             |

GENERAL INFORMATION: UNITS OPTION COKE PPSES: 504. DOORS 4 --CAPACITY: .708 -MILLION TONS/YEAR -- -- -- -----PARTICULATE \_\_\_LOAD IN: -.500000 -LBS/TON COAL ALLOWABLE: .057500 LBS/TON COAL EFFICIENCY: 88.5% 6.99 LBS/HR BSO .500000 LBS/TON COAL LOAD IN: ALLOWABLE: -110000 LBS/TON COAL EFFICIENCY: --78.0% 13.38 LBS/HR BAP LOAD IN: .003000 LBS/TON COAL ALLOWABLE: .000660 LBS/TON COAL EFFICIENCY: 78.0% -.08 LBS/HR --BENZENE -010000 LBS/TON COAL LOAD IN: ALLOWABLE: .003500 LBS/TON COAL EFFICIENCY: 65.0% .43 LBS/HR DUST COLLECTED PER DAY: .6 TONS(DRY) TEMP OUT OF PRUCESS: -120. F EXHAUST TEMPERATURE: 100. F SCFM FLOW: TA ..0000S 70. F ACFM FLOW: 22000. AT 100. F L/G RATIO: PROCESS WATER FLOW: 160. GPM COOLING WATER FLOW: 0. GPM SUSPENDED SOLIDS OUT: 532. MG/L XSOLIDS: .1

| GENERAL I | NFORMA | TI | <b>ON:</b> |
|-----------|--------|----|------------|
|-----------|--------|----|------------|

PPSES: 504. DOORS

COKE

#### CONTROL SYSTEM CONFIGURATION:

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

VENTURI SCRUBBER MIST ELIMINATOR FAN AND DRIVE -- --- ... DUCTWORK STACK - --- CANOPY -HOOD --- ..... ..... WASTEWATER RECYCLE SYSTEM DAMPERS - WASTE WATER RETURN SYSTEM WATER PUMPING SYSTEM FAN AND DRIVE ELECTRICAL

- -- COKE -OVEN DOOR CLEAN -8 -MAINT

FEET-OF-ADDITIONAL-DUCT: -----630. ---DIAMETER: -3.-----TOTAL PRESSURE DROP: 35. INCHES 2 FANS @ 202. HP EACH SPARE FAN CAPAC SPARE FAN CAPACITY: 100.2 DPERATING HOURS AT FULL HP: - 8322. OPERATING HOURS AT REDUCED HP: 0. STACK HEIGHT: 100. - NO. OF OVENS HOOD SIZE: 16. SQ.FT. OVEN HEIGHT 6.0 METERS -1348. --CUBIC FEET --- ... TONS COKE/PUSH AVG. COKING TIME, HRS. 17.5 --- NO. CYCLES/DAY .... . . . 82. . . BULK DENSITY 50. LBS/CUBIC FT. YIELD .70 TONS COAL/YEAR 1011967.

A-60

|           | 04. DOORS    |               |                                         |      |       | rs(<br><e< th=""><th></th><th></th><th></th><th></th></e<> |         |     |         |     |
|-----------|--------------|---------------|-----------------------------------------|------|-------|------------------------------------------------------------|---------|-----|---------|-----|
| CAPACITY: |              | ,708 MILL     | ION TONS                                | YEAR | ?     |                                                            |         |     |         | -   |
| TOTAL COS | T (COST      | BASIS IS      |                                         |      |       |                                                            | DOLLARS | FOR | 4078    | cos |
| CATE      | GORY         | <u>.</u>      |                                         | COST |       | DOLL                                                       | ARS     |     | <b></b> | •   |
|           |              |               |                                         |      |       | <u>-</u>                                                   |         |     |         |     |
| EGUI      | PMENT OR MAT | <b>TERIAL</b> |                                         | 4414 | 100.  |                                                            |         |     |         |     |
| TNST      | RUMENTATION  |               |                                         | 519  |       |                                                            |         |     |         |     |
| DIPI      | NG           |               | <u></u>                                 | -    |       |                                                            |         |     |         |     |
|           |              | •             | · · · · · ·                             |      | -     |                                                            |         | •   |         |     |
|           | TRICAL       |               |                                         | 99.0 | _     |                                                            |         |     |         |     |
|           | DATIONS      |               |                                         | 556  |       |                                                            |         |     |         |     |
| STRU      | CTURAL       | •             |                                         | 836  | 00.   | •                                                          |         | ÷   | -       |     |
| SITE      | WORK         |               |                                         | 38   | 00.   |                                                            |         |     |         |     |
| INSU      | LATION       |               |                                         | 77   | 00.   |                                                            |         |     |         |     |
|           | ECTIVE COATI |               |                                         |      |       |                                                            |         |     |         |     |
|           | DINGS        |               |                                         | 108  |       |                                                            |         |     |         |     |
|           | PMENT/MATER] |               |                                         |      |       |                                                            |         |     |         |     |
|           |              |               |                                         |      |       |                                                            |         |     |         |     |
|           | DIRECT -COST | SUBTUTAL      | • • • • • • • • • • • • • • • • • • • • |      |       | 457                                                        | 7500    |     |         |     |
|           |              | IRECT CO      |                                         |      |       |                                                            |         |     |         |     |
| FIEL      | D OVERHEAD . |               |                                         | 1381 | 00.   |                                                            |         |     |         |     |
| CONT      | RACTORS FEE  |               |                                         | 669  | 00.   |                                                            |         |     |         |     |
|           | NEERING      |               |                                         | 1383 | -     |                                                            |         |     |         |     |
|           | GHT          |               |                                         | 419  | 000 - |                                                            |         |     |         |     |
|           | ITE WORK     |               |                                         | 204  |       |                                                            |         |     |         |     |
|           |              |               |                                         |      |       |                                                            |         |     |         |     |
| TAXE      |              |               |                                         | 380  |       |                                                            |         |     |         |     |
|           | EDOWN        |               |                                         |      |       |                                                            |         | •   | •       |     |
| SPAR      |              |               |                                         | 345  | •     |                                                            |         |     |         |     |
| CONT      | INGENCY      |               |                                         | 3332 |       |                                                            |         |     |         |     |
| _         | INDIRECT CO  | ST SUBTO      | TAL                                     |      | •     | 849                                                        | 000.    |     |         |     |
|           | INTEREST DU  | JRING INS     |                                         |      |       | 131                                                        | 900.    |     |         |     |
|           |              |               |                                         |      |       |                                                            |         |     |         |     |
|           | TOTAL COST   |               |                                         |      |       | 1938                                                       | 9400.   |     |         |     |

|   | PPSES: 504.       | DOORS                         | COKE 4           |                                        |
|---|-------------------|-------------------------------|------------------|----------------------------------------|
|   |                   |                               |                  |                                        |
|   |                   | 708 MILLION TON               | S/YEAR           |                                        |
|   | CATEGORY          | QUANTITY                      | RATE             | ANNUAL COST (                          |
|   |                   | *** UTILIT                    | IES ***          |                                        |
|   | WATER             | 15978. MGAL/YR                |                  | 2500.                                  |
|   | ELECTRICITY       | 1332553. KWH/YR               | \$ .0266/KWH     | 35500.                                 |
|   | STEAM             | 0. MLBS/YR                    | \$ 4.0920/MLBS   | 0.                                     |
|   | FUEL              | 1332553. KWH/YR  0. MLBS/YR   | \$4180/GAL       | ······································ |
|   |                   |                               | -LABOR -***      |                                        |
|   | DIRECT            | 8760. HRS/YR                  | \$14.34/HR       | 125700. (4                             |
|   |                   | 1752. HRS/YR                  |                  |                                        |
|   |                   |                               |                  |                                        |
| • |                   |                               | & -SUPPLIES -*** |                                        |
|   | DIRECT LABOR      | 33977. HRS/YR<br>6795. HRS/YR | \$14.34/HR       | 487400. (C                             |
|   | SUPERVISION       | 6795. HRS/YR                  | \$17.20/HR       | 116900. (D                             |
|   | MATERIALS         |                               | •                | 236400. (E                             |
|   | SUPPLIES          |                               |                  | 128300. (F                             |
|   | - WATER TREATMENT |                               |                  | 0.                                     |
|   | SOLID WASTE       |                               |                  | • •                                    |
|   | DISPOSAL          | 448. TON/YR                   | \$ 8.25/TON      | 3700.                                  |
|   | DIRECT OPER       | ATING COST                    |                  | 1166500.                               |
|   | PAYROLL -OVE      | RHEAD =20.0% OF A+B+C         | +D               | 152000.                                |
|   | PLANT OVERH       | EAD =50.0% OF A+B+C+0         | +E+F             | 562400.                                |
|   | TOTAL OPERA       | TING COST                     |                  | 1880900.                               |
|   | OPERATING C       | OST IN DOLLARS PER TO         | N PRODUCTION     | 2.66                                   |
|   |                   | OST IN DOLLARS PER TO         |                  | 8400.71                                |
|   |                   | OST AS PERCENT OF CAP         |                  | 79.6                                   |
|   | INSTALLATIO       | N TIME IN WEEKS               |                  | 104.                                   |
|   |                   | IFE OF SYSTEM IN YEAR         |                  | 15.                                    |
|   | KWH PER TON       |                               | •                | 1.9                                    |
|   |                   | OVERY (13.15% OF TOTA         | L CAPITAL)       | 310700.                                |
|   |                   | ION OVERHEAD ( 2.0% O         |                  | 47300.                                 |
|   |                   | XES & INS. ( 2.0% OF          |                  | 47300.                                 |
|   |                   | LIZED COST - RETROFIT         |                  | ~2286200 <b>.</b>                      |
|   |                   |                               |                  |                                        |

| PPSE        | s: 504.                 | DOORS                |                   |        | COKE         | 5     |
|-------------|-------------------------|----------------------|-------------------|--------|--------------|-------|
| CAPA        | CITY:                   |                      | MILLION           | -TONS/ | YEAR         |       |
| PART        | ICULATE                 |                      |                   |        | ·            |       |
|             |                         |                      |                   |        |              |       |
|             | ALLOWABLE               |                      | LBS/TON<br>LBS/HR | COAL   | EFFICIENCY:  | 93.3  |
| <b>BS</b> 0 |                         |                      | <u> </u>          | ·····  |              |       |
|             |                         | .500000              | I BS/TON          | COAL   |              |       |
|             |                         |                      |                   |        | -EFFICIENCY: | -83.8 |
|             |                         |                      | LBS/HR            |        |              |       |
| BAP         |                         |                      |                   |        |              |       |
|             |                         | .003000              |                   |        |              |       |
|             |                         |                      |                   |        | EFFICIENCY:  |       |
|             |                         | 06                   | FB3/HK            |        |              |       |
| BENZ        |                         |                      |                   |        |              |       |
|             |                         | -                    |                   |        |              |       |
|             | ALLOWABLE               |                      | LBS/TON<br>LBS/HR | COAL   | EFFICIENCY:  | 72.0  |
| DUST        |                         | _                    |                   |        | DRY)         |       |
| 0001        | COLLECTED               | TEN DATE             | ••                | 10110  |              |       |
|             |                         | OCESS:               |                   |        |              |       |
| EXHA        | UST TEMPER              | ATURE:               | 100. F            | •      |              |       |
| SCFM        | FLOW: 2                 | 6000. AT             | 70. F             | •      |              |       |
| ACFM        | FLOW: 2                 | 6000. AT<br>7000. AT | 100. F            | •      |              |       |
|             | RATIO:                  |                      | <b>~8</b> • 0     |        |              | . •   |
|             | ESS WATER               |                      | 208. 0            |        |              |       |
|             | ING WATER<br>Ended Soli |                      | 0. (<br>409. )    |        | Y COL TOC .  | • 0   |
| auar        | といいたり うりにす              | 03 -001+             | 409. 4            | 46/L   | *SOLIDS:     | - 17  |

| GENERAL INFORMATION:          | UNITSOPTION                 |
|-------------------------------|-----------------------------|
| <br>PPSES: 504. DOORS         | COKE 5                      |
| <br>CONTROL SYSTEM CONFIG     |                             |
| <br>VENTURI SCRUBBER          |                             |
| MIST ELIMINATOR               |                             |
|                               |                             |
| DUCTWORK                      |                             |
| STACK                         |                             |
| CANOPYHOOD                    |                             |
| WASTEWATER RECYC              | LE SYSTEM                   |
| DAMPERS                       |                             |
| -WASTE WATER RETU             |                             |
| WATER PUMPING SY              |                             |
| FAN AND DRIVE EL              |                             |
| <br>COKE OVEN DOOR .C         | LEAN -6 MAIN!               |
|                               | CT:630DIAMETER:3.           |
| TOTAL PRESSURE DROP:          |                             |
|                               | H SPARE FAN CAPACITY: 100.% |
|                               | LL HP:8322.                 |
| OPERATING HOURS AT RE         |                             |
| STACK HEIGHT:                 | 100. DIAMETER: 3.           |
| NO. OF OVENS                  |                             |
| HOOD SIZE:                    | 16. SQ.FT.                  |
| OVEN HEIGHT                   | 6.0 METERS                  |
| DVEN VOLUME<br>TONS COKE/PUSH | .1348. CUBIC FEET           |
| AVG. COKING TIME, HRS.        | 24.<br>17.5                 |
| NO. CYCLES/DAY                |                             |
| BULK DENSITY                  | 50. LBS/CUBIC FT.           |
| YIELD                         | •70                         |
| TONS COAL/YEAR                | 1011967.                    |

| PPSES: 504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4. DOORS                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | COI   | < E   | 5       |     |      |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|-------|---------|-----|------|-----|
| CAPACITYS -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             | 708 MI  | LL-ION-TONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | /YE# | \R    |       |         |     |      |     |
| TOTAL COST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (COST (                     | BASIS   | 15 110.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OF   | JUNE  | 1977  | DOLLARS | FOR | 4078 | cos |
| CATEGO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DRY                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cos  | ST IN | DOLL  | ARS     |     |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | RECT    | COST-+++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |       |       |         |     |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MENT OR MATE                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 400.  |       |         |     |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JMENTATION                  | _       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 900.  |       |         |     |      |     |
| PIPING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |       |         |     |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RICAL                       |         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | 300.  |       |         |     |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATIONS                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |       |         |     |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TURAL                       |         | and the state of t | A 7  | 900.  |       |         |     |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VORK                        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | .005  |       |         |     |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATION                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 600.  |       |         |     |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | иc      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |       |         |     |      |     |
| BUILDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             | 10      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 5500  |       |         |     |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MENT/MATERIA                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |       |         |     |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TENIZMATERIZ<br>Storet Port | SUDTO   | UK<br>Tai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1//  | 900.  | 445   |         |     |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HELT-LUST                   | -50510  | †- <b>M</b> [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |       |       | 1-1-00  |     |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *** IND                     | TRECT   | COST ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |       |       |         |     |      |     |
| · · · · FIELD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OVERHEAD -                  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -154 | 800.  |       |         |     |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CTORS FEE                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 700.  |       |         |     |      |     |
| ENGINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ERING                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 148  | 900.  |       |         |     |      |     |
| FREIGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ERING                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46   | 100.  |       |         |     |      |     |
| OFFSIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E WORK                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 3200. |       |         |     |      |     |
| TAXES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             | '.      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 800.  |       |         |     |      |     |
| SHAKED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OWN                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43   | 1900  |       |         |     |      |     |
| SPARES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 000.  |       |         |     |      |     |
| CONTIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GENCY                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 400.  |       |         |     |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | ST -SUB | TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       | 95    | 3800    |     |      |     |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | INTEREST DUF                | RING I  | NSTALLATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N    |       | 15    | 0100.   |     |      |     |
| T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TOTAL COST                  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       | 222   | 5000.   |     |      |     |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |       | -       |     |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TOTAL COST V                | VITH -R | ETROFIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •    |       | -5690 | 6700.   | -   |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • •  |       |       |         |     |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |       |         |     |      |     |
| NAME OF THE PROPERTY OF THE PR |                             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |       |         |     |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |       |       |         |     |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |       |         |     |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |         | and the secondary supporting a supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       |       |         |     |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | ·       | and the same of th | ==   |       |       |         |     |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |       |         |     |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |       |         |     |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |       |         |     |      |     |

| PPSES: 504.    |                     |          | COKE 5                                                       |           |
|----------------|---------------------|----------|--------------------------------------------------------------|-----------|
| CAPACITY:      |                     | HOT HOL  | 5/YEAR                                                       |           |
| CATEGORY       | QUANTITY            |          | RATE                                                         | ANNUAL CO |
|                | * * *               | UTILIT   | IES ***                                                      |           |
| WATER          | 20772MG             | AL/YR    | <b>6</b> <del>1</del> 595/ <del>10</del> 00- <del>6</del> AL | 3300      |
| ELECTRICITY    | 3026942. KW         | H/YR     |                                                              | 80600     |
| STEAM          | 0. ML               | BS/YR    | \$ 4.0920/MLBS                                               | (         |
| FUEL           | O,GA                | L/4R     | \$ 4.0920/MLBS<br>-\$ -4180/GAL                              |           |
|                | ***- <del>0</del> P | ERATING  | -LABOR -+++                                                  |           |
| DIRECT         | 8760 HR             | S/YR     | \$14.34/HR                                                   | 125700    |
| SUPERVISION    | 1752HR              | S/YR     | \$17.20/HR                                                   | 30100     |
|                | MATAIT              | ENANCE 1 | -SUPPLIES-***                                                |           |
|                |                     |          |                                                              |           |
|                |                     |          | \$14,34/HR                                                   | 487400    |
|                | 6795 <b>.</b> _HR   | S/YR     |                                                              | 116900    |
| MATERIALS      |                     |          |                                                              | 236400    |
| SUPPLIES       |                     |          |                                                              | 128800    |
| WATER TREATMEN |                     |          |                                                              |           |
| SOLID WASTE    |                     |          |                                                              |           |
| DISPOSAL       | 472. TO             | N/YR     | \$ 8.25/TON                                                  |           |
|                | RATING COST         |          |                                                              | 1213100   |
| -PAYROLL OVE   | C. XO. 05= DA3HR    | F -A+B+C | D                                                            | 152000    |
| PLANT OVER     | EAD =50.0% OF       | A+B+C+D- | ∙E+F                                                         | 562700    |
| TOTAL OPERA    |                     |          |                                                              | 1927800   |
| OPERATING (    | OST IN DOLLARS      | PER TO   | N PRODUCTION                                                 |           |
| OPERATING (    | COST IN DOLLARS     | PER TO   | N OF DUST COLLECTED                                          | 8167      |
| OPERATING (    | OST AS PERCENT      | OF CAP   | ITAL COST                                                    | 71        |
|                |                     |          |                                                              |           |
|                | IFE OF SYSTEM       | IN YEAR  | 5                                                            | 15        |
|                | V CAPACITY          |          |                                                              | 4         |
|                |                     |          | CAPITAL)                                                     |           |
| ADMINISTRA     | TION OVERHEAD (     | 2.0% 0   | TOTAL CAPITAL)                                               | 53900.    |
|                |                     |          | TOTAL CAPITAL)                                               |           |
|                |                     |          |                                                              |           |
|                | - N                 | EW       |                                                              | 2309300.  |
|                |                     |          |                                                              |           |

| Ancres For       | 2000        |                              |             | IIUN  |
|------------------|-------------|------------------------------|-------------|-------|
| PPSES: 504. [    | DOORS       |                              | COKE        | 6     |
| CAPACITY:        | 708         | MILLION TONS/                | YEAR        |       |
| <b>DAGTTO</b>    |             |                              |             |       |
| PARTICULATE      | 500000      | LBS/TON COAL                 |             |       |
| ·                |             | LBS/TUN COAL                 |             | 88.5% |
| ne connocut      |             | LBS/HK                       | Livioience  | 00.54 |
| BSU              |             |                              |             |       |
| LUAD IN:         | .500000     | LBS/TON CUAL                 |             |       |
| ALLUWABLE:       |             | LBS/TUN COAL                 | EFFICIENCY: | 78.0% |
|                  | 13.38       | LBS/HR                       |             |       |
| BAP              |             | LBS/TON COAL                 |             |       |
|                  |             |                              |             |       |
| ALLOWABLE:       |             | LBS/TUN COAL                 | EFFICIENCY: | 78.0% |
| SELZCAL          |             |                              |             |       |
| BENZENE          | 010000      | LUCITON COAL                 |             |       |
|                  |             | LBS/TON COAL<br>LBS/TON COAL |             | 45 09 |
| ALLUMANTE.       |             | LBS/HK                       | EFFICIENCY; | 65.04 |
| DUST COLLECTED F | PER DAY:    | .6 TONS (I                   | DRY)        |       |
|                  |             |                              |             |       |
| TEMP OUT OF PRUC |             |                              |             |       |
| EXHAUST TEMPERA  | IURE .      | 100. F                       |             |       |
| SCFM FLOW: 10    | TA CUC      | 70. F                        |             |       |
| ACEM FLOW: 110   | 000. AT     | 100. F                       |             |       |
| L/G RATIO:       |             | 8.0                          |             |       |
| PROCESS WATER FL | _UN:        | 80. GPM                      |             |       |
| COULING WATER FL |             | U. GPM                       |             |       |
| SUSPENDED SULTOS | 5 001:      | 1064. MG/L                   | %50LIDS:    | •1    |
|                  |             |                              |             |       |
|                  |             |                              |             |       |
|                  |             |                              |             |       |
|                  | <del></del> |                              |             |       |
|                  |             |                              | ·           |       |
|                  |             |                              |             |       |
|                  |             |                              |             |       |
|                  |             |                              |             |       |
|                  |             |                              |             |       |
|                  |             |                              |             |       |
|                  |             |                              |             |       |

| PPSES: 504. DOORS          | COKE 6                      |
|----------------------------|-----------------------------|
| CONTROL SYSTEM CONFIGURAT  | IUN:                        |
| VENTURI SCRUBBER           |                             |
| MIST ELIMINATUR            |                             |
| FAN AND DRIVE              |                             |
| DUCTWORK                   |                             |
| STACK                      |                             |
| CANOPY HOUD                |                             |
| WASTEWATER RECYCLE S'      | YSTEM                       |
| DAMPERS                    |                             |
| WASTE WATER RETURN S'      | YSTEM                       |
| WATER PUMPING SYSTEM       |                             |
| FAN AND DRIVE ELECTR       | ICAL                        |
| CUKE UVEN DOOR CLEAN       | & MAINT                     |
|                            | 350. DIAMETER: 2.           |
| TOTAL PRESSURE DROP:       |                             |
|                            | SPARE FAN CAPACITY: 100.X   |
| UPERATING HOURS AT FULL HE |                             |
| UPERATING HOURS AT REDUCE! |                             |
| STACK HEIGHT:              | 100. DIAMETER: 2.           |
| NO. OF OVENS               | 60.                         |
| HOUD SIZE:<br>OVEN HEIGHT  | 16. SQ.FT.                  |
| OVEN VOLUME                | 6.0 METERS 1348. CUBIC FEET |
| TONS CUKE/PUSH             | 24.                         |
| AVG. CUKING TIME, HRS.     | 17.5                        |
| NO. CYCLES/DAY             |                             |
| BULK DENSITY               | 50. LBS/CUBIC FT.           |
|                            | .70                         |
|                            |                             |
| YIELD                      | 1011967.                    |

| CATEGORY QUANTITY RATE ANNUAL COST  *** UTILITIES ***  MATER 7989, MGAL/YR \$ .1595/1000 GAL 1500, ELECTRICITY 666276, KWH/YR \$ .0266/KWH 17700, STEAM 0. MLBS/YR \$ 4.0920/MLBS 0, FUEL 0. GAL/YR \$ .4180/GAL 0,  FUEL 0. GAL/YR \$ .4180/GAL 0,  *** OPERAIING LABOR ***  DIRECT 8760, HRS/YR \$14.34/HR 125700, SUPERVISION 1752, HRS/YR \$17.20/HR 30100,  *** MAINJENANCE & SUPPLIES ***  DIRECT LABUR 29937, HRS/YR \$17.20/HR 103000, MATERIALS 209100, SUPPLIES 112500, MATERIALS 209100, SUPPLIES 112500, WAIER THEATHENI 0. FOLIO WASTE 0. DIRECT UPERATING COST 1032300.  PAYROLL OVERHEAD =20.0% OF A+8+C+D 137600, PLANT OVERHEAD =50.0% UP A+8+C+D+E+F 504800, TIOTAL OPERATING COST 1052300.  PAYROLL OVERHEAD =50.0% UP A+8+C+D+E+F 504800, TIOTAL OPERATING COST 1052300.  PAYROLL OVERHEAD =50.0% UP A+8+C+D+E+F 504800, TIOTAL OPERATING COST 1052300.  OPERATING COST IN DOLLARS PER TON PRODUCTION 2. OPERATING COST IN DOLLARS PER TON PRODUCTION 2. OPERATING COST AS PERCENT OF CAPITAL COST 1053.  UNSTALLATION TIME IN WEEKS 104. LSTIMATED LIFE OF SYSTEM IN YEARS 15. KWH PER TON CAPACITY 104. CAPITAL RECOVERY (13.15% OF TOTAL CAPITAL) 208100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PPSES: 504. DO | DRS      |            | COKE               | 6      |              |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|------------|--------------------|--------|--------------|-----------|
| ### UTILITIES ###  MATER 7989. MGAL/YR \$ .1595/1000 GAL 1300.  ELECTRICITY 666276. KWH/YR \$ .0266/KWH 17700.  STEAM U. MLBS/YR \$ 4.0920/MLBS U.  FUEL U. GAL/YR \$ .4180/GAL U.  DIRECT 8760. HRS/YR \$ 14.34/HR 125700.  SUPERVISION 1752. HRS/YR \$17.20/HR 30100.  ### MAINJENANCE & SUPPLIES ###  DIRECT LABUR 29937. HRS/YR \$17.20/HR 103000.  MATERIALS 209100.  SUPERVISION 5987. HRS/YR \$17.20/HR 103000.  MATERIALS 209100.  SUPERVISION 5987. HRS/YR \$17.20/HR 103000.  MATERIALS 209100.  SUPERVISION 5987. HRS/YR \$17.20/HR 103000.  DIRECT UPERATING COST 1032300.  PAYROLL OVERHEAD =20.02 OF A+B+C+D 137600.  PLANT OVERHEAD =50.02 OF A+B+C+D 504800.  TOTAL OPERATING COST 1050LARS PER TON PRODUCTION 2.  OPERATING COST IN DOLLARS PER TON PRODUCTION 2.  OPERATING COST IN DOLLARS PER TON PRODUCTION 2.  OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED 7479.  UPERATING COST AS PERCENT OF CAPITAL COST 105.81  INSTALLATION TIME IN MEEKS 15.  KWH PER TON CAPACITY 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CAPACITY:      | .708 M   | ILLION TON | NS/YEAR            |        |              |           |
| ### MAINTENANCE & SUPPLIES ***  DIRECT LABUR 2937. HRS/YR \$14.34/HR 125700. SUPERVISION 5987. HRS/YR \$17.20/HR 30100.  ### MAINTENANCE & SUPPLIES ***  DIRECT B760. HRS/YR \$14.34/HR 125700. SUPERVISION 1752. HRS/YR \$17.20/HR 30100.  *** MAINTENANCE & SUPPLIES ***  DIRECT LABUR 2937. HRS/YR \$17.20/HR 103000.  ### MAINTENANCE & SUPPLIES ***  DIRECT LABUR 2937. HRS/YR \$17.20/HR 103000.  ### MAINTENANCE & SUPPLIES ***  DIRECT LABUR 2937. HRS/YR \$17.20/HR 103000.  ### MAINTENANCE & SUPPLIES ***  DIRECT LABUR 2937. HRS/YR \$17.20/HR 103000.  ### MAINTENANCE & SUPPLIES ***  DIRECT UPERATING COST 103000.  ### MAINTENANCE & SUPPLIES ***  DIRECT UPERATING COST 1032300.  ### DISPUSAL 448. TUN/YR \$8.25/TON 3700.  DIRECT UPERATING COST 1032300.  ### PAYROLL OVERHEAD =20.02 OF A+8+C+D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CATEGORY       | QUANT    | ITY        | RATE               | ANNUA  | L COS        | ſ         |
| ELECTRICITY 666276. KWH/YR \$ .0266/KWH 17700. STEAM 0. MLBS/YR \$ 4.0920/MLBS 0. FUEL 0. GAL/YR \$ .4180/GAL 0.  *** OPERATING LABOR ***  DIRECT 8760. HRS/YR \$14.34/HR 125700. SUPERVISION 1752. HRS/YR \$17.20/HR 30100.  *** MAINTENANCE & SUPPLIES ***  DIRECT LABUR 29937. HRS/YR \$14.34/HR 429400. SUPFRVISION 5987. HRS/YR \$17.20/HR 103000. MATERIALS 209100. SUPPLIES 112300. WAIER THEATMENT 0. SOLID WASTE DISPUSAL 448. TUN/YR \$ 8.25/TUN 3700.  DIRECT OPERATING COST 1032300.  PAYROLL DVERHEAD =20.0% OF A+8+C+D 137600. PLANI OVERHEAD =50.0% OF A+8+C+D+F+ 504800. OPERATING COST 10 DOLLARS PER TON PRODUCTION 2. OPERATING COST 1N DOLLARS PER TON PRODUCTION 2. OPERATING COST AS PERCENT OF CAPITAL COST 105. INSTALLATION TIME IN WEEKS 15. KWH PER TON CAPACITY CAPITAL RECOVERY (13.15% OF TOTAL CAPITAL) 208100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |          | *** UTILI1 | TIES ***           |        |              |           |
| ELECTRICITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WATER          | 7989.    | MGAL/YR    | \$ .1595/100       | OO GAL | 1300_        |           |
| STEAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |          |            |                    |        |              |           |
| ### OPERATING LABOR ###  DIRECT 8760. HRS/YR \$14.34/HR 125700. SUPERVISION 1752. HRS/YR \$17.20/HR 30100.  ### MAINTENANCE & SUPPLIES ###  DIRECT LABUR 29937. HRS/YR \$14.34/HR 429400. SUPERVISION 5987. HRS/YR \$17.20/HR 103000,  MATERIALS 209100. SUPPLIES 112300. WATER TREATMENT 0.50LID WASTE DISPUSAL 448. TUN/YR \$8.25/TON 3700.  DIRECT UPERATING COST 1032300.  PAYROLL OVERHEAD =20.0% OF A+8+C+D 137600. PLANT OVERHEAD =50.0% OF A+8+C+D+F+ 504800. TOTAL OPERATING COST 1674700. OPERATING COST 10 DOLLARS PER TON PRUDUCTION 2. OPERATING COST 10 DOLLARS PER TON OF DUST COLLECTED 7479. OPERATING COST 10 DOLLARS PER TON OF DUST COLLECTED 7479. OPERATING COST AS PERCENT OF CAPITAL COST 105.8 INSTALLATION TIME IN WEEKS 104. ESTIMATED LIFE OF SYSTEM IN YEARS 15. KWH PER TON CAPACITY 208100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |          |            |                    |        | -            |           |
| DIRECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FUEL           |          |            |                    |        |              |           |
| SUPERVISION 1752. HRS/YR \$17.20/HR 30100.  *** MAINJENANCE & SUPPLIES ***  DIRECT LABUR 29937. HRS/YR \$14.34/HR 429400. SUPERVISION 5987. HRS/YR \$17.20/HR 103000.  MATERIALS 209100. SUPPLIES 112300. WAIER THEATMENT 0.  SOLID WASTE DISPUSAL 448. TUN/YR \$8.25/TON 3700.  DIRECT UPERATING COST 1032300.  PAYROLL OVERHEAD =20.02 OF A+B+C+D 137600. PLANT OVERHEAD =50.02 UF A+B+C+D+E+F 504800. TOTAL OPERATING COST 100LLARS PER TON PRODUCTION 2.  OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED 7479. UPERATING COST IN DOLLARS PER TON OF DUST COLLECTED 7479. UPERATING COST AS PERCENT OF CAPITAL COST 105.8 INSTALLATION TIME IN WEEKS 104. ESTIMATED LIFE OF SYSTEM IN YEARS 15. KWH PER TON CAPACITY 208100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | **       | _OPERATING | LABOR ***          |        |              |           |
| SUPERVISION 1752. HRS/YR \$17.20/HR 30100.  *** MAINJENANCE & SUPPLIES ***  DIRECT LABUR 29937. HRS/YR \$14.34/HR 429400. SUPERVISION 5987. HRS/YR \$17.20/HR 103000.  MATERIALS 209100. SUPPLIES 112300. WAIER THEATMENT 0.  SOLID WASTE DISPUSAL 448. TUN/YR \$8.25/TON 3700.  DIRECT UPERATING COST 1032300.  PAYROLL DVERHEAD =20.02 OF A+B+C+D 137600. PLANT OVERHEAD =50.02 UF A+B+C+D+E+F 504800. TOTAL OPERATING CUST 1050LARS PER TON 0F DUST COLLECTED 7479.  OPERATING CUST IN DOLLARS PER TON 0F DUST COLLECTED 7479. UPERATING COST IN DOLLARS PER TON 0F DUST COLLECTED 7479. UPERATING CUST AS PERCENT OF CAPITAL CUST 105.8 INSTALLATION TIME IN WEEKS 104. ESTIMATED LIFE OF SYSTEM IN YEARS 15. KWH PER 10N CAPACITY 208100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DIRECT         | 8760     | HDS/YD     | \$14 <b>3</b> 4/HP | 1 2    | 570n         | (         |
| DIRECT LABUR 29937. HRS/YR \$14.34/HR 429400.  SUPERVISION 5987. HRS/YR \$17.20/HR 103000.  MATERIALS 209100.  SUPPLIES 209100.  WAIER TREATHENT 0.  SOLID WASTE DISPUSAL 448. TUN/YR \$8.25/TON 3700.  DIRECT OPERATING COST 1032300.  PAYROLL OVERHEAD =20.0% OF A+B+C+D 504800.  TOTAL OPERATING CUST 1074700.  OPERATING CUST 1001LARS PER TON PRODUCTION 2.  OPERATING CUST 1N DOLLARS PER TON OF DUST COLLECTED 7479.  OPERATING CUST AS PERCENT OF CAPITAL CUST 105.8  INSTALLATION TIME IN WEEKS 1.04.  ESTIMATED LIFE OF SYSTEM IN YEARS 1.5.  KWH PER TON CAPACITY 208100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |          |            | •                  |        |              |           |
| DIRECT LABUR 29937. HRS/YR \$14.34/HR 429400.  SUPERVISION 5987, HRS/YR \$17.20/HR 103000,  MATERIALS 209100.  SUPPLIES 112300.  WAIER THEATMENT 0.  SOLID WASTE DISPUSAL 448. TUN/YR \$8.25/TON 3700.  DIRECT UPERATING COST 1032300.  PAYROLL OVERHEAD =20.0% OF A+B+C+D 137600.  PLANT OVERHEAD =50.0% OF A+B+C+D+E+F 504800.  TOTAL OPERATING CUST 1674700.  OPERATING CUST 1674700.  OPERATING CUST 100LLARS PER TON PRUDUCTION 2.  OPERATING CUST 105.8  INSTALLATION TIME IN WEEKS 104.  ESTIMATED LIFE OF SYSTEM IN YEARS  KWH PER TON CAPACITY 2.98100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |          |            |                    |        | <u> </u>     | `         |
| SUPERVISION 5987. HRS/YR \$17.20/HR 103000,  MATERIALS 209100.  SUPPLIES 112300.  WAIER TREATMENT 0.  SOLID WASTE DISPOSAL 448. TON/YR \$ 8.25/TON 3700.  DIRECT OPERATING COST 1032300.  PAYROLL OVERHEAD =20.0% OF A+B+C+D 504800.  TOTAL OPERATING COST 504800.  OPERATING COST 1050LARS PER TON PRODUCTION 2.  OPERATING COST 10 DOLLARS PER TON OF DUST COLLECTED 7479.7  OPERATING COST AS PERCENT OF CAPITAL COST 105.8  INSTALLATION TIME IN WEEKS 104.  ESTIMATED LIFE OF SYSTEM IN YEARS 15.  KWH PER TON CAPACITY CAPITAL RECOVERY (13.15% OF TOTAL CAPITAL) 208100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | *** MA   | INTENANCE  | & SUPPLIES ***     |        |              |           |
| MATERIALS SUPPLIES MATER TREATMENT  SOLID WASTE DISPUSAL  DIRECT OPERATING COST  PAYROLL OVERHEAD =20.0% OF A+B+C+D TOTAL OPERATING COST  OPERATING COST  OPERATING COST IN DOLLARS PER TON PRODUCTION OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED OPERATING COST OPERATING COST TOPERATING COST TOPER |                |          |            | \$14.34/HR         | 42     | 9400.        | (         |
| SUPPLIES WATER TREATMENT  SOLID WASTE DISPUSAL  ### A 448. TON/YR  ### \$ 8.25/TON  DIRECT OPERATING COST  PAYROLL OVERHEAD =20.0% OF A+B+C+D  PLANT OVERHEAD =50.0% OF A+B+C+D+E+F  TOTAL OPERATING COST  OPERATING COST OPERATING COST IN DOLLARS PER TON PRODUCTION  OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED OPERATING COST AS PERCENT OF CAPITAL COST INSTALLATION TIME IN WEEKS LSTIMATED LIFE OF SYSTEM IN YEARS KWH PER TON CAPACITY CAPITAL RECOVERY (13.15% OF TOTAL CAPITAL)  208100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | 5987.    | HRS/YR     | \$17.20/HR         |        |              |           |
| WATER TREATMENT  SOLID WASTE DISPUSAL  448. TUN/YR  \$ 8.25/TON  3700.  DIRECT UPERATING COST  PAYROLL OVERHEAD =20.0% OF A+B+C+D  PLANT OVERHEAD =50.0% OF A+B+C+D+E+F  TOTAL OPERATING CUST  OPERATING CUST IN DOLLARS PER TON PRUDUCTION  OPERATING COST IN DOLLARS PER TON UP DUST COLLECTED  OPERATING COST AS PERCENT OF CAPITAL CUST  INSTALLATION TIME IN WEEKS  ESTIMATED LIFE OF SYSTEM IN YEARS  KWH PER TON CAPACITY  CAPITAL RECOVERY (13.15% OF TOTAL CAPITAL)  208100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |          |            |                    |        |              |           |
| SOLID WASTE DISPOSAL 448. TON/YR \$ 8.25/TON 3700.  DIRECT OPERATING COST 1032300.  PAYROLL OVERHEAD =20.0% OF A+B+C+D 137600.  PLANT OVERHEAD =50.0% OF A+B+C+D+E+F 504800.  TOTAL OPERATING COST 10 DOLLARS PER TON PRODUCTION 2.1  OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED 7479.7  OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED 7479.7  OPERATING COST AS PERCENT OF CAPITAL COST 105.8  INSTALLATION TIME IN WEEKS 104.  ESTIMATED LIFE OF SYSTEM IN YEARS 15.  KWH PER TON CAPACITY 208100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |          |            |                    | 11     |              |           |
| DISPUSAL 448. TUN/YR \$ 8.25/TON 3700.  DIRECT OPERATING COST 1032300.  PAYROLL OVERHEAD =20.0% OF A+B+C+D 137600.  PLANT OVERHEAD =50.0% OF A+B+C+D+E+F 504800.  TOTAL OPERATING COST 1000LLARS PER TON PRODUCTION 2.0  OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED 7479.7  OPERATING COST AS PERCENT OF CAPITAL COST 105.8  INSTALLATION TIME IN WEEKS 104.  ESTIMATED LIFE OF SYSTEM IN YEARS 15.  KWH PER TON CAPACITY 208100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |          |            |                    |        | 0            |           |
| DIRECT OPERATING COST  PAYROLL OVERHEAD =20.0% OF A+B+C+D  PLANT OVERHEAD =50.0% OF A+B+C+D+E+F  TOTAL OPERATING COST  OPERATING COST IN DOLLARS PER TON PRODUCTION  OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED  OPERATING COST AS PERCENT OF CAPITAL COST INSTALLATION TIME IN WEEKS LSTIMATED LIFE OF SYSTEM IN YEARS  KWH PER TON CAPACITY CAPITAL RECOVERY (13.15% OF TOTAL CAPITAL)  208100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 448      | TONZYE     | € 8 25/TON         |        | <b>77</b> 00 |           |
| PAYROLL OVERHEAD =20.0% OF A+B+C+D  PLANT OVERHEAD =50.0% OF A+B+C+D+E+F  TOTAL OPERATING CUST  OPERATING CUST IN DOLLARS PER TON PRODUCTION  OPERATING CUST IN DOLLARS PER TON OF DUST COLLECTED  OPERATING CUST AS PERCENT OF CAPITAL CUST INSTALLATION TIME IN WEEKS LSTIMATED LIFE OF SYSTEM IN YEARS  KWH PER TON CAPACITY CAPITAL RECOVERY (13.15% OF TOTAL CAPITAL)  137600.  137600.  137600.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |          |            |                    |        |              | . <b></b> |
| PLANT OVERHEAD =50.0% OF A+B+C+D+E+F  TOTAL OPERATING CUST  OPERATING CUST IN DOLLARS PER TON PRODUCTION  OPERATING CUST IN DOLLARS PER TON OF DUST COLLECTED  OPERATING CUST AS PERCENT OF CAPITAL CUST  INSTALLATION TIME IN WEEKS  ESTIMATED LIFE OF SYSTEM IN YEARS  KWH PER TON CAPACITY  CAPITAL RECOVERY (13.15% OF TOTAL CAPITAL)  208100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DIRECT OPERAT  | ING COST |            |                    | 103    | 2300.        |           |
| TOTAL OPERATING CUST  OPERATING CUST IN DOLLARS PER TON PRODUCTION  OPERATING CUST IN DOLLARS PER TON OF DUST COLLECTED  OPERATING CUST AS PERCENT OF CAPITAL CUST  INSTALLATION TIME IN WEEKS  ESTIMATED LIFE OF SYSTEM IN YEARS  KWH PER ION CAPACITY  CAPITAL RECOVERY (13.15% OF TOTAL CAPITAL)  1674700.  1674700.  1674700.  1674700.  1674700.  1674700.  208100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |          |            |                    |        |              |           |
| OPERATING COST IN DOLLARS PER TON PRODUCTION  OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED  OPERATING COST AS PERCENT OF CAPITAL COST  INSTALLATION TIME IN WEEKS  LSTIMATED LIFE OF SYSTEM IN YEARS  KWH PER TON CAPACITY  CAPITAL RECOVERY (13.15% OF TOTAL CAPITAL)  2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |          | UF A+B+C+D | )+E+F              |        |              |           |
| OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED 7479.TOPERATING COST AS PERCENT OF CAPITAL COST 105.8 INSTALLATION TIME IN WEEKS 104. ESTIMATED LIFE OF SYSTEM IN YEARS 15. KWH PER TON CAPACITY 208100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |          | . 0 0      |                    |        |              |           |
| OPERATING COST AS PERCENT OF CAPITAL COST INSTALLATION TIME IN WEEKS LSTIMATED LIFE OF SYSTEM IN YEARS KWH PER TON CAPACITY CAPITAL RECOVERY (13.15% OF TOTAL CAPITAL) 208100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |          |            |                    |        |              |           |
| INSTALLATION TIME IN WEEKS 104. ESTIMATED LIFE OF SYSTEM IN YEARS 15. KWH PER ION CAPACITY CAPITAL RECOVERY (13.15% OF TOTAL CAPITAL) 208100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |          |            |                    | ECTED  |              |           |
| ESTIMATED LIFE OF SYSTEM IN YEARS  KWH PER TON CAPACITY  CAPITAL RECOVERY (13.15% OF TOTAL CAPITAL)  208100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |          |            | TIAL COST          |        |              |           |
| KWH PER TON CAPACITY CAPITAL RECOVERY (13.15% OF TOTAL CAPITAL) 208100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |          |            | 26                 |        |              |           |
| CAPITAL RECOVERY (13.15% OF TOTAL CAPITAL) 208100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |          |            | ``                 |        |              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |          |            | AL CAPTIAL)        | 208    |              |           |
| ADMINISTRATION OVERHEAD ( 2.0% OF TOTAL CAPITAL) 31700.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |          |            |                    |        |              |           |
| PROPERTY TAXES & INS. ( 2.0% OF TOTAL CAPITAL) 31700.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |          | -          |                    |        |              |           |
| TOTAL ANNUALIZED COST - RETROFIT 1946200.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |          |            |                    |        | -            |           |
| - NEW 1901000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 1        | - NEW      |                    | 1901   | 000.         |           |

GENERAL INFORMATION: UNITS OPTION PPSES: 504. DOORS COKE CAPACITY: .708 MILLION TONS/YEAR PARTICULATE LUAD IN: .500000 LBS/TON COAL ALLOWABLE: .033500 LBS/TON COAL EFFICIENCY: 93.3% 4.07 LBS/HR BSU LOAD IN: .500000 LBS/TON COAL ALLOWABLE: .081000 LBS/TON COAL EFFICIENCY: 83.8% 9.85 LBS/HR BAP .003000 LBS/TON COAL LUAD IN: ALLUWABLE: .000486 LBS/TON COAL EFFICIENCY: 83.8% .06 LBS/HR BENZENE LOAD IN: .010000 LBS/TON COAL .002800 LBS/TON COAL EFFICIENCY: 72.0% ALLOWABLE: .34 LBS/HR .6 TONS (DRY) DUST COLLECTED PER DAY: TEMP OUT OF PROCESS: 120. F EXHAUST TEMPERATURE: 100. F SCFM FLUN: 13000. AT 70. F 100. F ACFM FLOW: 14000. AT L/G RATIU: 8.0\_\_ PROCESS WATER FLOW: 104. GPM COOLING WATER FLOW: 0. GPM SUSPENDED SOLIDS OUT: 818. MG/L %SOLIDS: .1 A-71

| GENERAL INFORMATION:                              | UNITS UPIION                          |
|---------------------------------------------------|---------------------------------------|
| PPSES: 504. DOURS                                 | COKE 7                                |
| CUNTPUL SYSTEM CONFIGURATION                      | :                                     |
| VENTURI SCRUBBER                                  |                                       |
| MIST ELIMINATOR                                   |                                       |
| FAN AND DRIVE                                     |                                       |
| DUCTWORK                                          |                                       |
| STACK                                             |                                       |
| CANUPY HOUD                                       | P A4                                  |
| WASTEWATER RECYCLE SYSTI                          | EM .                                  |
| DAMPERS WASTE WATER RETURN: SYSTE                 | EM                                    |
| WATER PUMPING SYSTEM                              |                                       |
| FAU AND DRIVE ELECTRICAL                          | L                                     |
|                                                   | MAINT                                 |
|                                                   |                                       |
|                                                   |                                       |
|                                                   | 350. DIAMETER: 2.                     |
| TOTAL PRESSURE DROP:                              | 65. INCHES                            |
| 2 FANS & 239. HP EACH OPERATING HOURS AT FULL HP: |                                       |
| DPERATING HOURS AT REDUCED HI                     |                                       |
| STACK HEIGHT:                                     | 100. DIAMETER: 2.                     |
| IND. OF DYENS                                     | · · · · · · · · · · · · · · · · · · · |
| HOOD SIZE:                                        | 16. SQ.FT.                            |
| OVEN HEIGHT                                       | 6.0 METERS                            |
| OVEN VOLUME                                       | 1348. CUBJC FEET                      |
| TONS COKE/PUSH                                    | 24.<br>17.5                           |
| AVG. CUKING TIME, HRS. NO. CYCLES/DAY             |                                       |
| BULK DENSITY                                      | 50. LBS/CUBIC FT.                     |
| YIELD                                             | .70                                   |
| TUNS CUAL/YEAR                                    | 1011967.                              |
|                                                   |                                       |
|                                                   |                                       |
|                                                   |                                       |
|                                                   |                                       |
|                                                   |                                       |
|                                                   |                                       |
|                                                   |                                       |
|                                                   |                                       |
|                                                   |                                       |
|                                                   |                                       |
|                                                   |                                       |
|                                                   |                                       |
|                                                   |                                       |
|                                                   |                                       |
|                                                   |                                       |
|                                                   |                                       |

| PPSES: 504. DOORS       | UNITS OPTION  COKE 7                  |
|-------------------------|---------------------------------------|
|                         |                                       |
| CAPACITY: .708 MII      | LION TONS/YEAR                        |
| TUTAL COST (COST BASIS  | IS 110.00% OF JUNE 1977 DULLARS FOR 4 |
| CATEGORY                | COST IN DOLLARS                       |
| *** DIRECT (            | COST ***                              |
| EQUIPMENT OR MATERIAL   | 340000.                               |
| INSTRUMENTATION         | 51900.                                |
| PIPING                  | 54600.                                |
| ELECTRICAL              | 82800.                                |
| FOUNDATIONS             | 19700.                                |
| STRUCTURAL              | 51400.                                |
| SITE WORK               | 3200.                                 |
| INSULATION              | 6500.                                 |
| PROTECTIVE COATING      | 9000.                                 |
| BUILDINGS               | 8900.                                 |
| EQUIPMENT/MATERIAL LABO | DR 115700.                            |
| DIRECT CUST SUBTO       | TAL 743700.                           |
| *** INDIRECT            | CUST ***                              |
| FIELD OVERHEAD          | 106500.                               |
| CONTRACTORS FEE         | 52300.                                |
| ENGINEERING             | 123000.                               |
| FREIGHT                 | 27600.                                |
| OFFSITE WURK            | 17000.                                |
| TAXES                   | 29300.                                |
| SHAKEDUWN               | 32800.                                |
| SPARES                  | 29200.                                |
| CONTINGENCY             | 254300.                               |
| INDIRECT COST SUB       |                                       |
| INTEREST DURING I       | NSTALLATION 107300.                   |
| TOTAL COST              | 1523000.                              |
| TOTAL COST WITH R       | TROFIT 1818400.                       |

|        |                                                 | OORS        |            | CUKE            | 7      |                |         |
|--------|-------------------------------------------------|-------------|------------|-----------------|--------|----------------|---------|
|        | CAPACITY:                                       | -708 M      | ILLION IO  | NS/YEAR         |        |                |         |
|        |                                                 |             |            |                 |        | :              |         |
|        | CATEGORY                                        | GUANT       | ] T Y      | RATE            |        | ANNUAL COST    |         |
|        |                                                 | :           | *** UTILIT | TIES ***        |        |                |         |
| ·· ··· | WATER                                           | -           |            | \$ .1595/10     | OO GAL | 1700.          |         |
|        | ELECTRICITY                                     | -           | KWH/YR     |                 |        | 41800.         |         |
|        | STEAM                                           | _           | MLBS/YR    |                 |        | 0.             |         |
|        | <u> FUEL                                   </u> | υ.          | GAL/YR     | 5 4180/GA       | L      |                |         |
|        |                                                 | <u>**</u> * | OPERATING  | LABUR ***       |        |                | -       |
|        | OTRECT                                          | 8760_       | HRS/YR     | \$14.34/HR      |        | 125700.        | (       |
|        | SUPERVISIUM                                     |             | HRS/YR     | \$17.20/HR      |        | 30100.         |         |
|        |                                                 |             |            |                 |        |                |         |
|        |                                                 | *** MA      | INTENANCE  | & SUPPLIES **   | *      |                |         |
|        | DIRECT LABOR                                    | _           | HRS/YR     |                 |        | 432300.        |         |
|        | SUPERVISION                                     | 6027.       | HRS/YR     | \$17.20/HR      |        | 103700.        |         |
|        | MATERIALS                                       |             |            |                 |        | 211300.        |         |
|        | SUPPLIES                                        |             |            |                 |        | 113500.        |         |
| ·· -   | WATER TREATMENT                                 |             |            |                 |        | 0              |         |
|        | SOLIU WASTE                                     | 473         | TONAVO     | 6 0 35 / 7 0 1/ |        | 7000           |         |
|        | DISPUSAL                                        | 472.        | TON/YR     | \$ 8.25/TUN     |        | 3900.          |         |
|        | DIRECT OPERA                                    | TING COST   |            |                 |        | 1064000.       | • • • • |
|        | PAYROLL OVER                                    |             |            |                 |        | 138400.        |         |
|        | PLANT UVERHE                                    | 40 =50.0% ( | OF A+B+C+D | )+E+F           |        | 508300.        |         |
|        | TOTAL OPERAT:                                   |             |            |                 |        | 1710700.       |         |
|        |                                                 |             |            | N PRODUCTIO     |        | 2.4            |         |
|        |                                                 |             |            | IN OF DUST COL  | LECTED | 7247.4         |         |
|        | OPERATING COS                                   |             |            | PITAL COST      |        | 94.1           |         |
|        | INSTALLATION                                    |             |            |                 |        | 104.           |         |
|        | ESTIMATED LIF                                   |             |            | (3)             |        | 15.            | 1       |
|        | CAPITAL RECOV                                   |             |            | U CAPITAL)      |        | 2.2<br>239100. |         |
|        |                                                 |             |            | OF TOTAL CAPIT  | ΔΙΊ    | 36400.         |         |
|        |                                                 |             | -          | TOTAL CAPITAL   |        | 36400.         |         |
|        | TAL ANNUAL                                      |             |            |                 | •      | 2022600        |         |
|        |                                                 |             | - NEW      |                 |        | 1971900.       | -       |
|        |                                                 |             |            |                 |        | <u> </u>       |         |
|        |                                                 |             |            |                 |        |                |         |

| BBSE        | C. EAF     | TORETOR   |                           |             | TION      |
|-------------|------------|-----------|---------------------------|-------------|-----------|
| PPSE        | s: 505.    | 1075106   |                           | COKE        | 5         |
| CAPA        | CITY:      | .708      | MILLION TONS/             | YEAR        |           |
| DADT        | 7614 A 75  |           |                           |             |           |
| PARI.       | ICULATE    | 200000    | LRR/TON COAL              |             |           |
| <del></del> | ALLOWABLE  |           | LBS/TON COAL LBS/TON COAL | EFFICIENCY: |           |
|             | MELOWADEE  | *         | LBS/HR                    | ELLICIENCI. | 70,02     |
| BSO         |            |           |                           |             |           |
|             | LOAD IN:   | -250000   | LBS/TON COAL              |             |           |
|             |            |           |                           | EFFICIENCY: | 90.02     |
|             |            |           | LBS/HR                    |             |           |
| BAP         |            |           |                           |             |           |
|             | LOAD IN:   | .001000   | LBS/TON COAL              |             |           |
|             | ALLOWABLE  | : .000100 | LBS/TON COAL              | EFFICIENCY: | 90.0%     |
|             |            | .01       | LBS/HR                    |             | App. Elif |
| BENZI       | ENE        |           |                           |             |           |
|             |            |           | LBS/TON COAL              |             |           |
|             | ALLOWABLE  |           | LBS/TON COAL<br>LBS/HR    | EFFICIENCY: | 90.0%     |
|             |            | • 00      | LDS/HK                    |             |           |
| DUST        | COLLECTED  | PER DAY:  | .2 TONS (                 | DRY)        |           |
|             |            | _         |                           |             |           |
|             | OUT OF PR  |           | 120. F                    |             |           |
| EXHA        | UST TEMPER | ATURE:    | 120. F                    |             |           |
| SCFM        | FLOW:      | 0. AT     | 70. F                     |             |           |
| ACFM        | FLOW:      | 0. AT     | 120. F                    |             |           |
| L/G I       | RATIO:     |           | 0                         |             |           |
|             | ESS WATER  |           | 0. GPM                    |             |           |
|             | ING WATER  |           | O. GPM                    |             | •         |
| SUSPI       | ENDED SOLI | DS OUT:   | 0. MG/L                   | #SOLIDS:    | .0        |
|             |            |           |                           |             |           |
|             |            |           |                           |             |           |
|             |            |           |                           |             | <u> </u>  |
| <u></u> .   |            | ····      |                           |             | <u> </u>  |
|             |            |           |                           |             | <u> </u>  |
|             |            |           |                           |             |           |
| · w > ia .  |            |           |                           |             |           |
|             |            |           |                           |             |           |
| <u> </u>    |            |           |                           |             |           |
|             |            |           |                           |             |           |
|             |            |           |                           |             |           |

| NERAL INFORMATION:            | INITE OPTION                          |
|-------------------------------|---------------------------------------|
| PPSES: 505. TOPSIDE           | UNITS OPTION                          |
| PPSES: 3V3. TUPSIDE           | COKE 5                                |
|                               | · · · · · · · · · · · · · · · · · · · |
| CONTROL SYSTEM CONFIGURATION  | ON:                                   |
| TOPSIDE MAINTENANCE -         | LEVEL 1                               |
| •                             |                                       |
| FEET OF ADDITIONAL DUCT:      | 0. DIAMETER: 0.                       |
| TOTAL PRESSURE DROP:          | 0. INCHES                             |
|                               | SPARE FAN CAPACITY: 0.X               |
| OPERATING HOURS AT FULL HP    |                                       |
| OPERATING HOURS AT REDUCED    |                                       |
| STACK HEIGHT:<br>NO. OF OVENS | 0. DIAMETER: 0.                       |
| OVEN HEIGHT                   | 6.0 METERS                            |
| OVEN VOLUME                   | 1348. CUBIC FEET                      |
| TONS COKE/PUSH                | 24.                                   |
| AVG. COKING TIME, HRS.        | 17.5                                  |
| ND. CYCLES/DAY                | 82.                                   |
| BULK DENSITY                  | 50. LBS/CUBIC FT.                     |
| YIELD .                       | •70                                   |
| TONS COAL/YEAR                | 1011967.                              |
| i                             | ,                                     |
|                               |                                       |
|                               |                                       |
|                               |                                       |
|                               |                                       |
|                               |                                       |
|                               |                                       |
|                               |                                       |
|                               |                                       |
|                               |                                       |
|                               |                                       |
|                               | *                                     |
|                               |                                       |
|                               |                                       |
|                               |                                       |
|                               |                                       |
| ·                             |                                       |
| •                             |                                       |
|                               |                                       |
|                               |                                       |
|                               |                                       |
|                               |                                       |
|                               |                                       |

| 000001 500 700  | erne                                  | UNITS OPTION                          |               |
|-----------------|---------------------------------------|---------------------------------------|---------------|
| PPSES: 505. TOP | SIDE                                  | COKE 5                                |               |
| CAPACITY:       | .708 MILLION TON                      | S/YEAR                                |               |
| CATEGORY        | QUANTITY                              | RATE                                  | ANNUAL COST ( |
|                 | *** UTILIT                            | IES ***                               |               |
| MATER           | O. MGAL/YR                            | \$ .1595/1000 GAL                     | 0.            |
| ELECTRICITY     | O. KWH/YR                             | \$ .0266/KWH                          | 0.            |
| STEAM           | O. MLBS/YR                            | \$ 4.0920/MLBS                        | 0.            |
| FUEL            | 0. GAL/YR                             | \$ .4180/GAL                          | 0.            |
|                 | *** OPERATING                         | LABOR ***                             |               |
| DIRECT          | 8760. HRS/YR                          | \$14.34/HR                            | 125700. (A    |
| SUPERVISION     | 1752. HRS/YR                          | \$17.20/HR_                           | 30100. (B     |
| SUPERVISION     | 1/JE, HROVIR                          | #110EV/HR                             | 30100. (1     |
|                 | *** MAINTENANCE                       | & SUPPLIES ***                        |               |
| DIRECT LABOR    | 0. HRS/YR                             | \$14.34/HR                            | 0. (0         |
| SUPERVISION     | 0. HRS/YR                             | \$17.20/HR                            | 0. (D         |
| MATERIALS       |                                       |                                       | 0. (E         |
| SUPPLIES        |                                       |                                       | 0. (F         |
| WATER TREATMENT | · · · · · · · · · · · · · · · · · · · |                                       | <u> </u>      |
| SOLID WASTE     | 0 T0N/YD                              | c a 35/70N                            | •             |
| DISPOSAL        | O. TON/YR                             | \$ 8.25/TON                           | 0.            |
| DIRECT OPERATI  | NG COST                               |                                       | 155800.       |
|                 | AD =20.0% OF A+8+C                    |                                       | 31200.        |
|                 | =50.0% OF A+B+C+D                     | +E+F                                  | 77900.        |
| TOTAL OPERATIN  | -                                     |                                       | 264900.       |
|                 | IN DOLLARS PER TO                     |                                       | 37            |
|                 |                                       | N OF DUST COLLECTED                   | 2908.53       |
| INSTALLATION T  | AS PERCENT OF CAP                     | TIAL CUST                             | . 0           |
|                 | OF SYSTEM IN YEAR                     | 8                                     | 99.           |
| KWH PER TON     | CAPACITY                              | •                                     | • 0           |
|                 | RY (10.00% OF TOTA                    | L CAPITAL)                            | 0.            |
|                 | OVERHEAD ( 2.0% 0                     |                                       | 0.            |
|                 | 8 INS. ( 2.0% OF                      |                                       | 0.            |
| TOTAL ANNUALIZ  | ED COST - RETROFIT                    | · · · · · · · · · · · · · · · · · · · | 264900.       |
|                 | - NEW                                 |                                       | 264900.       |
| TOTAL ANNUALIZ  |                                       |                                       |               |

| PPS               |                     |                | N:<br>   | No F. V. Brance |            |                                         | TION                                                                                                                                                                                                                            |
|-------------------|---------------------|----------------|----------|-----------------|------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •                 | ES:                 | <b>5</b> 05.   | TOPSIDE  |                 |            | COKE                                    | -3                                                                                                                                                                                                                              |
| CAP               | ACII                | Y:             | .708     | MILLION         | TONS/      | YEAR                                    |                                                                                                                                                                                                                                 |
|                   |                     |                |          |                 |            |                                         |                                                                                                                                                                                                                                 |
| PAR               | _                   | LATE           | 20000    |                 |            |                                         |                                                                                                                                                                                                                                 |
|                   |                     |                | 200000   |                 |            | CEETCIENCY.                             | ×-45:-44                                                                                                                                                                                                                        |
|                   | AL                  | LUMADLE        |          | LBS/HR          |            | EFFICIENCY:                             | SANTA SA<br>Santa Santa S |
| ,,                | ς.                  |                | 1.10     | FB0/HK          |            | • • • • • • • • • • • • • • • • • • • • | · · · · · · · · ·                                                                                                                                                                                                               |
| 880               |                     |                |          |                 |            |                                         |                                                                                                                                                                                                                                 |
|                   | L0                  | AD IN:         | .250000  | LBS/TON         | COAL       |                                         |                                                                                                                                                                                                                                 |
|                   | AL                  | LOWABLE        |          |                 |            | EFFICIENCY:                             | 95.0%                                                                                                                                                                                                                           |
|                   |                     |                | 1.44     | LBS/HR          |            |                                         |                                                                                                                                                                                                                                 |
| BAP               |                     |                |          |                 |            |                                         |                                                                                                                                                                                                                                 |
| DAP               |                     | AD TN:         | .001000  | LBS/TON         | COAL       |                                         |                                                                                                                                                                                                                                 |
|                   |                     |                |          |                 |            | EFFICIENCY:                             | 95.0%                                                                                                                                                                                                                           |
|                   | . • •               |                |          | LBS/HR          |            |                                         |                                                                                                                                                                                                                                 |
|                   |                     |                |          |                 |            |                                         |                                                                                                                                                                                                                                 |
|                   | ZENE                |                | ****     |                 |            |                                         |                                                                                                                                                                                                                                 |
|                   |                     |                | _005000  |                 |            |                                         | 05 A¥                                                                                                                                                                                                                           |
|                   | AL                  | LUMABLE        |          | LBS/HR          | LUAL       | EFFICIENCY:                             | 42.0%                                                                                                                                                                                                                           |
|                   |                     |                | •03      | FB3) HK         |            |                                         |                                                                                                                                                                                                                                 |
| DUS               | T CO                | LLECTED        | PER DAY: | .3              | TONS (     | DRY)                                    |                                                                                                                                                                                                                                 |
|                   |                     |                | •        |                 |            |                                         |                                                                                                                                                                                                                                 |
|                   |                     |                | OCESS:   | 120.            |            |                                         |                                                                                                                                                                                                                                 |
| EXH.              | AUST                | TEMPER         | ATURE:   | 120.            | F          |                                         |                                                                                                                                                                                                                                 |
| SCE               | M FL                | Ow:            | 0. AT    | 70.             | E          |                                         |                                                                                                                                                                                                                                 |
|                   |                     | Ow:            | O. AT    |                 |            |                                         |                                                                                                                                                                                                                                 |
| ACF               | M FL                | UH •           | -        |                 |            |                                         |                                                                                                                                                                                                                                 |
|                   |                     |                |          |                 |            |                                         |                                                                                                                                                                                                                                 |
| L/G               | RAT                 | 10:            |          |                 |            |                                         |                                                                                                                                                                                                                                 |
| L/G<br>PRO        | RAT                 | IO:<br>WATER I | FLOW:    | 0.              | GPM        |                                         |                                                                                                                                                                                                                                 |
| L/6<br>PRO<br>C00 | RAT<br>CESS<br>LING | IO:<br>WATER ( | FLOW:    | 0.              | GPM<br>GPM | YSOL TOS.                               |                                                                                                                                                                                                                                 |
| L/6<br>PRO<br>C00 | RAT<br>CESS<br>LING | IO:<br>WATER I | FLOW:    | 0.              | GPM        | %SOLIDS:                                | • 0                                                                                                                                                                                                                             |
| L/6<br>PRO<br>C00 | RAT<br>CESS<br>LING | IO:<br>WATER ( | FLOW:    | 0.              | GPM<br>GPM | %SOLIDS:                                | • 0                                                                                                                                                                                                                             |
| L/6<br>PRO<br>C00 | RAT<br>CESS<br>LING | IO:<br>WATER ( | FLOW:    | 0.              | GPM<br>GPM | %SOLIDS:                                | • 0                                                                                                                                                                                                                             |
| L/6<br>PRO<br>C00 | RAT<br>CESS<br>LING | IO:<br>WATER ( | FLOW:    | 0.              | GPM<br>GPM | %SOLIDS:                                | .0                                                                                                                                                                                                                              |
| L/6<br>PRO<br>C00 | RAT<br>CESS<br>LING | IO:<br>WATER ( | FLOW:    | 0.              | GPM<br>GPM | %SOLIDS:                                | • 0                                                                                                                                                                                                                             |
| L/6<br>PRO<br>C00 | RAT<br>CESS<br>LING | IO:<br>WATER ( | FLOW:    | 0.              | GPM<br>GPM | %SOLIDS:                                | .0                                                                                                                                                                                                                              |
| L/6<br>PRO<br>C00 | RAT<br>CESS<br>LING | IO:<br>WATER ( | FLOW:    | 0.              | GPM<br>GPM | %SOLIDS:                                | .0                                                                                                                                                                                                                              |
| L/6<br>PRO<br>C00 | RAT<br>CESS<br>LING | IO:<br>WATER ( | FLOW:    | 0.              | GPM<br>GPM | %SOLIDS:                                | • 0                                                                                                                                                                                                                             |
| L/6<br>PRO<br>C00 | RAT<br>CESS<br>LING | IO:<br>WATER ( | FLOW:    | 0.              | GPM<br>GPM | %SOLIDS:                                | .0                                                                                                                                                                                                                              |
| L/6<br>PRO<br>C00 | RAT<br>CESS<br>LING | IO:<br>WATER ( | FLOW:    | 0.              | GPM<br>GPM | %SOLIDS:                                | .0                                                                                                                                                                                                                              |
| L/6<br>PRO<br>C00 | RAT<br>CESS<br>LING | IO:<br>WATER ( | FLOW:    | 0.              | GPM<br>GPM | #SOLIDS:                                | • 0                                                                                                                                                                                                                             |
| L/6<br>PRO<br>C00 | RAT<br>CESS<br>LING | IO:<br>WATER ( | FLOW:    | 0.              | GPM<br>GPM | %SOLIDS:                                | .0                                                                                                                                                                                                                              |
| L/6<br>PRO<br>C00 | RAT<br>CESS<br>LING | IO:<br>WATER ( | FLOW:    | 0.              | GPM<br>GPM | #SOLIDS:                                | .0                                                                                                                                                                                                                              |
| L/6<br>PRO<br>C00 | RAT<br>CESS<br>LING | IO:<br>WATER ( | FLOW:    | 0.              | GPM<br>GPM | %SOLIDS:                                | .0                                                                                                                                                                                                                              |
| L/6<br>PRO<br>C00 | RAT<br>CESS<br>LING | IO:<br>WATER ( | FLOW:    | 0.              | GPM<br>GPM | XSOLIDS:                                | .0                                                                                                                                                                                                                              |
| L/6<br>PRO<br>C00 | RAT<br>CESS<br>LING | IO:<br>WATER ( | FLOW:    | 0.              | GPM<br>GPM | #SOLIDS:                                | .0                                                                                                                                                                                                                              |

|                                                  | UNITS OPTION              |
|--------------------------------------------------|---------------------------|
| PPSES: 505. TOPSIDE                              | COKE 3                    |
| CONTROL SYSTEM CONFIGURATIO                      | IN:                       |
| TOPSIDE MAINTENANCE -                            | FEAET 5                   |
| PPCT OF ADDITIONAL BUCCA                         | A                         |
| FEET OF ADDITIONAL DUCT:<br>TOTAL PRESSURE DROP: | 0. INCHES                 |
|                                                  | SPARE FAN CAPACITY: 0.2   |
| OPERATING HOURS AT FULL HP:                      |                           |
| OPERATING HOURS AT REDUCED                       | HP: 0.<br>0. DIAMETER: 0. |
| NO. OF OVENS                                     | 60.                       |
| OVEN HEIGHT                                      | 6.0 METERS                |
| OVEN VOLUME                                      | 1348. CUBIC FEET          |
| TONS COKE/PUSH                                   | 24.                       |
| AVG. COKING TIME, HRS.                           | 17.5                      |
| NO. CYCLES/DAY                                   | 82.                       |
| BULK DENSITY YIELD                               | 50. LBS/CUBIC FT          |
|                                                  | 1011967.                  |
| TONO CONETTEN                                    |                           |
|                                                  |                           |
|                                                  |                           |
|                                                  |                           |
|                                                  |                           |
|                                                  |                           |
| ·                                                |                           |
|                                                  |                           |
|                                                  |                           |
|                                                  |                           |
|                                                  |                           |
|                                                  |                           |
|                                                  |                           |
|                                                  |                           |
|                                                  |                           |
|                                                  |                           |
|                                                  |                           |
|                                                  | ·                         |
|                                                  | •                         |
|                                                  |                           |
|                                                  |                           |
|                                                  |                           |
|                                                  |                           |
|                                                  | 5 1 35                    |
|                                                  |                           |
|                                                  |                           |
|                                                  |                           |
|                                                  |                           |

| CAPACI  CATEGOR  CATEGOR  WATER  ELECTR  STEAM  FUEL  DIRECT  SUPERV  MATERIA  SUPPLIE  NATER  SOLID IN  DISPO | IY: RY  ICITY  ISION  LABOR ISION ALS | TOPSIDE  .708 MILLION TO  QUANTITY  *** UTILI  O. MGAL/YR  O. KWH/YR  O. MLBS/YR  O. GAL/YR   8760. HRS/YR  1752. HRS/YR  *** MAINTENANCE  5900. HRS/YR | RATE  TIES ***  \$ .1595/1000 GAL  \$ .0266/KWH \$ 4.0920/MLBS \$ .4180/GAL                                                                      | ANNUAL COST (3<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>25700. (A<br>30100. (B |
|----------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| DIRECT<br>SUPERV<br>MATER<br>DIRECT<br>SUPERV<br>MATERIA<br>SUPPLIE<br>WATER<br>SOLID IN<br>DISPO              | ISION  LABOR ISION ALS                | QUANTITY  ### UTILI  Q. MGAL/YR  Q. KWH/YR  Q. MLBS/YR  Q. GAL/YR  ### OPERATIA  8760. HRS/YR  1752. HRS/YR  ### MAINTENANCE                            | RATE  S. 1595/1000 GAL S. 0266/KWH S. 4.0920/MLBS S. 4180/GAL  MG. LABOR ***  \$14.34/HR \$17.20/HR  E. SUPPLIES ***                             | 0.<br>0.<br>0.<br>0.<br>0.<br>125700. (A<br>30100. (B                        |
| DIRECT<br>SUPERV<br>MATERIA<br>SUPPLIE<br>MATERIA<br>SOLID IN<br>DISPO                                         | ICITY  ISION  LABOR ISION ALS         | ### UTILI  Q. MGAL/YR  Q. KWH/YR  Q. KWH/YR  Q. MLBS/YR  Q. GAL/YR  ### OPERATIN  8760. HRS/YR  1752. HRS/YR  ### MAINTENANCE  5900. HRS/YR             | \$ .1595/1000 GAL<br>\$ .0266/KWH<br>\$ 4.0920/MLBS<br>\$ .4180/GAL<br>NG LABOR ***<br>\$14.34/HR<br>\$17.20/HR                                  | 0.<br>0.<br>0.<br>0.<br>0.<br>125700. (A<br>30100. (B                        |
| DIRECT<br>SUPERV<br>DIRECT<br>SUPERV<br>MATERIA<br>SUPPLIE<br>NATER<br>SOLID I                                 | LABOR<br>ISION<br>ALS                 | O. MGAL/YR O. KWH/YR O. MLBS/YR O. GAL/YR  8760. HRS/YR 1752. HRS/YR *** MAINTENANCE                                                                    | \$ .1595/1000 GAL<br>\$ .0266/KWH<br>\$ 4.0920/MLBS<br>\$ .4180/GAL<br>NG LABOR ***<br>\$14.34/HR<br>\$17.20/HR<br>\$ SUPPLIES ***<br>\$14.34/HR | 0.<br>0.<br>0.<br>0.<br>0.<br>125700. (A<br>30100. (B                        |
| DIRECT<br>SUPERV<br>MATERIA<br>SUPPLIE<br>MATERIA<br>SOLID I<br>DISPO                                          | LABOR<br>ISION<br>ALS                 | 0. KWH/YR 0. MLBS/YR 0. GAL/YR  *** OPERATION  8760. HRS/YR 1752. HRS/YR  *** MAINTENANCE  5900. HRS/YR                                                 | \$ .0266/KWH<br>\$ 4.0920/MLBS<br>\$ .4180/GAL<br>NG LABOR ***<br>\$14.34/HR<br>\$17.20/HR<br>\$ SUPPLIES ***<br>\$14.34/HR                      | 125700. (A<br>30100. (B                                                      |
| DIRECT<br>SUPERV<br>MATERIA<br>SUPLIA<br>WATER<br>SOLID O                                                      | LABOR<br>ISION<br>ALS                 | 0. KWH/YR 0. MLBS/YR 0. GAL/YR  *** OPERATION  8760. HRS/YR 1752. HRS/YR  *** MAINTENANCE  5900. HRS/YR                                                 | \$ .0266/KWH<br>\$ 4.0920/MLBS<br>\$ .4180/GAL<br>NG LABOR ***<br>\$14.34/HR<br>\$17.20/HR<br>\$ SUPPLIES ***<br>\$14.34/HR                      | 0.<br>0.<br>0.<br>0.<br>125700. (A<br>30100. (B                              |
| DIRECT<br>SUPERV<br>MATERIA<br>SUPPLIE<br>WATER<br>SOLID I                                                     | LABOR<br>ISION<br>ALS                 | 0. MLBS/YR 0. GAL/YR  *** OPERATION  8760. HRS/YR  1752. HRS/YR  *** MAINTENANCE  5900. HRS/YR                                                          | \$ 4.0920/MLBS<br>\$ _4180/GAL<br>NG LABOR ***<br>\$14.34/HR<br>\$17.20/HR<br>E SUPPLIES ***<br>\$14.34/HR                                       | 0.<br>0.<br>125700. (A<br>30100. (B                                          |
| DIRECT<br>SUPERVI<br>MATERIA<br>SUPPLIE<br>WATER<br>SOLID I                                                    | LABOR<br>ISION<br>ALS                 | 0. GAL/YR  *** OPERATION  8760. HRS/YR  1752. HRS/YR  *** MAINTENANCE  5900. HRS/YR                                                                     | \$ .4180/GAL  NG LABOR ***  \$14.34/HR \$17.20/HR  E & SUPPLIES ***  \$14.34/HR                                                                  | 0.<br>125700. (A<br>30100. (B                                                |
| DIRECT<br>SUPERVI<br>MATERIA<br>SUPPLIE<br>WATER<br>SOLID O                                                    | LABOR<br>ISION<br>ALS                 | 8760. HRS/YR<br>1752. HRS/YR<br>*** MAINTENANCE<br>5900. HRS/YR                                                                                         | \$14.34/HR<br>\$17.20/HR<br>8 SUPPLIES ***                                                                                                       | 30100. (8<br>84600. (C                                                       |
| DIRECT<br>SUPERVI<br>MATERIA<br>SUPPLIE<br>WATER<br>SOLID O                                                    | LABOR<br>ISION<br>ALS                 | 8760. HRS/YR<br>1752. HRS/YR<br>*** MAINTENANCE<br>5900. HRS/YR                                                                                         | \$14.34/HR<br>\$17.20/HR<br>8 SUPPLIES ***                                                                                                       | 30100. (8<br>84600. (C                                                       |
| DIRECT<br>SUPERVI<br>MATERIA<br>SUPPLIE<br>WATER<br>SOLID O                                                    | LABOR<br>ISION<br>ALS                 | 1752. HRS/YR  *** MAINTENANCE  5900. HRS/YR                                                                                                             | \$17.20/HR<br>8 SUPPLIES ***<br>\$14.34/HR                                                                                                       | 30100. (8<br>84600. (C                                                       |
| DIRECT<br>SUPERVI<br>MATERIA<br>SUPPLIA<br>WATER<br>SOLID O                                                    | LABOR<br>ISION<br>ALS                 | *** MAINTENANCE<br>5900. HRS/YR                                                                                                                         | S14.34/HR                                                                                                                                        | 84600. (C                                                                    |
| SUPERVI<br>MATERIA<br>SUPPLIA<br>WATER<br>SOLID A<br>DISPO                                                     | ISION<br>ALS                          | 5900. HRS/YR                                                                                                                                            | \$14.34/HR                                                                                                                                       |                                                                              |
| SUPERVI<br>MATERIA<br>SUPPLIA<br>WATER<br>SOLID O<br>DISPO                                                     | ISION<br>ALS                          | <del>-</del>                                                                                                                                            | · · · · · · · · · · · · · · · · · · ·                                                                                                            |                                                                              |
| SUPERVI<br>MATERIA<br>SUPPLIA<br>WATER<br>SOLID A<br>DISPO                                                     | ISION<br>ALS                          | <del>-</del>                                                                                                                                            | · · · · · · · · · · · · · · · · · · ·                                                                                                            |                                                                              |
| MATERIA<br>SUPPLIA<br>NATER<br>SOLID<br>DISPO                                                                  | ALS                                   | 110V HK3/TK                                                                                                                                             | 31/.EU/HR                                                                                                                                        | 20300. (0                                                                    |
| SUPPLIE<br>MATER<br>SOLID DISPO                                                                                |                                       |                                                                                                                                                         |                                                                                                                                                  | 21200. (E                                                                    |
| SOLID DISPO                                                                                                    |                                       |                                                                                                                                                         |                                                                                                                                                  | 18900. (F                                                                    |
| SOLID O                                                                                                        |                                       | T                                                                                                                                                       |                                                                                                                                                  | 0-                                                                           |
| DISPO                                                                                                          |                                       |                                                                                                                                                         |                                                                                                                                                  |                                                                              |
|                                                                                                                |                                       | 0. TON/YR                                                                                                                                               | \$ 8.25/TON                                                                                                                                      | 0.                                                                           |
| DI                                                                                                             | RECT OPE                              | RATING COST                                                                                                                                             |                                                                                                                                                  | 300800.                                                                      |
| PA                                                                                                             | YROLL DV                              | ERHEAD =20.0% OF A+B+                                                                                                                                   | -C+D                                                                                                                                             | 52100                                                                        |
|                                                                                                                |                                       | HEAD =50.0% OF A+B+C+                                                                                                                                   |                                                                                                                                                  | 150400.                                                                      |
|                                                                                                                |                                       | ATING COST                                                                                                                                              |                                                                                                                                                  | 503300.                                                                      |
| OPI                                                                                                            | ERATING                               | COST IN DOLLARS PER T                                                                                                                                   | ON PRODUCTION                                                                                                                                    | .71                                                                          |
|                                                                                                                |                                       | COST IN DOLLARS PER T                                                                                                                                   |                                                                                                                                                  | 5235.24                                                                      |
|                                                                                                                | -                                     | COST AS PERCENT OF CA                                                                                                                                   | PITAL COST                                                                                                                                       | • 0                                                                          |
|                                                                                                                |                                       | ON TIME IN WEEKS                                                                                                                                        |                                                                                                                                                  | 8,                                                                           |
|                                                                                                                |                                       | LIFE OF SYSTEM IN YEA                                                                                                                                   | ARS                                                                                                                                              | 99.                                                                          |
|                                                                                                                | H PER TO                              |                                                                                                                                                         |                                                                                                                                                  | •0                                                                           |
|                                                                                                                |                                       | COVERY (10,00% OF TOT<br>TION OVERHEAD ( 2.0%                                                                                                           |                                                                                                                                                  | 0.                                                                           |
|                                                                                                                |                                       | AXES & INS. ( 2.0% OF                                                                                                                                   |                                                                                                                                                  | 0.<br>0.                                                                     |
|                                                                                                                |                                       | ALIZED COST - RETROFI                                                                                                                                   |                                                                                                                                                  | 503300                                                                       |
|                                                                                                                | LAL HIJIE                             | - NEW                                                                                                                                                   |                                                                                                                                                  | 503300.                                                                      |
| · · · · · · · · · · · · · · · · · · ·                                                                          |                                       |                                                                                                                                                         |                                                                                                                                                  |                                                                              |
| •                                                                                                              |                                       |                                                                                                                                                         |                                                                                                                                                  |                                                                              |

| DDCF                                             | S:                               | 505                  | TOPSIDE           |                                                     | UNITS O     | 4               |      |
|--------------------------------------------------|----------------------------------|----------------------|-------------------|-----------------------------------------------------|-------------|-----------------|------|
| FFOC                                             | •                                | JV J 4               | IOFSIDE           |                                                     | LUNE        | 7               |      |
| CAPA                                             | CIL                              | <b>!</b>             | 708               | MILLION TONS                                        | /YEAR       |                 |      |
|                                                  |                                  | . = =                |                   |                                                     |             |                 |      |
| PART                                             |                                  |                      | 30000             | L DC /T/M COAL                                      |             |                 |      |
| <del></del>                                      |                                  |                      |                   | LBS/TON COAL                                        |             |                 |      |
| ٠٣.                                              | *L!                              | UNADLE               |                   | LBS/HR                                              | EFFICIENCY  | 3 1 1 7 1 4 V X | 374. |
| *                                                |                                  |                      | •07               | LDOTTIN                                             |             |                 |      |
| BSO                                              |                                  |                      |                   |                                                     |             |                 |      |
|                                                  | LOA                              | D IN:                | .250000           | LBS/TON COAL                                        |             |                 |      |
|                                                  | ALL                              | OWABLE               | : .007500         | LBS/TON COAL                                        | EFFICIENCY  | 97.0%           |      |
|                                                  |                                  |                      | .87               | LBS/HR                                              |             |                 |      |
| 212                                              |                                  |                      |                   |                                                     |             |                 |      |
| BAP                                              | 104                              | D TN:                | 001000            | LBS/TON COAL                                        | <del></del> |                 |      |
|                                                  |                                  | OWABLE:              |                   | LBS/TON COAL                                        |             | 97.07           |      |
|                                                  | -7 % 6                           |                      |                   | LBS/HR                                              |             |                 |      |
|                                                  |                                  |                      |                   |                                                     |             |                 |      |
| BENZE                                            |                                  |                      |                   |                                                     |             |                 |      |
|                                                  | _                                | -                    |                   | LBS/TON COAL                                        |             |                 |      |
|                                                  | ALL                              | OWABLE:              | _                 | LBS/TON COAL                                        | EFFICIENCY  | 77.0%           |      |
|                                                  |                                  |                      | •05               | LBS/HR                                              |             |                 |      |
| DUST                                             | COL                              | LECTED               | PER DAY:          | .3 TONS                                             | (nPY)       | *······         |      |
| <b>D O O</b> .                                   |                                  |                      | I Pro Chia        |                                                     |             |                 |      |
|                                                  |                                  |                      |                   |                                                     | •           | _               |      |
| TEMP                                             | נעם                              | OF PR                | OCESS:            | 120. F                                              |             |                 |      |
|                                                  |                                  |                      | OCESS:            | 120. F<br>120. F                                    |             | -               |      |
| EXHAL                                            | UST                              | TEMPER               | ATURE:            | 120. F                                              |             | ·               |      |
| EXHAL<br>SCFM                                    | UST<br>Fl                        | TEMPER               | ATURE:            | 120. F                                              |             |                 |      |
| EXHAL                                            | UST<br>Fl                        | TEMPER               | ATURE:            | 120. F                                              |             |                 |      |
| SCFM<br>ACFM                                     | FLC<br>FLC                       | TEMPER<br>)W:<br>)W: | ATURE:            | 120. F                                              |             |                 |      |
| SCFM<br>ACFM<br>L/G I                            | FLC<br>FLC<br>RATI               | TEMPER<br>)W:<br>)W: | O. AT<br>O. AT    | 120. F<br>70. F<br>120. F                           |             |                 |      |
| SCFM<br>ACFM<br>L/G I<br>PROCE<br>COOL:          | FLC<br>FLC<br>RATI<br>ESS<br>ING | TEMPER               | O. AT O. AT FLOW: | 120. F<br>70. F<br>120. F                           |             |                 |      |
| SCFM<br>ACFM<br>L/G I<br>PROCE<br>COOL:          | FLC<br>FLC<br>RATI<br>ESS<br>ING | TEMPER               | O. AT O. AT FLOW: | 120. F<br>70. F<br>120. F                           | %SOLIDS:    | • 0             |      |
| SCFM<br>ACFM<br>L/G I<br>PROCE<br>COOL:          | FLC<br>FLC<br>RATI<br>ESS<br>ING | TEMPER               | O. AT O. AT FLOW: | 120. F<br>70. F<br>120. F<br>.0<br>0. GPM<br>0. GPM |             | .0              |      |
| SCFM<br>ACFM<br>L/G I<br>PROCE<br>COOL:          | FLC<br>FLC<br>RATI<br>ESS<br>ING | TEMPER               | O. AT O. AT FLOW: | 120. F<br>70. F<br>120. F<br>.0<br>0. GPM<br>0. GPM |             | .0              |      |
| SCFM<br>ACFM<br>L/G I<br>PROCE<br>COOL:          | FLC<br>FLC<br>RATI<br>ESS<br>ING | TEMPER               | O. AT O. AT FLOW: | 120. F<br>70. F<br>120. F<br>.0<br>0. GPM<br>0. GPM |             | • 0             |      |
| SCFM<br>ACFM<br>L/G I<br>PROCE<br>COOL:          | FLC<br>FLC<br>RATI<br>ESS<br>ING | TEMPER               | O. AT O. AT FLOW: | 120. F<br>70. F<br>120. F<br>.0<br>0. GPM<br>0. GPM |             | • 0             |      |
| SCFM<br>ACFM<br>L/G I<br>PROCE<br>COOL:          | FLC<br>FLC<br>RATI<br>ESS<br>ING | TEMPER               | O. AT O. AT FLOW: | 120. F<br>70. F<br>120. F<br>.0<br>0. GPM<br>0. GPM |             | .0              |      |
| SCFM<br>ACFM<br>L/G I<br>PROCE<br>COOL:          | FLC<br>FLC<br>RATI<br>ESS<br>ING | TEMPER               | O. AT O. AT FLOW: | 120. F<br>70. F<br>120. F<br>.0<br>0. GPM<br>0. GPM |             | .0              |      |
| SCFM<br>ACFM<br>L/G I<br>PROCE<br>COOL:          | FLC<br>FLC<br>RATI<br>ESS<br>ING | TEMPER               | O. AT O. AT FLOW: | 120. F<br>70. F<br>120. F<br>.0<br>0. GPM<br>0. GPM |             | • 0             |      |
| SCFM<br>ACFM<br>L/G I<br>PROCE<br>COUL:<br>SUSPE | FLC<br>FLC<br>RATI<br>ESS<br>ING | TEMPER               | O. AT O. AT FLOW: | 120. F<br>70. F<br>120. F<br>.0<br>0. GPM<br>0. GPM |             | .0              |      |
| SCFM<br>ACFM<br>L/G I<br>PROCE<br>COUL:<br>SUSPE | FLC<br>FLC<br>RATI<br>ESS<br>ING | TEMPER               | O. AT O. AT FLOW: | 120. F<br>70. F<br>120. F<br>.0<br>0. GPM<br>0. GPM |             | .0              |      |
| SCFM<br>ACFM<br>L/G I<br>PROCE<br>COUL:<br>SUSPE | FLC<br>FLC<br>RATI<br>ESS<br>ING | TEMPER               | O. AT O. AT FLOW: | 120. F<br>70. F<br>120. F<br>.0<br>0. GPM<br>0. GPM |             | •0              | •    |
| SCFM<br>ACFM<br>L/G I<br>PROCE<br>COUL:<br>SUSPE | FLC<br>FLC<br>RATI<br>ESS<br>ING | TEMPER               | O. AT O. AT FLOW: | 120. F<br>70. F<br>120. F<br>.0<br>0. GPM<br>0. GPM |             | .0              |      |
| SCFM<br>ACFM<br>L/G I<br>PROCE<br>COUL:<br>SUSPE | FLC<br>FLC<br>RATI<br>ESS<br>ING | TEMPER               | O. AT O. AT FLOW: | 120. F<br>70. F<br>120. F<br>.0<br>0. GPM<br>0. GPM |             | • 0             |      |
| SCFM<br>ACFM<br>L/G I<br>PROCE<br>COUL:<br>SUSPE | FLC<br>FLC<br>RATI<br>ESS<br>ING | TEMPER               | O. AT O. AT FLOW: | 120. F<br>70. F<br>120. F<br>.0<br>0. GPM<br>0. GPM |             | .0              |      |
| SCFM<br>ACFM<br>L/G I<br>PROCE<br>COUL:<br>SUSPE | FLC<br>FLC<br>RATI<br>ESS<br>ING | TEMPER               | O. AT O. AT FLOW: | 120. F<br>70. F<br>120. F<br>.0<br>0. GPM<br>0. GPM |             | • 0             |      |
| SCFM<br>ACFM<br>L/G I<br>PROCE<br>COUL:<br>SUSPE | FLC<br>FLC<br>RATI<br>ESS<br>ING | TEMPER               | O. AT O. AT FLOW: | 120. F<br>70. F<br>120. F<br>.0<br>0. GPM<br>0. GPM |             | • 0             |      |

# GENERAL INFORMATION:

|                                                                      | UNITS                                 | OPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |
|----------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| PPSES: 505. TOPSIDE                                                  | COKE                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|                                                                      | •                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| CONTROL CYCTCH CONTROL TOWN                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| CONTROL SYSTEM CONFIGURATION:                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·<br>· |
| TOPSIDE MAINTENANCE - LEVEL 1                                        |                                       | and the second of the second o | 7.     |
| NEW LIDS AND CASTINGS                                                |                                       | All water to the control of the cont |        |
|                                                                      |                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| FEET OF ADDITIONAL DUCT: 0.                                          | DIAMETER:                             | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| TOTAL PRESSURE DROP: 0. I                                            |                                       | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| O FANS 8 0. HP EACH SPARE FAN                                        | CAPACITY:                             | U . X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
| OPERATING HOURS AT FULL HP: 8760.  OPERATING HOURS AT REDUCED HP: 0. |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                                                      | DIAMETER                              | : 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |
| NO. OF OVENS 60.                                                     | ATMMETER                              | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| OVEN HEIGHT 6.0                                                      | METERS                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                                                      | CUBIC FEET                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| TONS COKE/PUSH 24.                                                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| AVG. COKING TIME, HRS. 17.5                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| NO. CYCLES/DAY 82.                                                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| — ·                                                                  | LBS/CUBIC F                           | 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| YIELD ,70                                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| TONS COAL/YEAR 1011967.                                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| <b>,</b> ·                                                           |                                       | . •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
|                                                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                                                      | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| <u> </u>                                                             | ,                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| ,                                                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                                                      |                                       | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|                                                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •      |
|                                                                      |                                       | <u>``</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·      |
|                                                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •      |
|                                                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |

| PITAL       |        |                     |                      |             |         |             | 1        |          |          | DPTION                                | ···             | <b></b>                                 |      |
|-------------|--------|---------------------|----------------------|-------------|---------|-------------|----------|----------|----------|---------------------------------------|-----------------|-----------------------------------------|------|
| PPSE        | ES:    | 505.                | TOPSI                | DE          |         |             |          | COP      | (E       |                                       |                 |                                         |      |
| CAP         | CII    | Y:                  |                      | .708 M      | ILLI    | ON TONS     | /YEAR    |          |          |                                       |                 |                                         |      |
| TOT         | AL C   | OST                 | (cost                | BASIS       | IS      | 110.00%     | OF J     | JNE      | 1977     | DOLLARS                               | FOR             | 4978                                    | COST |
| <del></del> | CA     | TEGORY              | ·· <del>····</del> · |             |         |             | COST     | IN       | DOLL     | AR8                                   |                 |                                         |      |
|             |        |                     | ***                  | IRFCT       | COS     | T ###       |          |          |          |                                       |                 |                                         |      |
|             | EQ     | UIPMEN'             | T OR MA              | TERIAL      |         |             | 5520     | 00.      |          |                                       |                 |                                         |      |
|             | _      |                     | NTATION              | 1           |         |             |          | 0.       |          |                                       |                 |                                         |      |
|             |        | PING                |                      |             |         |             |          | <u> </u> |          |                                       |                 |                                         |      |
|             |        | ECTRIC/<br>Undation |                      |             |         |             |          | 0.       |          |                                       |                 |                                         |      |
|             | _      |                     | AL                   |             |         |             |          | 0.       |          |                                       |                 |                                         |      |
|             |        | TE WORL             | _                    |             |         |             |          | 0.       | ·· —··   |                                       |                 |                                         |      |
|             |        | SULATIO             |                      |             |         |             |          | 0.       |          |                                       |                 |                                         |      |
|             | PR     | OTECTI              | VE COAT              | ING         |         |             |          | 0.       |          |                                       |                 |                                         |      |
|             |        | ILDING              |                      |             |         |             |          | 0.       |          |                                       |                 |                                         |      |
|             | ΕQ     |                     | TIMATER              |             |         |             |          | ٥.       | -        |                                       |                 |                                         |      |
| -           |        | DIK                 | ECT COS              | SUBI        | U LAL   |             | :        |          |          | 5200.                                 |                 |                                         |      |
|             |        |                     | *** TN               | DIRECT      | CO      | ST ***      |          |          |          |                                       |                 |                                         |      |
|             | FI     | ELD OVE             | -                    |             |         |             |          | 0.       |          |                                       |                 |                                         |      |
|             |        |                     | ORS FEE              |             |         |             | 430      | 00.      |          |                                       |                 |                                         |      |
|             |        | GINEER              |                      |             |         |             | 500      |          |          |                                       |                 |                                         |      |
|             |        | EIGHT               |                      |             |         |             | 380      |          |          | ·_·                                   | · · · · · ·     |                                         |      |
|             |        | FSITE I<br>XES      | WORK                 |             |         |             | 0.0      | 0.       |          |                                       |                 |                                         |      |
|             |        | AKEDOW!             | N                    |             |         |             | 71       | 0.       |          |                                       |                 |                                         |      |
|             |        | ARES                |                      |             |         |             | 180      |          |          |                                       |                 | · · · · · · · · · · · · · · · · · · ·   |      |
|             | CO     | NTINGE              | NCY                  |             |         |             | 1220     |          |          |                                       |                 |                                         |      |
|             |        | IND                 | IRECT C              | OST SU      | TOT     | AL          |          |          | 2        | 5000.                                 |                 |                                         |      |
|             |        | INT                 | EREST D              | URING       | INST    | ALLATIO     | N        |          |          | 900.                                  |                 |                                         |      |
|             |        | TOTA                | AL COST              |             |         |             |          |          | 8        | 1100.                                 |                 |                                         |      |
|             |        | TOT                 | AL COST              | WITH !      | REIR    | OFIT        |          |          | 10       | 5400.                                 | <u>.</u>        |                                         |      |
|             |        |                     |                      |             |         |             |          |          |          |                                       |                 |                                         |      |
|             | ······ |                     |                      |             |         |             |          |          |          | · · · · · · · · · · · · · · · · · · · | ::- <del></del> |                                         |      |
| <del></del> |        | <del></del>         |                      |             |         | <del></del> | <u> </u> |          |          | <u> </u>                              | •               | ·                                       |      |
|             |        | <del></del>         |                      | <del></del> |         |             |          |          |          |                                       |                 | *************************************** |      |
|             |        |                     |                      |             |         |             |          |          |          |                                       |                 |                                         |      |
|             |        |                     |                      |             | <b></b> |             |          |          | <u>.</u> |                                       | <del></del>     |                                         |      |
|             |        |                     |                      |             |         |             |          |          |          |                                       |                 | · · · · · · · · · · · · · · · · · · ·   |      |
|             |        |                     |                      |             |         | A-83        |          |          | •        |                                       |                 |                                         |      |

•

| PPSES: 505. TO  | PSIDE                              | UNITS OPTION<br>COKE 4 |             |
|-----------------|------------------------------------|------------------------|-------------|
| FF000 3436 10   | 77 0102                            | CONC                   |             |
| CAPACITY:       | .708 MILLION TO                    | NS/YEAR                |             |
| CATEGORY        | DUANTITY                           | RATE                   | ANNUAL COST |
|                 | *** UTILI1                         | IES ***                | <del></del> |
| WATER           | O. MGAL/YR                         | \$ .1595/1000 GAL      | 0.          |
| ELECTRICITY     | O. KWH/YR                          | \$ .0266/KWH           | 0.          |
| STEAM           | O. MLBS/YR                         | \$ 4.0920/MLBS         | 0.          |
| FUEL            | U. GAL/YR                          | \$ .4180/GAL           | 0.          |
|                 | *** OPERATING                      | * ! ABOD AAA           |             |
|                 | WAR UPERALING                      | LADUR WAR              |             |
| DIRECT          | 8760. HRS/YR                       | \$14.34/HR             | 125700. (   |
| SUPERVISION     | 1752. HRS/YR                       | \$17,20/HR             | 30100. (    |
|                 | *** MAINTENANCE                    | # 81500 TEC 444        | ٠           |
|                 | NAM MAINICHANCE                    | B SUPPLIES XXX         |             |
| DIRECT LABOR    | 600. HRS/YR                        | \$14.34/HR             | 8600. (     |
| SUPERVISION     | 120. HRS/YR                        | \$17,20/HR             | 2100. (     |
| MATERIALS       |                                    |                        | 2200. (     |
| SUPPLIES        |                                    |                        | 1900. (     |
| WATER TREATMENT |                                    |                        | 0.          |
| SOLID WASTE     | 4 <b></b>                          |                        |             |
| DISPOSAL        | 0. TON/YR                          | \$ 8.25/TON            | 0.          |
| DIRECT OPERAT   | ING COST                           |                        | 170600.     |
| PAYROLL OVERH   | EAD #20.0% OF A+B+C                | ;+D                    | 33300.      |
|                 | D =50.0% OF A+B+C+D                | )+E+F                  | 85300.      |
| TOTAL OPERATI   |                                    |                        | 289200.     |
|                 | T IN DOLLARS PER TO                |                        | .41         |
|                 |                                    | N OF DUST COLLECTED    | 2946.19     |
|                 | T AS PERCENT OF CAP                | PITAL COST             | 274.4       |
|                 | TIME IN WEEKS 'E OF SYSTEM IN YEAR | 0.0                    | 12.<br>35.  |
| KWH PER TON     | CAPACITY                           | (3                     | •0          |
|                 | ERY (10.37% OF TOTA                | LI CAPITAL)            | 10900.      |
|                 | N OVERHEAD ( 2.0% C                |                        | 2100.       |
|                 | S & INS. ( 2.0% OF                 | • -                    | 2100.       |
|                 | ZED COST - RETROFIT                |                        | 304300      |
|                 | - NEW                              | ,                      | 300800.     |
|                 |                                    |                        |             |
|                 |                                    |                        |             |
|                 |                                    | •                      |             |

|                                         |           |               | UNITS OF    | TION  |              |
|-----------------------------------------|-----------|---------------|-------------|-------|--------------|
| PPSES: 506.                             | COMBUSTIO | N STACK - OLD | COKE        | 5     |              |
| CAPACITY:                               | 708       | MILLION TONS  | /VEAD       |       |              |
| LACALITI                                | 100       | MILLIUN IUNS  | / IEAK      |       |              |
| PARTICULATE                             |           |               |             |       |              |
|                                         | 1.300000  | LBS/TON COAL  |             |       |              |
| ALLOWABLE                               |           |               | EFFICIENCY: | 80.0x |              |
|                                         |           | LBS/HR        |             |       | रें          |
|                                         |           |               |             |       | <del> </del> |
| BSO                                     | 00/000    | 1.00 (70)     |             |       |              |
| LOAD IN:                                |           | LBS/TON COAL  |             | •••   |              |
| ALLUMADLE                               |           | LBS/TON COAL  | EFFICIENCY: | 80,0% |              |
|                                         | . 14      | LBS/HR        |             |       |              |
| BAP                                     |           |               |             |       |              |
| LOAD IN:                                | .000060   | LBS/TON COAL  |             |       |              |
| ALLOWABLE                               | \$100001  | LBS/TON COAL  | EFFICIENCY: | 80.0% |              |
|                                         | .00       | LBS/HR        |             |       |              |
| DUST COLLECTED                          | DED DAY:  | 1.4 TONS      | (npv)       |       |              |
| DOG! COLLECTED                          | PER DATE  | 1.4 19113     |             |       |              |
| TEMP OUT OF PR                          | OCESS:    | 450. F        |             |       |              |
| EXHAUST TEMPER                          | RATURE:   | 450. F        |             |       |              |
| SCFM FLOW: 6                            | 7000. AT  | 70. F         |             |       |              |
| ACFM FLOW: 11                           | -         | · · · ·       |             |       |              |
| L/G RATIO:                              |           | • 0           |             |       |              |
| PROCESS WATER                           | FI OW:    | 0. GPM        |             |       |              |
| COOLING WATER                           |           | 0. GPM        |             |       |              |
| SUSPENDED SOLI                          |           | 0. MG/L       | XSOLIDS:    | •0    |              |
|                                         |           |               |             | •     |              |
|                                         |           |               |             |       |              |
|                                         |           |               |             |       |              |
|                                         |           |               |             |       |              |
| *************************************** |           |               |             |       | <del></del>  |
|                                         |           |               |             |       |              |
|                                         |           |               |             |       | ·            |
|                                         |           |               |             |       |              |
|                                         |           |               |             |       |              |
|                                         |           |               |             |       |              |
| 4                                       |           |               |             |       |              |
| The work of the second                  |           |               |             |       | ·            |
|                                         |           |               |             |       |              |
|                                         |           |               |             |       |              |
|                                         |           |               |             | :     |              |
|                                         |           |               |             |       |              |
|                                         |           |               |             |       |              |
|                                         |           |               |             | ·     |              |
|                                         |           |               |             |       |              |

|                              |             | UNITS                                             |                |         |
|------------------------------|-------------|---------------------------------------------------|----------------|---------|
| PPSES: 506. COMBUSTION S'    | TACK - OLD  | COKE                                              | 5              |         |
|                              |             |                                                   |                |         |
|                              |             |                                                   |                |         |
| CONTROL SYSTEM CONFIGURATION | <b>1:</b>   |                                                   |                |         |
| HEATING CONTROL AND PA       | CHING       | <del>, , , , , , , , , , , , , , , , , , , </del> |                |         |
|                              | •           |                                                   | S. J. W. J. W. |         |
| FEET OF ADDITIONAL DUCT:     | 0. D        | TAMETED.                                          | 6.             | ···     |
| TOTAL PRESSURE DROP:         |             |                                                   | 0.             |         |
| O FANS @ O. HP EACH          |             |                                                   | 0.2            |         |
| OPERATING HOURS AT FULL HP:  |             |                                                   |                |         |
| OPERATING HOURS AT REDUCED ! |             |                                                   |                |         |
| STACK HEIGHT:                | 0. D        | IAMETER:                                          | 0.             |         |
| NO. OF OVENS                 | 60.         |                                                   |                |         |
| OVEN HEIGHT                  | 6.0 MET     |                                                   |                |         |
| OVEN VOLUME                  | 1348. CUB   | IC FEET                                           |                |         |
| TONS COKE/PUSH               | 24.         |                                                   |                |         |
| AVG. COKING TIME, HRS.       | 17.5<br>82. |                                                   |                |         |
| BULK DENSITY                 | 50. LBS     | /CURTO E                                          | T              | <u></u> |
| YIELD                        | .70         | COBIC P                                           | •              |         |
|                              | 1011967.    |                                                   |                |         |
|                              |             |                                                   |                |         |
|                              |             |                                                   |                |         |
|                              |             |                                                   |                |         |
|                              |             |                                                   |                |         |
|                              |             |                                                   |                |         |
|                              |             |                                                   |                |         |
|                              |             |                                                   |                |         |
|                              |             |                                                   |                |         |
|                              |             |                                                   |                |         |
|                              |             |                                                   |                |         |
|                              |             |                                                   |                |         |
|                              |             |                                                   |                |         |
|                              |             |                                                   |                |         |
|                              |             |                                                   |                |         |
|                              |             |                                                   |                |         |
|                              |             |                                                   |                |         |
|                              |             |                                                   |                |         |
|                              |             |                                                   |                |         |
|                              |             |                                                   |                |         |
|                              |             |                                                   |                |         |
|                              |             | .4                                                |                |         |
|                              |             |                                                   |                |         |
|                              |             |                                                   |                |         |
|                              |             |                                                   |                |         |
|                              |             |                                                   |                |         |
|                              |             |                                                   |                |         |
|                              |             |                                                   |                |         |
|                              |             |                                                   |                |         |

| PPSES: 506. CO  | MBUSTION STACK - OL                     | D COKE 2             | ····                    |
|-----------------|-----------------------------------------|----------------------|-------------------------|
|                 |                                         |                      |                         |
| CAPACITY:       | .708 MILLION TON                        | IS/YEAR              |                         |
| CATEGORY        | QUANTITY                                | RATE                 | ANNUAL COST (           |
|                 | *** UTILIT                              | IES ***              |                         |
| WATER           | O_ MGAL/YR                              | \$ .1595/1000 GAL    | 0.                      |
| ELECTRICITY     | 0. KWH/YR                               | \$ .0266/KWH         | 0.                      |
| STEAM           | 0. MLBS/YR                              | \$ 4.0920/MLBS       | 0.                      |
| FUEL            | 0. GAL/YR                               | \$ .4180/GAL         |                         |
|                 | *** OPERATING                           | S LABOR ***          |                         |
| AIDEAI          | . <b>63</b> 40 H064M0                   | e44 7440             | 425700 (4               |
| DIRECT          | 8760. HRS/YR                            | \$14.34/HR           | 125700. (A<br>30100. (B |
| SUPERVISION     | 1752, HRS/YR                            | \$17,20/HR           | 30100. (8               |
|                 | *** MAINTENANCE                         | & SUPPLIES ***       |                         |
| DIRECT LABOR    | 5900. HRS/YR                            | \$14.34/HR           | 84600. (C               |
| SUPERVISION     | 1180, HRS/YR                            | \$17,20/HR           | 20300. (D               |
| MATERIALS       |                                         |                      | 21200. (E               |
| SUPPLIES        |                                         |                      | 18900. (F               |
| WATER TREATMENT |                                         |                      | <u> </u>                |
| SOLID WASTE     |                                         |                      |                         |
| DISPOSAL        | O. TON/YR                               | \$ 8.25/TON          | 0.                      |
| DIRECT OPERAT   | ING COST                                |                      | 300800.                 |
| PAYROLL OVERH   | EAD =20.0% OF A+B+0                     | C+D                  | 52100.                  |
| PLANT OVERHEA   | D =50.0% OF A+B+C+D                     | )+E+F                | 150400.                 |
| TOTAL OPERATI   | NG COST                                 |                      | 503300.                 |
|                 | T IN DOLLARS PER TO                     |                      | .71                     |
| _               |                                         | IN OF DUST COLLECTED | 956.44                  |
|                 | T AS PERCENT OF CAP                     | TAL COST             | • 0                     |
|                 | TIME IN WEEKS                           |                      | <u>8.</u>               |
|                 | E OF SYSTEM IN YEAR                     | 85                   | 99.                     |
| KWH PER TON     | CAPACITY                                | L CARTTAL N          | .0                      |
|                 | ERY (10,00% OF TOTAL                    |                      | 0.                      |
|                 | N OVERHEAD ( 2.0% OF S & INS. ( 2.0% OF |                      | 0.                      |
|                 | ZED COST - RETROFIT                     | -                    | 503300.                 |
| IVIAL ARMUALI   | - NEW                                   |                      | 503300.                 |
|                 |                                         |                      | - · · · ·               |

| PPSES: 506. COMBUSTION STA                                            | UNITS OPTION  CK - OLD COKE 3         |
|-----------------------------------------------------------------------|---------------------------------------|
| CAPACITY: 708 MILE                                                    | JUN TUNS/YEAR                         |
| PARTICULATE LUAD IN: 1.300000 LBS/ ALLUMABLE: .130000 LBS/ 15.02 LBS/ | TUN CUAL EFFICIENCY: 90.0%            |
| <b>BS</b> 0                                                           |                                       |
| LUAD 11: .006000 LBS/<br>ALLUWABLE: .003000 LBS/<br>.35 LbS/          | TUN LUAL EFFICIENCY: 50.0%            |
| BAP LOAD IN:                                                          | TUN CUAR                              |
|                                                                       | TON CUAL EFFICIENCY: 50.0%            |
| DUST CULLECTED PER DAY:                                               | 1.6 TUNS (DRY)                        |
| 1EMP UUT OF PROCESS: 45 EXHAUST TEMPERATURE: 45                       |                                       |
| SCFM FLUN: 107000. AT 7<br>ACFM FLUN: 184000. AT 45                   |                                       |
| L/G RATIO:<br>PRUCESS WATER FLOW:                                     | 0. GPM                                |
| CUOLING WATER FLUN:                                                   | 0. GPM<br>0. MG/L %SULIDS: .0         |
|                                                                       |                                       |
|                                                                       |                                       |
| <u></u>                                                               |                                       |
|                                                                       |                                       |
|                                                                       | · · · · · · · · · · · · · · · · · · · |
|                                                                       |                                       |
|                                                                       |                                       |
|                                                                       |                                       |
|                                                                       | A-88                                  |
|                                                                       | n-00                                  |

|                                         |            | DUB.     | COMBUSTION S                                    | TACK - ULL         |                                                | 0PT10N<br>3_: |             |
|-----------------------------------------|------------|----------|-------------------------------------------------|--------------------|------------------------------------------------|---------------|-------------|
| CU                                      | INTRUL     | SYSIEM   | CUNF IGUKATIU                                   |                    | i ti, yan tin sasanikaan sab ii aan kiista maa |               |             |
|                                         | £ c        | r)       |                                                 |                    |                                                |               |             |
|                                         | ES<br>FA   | N AND DI |                                                 |                    |                                                |               | <del></del> |
|                                         |            | CTWURK   |                                                 |                    |                                                |               | 300         |
|                                         | <b>u</b> U | ST HAND  | LING HOPPER &                                   | CONVEYORS          | <u> </u>                                       |               |             |
|                                         |            | MPERS    |                                                 |                    |                                                |               |             |
|                                         | F A        | N AND D  | KIVE ELECTRIC                                   | AL                 |                                                |               |             |
| FE                                      | ET UF      | LITIOUAL | TOTAL PLAT                                      | 250.               | DIAMETER                                       |               |             |
| 10                                      | TAL P      | KESSUKE  | ひれしてい                                           | 6.                 | INCHES                                         |               |             |
|                                         |            |          | HP EACH                                         |                    |                                                |               |             |
| UP.                                     | FRAIT      | MP HOOK  | S AT FULL HP:<br>S AT REDUCED                   | 8/6U.              |                                                |               |             |
|                                         |            | L16H1:   | S AT REDUCED                                    |                    | DIAMETER                                       | : 0.          |             |
|                                         |            |          | Angel ye has regulated a set of the commence of |                    |                                                |               |             |
| ŲV                                      | EN HE      | IHHI     |                                                 | 6.0                | ) MÉTERS                                       |               |             |
|                                         | EN VU      |          |                                                 |                    | CUBIC FEET                                     |               |             |
| 10                                      |            | KE/PUSH  | ME, HKS.                                        | <u>24.</u><br>17.5 |                                                |               |             |
|                                         |            | LES/DAY  |                                                 | .58                |                                                |               |             |
|                                         |            |          |                                                 |                    |                                                | E1.           |             |
| Y 1                                     | LLυ        |          |                                                 | . 7                |                                                |               |             |
| 10                                      | INS CU     | AL/YEAK  |                                                 | 1011967.           |                                                |               |             |
| . 4. 44. 44. 44. 44. 44. 44. 44. 44. 44 |            |          |                                                 |                    |                                                |               |             |
|                                         |            |          |                                                 |                    |                                                |               |             |
|                                         |            |          | <u></u>                                         |                    |                                                |               | •           |
|                                         |            |          |                                                 |                    |                                                |               |             |
|                                         |            |          |                                                 | **                 |                                                |               |             |
|                                         |            |          |                                                 |                    |                                                |               |             |
|                                         |            | -        |                                                 |                    |                                                |               |             |
|                                         |            |          |                                                 | •                  |                                                |               |             |
|                                         |            |          |                                                 |                    |                                                |               |             |
|                                         |            |          |                                                 |                    |                                                |               |             |
|                                         |            |          |                                                 |                    |                                                |               |             |
|                                         |            |          |                                                 |                    |                                                |               | -           |
|                                         |            |          |                                                 |                    |                                                |               |             |
|                                         |            |          |                                                 |                    |                                                |               |             |
|                                         |            |          |                                                 |                    | <u></u>                                        |               |             |
|                                         |            |          |                                                 |                    |                                                |               |             |
|                                         |            |          |                                                 |                    |                                                |               |             |
|                                         |            |          |                                                 |                    |                                                |               |             |
|                                         |            |          |                                                 |                    |                                                |               |             |

| 922400.<br>0.<br>57200.<br>9000.<br>56700.<br>6100.<br>45800.<br>7000.<br>6700. | 1977 DULLARS I                                                        |                                                                      |                                                                                              |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| 922400.<br>0.<br>57200.<br>9000.<br>56700.<br>6100.<br>45800.<br>7000.<br>6700. | DULLARS                                                               |                                                                      |                                                                                              |
| 922400.<br>0.<br>57200.<br>9000.<br>56700.<br>6100.<br>45800.<br>7000.<br>6700. |                                                                       |                                                                      |                                                                                              |
| 922400.<br>0.<br>57200.<br>9000.<br>56700.<br>6100.<br>45800.<br>7000.<br>6700. |                                                                       |                                                                      |                                                                                              |
| 0.<br>0.<br>57200.<br>9000.<br>56700.<br>6100.<br>45800.<br>7000.<br>6700.      |                                                                       |                                                                      | - ·                                                                                          |
| 0.<br>57200.<br>9000.<br>56700.<br>6100.<br>45800.<br>7000.<br>6700.            |                                                                       |                                                                      |                                                                                              |
| 57200.<br>9000.<br>56700.<br>6100.<br>45800.<br>7000.<br>6700.<br>432600.       |                                                                       |                                                                      |                                                                                              |
| 9000.<br>56700.<br>6100.<br>45800.<br>7000.<br>6700.                            |                                                                       |                                                                      |                                                                                              |
| 56700.<br>6100.<br>45800.<br>7000.<br>6700.                                     |                                                                       |                                                                      |                                                                                              |
| 6100.<br>45800.<br>7000.<br>6700.<br>432600.                                    |                                                                       |                                                                      |                                                                                              |
| 45800.<br>7000.<br>6700.<br>432600.                                             |                                                                       |                                                                      |                                                                                              |
| 7000.<br>6700.<br>432600.                                                       |                                                                       |                                                                      |                                                                                              |
| 6700.<br>432600.                                                                |                                                                       |                                                                      |                                                                                              |
| 43260U.                                                                         |                                                                       |                                                                      |                                                                                              |
|                                                                                 |                                                                       |                                                                      |                                                                                              |
|                                                                                 | 1543500.                                                              |                                                                      |                                                                                              |
|                                                                                 |                                                                       |                                                                      |                                                                                              |
| 242800.                                                                         |                                                                       |                                                                      |                                                                                              |
| 158900.                                                                         |                                                                       |                                                                      |                                                                                              |
|                                                                                 |                                                                       |                                                                      |                                                                                              |
|                                                                                 |                                                                       |                                                                      |                                                                                              |
|                                                                                 |                                                                       |                                                                      |                                                                                              |
|                                                                                 |                                                                       |                                                                      |                                                                                              |
|                                                                                 |                                                                       |                                                                      |                                                                                              |
|                                                                                 |                                                                       |                                                                      |                                                                                              |
| 505600.                                                                         | 1349900.                                                              |                                                                      |                                                                                              |
|                                                                                 | 242600.                                                               |                                                                      |                                                                                              |
|                                                                                 | 3136000.                                                              |                                                                      |                                                                                              |
|                                                                                 |                                                                       |                                                                      |                                                                                              |
|                                                                                 | 158900.<br>141700.<br>73200.<br>36000.<br>55600.<br>66800.<br>505600. | 158900. 141700. 73200. 36000. 55600. 66800. 505600. 242600. 3136000. | 158900.<br>141700.<br>73200.<br>36000.<br>55600.<br>66800.<br>505600.<br>1349900.<br>242600. |

| PPSES:     | 506. C             | JMBUSTIUN         | STACK - UL         | .D COK         | E 3       |                                        |     |
|------------|--------------------|-------------------|--------------------|----------------|-----------|----------------------------------------|-----|
| CAPACI     | 1 Y :              | .708 M            | ILLIUN TON         | IS/YEAK        |           |                                        |     |
| CATEGO     | κΥ                 | TNAUU             | 11 A               | HAIE           |           | ANNUAL CUST                            | (\$ |
|            | <u>.</u>           |                   | <u>*</u> ** UljL1T | <u>1ES ***</u> |           | ······································ |     |
| WATER      |                    | U,                | MGAL/YR            | \$ .1595       | /1000 GAL | · ·                                    |     |
|            |                    |                   |                    |                |           | 64100.                                 | _   |
| STEAM      |                    |                   |                    | \$ 4.0920      |           | U.                                     |     |
| FUEL       |                    |                   | GAL/YK             | 5 .4180        | /GAL      | 0.                                     |     |
|            |                    | ***               | UPERATING          | LABUR ***      | ,         |                                        |     |
| DIRECT     |                    | <br>σ/6υ <b>.</b> | HK\$/YK            | \$14.34/H      |           | 125700.                                | (A) |
| SUPERV     | 18100              |                   |                    |                |           | 30100.                                 |     |
|            |                    | *** MA            | INTENANCE          | & SUPPLIES     | ***       |                                        |     |
| <br>D1RECT | LABOR              | 1045.             | HKS/YE             | \$14.34/H      | IR        | 101000.                                | (C) |
|            | ISTUM              |                   |                    |                |           | 24200.                                 |     |
| MATERI     | ALS                |                   |                    |                |           | 59100.                                 |     |
| SUPPLI     | £5                 |                   |                    |                |           | 27700.                                 | (F) |
|            | TREATMENT<br>RASTE |                   |                    |                |           | v.                                     |     |
| D15F       | USAL               | 596.              | 101v/YR            | \$ 8.25/1      | ON        | 4960.                                  |     |
| <u> </u>   | RECT OFERA         | 11 No CUST        |                    |                |           | 436800.                                |     |
| PΔ         | YRULL OVER         | サムレーニンりょり         | ን በF ልቀዘ+ቦ         | ` <b>+</b> f)  |           | 56200.                                 |     |
|            | ANT UVERHE         |                   |                    |                |           | 183900                                 |     |
|            | TAL UPERAT         |                   |                    |                |           | 676900.                                |     |
| υF         | ERATING CU         | ST IN DULL        | ARS PER TU         | IN PRODUC      | TIUN      | • (                                    | 96  |
|            |                    |                   |                    |                | CULLECTED |                                        |     |
|            | ERATING CU         |                   |                    | TTAL CUST      |           | 17.6                                   |     |
| -          | STALLATION         | _                 | -                  |                |           | 104.                                   |     |
|            | H PER TUN          |                   |                    | L9             |           | 20.<br>3.6                             |     |
|            | PITAL RECU         |                   |                    | I CAPITAL)     |           | 445700.                                | •   |
|            |                    |                   |                    |                |           | 75900.                                 |     |
|            | UPERTY TAX         |                   |                    |                |           | 75900.                                 |     |
| 1.         | TAL ANNUAL         | IZED CUST         | - RETRUFIT         | Ī              | ·         | 1274400.                               |     |
|            |                    |                   | - NEW              |                |           | <u> 1170700.</u>                       |     |
|            |                    |                   |                    |                |           |                                        |     |
|            |                    |                   |                    |                |           |                                        |     |
|            |                    |                   |                    |                |           |                                        |     |
|            |                    |                   |                    |                |           |                                        |     |

| PESES:        | 506.        | COMBUSTION     | STACK         | • Oi 6                                  | UNITS<br>COKE    | OPTIUN<br>4                           |       |
|---------------|-------------|----------------|---------------|-----------------------------------------|------------------|---------------------------------------|-------|
| CAPACI        |             | .708           |               |                                         |                  | 7                                     |       |
|               |             |                |               |                                         |                  |                                       |       |
| PARTIC        |             | 1.300000       | 1 4 5 / 1 (4) | CGAL                                    |                  |                                       |       |
|               |             |                |               |                                         | EFFICIENC        | Y: 98,0%                              |       |
|               |             | 3.00           |               | _                                       |                  |                                       |       |
| <u> 8</u> \$0 |             | <u></u>        |               |                                         |                  |                                       |       |
|               | UAD IN:     | •006000        | LBS/TUN       | CUAL                                    |                  |                                       |       |
| Á             |             |                |               |                                         | EFFICIENC        |                                       |       |
|               |             | <u></u> €€Ω    | Postik i      | *************************************** |                  |                                       |       |
| HAP           | () a () T • |                |               | C 13 A 1                                |                  |                                       |       |
|               |             | .000060        |               |                                         | EFFICIENC        | V• 60 07                              |       |
| ^             | ee          |                | FR2/44        | COAL                                    | LIVICILING       | .1. 00.0%                             |       |
| DUST C        | OLLECTED    | PER DAY:       | 1.8           | 1 UNS (                                 | ÚRY)             |                                       | · -·- |
| TEMP U        | of OF Pki   | CESS:          | 450. 1        | <u>.</u>                                |                  |                                       |       |
|               |             | TUKE:          |               |                                         |                  |                                       |       |
| SC+% +        | LUM: 107    | UUU. AT        | 70. 1         | :                                       |                  |                                       |       |
| ALFM F        | LUW: 164    | OUD. AT        | 450. 1        |                                         | ,                |                                       |       |
| L/G KA        | 110:        |                | . 0_          |                                         |                  |                                       |       |
|               |             | LON:           |               |                                         |                  |                                       |       |
|               |             | LUN:<br>S OUT: | 0. (          | 34M<br>46/L                             | <b>46</b> 01 lns |                                       |       |
| 3031          | 700 300 10  | 73 001.        |               | 107L                                    | <b>%</b> SUL105: | . 0                                   |       |
|               |             |                | •             |                                         |                  |                                       |       |
|               |             |                |               |                                         |                  |                                       |       |
|               |             |                |               |                                         |                  |                                       |       |
|               |             |                |               |                                         |                  | · · · · · · · · · · · · · · · · · · · |       |
|               |             |                |               |                                         |                  |                                       |       |
|               |             |                |               |                                         |                  |                                       |       |
|               |             |                |               |                                         |                  |                                       |       |
|               |             |                |               |                                         |                  |                                       |       |
|               |             |                |               |                                         |                  |                                       |       |
|               |             |                |               |                                         |                  |                                       |       |
|               |             |                |               |                                         |                  |                                       |       |
|               |             |                |               |                                         |                  |                                       |       |
|               |             |                |               |                                         |                  |                                       |       |
|               |             |                | <del></del>   |                                         |                  |                                       |       |

| PPSES: 506. COMMUNITURE STACK - OLD CORE 4  CONTRUL SYSTEM CONFIGURATION:  ESP FAN AND DRIVE DUCTIONEN DUST HANDLING HOPPER & EUNVEYDRS  DAMPERS FAN AND UNIVE ELECTRICAL  SCA: 450. [UTAL PLATE AREA: 99000. SU.FT. & 202 SPARE CAPAL FEET UP ADDITIONAL DUCT: 250. DIAMETER: 8.  101AL PRESSURE ORUP: 6. INCRES 2 FARS & 290. HP EACH SPARE FAN CAPACITY: 100.2  UPERATING HOURS AT REDUCED HP: 0.  UPERATING HOURS AT REDUCED HP: 0.  STACE HEIGHT 6. DETERM  UVEN HEIGHT 6.0 METERS  UVEN HEIGHT 548. COBIC FEET  LONS COLKED IME, HRS. 17.5  NU. CYCLESYDAY 82.  BULK DEWSITY 50. LBS/COBIC FT.  TOTOLS COME/VENA 10011967.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PPSES: 506. COMBUSTION S          | STACK - OLD COKE A |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------|
| CONTROL SYSTEM CONFIGURATION:  ESP  FAN AND DRIVE  DUCTWORK  DUST HANDLING HOPPER & CONVEYORS  DAMPERS FAN AND DRIVE ELECTRICAL  SCA: 450. TOTAL PLATE AREA: 99000. SU.FT. & 20% SPARE CAPACE EET OF ADDITIONAL DUCT: 250. DIAMETER: 8.  TOTAL PRESSURE DRUP: 6. INCHES 2 FANS & 290. HP EACH SPARE FAN CAPACITY: 100.%  OPERATING HOURS AT REDUCED HP: 0.  STACK HEIGHT: 0. DIAMETER: 0.  NU. OF OVENS 60.  OVEN HEIGHT 6.0 METERS  TONS CONTROL TIME, HRS. 17.5  NU. CYCLES/DAY 82.  BULK DENSITY 50. LBS/CUBIC FT.  YIELD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   | ZIACN - DEL/       |
| FAN AND DRIVE DUCTWORK  DUST HANDLING HOPPER & CONVEYORS  DAMPERS FAN AND URIVE ELECTRICAL  SCA: 450. TOTAL PLATE AREA: 99000. SU.FT. & 20% SPARE CAPACE ELET UP ADDITIONAL DUCT: 250. DIAMETER: 8.  TOTAL PRESSURE DRUP: 6. INCRES 2 FANS & 290. HP EACH SPARE FAN CAPACTY: 100.%  OPERATING HOURS AT REDUCED HP: 0.  STACK HEIGHT 6.  NU. OF OVENS  OVEN HEIGHT 6.0 METERS  TONS CORETON 4.  AVG. COKING TIME, HRS. 17.5  NO. CYCLES/DAY 82.  BULK DENSITY 50. LBS/CORIC FT.  YTELD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CUNTRUL SYSTEM CONFIGURATIO       |                    |
| FAN AND DRIVE DUCTWORK  DUST HANDLING HOPPER & CONVEYORS  DAMPERS FAN AND URIVE ELECTRICAL  SCA: 450. TOTAL PLATE AREA: 99000. SU.FT. & 20% SPARE CAPACE ELET UP ADDITIONAL DUCT: 250. DIAMETER: 8.  TOTAL PRESSURE DRUP: 6. INCRES 2 FANS & 290. HP EACH SPARE FAN CAPACTY: 100.%  OPERATING HOURS AT REDUCED HP: 0.  STACK HEIGHT 6.  NU. OF OVENS  OVEN HEIGHT 6.0 METERS  TONS CORETON 4.  AVG. COKING TIME, HRS. 17.5  NO. CYCLES/DAY 82.  BULK DENSITY 50. LBS/CORIC FT.  YTELD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                    |
| DUCTWORK DUST HANDLING HOPPER & CONVEYORS  DAMPERS FAN AND DRIVE ELECTRICAL  SCA: 450. TOTAL PLATE AREA: 99000. SU.FT. © 20% SPARE CAPACE FOR THE PRESSURE DUCT: 250. DIAMETER: 8.  TOTAL PRESSURE DRUP: 6. INCHES 2 FANS © 290. HP EACH SPARE FAN CAPACITY: 100.%  OPERATING HOURS AT REDUCED HP: 0.  STACK HEIGHT: 0. DIAMETER: 0.  NO. OF UVENS 60.  OVEN HEIGHT 6.0 METERS  UVEN VOLUME 1348. CUBIC FEET  TONS CUREFPUSH 24.  AVG. COKING TIME, HRS. 17.5  NO. CYCLES/DAY 82.  BULK DENSITY 50. LBS/CUBIC FT.  YTELD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ESP                               |                    |
| DUST HANDLING HOPPER & CONVEYORS  DAMPERS FAN AND DRIVE ELECTRICAL  SCA: 450. TOTAL PLATE AREA: 99000. SU.FT. & 20% SPARE CAPACE FEET DF ADDITIONAL DUCT: 250. DIAMETER: 8.  TOTAL PRESSURE DRUP: 6. INCHES 2 FANS & 290. HP EACH SPARE FAN CAPACITY: 100.%  OPERATING HOUNS AT FULL HP: 8760.  OPERATING HOUNS AT REDUCED HP: 0.  STACK HEIGHT: 0. DIAMETER: 0.  NU. OF UVENS 60.  OVEN HEIGHT 6.0 METERS  OVEN VOLUME 1348. CUBIC FEET  TONS COKING TIME, HRS. 17.5  NU. CYCLES/DAY 82.  BULK DENSITY 50. LBS/CUBIC FT.  YTELD .70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   | ·                  |
| DAMPERS FAN AND UNIVE ELECTRICAL  SCA: 450. TOTAL PLATE AREA: 99000. SU.FT. @ 20% SPARE CAPACE ELET UP ADDITIONAL DUCT: 250. DIAMETER: 8. TOTAL PRESSURE DRUP: 6. INCHES 2 FANS @ 290. HP EACH SPARE FAN CAPACTIY: 100.% (PERALING HOURS AT REDUCED HP: 0. UPERATING HOURS AT REDUCED HP: 0. STACK HEIGHT: 0. DIAMETER: 0. NO. OF OVEN HEIGHT 6.0 METERS  OVEN HEIGHT 6.0 METERS  OVEN VOLUME 1348. CUBIC FEET  TONS COKING TIME, HRS. 17.5 NO. CYCLES/DAY 82. BULK DENSITY 50. LBS/CUBIC FT.  YTELD .70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   | COMMINGUE          |
| SCA: 450. TOTAL PLATE AREA: 99000. SU.FT. @ 20% SPARE CAPACE FET DF ADDITIONAL DUCT: 250. DIAMETER: 8.  TOTAL PRESSURE DRUP: 6. INCRES 2 FANS @ 290. HP EACH SPARE FAN CAPACITY: 100.%  OPERATING HOURS AT FOLL HP: 6760.  OPERATING HOURS AT REDUCED HP: 0.  STACK HEIGHT: 0. DIAMETER: 0.  NO. OF OVEN HEIGHT 6.0 METERS  OVEN HEIGHT 6.0 METERS  OVEN VOLUME 1548. CUBIC FEET  TONS COKING TIME, HRS. 17.5  NO. CYCLES/DAY 82.  BULK DENSITY 50. LBS/COBIC FT.  YIELD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   | LUIVE LUND         |
| SCA: 450. TUTAL PLATE AREA: 99000. SU.FT. & 20% SPARE CAPACE FEET OF ADDITIONAL DUCT: 250. DIAMETER: 8.  TUTAL PRESSURE DRUP: 6. INCHES  2 FANS & 290. HP EACH SPARE FAN CAPACITY: 100.%  OPERATING HOURS AT REDUCED HP: 0.  STACK HEIGHT: 0. DIAMETER: 0.  NU. OF UVENS 60.  OVEN HEIGHT 6.0 METERS  OVEN VOLUME 1348. CUBIC FEET  TONS COKING TIME, HRS. 17.5  NU. CYCLES/DAY 82.  BULK DENSITY 50. LBS/CUBIC FT.  YTELD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                    |
| TUTAL PRESSURE DRUP:  2 FANS & 290. HP EACH SPARE FAN CAPACITY: 100.2  UPERATING HOURS AT REDUCED HP:  OUBLATING HOURS AT REDUCED HP:  OUBLATER:  OUBLATER | SCA: 450. TUTAL PLAT              |                    |
| 2 FARS 0 290. HP EACH SPARE FAR CAPACITY: 100.2  UPERATING HOURS AT REDUCED HP: 0.  STACK HEIGHT: 0. DIAMETER: 0.  NO. OF OVERS  OVER VOLUME 1548. CUBIC FEET  TONS CUKE/FUSH 24.  AVG. COKING TIME, HRS. 17.5  NO. CYCLES/DAY 82.  BULK DENSITY 50. LBS/COBIC FT.  YIELD .70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FEET OF ADDITIONAL DUCT:          | 250. DIAMETER: 8.  |
| UPERATING HOURS AT REDUCED HP:  STACK HEIGHT:  O. DIAMETER: O.  NO. OF OVERS  OVER VOLUME  TONS CUKEZPUSH  AVG. COKING TIME, HRS.  BULK DENSITY  YIELD  O. DIAMETER: O. DIAMET |                                   |                    |
| OPERATING HOURS AT REDUCED HP:  STACK HEIGHT:  O. DIAMETER: O.  OVEN HEIGHT  6.0 METERS  OVEN VULUME  1348. CUBIC FEET  TONS CUKE/PUSH  AVG. CUKING TIME, HRS.  NO. CYCLES/DAY  BULK DENSITY  70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                    |
| STACK HEIGHT:  NU. UF UVENS  OVEN HEIGHT  O. DIAMETER:  O.  OUNTER:  OUNTER:  O.  OUNTER:  OUNTER:  O.  OUNTER:  OUNTER |                                   |                    |
| NU. OF UVENS       60.         OVEN HEIGHT       6.0 METERS         OVEN VULHME       1348. CUBIC FEET         TONS CUKE/PUSH       24.         AVG. CUKING TIME, HRS.       17.5         NU. CYCLES/DAY       82.         BULK DENSITY       50. LBS/CUBIC FT.         YTELD       .70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                    |
| OVEN HEIGHT       6.0 METERS         OVEN VULTIME       1348. CUBIC FEET         TONS CUKEZPUSH       24.         AVG. COKING TIME, HRS.       17.5         NU. CYCLESZDAY       82.         BULK DENSITY       50. LBSZCUBIC FT.         YTELD       .70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                    |
| OVER VULTIME1348. CUBIC FEETTONS CUREZPUSH24.AVG. COKING TIME, HRS.17.5NU. CYCLES/DAY82.BULK DENSITY50. LBS/CUBIC FT.YIELD.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |                    |
| TONS CORE/PUSH 24.  AVG. COKING TIME, HRS. 17.5  NO. CYCLES/DAY 82.  BULK DENSITY 50. LBS/COBIC FT.  YIELD .70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |                    |
| AVG. CUKING TIME, HRS. 17.5 NU. CYCLES/DAY 82. BULK DENSITY 50. LBS/CUBIC FT. YIELD .70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · · · · · · · · · · · · · · · · · |                    |
| NU. CYCLES/DAY BULK DENSITY YIELD 50. LBS/CUBIC FT. 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                    |
| BULK DENSITY 50, LBS/CUBIC FT. Y1ELD .70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |                    |
| Y1ELU .70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                    |
| TONS COAL/YEAR 1011967.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TUNS COAL/YEAR                    | 1011967.           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | •                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                 |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | Part               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                    |

CAPITAL CUSI: UNITS OPTION PPSES: 506. COMBUSTION STACK - OLD COKE 4 CAPACITY: .708 MILLIUN TUNS/YEAR TUTAL CUST LCUST BASIS IS 110.00% OF JUNE 1977 DOLLARS FOR 4078 CUST CATEGURY CUST IN DULLARS \*\*\* DIRECT COST \*\*\* EQUIPMENT OR MATERIAL 1232700. INSTRUMENTALION PIPING ELECTRICAL 78700. FUUNDATIONS 10500. STRUCTURAL 77500. STIF WURK 8800. INSULATIUN 66600. PRUTECTIVE CUALING 9300. BUILDINGS 9800. EUUIPMENI/MATERIAL LABUR 570700. DIRECT COST SUBTOTAL 2064600. \*\*\* INDIRECT CUST \*\*\* FIELD UVERMEAD 328700. CUNTRACTURS FEE 219500. ENGINEERING 193100. FRE16H1 89700. UFFSITE WURK 51700. IAXES 72600. SHAKEDUMIN 95500. CUNTINGENCY 93000. 669700. INDIKECT CUST SUBTOTAL 1813300. INTEREST DURING INSTALLATION 340900. 101AL CUSI 4216600. TUTAL CUST WITH RETRUFIT 5093900.

| GENE                                  | RAL I         | VEURMATTUN                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |              |                                         |           |   |
|---------------------------------------|---------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|-----------------------------------------|-----------|---|
|                                       | PPSES         | 506.                             | CUMBUSIJUI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N STACK   | <u>- ULD</u> |                                         | OPTION5   |   |
|                                       | CAPAU         | ITY:                             | ./08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MILLIUN   | 10N5/Y       | /EAR                                    |           |   |
|                                       | t             | CULATE<br>LUAD IN:<br>ALLÜWABLE: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LHS/TUN   |              | <u>EFFICIEN</u> C                       | Y: 98.0%  |   |
|                                       | BSU           |                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |              |                                         |           |   |
|                                       |               |                                  | .003000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LB5/1UN   | CUAL         | EFFICIENC                               | CY: 50.0% |   |
|                                       | BAP           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              |                                         |           |   |
|                                       |               | LUAD IN:<br>ALLUMABLE:           | .000050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |              | EFFICIEN(                               | CY: 50.0% |   |
|                                       | DUST (        | COLLECTED                        | PER DAY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.8       | 10NS ([      | SRY)                                    |           |   |
|                                       |               | JUT_UF_PRO<br>ST_TEMPERA         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              | <del></del> .                           |           |   |
|                                       | SCFM F        | -Lun: 198<br>-Luw: 275           | υυυ. <u>Δ ]</u><br>υυυ. ΑΤ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7u. 1     | F            |                                         |           | · |
|                                       | PRUCE:        | SS WATER FI                      | LUW:<br>LOw:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>0.</b> | etti<br>etti |                                         | • 0       |   |
|                                       |               |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              |                                         |           |   |
|                                       |               |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              |                                         |           |   |
|                                       |               |                                  | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |              | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |           |   |
|                                       |               |                                  | The second secon |           |              |                                         |           |   |
|                                       |               |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | ····         |                                         |           |   |
|                                       |               |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              |                                         |           |   |
| · · · · · · · · · · · · · · · · · · · | <del></del> • |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              |                                         |           |   |
|                                       |               |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              |                                         |           |   |
|                                       |               |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A-9       | 96           |                                         |           |   |

|         |                     | URMAT].            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UNITS                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|---------|---------------------|--------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|         | PPSES:              | 506.               | CUMBUSTION S                    | TACK - ULD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CUKĖ                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|         |                     |                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|         |                     |                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|         | CONTRUL             | SYSTEM             | CUNFIGURATIU                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|         |                     |                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|         | BAL                 | MOUSE<br>N AND L   | 16 1 V F                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>  |
|         |                     | JTWURK             | ) N 1 V C                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|         | DAI                 | MPERS _            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|         | FAI                 | V ARD L            | OINTUBLE EVENTRIC               | AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|         |                     |                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|         |                     | 5 . U              | TUTAL CLUT                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000. SU.FT                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RE CAPACITY  |
|         | FEFT UF             | AUDITI             | LUNAL DUCT:                     | 250.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DIAMETER:                      | 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C CALACIT    |
| - · · · | TUTAL PH            | RESSURE            | . DKUP:                         | 10. IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CHES                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|         |                     |                    | HP EACH                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CAPACITY:                      | 50.%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
|         |                     |                    | RS AT FULL HP:<br>RS AT REDUCED |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|         | STACK HE            |                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DIAMETER:                      | <b>U</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
|         | NO. UF U            | JVENS              |                                 | 60.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|         | OVEN ME.            |                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|         | OVEN VUL<br>TUHS CO |                    |                                 | 1348. L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NRIC FEEL                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|         | AVIS CO             | NEZPOST<br>CING 11 | i<br>LmE, ndS.                  | 24.<br>17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                | * ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
|         | NU. EYEL            | LS/DAY             |                                 | be.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e i moramente mora de la manda |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|         | BULK DE             | VSIIY              |                                 | 50. E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BS/CUBIC F                     | ١.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
|         | YIELD               |                    |                                 | .70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|         | Tuics Lui           | ALZYEAR            | (                               | 1011967.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|         |                     |                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|         |                     |                    |                                 | the second secon |                                | The second secon |              |
|         |                     |                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|         |                     |                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|         |                     |                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|         |                     |                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|         | • •                 |                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|         |                     |                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|         |                     |                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|         |                     |                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|         |                     |                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|         |                     |                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|         | •                   |                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| ·       |                     |                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|         |                     |                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|         |                     |                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|         |                     |                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|         |                     |                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|         |                     |                    |                                 | **** ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del> </del> |
|         |                     |                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|         |                     |                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|         |                     | ··· \              |                                 | A-97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |

| CALLIAL  | cusi:    |                                        |            | UNIT         | s (                                   | PTION   |     |          |                                       |
|----------|----------|----------------------------------------|------------|--------------|---------------------------------------|---------|-----|----------|---------------------------------------|
| PPS      | 5: 506.  | CUMBUSTIUN SIAC                        | K - OLD    | _            |                                       |         |     |          | <del></del>                           |
| CAP      | ACITY:   | .708 MILLI                             | ON TONS/YE | AR           |                                       |         |     |          |                                       |
| TUT      | AL CUST  | (COST BASIS IS                         | 110.00% OF | JUNE         | 1977                                  | DULLARS | FOR | 4078     | CUS                                   |
|          | CATEGURY | ······································ | CU         | ST IN        | DULL                                  | \ks     |     |          | · · · · · · · · · · · · · · · · · · · |
|          |          | *** DIRECT CUS                         | 7          |              |                                       |         |     | **<br>** |                                       |
|          | FHHTPMEN | T OR MATERIAL                          |            | 4500         |                                       |         |     |          |                                       |
|          |          | NTATION                                |            | 5900.        |                                       |         |     |          |                                       |
|          | PIFING   | WIRITON                                |            | 1500.        |                                       |         |     |          |                                       |
|          | FIFCIRIC | AL                                     | 1          | 2000         |                                       |         |     |          |                                       |
|          | FUUNDATI |                                        |            | 5900.        |                                       |         |     |          |                                       |
|          | STRUCTUR |                                        |            | 1900.        |                                       |         |     |          |                                       |
|          |          | K                                      |            |              |                                       |         |     |          |                                       |
|          | INSULATI |                                        |            | U .          |                                       |         |     |          |                                       |
|          |          | VE CUATING                             | 1          |              |                                       |         |     |          |                                       |
|          |          | 5                                      | 31         |              |                                       |         |     |          |                                       |
|          |          | I/MATERIAL LABUR                       |            | 0200.        |                                       |         |     |          |                                       |
|          |          | ECT COST SUBTUTAL                      |            |              | 145                                   | 300.    |     |          |                                       |
|          |          | *** INDIRECT CO                        | SI ***     |              | · · · · · · · · · · · · · · · · · · · |         |     |          |                                       |
|          | FIELD OV | ÊKHE AD                                | 17         | 4700.        |                                       |         |     |          |                                       |
|          | CONTRACT | URS FEE                                | 12         | 7900.        |                                       |         |     |          |                                       |
|          | ENGINEER | ING                                    | 11         | 8900.        |                                       |         |     |          |                                       |
|          | FRE1GHT  |                                        | 4          | 6900.        |                                       |         |     |          |                                       |
|          | UFFSITE  | WORK                                   | 2          | 7500.        | <b></b>                               |         |     |          |                                       |
|          | TAXES    |                                        | 5          | 4500.        |                                       |         |     |          |                                       |
|          | SHAKEDUM | N                                      | <b>5</b>   | <b>8100.</b> |                                       |         |     |          |                                       |
| <b>.</b> | SPARES   |                                        |            | 3900.        |                                       |         |     |          |                                       |
|          | CONTINGE | NU Y                                   | 44         | 5800.        |                                       |         |     |          |                                       |
|          | INU      | THECT COST SORTOT                      | AL         |              | 1108                                  | .005    |     |          |                                       |
|          | T T      | EREST DURING INST                      | ALLATIUN   |              | 164                                   |         |     |          |                                       |
|          | . 1101   |                                        |            |              |                                       |         |     |          |                                       |
|          |          | AL CUST                                |            |              | 2/3                                   | 0600.   |     |          |                                       |

#### OPERATING CUSI:

| CAPACITY:               | .706 MILLIUN TON                            | S/YEAR                                |                |
|-------------------------|---------------------------------------------|---------------------------------------|----------------|
| CATEGURY                | UUANTITY                                    | RATE                                  | ANNUAL CUST (S |
|                         | *** UTILIT                                  | IES ***                               |                |
| WATER                   | U. MGAL/YK                                  | \$ .1595/1000 GAL                     | 0              |
| ELECTRICITY             | 3985249. KWH/YR                             | \$ .U266/KWH                          | 106100         |
| STEAM                   | U. MLBS/YR                                  | \$ 4.0920/MLBS                        | U.             |
| FUEL                    | U. GAL/YR                                   | 5 .416U/GAL                           | 0.             |
|                         | *** OPERATING                               | LABOR ***                             |                |
| DIRECT                  | 29eu. HRS/YR                                | \$14.34/HK                            | 41900. (A      |
| SUPERVISION             | 564. HKS/YK                                 | \$1/.2U/HR                            | 10000. (B      |
|                         | *** MAINTENANCE                             | & SUPPLIES ***                        |                |
| DIKECT LABUR            | 6017. HK5/YK                                | \$14.34/HK                            | 97800. (C      |
| SUPERVISIUN             | 1363. HRS/YR                                | \$17.20/HR                            | 23500. (D      |
| MATERIALS               |                                             |                                       | 58600. (E      |
| SUPPLIES                |                                             |                                       | 33300. (F      |
| WATER TREATMENT         |                                             |                                       | V •            |
| SULIU WASTE<br>DISPUSAL | 645. TUN/YR                                 | \$ 8.25/1UN                           | 5300.          |
| DIRECT OPERA            | TING COST                                   |                                       | 376500.        |
| PAYROLL OVER            | HEAD =20.0% OF A+B+C                        | <b>+</b> 0                            | 34600.         |
|                         | AU =50.0% UF A+B+C+U                        |                                       | 132600.        |
| TUTAL OPERAT            |                                             | · · · · · · · · · · · · · · · · · · · | 543700.        |
| _                       | ST IN DULLARS PER TU                        | N PRODUCTION                          | •77            |
|                         |                                             | N OF DUST CULLECTED                   |                |
|                         | ST AS PERCENT OF CAP                        |                                       | 16.5           |
|                         | TIME IN WEEKS                               |                                       | 83.            |
|                         |                                             | <u> </u>                              |                |
| KWH PER TUN             |                                             |                                       | 5.6            |
|                         | VERY (11.75% OF TUTA                        |                                       | 387900.        |
|                         |                                             | F TOTAL CAPITAL)                      |                |
|                         | ES & INS. ( 2.0% OF<br>IZED CUST - RETROFIT |                                       | 66100.         |
| TOTAL KINDAL            | - ACH                                       | •                                     | 1063800.       |

| GENERAL :                             | INFORMATIO                              | N:                                     |              | = = 0     | <b>08</b> ***0N                       |          |
|---------------------------------------|-----------------------------------------|----------------------------------------|--------------|-----------|---------------------------------------|----------|
|                                       |                                         | 5045                                   | 21.0         |           | _OPTION                               |          |
| PPSES                                 | 5: 507.                                 | COKE HANDL                             | ING          | COKE      | 5                                     |          |
| CAPA                                  | -11Y:                                   | 2.A34                                  | MILLION TONS | /YEAD     |                                       |          |
| WAI.AI                                |                                         |                                        |              |           |                                       |          |
| PART                                  | ICULATE                                 |                                        |              |           | •                                     | •        |
|                                       |                                         |                                        | LBS/TON COAL |           |                                       | <u>:</u> |
|                                       | ALLOWABLE                               | : .109000                              | LBS/TON COAL | EFFICIENC | Y: 89.1%                              | 75       |
|                                       |                                         | 53.02                                  | LBS/HR       |           |                                       |          |
|                                       |                                         |                                        | * 0 *0.00    | (-5.4)    |                                       |          |
| busi                                  | COLLECTED                               | PER DAT:                               | 4.9 TONS     | (DRY)     |                                       |          |
| TEMP                                  | OUT OF PR                               | nress:                                 | 70. F        |           |                                       |          |
|                                       | JST TEMPER                              |                                        | 70. F        | <u> </u>  |                                       |          |
|                                       | , , , , , , , , , , , , , , , , , , , , |                                        | , ,          |           |                                       |          |
| SCFM                                  | FLOW: 9                                 | 0000 AT                                | 70. F        |           |                                       |          |
| ACFM                                  | FLOW: 9                                 | 0000. AT                               | 70. F        |           |                                       |          |
|                                       |                                         |                                        | •            |           |                                       |          |
|                                       | RATIO:                                  |                                        | . 0          |           |                                       |          |
|                                       | ESS WATER                               |                                        | O. GPM       |           |                                       |          |
|                                       | ING WATER ENDED SOLI                    |                                        | 0. 6PM       | XSOLIDS:  |                                       |          |
|                                       | THUED BULL                              | <u> </u>                               | V. FIB/I     | ASUL IUS  | · · · · · · · · · · · · · · · · · · · |          |
|                                       |                                         |                                        |              |           |                                       |          |
|                                       |                                         |                                        |              |           |                                       |          |
|                                       |                                         |                                        |              |           |                                       |          |
|                                       |                                         |                                        |              |           |                                       |          |
|                                       |                                         |                                        |              |           |                                       |          |
|                                       |                                         |                                        |              |           |                                       |          |
|                                       |                                         |                                        |              |           |                                       |          |
| <del></del>                           |                                         |                                        |              |           | · · · · · · · · · · · · · · · · · · · |          |
|                                       |                                         |                                        |              |           |                                       |          |
|                                       |                                         |                                        |              |           |                                       |          |
|                                       |                                         |                                        |              |           |                                       |          |
|                                       |                                         |                                        |              |           |                                       |          |
|                                       |                                         |                                        |              |           |                                       |          |
|                                       |                                         |                                        |              |           |                                       |          |
|                                       |                                         |                                        |              |           |                                       |          |
|                                       |                                         |                                        |              |           |                                       | <u> </u> |
|                                       |                                         |                                        |              |           |                                       |          |
|                                       |                                         |                                        |              |           |                                       |          |
|                                       |                                         |                                        |              |           |                                       |          |
| Ŋ,                                    |                                         |                                        |              |           | •                                     |          |
| · · · · · · · · · · · · · · · · · · · |                                         |                                        |              |           |                                       |          |
|                                       |                                         |                                        |              |           |                                       |          |
|                                       |                                         |                                        |              |           |                                       |          |
|                                       |                                         | ************************************** |              |           |                                       |          |
|                                       |                                         | •                                      |              |           | . W                                   |          |
|                                       |                                         |                                        |              | <u> </u>  |                                       |          |
|                                       |                                         |                                        |              |           |                                       |          |
|                                       |                                         |                                        |              |           |                                       |          |
|                                       |                                         |                                        |              |           |                                       |          |
|                                       |                                         |                                        | A-100        |           |                                       |          |

|                                                                                                                           |             |                                                   |             |                                       | OPTION                                   |
|---------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------|-------------|---------------------------------------|------------------------------------------|
| PPSES:                                                                                                                    | 507.        | COKE HANDLING                                     |             | COKE                                  | 2                                        |
| w.)                                                                                                                       |             |                                                   |             | •                                     |                                          |
|                                                                                                                           |             |                                                   |             |                                       |                                          |
| CONTROL                                                                                                                   | SYSTE       | CONFIGURATION:                                    | ;           |                                       |                                          |
| BAG                                                                                                                       | HOUSE       |                                                   |             |                                       |                                          |
| Jan FAN                                                                                                                   | AND I       | DRIVE                                             |             |                                       |                                          |
| DITC                                                                                                                      |             |                                                   | <del></del> |                                       |                                          |
| -                                                                                                                         | OPY HO      |                                                   |             |                                       |                                          |
|                                                                                                                           | PERS        | TRANS PT. HOOD                                    |             |                                       |                                          |
|                                                                                                                           |             | RIVE ELECTRICAL                                   |             |                                       |                                          |
|                                                                                                                           |             |                                                   | •           |                                       |                                          |
| A/C: 6                                                                                                                    |             | TOTAL CLOTH                                       | AREA:       | 18000. SQ.F1                          | . a 20% SPARE CAPACITY                   |
| FEET OF                                                                                                                   | ADDIT       | IONAL DUCT:                                       | 200.        | DIAMETER                              | 5.                                       |
| TOTAL PR                                                                                                                  | ESSURE      | DROP:<br>HP EACH                                  | 8.          | INCHES                                |                                          |
| 2 FANS a                                                                                                                  | 189,        | , HP EACH                                         | SPARE FAI   | N CAPACITY:                           | 100.2                                    |
|                                                                                                                           |             | RS AT FULL HP:<br>RS AT REDUCED HE                |             |                                       |                                          |
| STACK HE                                                                                                                  |             | S AT REVULEU HE                                   |             | DIAMETER                              | . 0                                      |
| NO. OF O                                                                                                                  |             |                                                   | 60.         | O I AME I EN                          |                                          |
|                                                                                                                           |             |                                                   |             | SQ.FT.                                |                                          |
| OVEN HEI                                                                                                                  | GHT         |                                                   |             | METERS                                |                                          |
| OVEN VOL                                                                                                                  |             |                                                   |             | CUBIC FEET                            |                                          |
| TONS COK                                                                                                                  |             |                                                   | 17.5        | 4/                                    |                                          |
| NO. CYCL                                                                                                                  |             |                                                   | 82.         |                                       |                                          |
| BULK DEN                                                                                                                  |             |                                                   | ·           | LBS/CUBIC F                           | T                                        |
| YIELD                                                                                                                     |             |                                                   | p7(         |                                       |                                          |
| TONS COA                                                                                                                  | L/YEAR      | ₹ 4                                               | 1047868.    |                                       |                                          |
|                                                                                                                           |             |                                                   |             |                                       |                                          |
|                                                                                                                           |             |                                                   |             |                                       |                                          |
|                                                                                                                           |             |                                                   |             |                                       |                                          |
|                                                                                                                           |             |                                                   |             |                                       |                                          |
|                                                                                                                           |             |                                                   |             |                                       |                                          |
|                                                                                                                           |             |                                                   |             |                                       |                                          |
|                                                                                                                           |             |                                                   |             |                                       |                                          |
|                                                                                                                           |             | ··· <del>··································</del> |             |                                       |                                          |
|                                                                                                                           |             |                                                   |             |                                       |                                          |
| No. 45<br>Angeles and a service and a |             |                                                   |             |                                       | •                                        |
|                                                                                                                           | <del></del> |                                                   |             |                                       |                                          |
|                                                                                                                           |             |                                                   | •           |                                       |                                          |
|                                                                                                                           |             |                                                   |             |                                       |                                          |
|                                                                                                                           |             |                                                   |             |                                       |                                          |
|                                                                                                                           |             |                                                   |             |                                       | \$ v v v v v v v v v v v v v v v v v v v |
|                                                                                                                           |             |                                                   |             | · · · · · · · · · · · · · · · · · · · |                                          |
|                                                                                                                           |             |                                                   |             |                                       |                                          |
|                                                                                                                           |             |                                                   |             |                                       |                                          |
| · · · · · · · · · · · · · · · · · · ·                                                                                     |             |                                                   |             | ·····                                 |                                          |

CAPITAL COST: UNITS OPTION PPSES: 507. COKE HANDLING COKE 5 2.834 MILLION TONS/YEAR CAPACITY: (COST BASIS IS 110.00% OF JUNE 1977 DOLLARS FOR 4078 COST.) TOTAL COST CATEGORY COST IN DOLLARS \*\*\* DIRECT COST \*\*\* EQUIPMENT OR MATERIAL 396800. INSTRUMENTATION 4000. PIPING\_ 400. 12600. ELECTRICAL FOUNDATIONS 12300. STRUCTURAL 46900. 1800. SITE WORK INSULATION 0. 18800. PROTECTIVE COATING 9000. BUILDINGS EQUIPMENT/MATERIAL LABOR 99900. DIRECT COST SUBTOTAL 607000.

\*\*\* INDIRECT COST \*\*\* FIELD OVERHEAD 71500. CONTRACTORS FEE 51800. 63800. ENGINEERING FREIGHT 20100. 7600. OFFSITE WURK TAXES 24200. 22700. SHAKEDOWN SPARES 20300. CONTINGENCY 219100. INDIRECT COST SUBTOTAL 501100. INTEREST DURING INSTALLATION 60000.

TOTAL COST WITH RETROFIT 1299200.

| UPERATING CUST: |                                   | UNITS OPTION         |                   |
|-----------------|-----------------------------------|----------------------|-------------------|
| PPSES: 507. COK | E HANDLING                        | COKE 5               |                   |
| CAPACITYI       | 2.834 MILLION TO                  | NS/YEAR              |                   |
| CATEGORY        | QUANTITY                          | RATE                 | ANNUAL COST (S    |
|                 | *** UTILI                         | TIES ***             | 2 172             |
| WATER           | O. MGAL/YR                        | \$ .1595/1000 GAL    | 0 -               |
| ELECTRICITY     | 1375802. KWH/YR                   | \$ .0266/KWH         | 36600.            |
| STEAM           | U. MLBS/YR                        | _                    | 0.                |
| FUEL            | U. GAL/YR                         | \$ .4180/GAL         | 0.                |
|                 | *** OPERATIN                      | S LABOR ***          |                   |
| DIRECT          | 2920. HRS/YR                      | \$14.34/HR           | 41900. (A)        |
| SUPERVISION     | 584. HRS/YR                       | \$17,20/HR           | 10000. (B)        |
|                 | *** MAINTENANCE                   | & SUPPLIES ***       |                   |
| DIRECT LABOR    | 4100. HRS/YR                      | \$14.34/HR           | 58800. (C)        |
| SUPERVISION     | 820. HRS/YR                       | \$17.20/HR           | 14100. (D)        |
| MATERIALS       |                                   |                      | 28700. (E)        |
| SUPPLIES        |                                   |                      | 16300. (F)        |
| WATER TREATMENT |                                   |                      | 0                 |
| SOLID WASTE     |                                   |                      |                   |
| DISPOSAL        | 1803. TON/YR                      | \$ 8.25/TON          | 14900.            |
| DIRECT OPERATI  | NG COST                           |                      | 221300.           |
| PAYROLL OVERHE  | AD =20.0% OF A+B+                 | C+D                  | 25000.            |
| PLANT OVERHEAD  | =50.0% OF A+B+C+                  | D+E+F                | 84900.            |
| TOTAL OPERATIN  | G COST                            |                      | 331200.           |
|                 | IN DOLLARS PER T                  |                      | .12               |
|                 |                                   | ON OF DUST COLLECTED | 183.66            |
|                 | AS PERCENT OF CA                  | PITAL COST           | 25.5              |
| INSTALLATION T  |                                   |                      | 83.               |
|                 | OF SYSTEM IN YEA CAPACITY         | K 9                  | 20.               |
| KWH PER TON     | •5<br>•5                          |                      |                   |
|                 | RY (11.75% OF TOT OVERHEAD ( 2.0% |                      | 152600.<br>26000. |
|                 | & INS. ( 2.0% OF                  |                      | <b>5</b> 6000.    |
|                 | ED COST - RETROFT                 |                      | 535800.           |
|                 | - NEW                             |                      | 515200.           |
|                 |                                   |                      |                   |
| •               |                                   |                      | •                 |

|                                       |               | Manager Manager 1      |           |                                        |                 | OPTION                                  |   |
|---------------------------------------|---------------|------------------------|-----------|----------------------------------------|-----------------|-----------------------------------------|---|
| PPSES                                 | 5: 508.       | COAL PREH              | EATER     |                                        | COKE            | 2                                       |   |
| CAPAC                                 | ITY:          | .992                   | MILLION   | TONS/Y                                 | EAR             |                                         |   |
|                                       | . <b></b>     |                        |           |                                        |                 |                                         |   |
| PARTI                                 | CULATE        | 7 050000               | L DC /TON | COAL                                   |                 |                                         |   |
|                                       |               | 7,050000<br>E: .352500 |           |                                        | FEETCIENC       | V: 45 NY                                |   |
|                                       | MECOUNCE      |                        | LBS/HR    | · COME                                 | LIV ZOZENO      | 70 7500                                 |   |
| <u> </u>                              |               |                        |           |                                        |                 |                                         |   |
| <b>BS</b> 0                           |               |                        |           |                                        |                 |                                         |   |
|                                       |               | 1.050000               |           |                                        |                 |                                         |   |
|                                       | ALLOWABL      | E: .420000             |           | COAL                                   | EFFICIENC       | Y: 60.0%                                |   |
|                                       |               | 11.30                  | LBS/HR    |                                        |                 |                                         |   |
| BAP                                   |               |                        |           |                                        |                 |                                         |   |
|                                       | LOAD IN       | .000390                | LBS/TON   | COAL                                   |                 |                                         |   |
|                                       | ALLOWABL      | E: .000156             | LBS/TON   | _                                      | EFFICIENC       | Y: 60.0%                                | • |
|                                       |               |                        | LBS/HR    |                                        | <del></del>     |                                         |   |
| D F N 3 F                             |               |                        |           |                                        |                 |                                         |   |
| BENZE                                 |               | .014000                | 1 20/TON  | COAL                                   |                 |                                         |   |
|                                       | ALLOWABL      |                        | LBS/TON   |                                        | EFFICIENC       | Y: 50-07                                |   |
|                                       |               | :                      | LBS/HR    |                                        | L. 1 20 2 E 140 | , - 30,00                               |   |
|                                       |               |                        |           |                                        |                 |                                         |   |
| DUST                                  | COLLECTE      | D PER DAY:             | 13.0      | TONS (D                                | RY)             |                                         |   |
| <b>* * * * * * * * * *</b>            | 0117 0        | 1000500                | 4.6.5     | -                                      |                 |                                         |   |
|                                       |               | PROCESS:               | 180.      |                                        |                 |                                         |   |
| EANAL                                 | IOI IEMPE     | RMIUNE .               | 100.      | r                                      |                 |                                         |   |
| SCFM                                  | FLOW:         | 17000. AT              | 70.       | F                                      |                 |                                         |   |
|                                       |               | TA .00005              |           |                                        |                 |                                         |   |
| , ,= =                                |               |                        |           |                                        |                 |                                         |   |
|                                       | ATID:         | S ELOW*                | 6.5       |                                        |                 |                                         |   |
|                                       | SS WATER      |                        | 111.      | ЬРМ<br>С <b>р</b> м                    |                 |                                         |   |
|                                       |               | IDS OUT:               | 15206.    |                                        | %SOLIDS:        | 1.5                                     |   |
|                                       |               |                        |           | · · · ·                                |                 |                                         |   |
|                                       |               |                        |           |                                        |                 |                                         |   |
|                                       |               |                        |           |                                        |                 |                                         |   |
|                                       |               |                        |           |                                        | •               |                                         |   |
|                                       |               |                        |           |                                        |                 |                                         |   |
|                                       | *****         |                        |           |                                        |                 |                                         |   |
|                                       |               |                        |           | •                                      | •               |                                         |   |
| · · · · · · · · · · · · · · · · · · · | 7             |                        |           |                                        |                 | · · · · · · · · · · · · · · · · · · ·   |   |
|                                       |               |                        |           |                                        |                 |                                         |   |
|                                       |               | •                      |           |                                        |                 |                                         |   |
|                                       | ******        |                        |           | ······································ |                 | *************************************** |   |
|                                       |               |                        |           |                                        |                 |                                         |   |
|                                       |               |                        |           |                                        |                 | water and the second                    |   |
|                                       | •             |                        |           |                                        |                 |                                         |   |
|                                       |               |                        |           |                                        |                 |                                         |   |
|                                       | - <del></del> |                        |           | <del></del> , ,,                       |                 |                                         |   |
|                                       |               |                        | <b>A-</b> | 104                                    |                 |                                         |   |

## GENERAL INFORMATION: UNITS OPTION PPSES: 508. COAL PREHEATER COKE 2 CONTROL SYSTEM CONFIGURATION: VENTURI SCRUBBER MIST ELIMINATOR FAN AND DRIVE DUCTWORK WASTEWATER RECYCLE SYSTEM DAMPERS WASTE WATER RETURN SYSTEM WATER PUMPING SYSTEM FAN AND DRIVE ELECTRICAL FEET OF ADDITIONAL DUCT: 100. DIAMETER: 3. TOTAL PRESSURE DROP: 18. INCHES 2 FANS @ 94. HP EACH SPARE FAN CAPACITY: 100.7 OPERATING HOURS AT FULL HP: 8322. OPERATING HOURS AT REDUCED HP: 0. STACK HEIGHT: 0. DIAMETER: 0. NO. OF OVENS 60. 6.0 METERS OVEN HEIGHT OVEN VOLUME 1348. CUBIC FEET TONS COKE/PUSH 24. AVG. COKING TIME, HRS. 12.5 115. NO. CYCLES/DAY BULK DENSITY 50. LBS/CUBIC FT. .70 YIELD TONS COAL/YEAR 1416755.

A-105

|               |            |           |            |          |         |             |      |             |          | OPTION      |             | ·           |              |
|---------------|------------|-----------|------------|----------|---------|-------------|------|-------------|----------|-------------|-------------|-------------|--------------|
| PPSES         | <b>5</b> : | 508.      | COAL       | PREHEA   | TER     |             |      | CO          | KE       | 2           |             |             |              |
| CAPAC         |            | <b>/:</b> | , <u>.</u> | 992 M    | ILL:    | ION TONS    | /YEA | .R          |          |             |             |             |              |
| TOTAL         | _ C(       | OST       | (COST      | BASIS    | IS      | 110.00%     | OF   | JUNE        | 1977     | DOLLARS     | FOR         | 4078        | COST         |
| <del></del> , | CA         | TEGORY    |            |          |         |             | cos  | TIN         | DOLL     | ARS         |             |             | <del>;</del> |
|               |            |           | *** D      | IRECT    | _co:    | SI ***      |      |             |          |             |             |             | **           |
|               | EQ         | JIPMEN'   | T OR MA    |          | _       |             | 280  | 800.        |          |             |             |             |              |
|               | IN         | STRUME    | NOITATION  |          |         |             | 51   | 600.        |          |             |             |             |              |
|               |            |           |            |          |         |             |      | 700.        |          |             |             | <del></del> |              |
|               | EL         | ECTRICA   | AL         |          |         |             | 84   | 800.        |          |             |             |             |              |
|               |            | JNDATI    |            |          |         |             |      | 500.        |          |             |             |             |              |
|               | -          | -         | AL         |          |         |             |      | 100.        |          |             |             |             |              |
|               |            | TE WORK   |            |          |         |             |      | 400.        |          |             |             |             |              |
|               |            | SULATIO   |            | _        |         |             |      | 600.        |          |             |             |             |              |
|               |            |           | VE COAT    | ING      |         |             |      | 100.        |          |             |             | <del></del> |              |
|               |            | ILDING    |            |          |         |             |      | 300.        |          |             |             |             |              |
|               | ED         |           | T/MATER    |          |         |             | 100  | 300.        |          |             |             |             |              |
|               |            | DIR       | ECT_COS    | SUBT     | LLAI    |             |      |             | 54       | 8200.       | <del></del> |             |              |
|               |            |           | TAI        | 10501    | c       | DST ***     |      |             |          |             |             |             |              |
|               | ETI        | ELD OVS   | ERHEAD     | _        | _       | J31 ===     | 97   | 500.        |          |             |             |             |              |
|               |            |           | DRS FEE    |          |         |             |      | 400.        |          |             |             |             |              |
|               |            | SINEER    |            |          |         |             |      | 800.        |          |             |             |             |              |
|               |            | IGHT      |            |          |         |             |      | 800         |          |             |             |             |              |
|               |            | SITE      | NORK       |          |         |             |      | 300.        |          |             |             |             |              |
|               |            | KES       |            |          |         |             |      | 600.        |          |             |             |             |              |
|               | SH         | KEDOWI    | V          |          |         |             |      | 400.        |          |             |             |             |              |
|               | SP         | RES       |            | •        |         |             | 29   | 200.        |          |             |             |             |              |
|               | COI        | NTINGER   | VC Y       |          |         |             | 217  | 900.        |          |             |             |             |              |
|               |            | IND       | RECT C     | ST SU    | STO     | TAL         |      |             | 59       | 3900.       |             |             |              |
|               |            | INTE      | EREST DI   | JRING    | INS     | TALLATIO    | N    |             | 10       | 1000.       |             |             |              |
|               |            | TOTA      | AL COST    |          |         | <del></del> |      |             | 134      | 3100.       |             |             |              |
| ·             |            | 707       | u rnet     | WTTL I   | ) F 7 C | ROFIT       |      |             | 147      | 4200        |             |             |              |
|               |            |           | L LUSI     | <u> </u> | XI.J.I  | KUP 1.1     |      |             | 197      | <u>4200</u> |             |             |              |
| <del></del>   |            |           |            |          |         |             | •••• | <del></del> | <u>-</u> |             |             |             |              |
|               |            |           |            |          |         |             |      |             | •        |             |             |             |              |
| <del>-</del>  |            |           |            |          |         |             |      |             |          |             |             |             |              |
|               |            | ·         |            |          |         |             | -    |             |          |             |             |             |              |
|               |            |           |            |          |         |             |      |             |          |             |             |             |              |
|               |            |           |            |          |         |             |      |             |          |             |             |             |              |

| PPSES: 508. CO  | AL BOCHEATED                      | UNITS OPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |
|-----------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| PP5E5: 308. CU  | AL PREHEATER                      | COKE 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |
| CAPACITY:       | .992 MILLION TO                   | IS/YEAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |
| CATEGORY        | QUANTITY                          | RATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ANNUAL COST ( |
|                 | *** UTIL11                        | IES ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |
| WATER           | 11035. MGAL/YR                    | 8 _1595/1000 GAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1800.         |
| ELECTRICITY     | 548080. KWH/YR                    | \$ .0266/KWH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14600.        |
| STEAM           | 0. MLBS/YR                        | \$ 4.0920/MLBS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.            |
| FUEL            | O. GAL/YR                         | \$ .4180/GAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.            |
|                 | *** OPERATING                     | LABOR ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |
| DIRECT          | 8760. HRS/YR                      | \$14.34/HR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 125700. (A    |
| SUPERVISION     | 1752. HRS/YR                      | \$17.20/HR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30100. (B     |
|                 | *** MAINTENANCE                   | & SUPPLIES ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |
| DIRECT LABOR    | 8567. HRS/YR                      | \$14.34/HR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122900. (c    |
| SUPERVISION     | 1713. HRS/YR                      | \$17.20/HR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 29500. (D     |
| MATERIALS       |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 104800. (E    |
| SUPPLIES        |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40200. (F     |
| WATER TREATMENT |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.            |
| SOLID WASTE     |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| DISPOSAL        | 9489. TON/YR                      | \$ 8.25/TON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 78300.        |
| DIRECT OPERAT   | ING COST                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 547900.       |
| PAYROLL OVERH   | EAD =20.0% OF A+B+0               | :+D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 61600.        |
| PLANT OVERHEA   | D =50.0% OF A+B+C+D               | )+E+F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 226600.       |
| TOTAL OPERATI   |                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 836100.       |
|                 | T IN DOLLARS PER TO               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .84           |
|                 |                                   | N OF DUST COLLECTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 176.23        |
|                 | T AS PERCENT OF CAP               | TITAL COST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 56.7          |
|                 | TIME IN WEEKS E OF SYSTEM IN YEAR | i e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 104.          |
| KWH PER TON     |                                   | .5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15.           |
|                 | ERY (13.15% OF TOTA               | LI CAPITAL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .6<br>193800. |
|                 | N OVERHEAD ( 2.0% C               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29500.        |
|                 | S & INS. ( 2.0% OF                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29500.        |
|                 | ZED COST - RETROFIT               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1088900       |
|                 | - NEW                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1066500.      |
|                 |                                   | 1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |
|                 |                                   | in the second of |               |

| 0005                                  | S: 508.                                       | COAL PREH | CATED   |        |                | TION                                    |               |
|---------------------------------------|-----------------------------------------------|-----------|---------|--------|----------------|-----------------------------------------|---------------|
| PPSE                                  | S: 500.                                       | SUAL PREH | EAIEK   |        | COKE           | 3                                       |               |
| CAPA                                  | CIIY:                                         | .992      | MILLION | TONS/  | YEAR           |                                         |               |
| PART                                  | ICULATE                                       |           |         |        |                |                                         |               |
| , ,,,,,,                              | _                                             | 7,050000  | LBS/TON | COAL   |                |                                         |               |
|                                       |                                               | : .352500 |         |        |                | 95.0%                                   |               |
| Ž.                                    | , <u>, , , , , , , , , , , , , , , , , , </u> |           | LBS/HR  |        | 2.1.2022.11011 | . , , , , , , , , , , , , , , , , , , , |               |
| BSO                                   |                                               |           |         |        |                |                                         |               |
|                                       | LOAD IN:                                      | 1.050000  | LBS/TON | COAL   |                |                                         |               |
|                                       |                                               |           |         |        | EFFICIENCY:    | 45.0%                                   |               |
|                                       |                                               |           | LBS/HR  |        |                |                                         |               |
| BAP                                   |                                               |           |         |        |                |                                         |               |
|                                       | LOAD IN:                                      | .000390   | LBS/TON | COAL   |                |                                         |               |
|                                       | ALLOWABLE                                     | : .000214 | LBS/TON | COAL   | EFFICIENCY:    | 45.0%                                   |               |
| · · · · · · · · · · · · · · · · · · · |                                               | .04       | LBS/HR  |        |                |                                         | <del></del>   |
| BENZ                                  | ENE                                           |           |         |        |                |                                         |               |
| <del></del>                           |                                               | .014000   | LBS/TON | COAL   |                |                                         |               |
|                                       | ALLOWABLE                                     | • • • • • |         | COAL   | EFFICIENCY:    | 45.0%                                   |               |
|                                       |                                               | 1.31      | LBS/HR  |        |                |                                         |               |
| DUST                                  | COLLECTED                                     | PER DAY:  | 13.0    | TONS ( | DRY)           |                                         | ·             |
| TEMB                                  | OUT OF BE                                     | 000000    | 100     |        |                |                                         |               |
|                                       | OUT OF PRUST TEMPER                           |           | 180. I  |        |                |                                         | <del></del> - |
| EARM                                  | USI TEMPEN                                    | FIUNE.    | 100, 1  |        |                |                                         |               |
| SCFM                                  | FLOW: 1                                       | 7000. AT  | 70.     | •      |                |                                         |               |
|                                       | FLOW: 2                                       |           |         |        |                |                                         |               |
| L/6_                                  | RATIO:                                        |           | 0       |        |                |                                         |               |
| PROC                                  | ESS WATER                                     | FLOW:     | 0.      | SPM    |                |                                         |               |
| COOL                                  | ING WATER                                     | FLOW:     | 0. (    | PM     |                |                                         |               |
| SUSP                                  | ENDED SOLI                                    | DS OUT:   | 0, 1    | 1G/L   | XSOLIDS:       | .0                                      | <del></del> - |
|                                       |                                               |           |         |        |                |                                         |               |
|                                       |                                               |           |         |        |                |                                         |               |
|                                       |                                               |           |         |        |                |                                         |               |
|                                       |                                               |           |         |        | 1942-762-7     |                                         |               |
| 8 1                                   |                                               |           |         |        |                |                                         |               |
|                                       |                                               |           |         |        |                |                                         |               |
| ···                                   |                                               |           |         |        |                |                                         |               |
|                                       |                                               |           |         |        |                |                                         |               |
|                                       | ·                                             | <u> </u>  |         |        |                | *                                       |               |
|                                       |                                               |           |         |        |                |                                         |               |

|                     |                                       |                                         |                                     |              | UNITS            | OPTION                                |                                        |
|---------------------|---------------------------------------|-----------------------------------------|-------------------------------------|--------------|------------------|---------------------------------------|----------------------------------------|
| PPSES:              | 508.                                  | COAL PREHE                              | ATER                                |              | COKE             | 3                                     |                                        |
|                     |                                       |                                         |                                     |              |                  | <del></del>                           |                                        |
| CONTROL             | SYSTEM                                | CONFIGURAT                              | ION:                                |              |                  |                                       |                                        |
|                     | P                                     | DIVE                                    |                                     |              |                  |                                       | 2. U.S.                                |
| DUI                 | CTWORK _                              |                                         |                                     |              |                  |                                       | ·                                      |
|                     | ST HAND<br>MPERS                      | LING HOPPER                             | & CONVEYO                           | ORS          |                  |                                       |                                        |
| FA                  | Q. AND .                              | RIVE ELECTR                             | ICAL                                |              |                  | <del></del>                           |                                        |
| 3CA: 32             | 4                                     | TOTAL PL                                | ATE AREA:                           | 80           | 00. SQ.F         | 1. a 20% S                            | PARE CAPACI                            |
| FEET OF<br>TOTAL PI | ADDITI<br>RESSURE                     | ONAL DUCT:<br>DROP:                     | 100                                 | ).<br>4. Inc | DIAMETER:<br>Hes | 3.                                    |                                        |
|                     |                                       | HP EACH                                 |                                     |              | APACITY:         | 100.2                                 |                                        |
| _                   |                                       | S AT FULL H                             |                                     |              |                  |                                       |                                        |
| STACK H             | EIGHT:                                |                                         |                                     | ) .          | DIAMETER         | 0                                     |                                        |
| NO. OF OVEN HE      |                                       |                                         |                                     | ),<br>:      | TEDE             |                                       |                                        |
| OVEN HE             |                                       | •                                       |                                     | S.O ME       | IERS<br>BIC FEET |                                       |                                        |
| TONS CO             |                                       |                                         | 54                                  |              | UAG I EL         |                                       | ······································ |
| AVG. CO             |                                       |                                         |                                     | 2.5          |                  |                                       |                                        |
| NO. CYC             |                                       |                                         | 115                                 | 5            |                  |                                       |                                        |
| AIEFD<br>BRFK DEI   |                                       |                                         |                                     | .70          | S/CUBIC F        | FT.                                   |                                        |
| TONS CO             | AL/YEAR                               |                                         | 1416755                             | <u> </u>     |                  |                                       |                                        |
|                     |                                       |                                         |                                     |              |                  |                                       |                                        |
|                     |                                       |                                         |                                     | <u> </u>     |                  |                                       |                                        |
|                     |                                       |                                         |                                     |              |                  |                                       |                                        |
|                     |                                       | *************************************** |                                     |              |                  |                                       |                                        |
|                     | · · · · · · · · · · · · · · · · · · · |                                         | · · · · · · · · · · · · · · · · · · |              | ·                | ·                                     |                                        |
|                     |                                       |                                         |                                     |              |                  |                                       |                                        |
|                     |                                       |                                         |                                     | <del></del>  |                  |                                       |                                        |
| ā.                  |                                       |                                         |                                     |              | •                | •                                     |                                        |
| ··                  |                                       |                                         |                                     |              |                  |                                       |                                        |
|                     |                                       |                                         |                                     |              |                  |                                       |                                        |
|                     |                                       |                                         |                                     |              |                  | •/                                    |                                        |
|                     |                                       |                                         |                                     |              |                  | · · · · · · · · · · · · · · · · · · · | <u></u>                                |
|                     |                                       |                                         |                                     |              |                  |                                       |                                        |
|                     |                                       |                                         |                                     |              |                  |                                       |                                        |

|                                           |                                              |                | TS OPTION                             |         |
|-------------------------------------------|----------------------------------------------|----------------|---------------------------------------|---------|
| PPSES: 508.                               | COAL PREHEATER                               | CO             | KE 3                                  |         |
| CAPACITY:                                 | .992 MILLIO                                  | N TONS/YEAR    | · · · · · · · · · · · · · · · · · · · |         |
| TOTAL COST                                | COST BASIS IS 1                              | 10.00% OF JUNE | 1977 DOLLARS                          | FOR 407 |
| CATEGORY                                  |                                              | COST IN        | DOLLARS                               |         |
|                                           | *** DIRECT COST                              | ***            |                                       |         |
|                                           | OR MATERIAL                                  | 328700.        |                                       |         |
| INSTRUMEN                                 | TATION                                       | 0.             |                                       |         |
| PIPING                                    |                                              | 0.             |                                       |         |
| ELECTRICA                                 | L                                            | 26600.         |                                       |         |
| FOUNDATIO                                 | NS                                           | 4400.          |                                       |         |
| STRUCTURA                                 |                                              | 37200.         |                                       |         |
| SITE WORK                                 |                                              | 2100.          |                                       |         |
| INSULATIO                                 |                                              | 16000.         |                                       |         |
|                                           | E COATING                                    | 5000.          |                                       |         |
| BUILDINGS                                 |                                              | 2400.          |                                       |         |
| _                                         | /MATERIAL LABOR<br>CT COST SUBTOTAL          | 143700.        | 566100.                               |         |
| CONTRACTO                                 | _                                            | 59200.         |                                       |         |
| ENGINEERI                                 | NG                                           | 75000.         |                                       |         |
| FREIGHT                                   |                                              | 18900.         |                                       |         |
| OFFSITE W                                 | ORK                                          | 12500.         |                                       |         |
|                                           |                                              | 22100.         |                                       |         |
| TAXES                                     |                                              | 30300.         | /=                                    |         |
| SHAKEDOWN                                 |                                              | 30360          |                                       |         |
| SHAKEDOWN<br>Spares                       | rv                                           | 29700.         |                                       |         |
| SHAKEDOWN<br>SPARES<br>CONTINGEN          |                                              | 200900.        | 542900.                               |         |
| SHAKEDOWN<br>SPARES<br>CONTINGEN<br>INDI  | RECT COST SUBTOTAL                           | 200900.        |                                       |         |
| SHAKEDOWN<br>SPARES<br>CONTINGEN<br>INDI  | RECT COST SUBTOTAL                           | 200900.        | 89200.                                |         |
| SHAKEDOWN<br>SPARES<br>CONTINGEN<br>INDI  | RECT COST SUBTOTAL                           | 200900.        |                                       |         |
| SHAKEDOWN SPARES CONTINGEN INDI INTE      | RECT COST SUBTOTAL                           | 200900.        | 89200.                                |         |
| SHAKEDOWN SPARES CONTINGEN INDI INTE TOTA | RECT COST SUBTOTAL REST DURING INSTAL L COST | 200900.        | 89200.<br>1198200.<br>1311600.        |         |

| PPSES: 508. C   | DAL PREHEA | TED                                     | UNITS<br>COKE                           | OPTION<br>3 |                |            |
|-----------------|------------|-----------------------------------------|-----------------------------------------|-------------|----------------|------------|
|                 | OAL PACILA | , LN                                    | LUNE                                    | 3           |                |            |
| CAPACITY:       | .992 M     | ILLION TOA                              | IS/YEAR                                 |             |                |            |
| CATEGORY        | QUANT      | ITY                                     | RATE                                    |             | ANNUAL COST    | (          |
|                 | ,          | *** UTILIT                              | IES ***                                 |             | . 7 (4)        |            |
| MATER           | 0          | MGAL/YR                                 | <b>3.1595/10</b>                        | 00 641      | 0 -            |            |
| ELECTRICITY     | -          | KWH/YR                                  | \$ .0566\KM                             |             | 9700.          |            |
| STEAM           |            | MLBS/YR                                 |                                         |             | 0.             |            |
| FUEL            |            | GAL/YR                                  | \$ .4180/GA                             |             | 0.             |            |
|                 | ***        | OPERATING                               | LABOR ***                               |             |                |            |
|                 |            | _                                       | _                                       |             |                |            |
| DIRECT          |            | HRS/YR                                  | \$14.34/HR                              |             | 125700.        |            |
| SUPERVISION     | 1752.      | HRS/YR                                  | \$17.20/HR                              | <del></del> | 30100.         | <u>_</u> E |
|                 | *** MA     | INTENANCE                               | & SUPPLIES **                           | *           | <u> </u>       |            |
| DIRECT LABOR    | 2517       | HRS/YR                                  | \$14.34/HR                              |             | 36100.         | "          |
| SUPERVISION     | -          | HRS/YR                                  | \$17.20/HR                              |             | 8700           |            |
| MATERIALS       |            | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | V 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |             | 19700.         |            |
| SUPPLIES        |            |                                         |                                         |             | 9700.          |            |
| WATER TREATMENT |            |                                         |                                         |             |                |            |
| SOLID WASTE     |            |                                         |                                         |             |                |            |
| DISPOSAL        | 4744.      | TON/YR                                  | \$ 8.25/TON                             |             | 39100.         |            |
| DIRECT OPERA    | TING COST  |                                         |                                         | <del></del> | 278800.        |            |
| PAYROLL OVER    | HEAD =20.0 | K OF A+B+C                              | :+D                                     |             | 40100          |            |
| PLANT OVERHE    |            |                                         |                                         |             | 115000.        |            |
| TOTAL OPERAT    | ING COST   |                                         |                                         |             | 433900.        |            |
|                 |            |                                         | N PRODUCTIO                             |             |                |            |
|                 |            |                                         | N OF DUST COL                           | LECTED      | 91.4           |            |
| OPERATING CO    |            |                                         | PITAL COST                              |             | 33.1           |            |
| INSTALLATION    |            |                                         |                                         |             |                |            |
| ESTIMATED LI    |            |                                         | (5                                      |             | 20.            | ,          |
| KWH PER TON     |            |                                         | LI CADITAL N                            |             | .4<br>.154100  |            |
| CAPITAL RECO    |            |                                         | F TOTAL CAPIT                           | AL Y        | 26200.         |            |
|                 |            |                                         | TOTAL CAPITAL                           |             | <b>2</b> 6200. |            |
| TOTAL ANNUAL    |            | -                                       |                                         | •           | 640400         |            |
|                 |            | - NEW                                   |                                         |             | 622600.        |            |
| V. 201          |            |                                         |                                         |             |                |            |
|                 |            |                                         |                                         |             |                |            |
|                 |            |                                         | •                                       | WV 1        |                |            |

|                | ·· · · · · · · · · · · · · · · · · · · |                                    |             |      |              |         | ·····            |             | PIION                                  |              |
|----------------|----------------------------------------|------------------------------------|-------------|------|--------------|---------|------------------|-------------|----------------------------------------|--------------|
| PI             | PSES:                                  | 508.                               | , C         | DAL  | PREH         | EATER   |                  | COKE        | 4                                      |              |
|                | BACT                                   | T V •                              |             |      | 002          | MILLIO  | N TONE           | VEAD        |                                        |              |
|                | RPALI                                  | 11ă                                | <del></del> |      | .772         | wirrin. | N IUNS/          | ICAR        |                                        | <del></del>  |
| P              | ARTIC                                  | ULATE                              |             |      |              |         |                  |             |                                        |              |
|                | L                                      | DAD IN                             | 1:          | 7.05 | 0000         | LBS/TO  | N COAL           |             |                                        |              |
| . ××:          | : Al                                   | LLOWAB                             | LE:         | .14  | 1000         | LBS/TO  | N COAL           | EFFICIENCY  | 98.0%                                  | )<br>)<br>'' |
|                |                                        |                                    |             | 24   | .00          | LBS/HR  |                  |             |                                        |              |
|                |                                        |                                    |             |      |              |         |                  |             |                                        |              |
| <b>5</b> 3     | 50                                     | DAD TK                             | 1 •,        | 1 05 | 0000         | LBS/TO  | N COAL           |             |                                        |              |
|                |                                        |                                    |             |      |              | _       |                  | EFFICIENCY: | 60.07                                  |              |
|                |                                        |                                    |             |      | -            | LBS/HR  |                  |             |                                        |              |
|                |                                        |                                    |             |      |              |         |                  |             |                                        |              |
| B/             | NP                                     |                                    |             |      |              |         |                  |             | <u></u>                                | ··           |
|                |                                        |                                    |             |      |              | LBS/TO  |                  |             |                                        |              |
|                | ΑI                                     | LLOMAB                             | LE          | .00  |              | -       |                  | EFFICIENCY: | 60.0%                                  |              |
|                | <del></del>                            |                                    |             |      | <u>, v 3</u> | LBS/HR  |                  |             | ······································ | <del></del>  |
| Al             | ENZENI                                 | Ε                                  |             |      |              |         |                  |             |                                        |              |
|                |                                        |                                    | 1:          | .01  | 4000         | LBS/TO  | N COAL           |             |                                        |              |
|                |                                        |                                    |             |      |              |         |                  | EFFICIENCY: | 50.0%                                  |              |
|                |                                        |                                    |             | 1    | .19          | LBS/HR  |                  |             |                                        |              |
|                |                                        |                                    |             |      |              |         | * <b>TO</b> NO ( |             |                                        | ·····        |
| Dt             | JS1 C1                                 | JLLEUI                             | EU P        | FK D | ATI          | 13.     | 4 1UNS           | נאט         |                                        |              |
| TE             | EMP O                                  | UT OF                              | PROC        | FSS: |              | 180.    | F                |             |                                        |              |
|                |                                        | T TEMP                             |             |      |              | 180.    |                  |             |                                        |              |
|                |                                        |                                    |             |      |              |         |                  |             |                                        |              |
| 91             |                                        |                                    |             |      |              | 70.     |                  |             |                                        |              |
|                |                                        | _UW:                               | 200         | 00.  | AI           | 180.    | F                |             |                                        |              |
|                | CFM FL                                 |                                    |             |      |              |         | _                |             |                                        |              |
| AC             |                                        |                                    |             |      |              | 6.4     | <b>5</b>         |             |                                        |              |
| AC<br>L/       | G RAT                                  | TIO:<br>S WATE                     | R FL        | Ow:  |              | 111.    |                  |             |                                        |              |
| L /            | G RATROCESS                            | TIO:<br>S WATE<br>G WATE           | RFL         | OW:  |              | 111.    | GPM<br>GPM       |             | <u> </u>                               |              |
| L /            | G RATROCESS                            | TID:<br>S WATE                     | RFL         | OW:  |              | 111.    | GPM<br>GPM       | %SOLIDS:    | 1.5                                    |              |
| L /            | G RATROCESS                            | TIO:<br>S WATE<br>G WATE           | RFL         | OW:  |              | 111.    | GPM<br>GPM       | %SOLIDS:    | 1.5                                    |              |
| L /            | G RATROCESS                            | TIO:<br>S WATE<br>G WATE           | RFL         | OW:  |              | 111.    | GPM<br>GPM       | *SOLIDS:    | 1.5                                    |              |
| L /            | G RATROCESS                            | TIO:<br>S WATE<br>G WATE           | RFL         | OW:  |              | 111.    | GPM<br>GPM       | %SOLIDS:    | 1.5                                    |              |
| L /            | G RATROCESS                            | TIO:<br>S WATE<br>G WATE           | RFL         | OW:  |              | 111.    | GPM<br>GPM       | *SOLIDS:    | 1.5                                    |              |
| L /            | G RATROCESS                            | TIO:<br>S WATE<br>G WATE           | RFL         | OW:  |              | 111.    | GPM<br>GPM       | %SOLIDS:    | 1.5                                    |              |
| L /            | G RATROCESS                            | TIO:<br>S WATE<br>G WATE           | RFL         | OW:  |              | 111.    | GPM<br>GPM       | #SOLIDS:    | 1.5                                    |              |
| PF<br>CC<br>St | G RAT<br>ROCESS<br>DOLING<br>JSPEND    | TIO:<br>S WATE<br>G WATE           | RFL         | OW:  |              | 111.    | GPM<br>GPM       | *SOLIDS:    |                                        |              |
| L /            | G RAT<br>ROCESS<br>DOLING<br>JSPEND    | TIO:<br>S WATE<br>G WATE           | RFL         | OW:  |              | 111.    | GPM<br>GPM       | %SOLIDS:    |                                        |              |
| PF<br>CC<br>St | G RAT<br>ROCESS<br>DOLING<br>JSPEND    | TIO:<br>S WATE<br>G WATE           | RFL         | OW:  |              | 111.    | GPM<br>GPM       | %SOLIDS:    |                                        |              |
| PF<br>CC<br>St | G RAT<br>ROCESS<br>DOLING<br>JSPEND    | TIO:<br>S WATE<br>G WATE           | RFL         | OW:  |              | 111.    | GPM<br>GPM       | %SOLIDS:    |                                        |              |
| PF<br>CC<br>St | G RAT<br>ROCESS<br>DOLING<br>JSPEND    | TIO:<br>S WATE<br>G WATE           | RFL         | OW:  |              | 111.    | GPM<br>GPM       | #SOLIDS:    |                                        |              |
| PF<br>CC<br>St | G RAT<br>ROCESS<br>DOLING<br>JSPEND    | TIO:<br>S WATE<br>G WATE<br>DED SO | RFL         | OW:  |              | 111.    | GPM<br>GPM       | %SOLIDS:    |                                        |              |
| PF<br>CC<br>St | G RAT<br>ROCESS<br>DOLING<br>JSPEND    | TIO:<br>S WATE<br>G WATE<br>DED SO | RFL         | OW:  |              | 111.    | GPM<br>GPM       | %SOLIDS:    |                                        |              |
| PF<br>CC<br>St | G RAT<br>ROCESS<br>DOLING<br>JSPEND    | TIO:<br>S WATE<br>G WATE<br>DED SO | RFL         | OW:  |              | 111.    | GPM<br>GPM       | #SOLIDS:    |                                        |              |
| PF<br>CC<br>St | G RAT<br>ROCESS<br>DOLING<br>JSPEND    | TIO:<br>S WATE<br>G WATE<br>DED SO | RFL         | OW:  |              | 111.    | GPM<br>GPM       | %SOLIDS:    |                                        |              |

|                                               |                 | UNITS OPTI                                            |   |
|-----------------------------------------------|-----------------|-------------------------------------------------------|---|
| PPSES: 508. COAL PREHE                        | ATER            | COKE 4                                                |   |
| •                                             |                 | •                                                     |   |
|                                               |                 |                                                       |   |
| CONTROL SYSTEM CONFIGURAT:                    | [ON:            |                                                       |   |
| VENTURI SCRUBBER                              |                 |                                                       | Ş |
| MIST ELIMINATOR                               |                 |                                                       |   |
| FAN AND DRIVE                                 |                 |                                                       |   |
| DUCTWORK                                      | 40 <b>7</b> 514 |                                                       |   |
| WASTEWATER RECYCLE S'                         | ISIEM           |                                                       |   |
| DAMPERS<br>WASTE WATER RETURN S'              | /STEM           |                                                       |   |
| WATER PUMPING SYSTEM                          | SIEM            |                                                       |   |
| FAN AND DRIVE ELECTRY                         | rca:            |                                                       |   |
| JAN AND DRIVE LEEDIN                          |                 |                                                       |   |
| FFFT OF ADDITIONAL BURTA                      | 4.0.0           | N. T. M. T. C. T. |   |
| FEET OF ADDITIONAL DUCT: TOTAL PRESSURE DROP: | 100.<br>33. INC |                                                       |   |
| 2 FANS @ 173. HP EACH                         |                 |                                                       |   |
| OPERATING HOURS AT FULL HE                    |                 |                                                       |   |
| OPERATING HOURS AT REDUCE!                    |                 |                                                       |   |
| STACK HEIGHT:                                 |                 | DIAMETER: 0.                                          |   |
| NO. OF OVENS                                  | 60,             |                                                       |   |
| OVEN HEIGHT                                   | 6.0 ME          | TERS                                                  | • |
| OVEN VOLUME                                   | 1348. CU        |                                                       |   |
| TONS COKE/PUSH                                | 24.             |                                                       |   |
| AVG. COKING TIME, HRS.                        | 12.5            |                                                       |   |
| NO. CYCLES/DAY                                | 115.            |                                                       |   |
| BULK DENSITY                                  |                 | S/CUBIC FT.                                           |   |
| YIELD                                         | .70             |                                                       |   |
| TONS COAL/YEAR                                | 1416755.        |                                                       |   |
|                                               |                 |                                                       |   |
|                                               |                 |                                                       |   |
|                                               |                 |                                                       |   |
|                                               |                 |                                                       |   |
|                                               |                 |                                                       |   |
|                                               |                 |                                                       |   |
|                                               |                 |                                                       |   |
|                                               |                 | •                                                     |   |
|                                               |                 |                                                       |   |
|                                               | •               |                                                       |   |
|                                               |                 | ·                                                     |   |
|                                               |                 |                                                       |   |
|                                               |                 |                                                       |   |

# CAPITAL COST:

| DDeci   |                        |              |                 |          |             |              |            |      | OPTION      |             |      |               |
|---------|------------------------|--------------|-----------------|----------|-------------|--------------|------------|------|-------------|-------------|------|---------------|
| PFJE    | 508.                   | COAL         | PREHEA'         | TER      |             |              | C          | KE   | 4           |             |      |               |
| CAPA    | ITY:                   |              | 992 M           | ILLI     | ON TO       | NS/YE        | <b>A</b> R |      |             |             |      |               |
| TOTAL   | . COST                 | (cost        | BASIS           | IS       | 110.0       | 0% OF        | JUNE       | 1977 | DOLLARS     | FOR         | 4078 | COS           |
|         | CATEGORY               | <del> </del> |                 |          |             | CO           | ST TA      | DOLL | ARS         |             |      | <del></del> - |
|         | ••                     | _            |                 |          |             |              | <b>.</b>   |      |             |             | į    | •             |
|         | FOUTOMENT              |              |                 |          |             |              | 4700       |      | <del></del> |             |      |               |
|         | EQUIPMENT<br>INSTRUMEN |              | _               |          |             |              | 1700.      |      |             |             |      |               |
|         | PIPING                 |              |                 |          |             |              | 1600.      |      |             |             |      |               |
|         | ELECTRICA              |              |                 |          |             |              | 4800.      |      |             |             |      | -             |
|         | FOUNDATIO              |              |                 |          |             |              | 9500.      |      |             |             |      |               |
|         | SIRUCTURA              |              |                 |          |             |              |            |      |             |             |      |               |
|         | SITE WORK              |              | <del></del>     |          |             |              | 3400       |      |             |             |      |               |
|         | INSULATIO              |              |                 |          |             |              | 6600       |      |             |             |      |               |
|         | PROTECTIV              |              | ING             |          |             |              |            |      |             |             |      |               |
|         | BUILDINGS              |              |                 |          |             |              | 9300.      |      |             |             |      |               |
|         | EQUIPMENT.             |              | IAL LA          | 30R      |             |              |            |      |             |             |      |               |
|         |                        |              |                 |          |             |              |            |      | 0400.       |             |      |               |
|         |                        |              |                 |          |             |              |            |      |             |             |      |               |
|         |                        | *** IN       |                 |          |             |              |            |      |             |             |      |               |
|         | FIELD OVE              |              |                 |          |             |              |            |      |             |             |      |               |
|         | CONTRACTO              |              |                 |          |             |              | 7600.      |      |             |             |      |               |
|         | ENGINEERI              |              |                 |          |             |              | 3500.      |      |             |             |      |               |
|         | FREIGHT                |              |                 | <u>-</u> | <del></del> |              |            |      |             |             |      |               |
|         | OFFSITE W              | IORK         |                 |          |             |              | 7800.      |      |             |             |      |               |
|         | TAXES                  | _            |                 |          |             |              | 6300.      |      |             |             |      |               |
|         | SHAKEDOWA              | <u> </u>     |                 |          |             |              |            |      | ······      |             |      |               |
|         | SPARES                 |              |                 |          |             |              | 0050       |      |             |             |      |               |
|         | CONTINGEN              |              | NET 644         |          |             |              | 4800.      |      |             |             |      |               |
|         | 1001                   | RECT C       | <u> 181 801</u> | 3101     | AL          |              |            | 61   | 0200.       |             |      |               |
|         | INTE                   | REST DI      | URING :         | INST     | ALLAT       | ION          |            | 10   | 4600.       |             |      |               |
|         | TOTA                   | L COST       |                 |          |             |              |            | 138  | 5200.       |             |      |               |
|         | TOTA                   | L COST       | WITH I          | REIR     | OFIT        |              |            | 152  | 0500.       |             |      |               |
|         |                        |              |                 |          |             |              |            |      |             |             |      |               |
|         |                        |              |                 |          |             |              |            |      |             |             |      |               |
|         |                        |              |                 |          |             |              |            |      |             |             |      |               |
| ÷. «    |                        |              |                 |          |             |              |            |      |             |             |      |               |
|         |                        |              |                 |          |             |              |            |      |             |             |      |               |
| * 9 . 2 |                        |              |                 |          |             | <del> </del> |            |      |             | <del></del> |      | <u></u>       |
|         |                        |              |                 |          |             |              |            |      |             |             |      |               |
| *       |                        |              |                 | •        |             |              |            |      | 3.5         |             |      | ٠,            |

| PPSES: 508. C   | DAL PREHEATER                         | UNITS<br>COKE | OPTION 4                                |                                        |          |
|-----------------|---------------------------------------|---------------|-----------------------------------------|----------------------------------------|----------|
| 7,020. 300. 0   |                                       |               | •                                       |                                        |          |
| CAPACITY:       | MOT NOTILIM SPP.                      | IS/YEAR       |                                         | ······································ |          |
| CATEGORY        | QUANTITY                              | RATE          |                                         | ANNUAL COST                            | (        |
| · · ·           | *** UTILIT                            | IES ***       | <u>.</u>                                |                                        |          |
| WATER           | 11035. MGAL/YR                        | \$ .1595/10   | OO GAL                                  | 1800.                                  |          |
| ELECTRICITY     | 998794. KWH/YR                        | 5 .0266/KM    | νН                                      | 26600.                                 |          |
| STEAM           | 0. MLBS/YR                            | \$ 4.0920/ML  | BS                                      | 0.                                     |          |
| FUEL            | U. GAL/YR                             | \$ .4180/G/   | \L                                      | 0.                                     |          |
|                 | *** OPERATING                         | LABOR ***     |                                         |                                        |          |
|                 |                                       |               |                                         |                                        |          |
| DIRECT          | 8760. HRS/YR                          | <u> </u>      |                                         | 125700.                                |          |
| SUPERVISION     | 1752. HRS/YR                          | \$17.20/HR    |                                         | 30100.                                 | Œ        |
|                 | *** MAINTENANCE                       | & SUPPLIES *  | <u>.</u>                                |                                        | <u> </u> |
| DIRECT LABOR    | 8767. HRS/YR                          | \$14.34/HR    |                                         | 125700.                                | "        |
| SUPERVISION     | 1753. HRS/YR                          | \$17.20/HR    |                                         | 30200.                                 |          |
| MATERIALS       |                                       |               |                                         | 107000.                                |          |
| SUPPLIES        |                                       |               |                                         | 41000.                                 |          |
| WATER TREATMENT |                                       |               |                                         | 0.                                     |          |
| SOLID WASTE     |                                       |               |                                         |                                        |          |
| DISPOSAL        | 9788. TON/YR                          | \$ 8.25/TON   |                                         | 80800.                                 |          |
| DIRECT OPERA    | TING COST                             |               | *************************************** | 568900.                                |          |
| PAYROLL OVER    | HEAD =20.0% OF A+B+C                  | :+D           |                                         | 62300.                                 |          |
|                 | AD =50.0% OF A+B+C+D                  | )+E+F         |                                         | 229900.                                |          |
| TOTAL OPERAT    |                                       |               |                                         | 861100.                                |          |
|                 | ST IN DOLLARS PER TO                  |               |                                         | .8                                     |          |
|                 | ST IN DOLLARS PER TO                  |               | LECTED                                  | 175.9                                  |          |
|                 | ST AS PERCENT OF CAP<br>Time in Weeks | TIAL CUST     |                                         | 56.6                                   |          |
|                 | FE OF SYSTEM IN YEAR                  |               |                                         | 104.<br>15.                            |          |
| KWH PER TON     |                                       |               |                                         | 1.0                                    |          |
|                 | VERY (13.15% OF TOTA                  | L CAPITAL)    |                                         | 199900                                 |          |
|                 | ON OVERHEAD ( 2.0% O                  |               | AL)                                     | 30400.                                 |          |
| PROPERTY TAX    |                                       | 30400.        |                                         |                                        |          |
| TOTAL ANNUAL    |                                       | 1121800.      |                                         |                                        |          |
|                 | - NEW                                 |               |                                         | 1098600.                               |          |
|                 |                                       |               | · · · · · · · · · · · · · · · · · · ·   |                                        |          |
|                 |                                       |               |                                         |                                        |          |
|                 |                                       |               |                                         |                                        |          |

|                               |                                       | UNITS OP    | TION   |   |
|-------------------------------|---------------------------------------|-------------|--------|---|
| PPSES: 508. COAL PREHE        | ATER                                  | COKE        | 5      |   |
| CAPACITY: .992                | MILLION TONS/                         | YEAR        |        | _ |
| BADTICIII ATE                 |                                       |             |        |   |
| PARTICULATE LOAD IN: 7.050000 | IRS/TON COAL                          |             |        |   |
| ALLOWABLE: .070500            |                                       | FFFTCTFNCY: | -99.02 | - |
| 12.00                         | -                                     |             |        |   |
| BSO                           |                                       |             |        |   |
| LOAD IN: 1.050000             | LBS/TON COAL                          |             |        |   |
| ALLOWABLE: .525000            | <del></del>                           | EFFICIENCY: | 50.0%  |   |
| 89.38                         |                                       |             |        |   |
| BAP                           |                                       |             |        |   |
| LOAD IN: .000390              | LBS/TON COAL                          |             |        |   |
| ALLOWABLE: .000195            |                                       | EFFICIENCY: | 50.0%  |   |
| .03                           | LB\$/HR                               |             |        |   |
| BENZENE                       |                                       |             |        |   |
| LOAD IN: .014000              |                                       |             |        | _ |
| ALLOWABLE: .007000            | LBS/TON COAL<br>LBS/HR                | EFFICIENCY: | 50.0%  |   |
| DUST COLLECTED PER DAY:       | 13.5 TONS(                            | DRY)        |        |   |
| TEMP OUT OF PROCESS:          | · -                                   |             |        |   |
| EXHAUST TEMPERATURE:          | 180. F                                |             |        |   |
| SCFM FLOW: 17000. AT          | 70. F                                 |             |        |   |
| ACFM FLOW: 20000. AT          | 180. F                                |             |        |   |
| L/G RATIO:                    | 0                                     |             |        |   |
| PROCESS WATER FLOW:           | O. GPM                                |             |        |   |
| COOLING WATER FLOW:           | 0. GPM                                |             |        |   |
| SUSPENDED SOLIDS OUT:         | 0. MG/L                               | XSOLIDS:    | 0      |   |
|                               |                                       |             |        |   |
|                               |                                       |             |        |   |
|                               | · · · · · · · · · · · · · · · · · · · |             |        | _ |
|                               |                                       |             |        |   |
|                               |                                       |             |        |   |
|                               |                                       |             |        |   |
|                               |                                       |             |        |   |
|                               |                                       |             |        |   |
|                               |                                       |             |        |   |

# GENERAL INFORMATION: UNITS OPTION PPSES: 508. COAL PREHEATER COKE 5 CONTROL SYSTEM CONFIGURATION: ESP FAN AND DRIVE DUCTWORK DUST HANDLING HOPPER & CONVEYORS DAMPERS FAN AND DRIVE ELECTRICAL < SCA: 538. TOTAL PLATE AREA: 13000 SO FT. 20% SPARE CAPACITY NAL DUCT: 100. DIAMETER: 3. FEET OF ADDITIONAL DUCT: 4. INCHES TOTAL PRESSURE DROP: 2 FANS 2 21. HP EACH SPARE FAN CAPACITY: 100.2 OPERATING HOURS AT FULL HP: 8322. OPERATING HOURS AT REDUCED HP: 0. STACK HEIGHT: O. DIAMETER: O. NO. OF OVENS 60. 6.0 METERS OVEN HEIGHT OVEN VOLUME 1348. CUBIC FEET TONS COKE/PUSH 24. AVG. COKING TIME, HRS. 12.5 NO. CYCLES/DAY 115. BULK DENSITY 50. LBS/CUBIC FT. .70 YIELD 1416755. TONS COAL/YEAR

#### CAPITAL COST:

| CAPACITY: .992 MILLION TON  TOTAL COST (COST BASIS IS 110.00  CATEGORY  *** DIRECT COST ***  EQUIPMENT OR MATERIAL |            |             | 5             | ·   |             |             |
|--------------------------------------------------------------------------------------------------------------------|------------|-------------|---------------|-----|-------------|-------------|
| TOTAL COST (COST BASIS IS 110.00  CATEGORY  *** DIRECT COST ***                                                    | Z OF JUNE  | 1977        |               |     |             |             |
| CATEGORY  *** DIRECT COST ***                                                                                      |            | 1977        |               |     |             |             |
| *** DIRECT COST ***                                                                                                | COST IN    |             | DOLLARS       | FOR | 4978        | COST.       |
| *** DIKECI COSI ***                                                                                                |            | DOLL        | ARS           |     |             | - <u> </u>  |
|                                                                                                                    |            |             |               |     |             |             |
|                                                                                                                    | 397400.    |             |               |     |             |             |
| INSTRUMENTATION                                                                                                    | 0.         |             |               |     |             |             |
| PIPING                                                                                                             | 0.         |             |               |     |             |             |
| ELECTRICAL                                                                                                         | 31900.     | 7           |               | -   |             |             |
| FOUNDATIONS                                                                                                        | 4800.      |             |               |     |             |             |
| STRUCTURAL                                                                                                         | 42400.     |             |               |     | <del></del> |             |
| SITE WORK                                                                                                          | 2800.      |             |               |     |             |             |
| INSULATION                                                                                                         | 21100.     |             |               |     |             |             |
| PROTECTIVE COATING                                                                                                 | 5500.      |             |               |     |             | <del></del> |
| BUILDINGS                                                                                                          | 3100.      |             |               |     |             |             |
| EQUIPMENT/MATERIAL LABOR                                                                                           | 177500.    |             | / FAA         |     |             |             |
| DIRECT COST SUBTOTAL                                                                                               |            |             | 6500.         |     |             |             |
| *** INDIRECT COST ***                                                                                              |            |             |               |     |             |             |
| FIELD OVERHEAD                                                                                                     | 115400.    |             |               |     |             |             |
| CONTRACTORS FEE                                                                                                    | 74000.     |             |               |     |             |             |
| ENGINEERING                                                                                                        | 87700.     |             |               |     |             |             |
| FREIGHT                                                                                                            | 23000.     | <u> </u>    |               |     |             |             |
| OFFSITE WORK                                                                                                       | 16300.     |             |               |     |             |             |
| TAXES                                                                                                              | 26200.     |             |               |     |             |             |
| SHAKEDOWN                                                                                                          | 36700.     |             |               |     |             |             |
| SPARES                                                                                                             | 36100.     |             |               |     |             |             |
| CONTINGENCY INDIRECT COST SUBTOTAL                                                                                 | 241300.    | ia e        | 6700          | ,   |             |             |
| INVIRELI LUSI SUBTUIAL                                                                                             |            |             | <b>6/UV</b> • |     |             | <del></del> |
| INTEREST DURING INSTALLATI                                                                                         | ON         | 11          | 2500.         |     |             |             |
| TOTAL COST                                                                                                         |            | 145         | 5700.         |     |             |             |
| TOTAL COST WITH RETROFIT                                                                                           |            | 159         | 4900.         |     |             |             |
|                                                                                                                    |            |             |               |     |             |             |
|                                                                                                                    |            |             |               |     |             |             |
|                                                                                                                    |            |             |               |     |             |             |
|                                                                                                                    |            |             |               |     |             |             |
|                                                                                                                    |            |             |               |     |             |             |
|                                                                                                                    |            | <del></del> |               |     |             |             |
|                                                                                                                    |            |             |               |     |             |             |
|                                                                                                                    |            |             |               |     |             |             |
|                                                                                                                    |            |             |               |     |             |             |
|                                                                                                                    |            |             |               |     |             |             |
|                                                                                                                    | · <u>·</u> |             |               |     |             | <i>.</i> 3: |
|                                                                                                                    |            |             |               |     |             |             |
|                                                                                                                    |            |             |               |     |             |             |

|                                |            |            | UNITS                                  |              | ······································ |
|--------------------------------|------------|------------|----------------------------------------|--------------|----------------------------------------|
| PPSES: 508. C                  | DAL PREHEA | TER        | COKE                                   | 5            |                                        |
| CAPACITY:                      | .992 M     | ILLION TO  | NS/YEAR                                |              |                                        |
| CATEGORY                       | QUANT      | ITY        | RATE                                   |              | ANNUAL COST (                          |
|                                | .1         | *** UTILI  | TIES ***                               |              |                                        |
| WATER                          | 0.         | MGAL/YR    | \$ .1595/                              | 1000 GAL     | 0.                                     |
| ELECTRICITY                    |            | KWH/YR     | \$ .0266/                              |              | 12500.                                 |
| STEAM                          |            | MLBS/YR    | \$ 4.0920/                             | -            | 0.                                     |
| FUEL                           | 0,         | GAL/YR     | \$ .4180/                              | GAL          | 0.                                     |
|                                | ****       | OPERATING  | LABOR ***                              |              |                                        |
| DIRECT                         | 8760.      | HR\$/YR    | \$14.34/HR                             |              | 125700. (A                             |
| SUPERVISION                    | 1752.      | HRS/YR     | \$17,20/HR                             |              | 30100, (B                              |
|                                | *** MA     | INTENANCE  | & SUPPLIES                             | ***          |                                        |
| DIRECT LABOR                   | 2517.      | HRS/YR     | \$14.34/HR                             |              | 36100. (C                              |
| SUPERVISION                    | -          | HR9/YR     | \$17.20/HR                             |              | 8700. (D                               |
| MATERIALS                      | ••         |            |                                        |              | 19700. (E                              |
| SUPPLIES                       |            |            |                                        |              | 9700. (F)                              |
| WATER TREATMENT<br>SOLID WASTE |            |            | ······································ |              | <u> </u>                               |
| DISPOSAL                       | 4944.      | TON/YR     | \$ 8.25/10                             | N            | 40800.                                 |
| DIRECT OPERA                   | TING COST  |            |                                        |              | 283300.                                |
| PAYROLL OVER                   | HEAD =20.0 | C OF A+B+0 | 2+D                                    |              | 40100.                                 |
| PLANT OVERHE                   |            | OF A+B+C+E | )+E+F                                  |              | 115000.                                |
| TOTAL OPERAT                   |            |            |                                        |              | 438400.                                |
| OPERATING CO                   |            |            |                                        |              | .44                                    |
| OPERATING CO                   |            |            |                                        | DLLECTED     | 88.67                                  |
| OPERATING CO                   |            |            | TIAL CUST                              |              | 27.5<br>104.                           |
| ESTIMATED LI                   |            |            | ?s                                     | <u></u>      | 20.                                    |
| KWH PER TON                    | CAPACITY   |            | . •                                    |              | •5                                     |
| CAPITAL RECO                   | VERY (11.7 | 5% OF TOT  |                                        |              | 187300.                                |
| ADMINISTRATI                   |            |            |                                        |              | 31900.                                 |
| PROPERTY TAX                   |            |            |                                        | AL)          | 31900.                                 |
| TOTAL ANNUAL                   |            |            | A SALAN CO.                            |              | 689500.                                |
|                                | •          | - NEW      |                                        |              | 667600.                                |
|                                | v          |            |                                        |              | N. j. j.                               |
|                                |            |            |                                        | S 10 70 72 1 | · ·                                    |

| GENERAL INFORMATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HATTE ORTION                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| PPSES: 509. COAL PREPARATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UNITS OPTION  COKE 2                  |
| CAPACITY: 2.834 MILLIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N TONE/VEAD                           |
| Later | I IUNOZIERA                           |
| PARTICULATE LOAD IN:500000 LBS/TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N COAL                                |
| ALLOWABLE: .015000 LBS/TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · · |
| 7.30 LB5/HR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
| DUST COLLECTED PER DAY: 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 TONS(DRY)                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                     |
| TEMP OUT OF PROCESS: 70.  EXHAUST TEMPERATURE: 70.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
| SCFM FLOW: 70000. AT 70. ACFM FLOW: 70000. AT 70.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| L/G RATIO: PROCESS WATER FLOW: 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>GPM                              |
| COOLING WATER FLOW: 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GPM                                   |
| SUSPENDED SOLIDS OUT: 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MG/L %SOLIDS: .0                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| · CART CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |

|                                         | FORMATIO         |               |                                       |                                       | OPTION                                        | ······································ |
|-----------------------------------------|------------------|---------------|---------------------------------------|---------------------------------------|-----------------------------------------------|----------------------------------------|
| PPSES:                                  | 509.             | COAL PREPAR   | RATION                                | COKE                                  | 2                                             |                                        |
|                                         | SYSTEM           | 4 CONFIGURATI | ON:                                   |                                       | <u>,, , , , , , , , , , , , , , , , , , ,</u> |                                        |
| 8/                                      | GHOUSE           |               |                                       | ·                                     |                                               |                                        |
|                                         | AN AND D         | RIVE          |                                       |                                       | '                                             | 7 AP                                   |
| C C                                     | NVEYOR<br>Ampers | TRANS PT. HO  |                                       |                                       |                                               |                                        |
|                                         | IN AND D         | RIVE ELECTRY  | LLAL                                  |                                       | <del></del>                                   |                                        |
| A/C:                                    | 6.0              | TOTAL CLO     | TH AREA: 10                           | 1000_ SD_FT                           | . a 20% SPAR                                  | E CAPACI                               |
| FEET OF                                 | ADDITI           | IONAL DUCT:   | 300.                                  | DIAMETER:                             |                                               |                                        |
| TOTAL F                                 | RESSURE          | DROP:         | 8. II<br>Spare fan                    | NCHES                                 | 100 *                                         |                                        |
|                                         |                  | RS AT FULL HE |                                       | CAPACITIE                             | 100.4                                         |                                        |
|                                         |                  |               | ) HP: 0.                              |                                       |                                               |                                        |
|                                         |                  |               |                                       | DIAMETER:                             | 0.                                            |                                        |
| NO. OF                                  |                  |               | 60.                                   |                                       |                                               |                                        |
| OVEN HE                                 |                  | •             | 6.0 1                                 |                                       |                                               |                                        |
|                                         | LUME             |               |                                       | CUBIC FEET                            |                                               |                                        |
|                                         | KE/PUSH          |               | 24.                                   |                                       |                                               |                                        |
|                                         | CLES/DAY         | ME,HRS.       | 17.5<br>82.                           |                                       |                                               |                                        |
| BULK DE                                 |                  | <u> </u>      |                                       | BS/CUBIC F                            | 7                                             |                                        |
| YIELD                                   |                  |               | .70                                   | .00/0010 /                            | •                                             |                                        |
|                                         | AL/YEAR          | <b>?</b>      | 4047868.                              |                                       |                                               |                                        |
|                                         |                  |               |                                       |                                       |                                               |                                        |
|                                         |                  |               |                                       |                                       |                                               |                                        |
|                                         |                  |               | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | ·                                             |                                        |
|                                         |                  |               |                                       |                                       |                                               |                                        |
|                                         |                  |               |                                       |                                       |                                               |                                        |
|                                         | <del> </del>     |               |                                       |                                       | <del></del>                                   |                                        |
|                                         |                  |               |                                       |                                       |                                               |                                        |
|                                         |                  |               |                                       |                                       |                                               |                                        |
|                                         |                  |               |                                       |                                       |                                               |                                        |
|                                         |                  |               |                                       |                                       |                                               |                                        |
|                                         |                  |               |                                       |                                       |                                               |                                        |
|                                         |                  |               |                                       |                                       |                                               |                                        |
| Wild Enteret                            |                  |               |                                       |                                       |                                               |                                        |
| A 100 A 10 A 10 A 10 A 10 A 10 A 10 A 1 |                  |               |                                       |                                       |                                               |                                        |
|                                         |                  |               |                                       |                                       |                                               |                                        |
|                                         |                  |               |                                       |                                       | •                                             |                                        |
|                                         |                  |               |                                       |                                       | iger San                                      |                                        |
|                                         |                  |               |                                       |                                       |                                               |                                        |
|                                         |                  | •             |                                       |                                       |                                               |                                        |
|                                         |                  |               |                                       |                                       | <u> </u>                                      |                                        |

CAPITAL COST:

| ODCEC+ FAC         | COAL BREDARISSON                             |                 | TS OPTION    |             |      |
|--------------------|----------------------------------------------|-----------------|--------------|-------------|------|
| PPSES: 509.        | COAL PREPARATION                             | €0              | KE 2         |             |      |
| CAPACITY:          | 2.834 MILLION TO                             | NS/YEAR         |              |             |      |
| TOTAL COST         | (COST BASIS IS 110.0                         | 0% OF JUNE      | 1977 DOLLARS | FOR 4978    | ÇOST |
| CATEGORY           |                                              | COST IN         | DOLLARS      |             |      |
|                    | DIDECT - 6067                                |                 |              | 'y          | •    |
|                    | <u> *** DIRECT COST ***</u><br>I or material | 252300.         | <u> </u>     |             |      |
| INSTRUMEN          | · <del>-</del>                               | 4000.           |              |             |      |
|                    |                                              | 500.            |              |             |      |
| ELECTRICA          | \L                                           | 9100.           |              |             |      |
| FOUNDATIO          | ·                                            | 4500.           |              |             |      |
| STRUCTURA          |                                              | 24100.          |              |             |      |
| SITE WORK          |                                              | 500.            |              |             |      |
| INSULATIO          |                                              | 0.              |              |             |      |
| BUILDINGS          | VE COATING                                   | 16100.          |              |             |      |
|                    | /<br>//MATERIAL LABOR                        | 0.<br>73600.    |              |             |      |
|                    | ECT COST SUBTOTAL                            | , 3000.         | 384700.      |             |      |
|                    |                                              |                 |              |             |      |
|                    | *** INDIRECT COST **                         | *               |              |             |      |
| FIELD OVE          | · - · · · · - · · · · · · · · · · · · ·      | 45900.          |              |             |      |
|                    | ORS FEE                                      | 27300.          |              |             |      |
| ENGINEER           |                                              | 35100.          |              |             |      |
| FREIGHT            |                                              | 23200.          |              |             |      |
| OFFSITE V          | VORK                                         | 1000.           |              |             |      |
| TAXES<br>SHAKEDOWN | . 1                                          | 15300.<br>7400. |              |             |      |
| SPARES             | Y                                            | 7500.           |              | <del></del> |      |
| CONTINGEN          | NCY                                          | 160000.         |              |             |      |
|                    | RECT COST SUBTOTAL                           |                 | 322700.      |             |      |
| INTE               | EREST DURING INSTALLAT                       | ION             | 26300.       |             |      |
| TOTA               | AL COST                                      |                 | 733700.      | <del></del> |      |
| 101/               | AL COST WITH RETROFIT                        |                 | 814700.      | <u>., </u>  |      |
|                    |                                              |                 |              |             |      |
|                    |                                              |                 | *            |             |      |
|                    |                                              |                 |              |             |      |
|                    |                                              |                 |              |             |      |
|                    |                                              |                 |              |             |      |
|                    |                                              |                 | <u> </u>     |             |      |
|                    | <b>A-1</b> :                                 | 22              |              |             |      |

| CAPACITY:                |                                          |                                       |       |                                        |       |
|--------------------------|------------------------------------------|---------------------------------------|-------|----------------------------------------|-------|
| CAPACITY:                | 3 474 MTL ( TON TO)                      |                                       |       |                                        |       |
|                          | 2.834 MILLION TON                        | STYFAR                                |       |                                        |       |
| CATEGORY                 | QUANTITY                                 | RATE                                  |       | ANNUAL COST                            | (\$   |
|                          | *** UTILIT                               | IES ***                               |       | 160                                    |       |
| WATER                    | O. MGAL/YR                               | \$ .1595/100                          | O GAL | 0-                                     |       |
| ELECTRICITY              | 1016568. KWH/YR                          | \$ .0266/KWH                          |       | 27100.                                 |       |
| STEAM                    | 0. MLBS/YR                               | \$ 4.0920/MLB                         |       | 0.                                     |       |
| FUEL                     | O. GAL/YR                                | \$ .4180/GAL                          |       | 0.                                     |       |
|                          | *** OPERATING                            | LABOR ***                             |       | ······································ |       |
| DIRECT                   | 500. HRS/YR                              | \$14.34/HR                            |       | 7200.                                  | ( A ) |
| SUPERVISION              | 100. HRS/YR                              | \$17.20/HR                            |       | 1700.                                  |       |
|                          | *** MAINTENANCE                          | & SUPPLIES ***                        |       |                                        |       |
| DIDECT + ADOD            |                                          |                                       |       | *****                                  |       |
| DIRECT LABOR SUPERVISION | 3000. HRS/YR<br>600. HKS/YR              | \$14.34/HR                            |       | 43000.<br>10300.                       |       |
| MATERIALS                | 600. HRS/TR                              | \$17.20/HR                            |       | 17600.                                 |       |
| SUPPLIES                 |                                          |                                       |       | 11400.                                 |       |
| WATER TREATMENT          |                                          |                                       |       | 0.                                     | ., ,  |
| SOLID WASTE              |                                          | · · · · · · · · · · · · · · · · · · · |       | ······································ |       |
| DISPOSAL                 | 982. TON/YR                              | \$ 8.25/TON                           |       | 8100.                                  |       |
| DIRECT OPER              | ATING COST                               |                                       |       | 126400.                                |       |
| PAYROLL DVE              | RHEAD =20.0X OF A+B+C                    | :+D                                   |       | 12400.                                 |       |
| PLANT OVERH              | 45600.                                   |                                       |       |                                        |       |
| TOTAL OPERA              |                                          |                                       |       | 184400.                                |       |
|                          | OST IN DOLLARS PER TO                    |                                       |       | • 0.                                   |       |
|                          | OST IN DOLLARS PER TO                    |                                       | ECTED | 187.80                                 |       |
|                          | OST AS PERCENT OF CAP                    | TIAL COST                             |       | 22.6                                   |       |
|                          | N TIME IN WEEKS<br>IFE OF SYSTEM IN YEAR | ) c                                   | ····· | <u>52.</u><br>20.                      |       |
| KWH PER TON              |                                          |                                       |       | .4                                     |       |
|                          | OVERY (11.75% OF TOTA                    | LI CAPTTAL 1                          |       | 95700                                  |       |
|                          | ION OVERHEAD ( 2.0% O                    |                                       | (I)   | 16300.                                 |       |
|                          | XES & INS. ( 2.0% OF                     |                                       |       | 16300.                                 |       |
|                          | LIZED COST - RETROFT                     |                                       | •     | 312700                                 |       |
|                          | - NEW                                    |                                       |       | 300000.                                |       |
|                          |                                          |                                       |       |                                        |       |
|                          |                                          |                                       |       |                                        |       |

# GENERAL INFORMATION: UNITS OPTION COAL STORAGE YARD PPSES: 510. COKE 2 CAPACITY: 2.834 MILLION TONS/YEAR PARTICULATE .150000 LBS/TON COAL LOAD IN: MALLOWABLE: .060000 LBS/TON COAL EFFICIENCY: \$60.0% 27.73 LBS/HR DUST COLLECTED PER DAY: .5 TONS (DRY) 70. F TEMP OUT OF PROCESS: EXHAUST TEMPERATURE: 70. F 70. F SCFM FLOW: AT ACFM FLOW: AT 0. 70. F L/G RATIO: .0 PROCESS WATER FLOW: 170. GPM 0. GPM COOLING WATER FLOW: XSOLIDS: .0 SUSPENDED SOLIDS OUT: O. MG/L

187 1 **17**₹ -1884-1

## GENERAL INFORMATION: UNITS OPTION PPSES: 510. COAL STORAGE YARD COKE 2 CONTROL SYSTEM CONFIGURATION: TRANSFER POINT SPRAY 7 SPRAY TRUCK WATER PUMPING SYSTEM FEET OF ADDITIONAL DUCT: DIAMETER: TOTAL PRESSURE DROP: 0. INCHES 0 FANS a O. HP EACH SPARE FAN CAPACITY: OPERATING HOURS AT FULL HP: 8760 OPERATING HOURS AT REDUCED HP: 0. STACK HEIGHT: 0. 0. DIAMETER: NO. OF OVENS 60. 6.0 METERS OVEN HEIGHT OVEN VOLUME 1348. CUBIC FEET TONS COKE/PUSH 24. AVG. COKING TIME, HRS. 17.5 NO. CYCLES/DAY 82. 50. BULK DENSITY LBS/CUBIC FT. YIELD TONS COAL/YEAR 4047868.

| O.<br>O.<br>O.<br>O.<br>O.<br>O.         | 1977<br>DOLLI | DOLLAI |           | R 4Q78                     | COST.                                 |
|------------------------------------------|---------------|--------|-----------|----------------------------|---------------------------------------|
| NE :                                     | DOLLI         | ARS TO |           | R 4Q78                     |                                       |
| O.<br>O.<br>O.<br>O.<br>O.<br>O.         | DOLLI         | ARS TO |           | R 4078                     | 3                                     |
| 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0. |               |        |           |                            | · · · · · · · · · · · · · · · · · · · |
| 0.00.00.00.00.00.00.00.00.00.00.00.00.0  | 161           | 1400.  |           |                            | <u></u>                               |
| 0.00.00.00.00.00.00.00.00.00.00.00.00.0  | 161           | 1400.  |           |                            |                                       |
| 0.00.00.00.00.00.00.00.00.00.00.00.00.0  | 16            | 1400.  |           |                            |                                       |
| 0.00.00.00.00.00.00.00.00.00.00.00.00.0  | 16            | 1400.  |           |                            |                                       |
| 0.00.00.00.00.00.00.00.00.00.00.00.00.0  | 161           | 1400.  |           |                            |                                       |
| 0.0.0.0.0.                               | 16            | 1400.  |           |                            |                                       |
| 0.                                       | 16            | 1400.  |           |                            |                                       |
| 0.                                       | _161          | 1400.  |           |                            |                                       |
| 0.                                       | 161           | 1400.  |           |                            |                                       |
| 0.                                       | 16            | 1400.  |           |                            |                                       |
| 0.<br>0.                                 | _161          | 1400.  | ~         |                            |                                       |
| 0.<br>0.                                 | 16            | 1400.  |           |                            | -                                     |
| 0.                                       | 16            | 1400.  |           |                            |                                       |
| 0.<br>0.<br>0.<br>0.                     | 96            | 6900.  |           |                            |                                       |
|                                          | 7             | 7100.  |           |                            |                                       |
|                                          | 265           | 5400.  |           | ·······                    |                                       |
|                                          | 297           | 7200.  |           | <u>.</u>                   |                                       |
| 0                                        | ) •           | 26     | ) <u></u> | 96900.<br>7100.<br>265400. | 96900.<br>7100.<br>265400.            |

| ERATING CUSI:   |                                    | UNITS O                               | PTION                                 |
|-----------------|------------------------------------|---------------------------------------|---------------------------------------|
| PPSES: 510. C   | OAL STORAGE YARD                   | COKE                                  | 5                                     |
| CAPACITY:       | 2.834 MILLION TOP                  | NS/YEAR                               |                                       |
| CATEGORY        | QUANTITY                           | RATE                                  | ANNUAL COST (S                        |
| :               | *** UTILI                          | TIES ***                              | · · · · · · · · · · · · · · · · · · · |
| MATER           | 49870. MGAL/YR                     | 4 1595/1000                           |                                       |
| ELECTRICITY     | 32639. KWH/YR                      | \$ .0266/KWH                          | 900.                                  |
| STEAM           | 0. MLBS/YR                         | • • •                                 |                                       |
| FUEL            | 0. GAL/YR                          | \$ 4180/GAL                           | _                                     |
|                 | *** OPERATING                      | LABOR ***                             |                                       |
| DIRECT          | 1800. HRS/YR                       | \$14.34/HR                            | 25800. (A)                            |
| SUPERVISION     | 360. HRS/YH                        | \$17.20/HR                            | 6200. (B)                             |
|                 | *** MAINTENANCE                    | & SUPPLIES ***                        |                                       |
| DIRECT LABOR    | . 800. HRS/YR                      | \$14.34/HR                            | 11500. (C)                            |
| SUPERVISION     | 160. HRS/YR                        | \$17.20/HR                            | 2800. (D)                             |
| MATERIALS       |                                    |                                       | 6500. (E)                             |
| SUPPLIES        |                                    |                                       | -3300. (F)                            |
| MATER TREATMENT |                                    | · · · · · · · · · · · · · · · · · · · |                                       |
| SOLID WASTE     |                                    |                                       | _                                     |
| DISPOSAL        | 0. TON/YR                          | \$ 8.25/TON                           | 0.                                    |
| DIRECT OPERA    | TING COST                          |                                       | 65000.                                |
| PAYROLL OVER    | HEAD \$20.0% OF A+B+0              | C+D                                   | 9300.                                 |
| PLANT OVERHE    | AD =50.0% OF A+B+C+0               | )+E+F                                 | 28100.                                |
| <del>-</del>    | ING COST                           |                                       | 102400.                               |
|                 | ST IN DOLLARS PER TO               |                                       | .04                                   |
|                 | ST IN DOLLARS PER TO               |                                       |                                       |
|                 | ST AS PERCENT OF CAR               | PITAL CUST                            | 34.5                                  |
|                 | TIME IN WEEKS FE OF SYSTEM IN YEAR | ) e                                   | <u>52.</u><br>20.                     |
| KWH PER TON     |                                    | (3                                    | •0                                    |
|                 | VERY (11.75% OF TOTA               | N. CAPTTAL)                           | 34900.                                |
|                 | ON OVERHEAD ( 2.0%                 |                                       |                                       |
| DONDEDTY TAY    | ES & INS. ( 2.0% OF                |                                       | 5900.                                 |
|                 | IZED COST - RETROFT                |                                       | 149100.                               |
|                 | - NEW                              |                                       | 144200.                               |
|                 |                                    |                                       |                                       |
|                 |                                    |                                       | 3.                                    |

|              |                                                                         |                                                                                                                                                                                                                      | TION                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| . COAL STORA | GE YARD                                                                 | COKE                                                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3 074        | MILLIAN TANG                                                            | WEAB                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | WIFFINN INVOV                                                           | IEAR                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                         |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | LBS/TON COAL                                                            |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              |                                                                         |                                                                                                                                                                                                                      | 75.0%                                                                                                                                                                                                                                                                                   | i de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 17.33        | LBS/HR                                                                  |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         | - 15°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| TED DED DAY. | 4 TONE (                                                                | NDV)                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IEU PER UNTI | •6 TUNS (                                                               | נואט                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PROCESS:     | 70. F                                                                   |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | 70. F                                                                   |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                         |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                         | <u> </u>                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| O. AT        | 70. F                                                                   |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | - <b>0</b>                                                              |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ER FLOW:     |                                                                         |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                         |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | O. MG/L                                                                 | #SOLIDS:                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                         |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                         |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                         |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                         |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                         |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <del></del>  |                                                                         |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                         |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                         |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                         |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                         |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | ······································                                  |                                                                                                                                                                                                                      | <del></del>                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                         |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                         |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                         |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                         |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u></u>      |                                                                         |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                         |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                         |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                         |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                         |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | ÷ 5                                                                     | <u> </u>                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                         |                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                         |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                         |                                                                                                                                                                                                                      | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •            |                                                                         | *                                                                                                                                                                                                                    | y i                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                         |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u> </u>     |                                                                         |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                         |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                         |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | 2.834  N: .150000  BLE: .037500 17.33  TED PER DAY:  PROCESS: PERATURE: | 2.834 MILLION TONS/ N: .150000 LBS/TON COAL BLE: .037500 LBS/TON COAL 17.33 LBS/HR  TED PER DAY: .6 TONS()  PROCESS: 70. F PERATURE: 70. F 0. AT 70. F 0. AT 70. F 0. AT 70. F 0. AT 70. F 0. GPM DLIDS OUT: 0. MG/L | COAL STORAGE YARD  2.834 MILLION TONS/YEAR  N: .150000 LBS/TON COAL BLE: .037500 LBS/TON COAL BLE: .037500 LBS/TON COAL T-33 LBS/HR  TED PER DAY: .6 TONS(DRY)  PROCESS: 70. F PERATURE: 70. F  0. AT 70. F  0. AT 70. F  ER FLOW: 254. GPM ER FLOW: 0. GPM DLIDS OUT: 0. MG/L %SOLIDS: | . COAL STORAGE YARD COKE 3  2.834 MILLION TONS/YEAR  N: .150000 LBS/TDN COAL BLE: .037500 LBS/TON COAL EFFICIENCY: 75.0X 17.33 LBS/HR  TED PER DAY: .6 TONS(DRY)  PROCESS: 70. F  PERATURE: 70. F  0. AT |

| GENERAL INFORMATION:                                                       | HALTE OPTION                 |
|----------------------------------------------------------------------------|------------------------------|
| PPSES: 510. COAL STORAGE                                                   | UNITS OPTION E YARD COKE 3   |
| CONTROL SYSTEM CONFIGURATIO                                                | ON:                          |
| COAL RECEIVING STATION TRANSFER POINT SPRAY SPRAY TRUCK                    | N SPRAYS                     |
| WATER PUMPING SYSTEM                                                       |                              |
| FEET OF ADDITIONAL DUCT:<br>TOTAL PRESSURE DROP:                           | 0. DIAMETER: 0.<br>0. INCHES |
| O FANS D U. HP EACH OPERATING HOURS AT FULL HP: OPERATING HOURS AT REDUCED |                              |
| STACK HEIGHT:                                                              | 0. DIAMETER: 0.              |
| OVEN HEIGHT                                                                | 6.0 METERS                   |
| OVEN VOLUME<br>Tons Coke/Push                                              | 1348. CUBIC FEET             |
| AVG. COKING TIME, HRS.                                                     | 17.5                         |
| NO. CYCLES/DAY                                                             | 82.                          |
| BULK DENSITY<br>Yield                                                      | 50. LBS/CUBIC FT             |
| TONS COAL/YEAR                                                             | 4047868                      |
|                                                                            |                              |
|                                                                            |                              |
|                                                                            |                              |
|                                                                            |                              |
|                                                                            |                              |
|                                                                            |                              |
|                                                                            |                              |
|                                                                            |                              |
|                                                                            |                              |
|                                                                            |                              |
|                                                                            |                              |
|                                                                            | •                            |
|                                                                            |                              |
|                                                                            |                              |
|                                                                            |                              |
|                                                                            |                              |
| <u> </u>                                                                   |                              |
|                                                                            |                              |
| <u> </u>                                                                   |                              |

| CAFITAL COST.                                        |                                        |                                       |                                            | UNI | TS (  | OPTION      |             |         |              |
|------------------------------------------------------|----------------------------------------|---------------------------------------|--------------------------------------------|-----|-------|-------------|-------------|---------|--------------|
| PPSES: 510.                                          | COAL STORAGE                           | YARD                                  |                                            | CO  | KE    | 3           |             |         |              |
| CAPACITY                                             | 2.834 MI                               | LLION TONS                            | /YEAR                                      |     |       |             |             |         |              |
|                                                      | 40000 0.000                            |                                       |                                            |     |       |             |             |         |              |
| TOTAL COST                                           | (COST BASIS                            | 15 110.002                            | OF J                                       | UNE | 1977  | DOLLARS     | FOR         | 4078    | CUST         |
| CATEGORY                                             |                                        |                                       | COST                                       | IN  | DOLL  | ARS         | <del></del> |         | 3<br>V<br>4, |
| V 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2              | *** DIRECT                             | FORT AAA                              |                                            |     |       | 200-00      |             |         | د.<br>کې     |
|                                                      | OR MATERIAL                            |                                       | 1533                                       | 00. |       |             |             |         |              |
| INSTRUMEN                                            |                                        |                                       | 38                                         |     |       |             |             |         |              |
| _                                                    |                                        |                                       |                                            | 00. |       |             |             |         |              |
| ELECTRICA                                            | L                                      |                                       | 229                                        | 00. |       |             |             |         |              |
| FOUNDATIO                                            | NS                                     |                                       | 26                                         | 00. |       |             |             |         |              |
| STRUCTURA                                            | <u>L</u>                               | · · · · · · · · · · · · · · · · · · · | 44                                         | 00. |       |             |             |         |              |
| SITE WORK                                            |                                        |                                       | 9                                          | 00. |       |             |             |         |              |
| INSULATIO                                            |                                        |                                       |                                            | 00. |       |             |             |         |              |
|                                                      | E COATING                              |                                       | 4                                          |     |       |             |             |         |              |
| BUILDINGS                                            |                                        |                                       | 55                                         | -   |       |             |             |         |              |
|                                                      | /MATERIAL LAB                          |                                       | 104                                        |     |       |             |             |         |              |
| DIRE                                                 | CT COST SUBTO                          | )TAL                                  |                                            |     | 28    | 1000.       |             |         |              |
|                                                      |                                        |                                       |                                            |     |       |             |             |         |              |
|                                                      | *** INDIRECT                           |                                       | _                                          |     |       |             |             |         |              |
|                                                      | RHEAD                                  |                                       |                                            | 00. |       |             |             |         |              |
| CONTRACTO                                            |                                        |                                       |                                            | 00. |       |             |             |         |              |
| ENGINEERI                                            |                                        |                                       | 427                                        | -   |       |             |             |         |              |
| FREIGHT                                              |                                        |                                       | 19                                         |     | · · · |             |             |         |              |
| OFFSITE W                                            | UKK                                    |                                       | 3                                          |     |       |             |             |         |              |
| TAXES                                                |                                        |                                       |                                            | 00. |       |             |             |         |              |
| SHAKEDOWN<br>SPARES                                  |                                        |                                       | 16                                         |     |       |             |             |         |              |
| CONTINGEN                                            | ~ ~                                    |                                       |                                            | 00. |       |             |             |         |              |
|                                                      | RECT COST SUB                          | TOTAL                                 |                                            | _   |       | 8200        |             |         |              |
| INDI                                                 | ALLI LUSI SUL                          |                                       |                                            |     |       | DEVU.       |             |         |              |
| INTE                                                 | REST DURING 1                          | NSTALLATIO                            | N                                          |     | 13    | 3500.       |             |         |              |
| TOTA                                                 | L COST                                 |                                       | <u>.                                  </u> |     | 45    | 2700.       | ,           |         |              |
| TOTA                                                 | COST NITH                              | RETROFIT                              |                                            |     | 529   | 5100.       |             |         |              |
|                                                      |                                        | · · · · ·                             |                                            |     |       | ·           |             |         |              |
|                                                      |                                        |                                       |                                            |     |       |             |             |         |              |
| e<br>Dordan i i i nga sart                           |                                        |                                       | · .                                        |     |       |             | <u> </u>    | ·       |              |
|                                                      |                                        |                                       |                                            |     |       |             |             |         |              |
|                                                      |                                        |                                       |                                            |     |       |             |             |         |              |
| 7.000 A                                              |                                        |                                       |                                            |     |       | ingli in is | <del></del> | <u></u> |              |
| ,只见了 <sup>你</sup> 怀看在家庭。他们也是                         |                                        |                                       |                                            |     | ,     |             |             |         |              |
| <u>an en er </u> | · · · · · · · · · · · · · · · · · · ·  |                                       |                                            |     |       |             | :           |         |              |
|                                                      |                                        |                                       |                                            |     |       |             |             |         |              |
|                                                      |                                        |                                       |                                            |     |       |             |             |         |              |
|                                                      | ************************************** |                                       |                                            |     |       |             |             |         |              |
|                                                      |                                        |                                       |                                            |     |       |             |             |         |              |

|                         |                                      | UNITS OPTION      | *************************************** |
|-------------------------|--------------------------------------|-------------------|-----------------------------------------|
| PPSES: 510.             | COAL STORAGE YARD                    | COKE 3            |                                         |
| CAPACITY:               | 2.834 MILLION TOP                    | NS/YEAR           |                                         |
| CATEGORY                | QUANTITY                             | RATE              | ANNUAL COST (                           |
|                         | *** UTILI1                           | TIES ***          | ~ <del>(1</del> )                       |
| WATER                   | 74805. MGAL/YR                       | \$ .1595/1000 GAL | 11900.                                  |
| ELECTRICITY             | 48959. KWH/YR                        | \$ .0266/KWH      | 1300.                                   |
| STEAM                   | 0. MLBS/YR                           | \$ 4.0920/MLBS    | 0.                                      |
| FUEL                    | 0. GAL/YR                            | \$ .4180/GAL      | 0.                                      |
|                         | *** OPERATING                        | LABOR ***         |                                         |
| DIRECT                  | 1800. HRS/YR                         | \$14.34/HR        | 25800. (A                               |
| SUPERVISION             | 360, HRS/YR                          | \$17.20/HR        | 6200. (B                                |
|                         |                                      | ·                 |                                         |
|                         | *** MAINTENANCE                      | & SUPPLIES ***    |                                         |
| DIRECT LABOR            | 1200. HRS/YR                         | \$14.34/HR        | 17200. (C                               |
| SUPERVISION             | 240. HRS/YR                          | \$17,20/HR        | <b>4100. (</b> p                        |
| MATERIALS               |                                      |                   | 9300. (E                                |
| SUPPLIES                | _                                    |                   | 4900. (F                                |
| WATER TREATMEN          |                                      |                   |                                         |
| SOLID WASTE<br>Disposal | O. TON/YR                            | \$ 8.25/TON       | 0.                                      |
| DISPUSAL                | V. 10N/1K                            | 9 6.23710N        | V•                                      |
| DIRECT OPE              | RATING COST                          |                   | 80700.                                  |
| PAYROLL OVI             | RHEAD =20.0% OF A+8+0                | ;+D               | 10700.                                  |
| PLANT OVER              | HEAD =50.0% OF A+B+C+E               | )+E+F             | 33800.                                  |
| TOTAL OPERA             |                                      |                   | 125200.                                 |
|                         | COST IN DOLLARS PER TO               |                   | .04                                     |
|                         | COST IN DOLLARS PER TO               |                   | 549.86                                  |
| _                       | COST AS PERCENT OF CAR               | PITAL COST        | 23.8                                    |
|                         | ON TIME IN WEEKS                     | 20                | 52                                      |
| KWH PER TO              | _IFE OF SYSTEM IN YEAR<br>N CAPACITY | (3                | 20.                                     |
|                         | COVERY (11.75% OF TOTA               | AL CAPTTAL )      | .0<br>61700                             |
|                         | TION OVERHEAD ( 2.0% (               |                   | 10500.                                  |
|                         | AXES & INS. ( 2.0% OF                |                   | 10500.                                  |
|                         | ALIZED COST - RETROFIT               |                   | 207900                                  |
|                         | - NEW                                |                   | 196600.                                 |
|                         |                                      |                   |                                         |

1

. .

### GENERAL INFORMATION: UNITS OPTION PPSES: 510. COAL STORAGE YARD COKE CAPACITY: 2.834 MILLION TONS/YEAR PARTICULATE .150000 LBS/TON COAL LOAD IN: ALLOWABLE: .015000 LBS/TON COAL EFFICIENCY: 90.0% 6.93 LBS/HR .7 TONS (DRY) DUST COLLECTED PER DAY: 70. F TEMP OUT OF PROCESS: EXHAUST TEMPERATURE: 70. F 70. F O. AT SCFM FLOW: ACFM FLOW: 0. 70. F L/G RATIO: .0 680. GPM PROCESS WATER FLOW: COOLING WATER FLOW: 0. GPM SUSPENDED SOLIDS OUT: 0. MG/L \*SOLIDS:

| PPSES: 510. C                 | OAL STORAGE YAR                        | D                    | COKE               | OPTION<br>4 | •                                      |
|-------------------------------|----------------------------------------|----------------------|--------------------|-------------|----------------------------------------|
| CONTROL SYSTEM C              | ONFIGURATION:                          |                      |                    |             |                                        |
| COAL RECEIV                   |                                        | AVE                  | ·····              |             |                                        |
| SPRAY TRUCK COAL PILE P       |                                        |                      |                    | **          | 11.50                                  |
| WATER PUMPI                   |                                        |                      |                    |             |                                        |
| FEET OF ADDITION              | AL DUCT:                               | 0.                   |                    | 0.          |                                        |
| TOTAL PRESSURE DO FANS & O. H | RUP:<br>PEACH SP                       | O. I<br>Are fan      | NCHES<br>CAPACITY: | 0.2         |                                        |
| OPERATING HOURS               | AT FULL HP:                            | 8760.                |                    |             |                                        |
| OPERATING HOURS STACK HEIGHT: |                                        |                      | DIAMETER:          |             |                                        |
| NO. OF OVENS                  |                                        | 60.                  | DIAMETER.          | <u> </u>    | <del></del>                            |
| OVEN HEIGHT                   |                                        |                      | METERS             |             |                                        |
| OVEN VOLUME<br>Tons Coke/Push |                                        | 1 <u>348.</u><br>24. | CUBIC FEET         |             |                                        |
| AVG. COKING TIME              | ,HRS.                                  | 17.5                 |                    |             |                                        |
| NO. CYCLES/DAY                |                                        | 82.                  |                    |             |                                        |
| BULK DENSITY<br>Yield         |                                        | 50.                  | L83/CUBIC F        | Τ•          |                                        |
| TONS COAL/YEAR                |                                        | 7868                 |                    |             | - <u></u>                              |
|                               |                                        |                      |                    |             |                                        |
|                               |                                        |                      |                    |             |                                        |
|                               |                                        | ····                 |                    |             |                                        |
|                               |                                        | •                    |                    |             |                                        |
|                               |                                        |                      |                    |             |                                        |
|                               |                                        |                      |                    |             |                                        |
|                               |                                        |                      |                    |             |                                        |
|                               |                                        |                      |                    |             |                                        |
|                               |                                        |                      |                    |             |                                        |
|                               |                                        |                      |                    |             |                                        |
|                               |                                        |                      |                    |             |                                        |
|                               |                                        |                      |                    |             |                                        |
|                               |                                        |                      |                    |             |                                        |
|                               |                                        |                      |                    |             |                                        |
|                               |                                        |                      |                    |             |                                        |
|                               |                                        |                      |                    |             | ······································ |
| •                             |                                        | •                    |                    | 98<br>98    |                                        |
|                               |                                        |                      |                    | <u> </u>    | <u></u>                                |
|                               |                                        |                      |                    |             |                                        |
|                               | ······································ |                      |                    |             |                                        |
| Mary and the second           |                                        |                      |                    |             |                                        |

| _                       |                                     | UN             | ITS           | OPTION                                |             |
|-------------------------|-------------------------------------|----------------|---------------|---------------------------------------|-------------|
| PPSES: 510.             | COAL STORAGE YARD                   |                | OKE           | 4                                     |             |
| CAPACITY:               | 2.834 MILLION TO                    | ONS/YEAR       |               |                                       |             |
| TOTAL COST              | (COST BASIS IS 110.6                | 00% OF JUN     | E 197         | 7 DOLLARS                             | FOR 407     |
| CATEGORY                |                                     | COST I         | N DOL         | LARS                                  | <del></del> |
|                         | *** DIRECT COST ***                 | <u> </u>       |               |                                       |             |
| EQUIPMENT               | OR MATERIAL                         | 1240100        | •             |                                       |             |
| INSTRUMEN               | TATION                              | 3800           | •             |                                       |             |
| PIPING                  |                                     | 582100         | •             |                                       |             |
| ELECTRICA               |                                     | 78100          | •             |                                       |             |
| FOUNDATIO               |                                     | 20400          | -             |                                       |             |
| STRUCTURA               |                                     | 4400           |               |                                       |             |
| SITE WORK               |                                     | 15300          | -             |                                       |             |
| INSULATIO               |                                     | 347000         | •             |                                       |             |
| PROTECTIV               |                                     | 700            |               |                                       |             |
| BUILDINGS               |                                     | 96400          | -             |                                       |             |
|                         | /MATERIAL LABOR<br>CT COST SUBTOTAL | 72300          | -             | 60600.                                |             |
|                         |                                     |                |               |                                       |             |
|                         | *** INDIRECT COST **                |                |               |                                       |             |
| FIELD OVE               |                                     | 389900         | ~ <del></del> | · · · · · · · · · · · · · · · · · · · |             |
| CONTRACTO:<br>ENGINEERI |                                     | 239800         | -             |                                       |             |
| FREIGHT                 | NG                                  | 235600         | -             |                                       |             |
| OFFSITE W               | nek                                 | 13800<br>68100 |               |                                       |             |
| TAXES                   | VNN                                 | 63200          | -             |                                       |             |
| SHAKEDOWN               |                                     | 17500          |               |                                       |             |
| SPARES                  |                                     | 12700          |               |                                       |             |
| CONTINGEN               | CY                                  | 687500         | -             |                                       |             |
|                         | RECT COST SUBTOTAL                  |                |               | 28100.                                |             |
| INTE                    | REST DURING INSTALLAT               | TION           | 3             | 08700.                                |             |
| TOTA                    | COST                                |                | 44            | 97400.                                |             |
| TOTAL                   | COST WITH RETROFIT                  |                | 49            | 74300.                                |             |

|                                         | Ann. Ann. Ann.        | UNITS OPTIO                             | N             |
|-----------------------------------------|-----------------------|-----------------------------------------|---------------|
| PPSES: 510.                             | COAL STORAGE YARD     | COKE 4                                  |               |
| CAPACITY:                               | 2.834 MILLION TO      | NS/YEAR                                 |               |
| CATEGORY                                | QUANTITY              | RATE                                    | ANNUAL COST ( |
|                                         | *** UTILI             | TIES ***                                | ğ             |
| WATER                                   | 200046. MGAL/YR       | \$ .1595/1000 GAL                       | 31900.        |
| ELECTRICITY                             | 130928. KWH/YR        | \$ .0266/KWH                            | 3500.         |
| STEAM                                   | 0. MLBS/YR            | \$ 4.0920/MLBS                          | 0.            |
| FUEL                                    | 0. GAL/YR             | \$ .4180/GAL                            | 0.            |
|                                         | *** OPERATIN          | G LABOR ***                             |               |
| DIRECT                                  | 40590. HRS/YR         | \$14.34/HR                              | 582200. (A    |
| SUPERVISION                             | 8118. HRS/YR          | \$17,20/HR                              | 139700, (B    |
|                                         | *** MAINTENANCE       | & SUPPLIES ***                          |               |
| DIRECT LABOR                            | 6378. HRS/YR          | \$14.34/HR                              | 91500. (C     |
| SUPERVISION                             | 1276. HRS/YR          | \$17.20/HR                              | 21900. (D     |
| MATERIALS                               |                       |                                         | 46500. (E     |
| SUPPLIES                                |                       |                                         | 24700. (F     |
| WATER TREATMENT                         |                       |                                         | 0.            |
| SOLID WASTE                             |                       |                                         |               |
| DISPOSAL                                | O. TON/YR             | \$ 8.25/TON                             | 0.            |
| DIRECT OPER                             | ATING COST            |                                         | 941900.       |
| PAYROLL OVE                             | RHEAD =20.01 OF A+B+  | C+D                                     | 167100.       |
|                                         | EAD =50.0% OF A+B+C+  | D+E+F                                   | 453300.       |
|                                         | TING COST             |                                         | 1562300.      |
|                                         | OST IN DOLLARS PER TI |                                         | .55           |
|                                         | OST IN DOLLARS PER TO |                                         |               |
|                                         | OST AS PERCENT OF CAL | PITAL COST                              | 31.4          |
|                                         | N TIME IN WEEKS       | De .                                    | 80.           |
| KWH PER TON                             | IFE OF SYSTEM IN YEAR | <b>N</b> 3                              | .0<br>.0      |
| • • • • • • • • • • • • • • • • • • • • | OVERY (11.75% OF TOT  | AL CAPTTAL)                             | 584300.       |
|                                         | ION OVERHEAD ( 2.0%   |                                         | 99500.        |
|                                         | XES & INS. ( 2.0% DF  |                                         | 99500.        |
|                                         | LIZED COST - RETROFT  | · · · • · · · · · · · · · · · · · · · · | 2345600.      |
|                                         | - NEW                 |                                         | 2270400.      |
| :                                       |                       | No. 1                                   |               |
|                                         |                       |                                         |               |

|                                            |                          |          |                   |            |             | PTION        |                                       |
|--------------------------------------------|--------------------------|----------|-------------------|------------|-------------|--------------|---------------------------------------|
| PPSES:                                     | 511.                     | PIPELINE | CHARGING          |            | COKE        | 2            |                                       |
| CAPACITY                                   | <u>/:</u>                | .992     | MILLION           | TONS/      | YEAR        |              |                                       |
|                                            | . = =                    |          |                   |            |             |              |                                       |
| PARTICUL                                   |                          |          |                   |            |             |              | 4.                                    |
|                                            |                          | .016000  | -                 |            |             | <b>BO</b> 04 | <u>=</u>                              |
| ALI                                        | OWABLE                   |          | LBS/TON<br>LBS/HR | CUAL       | EFFICIENCY: | 99.02        | 37.44.4                               |
|                                            |                          | • • • •  | COOTIN            |            |             |              | ·                                     |
| 850                                        |                          |          |                   |            |             |              |                                       |
| LOA                                        | AD IN:                   | .019000  | LBS/TON           | COAL       |             |              |                                       |
| ALI                                        | OWABLE                   |          |                   | COAL       | EFFICIENCY: | 99.0%        |                                       |
|                                            |                          | .03      | LBS/HR            |            |             |              |                                       |
| BAP                                        |                          |          |                   |            |             |              |                                       |
| '                                          | AD IN:                   | .000035  | LBS/TON           | COAL       |             |              |                                       |
| ALL                                        | OWABLE                   | .000000  | LBS/TON           | COAL       | EFFICIENCY: | 99.0%        |                                       |
|                                            |                          | .00      | LB\$/HR           |            |             |              |                                       |
| BENZENE                                    |                          |          |                   |            |             |              |                                       |
|                                            | AD IN:                   | .008000  | LBS/TON           | COAL       |             |              |                                       |
|                                            | OWABLE                   |          | LBS/TON           |            | EFFICIENCY: | 99.0%        |                                       |
|                                            |                          | .01      | LBS/HR            |            |             |              |                                       |
| DUST COL                                   | IECTED                   | PER DAY: |                   | TONS       | n p v )     |              |                                       |
| 000, 001                                   |                          | TEN DATE | • •               | 1045       |             |              |                                       |
|                                            |                          | CESS:    | 180. F            |            |             |              |                                       |
| EXHAUST                                    | TEMPERA                  | TURE:    | 180. F            | •          |             |              |                                       |
|                                            |                          | 0 47     | 70. F             | <u>.</u>   |             |              |                                       |
| SCFM FLC                                   | )w:                      | 0. AT    |                   |            |             |              |                                       |
| SCFM FLC                                   |                          | 0. AT    |                   | ;          |             |              |                                       |
| ACFM FLO                                   | )W:                      |          | 180. F            |            |             |              |                                       |
| ACFM FLO                                   | Ow:                      |          | 180. F            |            |             |              | · · · · · · · · · · · · · · · · · · · |
| L/G RAIJ PROCESS COULING                   | O:<br>Water F<br>Water F | O. AT    | 180. F            | SPM<br>SPM |             |              |                                       |
| ACFM FLO                                   | O:<br>Water F<br>Water F | O. AT    | 180. F            | SPM<br>SPM | %SOLIDS:    | • 0          |                                       |
| L/G RAIJ PROCESS COULING                   | O:<br>Water F<br>Water F | O. AT    | 180. F            | SPM<br>SPM | %SOLIDS:    | • 0          |                                       |
| L/G RAIJ PROCESS COULING                   | O:<br>Water F<br>Water F | O. AT    | 180. F            | SPM<br>SPM | %SOLIDS:    | .0           |                                       |
| L/G RAIJ PROCESS COULING                   | O:<br>Water F<br>Water F | O. AT    | 180. F            | SPM<br>SPM | %SOLIDS:    | • 0          |                                       |
| L/G RAIJ PROCESS COULING                   | O:<br>Water F<br>Water F | O. AT    | 180. F            | SPM<br>SPM | %SOLIDS:    | • 0          |                                       |
| L/G RAIJ PROCESS COULING                   | O:<br>Water F<br>Water F | O. AT    | 180. F            | SPM<br>SPM | %SOLIDS:    | .0           |                                       |
| L/G RAIJ PROCESS COULING                   | O:<br>Water F<br>Water F | O. AT    | 180. F            | SPM<br>SPM | %SOLIDS:    | • 0          |                                       |
| ACFM FLO L/G_RATJ PROCESS COOLING SUSPENDE | O:<br>Water F<br>Water F | O. AT    | 180. F            | SPM<br>SPM | %SOLIDS:    | . 0          |                                       |
| ACFM FLO L/G_RATJ PROCESS COOLING SUSPENDE | O:<br>Water F<br>Water F | O. AT    | 180. F            | SPM<br>SPM | %SOLIDS:    | . 0          |                                       |
| ACFM FLO L/G_RATJ PROCESS COOLING SUSPENDE | O:<br>Water F<br>Water F | O. AT    | 180. F            | SPM<br>SPM | %SOLIDS:    | • 0          |                                       |
| ACFM FLO L/G_RATJ PROCESS COOLING SUSPENDE | O:<br>Water F<br>Water F | O. AT    | 180. F            | SPM<br>SPM |             |              |                                       |
| ACFM FLO L/G_RATJ PROCESS COOLING SUSPENDE | O:<br>Water F<br>Water F | O. AT    | 180. F            | SPM<br>SPM |             |              |                                       |

.\*...

|                              | UNITS OPTION      |     |
|------------------------------|-------------------|-----|
| PPSES: 511. PIPELINE CHAR    | GING COKE S       |     |
|                              |                   |     |
|                              |                   |     |
| CONTROL SYSTEM CONFIGURATION | :                 |     |
| TOPSIDE AND PIPELINE MA      | INT.              | 484 |
| •                            |                   | 3   |
| FEET OF ADDITIONAL DUCT:     | 0. DIAMETER: 0.   |     |
| TOTAL PRESSURE DROP:         | 0. INCHES         |     |
| O FANS & O. HP EACH          |                   |     |
| OPERATING HOURS AT FULL HP:  |                   |     |
| OPERATING HOURS AT REDUCED H | P: 0.             |     |
| STACK HEIGHT:                | O. DIAMETER: O.   |     |
| NO. OF OVENS                 | 60.               |     |
| OVEN HEIGHT                  | 6.0 METERS        |     |
| OVEN VOLUME                  | 1346. CUBIC FEET  |     |
| TONS COKE/PUSH               | 24.               |     |
| AVG. COKING TIME, HRS.       | 12.5              |     |
| NO. CYCLES/DAY               | 115.              |     |
| BULK DENSITY                 | 50. LBS/CUBIC FT. |     |
| YIELD                        | .70               |     |
| TONS COAL/YEAR               | 1416755.          |     |
|                              |                   |     |
|                              |                   |     |
|                              |                   |     |
|                              |                   |     |
|                              |                   |     |
|                              |                   |     |
|                              |                   |     |
|                              |                   |     |
|                              |                   |     |
|                              |                   |     |
|                              |                   |     |
|                              |                   |     |
|                              |                   |     |
|                              |                   |     |
|                              |                   |     |
|                              |                   |     |
|                              |                   |     |
|                              |                   |     |

| CAPACITY: .992 MILLION TONS/YEAR  CATEGORY QUANTITY RATE ANNUAL COS  *** UTILITIES ***  WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PPSES: 511. PIP  | ELINE CHARGING     | UNITS<br>COKE   | S S S S S S S S S S S S S S S S S S S |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|-----------------|---------------------------------------|
| ### UTILITIES ***  #ATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PPSCS. 311. PIPI | TIME CHANGING      | LUNE            | 2                                     |
| ### UTILITIES ***  MATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CAPACITY:        | .992 MILLION TO    | S/YEAR          |                                       |
| MATER 0. MGAL/YR \$ .1595/1000 GAL 0.  STEAM 0. MLBS/YR \$ .0266/KWH 0.  STEAM 0. MLBS/YR \$ 4.0920/MLBS 0.  FUEL 0. GAL/YR \$ .4180/GAL 0.   *** OPERATING LABOR ***  DIRECT 8760. HRS/YR \$14.34/HR 125700.  SUPERVISION 1752. HRS/YR \$17.20/HR 30100.   *** MAINTENANCE & SUPPLIES ***  DIRECT LABOR 5900. HRS/YR \$14.34/HR 84600.  SUPERVISION 1180. HRS/YR \$17.20/HR 20300.  MATERIALS 42300.  SUPPLIES 22100.  MATER TREATMENT 0.  SOLID WASTE 0ISPOSAL 0. TON/YR \$ 8.25/TON 0.  DIRECT OPERATING COST 325100.  PAYROLL OVERHEAD =20.0% OF A+B+C+D 52100.  PAYROLL OVERHEAD =20.0% OF A+B+C+D 539800.  OPERATING COST IN DOLLARS PER TON PRODUCTION 0.  OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED 0.  OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED 0.  OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED 0.  OPERATING COST AS PERCENT OF CAPITAL COST  OPERATING COST AS PERCENT OF CAPITAL CAPITAL)  OPERATING COST AS PERCENT OF TOTAL CAPITAL)  ADMINISTRATION OVERHEAD ( 2.0% OF TOTAL CAPITAL)  OPERATOR CAPITAL  OPERATOR | CATEGORY         | QUANTITY           | RATE            | ANNUAL COST                           |
| Comparison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | *** UTILI          | IES ***         |                                       |
| STEAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WATER            | O. MGAL/YR         | \$ 1595/100     | O GAL O.                              |
| STEAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                    | -               | <del></del>                           |
| ### OPERATING LABOR ***  DIRECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | -                  |                 |                                       |
| DIRECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | <del>-</del>       |                 |                                       |
| DIRECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | *** OPERATING      | IAROR ***       |                                       |
| ### MAINTENANCE & SUPPLIES ###  DIRECT LABOR 5900. HRS/YR \$14.34/HR 84600.  SUPERVISION 1180. HRS/YR \$14.34/HR 20300.  MATERIALS 42300.  SUPPLIES 22100.  WATER TREATMENT 0.  SOLID WASTE  DISPOSAL 0. TON/YR \$ 8.25/TON 0.  DIRECT OPERATING COST 325100.  PAYROLL OVERHEAD #20.0% OF A+B+C+D 52100.  PLANT OVERHEAD #50.0% OF A+B+C+D+E+F 162600.  TOTAL OPERATING COST 539800.  OPERATING COST IN DOLLARS PER TON PRODUCTION 59800.  OPERATING COST IN DOLLARS PER TON DF DUST COLLECTED 48107.  OPERATING COST IN DELIARS PER TON DF DUST COLLECTED 48107.  OPERATING COST IN WEEKS 99.  KWH PER TON CAPACITY  ADMINISTRATION OVERHEAD (2.0% OF TOTAL CAPITAL) 0.  PROPERTY TAKES & INS. (2.0% OF TOTAL CAPITAL) 0.  TOTAL ANNUALIZED COST - RETROFIT 539800.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                    | LAUVIN BAA      |                                       |
| DIRECT LABOR 5900. HRS/YR \$14.34/HR 84600. SUPERVISION 1180. HRS/YR \$17.20/HR 20300. MATERIALS 42300. SUPPLIES 22100. WAIER TREATMENT 0. SOLID WASTE DISPOSAL 0. TON/YR \$8.25/TON 0.  DIRECT OPERATING COST 325100.  PAYROLL OVERHEAD \$20.00 OF A+B+C+D 52100. PLANT OVERHEAD \$50.00 OF A+B+C+D+E+F 162600. TOTAL OPERATING COST 539800.  OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED 48107. OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED 48107. OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED 48107. OPERATING COST IN BEEKS 8. ESTIMATED LIFE OF SYSTEM IN YEARS 99. KWH PER TON CAPACITY CAPITAL RECOVERY (10.00% OF TOTAL CAPITAL) 0. PROPERTY TAXES & INS. (2.0% OF TOTAL CAPITAL) 0. TOTAL ANNUALIZED COST - RETROFIT 539800.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DIRECT           | 8760. HRS/YR       |                 | 125700. (                             |
| DIRECT LABOR 5900. HRS/YR \$14.34/HR 84600.  SUPERVISION 1180. HRS/YR \$17.20/HR 20300.  MATERIALS 42300.  SUPPLIES 22100.  WATER TREATMENT 0.  SOLID WASTE DISPOSAL 0. TON/YR \$8.25/TON 0.  DIRECT OPERATING COST 325100.  PAYROLL OVERHEAD \$20.0% OF A+B+C+D 52100.  PAYROLL OVERHEAD \$50.0% OF A+B+C+D+E+F 162600.  TOTAL OPERATING COST 539800.  OPERATING COST IN DOLLARS PER TON PRODUCTION 539800.  OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED 48107.  OPERATING COST AS PERCENT OF CAPITAL COST  INSTALLATION TIME IN MEEKS 8.  ESTIMATED LIFE OF SYSTEM IN YEARS 99.  KWH PER TON CAPACITY  ADMINISTRATION OVERHEAD (2.0% OF TOTAL CAPITAL) 0.  PROPERTY TAXES & INS. (2.0% OF TOTAL CAPITAL) 0.  TOTAL ANNUALIZED COST = RETROFIT 539800.  - NEW 539800.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SUPERVISION      | 1752. HRS/YR       | \$17.20/HR      | 30100. (                              |
| DIRECT LABOR 5900. HRS/YR \$14.34/HR 84600.  SUPERVISION 1180. HRS/YR \$17.20/HR 20300.  MATERIALS 42300.  SUPPLIES 22100.  WATER TREATMENT 0.  SOLID WASTE 0ISPOSAL 0. TON/YR \$8.25/TON 0.  DIRECT OPERATING COST 325100.  PAYROLL OVERHEAD #20.0% OF A+B+C+D 52100.  PLANT OVERHEAD #50.0% OF A+B+C+D+E+F 162600.  TOTAL OPERATING COST 539800.  OPERATING COST IN DOLLARS PER TON PRODUCTION 539800.  OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED 48107.  OPERATING COST AS PERCENT OF CAPITAL COST  INSTALLATION TIME IN WEEKS 8.  ESTIMATED LIFE OF SYSTEM IN YEARS 99.  KWH PER TON CAPACITY  CAPITAL RECOVERY (10.00% OF TOTAL CAPITAL) 0.  PROPERTY TAXES & INS. (2.0% OF TOTAL CAPITAL) 0.  PROPERTY TAXES & INS. (2.0% OF TOTAL CAPITAL) 0.  TOTAL ANNUALIZED COST = RETROFIT 539800.  - NEW 539800.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | *** MAINTENANCE    | & SUPPLIES ***  |                                       |
| SUPERVISION 1180, HRS/YR \$17,20/HR 20300, MATERIALS 22100. WATER TREATMENT 22100. WATER TREATMENT 22100 22100.  DIRECT OPERATING COST 325100.  PAYROLL OVERHEAD #20.0% OF A+B+C+D 52100. PLANT OVERHEAD #50.0% OF A+B+C+D+E+F 162600. TOTAL OPERATING COST 539800.  OPERATING COST IN DOLLARS PER TON PRODUCTION 0PERATING COST IN DOLLARS PER TON OF DUST COLLECTED 48107. OPERATING COST IN DULARS PER TON OF DUST COLLECTED 48107. OPERATING COST AS PERCENT OF CAPITAL COST 1NSTALLATION TIME IN WEEKS 8. ESTIMATED LIFE OF SYSTEM IN YEARS 99. KWH PER TON CAPACITY 2. CAPITAL RECOVERY (10.00% OF TOTAL CAPITAL) 0. ADMINISTRATION OVERHEAD (2.0% OF TOTAL CAPITAL) 0. PROPERTY TAXES & INS. (2.0% OF TOTAL CAPITAL) 0. TOTAL ANNUALIZED COST = RETROFIT 539800.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                    |                 |                                       |
| MATERIALS SUPPLIES MATER TREATMENT  SOLID WASTE DISPOSAL  DIRECT OPERATING COST  PAYROLL OVERHEAD #20.0% OF A+B+C+D  PLANT OVERHEAD #50.0% OF A+B+C+D+E+F  TOTAL OPERATING COST  OPERATING COST IN DOLLARS PER TON PRODUCTION  OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED  OPERATING COST AS PERCENT OF CAPITAL COST  INSTALLATION TIME IN WEEKS  ESTIMATED LIFE OF SYSTEM IN YEARS  ESTIMATED LIFE OF SYSTEM IN YEARS  KWH PER TON CAPACITY  CAPITAL RECOVERY (10.00% OF TOTAL CAPITAL)  ADMINISTRATION OVERHEAD ( 2.0% OF TOTAL CAPITAL)  OPROPERTY TAXES & INS. ( 2.0% OF TOTAL CAPITAL)  TOTAL ANNUALIZED COST - RETROFIT  539800.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | =                  | <del>-</del> -  | 84600. (                              |
| SUPPLIES  MATER TREATMENT  SOLID WASTE  DISPOSAL  DIRECT OPERATING COST  PAYROLL OVERHEAD =20.0% OF A+B+C+D  PLANT OVERHEAD =50.0% OF A+B+C+D+E+F  TOTAL OPERATING COST  OPERATING COST IN DOLLARS PER TON PRODUCTION  OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED  OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED  OPERATING COST AS PERCENT OF CAPITAL COST  INSTALLATION TIME IN WEEKS  ESTIMATED LIFE OF SYSTEM IN YEARS  WHICH PER TON CAPACITY  CAPITAL RECOVERY (10.00% OF TOTAL CAPITAL)  ADMINISTRATION OVERHEAD (2.0% OF TOTAL CAPITAL)  PROPERTY TAXES & INS. (2.0% OF TOTAL CAPITAL)  TOTAL ANNUALIZED COST - RETROFIT  S39800.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | 1180. HRS/YR       | \$17,20/HR      | 20300. (                              |
| MATER TREATMENT  SOLID WASTE DISPOSAL  DIRECT OPERATING COST  PAYROLL OVERHEAD \$20.0% OF A+B+C+D  PLANT OVERHEAD \$50.0% OF A+B+C+D+E+F  162600. TOTAL OPERATING COST  OPERATING COST IN DOLLARS PER TON PRODUCTION  OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED  OPERATING COST AS PERCENT OF CAPITAL COST  INSTALLATION TIME IN WEEKS  ESTIMATED LIFE OF SYSTEM IN YEARS  ESTIMATED LIFE OF SYSTEM IN YEARS  KWH PER TON CAPACITY CAPITAL RECOVERY (10.00% OF TOTAL CAPITAL)  PROPERTY TAXES & INS. (2.0% OF TOTAL CAPITAL)  TOTAL ANNUALIZED COST = RETROFIT  S39800.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                    |                 | 42300. (                              |
| SOLID WASTE DISPOSAL  O. TON/YR  S 8.25/TON  O.  DIRECT OPERATING COST  PAYROLL OVERHEAD \$20.0% OF A+B+C+D  PLANT OVERHEAD \$50.0% OF A+B+C+D+E+F  162600. TOTAL OPERATING COST  OPERATING COST IN DOLLARS PER TON PRODUCTION  OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED  OPERATING COST AS PERCENT OF CAPITAL COST  INSTALLATION TIME IN WEEKS  ESTIMATED LIFE OF SYSTEM IN YEARS  KWH PER TON CAPACITY  CAPITAL RECOVERY (10.00% OF TOTAL CAPITAL)  PROPERTY TAXES & INS. (2.0% OF TOTAL CAPITAL)  O.  TOTAL ANNUALIZED COST = RETROFIT  S39800.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                    |                 | 22100. (                              |
| DISPOSAL  DIRECT OPERATING COST  DIRECT OPERATING COST  PAYROLL OVERHEAD #20.0% OF A+B+C+D  PLANT OVERHEAD #50.0% OF A+B+C+D+E+F  TOTAL OPERATING COST  OPERATING COST IN DOLLARS PER TON PRODUCTION  OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED  OPERATING COST AS PERCENT OF CAPITAL COST  INSTALLATION TIME IN MEEKS  ESTIMATED LIFE OF SYSTEM IN YEARS  KWH PER TON CAPACITY  CAPITAL RECOVERY (10.00% OF TOTAL CAPITAL)  PROPERTY TAXES & INS. (2.0% OF TOTAL CAPITAL)  O.  ADMINISTRATION OVERHEAD (2.0% OF TOTAL CAPITAL)  PROPERTY TAXES & INS. (2.0% OF TOTAL CAPITAL)  TOTAL ANNUALIZED COST = RETROFIT  539800.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | <u> </u>           |                 |                                       |
| PAYROLL OVERHEAD #20.0% OF A+B+C+D  PLANT OVERHEAD #50.0% OF A+B+C+D+E+F  162600. TOTAL OPERATING COST  OPERATING COST IN DOLLARS PER TON PRODUCTION  OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED  OPERATING COST AS PERCENT OF CAPITAL COST  INSTALLATION TIME IN WEEKS  ESTIMATED LIFE OF SYSTEM IN YEARS KWH PER TON CAPACITY CAPITAL RECOVERY (10.00% OF TOTAL CAPITAL)  ADMINISTRATION OVERHEAD (2.0% OF TOTAL CAPITAL)  PROPERTY TAXES & INS. (2.0% OF TOTAL CAPITAL)  TOTAL ANNUALIZED COST = RETROFIT  539800.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <del></del>      | 0. TON/YR          | \$ 8.25/TON     | 0.                                    |
| PLANT OVERHEAD #50.0% OF A+B+C+D+E+F  TOTAL OPERATING COST  OPERATING COST IN DOLLARS PER TON PRODUCTION  OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED  OPERATING COST AS PERCENT OF CAPITAL COST  INSTALLATION TIME IN WEEKS  ESTIMATED LIFE OF SYSTEM IN YEARS  KWH PER TON CAPACITY  CAPITAL RECOVERY (10.00% OF TOTAL CAPITAL)  ADMINISTRATION OVERHEAD ( 2.0% OF TOTAL CAPITAL)  PROPERTY TAXES & INS. ( 2.0% OF TOTAL CAPITAL)  TOTAL ANNUALIZED COST - RETROFIT  S39800.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DIRECT OPERATION | NG COST            |                 | 325100.                               |
| PLANT OVERHEAD ±50.0% OF A+B+C+D+E+F  TOTAL OPERATING COST  OPERATING COST IN DOLLARS PER TON PRODUCTION  OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED  OPERATING COST AS PERCENT OF CAPITAL COST  INSTALLATION TIME IN WEEKS  ESTIMATED LIFE OF SYSTEM IN YEARS  KWH PER TON CAPACITY  CAPITAL RECOVERY (10.00% OF TOTAL CAPITAL)  ADMINISTRATION OVERHEAD ( 2.0% OF TOTAL CAPITAL)  PROPERTY TAXES & INS. ( 2.0% OF TOTAL CAPITAL)  TOTAL ANNUALIZED COST - RETROFIT  539800.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PAVDOLL OVERHE.  | AD #20 07 OF A+R+0 | <b>`</b> ≜ħ     | 52100                                 |
| TOTAL OPERATING COST  OPERATING COST IN DOLLARS PER TON PRODUCTION  OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED  OPERATING COST AS PERCENT OF CAPITAL COST  INSTALLATION TIME IN WEEKS  ESTIMATED LIFE OF SYSTEM IN YEARS  KWH PER TON CAPACITY  CAPITAL RECOVERY (10.00% OF TOTAL CAPITAL)  ADMINISTRATION OVERHEAD (2.0% OF TOTAL CAPITAL)  PROPERTY TAXES & INS. (2.0% OF TOTAL CAPITAL)  TOTAL ANNUALIZED COST - RETROFIT  S39800.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                    |                 |                                       |
| OPERATING COST IN DOLLARS PER TON PRODUCTION  OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED  OPERATING COST AS PERCENT OF CAPITAL COST  INSTALLATION TIME IN WEEKS  ESTIMATED LIFE OF SYSTEM IN YEARS  KWH PER TON CAPACITY  CAPITAL RECOVERY (10.00% OF TOTAL CAPITAL)  ADMINISTRATION OVERHEAD (2.0% OF TOTAL CAPITAL)  PROPERTY TAXES & INS. (2.0% OF TOTAL CAPITAL)  TOTAL ANNUALIZED COST - RETROFIT  539800.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | _                  |                 | <del>-</del>                          |
| OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED  OPERATING COST AS PERCENT OF CAPITAL COST  INSTALLATION TIME IN WEEKS  ESTIMATED LIFE OF SYSTEM IN YEARS  KWH PER TON CAPACITY  CAPITAL RECOVERY (10.00% OF TOTAL CAPITAL)  ADMINISTRATION OVERHEAD (2.0% OF TOTAL CAPITAL)  PROPERTY TAXES & INS. (2.0% OF TOTAL CAPITAL)  TOTAL ANNUALIZED COST - RETROFIT  S39800.  - NEW  539800.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                    | N PRODUCTION    |                                       |
| INSTALLATION TIME IN WEEKS  ESTIMATED LIFE OF SYSTEM IN YEARS  KWH PER TON CAPACITY  CAPITAL RECOVERY (10.00% OF TOTAL CAPITAL)  ADMINISTRATION OVERHEAD (2.0% OF TOTAL CAPITAL)  PROPERTY TAXES & INS. (2.0% OF TOTAL CAPITAL)  TOTAL ANNUALIZED COST - RETROFIT  NEW  539800.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OPERATING COST   | IN DOLLARS PER TO  | IN OF DUST COLL | ECTED 48107.55                        |
| ESTIMATED LIFE OF SYSTEM IN YEARS  KWH PER TON CAPACITY  CAPITAL RECOVERY (10.00% OF TOTAL CAPITAL)  ADMINISTRATION OVERHEAD (2.0% OF TOTAL CAPITAL)  PROPERTY TAXES & INS. (2.0% OF TOTAL CAPITAL)  TOTAL ANNUALIZED COST - RETROFIT  - NEW  539800.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                    | PITAL COST      | • 0                                   |
| KWH PER TON CAPACITY  CAPITAL RECOVERY (10.00% OF TOTAL CAPITAL)  ADMINISTRATION OVERHEAD (2.0% OF TOTAL CAPITAL)  PROPERTY TAXES & INS. (2.0% OF TOTAL CAPITAL)  TOTAL ANNUALIZED COST - RETROFIT  NEW  539800.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                    |                 |                                       |
| CAPITAL RECOVERY (10.00% OF TOTAL CAPITAL)  ADMINISTRATION OVERHEAD ( 2.0% OF TOTAL CAPITAL)  PROPERTY TAXES & INS. ( 2.0% OF TOTAL CAPITAL)  TOTAL ANNUALIZED COST - RETROFIT  NEW  539800.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                    | RS              |                                       |
| ADMINISTRATION OVERHEAD ( 2.0% OF TOTAL CAPITAL) 0. PROPERTY TAXES & INS. ( 2.0% OF TOTAL CAPITAL) 0. TOTAL ANNUALIZED COST - RETROFIT 539800 NEW 539800.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                    | L CARTTAL Y     | •0                                    |
| PROPERTY TAXES & INS. ( 2.0% OF TOTAL CAPITAL)  101AL ANNUALIZED COST = RETROFIT 539800.  - NEW 539800.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                    |                 |                                       |
| TOTAL ANNUALIZED COST - RETROFIT 539800.  - NEW 539800.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                    |                 |                                       |
| - NEW 539800.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                    | _ +             | -                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                    |                 |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                    |                 | ****                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                    |                 |                                       |

|        |       | MATIO       |         |     |                                       |        | UNITS       | OPTION                                |                                        |             |
|--------|-------|-------------|---------|-----|---------------------------------------|--------|-------------|---------------------------------------|----------------------------------------|-------------|
| PPSE   | S: 5  | 12.         | REDLER  | CH  | ARGING                                |        | COKE        | 5                                     |                                        |             |
| CAPA   | CITY: |             |         | 992 | MILLION                               | TONS/  | YEAR        |                                       |                                        |             |
|        |       |             |         |     |                                       |        |             |                                       |                                        |             |
| PART   | ICULA | TE<br>In:   | 010     |     | LBS/TON                               | COA1   |             |                                       |                                        |             |
|        |       | WABLE       |         |     | LBS/TON                               |        | EFFICIENC   | Y: 99.0                               | 7                                      |             |
|        |       |             | _       |     | LBS/HR                                |        |             | , , , , , , , , , , , , , , , , , , , |                                        | <u> </u>    |
| 880    |       |             |         |     |                                       | ·····  |             |                                       |                                        |             |
|        | LOAD  | IN:         | .006    | 000 | LBS/TON                               | COAL   |             |                                       |                                        |             |
|        | ALLO  | WABLE       |         |     |                                       | COAL   | EFFICIENC   | Y: 99.0                               | <u> </u>                               |             |
|        |       |             | •       | 01  | LBS/HR                                |        |             |                                       |                                        |             |
| BAP    |       |             | ·       |     | · · · · · · · · · · · · · · · · · · · | *****  | ·····       | · · · · · · · · · · · · · · · · · · · | <del></del>                            |             |
|        |       |             |         |     | LBS/TON                               |        |             |                                       |                                        |             |
|        | ALLO  | WABLE       |         |     | LBS/TON                               | COAL   | EFFICIENC   | Y: 99.0                               | *                                      |             |
|        |       | <del></del> |         | 00  | LBS/HR                                |        | <del></del> |                                       | <del></del>                            |             |
| BENZ   | ENE   |             |         |     |                                       |        |             |                                       |                                        |             |
|        |       |             |         |     | LBS/TON                               |        |             |                                       |                                        |             |
|        | ALLO  | WABLE       | -       |     | LBS/TON                               | COAL   | EFFICIENC   | Y: 99.0                               | X                                      |             |
|        |       |             | · •     | 01  | LBS/HR                                |        |             |                                       |                                        |             |
| DUST   | COLL  | ECTED       | PER DA  | Y:  | •0                                    | TONS ( | DRY)        |                                       | ······································ |             |
| TEMO   | OUT   | NE DD       | OCESS:  |     | 180. 1                                | •      |             |                                       |                                        |             |
|        |       |             | ATURE:  |     | 180.                                  |        |             |                                       |                                        | <del></del> |
| SCEM   | FLOW  | :           | 0.      | AT  | 70.                                   |        |             |                                       |                                        |             |
|        | FLOW  |             | 0.      | AT  |                                       |        |             |                                       |                                        |             |
| 1.76   | RATIO | •           |         |     | 0                                     |        |             |                                       |                                        |             |
|        |       | ATER        | FI NW:  | ·   | 0. (                                  | PM     | <del></del> |                                       |                                        |             |
|        |       | ATER        |         |     | 0.                                    |        |             |                                       |                                        |             |
|        |       |             | DS OUT: |     |                                       | 4G/L   | %SOLIDS:    | 0                                     |                                        |             |
|        |       |             |         |     |                                       | ··     |             |                                       |                                        |             |
|        |       |             |         |     |                                       |        |             | ****                                  |                                        | ·····       |
| )<br>3 |       |             |         |     |                                       |        | # 1<br>#    | •                                     |                                        |             |
|        |       |             |         |     |                                       |        |             |                                       |                                        |             |
|        |       |             |         |     |                                       |        |             |                                       |                                        |             |
|        |       |             | ····    |     |                                       |        |             |                                       |                                        |             |
|        |       |             |         |     |                                       | ·      |             |                                       |                                        |             |
|        |       |             |         |     |                                       |        |             |                                       |                                        |             |
|        |       |             |         |     |                                       |        |             |                                       |                                        |             |

### GENERAL INFORMATION: UNITS OPTION PPSES: 512. REDLER CHARGING COKE 2 CONTROL SYSTEM CONFIGURATION: REDLER SYSTEM MAINT. الماكين المهيية FEET OF ADDITIONAL DUCT: 0. DIAMETER: 0. TOTAL PRESSURE DROP: O. INCHES O FANS a O, HP EACH SPARE FAN CAPACITY: 0.7 OPERATING HOURS AT FULL HP: 8760. OPERATING HOURS AT REDUCED HP: 0. STACK HEIGHT: 0. DIAMETER: 0. NO. OF OVENS 60. OVEN HEIGHT 6.0 METERS OVEN VOLUME 1348. CUBIC FEET TONS COKE/PUSH 24. AVG. COKING TIME, HRS. 12.5 115. NO. CYCLES/DAY BULK DENSITY 50. LBS/CUBIC FT. .70 YIELD TONS COAL/YEAR 1416755.

| 88888 E43 85                           | DI ED BUILDCENE                      | UNITS OPTIO         |               |
|----------------------------------------|--------------------------------------|---------------------|---------------|
| PPSES: 512. RE                         | DLER CHARGING                        | COKE 5              |               |
| CAPACITY:                              | .992 MILLION TON                     | IS/YEAR             |               |
| CATEGORY                               | QUANTITY                             | RATE                | ANNUAL COST ( |
| ······································ | *** UTILIT                           | IES ***             | ÷             |
| WATER                                  | O. MGAL/YR                           | \$ .1595/1000 GAL   | 0.            |
| ELECTRICITY                            | O. KWH/YR                            | \$ .0266/KWH        | 0.            |
| STEAM                                  | 0. MLBS/YR                           | \$ 4.0920/MLBS      | 0.            |
| FUEL                                   | 0. GAL/YR                            | \$ .4180/GAL        | 0.            |
|                                        | *** OPERATING                        | LABOR ***           |               |
| DIRECT                                 | 8760. HRS/YR                         | \$14.34/HR          | 125700. (A    |
| SUPERVISION                            | 1752. HRS/YR                         | \$17.20/HR          | 30100. (E     |
|                                        |                                      |                     |               |
|                                        | *** MAINTENANCE                      | & SUPPLIES ***      |               |
| DIRECT LABOR                           | 2000. HRS/YR                         | \$14.34/HR          | 28700. (0     |
| SUPERVISION                            | 400. HRS/YR                          | \$17.20/HR          | 6900. ((      |
| MATERIALS                              |                                      |                     | 14300. (E     |
| SUPPLIES                               |                                      | •                   | 7500. (f      |
| WATER TREATMENT                        |                                      |                     | 0             |
| SOLID WASTE                            | 0. TON/YR                            | e e 35/70N          | ^             |
| DISPOSAL                               | U. TUN/TR                            | \$ 6.25/TON         | 0.            |
| DIRECT OPERAT                          | ING COST                             |                     | 213200.       |
|                                        | EAD =20.0% OF A+B+C                  |                     | 38300.        |
|                                        | D =50.0% OF A+B+C+D                  | )+E+F               | 106600.       |
| TOTAL OPERATI                          |                                      |                     | 358100.       |
|                                        | T IN DOLLARS PER TO                  |                     | <u>.36</u>    |
|                                        |                                      | N OF DUST COLLECTED |               |
|                                        | T AS PERCENT OF CAP<br>Time in weeks | TIME COST           | . 0           |
|                                        | E OF SYSTEM IN YEAR                  | 96                  | 99.           |
| KWH PER TON                            | CAPACITY                             | . 3                 | •0            |
|                                        | ERY (10.00% OF TOTA                  | L CAPITAL)          | 0.            |
|                                        | N OVERHEAD ( 2.0% C                  |                     | 0.            |
| PROPERTY TAXE                          | 3 & INS. ( 2.0% OF                   | TOTAL CAPITAL)      | 0.            |
| TOTAL ANNUALI                          | ZED COST - RETROFT                   | •                   | 358100.       |
|                                        | - NEW                                |                     | 358100.       |
|                                        |                                      | 1                   |               |

|                                                                |                                         |                        |         |                 |             | PTION                                 |                |
|----------------------------------------------------------------|-----------------------------------------|------------------------|---------|-----------------|-------------|---------------------------------------|----------------|
| PPSES:                                                         | 513.                                    | HOT LARRY              | CAR CHA | ARGING          | COKE        | 2                                     |                |
| CAPACII                                                        | Y:                                      | .992                   | MILLION | TONS/           | YEAR        |                                       |                |
|                                                                | = =                                     |                        |         |                 |             |                                       |                |
| PARTICU                                                        |                                         | .017000                | LRS/TOR | I COAL          |             |                                       | =              |
|                                                                | LOWABLE:                                |                        |         |                 | EFFICIENCY: | 99.02                                 | 5<br>5<br>7, v |
|                                                                |                                         |                        | LBS/HR  |                 |             |                                       | -;<br>*        |
| <b>BS</b> 0                                                    | - <u></u>                               |                        |         | ·               |             |                                       | <del>_</del>   |
|                                                                | DAD IN:                                 | .019000                | LBS/TOM | N COAL          |             |                                       |                |
|                                                                | LOWABLE:                                |                        |         |                 | EFFICIENCY: | 99.0%                                 |                |
|                                                                | ,                                       | .03                    | LBS/HR  |                 |             |                                       |                |
| BAP                                                            |                                         |                        |         |                 |             |                                       |                |
| L                                                              | DAD IN:                                 |                        | _       |                 |             |                                       |                |
| AL                                                             | LOWABLE:                                | - • - • - •            |         | COAL            | EFFICIENCY: | 99.0%                                 |                |
|                                                                |                                         | .00                    | LBS/HR  |                 |             |                                       |                |
| BENZENE                                                        |                                         |                        |         |                 |             |                                       |                |
|                                                                |                                         | .008000                |         |                 |             | · · · · · · · · · · · · · · · · · · · | _              |
| AL                                                             | LOWABLE:                                | - ·                    |         | N COAL          | EFFICIENCY: | 99.0%                                 |                |
|                                                                |                                         | •01                    | LBS/HR  |                 |             |                                       |                |
|                                                                | IT OF PRO                               |                        | 180.    | •               |             |                                       |                |
|                                                                | • • • • • • • • • • • • • • • • • • • • |                        |         |                 |             |                                       |                |
|                                                                | _                                       | _                      |         |                 |             |                                       |                |
| SCFM FL                                                        | *                                       | 0. AT                  |         |                 |             |                                       |                |
|                                                                | *                                       | 0. AT                  |         |                 |             |                                       |                |
| SCFM FL<br>ACFM FL<br>L/G RAI                                  | .OW:<br>.IO:                            | 0. AT                  | 180.    | F<br>)          |             |                                       |                |
| SCFM FL<br>ACFM FL<br>L/G RAI<br>PROCESS                       | OW:<br>'IO:<br>B WATER F                | O. AT                  | 180.    | F<br>)<br>GPM   |             |                                       |                |
| SCFM FL<br>ACFM FL<br>L/G RAI<br>PROCESS<br>COOLING            | .OW:<br>.IO:                            | O. AT                  | 180.    | F<br>)          | %SOLIDS:    | • 0                                   |                |
| SCFM FL<br>ACFM FL<br>L/G RAI<br>PROCESS<br>COOLING            | OW:<br>IO:<br>WATER F                   | O. AT                  | 180.    | F<br>GPM<br>GPM | %SOLIDS:    | .0                                    |                |
| SCFM FL<br>ACFM FL<br>L/G RAI<br>PROCESS<br>COOLING            | OW:<br>IO:<br>WATER F                   | O. AT                  | 180.    | F<br>GPM<br>GPM | %SOLIDS:    | • 0                                   |                |
| SCFM FL<br>ACFM FL<br>L/G RAI<br>PROCESS<br>COOLING            | OW:<br>IO:<br>WATER F                   | O. AT                  | 180.    | F<br>GPM<br>GPM | %SOLIDS:    | •0                                    |                |
| SCFM FL<br>ACFM FL<br>L/G RAI<br>PROCESS<br>COOLING            | OW:<br>IO:<br>WATER F                   | O. AT                  | 180.    | F<br>GPM<br>GPM | %SOLIDS:    | • 0                                   |                |
| SCFM FL<br>ACFM FL<br>L/G RAI<br>PROCESS<br>COOLING            | OW:<br>IO:<br>WATER F                   | O. AT                  | 180.    | F<br>GPM<br>GPM | %SOLIDS:    | • 0                                   |                |
| SCFM FL<br>ACFM FL<br>L/G RAI<br>PROCESS<br>COOLING<br>SUSPEND | OW:<br>IO:<br>WATER F                   | O. AT                  | 180.    | F<br>GPM<br>GPM |             | • 0                                   | •              |
| SCFM FL<br>ACFM FL<br>L/G RAI<br>PROCESS<br>COOLING            | OW:<br>IO:<br>WATER F                   | O. AT LOW: LOW: S OUT: | 180.    | F<br>GPM<br>GPM | %SOLIDS:    | .0                                    |                |
| SCFM FL<br>ACFM FL<br>L/G RAI<br>PROCESS<br>COOLING<br>SUSPEND | OW: ID: WATER F WATER F DED SOLID       | O. AT LOW: LOW: S OUT: | 180.    | F<br>GPM<br>GPM |             | •0                                    |                |
| SCFM FL<br>ACFM FL<br>L/G RAI<br>PROCESS<br>COOLING<br>SUSPEND | OW: ID: WATER F WATER F DED SOLID       | O. AT LOW: LOW: S OUT: | 180.    | F<br>GPM<br>GPM | / :· •      |                                       |                |
| SCFM FL<br>ACFM FL<br>L/G RAI<br>PROCESS<br>COOLING<br>SUSPEND | OW:  IO:  WATER F  WATER F  DED SOLID   | O. AT LOW: LOW: S OUT: | 180.    | F<br>GPM<br>GPM | / :· •      |                                       |                |
| SCFM FL<br>ACFM FL<br>L/G RAI<br>PROCESS<br>COOLING<br>SUSPEND | OW: ID: WATER F WATER F DED SOLID       | O. AT LOW: LOW: S OUT: | 180.    | F<br>GPM<br>GPM | / :· •      | • 0                                   |                |

|                                          |                 | UNITS OPTION |                                                |
|------------------------------------------|-----------------|--------------|------------------------------------------------|
| PPSES: 513. HOT LAR                      | RY CAR CHARGING | COKE 5       |                                                |
|                                          |                 |              |                                                |
| CONTROL SYSTEM CONFIGU                   | RATION:         |              |                                                |
| HOT LARRY CAR -TO                        | PSIDE           |              | 3. <del>8</del> 80                             |
| FEET OF ADDITIONAL DUC                   |                 | DIAMETER: 0. |                                                |
| TOTAL PRESSURE DROP: 0 FANS 0 0. HP EACH |                 |              |                                                |
| OPERATING HOURS AT FUL                   |                 | APALITY U.A  |                                                |
| OPERATING HOURS AT RED                   |                 |              |                                                |
| STACK HEIGHT:                            |                 | DIAMETER: 0. |                                                |
| NO. OF OVENS                             | 60.             |              |                                                |
| OVEN HEIGHT                              | 6.0 ME          |              |                                                |
| OVEN VOLUME TONS COKE/PUSH               | 1348, CU        | RIC FEET     |                                                |
| AVG. COKING TIME, HRS.                   | 24.<br>12.5     |              |                                                |
| NO. CYCLES/DAY                           | 115.            |              |                                                |
| BULK DENSITY                             |                 | S/CUBIC FT.  | <u>-</u> , , , , , , , , , , , , , , , , , , , |
| YIELD                                    | .70             |              |                                                |
| TONS COAL/YEAR                           | 1416755.        |              |                                                |
|                                          |                 |              |                                                |
|                                          | •               |              |                                                |
|                                          | - <u></u>       |              |                                                |
|                                          |                 |              |                                                |
|                                          |                 |              |                                                |
|                                          |                 |              |                                                |
|                                          |                 |              |                                                |
|                                          |                 |              |                                                |
|                                          |                 |              |                                                |
|                                          |                 |              |                                                |
|                                          |                 |              |                                                |
|                                          |                 |              |                                                |
|                                          |                 |              |                                                |
|                                          |                 |              |                                                |
|                                          |                 |              |                                                |
|                                          |                 |              |                                                |
| 4                                        |                 | •            |                                                |
|                                          |                 |              |                                                |
|                                          |                 |              |                                                |
|                                          |                 |              |                                                |
|                                          |                 | • •          |                                                |
| •                                        |                 |              |                                                |
|                                          |                 |              |                                                |
|                                          |                 |              |                                                |
|                                          |                 |              |                                                |
|                                          |                 |              | <del></del>                                    |
|                                          | A-143           |              |                                                |

|                 |                                             |                               | OPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|-----------------|---------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| PPSES: 513. H   | DT LARRY CAR CHARGIA                        | IG COKE                       | .2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| CAPACITY:       | .992 MILLION TON                            | IS/YEAR                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| CATEGORY        | QUANTITY                                    | RATE                          | -ANNUAL (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | COST     |
|                 | *** UTILIT                                  | IES ***                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V 4      |
| (               | 0 -4541 (45                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0_       |
| ELECTRICITY     | O. MGAL/YR O. KWH/YR                        |                               | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.       |
| STEAM           | 0. MLBS/YR                                  | \$ .0266/KWH<br>\$ 4.0920/MLB |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.       |
| FUEL            | 0. GAL/YR                                   | \$ .4180/GAL                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.       |
|                 | *** OPERATING                               | LABOR ***                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| DIRECT          | 8760. HRS/YR                                | \$14.34/HR                    | 1257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00. (    |
| SUPERVISION     | 1752. HRS/YR                                | \$17.20/HR                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00. (    |
|                 | *** MAINTENANCE                             | & SUPPLIES ***                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| DIRECT LABOR    | 0. HRS/YR                                   | \$14.34/HR                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0. (     |
| SUPERVISION     | 0. HRS/YR                                   | \$17.20/HR                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0. (     |
| MATERIALS       |                                             |                               | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0. (     |
| SUPPLIES        |                                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .0. (    |
| WATER TREATMENT |                                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.       |
| SOLID WASTE     |                                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| DISPOSAL        | O. TON/YR                                   | \$ 8.25/TON                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.       |
| DIRECT OPERA    | TING COST                                   |                               | 15580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00.      |
| PAYROLL OVER    | HEAD =20.02 OF A+B+C                        | `+D                           | 312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00.      |
|                 | AD =50.0% OF A+B+C+D                        |                               | 7790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| TOTAL OPERAT    |                                             |                               | 2649                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|                 | ST IN DOLLARS PER TO                        | N PRODUCTION                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .27      |
| OPERATING CO    | ST IN DOLLARS PER TO                        | N OF DUST COLL                | ECTED 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19.45    |
| OPERATING CO    | ST AS PERCENT OF CAP                        | TAL COST                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .0       |
|                 | TIME IN WEEKS                               |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.       |
|                 | FE OF SYSTEM IN YEAR                        | RS                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99.      |
| KWH PER TON     | CAPACITY                                    |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 0      |
|                 | VERY (10,00% OF TOTA                        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u> |
|                 | ON OVERHEAD ( 2.0% O                        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ).       |
|                 | ES & INS. ( 2.0% OF<br>IZED COST - RETROFIT |                               | 26490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ).<br>`  |
| INIAL SURVE     | - NEW                                       |                               | 264900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|                 |                                             |                               | See The Control of th |          |
| •               |                                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 2.73            |                                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |

**GENERAL INFORMATION:** UNITS OPTION PPSES: 514. BY-PRODUCTS PLANT COKE 2 CAPACITY: 2.834 MILLION TONS/YEAR BSO LOAD IN: .300000 LBS/TON COAL ALLOWABLE: .060000 LBS/TON CDAL EFFICIENCY: BO.OX 27.73 LBS/HR and the same BENZENE .200000 LBS/TON COAL LOAD IN: ALLOWABLE: .040000 LBS/TON COAL EFFICIENCY: 80.0% 18.48 LBS/HR DUST COLLECTED PER DAY: .0 TONS(DRY) 100. F TEMP OUT OF PROCESS: EXHAUST TEMPERATURE: 100. F SCFM FLOW: 0. AT 70. F 100 F ACFM FLOW: AT .0 L/G RATIO: PROCESS WATER FLOW: O. GPM COOLING WATER FLOW: 0. SPM SUSPENDED SOLIDS OUT: O. MG/L XSOLIDS: .0 **4** 

#### GENERAL INFORMATION:

| PPSES: 514. BY-PRODUCTS                          | UNITS OPTION COKE 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| CONTROL SYSTEM CONFIGURATI                       | ON:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·        |
| BY-PRODUCT CONTROLS                              | A Compensation of the Comp | S. S. S. |
| FEET OF ADDITIONAL DUCT:<br>Total pressure drop: | 0. DIAMETER: 0.<br>0. INCHES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| O FANS @ O. HP EACH                              | SPARE FAN CAPACITY: 0.X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| OPERATING HOURS AT FULL HP                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| OPERATING HOURS AT REDUCED STACK HEIGHT:         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| NO. OF OVENS                                     | O. DIAMETER: O.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| OVEN HEIGHT                                      | 6.0 METERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| OVEN VOLUME                                      | 1348. CUBIC FEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| TONS COKE/PUSH                                   | 24.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| AVG. COKING TIME, HRS.                           | 17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| NO. CYCLES/DAY                                   | 82.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| BULK DENSITY                                     | 50. LBS/CUBIC FT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| YIELD<br>Tons coal/year                          | .70<br>4047868.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |

|                  |                    | UNITS       | OPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |
|------------------|--------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| PPSES: 514. 8Y-P | PRODUCTS PLANT     | COKE        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |
| CAPACITY:        | 2.834 MILLION TON  | S/YEAR      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| CATEGORY         | QUANTITY           | RATE        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ANNUAL COST ( |
|                  | *** UTILIT         | 750 444     | 100m ( 1000 ) 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |
|                  | AAN DITETI         | ICO MAN     | The state of the s |               |
| MATER            | O. MGAL/YR         | 1595/       | 1000 GAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.            |
| ELECTRICITY      | O. KWH/YR          | \$ .0266/1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.            |
| STEAM            | 0. MLBS/YR         | \$ 4.0920/1 | 4LBS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.            |
| FUEL             | 0. GAL/YR          | \$ 4180/    | GAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.            |
|                  |                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|                  | *** OPERATING      | LABOR ***   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| DIRECT           | O. HRS/YR          | \$14.34/HR  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0. (A         |
| SUPERVISION      | 0. HRS/YR          | \$17.20/HR  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0. (B         |
|                  |                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|                  | *** MAINTENANCE    | & SUPPLIES  | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |
| DIRECT LABOR     | 8760. HRS/YR       | \$14.34/HR  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 125700. (C    |
| SUPERVISION      | 1752. HRS/YR       | \$17.20/HR  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30100. (D     |
| MATERIALS        |                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0. (E         |
| SUPPLIES         |                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23400. (F     |
| WATER TREATMENT  |                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.            |
| SOLID WASTE      |                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| DISPOSAL         | O. TON/YR          | \$ 8.25/10  | ٧                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.            |
| DIRECT OPERATION | IG COST            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 179200.       |
| PAYROLL OVERHEA  | D =20.0% OF A+B+C  | +D          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31200         |
|                  | =50.0% OF A+B+C+D  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 89600.        |
| TOTAL OPERATING  |                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300000.       |
| OPERATING COST   | IN DOLLARS PER TO  | N PRODUCT   | ION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .11           |
|                  | IN DOLLARS PER TO  |             | DLLECTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25163.59      |
|                  | AS PERCENT OF CAP  | ITAL COST   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • 0           |
| INSTALLATION TI  |                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| -                | OF SYSTEM IN YEAR  | S           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99.           |
| KWH PER TON      | CAPACITY           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •0            |
|                  | CY (10.00% OF TOTA |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>      |
|                  | OVERHEAD ( 2.0% OF |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.            |
| PRUPERTY TAXES   | & INS. ( 2.0% OF   |             | nt/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 300000        |
| WIAL ANNUALIAE   | - NEW              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300000.       |
|                  |                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|                  |                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|                  |                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |

### GENERAL INFORMATION: OPTION UNITS PPSES: 515. COMBUSTION STACK - NEW COKE 2 CAPACITY: .708 MILLION TONS/YEAR PARTICULATE \_130000 LBS/TON COAL LOAD IN: ALLOWABLES .026000 LBS/TON COAL EFFICIENCY: .80.0% 3.00 LBS/HR 850 LOAD IN: .000600 LBS/TON COAL ALLOWABLE: .000120 LBS/TON COAL \_\_EFFICIENCY: 80.0% .01 LBS/HR BAP LOAD IN: .000006 LBS/TON COAL .000001 LBS/TON COAL EFFICIENCY: 80.0% ALLOWABLE: .00 LBS/HR DUST COLLECTED PER DAY: .1 TONS (DRY) TEMP OUT OF PROCESS: 450. F EXHAUST TEMPERATURE: 450. F SCFM FLOW: 67000. AT 70. F ACFM FLOW: 115000. 450. F AT L/G RATIO: .0 PROCESS WATER FLOW: O. GPM O. GPM COOLING WATER FLOW: SUSPENDED SOLIDS OUT: 0. MG/L %SOLIDS: .0

### GENERAL INFORMATION: UNITS OPTION PPSES: 515. COMBUSTION STACK - NEW COKE 2 CONTROL SYSTEM CONFIGURATION: HEATING CONTROL AND PATCHING Mary many FEET OF ADDITIONAL DUCT: DIAMETER: 6. 0. INCHES TOTAL PRESSURE DROP: 0 FANS & 0. HP EACH SPARE FAN CAPACITY: 0.X OPERATING HOURS AT FULL HP: 8760. 0. OPERATING HOURS AT REDUCED HP: DIAMETER: 0. STACK HEIGHT: 0\_ NO. OF OVENS 60. OVEN HEIGHT 6.0 METERS OVEN VOLUME 1348. CUBIC FEET TONS COKE/PUSH 24. AVG. COKING TIME, HRS. 17.5 NO. CYCLES/DAY 82. BULK DENSITY 50. LBS/CUBIC FT. .70 YIELD 1011967. TONS COAL/YEAR

A-149

|                 |                                      |               | OPTION | ······································ |     |
|-----------------|--------------------------------------|---------------|--------|----------------------------------------|-----|
| PPSES: 515. C   | OMBUSTION STACK - NEW                | COKE          | 5      |                                        |     |
| CAPACITY:       | .708 MILLION TONS                    | /YEAR         |        |                                        |     |
| CATEGORY        | QUANTITY                             | RATE          |        | ANNUAL COST                            | r ( |
|                 | *** UTILITI                          | E\$ ***       |        | <u> </u>                               |     |
| WATER           | O. MGAL/YR                           | \$ -1595/100  | 0 641  | 0                                      |     |
| ELECTRICITY     | 0. KWH/YR                            | \$ .0266/KWH  |        | 0.                                     |     |
| STEAM           | 0. MLBS/YR                           |               |        | 0.                                     |     |
| FUEL            | 0. GAL/YR                            | \$ .4180/GAL  |        | 0.                                     |     |
|                 | *** OPERATING                        | LABOR ***     |        |                                        |     |
| DIRECT          | 8760. HRS/YR                         | \$14.34/HR    |        | 125700.                                | ( / |
| SUPERVISION     | 1752, HRS/YR                         | \$17.20/HR    |        | 30100.                                 |     |
|                 | *** MAINTENANCE &                    | SUPPLIES ***  | ····   |                                        |     |
| DIRECT LABOR    | 5900. HRS/YR                         | \$14.34/HR    |        | 84600.                                 | ((  |
| SUPERVISION     | 1180. HRS/YR                         | \$17.20/HR    |        | 20300.                                 |     |
| MATERIALS       |                                      |               |        | 21200.                                 | ( [ |
| SUPPLIES        |                                      |               |        | 18900.                                 | (F  |
| WATER TREATMENT |                                      |               |        | 0.                                     |     |
| SOLID WASTE     |                                      |               |        |                                        |     |
| DISPOSAL        | 0. TON/YR                            | \$ 8.25/TON   |        | 0.                                     |     |
| DIRECT OPERA    | TING COST                            |               |        | 300800.                                |     |
|                 | EAD =20.0% OF A+B+C+                 |               |        | 52100.                                 |     |
|                 | AD =50.0% OF A+B+C+D+1               | E+F           |        | 150400.                                |     |
| TOTAL OPERAT    |                                      |               |        | 503300.                                |     |
|                 | T IN DOLLARS PER TON                 |               |        | <del></del>                            | 11_ |
|                 | ST IN DOLLARS PER TON                |               | ECTED  | 9564.                                  |     |
|                 | ST AS PERCENT OF CAPI' TIME IN WEEKS | IAL CUST      |        | • •                                    | ,   |
| <del>_</del>    | E OF SYSTEM IN YEARS                 |               |        | 99.                                    |     |
| KWH PER TON     | CAPACITY                             |               |        | . (                                    | )   |
|                 | ERY (10.00% OF TOTAL                 | CAPITAL)      |        | 0.                                     | •   |
|                 | ON OVERHEAD ( 2.0% OF                |               | L)     | 0.                                     |     |
| PROPERTY TAX    | S & INS. ( 2.0% OF TO                | DTAL CAPITAL) |        | 0.                                     |     |
| TOTAL ANNUAL    | ZED COST - RETROFIT                  | •             |        | 503300.                                |     |
|                 | - NEW                                |               |        | 503300.                                |     |
|                 |                                      |               |        |                                        |     |

|                                             |                                   | 241                       |            | 0115 11                        |          |            |            | WATED                |               | TS                                      |            |       |       |          |    |
|---------------------------------------------|-----------------------------------|---------------------------|------------|--------------------------------|----------|------------|------------|----------------------|---------------|-----------------------------------------|------------|-------|-------|----------|----|
| PP3E                                        | 5:                                | 516.                      | •          | BUEN                           | HING     | - 010      | <b>414</b> | WATER                | Ci            | KE                                      |            | 5     |       |          |    |
| CAPA                                        | CITY                              | 1                         |            |                                | 2.834    | MILL       | LON        | TONS/                | EAR           |                                         |            |       |       |          |    |
|                                             |                                   |                           |            |                                |          |            |            |                      |               |                                         |            |       |       | .,       |    |
| PART                                        | ICUL                              | ATE                       |            |                                |          |            |            |                      |               |                                         |            |       |       |          |    |
|                                             |                                   |                           |            |                                |          |            |            | COAL                 |               |                                         |            |       |       |          |    |
|                                             | ALL                               | OWAB                      | LE:        | -                              |          |            |            | COAL                 | EFF1(         | CIENCY                                  | 1          | 70.0% |       |          | 54 |
|                                             |                                   |                           |            | 44                             | 3.60     | LBS/       | HR         |                      |               |                                         |            |       |       |          | 3  |
| <b>BS</b> 0                                 |                                   |                           |            |                                |          |            |            | ·                    |               |                                         |            |       | ·     |          |    |
|                                             | LOA                               | D IN                      | :          | .00                            | 06400    | LBS/       | TON        | COAL                 |               |                                         |            |       |       |          |    |
|                                             |                                   |                           |            |                                |          |            |            | COAL                 | EFFIC         | IENCY                                   | <b>( ;</b> | 70.0% |       |          |    |
|                                             |                                   |                           |            |                                |          | LBS/       |            |                      |               |                                         |            |       |       |          |    |
| BAP                                         |                                   |                           |            |                                |          |            |            |                      |               |                                         |            |       |       |          |    |
| DAP                                         | LOA                               | DIN                       | :          | .00                            | 0310     | LBS/       | TON        | COAL                 |               | · · · · · · · · · · · · · · · · · · ·   |            |       |       |          |    |
|                                             |                                   | OWAB                      |            |                                |          |            |            | COAL                 | EFFIC         | CIENCY                                  | <b>/:</b>  | 70.0% |       |          |    |
|                                             |                                   |                           |            |                                | .04      | LBS/       | HR         |                      |               |                                         |            |       |       |          |    |
| BENZ                                        | ENE                               |                           |            |                                |          |            |            |                      |               |                                         |            |       |       |          |    |
| DENL                                        |                                   | D IN                      | :          | _01                            | 00260    | LRSZ       | เบพ        | CDAL                 |               |                                         |            |       |       |          |    |
|                                             |                                   | OWAB                      |            |                                |          |            |            | COAL                 | FFFTC         | IENCY                                   | / <b>:</b> | .0%   |       |          |    |
|                                             |                                   | , U II I                  |            | •••                            |          | LBS/       |            |                      |               | , , , , , , , , , , , , , , , , , , , , | •          | • • • |       |          |    |
|                                             |                                   |                           |            |                                |          |            |            | <b>5</b> 000 (5      |               |                                         |            |       |       |          |    |
| DUST                                        | COL                               | LECT                      | ED         | PER I                          | AY:      | 17         | 2,4        | TONS (               | RY)           |                                         |            |       |       |          |    |
| TEMP                                        |                                   |                           |            |                                |          |            | _          |                      |               |                                         |            |       |       |          |    |
|                                             | ' DUT                             | ur:                       | PKII       | CFSS                           | ĭ .      | 201        | 0_         | F                    |               |                                         |            |       |       |          |    |
|                                             |                                   | TEMP                      |            | CESS:<br>Ture:                 |          |            | 0.         |                      |               |                                         |            |       | ····· | <u> </u> |    |
| EXHA                                        | UST                               | TEMP                      |            | TURE                           | 3        | 20         | 0.         | F                    |               |                                         |            |       |       |          |    |
| EXHA<br>SCFM                                | UST<br>  FLC                      | TEMP                      |            | TURE:                          | AT       | 20         | 0.         | F<br>F               |               |                                         |            |       |       |          |    |
| EXHA                                        | UST<br>  FLC                      | TEMP                      |            | TURE                           | 3        | 20         | 0.         | F<br>F               |               |                                         |            |       |       |          |    |
| EXHA<br>SCFM                                | UST<br>I FLO                      | TEMP<br>W:<br>W:          |            | TURE:                          | AT       | 20         | 0.         | F<br>F               |               |                                         |            |       |       |          |    |
| SCFM<br>ACFM<br>L/G                         | UST<br>  FLO<br>  FLO<br>  RATI   | TEMP<br>W:<br>W:          | ERA        | 0.<br>0.                       | AT       | 200<br>200 | 0.         | F<br>F               |               |                                         |            |       |       |          |    |
| SCFM<br>ACFM<br>L/G<br>PROC                 | UST<br>FLO<br>RATI                | TEMP                      | ERA<br>R F | 0.<br>0.<br>Low:               | AT       | 70<br>200  | 0.         | F<br>F<br>GPM        |               |                                         |            |       |       |          |    |
| SCFM<br>ACFM<br>L/G<br>PROC<br>COOL         | FLO<br>RATI<br>ESS<br>ING         | TEMP                      | ERA<br>R F | O.<br>O.<br>LOW:<br>LOW:       | AT<br>AT | 70<br>200  | 0.         | F<br>F               | %SOL          | .IDS:                                   |            | . 0   |       |          |    |
| SCFM<br>ACFM<br>L/G<br>PROC<br>COOL         | FLO<br>RATI<br>ESS<br>ING         | TEMP  W:  O:  WATE  WATE  | ERA<br>R F | O.<br>O.<br>LOW:<br>LOW:       | AT<br>AT | 70<br>200  | 0.         | F<br>F<br>GPM<br>GPM | %SOL          | .IDS:                                   |            | . 0   |       |          |    |
| SCFM<br>ACFM<br>L/G<br>PROC<br>COOL         | FLO<br>RATI<br>ESS<br>ING         | TEMP  W:  O:  WATE  WATE  | ERA<br>R F | O.<br>O.<br>LOW:<br>LOW:       | AT<br>AT | 70<br>200  | 0.         | F<br>F<br>GPM<br>GPM | %SOL          | .IDS:                                   |            | . 0   |       |          |    |
| SCFM<br>ACFM<br>L/G<br>PROC<br>COOL         | FLO<br>RATI<br>ESS<br>ING         | TEMP  W:  O:  WATE  WATE  | ERA<br>R F | O.<br>O.<br>LOW:<br>LOW:       | AT<br>AT | 70<br>200  | 0.         | F<br>F<br>GPM<br>GPM | *SOL          | .IDS:                                   |            | . 0   |       |          |    |
| SCFM<br>ACFM<br>L/G<br>PROC<br>COOL         | FLO<br>RATI<br>ESS<br>ING         | TEMP  W:  O:  WATE  WATE  | ERA<br>R F | O.<br>O.<br>LOW:<br>LOW:       | AT<br>AT | 70<br>200  | 0.         | F<br>F<br>GPM<br>GPM | <b>%\$</b> 0L | IDS:                                    |            | . 0   |       |          |    |
| SCFM<br>ACFM<br>L/G<br>PROC<br>COOL         | FLO<br>RATI<br>ESS<br>ING         | TEMP  W:  O:  WATE  WATE  | ERA<br>R F | O.<br>O.<br>LOW:<br>LOW:       | AT<br>AT | 70<br>200  | 0.         | F<br>F<br>GPM<br>GPM | *SOL          | .IDS:                                   |            | . 0   |       |          |    |
| SCFM<br>ACFM<br>L/G<br>PROC<br>COOL         | FLO<br>RATI<br>ESS<br>ING         | TEMP  W:  O:  WATE  WATE  | ERA<br>R F | O.<br>O.<br>LOW:<br>LOW:       | AT<br>AT | 70<br>200  | 0.         | F<br>F<br>GPM<br>GPM |               |                                         |            |       |       |          |    |
| SCFM<br>ACFM<br>L/G<br>PROC<br>COOL         | FLO<br>RATI<br>ESS<br>ING         | TEMP  W:  O:  WATE  WATE  | ERA<br>R F | O.<br>O.<br>LOW:<br>LOW:       | AT<br>AT | 70<br>200  | 0.         | F<br>F<br>GPM<br>GPM |               | .IDS:                                   |            |       |       |          |    |
| SCFM<br>ACFM<br>L/G<br>PROC<br>COOL         | FLO<br>RATI<br>ESS<br>ING         | TEMP  W:  O:  WATE  WATE  | ERA<br>R F | O.<br>O.<br>LOW:<br>LOW:       | AT<br>AT | 70<br>200  | 0.         | F<br>F<br>GPM<br>GPM |               |                                         |            |       |       |          |    |
| SCFM<br>ACFM<br>L/G<br>PROC<br>COOL         | FLO<br>RATI<br>ESS<br>ING         | TEMP  W:  O:  WATE  WATE  | ERA<br>R F | O.<br>O.<br>LOW:<br>LOW:       | AT<br>AT | 70<br>200  | 0.         | F<br>F<br>GPM<br>GPM |               |                                         |            |       |       |          |    |
| SCFM<br>ACFM<br>L/G<br>PROC<br>COOL         | FLO<br>RATI<br>ESS<br>ING         | TEMP  W:  O:  WATE  WATE  | ERA<br>R F | O.<br>O.<br>LOW:<br>LOW:       | AT<br>AT | 70<br>200  | 0.         | F<br>F<br>GPM<br>GPM |               |                                         |            |       |       |          |    |
| SCFM<br>ACFM<br>L/G<br>PROC<br>COOL         | FLO<br>RATI<br>ESS<br>ING<br>ENDE | TEMP W: O: WATE WATE D SO | R F F LID  | TURE:  O.  O.  LOW: LOW: S OU' | AT<br>AT | 70<br>200  | 0.         | F<br>F<br>GPM<br>GPM |               |                                         |            |       |       |          |    |
| SCFM<br>ACFM<br>L/G<br>PROC<br>COOL<br>SUSP | FLO<br>RATI<br>ESS<br>ING<br>ENDE | TEMP W: O: WATE WATE D SO | R F F LID  | TURE:  O.  O.  LOW: LOW: S OU' | AT<br>AT | 70<br>200  | 0.         | F<br>F<br>GPM<br>GPM |               |                                         |            |       |       |          |    |
| SCFM<br>ACFM<br>L/G<br>PROC<br>COOL<br>SUSP | FLO<br>RATI<br>ESS<br>ING<br>ENDE | TEMP W: O: WATE WATE D SO | R F F LID  | TURE:  O.  O.  LOW: LOW: S OU' | AT<br>AT | 70<br>200  | 0.         | F<br>F<br>GPM<br>GPM |               |                                         |            |       |       |          |    |

#### CAPITAL COST:

| PPSES: 516. QUENCHING - DIRTY WAT  | ER CO     |             | PTION<br>2                             |             |             | _ |
|------------------------------------|-----------|-------------|----------------------------------------|-------------|-------------|---|
| Procov Side Wolnelling - Dinii Wal | EN CO     | N L         | 5                                      |             |             |   |
| CAPACITY: 2.834 MILLION TON        | S/YEAR    |             | ······································ |             |             | _ |
| TOTAL COST (COST BASIS IS 110.00   | Y OF JUNE | 1977        | DOLLARS                                | FOR         | 4078        |   |
|                                    |           |             |                                        |             | <u>.</u>    |   |
| CATEGORY                           | COST IN   | DOLL        | IRS                                    |             | . مَوْ      |   |
| *** DIRECT COST ***                |           |             |                                        |             |             |   |
| EQUIPMENT OR MATERIAL              | 114100.   |             |                                        |             |             |   |
| INSTRUMENTATION                    | 0.        |             |                                        |             |             |   |
| PIPING                             | 30800.    |             |                                        |             |             |   |
| ELECTRICAL                         | 6200.     |             |                                        |             |             | _ |
| FOUNDATIONS                        | 900.      |             |                                        |             |             |   |
| STRUCTURAL                         | 0.        |             |                                        |             |             |   |
| SITE WORK                          | 600.      | <del></del> |                                        |             |             | _ |
| INSULATION                         | 0.        |             |                                        |             |             |   |
| PROTECTIVE COATING                 | 900.      |             |                                        |             |             |   |
| BUILDINGS                          | 0.        |             |                                        |             |             | _ |
| EQUIPMENT/MATERIAL LABOR           | 80300.    |             |                                        |             |             |   |
| DIRECT COST SUBTOTAL               |           | 217         | 8800                                   |             |             |   |
|                                    |           |             |                                        |             |             | _ |
| *** INDIRECT COST ***              |           |             |                                        |             |             |   |
| FIELD OVERHEAD                     | 45400.    |             |                                        |             |             |   |
| CONTRACTORS FEE                    | 27900.    |             |                                        |             |             | _ |
| ENGINEERING                        | 35100.    |             |                                        |             |             |   |
| FREIGHT                            | 4400      |             |                                        |             |             |   |
| OFFSITE WORK                       | 0.        |             |                                        |             |             |   |
| TAXES                              | 5700.     |             |                                        |             |             |   |
| SHAKEDOWN                          | 1300.     |             |                                        |             |             |   |
| SPARES                             | 3500.     | ·           |                                        |             |             |   |
| CONTINGENCY                        | 71400.    |             |                                        |             |             |   |
| INDIRECT COST SUBTOTAL             |           | 194         | 1700.                                  |             |             |   |
| INTEREST DURING INSTALLATI         | O.N.      | 10          | 700.                                   |             |             |   |
|                                    | VII       |             |                                        |             |             |   |
| TOTAL COST                         |           | 439         | .005                                   |             |             |   |
| TOTAL COST WITH RETROFIT           |           | 571         | 000.                                   |             |             |   |
|                                    |           |             |                                        |             |             |   |
|                                    |           |             |                                        |             |             |   |
|                                    |           |             |                                        |             |             |   |
| 80                                 | ·         |             |                                        |             | <del></del> |   |
|                                    |           |             |                                        |             |             |   |
|                                    |           |             |                                        |             |             |   |
|                                    | <u> </u>  | <del></del> |                                        | <del></del> | ·····       |   |
|                                    |           |             |                                        |             |             |   |
|                                    |           |             | Water Janes                            |             |             |   |

. .. .

| PPSES: 516. QL          | ENCHING - DIRTY WAT  | UNITS OPTION COKE 2 |             |
|-------------------------|----------------------|---------------------|-------------|
|                         | 2.834 MILLION TON    |                     |             |
| CAPACITY:               | P.034 MILLIUN IUN    | STEAR               |             |
| CATEGORY                | QUANTITY             | RATE                | ANNUAL COST |
|                         | *** UTILIT           | IES ***             | ÷           |
| WATER                   | 0. MGAL/YR           | \$ .1595/1000 GAL   | 0.          |
| ELECTRICITY             | 0. KWH/YR            | \$ .0266/KWH        | 0.          |
| STEAM                   | 0. MLBS/YR           | \$ 4.0920/MLBS      | 0.          |
| FUEL                    | 0. GAL/YR            | \$ _4180/GAL        | 0           |
|                         | *** OPERATING        | LABOR ***           |             |
| DIRECT                  | 0. HRS/YR            | \$14.34/HR          | 0. (        |
| SUPERVISION             | U. HRS/YR            | \$17.20/HR          | 0. (1       |
|                         |                      |                     |             |
|                         | *** MAINTENANCE      | & SUPPLIES ***      |             |
| DIRECT LABOR            | 1200. HRS/YR         | \$14.34/HR          | 17200. (    |
| SUPERVISION             | 240. HR\$/YR         | \$17,20/HR          | 4100. (     |
| MATERIALS               |                      |                     | 8600. (     |
| SUPPLIES                |                      | •                   | 4500. (     |
| WATER TREATMENT         |                      |                     | 0           |
| SOLID WASTE<br>Dispusal | 9067. TON/YR         | 6 9 35/TON          | 74800.      |
| UISPUSAL                | 7007. TUN/TK         | \$ 8.25/TON         | 74600.      |
| DIRECT OPERAT           | ING COST             |                     | 109200.     |
|                         | EAD =20.0% OF A+B+C  |                     | 4300.       |
| PLANT OVERHEA           | D =50.0% OF A+B+C+D  | )+E+F               | 17200.      |
| TOTAL OPERATI           |                      |                     | 130700.     |
|                         | T IN DOLLARS PER TO  |                     | . 05        |
|                         | IT AS PERCENT OF CAP | N OF DUST COLLECTED | 28.83       |
|                         | TIME IN WEEKS        | TIAL COST           | 22.9<br>26. |
|                         | E OF SYSTEM IN YEAR  | <b>.</b> S          | 20.         |
| KWH PER TON             |                      | . •                 | .0          |
|                         | ERY (11.75% OF TOTA  | L CAPITAL)          | 67100.      |
|                         | N OVERHEAD ( 2.0% O  |                     | 11400.      |
|                         | S & INS. ( 2.0% OF   |                     | 11400.      |
| TOTAL ANNUAL            | ZED COST - RETROFIT  | •                   | 220600.     |
|                         | - NEW                |                     | 199900.     |
|                         |                      |                     |             |
|                         |                      | eg i e              |             |
|                         |                      |                     | <u></u>     |

-----

GENERAL INFORMATION: UNITS OPTION QUENCHING - DIRTY WATER PPSES: 516. COKE 3 PARTICULATE LOAD IN: 3.200000 LBS/ION COAL ALLOWABLE: .480000 LBS/TON COAL EFFICIENCY: 85.0% 221.80 LBS/HR BSO .006400 LBS/TON COAL LOAD IN: ALLOWABLE: \_\_.001600 LBS/TON COAL \_\_EFFICIENCY: \_75.0% \_\_\_\_\_ .74 LBS/HR LOAD IN: .000310 LBS/TON COAL ALLOWABLE: .000062 LBS/TON COAL EFFICIENCY: 80.0% \_\_\_\_\_03\_LBS/HR ...\_\_\_\_ BENZENE ALLOWABLE: .000065 LBS/TON COAL EFFICIENCY: 75.0% .03 LBS/HR DUST COLLECTED PER DAY: 15.1 TONS(DRY) EXHAUST TEMPERATURE: 200. F 0. AT 200. F ACFM FLOW: ...L/G RATIO: PROCESS WATER FLOW: 1213. GPM COOLING WATER FLOW: 0. GPM 0. GPM SUSPENDED SOLIDS OUT: .....1707, MG/L .....XSOLIDS: .....2

| CONTROL SYSTEM CONFIGURATION:  QUENCH TOWER BAFFLES COKE PLANT WASTEWATER TREATMENT  FEET OF ADDITIONAL DUCT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | RMATION:                               |                                     |                 | UNITS -    |                                       |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------|-------------------------------------|-----------------|------------|---------------------------------------|---|
| CONTROL SYSTEM CONFIGURATION:  QUENCH TOWER BAFFLES COKE PLANT WASTEWATER TREATMENT  FEET OF ADDITIONAL DUCT:  O. DIAMETER: O. JINCHES O FANS @ O. MP EACH SPARE FAN CAPACITY: O.X OPERATING HOURS AT FULL MP: 8760. OPERATING HOURS AT REDUCED MP: O. DIAMETER: O. NO. OF OVENS 60. OVEN HEIGHT: O. DIAMETER: O. OVEN WOLUME 1348. CUBIC FEET TONS COKE/PUSH 24. AVG. COKING TIME, HRS. 17.5 NO. CYCLES/DAY 82. BULK DENSITY 50. LBS/CUBIC FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                                        |                                     |                 |            |                                       |   |
| QUENCH TOWER BAFFLES COKE PLANT WASTEWATER TREATMENT  FEET OF ADDITIONAL DUCT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                                        |                                     |                 |            |                                       |   |
| FEET OF ADDITIONAL DUCT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DIAFA         | ICH TOWER BAFFA                        |                                     |                 |            | <del></del>                           |   |
| TOTAL PRESSURE DROP:  0 FANS @ 0. MP EACH SPARE FAN CAPACITY: 0.X  OPERATING HOURS AT FULL HP: 8760.  OPERATING HOURS AT REDUCED HP: 0.  STACK HEIGHT: 0. DIAMETER: 0.  OVEN MEIGHT 6.0 METERS  OVEN VOLUME 1348. CUBIC FEET  TONS COKE/PUSH 24.  AVG. COKING TIME, HRS. 17.5  NO. CYCLES/DAY 82.  BULK DENSITY 50. LBS/CUBIC FT.  YIELD 70  TONS COAL/YEAR 4047868.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <del></del>   |                                        | -                                   | T               |            |                                       |   |
| O FANS # 0. MP EACH SPARE FAN CAPACITY: 0.%  OPERATING HOURS AT FULL HP: 8760.  OPERATING HOURS AT REDUCED HP: 0.  STACK HEIGHT: 0. DIAMETER: 0.  NO. OF OVENS 60.  OVEN HEIGHT 6.0 METERS  OVEN VOLUME 1348. CUBIC FEET  TONS COKE/PUSH 24.  AVG. COKING TIME, HRS. 17.5  NO. CYCLES/DAY 82.  BULK DENSITY 50. LBS/CUBIC FT.  YIELD 7.0  TONS COAL/YEAR 4047868.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FEET OF A     | IDDITIONAL DUCT                        | : 0                                 |                 | DIAMETER:  | 0.                                    |   |
| OPERATING HOURS AT FULL HP: 8760. OPERATING HOURS AT REDUCED HP: 0. STACK HEIGHT: 0. DIAMETER: 0. NO. OF OVENS 60. OVEN HEIGHT 6.0 METERS OVEN VOLUME 1348. CUBIC FEET TONS COKE/PUSH 24. AVG. COKING TIME, HRS. 17.5 NO. CYCLES/DAY 82. BULK DENSITY 50. LBS/CUBIC FT. YIELD 7.0 TONS COAL/YEAR 4047868.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                                        |                                     |                 |            |                                       |   |
| STACK HEIGHT:  NO. OF OVENS  OVEN HEIGHT  OVEN VOLUME  TONS COKE/PUSH  AVG. COKING TIME, HRS.  BULK DENSITY  YIELD  TONS COAL/YEAR  10. DIAMETER:  0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0. DIAMETER: 0 | OPERATING     | HOURS AT FULL                          | HP: 8760                            |                 |            |                                       |   |
| NO. OF OVENS OVEN HEIGHT OVEN VOLUME 1348. CUBIC FEET TONS COKE/PUSH AVG. COKING TIME, HRS. NO. CYCLES/DAY BULK DENSITY YIELD TONS COAL/YEAR 4047868.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OPERATING     | ; HOURS AT-REDU<br>(GHT:               | CED HP:0                            | -               | DIAMFTER:  |                                       |   |
| OVEN VOLUME TONS COKE/PUSH AVG. COKING TIME, HRS. NO. CYCLES/DAY BULK DENSITY TIELD TONS COAL/YEAR  4047868.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NO. OF OV     | ENS                                    | 60                                  | •               |            |                                       |   |
| TONS COKE/PUSH  AVG. COKING TIME, HRS.  NO. CYCLES/DAY  BULK DENSITY  YIELD  TONS COAL/YEAR  4047868.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                                        |                                     |                 |            |                                       |   |
| -AVG. COKING TIME, HRS. 17.5 NO. CYCLES/DAY 82. BULK DENSITY 50. LBS/CUBIC FTYIELD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                                        |                                     |                 | UBIC FEET  |                                       |   |
| TONS COAL/YEAR 4047868.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AVGCOKI       | ING TIME, HRS                          |                                     | •5              |            |                                       |   |
| TONS COAL/YEAR 4047868.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NO. CYCLE     | S/DAY                                  | 82<br>50                            | •               | RS/CURIC E | т                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YIELD         | /                                      | JV                                  | <del>.7</del> 0 | B3/CUBIC F | · · · · · · · · · · · · · · · · · · · |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |                                     |                 |            |                                       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·             |                                        |                                     | _               |            |                                       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |                                     |                 |            |                                       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |                                     |                 |            |                                       |   |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · · · · · · · | ,                                      |                                     |                 |            |                                       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |                                     |                 |            |                                       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | <u> </u>                               | <u> </u>                            |                 |            |                                       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |                                     |                 |            |                                       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | e de samo e commentate o de la seconda |                                     |                 |            |                                       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |                                     |                 |            |                                       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •             |                                        |                                     | •               | •          |                                       | • |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |                                     |                 |            |                                       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        | <u> </u>                            |                 |            | **                                    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |                                     |                 |            |                                       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |                                     |                 |            |                                       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |                                     |                 |            |                                       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | <u>.</u>                               | · · · · · · · · · · · · · · · · · · |                 |            |                                       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |                                     |                 |            |                                       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |                                     |                 |            |                                       |   |

|   | PPSES: 516.          |                     |                     |                  |                                       | R COI    |       |                   |                                        |      |      |
|---|----------------------|---------------------|---------------------|------------------|---------------------------------------|----------|-------|-------------------|----------------------------------------|------|------|
|   |                      |                     |                     |                  |                                       | _        |       | _                 |                                        |      |      |
|   | CAPACITY:            | 5.                  | -834 <del>M</del> ] | ILLI             | ON TONS                               | YEAR     |       |                   | ······································ |      |      |
| 1 | TOTAL COST           | (COST               | BASIS               | 18               | 110.00%                               | OF JUNE  | 1977  | DOLLARS           | FOR                                    | 4078 | COST |
|   | CATEGORY             |                     |                     |                  |                                       | COST IN  | DOLL  | ARS               |                                        | ं    |      |
|   |                      | -** <del>-D</del> I | RECT                | <del>-c</del> 08 | T-***                                 |          |       | <u> </u>          |                                        |      |      |
|   | EQUIPMENT            | OR MAT              | ERIAL               |                  |                                       |          |       |                   |                                        |      |      |
|   | INSTRUMEN            | TATION              |                     |                  |                                       | 424400.  |       |                   |                                        |      |      |
|   | PIPING               |                     |                     |                  |                                       |          |       |                   |                                        |      |      |
|   | ELECTRICA            |                     |                     |                  |                                       | 233900.  |       |                   |                                        |      |      |
|   | FOUNDATIO            | NS                  |                     |                  |                                       | 131400.  |       |                   |                                        |      |      |
|   | STRUCTURA            |                     |                     |                  |                                       |          |       |                   |                                        |      |      |
|   | SITE WORK            |                     |                     |                  |                                       | 166600.  |       |                   |                                        |      |      |
|   | INSULATIO            |                     |                     |                  |                                       | 121100.  |       |                   |                                        |      |      |
|   | PROTECTIV            |                     |                     |                  |                                       | -        |       |                   |                                        |      |      |
|   | BUILDINGS            |                     |                     |                  |                                       | 546000.  |       |                   |                                        |      |      |
|   | EQUIPMENT            | /MATERI             | AL LAE              | BOR              |                                       | 321600.  |       |                   |                                        |      |      |
|   | ····DIRE             | CT-COST             | <b>SUB</b> T(       | STAL             |                                       |          | 601   | 1800              |                                        |      |      |
|   |                      |                     |                     |                  |                                       |          |       |                   |                                        |      |      |
|   |                      |                     |                     |                  | ST ***                                |          |       |                   |                                        |      |      |
|   | FIELD OVE            |                     |                     |                  |                                       | -        |       |                   |                                        |      |      |
|   | CONTRACTO            |                     |                     |                  |                                       | 228100.  |       |                   |                                        |      |      |
|   | ENGINEERI<br>FREIGHT | NG                  |                     |                  |                                       | 633400.  |       |                   |                                        |      |      |
|   |                      |                     |                     |                  |                                       | _        |       | ·                 |                                        |      |      |
|   | OFFSITE W            | URK                 |                     |                  |                                       | 149600.  |       |                   |                                        |      |      |
|   | SHAKEDOWN            |                     |                     |                  |                                       | 126300.  |       |                   |                                        |      |      |
|   | SPARES               |                     |                     |                  |                                       | 124100.  |       |                   |                                        |      |      |
|   | CONTINGEN            | ~ <b>v</b>          |                     |                  |                                       |          |       |                   |                                        |      |      |
|   | INDI                 |                     |                     | TOT              |                                       | 1559900. |       | 4200              |                                        |      |      |
|   |                      |                     |                     |                  |                                       |          |       | -                 |                                        |      |      |
|   | INTE                 | REST DU             |                     |                  | ALLATIO                               | N<br>    |       | 2500 <b>.</b><br> |                                        |      |      |
|   | TOTA                 | L COST              |                     |                  |                                       |          | 1112  | 8500.             |                                        |      |      |
|   | TOTA                 | L COST              | WITH F              | REIR             | OFIT                                  |          | -1339 | 8200.             |                                        | ** * |      |
|   |                      |                     |                     |                  |                                       |          |       |                   |                                        |      |      |
|   |                      |                     |                     |                  | n ram - manus muserum - 1 100 - 104 - |          |       |                   |                                        |      |      |
|   |                      |                     |                     |                  |                                       |          |       |                   |                                        |      |      |
|   |                      |                     |                     |                  |                                       |          |       |                   |                                        |      |      |
|   |                      |                     |                     |                  |                                       |          |       |                   |                                        |      |      |
|   |                      |                     |                     |                  |                                       |          |       | ·                 |                                        |      |      |
|   |                      |                     |                     |                  |                                       |          |       |                   |                                        |      |      |
|   |                      |                     |                     |                  |                                       |          |       |                   |                                        |      |      |

| PPS  | ES: 516.        | QUENCHING -                           | DIRTY WA              | TER           | UNITSOF                                | 3           |        |             |          |
|------|-----------------|---------------------------------------|-----------------------|---------------|----------------------------------------|-------------|--------|-------------|----------|
| CAP  | ACITY:          | 2.834 MI                              | LLION TO              | NS/YEAR       |                                        |             |        |             |          |
| CAT  | EGORY           | QUANTI                                | TY                    | RATE          |                                        |             | ANNUAL | COST        | (\$      |
|      |                 |                                       | ** UTILI              | TIES **       | <b>*</b>                               |             |        |             |          |
|      | ER              | · ·                                   | MGAL-/YR              |               | <del>1595/10</del> 00                  | -6AI        |        | 0           |          |
| ELE  | CTRICITY        | 4250262                               | KWH/YR                | S.            | 0566/KMH                               |             | 1131   | 00-         |          |
| STF  | AM              | 4250262.<br>1062566.                  | MLBS/YR               | 5.4.          | 0920/MLRS                              |             | 43480  | 00.         |          |
| FUE  | L               | 2312143.                              | GAL/YR                |               | 4180/GAL                               |             | 9665   | 00.         |          |
|      |                 | ····································· | <del>oper</del> ating | G LABOR       | ·食食食 · · · · · · · · · · · · · · · · · |             |        |             |          |
| DID  | FrT             | 9740                                  | HDC/YD                | <b>\$</b> • # | 7/1/UD                                 |             | 1257   | •           | <i>(</i> |
| SIID | EUI<br>Edvietor | 8760.<br>1752.                        | HDC/YD                | 514.          | 24/ MK                                 |             | 1621   | 00.         | (A)      |
|      | EKATOTON        |                                       | -MK3/4K               | ·             | EU/HK                                  |             |        | <b>UU</b> • | (0)      |
|      |                 |                                       | NTENANCE              | &-SUPP        | LIES-**                                | w           |        |             |          |
| DIR  | ECT LABOR       | 17200.                                | HRS/YR                | \$14.         | 34/HR                                  |             | 2467   | 00_         | (c)      |
| SUP  | ERVISION        | 3440                                  | HRS/YR                | \$17.         | 20/HR                                  |             | 592    | 00          | (0)      |
|      | ERIALS          |                                       |                       | _             |                                        |             |        | 00.         |          |
| SUP  | PLIES           |                                       |                       |               |                                        |             | 7/77   | ^           | _        |
|      | ER TREATMENT    |                                       |                       |               | -                                      |             |        | -0.         | •••      |
|      | ID WASTE        |                                       |                       |               |                                        |             |        | •           |          |
|      |                 | 11010.                                | TON/YR                | \$ 8.         | 25/TON                                 |             | 908    | 00.         |          |
|      | DIRECT OPER     | RATING COST                           |                       |               | · ·                                    |             | 65859  | 00.         |          |
|      | PAYROLL OVE     | RHEAD =20.0X                          | OF A+B+               | C+D           |                                        |             |        | 00.         |          |
|      | PLANT OVERH     | EAD =50.0% C                          | F A+B+C+I             | D+E+F         |                                        |             | 5338   | 300.        |          |
|      | TOTAL OPERA     | TING COST                             |                       |               |                                        |             | 72120  | 00.         |          |
|      | OPERATING C     | OST IN DOLLA                          | RS PER TO             | DN - PR       | ODUCTION -                             |             |        | 2.5         | 5        |
|      |                 | OST IN DOLLA                          |                       |               |                                        |             |        |             |          |
|      | OPERATING C     | OST AS PERCE                          | NT OF CAL             | PITAL C       | OST                                    |             |        | 53.8        |          |
|      | -INSTALLATIO    | N TIME IN WE                          | EKS                   |               |                                        |             |        | 04.         |          |
|      |                 | IFE OF SYSTE                          |                       |               |                                        |             |        | 15.         |          |
|      | KWH PER TON     | • • • • • • • • •                     |                       | -             |                                        |             |        | 37.4        |          |
|      |                 | OVERY (13.15                          |                       | AL CAPI       | T.AL.)                                 |             |        |             |          |
|      |                 | ION OVERHEAD                          |                       |               |                                        |             |        |             |          |
|      | PROPERTY TA     | XES & INS. (                          | 2.0% OF               | TOTAL         | CAPITAL                                | •           | 26800  |             |          |
|      | TOTAL ANNUA     | LIZED COST                            | RETROET'              | T.            |                                        |             | 950950 | 00.         |          |
|      |                 |                                       | NEW                   | •             |                                        |             | 912030 |             |          |
|      |                 |                                       |                       |               |                                        | <del></del> |        |             |          |

| PPSI                 | ES: 516.                                | QUENCHING                 | - DIRTY                | WATER              | COKE               | 4                                      |                                       |
|----------------------|-----------------------------------------|---------------------------|------------------------|--------------------|--------------------|----------------------------------------|---------------------------------------|
| CAP                  | ACITY:                                  | 2.834                     | MILLION                | TONS/Y             | /EAR               |                                        | · · · · · · · · · · · · · · · · · · · |
| DAD'                 | TICULATE                                |                           |                        |                    |                    |                                        |                                       |
|                      |                                         |                           | RS/ION                 | - <b>C</b> 0A1     |                    |                                        |                                       |
|                      |                                         |                           | _                      |                    | EFFICIENCY         |                                        |                                       |
|                      |                                         | 73.93                     |                        |                    |                    |                                        |                                       |
| BSO                  |                                         |                           |                        |                    |                    |                                        |                                       |
|                      |                                         | .006400                   |                        |                    |                    |                                        |                                       |
|                      | ALLOWABLE                               |                           |                        | -COAL              | -EFFICIENCY        | 85.0x                                  |                                       |
|                      |                                         | - 44                      | LBS/HR                 |                    |                    |                                        |                                       |
| BAP                  |                                         |                           |                        |                    |                    |                                        |                                       |
|                      |                                         | .000310                   |                        |                    |                    |                                        |                                       |
|                      |                                         |                           |                        |                    | EFFICIENCY         |                                        |                                       |
|                      | · · · · · ·                             |                           | -L90/11K               |                    |                    |                                        |                                       |
|                      | ZENE                                    | 0000/0                    | . 56 (50)              |                    |                    |                                        |                                       |
|                      |                                         |                           |                        |                    | EFFICIENCY         |                                        |                                       |
|                      | ALLUWABLE                               |                           | LBS/HR                 | CUAL               | EFFICIENCY         | , /5.0%                                |                                       |
| DUS                  | T COLLECTED                             | PER DAY:                  | 16,9                   | TONS (C            | ORY)               |                                        | 4.4                                   |
|                      |                                         |                           | -                      |                    |                    |                                        |                                       |
| EXH                  | AUST TEMPER                             | ATURE:                    | 200,                   | F                  |                    |                                        |                                       |
| _                    | _                                       | -                         | 7                      |                    |                    |                                        |                                       |
| ACF                  | M FLOW:                                 | 0. AT                     | 200.                   | F                  |                    |                                        |                                       |
|                      |                                         |                           | _                      |                    |                    |                                        |                                       |
| F\e                  | RATIO: "                                |                           |                        |                    |                    | ·- · · · · · · · · · · · · · · · · · · |                                       |
| PRO                  | CESS WATER                              | FLOW:                     | 1213.                  | GPM                |                    |                                        |                                       |
| PR0(<br>C00)         | CESS WATER                              | FLOW:<br>FLOW:            | 1213.<br>0.            | GPM<br>GPM         |                    |                                        |                                       |
| PR0(<br>C00)         | CESS WATER                              | FLOW:<br>FLOW:            | 1213.<br>0.            | GPM<br>GPM         | - <b>%</b> SOLIDS: |                                        |                                       |
| PR0(<br>C00)         | CESS WATER                              | FLOW:<br>FLOW:<br>DS OUT: | 1213.<br>0.<br>- 1707. | GPM<br>GPM<br>MG/L | - <b>%</b> SOLIDS: | <b>2</b>                               |                                       |
| PR0(<br>C00)         | CESS WATER                              | FLOW:<br>FLOW:<br>DS OUT: | 1213.<br>0.<br>- 1707. | GPM<br>GPM<br>MG/L |                    | <b>2</b>                               |                                       |
| PR0(<br>C00(<br>SUS) | CESS WATER<br>LING WATER<br>PENDED SOLI | FLOW:<br>FLOW:<br>DS OUT: | 1213.<br>0.<br>- 1707. | GPM<br>GPM<br>MG/L | #SOLIOS:           |                                        |                                       |
| PR0(<br>C00(<br>SUS) | CESS WATER                              | FLOW:<br>FLOW:<br>DS OUT: | 1213.<br>0.<br>- 1707. | GPM<br>GPM<br>MG/L | #SOLIOS:           | <b>2</b>                               |                                       |
| PR0(<br>C00(<br>SUS) | CESS WATER<br>LING WATER<br>PENDED SOLI | FLOW:<br>FLOW:<br>DS OUT: | 1213.<br>0.<br>- 1707. | GPM<br>GPM<br>MG/L | #SOLIOS:           |                                        |                                       |
| PR00<br>C000<br>SUS  | CESS WATER<br>LING WATER<br>PENDED SOLI | FLOW:<br>FLOW:<br>DS OUT: | 1213.<br>0.<br>- 1707. | GPM<br>GPM<br>MG/L | #SOLIOS:           |                                        |                                       |
| PR00<br>C000<br>SUS  | CESS WATER<br>LING WATER<br>PENDED SOLI | FLOW:<br>FLOW:<br>DS OUT: | 1213.<br>0.<br>- 1707. | GPM<br>GPM<br>MG/L | XSOLIOS:           |                                        |                                       |
| PROI<br>COOI<br>SUS  | CESS WATER<br>LING WATER<br>PENDED SOLI | FLOW:<br>FLOW:<br>DS OUT: | 1213.<br>0.<br>- 1707. | GPM<br>GPM<br>MG/L | XSOLIOS:           | 2                                      |                                       |
| PROI<br>COOI<br>SUS  | CESS WATER<br>LING WATER<br>PENDED SOLI | FLOW:<br>FLOW:<br>DS OUT: | 1213.<br>0.<br>- 1707. | GPM<br>GPM<br>MG/L | ¥SOLIOS:           | 2                                      |                                       |
| PROI<br>COOI<br>SUS  | CESS WATER LING WATER PENDED SOLI       | FLOW: FLOW: DS OUT:       | 1213.                  | GPM<br>GPM<br>MG/L | #SOLIDS:           |                                        |                                       |
| PROI<br>COOI<br>SUS  | CESS WATER LING WATER PENDED SOLI       | FLOW: FLOW: DS OUT:       | 1213.                  | GPM<br>GPM<br>MG/L | ¥SOLIOS:           |                                        |                                       |
| PROI<br>COOI         | CESS WATER LING WATER PENDED SOLI       | FLOW: FLOW: DS OUT:       | 1213.                  | GPM<br>GPM<br>MG/L | XSOLIDS:           | 2                                      |                                       |
| PROI<br>COOI         | CESS WATER LING WATER PENDED SOLI       | FLOW: FLOW: DS OUT:       | 1213.                  | GPM<br>GPM<br>MG/L | XSOLIDS:           |                                        |                                       |

| ERAL INF     |         | <b>₩</b>                              |               | UNITS                                                    |     |             |
|--------------|---------|---------------------------------------|---------------|----------------------------------------------------------|-----|-------------|
| PPSES:       | 516.    | QUENCHING                             | - DIRTY WATER | COKE                                                     | 4   |             |
|              |         |                                       |               |                                                          | ·   |             |
| <br>         |         | COMMENT OF THE PROPERTY OF THE PARTY. |               | 1938/19 AMASS (* 200 - 201 - 200 - 201 ) WYS (* P. 1988) |     |             |
| <br>CONTROL  | SYSTER  | M CONFIGURAT                          | ION:          |                                                          |     |             |
|              |         | OWER BAFFLES<br>NT WASTEWATE          |               |                                                          |     | ş           |
| <br>         |         | <del>-</del>                          |               |                                                          |     |             |
| FEET OF      | ADDIT   | IONAL DUCT:                           | 0.            | DIAMETER:                                                | 0.  |             |
| <br>TOTAL _P | RESSURE | E_DROP:                               |               | INCHES                                                   |     |             |
|              |         |                                       | SPARE FAI     | N CAPACITY:                                              | 0.1 |             |
|              |         | RS AT FULL H                          |               |                                                          |     |             |
|              |         | 45 -AT -REDUCE                        |               |                                                          |     |             |
| STACK H      |         |                                       |               | DIAMETER:                                                | 0.  |             |
| NO. OF       |         |                                       | 60.           | METERO                                                   |     |             |
| <br>OVEN VO  |         |                                       | 1348.         |                                                          |     |             |
| TONS CO      |         |                                       | 24.           |                                                          |     |             |
|              |         |                                       |               |                                                          |     |             |
| <br>NO. CYC  |         |                                       | 82.           | •                                                        |     |             |
| BULK DE      |         |                                       |               | LBS/CUBIC F                                              | T . |             |
|              |         |                                       |               |                                                          |     |             |
| <br>TONS CO  |         |                                       | 4047868.      | · · · · · · · · · · · · · · · · · · ·                    |     |             |
|              |         | `                                     | 4047000       |                                                          |     |             |
| <br>         |         |                                       |               |                                                          |     |             |
|              |         |                                       |               |                                                          |     |             |
|              |         |                                       |               |                                                          |     |             |
|              |         |                                       |               |                                                          |     |             |
|              |         |                                       |               |                                                          |     |             |
|              |         |                                       |               |                                                          |     |             |
|              |         |                                       |               |                                                          |     | - <i>-</i>  |
|              |         |                                       |               |                                                          |     |             |
|              |         |                                       |               |                                                          |     |             |
|              | ••      |                                       |               |                                                          |     |             |
|              |         |                                       |               |                                                          |     |             |
|              |         |                                       |               |                                                          |     |             |
|              | ···     |                                       | •             | •                                                        |     |             |
|              |         |                                       |               |                                                          |     |             |
|              |         |                                       |               |                                                          |     |             |
| <br>         |         |                                       |               |                                                          |     |             |
|              |         |                                       |               |                                                          |     |             |
|              |         |                                       |               |                                                          |     |             |
|              |         |                                       |               |                                                          |     |             |
| <br>         |         |                                       |               |                                                          |     |             |
| <br>         |         |                                       |               |                                                          |     |             |
| <br>         |         |                                       |               |                                                          |     |             |
|              |         |                                       | <del></del>   |                                                          |     |             |
|              |         |                                       |               |                                                          |     |             |
| <br>·        |         |                                       |               |                                                          |     | <del></del> |

| PPS   | ES: 516.             | BUENCE  | IING -                                | DIRT  |            |       |       |       | OPTION -    |             |          |           |
|-------|----------------------|---------|---------------------------------------|-------|------------|-------|-------|-------|-------------|-------------|----------|-----------|
|       |                      |         |                                       |       |            |       |       |       |             |             |          |           |
| CAP   | ACITY:               | 5,      | 834 M                                 | ILLIO | N-TONS     | /YE   | AR    | ·     |             | <del></del> | ·        |           |
| TOT   | AL COST              | (cost   | BASIS                                 | IS 1  | 10.00%     | OF    | JUNE  | 1977  | DOLLARS     | FOR         | 4078     | cos       |
|       | CATEGORY             |         |                                       |       |            | COS   | ST IN | DOLL  | ARS         |             | · · ·    |           |
|       |                      |         | RFCT-                                 | –cost |            |       |       | ·     |             |             |          |           |
|       | EQUIPMENT            |         |                                       |       |            |       |       |       |             |             |          |           |
|       | INSTRUMEN            |         |                                       |       |            |       | 5200. |       |             |             |          |           |
|       | PIPING               |         |                                       |       |            |       |       |       |             |             |          |           |
|       | ELECTRICA            |         |                                       |       |            |       | 7700. |       |             |             |          |           |
|       | FOUNDATIO            |         |                                       |       |            |       | 0500. |       |             |             |          |           |
|       | STRUCTURA            | L       |                                       |       |            |       |       |       |             |             | <u> </u> |           |
|       | SITE WORK            |         |                                       |       |            |       | 4800. |       |             |             |          |           |
|       | INSULATIO            | N       |                                       |       |            | 120   | 9000. |       |             |             |          |           |
|       | PROTECTIV            | E-COAT  | NG                                    |       |            | 5     | 1800. |       |             |             |          | <b></b>   |
|       | BUILDINGS            |         |                                       |       |            |       | 6000. |       |             |             |          |           |
|       | EQUIPMENT            | /MATER] | AL LA                                 | BOR   |            | 896   | 6000. |       |             |             |          |           |
|       | DIRE                 | CT-COST | SUBT                                  | OTAL- |            |       |       | 742   | 5300        |             |          |           |
|       |                      |         |                                       |       |            |       |       |       |             |             |          |           |
|       |                      | *** IN  |                                       |       |            |       |       |       |             |             |          |           |
|       | FIELD OVE            |         |                                       |       |            |       |       |       | <del></del> |             | ·        | · ·       |
|       | CONTRACTO            |         |                                       |       |            |       | -     |       |             |             |          |           |
| •     | ENGINEERI            | NG      |                                       |       |            | 848   | 2500. |       |             |             |          |           |
|       | ENGINEERI<br>FREIGHT |         | · · · · · · · · · · · · · · · · · · · |       |            | 2.4   | 4100. |       |             |             |          |           |
|       | OFFSITE W            | IORK    |                                       |       |            | 19.   | 3600. |       |             |             |          |           |
|       | TAXES                |         |                                       |       |            |       | 9000. |       |             |             |          |           |
|       | SHAKEDOWN            |         |                                       |       |            |       |       |       |             |             |          |           |
|       | SPARES               | . =     |                                       |       |            |       | 4600. |       |             |             |          |           |
|       | CONTINGEN            | _       |                                       |       |            |       | 6500. |       |             |             |          |           |
|       | INDI                 | REC1CL  | )S1 -SU                               | BIDIA | \ <b>L</b> | · · · |       | 539   | 3700        | • -         |          |           |
|       | INTE                 | REST DU | JRING                                 | INSTA | LLATIO     | N     |       | 112   | 6900.       |             |          |           |
| , 100 | TOTA                 | L COST  |                                       |       |            |       |       | 1394  | 5900.       |             |          |           |
|       | TOTA                 | u cost  | WITH .                                | RETRO | FIT .      |       |       | 1 706 | 0800.       |             |          |           |
|       | 7072                 |         | ***                                   | ne me |            |       |       | 1100  |             |             |          |           |
|       |                      |         |                                       |       |            |       |       |       |             |             |          |           |
|       |                      |         |                                       |       |            |       |       |       |             |             |          |           |
|       |                      |         |                                       |       |            |       |       |       |             |             |          |           |
|       |                      |         |                                       |       |            |       |       |       |             |             |          |           |
|       |                      |         |                                       |       |            |       |       |       |             |             |          | <b></b> · |
|       |                      |         |                                       |       |            |       |       |       |             |             |          |           |
|       |                      |         |                                       |       |            |       |       |       |             |             |          |           |
|       |                      |         |                                       |       |            |       | ····- |       | ·····       |             |          |           |
|       |                      |         |                                       |       |            |       |       |       |             |             |          |           |
|       |                      |         |                                       |       |            |       |       |       |             |             |          |           |
|       |                      |         |                                       |       |            |       |       | ·     |             |             |          |           |
|       |                      |         |                                       |       |            |       |       |       |             |             |          |           |
|       |                      |         |                                       |       |            |       |       |       |             |             |          |           |

| PPSES: 516.  | QUENCHING - DIRTY WAT   | TER COKE 4                                          |                  |
|--------------|-------------------------|-----------------------------------------------------|------------------|
| CAPACITY:    |                         | IS/YEAR                                             |                  |
| CATEGORY     | QUANTITY                | RATE                                                | ANNUAL COST      |
|              | *** UTILIT              | IES ***                                             |                  |
| WATER        |                         | \$ .1595/1000 GAL<br>\$ .0266/KWH<br>\$ 4.0920/MLBS | 0.               |
| ELECTRICITY  | 4250262. KWH/YR         | \$ .0266/KWH                                        | 113100.          |
| STEAM        | 1062566. MLBS/YR        | \$ 4.0920/MLBS                                      | 4348000.         |
| FUEL         | 2312143GAL/YR           | \$ -4180/GAL                                        | 966500 <b>.</b>  |
|              |                         | 5 LABOR -+++                                        |                  |
| DIRECT       | 8760. HRS/YR            | \$14.34/HR                                          | 125700. (        |
| SUPERVISION  | 1752,_HR\$/YR           | \$14.34/HR<br>\$17.20/HR                            | 30100. (         |
|              | *** -MAINTENANCE        | -8 -SUPPL-IES -***                                  |                  |
| DIRECT LABOR | 20000 HRS/YR            | \$14.34/HR                                          | 286900. (        |
| SUPERVISION  | 4000HRS/YR              | \$17.20/HR                                          | 68800 <b>.</b> { |
| MATERIALS    |                         |                                                     | 344300. (        |
| SUPPLIES     |                         |                                                     | 391100. (        |
| SOLID WASTE  |                         |                                                     | ••               |
| DISPOSAL     | 12306. TON/YR           | \$ 8.25/TON                                         | 101500.          |
| DIRECT OPER  | ATING COST              |                                                     | 6776000.         |
| PAYROLL_OVE  | RHEAD -=20.0% OFA+B+0   | .+D                                                 |                  |
|              |                         | )+E+F                                               | 623500.          |
| TOTAL OPERA  |                         |                                                     | 7501800.         |
| DPERATING _C | OST IN DOLLARS PER IC   | N _ PRODUCTION                                      | 2.65             |
|              |                         | ON OF DUST COLLECTED                                |                  |
| INSTALLATIO  | N TIME IN WEEKS         | 'ITAL COST                                          | 44.0             |
|              | IFE OF SYSTEM IN YEAR   |                                                     | 15.              |
|              | CAPACITY                | . •                                                 | 37.4             |
| CAPITAL _REC | OVERY _(13.15% OF .TOTA | L CAPITAL)                                          | 2243100          |
|              |                         | OF TOTAL CAPITAL)                                   |                  |
| PROPERTY TA  | XES & INS. ( 2.0% OF    | TOTAL CAPITAL)                                      | 341200.          |
| TOTAL ANNUA  |                         |                                                     |                  |
|              | - NEW                   |                                                     | 9893100.         |
|              |                         |                                                     | <del></del>      |
|              |                         |                                                     |                  |

|        |            |           |          |         | UNITSOF      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------|------------|-----------|----------|---------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PPSE   | 5: 516.    | QUENCHING | - DIRTY  | WATER   | COKE         | 5,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CAP    | CITY:      | 2.834     | -MILLION | -TONS/4 | YEAR         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DADI   | CICULATE   |           |          |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |            | 3-200000  | ABS/TON  | LACO.   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |            |           |          |         | EFFICIENCY:  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |            | 14.79     | LBS/HR   |         |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 850    |            |           |          |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | LOAD IN:   |           |          |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | ALLOWABLE  |           |          | COAL    | _EFFICIENCY: | 99.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        |            | .03       | LBS/HR   |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BAP    |            |           |          |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |            | .000310   |          |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |            |           |          |         | EFFICIENCY:  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |            | 00 _      | LBS/HR   |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BENZ   |            |           |          |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |            | -         | _        |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | VETOWABLE  |           | LBS/IUN  | CUAL    | EFFICIENCY:  | 99.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        |            |           |          |         |              | THE RESERVE OF THE PERSON OF T |
| DUST   | COLLECTED  | PER DAY:  | 17.6     | TONS (  | DRY)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |            |           |          |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EXH    | UST TEMPER | ATURE:    | 200.     | F       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SCF    | 1 FLOW: 54 | 9000. AT  | 70.      | F       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ACF    | FLOW: 68   | 3000. AT  | 200.     | F       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ···L/6 | RATIO:     |           | 0        |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | ESS WATER  |           | 1213.    |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | ING WATER  |           | 0.       |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SUSF   | ENDED SOLI | DS OUT:   | 1707.    | MG/L    | #SOLIDS:     | • 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        |            |           |          |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |            |           |          |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |            |           |          |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |            |           |          |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |            |           |          |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |            |           |          |         | •            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |            |           |          |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |            |           |          |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •      |            |           |          |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|                                        |                |                                         | UNITS      | NOTION     |             |
|----------------------------------------|----------------|-----------------------------------------|------------|------------|-------------|
| PPSES: 516. QUEN                       | CHING - DIRTY  | WATER                                   | COKE       | 5          |             |
| CONTROL SYSTEM CONF                    | IGURATION:     |                                         |            |            | _           |
|                                        |                |                                         |            |            |             |
| DRY QUENCHING<br>COKE PLANT WAS        | STEWATER TREAT | MENT                                    |            |            |             |
| FEET OF ADDITIONAL TOTAL PRESSURE DROP | DUCT:          | 0.                                      | DIAMETER:  | 15.        |             |
|                                        |                |                                         |            |            |             |
| O FANS @ 0. HP E                       | FULL HP: 8     | 760.                                    |            |            |             |
| OPERATING HOURS AT-                    |                |                                         | DIAMETER:  |            |             |
| NO. OF OVENS                           |                | 60.                                     | DIAMETER.  | •          |             |
| OVEN HEIGHT                            |                |                                         | TERS       |            |             |
| OVEN VOLUME                            | -              | 348. CI                                 | BIC FEET   |            |             |
| TONS COKE/PUSH                         |                | 24.                                     |            |            |             |
| -AVGCOKING TIME, HR                    |                |                                         |            |            |             |
| NO. CYCLES/DAY<br>Bulk density         |                | 82.                                     | SS/CUBIC F | 7          |             |
|                                        |                |                                         |            |            |             |
| TONS COAL/YEAR                         |                |                                         |            |            |             |
|                                        |                |                                         |            |            |             |
|                                        |                |                                         |            |            | · · · - · · |
|                                        |                |                                         |            |            |             |
|                                        |                |                                         |            |            |             |
|                                        |                |                                         | _          | <u>.</u> . |             |
|                                        | ·              |                                         | -          |            | ·           |
|                                        |                |                                         |            | ••         | ·           |
|                                        |                |                                         | - • • •    |            |             |
|                                        |                | <u> </u>                                |            |            |             |
| · · · · · · · · · · · · · · · · · · ·  | ,              | - · · · · · · · · · · · · · · · · · · · |            |            |             |
|                                        |                | <u></u>                                 |            |            |             |
|                                        |                |                                         |            |            |             |
|                                        |                |                                         |            |            |             |
|                                        |                |                                         |            |            |             |
|                                        |                |                                         |            |            |             |
|                                        |                |                                         |            | <u>.</u> . |             |
|                                        |                |                                         |            | <u>.</u> . |             |
| · · · · · · · · · · · · · · · · · · ·  |                |                                         | <br>       |            |             |
| · · · · · · · · · · · · · · · · · · ·  |                |                                         |            |            |             |
| · · · · · · · · · · · · · · · · · · ·  |                |                                         | <br>       |            |             |
| · · · · · · · · · · · · · · · · · · ·  |                |                                         | <br>       |            |             |
| · · · · · · · · · · · · · · · · · · ·  |                |                                         | <br>       |            |             |
| · · · · · · · · · · · · · · · · · · ·  |                |                                         | <br>       |            |             |
| · · · · · · · · · · · · · · · · · · ·  |                |                                         | <br>       |            |             |

|                          | PPSES:  |                 | QUENCHING -   |             |                                       |         |         |         | ·   |          |     |
|--------------------------|---------|-----------------|---------------|-------------|---------------------------------------|---------|---------|---------|-----|----------|-----|
|                          |         |                 | 2.834-M       |             |                                       |         |         |         |     |          |     |
|                          | GAPAG14 | •               |               | ILLIUN TUNS | /1EA                                  |         |         |         |     |          |     |
|                          | TOTAL C | DST             | (COST BASIS   | IS 110.00%  | OF .                                  | JUNE    | 1977    | DOLLARS | FOR | 4078     | cos |
|                          | CA      | TEGORY          |               |             | COST                                  | T IN    | DOLL    | ARS     |     |          |     |
|                          |         |                 | -***-DIRECT   | -COST-+++   |                                       |         |         |         |     |          |     |
|                          | EO      | UIPMENT         | OR MATERIAL   | 1           | 2393(                                 | 000.    |         |         |     |          |     |
|                          | IN      | STRUMENT        | TATION        |             | 4244                                  | 400.    |         |         |     |          |     |
|                          |         |                 |               |             |                                       |         |         |         |     |          | •   |
|                          |         | ECTRICAL        |               |             | 2277                                  |         |         |         |     |          |     |
|                          | FO      | UNDATION        | NS            |             | 130                                   | 500.    |         |         |     |          |     |
|                          |         |                 |               |             |                                       | -       |         |         |     | <u>-</u> |     |
|                          |         | TE WORK         |               |             | 1660                                  | -       |         |         |     |          |     |
|                          |         | SULATION        | v<br>ECOATING |             | 1211                                  | 200.    |         |         |     |          |     |
| ****** ***** ** ** ** ** |         |                 |               |             |                                       | _       |         |         |     |          |     |
|                          | Fal     | ITPMENT         | MATERIAL LA   | ROR         |                                       |         |         |         |     |          |     |
|                          |         | DIREC           | CT_COST_SUBT  | DTAL        |                                       |         | _1.963/ | 8700    |     |          |     |
|                          |         |                 |               | - · · · •   |                                       |         |         |         |     |          |     |
|                          |         | •               | *** INDIRECT  | COST ***    |                                       |         |         |         |     |          |     |
|                          | FI      | ELD OVER        | RHEAD         |             | 33986                                 | 500.    |         |         |     |          |     |
|                          | CO      | NTRACTOR        | RS FEE        |             | 17915                                 |         |         |         |     |          |     |
|                          |         | GINEERIN        |               |             | 10746                                 | 300.    |         |         |     |          |     |
|                          |         |                 |               |             |                                       | -       |         |         |     |          | -   |
|                          |         |                 | ORK           |             | 5548                                  |         |         |         |     |          |     |
|                          | I A     | XES<br>AKEDOWAL | •             |             | 570                                   |         |         |         |     |          |     |
|                          | 6.0     | ADEC            |               |             | 192                                   |         |         |         |     |          |     |
|                          | COL     | NTINCENO        | CY            | 4           | 17E:                                  | _       |         |         |     |          |     |
|                          |         |                 | RECTCOST -SU  |             |                                       |         |         | 8000    |     |          |     |
|                          |         | 2110 21         | (201 0001 00  | DIVIAL      |                                       |         | 1470    |         |     |          |     |
|                          |         | INTER           | REST DURING   | INSTALLATIO | N                                     |         | 407     | 5500.   |     |          |     |
|                          |         |                 |               |             | _                                     | <b></b> |         |         |     |          |     |
|                          |         | TOTAL           | L COST        |             |                                       |         | 3862    | 2200.   |     |          |     |
|                          |         | 70744           |               |             |                                       |         |         | - "     |     |          |     |
|                          |         | JAIUI           | L COST WITH   | RETRUPTI    |                                       |         | 4555    | 3400.   | • • |          |     |
|                          |         |                 |               |             |                                       |         |         |         |     |          |     |
|                          |         |                 |               |             |                                       |         |         |         |     |          |     |
|                          |         |                 |               |             |                                       |         |         |         |     |          |     |
|                          |         |                 |               |             |                                       |         |         |         |     |          |     |
|                          |         |                 |               |             | ··· · · · · · · · · · · · · · · · · · |         |         |         |     |          |     |
|                          |         |                 |               |             |                                       |         |         |         |     |          |     |
|                          |         |                 |               |             |                                       |         |         |         |     |          |     |
| ·                        |         |                 |               |             |                                       |         |         |         |     |          |     |
|                          |         |                 |               |             |                                       |         |         |         |     |          |     |
|                          |         |                 |               |             |                                       |         |         |         |     |          |     |
|                          |         |                 |               |             |                                       |         |         |         |     |          |     |

| ELECTRICITY 26918328, KMH/YR \$ .0266/KMH 71666  STEAM =1204241, MLBS/YR \$ 4.0920/MLBS  FUEL =2312143, GAL/YR \$ 4.0920/MLBS  FUEL =2312143, GAL/YR \$ 4.0920/MLBS  PUEL =2312143, GAL/YR \$ 4.0920/MLBS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | QUENCHING - DIRTY WAT  |                      |                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------|----------------------|-----------------------------------------------------|
| ### UTILITIES ###  WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -CAPACITY: - | 2.834-MILLION-TON      | S/YEAR               |                                                     |
| ### ### ### ### ### ### ### ### ### ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CATEGORY     | QUANTITY               | RATE                 | ANNUAL COS                                          |
| ELECTRICITY 26918328, KWH/YR \$ .0266/KWH 71666  STEAM -1204241, MLBS/YR \$ 4.0920/MLBS  FUEL -2312143, GAL/YR \$ 4.0920/MLBS  FUEL -2312143, GAL/YR \$ .4180/GAL 96656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | *** UTILIT             | IES ***              | , i                                                 |
| ELECTRICITY 26918328, KWH/YR \$ .0266/KWH 71666  STEAM -1204241, MLBS/YR \$ 4.0920/MLBS  FUEL -2312143, GAL/YR \$ 4.0920/MLBS  FUEL -2312143, GAL/YR \$ -4180/GAL 96656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WATER        |                        |                      |                                                     |
| ### OPERATING LABOR ***  DIRECT 17520. HRS/YR \$14.34/HR 2513: SUPERVISION 3504. HRS/YR \$17.20/HR 603:  *** MAINTENANCE & SUPPLIES ***  DIRECT LABOR 78337. HRS/YR \$14.34/HR 11237: SUPERVISION 15667. HRS/YR \$17.20/HR 2695: MATERIALS 6766: SUPPLIES 5966: WATER TREATMENT 50LID WASTE DISPOSAL 6412. TON/YR \$ 8.25/TON 529:  DIRECT OPERATING COST 47140  PAYROLL OVERHEAD =20.0% OF A+B+C+D 3410: PLANT OVERHEAD =50.0% OF A+B+C+D+E+F 14890 TOTAL OPERATING COST 65440  OPERATING COST IN DOLLARS PER TON PRODUCTION 65440  OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED 10  OPERATING COST AS PERCENT OF CAPITAL COST INSTALLATION TIME IN WEEKS ESTIMATED LIFE OF SYSTEM IN YEARS KWH PER TON CAPACITY | ELECTRICITY  | 26918328. KWH/YR       | \$ .0266/KWH         | 716600.                                             |
| DIRECT 17520. HRS/YR \$14.34/HR 2513 SUPERVISION 3504. HRS/YR \$17.20/HR 603  *** MAINTENANCE 8 SUPPLIES ***  DIRECT LABOR 78337. HRS/YR \$14.34/HR 11237 SUPERVISION 15667. HRS/YR \$17.20/HR 2695 MATERIALS 67666 SUPPLIES 59666 WATER TREATMENT SOLID WASTE DISPOSAL 6412. TON/YR \$ 8.25/TON 529  DIRECT OPERATING COST 47140  PAYROLL OVERHEAD =20.0% OF A+B+C+D 3410 PLANT OVERHEAD =50.0% OF A+B+C+D+E+F 14890 TOTAL OPERATING COST 65440  OPERATING COST IN DOLLARS PER TON PRODUCTION 65440 OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED 10 OPERATING COST AS PERCENT OF CAPITAL COST INSTALLATION TIME IN WEEKS ESTIMATED LIFE OF SYSTEM IN YEARS KWH PER TON CAPACITY                                  | STEAM        | -1204241. MLBS/YR      | \$ 4.0920/MLBS       | 0.                                                  |
| DIRECT 17520. HRS/YR \$14.34/HR 2513 SUPERVISION 3504. HRS/YR \$17.20/HR 6034  -** MAINTENANCE & SUPPLIES ***  DIRECT LABOR 78337. HRS/YR \$14.34/HR 11237 SUPERVISION 15667. HRS/YR \$17.20/HR 2695 MATERIALS 67664 SUPPLIES 59666 WATER TREATMENT SOLID WASTE DISPOSAL 6412. TON/YR \$ 8.25/TON 5296  DIRECT OPERATING COST 47140  PAYROLL OVERHEAD =20.0% OF A+B+C+D 3410 PLANT OVERHEAD =50.0% OF A+B+C+D+E+F 14890 TOTAL OPERATING COST 65440  OPERATING COST IN DOLLARS PER TON PRODUCTION OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED 10 OPERATING COST AS PERCENT OF CAPITAL COST INSTALLATION TIME IN WEEKS 1 ESTIMATED LIFE OF SYSTEM IN YEARS KWH PER TON CAPACITY                                    | FUEL         | 2312143GAL/YR          | \$4180/GAL           | <del>9665</del> 00,                                 |
| DIRECT LABOR 78337. HRS/YR \$14.34/HR 11237 SUPERVISION 15667. HRS/YR \$17.20/HR 2695 MATERIALS 6766 SUPPLIES 5966 WATER TREATMENT SOLID WASTE DISPOSAL 6412. TON/YR \$8.25/TON 529  DIRECT OPERATING COST 47140  PAYROLL OVERHEAD =20.0% OF A+B+C+D 3410 PLANT OVERHEAD =50.0% OF A+B+C+D+E+F 14890 TOTAL OPERATING COST 65440  OPERATING COST 1N DOLLARS PER TON PRODUCTION 65440  OPERATING COST 1N DOLLARS PER TON UP DUST COLLECTED 10 OPERATING COST AS PERCENT OF CAPITAL COST INSTALLATION TIME IN WEEKS 1 ESTIMATED LIFE OF SYSTEM IN YEARS KWH PER TON CAPACITY                                                                                                                                                | -            |                        | -LABOR -+++          |                                                     |
| DIRECT LABOR 78337. HRS/YR \$14.34/HR 11237 SUPERVISION 15667. HRS/YR \$17.20/HR 2695 MATERIALS 6766 SUPPLIES 5966 WATER TREATMENT SOLID WASTE DISPOSAL 6412. TON/YR \$8.25/TON 529  DIRECT OPERATING COST 47140  PAYROLL OVERHEAD =20.0% OF A+B+C+D 3410 PLANT OVERHEAD =50.0% OF A+B+C+D+E+F 14890 TOTAL OPERATING COST 65440  OPERATING COST 1N DOLLARS PER TON PRODUCTION 65440  OPERATING COST 1N DOLLARS PER TON UP DUST COLLECTED 10 OPERATING COST AS PERCENT OF CAPITAL COST INSTALLATION TIME IN WEEKS 1 ESTIMATED LIFE OF SYSTEM IN YEARS KWH PER TON CAPACITY                                                                                                                                                | NIDECT       | 17530 Hbe/Vb           | \$1/1 <b>3</b> /1/HD | 251700                                              |
| DIRECT LABOR 78337. HRS/YR \$14.34/HR 11237 SUPERVISION 15667. HRS/YR \$17.20/HR 2695 MATERIALS 6766 SUPPLIES 5966 WATER TREATMENT SOLID WASTE DISPOSAL 6412. TON/YR \$8.25/TON 529  DIRECT OPERATING COST 47140  PAYROLL OVERHEAD =20.0% OF A+B+C+D 3410 PLANT OVERHEAD =50.0% OF A+B+C+D+E+F 14890 TOTAL OPERATING COST 65440  OPERATING COST 1N DOLLARS PER TON PRODUCTION 65440  OPERATING COST 1N DOLLARS PER TON OF DUST COLLECTED 10 OPERATING COST AS PERCENT OF CAPITAL COST INSTALLATION TIME IN WEEKS 1 ESTIMATED LIFE OF SYSTEM IN YEARS KWH PER TON CAPACITY                                                                                                                                                | SUPERVISION  | 3504 HPS/YP            | \$17_20/HR           |                                                     |
| DIRECT LABOR 78337. HRS/YR \$14.34/HR 11237 SUPERVISION 15667. HRS/YR \$17.20/HR 2695 MATERIALS 67666 SUPPLIES 59666 WATER TREATMENT SOLID WASTE DISPOSAL 6412. TON/YR \$ 8.25/TON 529  DIRECT OPERATING COST 47140  PAYROLL OVERHEAD =20.0% OF A+B+C+D 3410 PLANT OVERHEAD =50.0% OF A+B+C+D+F+F 14890 TOTAL OPERATING COST 65440 OPERATING COST IN DOLLARS PER TON PRODUCTION 65440 OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED 10 OPERATING COST AS PERCENT OF CAPITAL COST INSTALLATION TIME IN WEEKS 1 ESTIMATED LIFE OF SYSTEM IN YEARS KWH PER TON CAPACITY                                                                                                                                               |              |                        |                      |                                                     |
| SUPERVISION15667. HRS/YR\$17,20/HR2695  MATERIALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                        | 8 SUPPLIES ***       |                                                     |
| SUPERVISION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DIRECT LABOR | 78337. HRS/YR          | \$14.34/HR           | 1123700                                             |
| SUPPLIES WATER TREATMENT SOLID WASTE DISPOSAL 6412. TON/YR \$ 8.25/TON 529  DIRECT OPERATING COST 47140  PAYROLL OVERHEAD =20.0% OF A+B+C+D -3410 PLANT OVERHEAD =50.0% OF A+B+C+D+E+F 14890 TOTAL OPERATING COST 65440  OPERATING COST IN DOLLARS PER TON PRODUCTION OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED 10 OPERATING COST AS PERCENT OF CAPITAL COST INSTALLATION TIME IN WEEKS 1 ESTIMATED LIFE OF SYSTEM IN YEARS KWH PER TON CAPACITY                                                                                                                                                                                                                                                               |              |                        |                      |                                                     |
| WATER TREATMENT SOLID WASTE DISPOSAL 6412. TON/YR \$ 8.25/TON 529  DIRECT OPERATING COST 47140  PAYROLL OVERHEAD =20.0% OF A+B+C+D -3410 PLANT OVERHEAD =50.0% OF A+B+C+D+E+F 14890 TOTAL OPERATING COST 65440  OPERATING COST IN DOLLARS PER TON PRODUCTION OPERATING COST IN DOLLARS PER TON UF DUST COLLECTED 10 OPERATING COST AS PERCENT OF CAPITAL COST INSTALLATION TIME IN WEEKS 1 ESTIMATED LIFE OF SYSTEM IN YEARS KWH PER TON CAPACITY                                                                                                                                                                                                                                                                        | MATERIALS    |                        |                      | 676600                                              |
| DISPOSAL 6412. TON/YR \$ 8.25/TON 529  DIRECT OPERATING COST 47140  PAYROLL OVERHEAD =20.0% OF A+B+C+D -3410  PLANT OVERHEAD =50.0% OF A+B+C+D+E+F 14890  TOTAL OPERATING COST 65440  OPERATING COST IN DOLLARS PER TON PRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SUPPLIES     |                        |                      | 596600                                              |
| DISPOSAL 6412. TON/YR \$ 8.25/TON 529  DIRECT OPERATING COST 47140  PAYROLL OVERHEAD =20.0% OF A+B+C+D -3410 PLANT OVERHEAD =50.0% OF A+B+C+D+E+F 14890 TOTAL OPERATING COST 65440  OPERATING COST IN DOLLARS PER TON PRODUCTION OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED 10 OPERATING COST AS PERCENT OF CAPITAL COST INSTALLATION TIME IN WEEKS 1 ESTIMATED LIFE OF SYSTEM IN YEARS KWH PER TON CAPACITY                                                                                                                                                                                                                                                                                                    |              | T                      |                      | · <del></del> · · · · · · · • · · · • · • · • · • · |
| DIRECT OPERATING COST  PAYROLL OVERHEAD =20.0% OF A+B+C+D  PLANT OVERHEAD =50.0% OF A+B+C+D+E+F  TOTAL OPERATING COST OPERATING COST IN DOLLARS PER TON PRODUCTION OPERATING COST IN DOLLARS PER TON UF DUST COLLECTED OPERATING COST AS PERCENT OF CAPITAL COST INSTALLATION TIME IN WEEKS ESTIMATED LIFE OF SYSTEM IN YEARS KWH PER TON CAPACITY                                                                                                                                                                                                                                                                                                                                                                       |              | ( #4.2 TON ( YE)       | e o 35/70h           | <b>E300</b> 0                                       |
| PAYROLL OVERHEAD =20.0% OF A+B+C+D 3410 PLANT OVERHEAD =50.0% OF A+B+C+D+E+F 14890 TOTAL OPERATING COST 65440 OPERATING COST IN DOLLARS PER TON PRODUCTION OPERATING COST IN DOLLARS PER TON UF DUST COLLECTED 10 OPERATING COST AS PERCENT OF CAPITAL COST INSTALLATION TIME IN WEEKS 1 ESTIMATED LIFE OF SYSTEM IN YEARS KWH PER TON CAPACITY                                                                                                                                                                                                                                                                                                                                                                          | UISPUSAL     |                        | •                    |                                                     |
| PLANT OVERHEAD #50.0% OF A+B+C+D+E+F  TOTAL OPERATING COST  OPERATING COST IN DOLLARS PER TON PRODUCTION  OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED  OPERATING COST AS PERCENT OF CAPITAL COST  INSTALLATION TIME IN WEEKS  ESTIMATED LIFE OF SYSTEM IN YEARS  KWH PER TON CAPACITY                                                                                                                                                                                                                                                                                                                                                                                                                            | DIRECT OPE   | RATING COST            |                      | 4714000                                             |
| TOTAL OPERATING COST  OPERATING COST IN DOLLARS PER TON PRODUCTION  OPERATING COST IN DOLLARS PER TON UF DUST COLLECTED  OPERATING COST AS PERCENT OF CAPITAL COST  INSTALLATION TIME IN WEEKS  ESTIMATED LIFE OF SYSTEM IN YEARS  KWH PER TON CAPACITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PAYROLL OV   | ERHEAD =20.0% OF A+B+C | .+D                  | -341000                                             |
| OPERATING COST IN DOLLARS PER TON PRODUCTION  OPERATING COST IN DOLLARS PER TON OF DUST COLLECTED  OPERATING COST AS PERCENT OF CAPITAL COST  INSTALLATION TIME IN WEEKS  ESTIMATED LIFE OF SYSTEM IN YEARS  KWH PER TON CAPACITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PLANT OVER   | HEAD #50.0% OF A+B+C+D | +E+F                 | 1489000                                             |
| OPERATING COST IN DOLLARS PER TON UF DUST COLLECTED  OPERATING COST AS PERCENT OF CAPITAL COST INSTALLATION TIME IN WEEKS ESTIMATED LIFE OF SYSTEM IN YEARS KWH PER TON CAPACITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                        |                      | 6544000                                             |
| OPERATING COST AS PERCENT OF CAPITAL COST INSTALLATION TIME IN WEEKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                        |                      |                                                     |
| INSTALLATION TIME IN WEEKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                        |                      |                                                     |
| ESTIMATED LIFE OF SYSTEM IN YEARS KWH PER TON CAPACITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                        |                      | 15                                                  |
| KWH PER TON CAPACITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                        |                      | 150                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                        | . 9                  | 45                                                  |
| LAPITAL REGUTERT:-LIDETDE-UPTUTAL CAPITALT DIEDIV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                        | L CAPITAL)           |                                                     |
| ADMINISTRATION OVERHEAD ( 2.0% OF TOTAL CAPITAL) 87110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                        |                      |                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                        |                      |                                                     |
| TOTAL ANNUALIZED COST - RETROFIT 1401230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                        |                      | 14012300.                                           |
| - NEW 1316660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | - NEW                  |                      | 13166600.                                           |

#### APPENDIX B

5

## EXAMPLE COMPUTER PRINTOUT FOR COST UPDATE PROGRAM

This appendix illustrates the output of the cost update program. In the example provided, the cost of Option 5, the enclosed hot car for the coke pushing source, has been adjusted by changing the cost basis from fourth quarter 1978 to mid-1979, assuming a 7 percent inflation rate. Also the cost of labor has been increased 10 percent. These increases are arbitrary and used only as an example. When the cost update program is run, one or all of the functions can be updated by using the data cards for whichever cases are to be modified.

## COST UPDATE OF COKE OVEN MODEL COST FUNCTIONS BASIS: 2079

| SOURCE:                                                                         | 2                                                                                                                                                                                                                   | UNITS OPTION<br>COKE 5                                                                  |                                                                                                          |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| CAPACITY:                                                                       | .272 MILLION TO                                                                                                                                                                                                     | NS/YEAR                                                                                 |                                                                                                          |
| CATEGORY                                                                        | QUANTITY                                                                                                                                                                                                            | RATE                                                                                    | ANNUAL COST (\$)                                                                                         |
|                                                                                 | *** UTILITIES                                                                                                                                                                                                       | ***                                                                                     |                                                                                                          |
| WATER<br>ELECTRICITY<br>STEAM<br>FUEL                                           | 2450. MGAL/YR<br>1603. KWH/YR<br>0. NLBS/YR<br>258563. GAL/YR                                                                                                                                                       | <ul><li>1600/1000 GAL</li><li>.0266/KWH</li><li>4.0920/MLBS</li><li>.4180/GAL</li></ul> | 392.<br>43.<br>0.<br>108079.                                                                             |
|                                                                                 | *** OPERATING &                                                                                                                                                                                                     | MAINT LABOR ***                                                                         |                                                                                                          |
| DIRECT<br>Supervision                                                           | 8000. HRS/YR<br>1600. HRS/YR                                                                                                                                                                                        | \$15.77/HR<br>\$17.20/HR                                                                | 126160. (A)<br>27520. (B)                                                                                |
|                                                                                 | *** MAINT & SUP                                                                                                                                                                                                     | PLIES ***                                                                               |                                                                                                          |
| MATERIALS<br>SUPPLIES<br>SOLID WASTE<br>DISPOSAL                                | 686. TONS/YR                                                                                                                                                                                                        | <b>\$ 8.2</b> 5                                                                         | 114800. (C)<br>38600. (D)<br>5659.                                                                       |
| DIRECT O                                                                        | PERATING COST                                                                                                                                                                                                       |                                                                                         | 421253.                                                                                                  |
| PLANT OV<br>TOTAL OP<br>ESTIMATE<br>CAPITAL<br>ADMINIST<br>PROPERTY<br>TOTAL AN | OVERHEAD =20.0% OF A+B ERHEAD =50.0% OF A+B+C+ ERATING COST IL LIFE OF SYSTEM IN YEA RECOVERY (11.70% OF TOT RATION OVERHEAD (2.00% O TAXES & INS. (2.00% O NUALIZED COST- RETROFI - NEW PITAL COST - RETROFI - NEW | RS<br>AL CAPITAL)<br>OF TOTAL CAPITAL)<br>F TOTAL CAPITAL)<br>T                         | 30736.<br>153540.<br>423096.<br>20.<br>659888.<br>112801.<br>112801.<br>1308587.<br>1228087.<br>5640066. |

# COST UPDATE OF COKE OVEN MODEL COST FUNCTIONS BASIS: 2079

4

| SOURCE:                                                                                | 2                                                                                                                                                                                                                             | UNITS OPTION COKE 5                                             |                                                                                               |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| CAPACITY:                                                                              | .405 HILLION TON                                                                                                                                                                                                              | IS/YEAR                                                         |                                                                                               |
| CATEGORY                                                                               | QUANTITY                                                                                                                                                                                                                      | RATE                                                            | ANNUAL COST (\$)                                                                              |
|                                                                                        | *** UTILITIES                                                                                                                                                                                                                 | ***                                                             |                                                                                               |
| WATER<br>ELECTRICITY<br>STEAM<br>FUEL                                                  | 3643. MGAL/YR<br>2385. KWH/YR<br>0. MLBS/YR<br>384576. GAL/YR                                                                                                                                                                 | \$ .0266/KWH<br>\$ 4.0920/NLBS                                  | 583.<br>63.<br>0.<br>160753.                                                                  |
|                                                                                        | *** OPERATING & M                                                                                                                                                                                                             | MAINT LABOR ***                                                 |                                                                                               |
| DIRECT<br>SUPERVISION                                                                  | 8000. HRS/YR<br>1600. HRS/YR                                                                                                                                                                                                  |                                                                 | 126160. (A)<br>27520. (B)                                                                     |
|                                                                                        | *** MAINT & SUPF                                                                                                                                                                                                              | PLIES ***                                                       |                                                                                               |
| MATERIALS<br>SUPPLIES<br>SOLID WASTE<br>DISPOSAL                                       | 1020. TONS/YR                                                                                                                                                                                                                 | <b>\$ 8.25</b>                                                  | 114800. (C)<br>38600. (I)<br>8415.                                                            |
| DIRECT OP                                                                              | PERATING COST                                                                                                                                                                                                                 |                                                                 | <b>4</b> 7689 <b>4.</b>                                                                       |
| PLANT OVE<br>TOTAL OPE<br>ESTIMATED<br>CAPITAL R<br>ADMINISTR<br>PROPERTY<br>TOTAL ANN | OVERHEAD =20.0% OF A+B ERHEAD =50.0% OF A+B+C+I ERATING COST  O LIFE OF SYSTEM IN YEAR RECOVERY (11.70% OF TOTA RATION OVERHEAD ( 2.00% OF TAXES & INS. ( 2.00% OF HUALIZED COST — RETROFIT — NEW PITAL COST — RETROFIT — NEW | RS<br>AL CAPITAL)<br>OF TOTAL CAPITAL)<br>F TOTAL CAPITAL)<br>T | 30736.<br>153540.<br>478737.<br>20.<br>712685.<br>121827.<br>1435075.<br>1348135.<br>6091328. |

## COST UPDATE OF COKE OVEN MODEL COST FUNCTIONS BASIS: 2079

| SOURCE:                                          | 2                                                                                                                      | UNITS OPTIO<br>COKE 5    | N                                              |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------|
| CAPACITY:                                        | .708 MILLION T                                                                                                         | ONS/YEAR                 |                                                |
| CATEGORY                                         | QUANTITY                                                                                                               | RATE                     | ANNUAL COST (\$)                               |
|                                                  | *** UTILITIE                                                                                                           | S ***                    |                                                |
| WATER<br>ELECTRICITY<br>STEAM<br>FUEL            | 6375. NGAL/YR<br>4173. KWH/YR<br>0. NLBS/YR<br>672958. GAL/YR                                                          | \$ .0266/KUH             | 1020.<br>111.<br>0.<br>281296.                 |
|                                                  | *** OPERATING 8                                                                                                        | HAINT LABOR ***          |                                                |
| DIRECT<br>SUPERVISION                            | BOOO. HRS/YR<br>1600. HRS/YR                                                                                           | \$15.77/HR<br>\$17.20/HR | 126160. (A)<br>27520. (B)                      |
|                                                  | *** MAINT & SU                                                                                                         | PPLIES ***               |                                                |
| MATERIALS<br>SUPPLIES<br>SOLID WASTE<br>DISPOSAL | 1785. TONS/YR                                                                                                          | \$ \$ 8.25               | 114800. (C)<br>38600. (D)<br>14726.            |
|                                                  | PERATING COST                                                                                                          |                          | 604234.                                        |
| PLANT OV<br>TOTAL OP<br>ESTIMATE                 | OVERHEAD =20.0% OF A+B+C<br>ERHEAD =50.0% OF A+B+C<br>ERATING COST<br>D LIFE OF SYSTEM IN YE<br>RECOVERY (11.70% OF TO | C+D<br>Cars              | 30736.<br>153540.<br>606076.<br>20.<br>794305. |
| PROPERTY                                         | RATION OVERHEAD ( 2.00%<br>TAXES & INS. ( 2.00%<br>NUALIZED COST- RETROF<br>- NEW                                      | OF TOTAL CAPITAL)        | 135779.<br>135779.<br>1671939.<br>1575043.     |
| TOTAL CA                                         | PITAL COST - RETROF<br>- NEW                                                                                           | TIT .                    | 6788936.<br>6171760.                           |

## COST UPDATE OF COKE OVEN MODEL COST FUNCTIONS BASIS: 2079

REGRESSION ANALYSIS:

SOURCE: 2 UNITS OPTION COKE 5

.1938

CAPITAL COST - NEW = 453443.0(CAPACITY) CAPACITY IN UNITS PER YEAR

.1938
CAPITAL COST - RETROFIT = 498787.3(CAPACITY) CAPACITY IN UNITS PER YEAR

.2613
ANNUALIZED COST - NEW = 46504.8(CAPACITY) CAPACITY IN UNITS PER YEAR

.2573
ANNUALIZED COST - RETROFIT= 52125.7(CAPACITY) CAPACITY IN UNITS PER YEAR

| TECHNICAL REPORT DATA (Please read Instructions on the reverse before   | completing)                            |  |  |
|-------------------------------------------------------------------------|----------------------------------------|--|--|
| 1. REPORT NO.<br>EPA-600/2-79-185                                       | 3. RECIPIENT'S ACCESSION NO.           |  |  |
| 4. TITLE AND SUBTITLE Cost Effectiveness Model for Pollution Control at | 5. REPORT DATE<br>August 1979          |  |  |
| Coking Facilities                                                       | 6. PERFORMING ORGANIZATION CODE        |  |  |
| 7. AUTHOR(S)                                                            | 8. PERFORMING ORGANIZATION REPORT: NO. |  |  |
| William F. Kemner                                                       |                                        |  |  |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS                             | 10. PROGRAM ELEMENT NO.                |  |  |
| PEDCo Environmental, Inc.                                               | 1AB604                                 |  |  |
| 11499 Chester Road                                                      | 11. CONTRACT/GRANT NO.                 |  |  |
| Cincinnati, Ohio 45242                                                  | 68-02-2603, Task 44 and                |  |  |
| <b></b>                                                                 | 68-02-3074, Task 6                     |  |  |
| 12. SPONSORING AGENCY NAME AND ADDRESS                                  | 13. TYPE OF REPORT AND PERIOD COVERED  |  |  |
| EPA, Office of Research and Development                                 | Task Final; 9/78 - 7/79                |  |  |
| Industrial Environmental Research Laboratory                            | 14. SPONSORING AGENCY CODE             |  |  |
| Research Triangle Park, NC 27711                                        | EPA/600/13                             |  |  |

15 SUPPLEMENTARY NOTES IERL-RTP project officer Twidwell is no longer with EPA; for details contact Norman Plaks, Mail Drop 62, 919/541-2733.

that allows the user to determine the optimum mix of pollution control devices to achieve a specified reduction in pollutant emission at the minimum annualized or capital cost. The computer program calculates and displays: the associated cost for each emission control; the total capital and annualized cost for the optimum mix of controls; and the emission levels in pounds of pollutant per ton of coal and tons of pollutant per year for each of the four pollutant types (total suspended solids, benzene-soluble organics, benzo(a)pyrene, and benzene). The program can consider 20 emission sources and 9 control options for each emission source.

| 17. KEY WORDS AND DOCUMENT ANALYSIS |                   |                                             |                       |
|-------------------------------------|-------------------|---------------------------------------------|-----------------------|
| a. DESCRIPTORS                      |                   | b. IDENTIFIERS/OPEN ENDED TERMS             | c. COSATI Field/Group |
| Pollution                           | Organic Compounds | Pollution Control                           | 13B                   |
| Coking                              | Pyrenes           | Stationary Sources                          | 13H                   |
| Iron and Steel Industry             |                   | Suspended Solids                            | 11F                   |
| Cost Effectiveness                  |                   | Benzo(a)pyrene                              | 14A                   |
| Mathematical Models                 |                   |                                             | 12A                   |
| Benzene                             | ,                 |                                             | 07C                   |
| 18. DISTRIBUTION STATEMENT          |                   | 19. SECURITY CLASS (This Report)            | 21. NO. OF PAGES      |
| Release to Public                   |                   | Unclassified                                | 293                   |
|                                     |                   | 20. SECURITY CLASS (This page) Unclassified | 22. PRICE             |