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ABSTRACT

The addition of diethylhydroxylamine (DEHA) to the urban atmosphere had
been suggested as a means of preventing photochemical smog. Smog chamber
studies were carried out to investigate the photochémical smog formation
characteristics of irradiated hydrocarbon-nitrogen oxides - DEHA mixtures.
Propylene and n-butane were the hydrocarbons used. The effects of DEHA
upon ozone formation, aerosol formation, peroxyacetyl nitrate formation,
nitric oxide-to-NOx conversion, and hydrocarbon consumed are described. The

rate constant for the reaction

DEHA + OH products

was estimated as 4.1 + 3.4 X 105 ppm-lmin-l, Possible reaction schemes for

DEHA in the photochemical smog mechanism are discussed.

The addition of DEHA to a HC/NOx system inhibits the conversion of NO
to NO2 during the initial minutes of irradiation, but after continued

irradiation accelerates this conversion.

This report is submitted in fulfillment of Contract No. 68-02-~2566 by
Northrop Services, Inc., under the sponsorship of the U.S. Environmental
Protection Agency. This work covers a period from November, 1976 to December,

1977, and work was completed as of May 1978.
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SECTION 1

INTRODUCTION

The idea of treating polluted air with a chemical "air freshener" has
been bandied about in the literature for a number of'years (1). The quest
for a "suitable" free radical scavenger led Heicklen and others to suggest
the use of DEHA as a photochemical smog inhibitor (2,3). Because of the
announced intention of Heicklen and co-workers "to add DEHA into urban atmo-
spheres to prevent the formation of photochemical smog" (4), and in an attempt
to resolve the controversy (5,6) regarding the efficacy of DEHA in inhibiting
the onset of the physical and chemical characteristics associated with smog

formation, this study was undertaken.



SECTION 2

EXPERIMENTAL

A series of irradiation experiments was conducted in a smog chamber using
propylene (C3H6) or n-butane (C4H10) as the HC. Nox in the ratio 4 parts NO

to 1 part NO_, were added to the chamber, and DEHA was either introduced or ex-

2
cluded in order to ascertain what differences were attributable to the role of

the inhibitor.

The irradiations were carried out in av400-ft3 smog chamber described
elsewhere (7). A schematic diagram of the chamber and support equipment is

. . S
shown in Figure 1. An average value for k1 of 0.4 min = was measured.

Cylinders of NO in nitrogen (Nz) and NO2 in N2 from Scott Products® were
used to charge the chamber with the initial NOx concentrations. Pr%pylene and
n~butane used for these runs were supplied by Matheson Gas Products . An-
hydrous DEHA from Pennwalt Corpo:ation® was used. Initially, DEHA was purified
by vacuum distillation (4). However, this purification was.discontinued for
two reasons: (1) no difference in irradiations was attributable to use of the
purified material; and (2) any widespread application of DEHA to smog control

strategies would have to use unpurified commercial product.

. . ., ® . .
NO and NOx concentrations were monitored on two Bendix chemiluminescent

monitors. Periodic Saltzman determinations (8) of NO. concentration were

2
.. ® . ,
made. O3 was measured on a Bendix Model 8002 O3 monitor. HC concentrations
. . . ®
were measured using an FID gas chromatograph (either a Perkin Elmer Model 900
‘o ® ®
or a modified Beckman 6800). Porapak Q columns were used to separate and

. . ®
analyze the HC. DEHA in the gas phase was monitored using a Pennwalt 223

2
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amine packing in either a glass or Teflon® column in the Perkin Elmer® Model
900 GC. Bag samples from the chamber were analyzed for peroxyacetyl nitrate
(PAN) on the Perkin Elmer® GC with an electron capture detector. Aerosol
formation was monitored with a Thermo Systems® EAA. The dew point for each
run was held between 52-56°F and was monitored with an E G & G® dew point
hygrometer. The internal chamber temperature was monitored with a YSI®

calibrated thermistor.



SECTION 3

RESULTS

The reaction profiles for 47 HC/NOX/DEHA runs are displayed in the Appendix.
For convenience, selected runs will also be reproduced in the present section.
For all of the runs reported here, the nominal initial concentrations of N02
and NO were 100 and 400 ppb, respectively. Stability measurements of DEHA and
HC gave gas-phase loss rates in the nonirradiated chamber that were experi-

mentally equivalent to the dilution losses.

Figure 2 shows the results of irradiating DEHA and NOX, with no HC added.
Conversion of NO to NO2 was inhibited for about 6 hr, after which rapid con-

version of NO and quick formation of O3 occurred.

Figures 3 through 14 show the effects of irradiations with and without
DEHA for a variety of HC concentrations. 1In Figures 3 and 4, the propylene
concentration is ~0.25 ppm. In Figures 5 and 6, the propylene concentration
is ~0.5 ppm, and in Figures 7 and 8 the HC concentration is ~5 ppm. Figures
9 through 14 show irradiations of n~butane. HC concentration in Figures 9
and 10 is ~0.5 ppm; in Figures 11 and 12, ~5 ppm; and in Figures 13 and 14,
~15 ppm.

These graphs of irradiation runs demonstrate strikingly the effects of
DEHA on the system. During the initial portion of the run, the NO concentra-

tion increases as the NO2 is converted to NO and atomic oxygen (O) by irradia-

tion. HC consumption is decreased relative to the "no DEHA" profile, and 03

formation is retarded. After the DEHA is consumed, the reaction proceeds with



vigor! The NO conversion is very rapid, O, formation is accelerated, and the

3
maximum O. concentration attained is increased.

3

Table 1 shows data taken from propylene runs. The first column lists the
Appendix fiqure number (e.g., "1" refers to Figure A-1). The second column
gives the initial propylene concentration, the third column tabulates the ini-
tial DEHA concentration, and the fourth shows the ratio [DEHA],/[HC],. The
next six columns represent various measurements of "smog formation." The time
to reach 90% of initial NO concentration (i.e., 10% conversion to NO2 and other
products) is listed in minutes in column five. The time at which only 10% of
[NO], remains as NO is given in the next column. The times in minutes for O3
to reach 40 ppb and to reach its maximum concentration are listed in the next
two columns, while the maximum O_ concentration obtained is given in column

3

nine. The effective O3 dosage for "1 day" (i.e., 11 hr of chamber irradia-

tion) is given in the tenth column.

The next five columns list pseudo-first-order rate constants for HC or
DEHA removal. (This assumes that concentrations of reactants other than HC or
DEHA are unchanging; i.e., that steady-state approximations are valid for
those species which react to remove the HC or DEHA.) The first two of these
columns apply. only to irradiations to which no DEHA has been added. The first
column shows the rate constant calculated from data early in the reaction
(i.e., prior to a substantial 03 buildup), while the second column lists the
overall removal rate constant. The third column tabulates the HC removal rate
when DEHA was present, and the fourth gives the HC removal rate after the DEHA
has been consumed. Finally, the pseudo-first-order removal rate constant for

DEHA plus hydroxyl (OH) is estimated.

Figures 15 through 17 plot some of the data on "smog formation" listed in
Table 1 for the initial propylene concentrations of ~0.25, ~0.5, and ~5 ppm,
respectively. Figure 15 demonstrates some interesting results. At [DEHA],/[HC],
= 0.2, the initial conversion of NO to NOx is retarded; once the reaction
begins, however, the 90% conversion point (the + in the plot) is soon reached
and is achieved earlier than in the no-DEHA case. Therefore, under these

experimental conditions "smog formation" can be either retarded or enhanced,



depending upon which characteristic one chooses to examine. Note also that,
while the onset of O3 production may be retarded, it is entirely possible that

the "l-day" O, dosage may be enhanced. Comparison of Figure 15 with Table 1

3

shows that, while the "l-day" O, dosage is reduced at high DEHA~to-HC ratios,

3
it comes about not because the potential for large values of [03]max is reduced,

but rather because the onset of O3 formation is delayed sufficiently long for

the integrated O_-time profile for the first 11 hr of irradiation to be di-

3
minished.

Figures 5 and 6 demonstrate that PAN production seems to be increased
when DEHA is added to the system. Also, Figure 8 includes the profile of HNO3
formation as monitored by the method of Miller and Spicer (9).

. . . . . ®
Aerosol formation was monitored in a series of runs using the TSI Model
3030 EAA. Figure 18 compares the aerosol data for some 5 ppm propylene runs,

with and without DEHA.

~i
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TABLE 1. RESULTS OF IRRADIATION OF HC/NOX/DEHA MIXTURE USING PROPYLENE
TIME FOR DgYJE le Rermowval
[DEMA] Ozone 03 Ozone DEIA DEITA L Komn
FIQJRE IIL'IO [Dl’illl\lo UCIO 0.9(N)]0 0.1 lNO]o = 40 ppb IOJ'max (031"‘3x DOSAGE s70 [:xl)b Overcjlll Preg:rllt Cons:_n’ind N ) + ?}]‘_ _
ppn jo ¥ min min min min ppb pgm-min min min min min min 107ppm “min
1 0.0 0.19 - 380 418 400 840 700 117 - el - - - -
2 0.25 0.00 0.00 25 165 165 750 230 85 .00655 00655 - - - -
3 0.25 0.00 0.00 25 171 165 780 260 B2 .00550 . 00550 - - - -
4 0.24 0.05 0.21 46 83 7 480 540 243 - - .00513 .02463 .04748 3.3
5 0.26 0.10 0.38 274 2g8 288 900 800 194 - - .00134 .02267 .01008 2.7
6 0.30 0.15 0.50 253 268 266 660 750 223 - - .00151 .01337 .01103 2.6
7 0.30 0.38 1.27 474 495 495 930 200 60 - - .0n072 - .00453 2.3
10 0.50 0.00 0.00 14 93 81 430 525 241 . 00564 00700 - - - -
13 0.54 0.00 0.00 8 60 55 405 470 236 . 00853 01006 - — - -
21 0.52 0.00 0.00 8 77 64 360 590 294 .00735 00900 - - - -
22 0.50 0.00 0.00 11 67 67 340 570 279 .00501 00842 - - - -
11 0.60 0.13 0.21 191 208 204 * . * -— -— .00255 02472 . 00957 1.4
23 0.55 0.13 0.23 226 267 252 ns 810 240 - - .00094 02041 . 00669 2.6
12 0.50 0.13 0.25 168 194 189 ~510 >700 >253 - - .00024 03047 .00946 14.2
15 0.50 0.15 0.30 215 237 234 600 630 213 -— - .06102 02387 .00871 3.1
T 25 5.2 0.00 0.00 2 9 8 23 330 22 - .00763 - - - -
26 5.1 0.00 0.00 1 9 7 20 320 23 - .00749 - - -— -
27 5.3 0.23 0.04 45 80 115 750 760 245 - - .00239  .00773 .01037 1.6
8 4.7 0.28 0.06 a2 es 125 84n 760 255 - - .00073  .00822  .01163 5.7
29 4.9 0.50 0.10 85 132 180 A40 740 183 - - .00114 .00555 00347 3.0
30 5.0 0.76 0.15 175 245 300 990 700 98 - - . 00026 . 00545 .00446 6.2
k)8 4.7 1.4 0.30 310 353. 402 1150 800 6S -— - .00N71 .00298 .00931 4.7

*Erjuigment Failure During Run
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Figure 15. Effect of changes of [DEHA],/[HC], on manifestations of "smog" for
an initial HC concentration of ~0.25 ppm propylene.
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Figure 17. Effect of [DEHA]l,/[HC], on "smog" manifestations for an initial
HC concentration of ~5 ppm propylene.
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SECTION 4

DISCUSSION

DEHA EFFECTS ON ASPECTS OF SMOG FORMATION

The results reported above illustrate that DEHA does indeed exhibit re-
markable influence on the progress of smog formation in chamber irradiations.
The effect of DEHA on a number of characteristics normally attributed to smog

formation will be discussed below.

NO Conversion

One of the earliest suggestions for using DEHA as an inhibiting agent

arose because of its ability to inhibit conversion of NO to NO, (2). A series

2

of 10-min irradiations of NO/C3H6/O2 were carried out, and the amount of NO2
formed was monitored. DEHA was found to be one of the more efficient com-

pounds for retarding the formation of NO The data presented herein confirm

5
that result: DEHA does inhibit the conversion of NO to NOx products. Indeed,

in this system, NO, initially decreases while NO increases. But 10-min irradia-

2
tions do not tell the whole story, for — in all but the most reactive HC/NOx
systems — the addition of DEHA first inhibits and then accelerates the con-
version of NO. As can be seen from Table 1, experimental conditions can be
found for which conversion of the first 10% of NO is retarded while conversion
of 90% of the NO is accelerated. (See also Figures 9 and 10 for the 0.5 ppm .
n-butane runs and Figures 11 and 12 for the 15 ppm n-butane runs, where the
DEHA-added runs exhibit similar behavior.) This means that the effect of DEHA
in inhibiting NO conversion to products is ambiguous, and that short irradia-
tion experiments could show an inhibiting effect, while longer irradiations

would indicate an enhancement.



03 Formation

The data in Table 1 and the reaction profiles in the Appendix all show

[03]max to be increased by the addition of DEHA to the reaction system. With

DEHA added to the propylene system, [03]max ~750 ppb. This compares to
~250 ppb, ~550 ppb, and ~330 ppb for the 0.25 ppm, 0.5 ppm, and 5.0 ppm

propylene runs, respectively.

In fairly reactive systems, the onset of O_ production (as represented by

3

the time at which the 03 concentration reaches 40 ppb) and the time for O3

maximum are retarded by DEHA. However, in the case illustrated by Figure A-4,

both onset of 03 formation and the time for [03]max are advanced by the addi-

tion of DEHA. Coupled with an increased value for the O3 maximum, the "l-day"

O3 dosage is three times as large with 50 ppb of DEHA in the system as with no
DEHA.

O3 dosages were determined by measuring the area under the o3 concentra-

tion profile for the first 11 hr of irradiation. Schere and Demerjian (10)

give 1/2-hr average values of k., for June 21 in Los Angeles. In our experi-

1
ments, the area under the sinusoidal-like step function was calculated to give

a kl-time product. The result was divided by the chamber kl value of 0.4 to

determine the length of time of chamber irradiation equivalent to the Schere

and Demerjian k., profile. This time was reduced by about 10% to represent the

solar irradianci on an averade spring or summer day instead of for the longest
day of the year. (Data taken from Leighton (11) for a point at 35°N latitude
indicate that daily insolation for an average spring and summer day is about
89% of the daily insolation at summer solstice.) The result was that an 1ll-hr

irradiation in the chamber gave a k. +time product equivalent to that of an

1
average spring/summer day in Los Angeles; the integrated dosages for 1ll-hr

irradiations are given in Table 1 and Figures 15 through 17.

In general, the time for onset of O3 production and the time to reach O3

maximum increase with increasing DEHA concentration. This affects the "l-day"

dosage figures, not by reducing the O_,-forming potential of the system but

3
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rather by moving the O_ profile out of the first 1ll-hr irradiation period.

3
Even so, the dosage figures are not lowered relative to the no-DEHA case until

a substantial amount of DEHA has been added.

PAN Formation

The addition of DEHA to the propylene—NOx system roughly doubles the
maximum PAN concentration reached during irradiation (cf. Figures 5 and 6).

A similar result is reported by Pitts et al. (5).

Aerosol Formation

Figure 18 compares the aerosol growth dynamics of chamber irradiations
with and without DEHA. In both instances, the rapid production of aerosol
coincides with the onset of O3 formation. Without DEHA, a large number of
small éroplets is formed. With ﬁEHA in the sygﬁeﬁ, the number of particles

formed is not so large as in the "no-DEHA" case, but they are larger in diame-
ter (as evident in the substantial increases in volume and surface area). This
means that there is conside}ably more material tied up in the aerosol when DEHA
is in the system. Also, only with DEHA added do the aerosol particles exceed
0.05 ym in diameter. Since 0.05 um is (roughly) the smallest size particle
that can contribute to particulate light scattering (12), the net effect of
DEHA on visibility would seem to be increased degradation resulting from

particulate diffusion.

HC Consumption

A second major inhibiting characteristic (in addition to retarding NO
conversion) ascribed to DEHA is thaf it slows the rate of HC consumption
(4,6). This is to be expected of any compound which can effectively compete
with the HC for those reactive species which are capable of removing the HC.
Because the predominant reactive species early in an irradiation is OH (12),
any compound which reacts with OH at a rate substantially higher than that of
the HC should effect a decrease in the HC consumption rate — so long as its

reaction products do not in turn produce even more OH or other reactive species.
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Table 1 shows that DEHA does substantially reduce the HC consumption rate
as long as DEHA is present in the chamber. Once all the DEHA has been consumed,
however, the HC removal rate is accelerated and becomes as fast or faster than

the removal rate in the "no-DEHA" case.

Figures 9 through 14 demonstrate a similar general behavior for n-butane
(i.e., the HC removal rate is decreased as long as DEHA is present and is

increased after all the DEHA has been consumed).

The data listed in Table 1 for KHC Removal permit some interesting cal-
culations. If one assumes that HC removal prior to substantial buildup of o3
is primarily due to reaction with OH (12), then the steady-state hydroxyl

radical concentration [OH]SS can be estimated as

(OH] _ = (k )/k

HC Removal ~ ‘Dilution’’*Hc+on

Using the data for k (with 03 < 70 ppb) together with values of 2.6

HC Removal

-4 ., -1 4 -1 . -1
x 10 " min T and 3.6 x 10 ppm - min ~ for kDilution and kHc+OH (13), one

calculates an average OH concentration of 1.6 x lO_7 ppm, or about 4 x 106
radicals cm_3. This value is roughly equivalent to the yearly daytime average
[OH] of 5 x lO6 radicals cm_3 calculated by Weinstock (14), and is less than

the daytime OH concentrations in ambient air measured by Niki et al. (15).

The validity of using HC removal rate data taken before [03] reaches 70 ppb
can be checked by calculating the ratio of HC removed by OH to the HC removed
by 03:

~ Kycion [oH] __ [HC]

k
HC+O3 [03] [HC]

For the propylene data given in Table 1, the ratio is:

(3.8 x 10° ppm'l min"Y) (1.6 x 10°/ ppm)

(1.7 x 102 ppm'l min—l) (0.070 ppm)

R =

~ 5.1
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This means that the HC removal rate is dominated (by a ratio of 5:1 or greater)

by the OH reaction until O_ exceeds 70 ppb. This calculation neglects HC

3
removal by other species like hydroperoxide (Hoz) and O, the concentrations of

which are kept exceedingly low by other species present in the system.

One may assume that when both DEHA and propylene are present in the
chamber they compete for the same reactive species. If that species is OH,
then one may estimate the reaction rate constant for DEHA plus OH by the

following equation: .

_ kDEHA Removal.kHC + OH

KDEHA + OH ~ K

HC Removal (DEHA Present)

The last column in Table 1 shows the estimated values for DEHA + OH determined

from the experimental runs. The results give a value of 4.1 x 105 (£3.4 x 105)

-1 . - . L . .
Ppm = min l. This value is in good agreement with the direct measurement of

1.4 x 105 ppm_l min-l reported by Gorse et al. (16), especially in view of the
assumptions required to obtain the estimate. This value is approximately one-
half the "hard-sphere" estimate for a collisional rate constant and implies

that the reaction of DEHA with OH is very efficient.

The data show that the parent compound DEHA can act to inhibit many of the
manifestations of smog formation. However, as Figure 2 illustrates, DEHA is
an organic molecule which, when irradiated with NOx, yields reactive products.
These primary or secondary products may, in turn, rapidly convert NO to NO, and

2

form copious quantities of O This implies that the "reactivity" of DEHA

itself may set the limit on 2he extent of inhibition which is attainable by
injection of DEHA into the atmosphere. Indeed, the striking similarity of
Figure 2 (DEHA alone) and Figure 10 (DEHA added to 0.5 ppm n-butane) supports
the idea that, in reasonably unreactive systems, smog formation is directly

controlled by the reactivity of the DEHA itself.
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POTENTIAL MECHANISMS TO EXPLAIN DEHA EFFECTS ON SMOG FORMATION

The behavior of the chamber runs described above can be explained in
general terms by assuming that DEHA interacts with OH and other reactive
intermediates to form inert or less reactive products. (Indeed, the primary
applications for DEHA suggested by the manufacturer, Pennwalt, are as a radical
scavenger or "shortstopper” in polymerization or corrosion chemistry (17).)
Radical scavenging by DEHA would: (1) reduce the number of radicals capable
of reacting with HC, thus reducing the HC removal rate; and (Zj intercept
atomic O so that irradiation would convert the NO, to NO with subsequent

2
suppression of O_ formation.

3
Attempts were made to adapt a reaction model for a propylene—NOx system
developed by Dodge and Ascher (private communication) to éxplain the results
described above. Reactions for DEHA were added to the mechanism, based upon

reported product formation.

The products attributed by Heicklen (4) to addition of DEHA to a C2H4/NO/
O2 irradiation system are: acetaldehyde (CH3CHO) (C2H4O) (ALD2), ethyl nitrite

(C.H_NO.) (NET), ethyl nitrate (C2H OH), nitrous

ON02) (NIT), ethanol (C2H

27572 5 5
acid (HONO), and nitrous oxide (NZO) (N20). The reaction of 03 with DEHA (in
the presence of excess O3 or air) is reported to yield CH3CHO and C2H5NO2

essentially quantitatively and without inhibition (18).

One possible mechanism that explains all of the observed products is
shown in Figure 19. The first reaction step, abstraction of the hydroxyl
hydrogen, was suggested by Heicklen (4) and supported by Gorse et al. (16),
based upon liquid phase kinetic studies. Abstraction reactions are often very
fast; in the case of abstraction by OH, a very stable product, water (HZO)’ is
formed. The resulting radical, (C2H5)2—N—O- or DENO, is interesting in that
resonant configurations may place the free electron on either the O or N atom.
The intermediate DENO or some subsequent product may itself be relatively
unreactive, since the rapid conversion of NO (and the other manifestations of

smog formation) is suppressed so long as DEHA is still present in the chamber.
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Heicklen (4) reported an ~40-min inhibition period between onset of DEHA

removal and the appearance of CH3

CHO, nitroethane (CH3CH2N02) (EtNO2) and N20.
He suggests that the compound (Et)z-N—NO may serve as an unidentified inter-
mediate in the reaction scheme. (The suggested reactions are included in
parentheses in Figure 19.) Some of the reactions included in the mechanism
must be considered to be speculative in nature. The paucity of thermodynamic
data makes theoretical predictions of possible reaction routes and rates

extremely difficult.

The photolytic rate constants in the model and an initial concentration
of HONO were adjusted to emulate the NO removal rate observed in the chamber
runs without DEHA. The model overpredicts O3 formation (therefore, the HC re-
moval rate is also too fast), a feature characteristic of this particular
model (Dodge and Ascher, private communication). Reactions involving DEHA
were then added to the mechanism. Initial attempts at modeling the entire
reaction scheme actually increased the overall reaction rate. For simplicity,
the DEHA reaction scheme was truncated with DENO, and the simulation was rerun

in an attempt to model the initial portion of the irradiation. Figure 20

shows a comparison of the simulations with and without DEHA added.

The simulations show that, with this particular reaction mechanism, the
addition of DEHA does indeed retard onset of O3 production and NO conversion
and slow the HC removal rate. The NO does increase initially, as is observed
experimentally (although the model achieves this primarily through reaction
of DEHA with HONQO). The difficulties involved in modeling the initial NO
increase indicate that the mechanism may be either incomplete or inadequate
in regard to NOx chemistry. This may also be the reason that the model tends
to over-predict O3 formation.

The rate constant used for Reaction (a)

DEHA + OH - DENO + HZO (a)
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varied between 1.4 x 105 ppm'—l min—l and 4.1 x 105 ppm-l, with an intermediate

value of ~2.6 x 105 ppm_l min ~ generally being used.

An upper limit of 0.02 ppm_l min ~ was estimated for reaction (b)

DEHA + NO2 -+ DENO + HONO (b)
based upon data obtained while charging the chamber for irradiations and from
data quoted by Heicklen (2). B. Gay detected by Fourier transform infrared
spectroscopy (FTIR) the rapid formation in the dark of HONO from the mixture
of NO, and DEHA in a different chamber, but that rapid reaction may have been

2
infiuenced by wall effects.*

The rate constant for reaction of O3 and DEHA

03 + DEHA - DENO + OH + 02 (c)

was estimcted as >1.3 ppm-l min_l from plots of the reaction of O3 with DEHA
published by Heicklen (18). A similar lower limit rate constant was used for

reaction (d):
O + DEHA - DENO + OH (d)

The reaction rate constant of HONO and DEHA was permitted to vary as

required:

HONO + DEHA - DENO + HZO + NO (e)
Ratios of the subsequent reactions can be estimated from product distribu-
tions. The magnitudes of the rates must be adjusted to account for the actual

reactivity of the system.

*Gay (private communication). The formation of HONO in a nonirradiated mixture
of NO, and DEHA was unmistakable, but because these two compounds have existed
in the gas phase in other chambers without rapid reaction, the results observed
by Gay may be attributable to surface effects. A subsequent 5-min irradiation
showed removal of both DEHA and HONO with no identifiable product buildup.

35



SECTION 5

CONCLUSIONS

The results of adding DEHA to chamber irradiations of HC/NOx systems were

empirically defined for propylene and n-butane.

As long as DEHA was present in the gas phase in the chamber, the physical
manifestations of smog formation were retarded or inhibited. However, DEHA is
an organic molecule which does react to produce "smog" itself; once it was con--
sumed, all of the manifestations of smog production were aggravated in the
test reaction systems. In particular, the chamber runs indicated that the
DEHA-consumed system produced: (1) increased 03 formation; (2) rapid con-
version of NO to NOX; (3) increased HC consumption; (4) increased PAN pro-
duction; (5) aerosol in greater volume and in a size distribution that is more
likely to affect visibility; and (6) a significantly different NOx product
profile. These results have significant impact on any proposed control strategy

involving DEHA.

It has been suggested (4,6,16) that continual and sufficient introduction
of DEHA into the urban environment could significantly lower the exposure of
the urban population to smog. Under normal meterological conditions, this
conclusion is probably correct. However, addition of DEHA to the urban atmo-
sphere is much like "adding fuel to the fire." Should the concentration of
DEHA drop below "adequate" levels, the adverse effects of smog on the urban
population are likely to be exacerbated. 1In addition, these studies indicate
that the impact on rural areas downwind from the urban center may be significant
and undesirable. Under conditions of stagnant air over the urban center, the

necessary amount of DEHA to be injected on the second and subsequent days



would have to be increased to overcome the reactivity of both the cumulative
HC and NOx emissions and the buildup of DEHA reaction products. At some
point, DEHA concentrations would become unacceptable (on account of odor,
etc.), or the reactivity of the total organic chemical loading would become
sufficiently large to overwhelm the DEHA inhibition and produce smog effects

despite the presence of DEHA.

Finally, introduction of DEHA into the atmosphere may expose the populace
to some unknown NOx product of DEHA. The runs presented above show that the
NOx profile is significantly different with DEHA added to the system. The
high NOx concentrations late in the DEHA runs cannot be accounted for by PAN,
Noz, NO, and nitric acid (HNO3). CH3CH2NO2 and N20 {the major NOx products
identified by Heicklen (4)) could not be monitored because of gas chromato-
graphic insensitivity, but studies of the response of the chemiluminescent NOx
instrument indicate that substantial concentrations of these compounds would
be required to account for the observed NOx readings. This implies that some
other NOx product (or a chemiluminescent interferent) must be formed during
the reaction. An attempt to analyze these NOx products by FTIR was unsuccessful

because of experimental problems (Gay, private communication; see previous

footnote). The reaction scheme in Figure 19 suggests several possible inter-

mediate Nox products (EtNO, DENO, Et§=CHCH , etc.); Heicklen et al. (4) have

3
also suggested (CZHS)Z-N-NO. The possible hazards of exposure to these or

other possible NOx products of the reaction are currently unknown.
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