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FOREWORD

Protection of the environment requires effective regulatory actions which
are based on sound technical and scientific information. This information
must include the quantitative description and linking of pollutant sources,
transport mechanisms, interactions, and resulting effects on man and his en-
vironment. Because of the complexities involved, assessment of specific pol-
lutants in the environment requires a total systems apprpach which transcends
the media of air, water, and land. The Environmental Monitoring and Support
Laboratory-Las Vegas contributes to the formation and enhancement of a sound
monitoring data base for exposure assessment through programs designed to:

(] develop and optimize systems and strategies for moni-
toring pollutants and their impact on the environment.

° demonstrate new monitoring systems and technologies by
applying them to fulfill special monitoring needs of
the Agency's operating programs.

This report discusses the theoretical basis for a method of designing
air quality monitoring networks with regard to the specific objective(s) of
the network. The method is presently only applicable to nonreactive pollu-
tants and requires the existence of limited air quality monitoring data.
Regional and local agencies may find this method useful in planning or adjust-
ing their air quality monitoring networks. The Monitoring Systems Design and
Analysis Staff may be contacted for further information on the subject.
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" George B. Morgan

Director
Environmental Monitoring and Support Laboratory
Las Vegas
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ABSTRACT

A method is developed whereby measured pollutant concentrations can be
used in conjunction with a mathematical air quality model to estimate the
full spatial and temporal concentration distributions of the pollutants over
a given region. The method is based on the application of estimation theory
to systems described by partial differential equations, such as the atmo-
spheric diffusion equation. A computer code has been developed that can pro-
cess monitoring data to produce concentration distribution estimates. The
code has been tested extensively on a hypothetical airshed, designed to illus-
trate the key features of the method. Once concentration distributions have
been estimated, new monitoring stations can be located based on several sit-
ing criteria.
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SECTION 1
INTRODUCTION

Urban air pollutant monitoring systems consist of an array of stations
located throughout the region at which pollutant concentrations are measured
continuously or intermittently. At present in most systems the data are trans-
mitted to a central facility and stored for possible future use. The object
of this study is to develop a methodology by which air monitoring data from
an urban monitoring system may be processed in real time to produce continuous
estimates of the spatial and temporal concentration distributions of pollu-
tants over a region, and thereby to locate pollutant maxima under various
meteorological conditions.

Mathematical urban air pollution models enable the prediction of the
spatial and temporal concentration distributions of pollutants under varying
meteorological and source emission conditions. Given a region with no moni-
toring stations it is possible to estimate pollutant concentration distribu-
tions in the airshed as long as pollutant source emissions and meteorological
data are available. In such a case it is possible to perform numerical ex-
periments with a mathematical model under various source and meteorological
conditions to find the locations of the highest concentrations of particular
pollutants and then to design a network initially for the region based on
these predicted pollutant concentrations.

The more common situation is that in which several monitoring stations
are already in existence in a region. In addition to routine surveillance it
may be desired either to move those stations or to place new stations within
the region. In such a case, it is desirable to use the information available
from the existing stations as well as the information that can be obtained by
exercising a mathematical model. The basic problem involved is that of coordi-
nating in a consistent manner the measurements available from the stations
and the predictions of the mathematical model. The development of a frame-
work for this integration is the object of this work. Thus, our objective is
to develop means by which urban air pollution models can be used together with
air monitoring data to estimate the complete spatial and temporal concentra-
tion distributions over a region. As noted above, if this can be done, then
additional stations can be located or existing stations can be moved for bet-
ter or more effective surveillance of pollutant concentrations. In Section Il
we cite several objectives by which one would locate stations. Each of these
objectives can be met if one has the knowledge of concentration distributions
over the whole region and how the concentration distributions vary with changes
in meteorology and sources.



The basic problem we consider, therefore, is the use of data from an
existing monitoring network in conjunction with an air quality simulation
model to produce estimates of pollutant concentrations over the entire region.
Thus, we are developing a means by which point data can be used in conjunction
with a mathematical model to produce area-wide concentration distributions as
a function of time. This is essentially an optimization problem in that we
want to estimate that concentration distribution that is as close as possible
to both the monitoring data and the mathematical model. Because of inherent
fluctuations in atmospheric measurements and because mathematical models are
inexact, there will never be complete agreement between model predictions and
measured data.

The optimization problem associated with estimating concentration dis-
tributions is formulated and solved. The main consideration in implementing
the theory is the computational requirements. In short, the solution requires
the solution of an equation similar to the mathematical model for the esti-
mated concentrations and of an additional set of equations for the statistics
(variances) of the concentration estimates. The equations for the variances
are cumbersome. A significant portion of the present study has been devoted
to determining the most efficient numerical way to implement the model and
variance equations so that ultimately the algorithm can be exercised by the
U.S. Environmental Protection Agency (EPA) with reasonable amounts of comput-
ing time for an urban region. In this report we describe a systematic inves-
tigation of each of the available numerical approximate methods for solution
of the model and variance equations. We present a computer program capable of
producing concentration estimates from an arbitrary number of monitoring
points in a given region with a 3-dimensional model. The program is struc-
tured in a general way for a 2-dimensional wind field, vertical diffusivity,
and source emissions, and an arbitrary number of monitoring locations. The
program will, given measurements of pollutant concentrations, produce esti-
mates of the full concentration distribution over the region. In its present
version the program relates only to inert pollutants and does not include a
vertical component in the wind field. Such conditions could be added if a
comprehensive air quality simulation model were to be integrated into this
routine.



SECTION II
DESIGN OF A MONITORING SYSTEM

Monitoring ambient air quality is an indispensable, and perhaps the
single most important, activity in the evaluation and control of air pollu-
tion. Without reliable measured data, one cannot establish a quantitative re-
lationship between atmospheric pollutant levels and source emissions, nor can
one assess the effects of polluted air on man and his environment.

With the passage of the Clean Air Act, including the 1977 amendments,
ambient air monitoring programs have become an essential part of state imple-
mentation plans. In its 1975 document on design of air monitoring networks,
EPA states that "much more consideration, in both manpower and monetary re-
sources, should be applied to the issue of siting monitoring facilities than
is currently the common practice... It is considered inconsistent to under-
take a monitoring effort involving resources in the tens of thousands of dol-
lars without investigating the far smaller effort involved in... proper siting
of the monitoring instruments." (Environmental Protection Agency, 1975.)

The design of an ambient air quality monitoring network will depend on
the purpose of the network. The following general monitoring objectives have
been delineated by the EPA:

(1) To establish a basis for comparison of air quality standards with
actual air quality levels, to measure progress toward compliance,
and to establish the degree to which compliance is achieved.

(2) To provide a basis for ascertaining long term trends. (The imple-
mentation of most air pollution control strategies takes time.
The effectiveness of these strategies, as reflected by the gradual
changes in air quality, can be evaluated only through careful com-
parisons of historical records of air quality data.)

(3) To provide air quality data during episodes
(4) To monitor source compliance with regulations
(5) To provide data to support enforcement actions
(6) To provide data for research.

The development of a permanent air quality monitoring network involves
the determination of the number and location of sampling sites, selection of
appropriate instrumentation, determination of the frequency and schedule of



sampling, and establishment of instrument and probe Si@ing criteria (Environ-
mental Protection Agency, 1975). In this work we confine our attention to

the first aspect, namely the determination of the number and location of sam-
pling sites. As noted above, the configuration of an air quality monitoring
network involves two elements--the number of sensors and their geographical
Jocation. Decisions on the two elements can be made in either order, that is,
the number of stations can be prescribed based on a criterion of cost and then
distributed geographically in some optimal fashion, or the number of stations
and their locations may be chosen on the basis of the monitoring criteria.

The minimally required number of monitoring stations can be judged, in general,
from factors such as the absolute levels of pollutant concentrations, the vari-
ability of the spatial concentration distribution, and the physical size and
population distribution of the region.

Air pollutants are emitted from a variety of sources and are transported
and dispersed by an atmosphere,the turbulent processes in which can only be
described statistically. As a result, pollutant concentrations not only fluc-
tuate in time; they generally differ from place to place as well. The most
difficult question confronting a designer of monitoring systems can be there-
fore expressed as: "Where in this highly variable field should the stations be
placed so that representative samples can be collected?" Clearly, an answer
lies in the thorough understanding of parameters that can affect the spatial
distribution of air pollutants. A variety of non-technical considerations
will influence the choice of where to locate monitoring stations, including
the security of the site, its accessibility, the availability of utilities,
the ability to accommodate future modifications or expansions, and the avail-
ability of the site. Harrison (1972) has noted that the prime consideration
in selecting sites for the Chicago air monitoring network is security.

A. MONITORING REQUIREMENTS OF DIFFERENT POLLUTANTS

The pollutants commonly monitored in an urban area are carbon monoxide
(C0), sulfur dioxide (S02), total hydrocarbons, oxides of nitrogen (NO + NO2),
oxidant, and total suspended particulate matter. Each has certain atmospheric
characteristics that suggest different monitoring requirements.

Carbon monoxide is essentially a non-reactive pollutant generated by
motor vehicles. The highest concentrations of CO are observed in urban areas
near roadways carrying high volumes of traffic (Chang and Weinstock, 1973).
In order to ascertain whether air quality standards for CO are being met, it
is therefore most important to monitor in the regions of highest traffic den-
sities. In assessing long term trends it may also be desirable to measure
CO at points removed from roadways as well as near roadways. According to
recent EPA guidance on siting of CO monitors, six types of sites are dis-
cussed and assigned the priorities shown below (Environmental Protection
Agency, 1975):

Type of site Priority
Peak street canyon 1
Peak neighborhood 1
Average street canyon 2



Type of site Priority

Corridor 3
Background 4
Average Neighborhood 5

Ott and Eliassen (1973) have suggested that present patterns in the siting of
stations for CO measurement may not permit adequate assessment of compliance
with air quality standards. Ott (1971) conducted a comprehensive survey of
air quality (for CO) in the vicinity of a single monitoring station in San
Jose, California. Samples were collected along the sidewalk at "breathing
level” while walking at random spatially over a specified grid, and in special-
1y prescribed patterns near the station. Ott found that concentrations sig-
nificantly higher than those recorded at the monitoring station prevailed
along the sidewalks of downtown San Jose streets and that these concentrations
showed little correlation with values recorded at the station. Near-street
measured values (long-term averages) were on the order of a factor of two
greater than values recorded at the station.

Ott (1975) has attempted to formulate a set of uniform criteria for CO
monitoring. He suggests a dual monitoring approach, in which two monitoring
stations are used continuously in each area of the region, one to monitor the
Tower urban neighborhood concentration and one to monitor the higher concen-
trations to which pedestrians are exposed near traffic. Ludwig and Keoloha
(1975) have suggested procedures for selecting CO monitoring sites representa-
tive of downtown street canyon areas, along major traffic corridors, and urban
neighborhoods. They make specific recommendations for the heights of moni-
toring ports, distances from major and minor roadways, and placement relative
to urban areas.

Sulfur dioxide is emitted from fossil fuel combustion in power plants
and space heating units and from certain industrial operations. Once emitted,
SO2 is oxidized to sulfates on a time scale the order of hours, with sub-
stantial amounts of the original gaseous sulfur ending up in airborne par-
ticles. Because of the nature of its sources, SO2 is usually emitted above
ground level from stacks or from the tops of buildings. Highest concentra-
tions might be expected to occur therefore at rooftop levels directly down-
wind of major sources. There is mounting evidence that the most serious SOp-
related health effects are those resulting from exposure to sulfate-bearing
particulate matter. These effects would be manifest most strongly well down-
wind of the SO sources themselves, since time is required to convert gaseous
SO to particulate sulfate. With the exception of monitoring downwind of
certain strong sources of SOp, such as a power plant, monitoring requirements
for SO2 suggest area-wide measurements.

Hydrocarbons are emitted from motor vehicles and a large number of in-
dustrial sources. There are currently no air quality standards for hydrocar-
bons based on health effects, although there does exist a standard of 0.24 ppmC
(parts-per-million of carbon) for a 3-hour average based on subsequent oxi-
dant formation. There is no need therefore to measure hydrocarbons for
possible health effects. The primary reason for monitoring hydrocarbon con-
centrations is based on the relationship of hydrocarbon levels to oxidant
formation.



The oxides of nitrogen, NO and N02, have rather different spatial dis-
tributions in the atmosphere when there“are appreciable emissions of NO.
Nitric oxide (NO) is emitted from motor vehicles and stationary combustion op-
erations and can be classed as a primary pollutant. Its highest concentra-
tions can be expected to occur in the vicinity of sources, particularly near
heavily travelled roadways. As in the case of hydrocarbons, there is cur-
rently no health standard for NO. Nitrogen dioxide (NO») is almost totally an
oxidation product of NO. A health standard does exist for NO» (0.05 ppm
annual average) so that measurement to assess compliance with the standard is
necessary. Since NO2 is formed in the atmosphere from NO only after the NO
has been mixed with emitted hydrocarbons and allowed to react for a period of
an hour or so, local hot spots of NOp are not to be expected. Area-wide moni-
toring at locations downwind of main NO sources is the basic strategy called
for.

Photochemical oxidant, primarily ozone, is the major product in photo-
chemical smog. Oxidant forms during prolonged irradiation of hydrocarbon/NO
mixtures, usually well downwind of where the hydrocarbons and NO were emitted.
Clearly, area-wide monitoring is suggested for oxidant, with one proviso.
QOzone reacts very quickly with NO. Thus, in the vicinity of local sources of
NO, such as roadways, ozone levels are generally significantly depressed
relative to ambient levels due to rapid scavenging by NO. Thus, it is neces-
sary to locate monitors for oxidant beyond the immediate vicinity of NO

sources.

The final category of pollutant routinely measured in urban areas is
total suspended particulate matter (TSP). Particulate matter is emitted from
a wide variety of sources, and the monitoring needs of a region will be dic-
tated somewhat by the major sources of particulate matter in that region.
Primary particulate matter is emitted from motor vehicles, aircraft, power
plants, and industrial operations. The largest particles generally settle
out rapidly near the sources, whereas those in the micrometer range and smaller
become airborne for relatively long periods of time.

The brief discussion above leads one to the conclusion that it is pos-
sible to identify two basic types of monitoring sites, proximate and wiban
Tevel. Proximate sites refer to those situated in the immediate vicinity of
a source, and are of primary interest in the measurement of CO. In those in-
stances in which significant SO, emissions occur from a single source, proxi-
mate monitoring may aiso be ca]?ed for. The selection of proximate sites will
depend on the particular source, its configuration and the local topography-
Sources for which proximate monitoring may be necessary are elevated and de-
pressed roadways, street canyons, airports, and perimeters of power plants.
The site is to be chosen at the point when the highest concentration levels
are expected to occur. A detailed consideration of the selection of proximate
sites for CO monitoring has been carried out by Ludwig and Kealoha (1975).

Urban level sites are used to enable the estimation of concentrations of
pollutants over broad areas of the entire region or certain subareas of the
region. Thus, these sites should be reasonably removed from strong local
sources so that each station provides data representative of the "region" of



the airshed in the vicinity of the station. In most cases, "airsheds" have
been designated by legislation. As a practical matter, an airshed can be
considered as that region in which pollutant concentrations are largely the
result of emissions in the airshed. The airshed is usually defined as a re-
gion large enough so that a different "airshed" need not be defined for each
pollutant. Urban level sites are the type called for, in general, in measure-
ment of S0, hydrocarbons, NOy, oxidant, and particulate matter.

B.  SITING CRITERION

Certain objectives of monitoring have been delineated above. Table 1
indicates the various criteria one would consider in attempting to meet the
six objectives. Based on Table 1 we can summarize the following criteria for
siting of monitoring stations:

(1) Locate stations so that the pollutant concentration distribution
over the region can be estimated most accurately.

(2) Locate stations where the expected frequencies of violation of the
air quality standards are highest.

(3) Locate stations at points of maximum sensitivity of the pollutant
concentrations to source parameters.

The problem of siting on the basis of maximum sensitivity of concentra-
tions to source emission level changes has been considered previously (Sein-
feld, 1972). We do not consider this approach in the present work. We
choose to focus on the objective of ascertaining compliance with regulations,
the most important objective of air quality monitoring. Thus, the criterion
with which we will be concerned is to locate stations to enable the best esti-
mation of pollutant concentration distributions over the region, a criterion
that includes detection of the places of greatest expected violation of
standards.

The criterion of locating stations so that optimal estimates of the full
concentration distribution over the region can be obtained is compatible with
other criteria being considered by the EPA's Environmental Monitoring and
Support Laboratory-Las Vegas (EMSL-LV). For example, in Liu et al. (1977) a
Figure of Merit, F, was defined as the product of an air quality index (either
observed or predicted) at a particular location and the associated frequency
or probability of occurrence,

F =) (Air Quality Index) « (Frequency of Occurrence)

The summation is to be performed over all meteorological scenarios that lead
to air pollution episodes. The Figure of Merit is weighted by the frequen-
cies of occurrence of the scenarios because the pollutant concentration at
any location varies significantly over a year, e.g.,McElroy et al. (1978).

Go4) 2{: Frequency of Occurrence Max. 1-hr.or 8-hr.surface
F(i,3) =

of Meteorological ol CO Concentration at
2=1 Pattern £ Grid Point i,j under
Pattern 2



TABLE 1. SITING CRITERIA FOR DIFFERENT OBJECTIVES FOR MONITORING

Monitoring Objective Siting Criterion
1. Assess compliance with air Locate stations where concentrations are
quality standards expected to be largest or locate stations

where the spatial concentration distribu-
tions can be estimated most accurately.

2. Assess long-term trends Locate stations where concentrations are
expected to be largest or locate stations
where the spatial concentration distribu-
tions can be estimated most accurately.

3. Provide data during episodes Locate stations where concentrations are
expected to be largest under conditions
of stagnation or Tocate stations where the
spatial concentration distributions can be
estimated most accurately.

4. Monitor source compliance Locate stations at points where the sensi-
with regulations tivity of concentration levels to source
emission level changes is greatest.
5. Provide data to support Locate stations at points where the sensi-
enforcement actions tivity of concentration levels to source

emission level changes is greatest.

6. Provide data for research For the evaluation of diffusion models,
locate stations where the spatial concen-
tration distributions can be estimated
most accurately.

In this approach, McElroy et al. (1977), the CO concentration is predicted by
an urban air pollution model for each situation corresponding to the various
meteorological patterns. Air quality data are not necessary to implement
that approach (only, of course, for the validation of the air quality model);
with source emission and meteorological inputs the concentrations can be pre-
dicted in the absence of air monitoring data. When there are no air monitor-
ing stations in a region then the technique of Liu et al. (1977) must be
used. The approach that we have chosen to follow is based on the availability
of air monitoring data. In short, we seek to utilize past air monitoring
data to estimate the full pollutant concentration distribution over the re-
gion. Once this distribution has been estimated, then the Figure of Mer1t
can be computed. Our approach recognizes, therefore, the fact that air
quality model predictions will not perfectly match ambient data and attempts
to reconcile the model predictions and the data to produce an "optimum"
estimated concentration distribution.



SECTION III
OPTIMAL ESTIMATION OF AIR POLLUTANT CONCENTRATIONS

In Section II we discussed several objectives of monitoring and the re-
sultant siting criteria. We arrived at the criterion of locating stations
to enable the optimal estimation of pollutant concentration distributions
over the region as one that satisfies many of the principal objectives of

monitoring. In this section we outline the theory underlying the implementa-
tion of this criterion.

A.  MATHEMATICAL MODELS OF URBAN AIR POLLUTION

In attempting to quantify the siting criterion and determine an opti-
mum design it will be necessary to employ a model that relates emissions to
air quality. Models of this type can be classified as dynamic or long-term.
Dynamic models describe the evolution of pollutant concentrations in the re-
gion during a day, given source emission and meteorological information.
Long-term models predict the yearly average pollutant concentrations as a
function of location in the airshed and incorporate information on the fre-
quencies of occurrence of various meteorological conditions in the region over
a typical year (Kumar et al., 1976). The monitoring location problem can be
formulated on the basis of the dynamic behavior of pollutants on typical days
(requiring the use of a dynamic model) or on the basis of the long-term, aver-
age concentration distributions over the region (necessitating the use of
long-term models). Since dynamic models, if accurate, incorporate much more
detail than long-term models, particularly when episode conditions are of
interest, siting on the basis of the dynamic behavior of pollutants is pre-
ferable to that based on long-term averages. Consequently, we confine our
attention here to siting on the basis of dynamic behavior. For an example of
an approach to monitor siting based on long-term averages we refer the reader
to Darby et al. (1974).

A1l conventional atmospheric diffusion models are based on the equation
of conservation of mass

3¢, ac, ac, ac, (azci azci azci
5t T Uk tVay tTWar T 0ilam oyt e )t Rilegas )
+ S5(x.¥,2,t) (1)

where cj is the concentration of species i; u, v, and w are the fluid veldci-
ties in the three coordinate directions; Dj is the molecular diffusivity of
species i in air; Rj is the rate of generation (or the negative of the rate
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of disappearance) of species i by chemical reactions at temperature T; and
Si is the rate of injection of species i into the fluid from sources.

Because the atmosphere is a turbulent flow, the velocities u, v, and w
are random functions of space and time. Consequently, the concentration c,
is also a random function of space and time. Solutions of (1) with realistic
atmospheric velocities are very difficult to obtain, even in the case in which
Ri = 0 (inert species). In order to render (1) solvable, the fluid velocities
are decomposed_into mean and fluctuating components, u = u + u', etc. The
quantities u, v, and w represent the ensemble mean velocities of an infinite
number of realizations of the same flow. Correspondingly, we can divide c,
into c; + c%, where Ei is the ensemble mean concentration. !

Upon substituting the mean and fluctuating terms into (1) and averaging
the resulting equation over the ensemble of flows we obtain the equation
governing cj. In atmospheric applications, the molecular diffusion term is
negligible when compared to that representing advective transport. Thus,
neglecting the contribution of molecular diffusion, the equation for Ei is

3c c. 3¢ —_

_._..i.+__a_6_i.+-_a._1_+v-v__i.+_§_ u'c' -l-_a...v'(:l +_8_w'c'
ot U ax v oy 0z X i 3y i 92z i
= R_i(C],..c 'y CN,T) + Si(x5y325t) (2)

We note the emergence of the new variables u'cy, v'c}, and w'cl, which
represent the fluxes of species i in the three coordinate directions as a
result of the velocity fluctuations, u', v' and w'. If species i is involved
in second-order chemical reactions then the term Ri will also lead to new
dependent variables of the form c%cj.

Equation (2) is a rigorously valid equation for Ej (neglecting, of
course, molecular diffusion), and if the variables U'C;, v'Ci, W'c;, as well
as any of those arising from R;, are known as functions of space ahd time,
it can be solved in principle 10 yield cj. Unfortunately, u'c{, etc., can-
not be measured at all points in an atmospheric flow, and cannot be predicted
exactly because of the closure problem of nonlinear stochastic equations.
Thus, we must resort to models for these terms. The model employed in vir-
tually all cases in which atmospheric flows are involved is that based on the
concept of eddy diffusivities:

—_— aEi aci
] ] = o —_— ] 1 = o I
utcy Ky ox vicy Ky 3y
—_ dC. (3)
'e! = o 1
W Ci KV 32

The eddy diffusivities Ky and Ky are postulated to be functions of space and
time (and not of c, or any of i¥s gradients). In addition, all models employ
the approximation

10



Ri(c1,..., cN,T) = Ri(ci""’ EN,T) (8)

The result of using (3) and (4) in (2) is the so-called atmospheric
diffusion equation,

8C1+ﬁ8ci+'\}aci+ﬁaci__a_ K.ac_i+_a_ K&-}-i K_aii_
ot ax oy 0z X H 9x oy H 3y 0z V 3z

+ Ri(ei""’ EN,T) + §i(x,y,z,t) (5)

Equation (5) is the fundamental eauation uvon which most dynamic urban air
poliution models are based.

The validity of the atmospheric diffusion equation relates to how closely
the predicted mean concentration c; corresponds to the true ensemble mean con-
centration. If the true ensemble mean velocities and concentrations are
known for an atmospheric flow, then it is relatively straightforward to assess
the validity of (5) for specified forms of Ky and Ky. Unfortunately, for any
atmospheric flow the ensemble mean velocities and concentrations can never be
computed since the atmosphere presents only one realization of the flow at
any time. (Of course, for a statistically stationary flow, ensemble averages
can be replaced by time averages. The atmosphere is, however, seldom in a
stationary condition for any appreciable period of time.)

B.  FORMULATION OF THE PROBLEM

We denote the measured value of the concentration of pollutant i at moni-
toring site £ at time tg by w. Q(t ), k =1,2,... Because there is always
some amount of instrument errdd as§ociated with a measurement, w, 2(tk) is
not precisely equal to the instantaneous concentration of speciel’ i “but
differs by an error. If it is assumed that this measurement error depends
only on the pollutant and not on where or when the measurement is made,
then we can write

w'i ,,Q,(tk) = Ci(il’tk) + ﬁ.i k=1,2,... (6)
where ci(x ,t) is the instantaneous concentration of i at location x
[x = (x,y?%)] at time t, and €, is the random measurement error for”%pecies i.
AS we noted above, the atmosphéric diffusion equation predicts the theoreti-
cal ensemble mean concentration c.(x,t). There exists an unknown discrep-
ancy between any instantaneous valug and the theoretical mean. In addition,
although the atmospheric diffusion equation predicts in principle the mean
concentration at all locations, in reality the equation assumes a certain
amount of spatial averaging (Lamb and Seinfeld, 1973). In addition, the
implementation of the equation requires solution on a finite grid, introduc-
ing implicit spatial averages into the computed concentrations. The measure-
ment is, of course, truly a point measurement. Thus, equation (6) becomes

Wi g () = Cixputy) + tilxpsty) + gy (7)
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when z. includes all the discrepancies between w. and Ei' Because ¢4 is
a randdm function, gy will itself be a random fuhction.

The random errors in (7) can be combined, so
Wi,zﬂtk) = Cilxpat ) + ni(x)sty) (8)
where n; is assumed to have zero mean.

Subsequently we will restrict our attention to inert pollutants or those
that decay linearly (R, = - k.c.). Thus, we need consider only a scalar con-
centration c(x,t) and icalar hedsurements, wz(tk) = c(§£,tk) + n(xz,tk).

The basic problem of interest is to develop a way of siting new stations
in a region with at least some current monitoring stations in which we use
the available data and a mathematical air quality model. Our approach is to
use the available data and the model to estimate the full spatial and temporal
concentration distribution over the region. We consider, therefore, the fol-
lowing problem:

Estimate the mean concentration c(x,t) for t z_to based on
the measurements wz(tk). ~

In mathematical terms this is a sequential estimation or filtering problem,
i.e., we desire to estimate the state of a dynamic system based on noisy mea-
surements carried out on the system. Filtering theory is a well-developed
aspect of mathematical system and control theory. (See, for example, Sage
and Melsa, 1971; McGarty, 1974; Jazwinski, 1970.) The air pollution estima-
tion problem has been posed here as a filtering problem, the concentrations
being the states. In this case, the system is governed by a set of partial
differential equations (5), a so-called distributed parameter system. Fil-
tering in distributed parameter systems has received considerable attention.
(See, for example, Tzafestas and Nightingale, 1968ab; Tzafestas, 1973;
Sakawa, 1972; Hwang et al., 1972; Koda, 1976.) The elements of the distribu-
ted parameter filtering theory are given in Appendix A.

The atmospheric diffusion equation (5) is not the "true" equation for
the mean concentration c(x,t) because of approximations involved in repre-
senting turbulent diffusion (assuming that the fluid velocities are exact.)
The discrepancy between the true, but unknown, value of ¢ and that predicted
by (5) can be presented in a simple way by a random error term added to the
. right hand side (R.H.S.) of (5), &£(x,t),

EAEESRE LS EF A(% JEE AR AREACE

+ 5.(x,y,2,t) + E(X,Y,2,t) (5')
Thus, we assume that the inaccuracies in the meteorological variables and
those arising from inadequate representation of turbulent diffusion can be

"lumped" and then quantified as noise in the manner in (5'). Such an addi-
tive random error almost certainly does not agdequately represent the

12



discrepancy, although not enough is known about the deviation between the

time ensemble mean and that predicted by (5) to attempt to account for the
deviation in a more detailed manner. Consequently, we will henceforth assume
that a random error £(x,t) exists on the R.H.S. of (5) having zero mean and
known variance. (The Variance of £ is, of course, not known; it must be esti-
mated based on our judgment as to the essential adequacy of (5) for the given
situation.)

The basic filtering procedure is outlined in Figure 1. The basic fea-
ture of the filter is that the difference between the measured and estimated
concentrations is processed to yield a better estimate of the concentration.
In effect, then, the filter is simply a learning algorithm that gets "smarter"
as it processes more and more data. The net result is better and better esti-
mates of the concentrations as time progresses.

As illustrated in Figure 1, the "filter" consists of the differential
equations for c(x,t) and P(x,y,t) that "process" the measurements w (t, ) to
give ¢(x,t). The key problem in the implementation of the distribufed
paramet@r filtering theory is the spatial dimensionality of the filter vari-
ance P. For a 3-dimensional situation, P is a function of six spatial vari-
ables, i.e., P(x,y,t) in vector notation or P(x,y,z,x',y',z',t) in expanded
notation. ThuS, implementation of the filter requires the numerical solution
of the partial differential Riccati equation in six spatial dimensions.

The distributed parameter filtering problem can, in general, be treated
in either of two ways with respect to finite-dimensional approximation. The
distributed parameter system can be approximated by a lumped-parameter sys-
tem (i.e., ordinary differential equations) at the very beginning of the
problem, and the filtering problem can be solved with respect to the lumped
system. This approach can be called "approximation at the beginning." On
the other hand, the distributed nature of the problem can be retained
throughout the analysis, and only at the point where numerical implementation
of the partial differential equations is necessary is a finite-dimensional
approximation introduced. This approach can be termed "approximation at the
end." From a numerical point of view there does not appear to exist a funda-
mental advantage for either approach, although approximation at the end does
preserve the distributed character of the problem as long as possible. Here
we have applied the finite difference approximation at the end.

Clearly, considerations of computation time and storage are paramount.
Because of the size of the numerical problem involved in implementing the
filter, numerical considerations of accuracy and stability are also important.
Covariance square root algorithms are generally more accurate and stable than
conventional non-square root algorithms. For this reason we have adopted
that approach in solving the filter equations (Appendix C). Technical details
of the filter are presented in Appendixes A and B. Table 2 summarizes the
general equations of the filter. We note that the filter equation for c de-
pends on all the same variables and phenomena as the original atmospheric
diffusion equation. On the other hand, the variance equation for P is inde-
pendent of the source emissions.
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Figure 1. Basic filtering procedure for estimating air pollutant concentrations
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TABLE 2. OPTIMAL DISTRIBUTED-PARAMETER FILTER

. . oc(x,t)
Diffusion Process BE - Lxc(f,t) + g(§,t) , x € Q
Lb c(x,t) = ¢{x,t) . X € 30
Measurement wx(tk) = c(§2,tk) + ”g(tk) . 2=1,2,..., M; k=1,2,
Time Update Filtering Equations (t:_i t < t;+])
ac(x,t) A( )
] ——= L _c(x,t . XEQ
Estimate at X o~ -
Lbc(x,t) = ¢(x,t) s X € 30
3P(x,y,t)
T'_ = pr(fa,Z,t) +\P(§s¥at)l-y + Q(i(s.Zst) ’ 5’ ,Z S
Variance LbP(x,z,t) = Q , X € .99
P(x,y,t)Lp = 0 , y €90
Measurement Update Filtering Equations (t = tk)
A e A MM o . i
Estimate c(x,t)) = c(x,t) + 121 jZ] P(x,5:5t ) A (tk)]ij[wj(tk) - C(Ej’tk)]
N i MM o i
Variance P(f’Z’tk) = P(f’x’tk) - iZ] jZ] P(§,§1,tk)[A (tk)]ijp(fj’X’tk)




Table 2 summarizes the filter in general form, based on the development
in Appendix A. In the next section we develop a basic regional air pollution
model based on a 3-dimensional form of the atmospheric diffusion equation and
present the specific equations of the filter corresponding to that model. A
computer code has been developed that solves the atmospheric d1ffus1on equa-
tion together with the equations for c(x,y,z,t) and P(x,y,z,x',y',z',t). The
code is detailed in Appendix E. The code is applicable to a11 problems that
can be posed as obeying the general model of Section III.C. For the purposes
of illustrating the performance of the filter we choose in Section III.C a
set of specific parameter values. Section III.D is devoted to the results of
applying the general code to the specific situation defined in Section III.C.

C.  BASIC REGIONAL MODEL FOR APPLICATION OF FILTERING THEORY

We adopt the following assumptions in regard to the basic atmospheric
diffusion equation (5):

1) The surface of the ground is flat so that atmospheric motion is 2-
dimensional, and vertical wind velocity components can be neglected.

2) Turbulent diffusion in the horizontal direction is negligible as
compared with horizontal advection.

3) The location of sources is defined through a boundary condition in
the form of surface flux.

4) There is a temperature inversion layer at a given elevation.

Using the same notation as in the previous section, the diffusion equa-
tion governing a single species in the atmosphere, under these assumptions is
(dropping the overbar for convenience)

ocC ocC ac _
Srusev a2 (i ) eyt (9)

where £ is an artificial random forcing term to account for discrepancies

between ¢ as pred1cted by. (5) and the true (but unknown) ensemble mean con-
centration. It is unlikely that an additive random term properly accounts
for this modeling error, although without further information we resort to

this assumption. Further, we shall assume that £ is well-represented by a
distributed white Gaussian process with the following properties:

E{e(x,y,2,t)} = 0 (10)
E{e(x,y,z,t)E(x",y" 2" ,1)} = Qx,y,2,x',y",2",t)8(t-1)

where the variance function Q is positive semi-definite and symmetric with
respect to the spatial coordinates (x,y,z) and (x',y',z').

The vertical boundary conditions used are
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ac

B Kvo Y4

= S(x,y,t) at z =0
(11)

ac _ -
N7 0] at z Zmax

where K is the eddy diffusivity at ground level and S(x,y,t) is the surface
flux and® is a specified deterministic function. Other boundary conditions
are given at the upstream boundaries:

c(0,y,z,t)
c(x,0,z,t) = ¢

" (12)

b
where c_ can be a function of time. It can be assumed that the exact value
of Cy is not given as a priori information.

The initial conditions necessary for an unsteady state model (9) are now
known precisely, and only the estimated mean concentration

E{c(x,y,z,0)} = Eo(x,y,z) (13)

and its variance

A A

E{lc(x,y,2,0) - c (x,y,2))[c(x',y",2",0) - c(x'y',2')1}

= Po(x,y,z,x',y',z') (14)

are assumed to be known,

The measurement data are usually available at discrete times, t K k=1,

2,..., only at discrete locations. Hence the measurement process is repre-
sented as

wﬂ(tk) = C(xlsyzsz atk) + nl(t ) s L= 1329---s M (15)
where n is the error associated with a measurement w (t We shall as-
sume th%t nm(t ) is a white Gaussian noise sequence with perert1es

E{n,(t )}
(16)
E{n, (t Ins(t )} Rij(t )8

n"'itm
where Rij(tn) is a positive variance.

We shall assume that the random variables E(x,y,z,t), c(x,y,z,0), and

are mutually stat1st1ca11y 1ndependent It is then necessary to speci-
fy the variances Q(x,y,z,x',y',z',t) and R..(t, ). The proper specification
of these functions is a major problem in tﬁg uTtimate implementation of the
theory For example, the form of R, .(t,) will depend on how the discrepan-
cies between data and prediction aré expected to vary with location. Such
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information can be obtained through a statistical analysis of past modeling
studies comparing predictions to data. At present, we do not assume that
correlations exist between the errors in measurements and the modeling errors
of different locations. Hence we can write

Q(X,y,Z;X' ,Y' ;Z' st) = Q(x,y,z,t)d(x'-x)d(y'-y)(S(Z'-z) (17)
Rij(tk) = Ri(tk)dij (18)

Thus, we have constructed a simple, but sufficiently general, model of
air pollution for application of the filtering theory.

For a convenience a dimension]ess form of the model equations is util-
ized. Let Cp, Ty, Ly, U rs and S, denote arbitrary reference values for
concentration, t1me, spa£1a1 Tength, wind speed, eddy diffusivity, and sur-
face flux, respectively. Then, using these reference values, the dimension-
less form of (9) becomes

TU
ac* r ac* Bc* r r )
P _{— (u TV By* LY az* {v az*}+ & (19)
r

where the superscript * denotes a dimens1on]ess quantity. In a similar man-
ner, other equations above can be easily transformed to a dimensionless form.

The following set of reference values is specified to unity throughout
the simulation:

Cr =1 [ppm]
Kp =1 (m?/s]
Ur =1 ([m/s]

Using these special reference values, the computer input and output variables,
i.e., the dimensionless values K*, u*, v*, and c*, correspond to their actual

physical values but are dimensionless. Other reference values will be deter-

mined based on the grid square size employed in the discretization.t

In the process of discretization necessary toimplement the filter, we have
used finite difference methods. The primary source of errors associated with
the finite difference approximation arises in the discretization of the spa-
tial coordinates. Although the analysis shows that the higher order trunca-
tion terms always vanish when higher order finite difference schemes are used,
this phenomenon does not necessarily 1mp1y that these schemes are more suit-
able. A notorious example can be found in airshed modeling: near localized
sources, higher order schemes predict negative concentrations, whereas simple
first- order schemes do not.

T Process by which a continuous spatial domain is represented by an array of
cells for the purposes of numerical computation.
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In order to ascertain numerical stability and accuracy we have applied
the time-splitting technique to the finite difference implementation of (19).
(For details see Appendix B.) In this time-splitting concept, the original

advection-diffusion equation (19) is decomposed into the 2-dimensional "advec-
tion part," and into the 1-dimensional "diffusion part."

(a) Advection part:

TU

ac* ac* ac*

az* = - [ r (u* ——ax* + v* __ay*) (20)
r

(b) Diffusion part:

T K
oc* _ 'r'r 29 ac*
at* L; 3z* {KC az*} (21)

Then stable finite difference methods suitable for (20) and (21) are applied
independently. We have applied Fromm's (1968) second-order, zero-average,
phase error method to the advection part (20). The standard Crank-Nicolson
second-order method has been applied to the diffusion part (21). These
second-order schemes improved the numerical accuracy and stability and did
not lead to negative concentrations.

The stability of Fromm's second-order, zero-average phase error method
can be easily evaluated for the advection part (20). The evaluation of the
artificial (or pseudo) diffusion term associated with the method leads to the
Courant condition for stability:

Ty

3 (o +8) <1 (22)
r

where o and 8 denote the Courant numbers defined as

o= u*At*
AX* (23)
23

_ V*AL*

where Ax*, Ay*, and At* are the dimensionless mesh spacing in the x, y, and t
coordinate directions, respectively

Using the Courant condition (22), we can generate the following table
for the various combinations of Lr and Tr’
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TABLE 3. STABILITY CONDITIONS

2 * » . »
Tr[sec] Lr[m] TrUr/Lr TrKr/Lr Stability Condition
*
1 100 0.01 0.0001 Ax* > 0.02(u*)max At*
(ay* Z-O'Oz(v*)maxAt*)
30 1000 0.03 0.00003 AX* 3_0.06(u*)maxAt*
60 1000 0.06 0.00006 Ax* Z_O.]Z(u*)maxAt*

We note that the stability of the method depends on the dimensionless wind
velocity components (u*) and (v*) _ , as well as on the spacing Ax*, Ay*,
and At*. The spacing AxmexAy*, and MXAt* are usually determined by the com-
puter memory storage and computation time requirements. For most air pollu-
tion situations, both u* and v* range in value between 0 and 10 on the dimen-
sionless scale. Consideration of actual air pollution applications leads to
the following reference values for Tr and Lr:

Tr =60 ([sec] =1 [min]

L. = 1000 [m)

P 1 [km]

1. Scale Transformation in Vertical Direction

In the estimation problem, we are mainly concerned with the estimation
of concentrations near the ground level. Most of the stations in a given
area provide measurement readings representative of the average grid-square
concentrations at the height of receptor location. Measurements reported by
the monitoring stations then are used as inputs to the filter to compute
estimates near the ground level averaged over the square grid area. Hence,
it may be very useful if a filter can quite effectively calculate the esti-
mates representative of the average grid-square concentrations at the level
of measurement height. For this reason, a fairly detailed finite difference
representation is performed for the vertical diffusion part (21).

Consider the following scale transformation in the vertical direction,

z* = h(exp z - 1)/(exp Az - 1)
' (24)

(k - 1)az

2y

where z is the-transformed dimensionless value of z*, Az is the spacing in
this new coordinate system, and h is the effective height of measurement.
The definition of the effective height of measurement is apparent from (24).
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Using this scale transformation in the finite difference implementation of
the diffusion part (21), we can calculate the concentrations near the effec-
tive height of measurement more accurately than by using a standard equally-

space, finite-difference representation. This transformation is illustrated
in Figure 2 for Az = 0.5 and h = 15,

(a) Advection part:

¢ o ac ac
T 0.06 (u StV ay) (25)
(b) Diffusion part:
K
ac (expAz-1)% 3 v_oc 26
ot 0.00006 h“expz 3z | expz 3z (26)

where, for the convenience of notation, we have dropped the superscript *.
Thus, we now apply the finite difference methods to (25) and (26).

2. Mesh Parameters

The mesh
the following

used in the computation is shown in Figure 3. We have selected

mesh parameters:

At =1.5

AX = Ay = 2

Az = 0.5
h = 15/1000
Nx = Ny = 13
NZ =6

where Ny, Ny, and N, are mesh numbers along x-, y-, and ztdirection, respec-
tively.” This mesh system, which is used for the computation of the est1mqted
concentrations, is a refinement of the mesh that is used for the comput§t1on
of the variances. The coarse mesh which is indicated by the bold line 1in
Figure 3 is used for the computation of the filter variances. The mesh param-
eters used in the computation of the filter variances are:

At =1.5

Ax =Ay =4

Az = 0.5
h = 15/1000
N, = Ny =7
Nz =6

These mesh parameters are determined from the considerations of computer
memory storage and computation time requirements. Using these mesh systems,
the computer storage required for the filter is the order of one megabyte
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or more for the IBM 370/158 system. In the measurement update computation
of the filter state, intermesh (spatial) interpolation calculations have
been carried out for the values at refined grid locations.

3. Measurements and Other Conditions

The measurements are given by
Wo(tp) = clxpy,shsty ) + 0o (L)), 2=1,2,..., M (27)

where h is the effective height of measurement. We consider five monitoring

stations, i.e., M = 5, and the locations of all of these monitoring stations

are shown in Figure 3. We chose to accept any point within a unit radius of

a monitoring station as being "at" that station. The measurement interval is
assumed to be 15, i.e., tk+1 - tk = 15,

We used a surface flux pattern as shown in Figure 4. Since the numerical
errors generated by the finite difference approximation originate primarily
from inhomogeneities in the concentration distributions, spatial variations
of the emissions will have a strong effect on the performance of the filter.
Hence, we have used a rather smooth pattern for the surface flux as shown in
Figure 4. However, as we have already observed in Section III.B, the compu-
tation of the filter variance is completely independent of the surface flux

pattern.

A uniform wind field is assumed over an entire area, i.e., the wind ve-
Tocity components are given as u = v = 2. Eddy diffusivities used are K =
0.7 and K,. = 0.35. White Gaussian noises are generated by using a standard
subroutin¥9 We have used the following variances: Q(xi,y.,z.,tk) = 0.01,
R.(t, ) = 0.01. The process noise is added to each grid Tolation®at each
méasbrement instant. The measurement noise is added to each measurement lo-
cation at each measurement instant. These noise statistics were used to gen-
erate a diffusion process and a sequence of measurement data {wz(tk)}’ upon
which the filter algorithm would operate.

D.  SIMULATION RESULTS

In the intended application of the filter, actual monitoring data are
used as input to produce the estimated mean concentration field. Because of
the sequential nature of the filter it operates in real time, accepting data
as soon as they are taken and processingthose data to give a continuous, cur-
rent estimate of the concentration field. As such, the algorithm is well-
suited for a central computer in an air pollution control district.

In the present study the monitoring data were simulated numerically by
integrating the model developed in Section III.C and artificially corrupt-
ing the "exact" concentrations with random dynamic, &(x,t), and measurement,
n(x,t), errors to produce the "data," Wj(tk)' The value of such a numerical
experiment is that the true concentrations are known, and, consequently, the
performance of the filter can be evaluated quantitatively under a variety
of circumstances. Two basic situations were studied:
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Figure 4. Spatial distribution of pollutant surface flux

25



1. The performance of the filter was studied as a function of some
of the basic parameters of the problem for the base case described
in Section III.C, namely five monitoring stations in the hypothetical
region of Figure 3.

2. The performance of the filter was studied as a function of the num-
ber of monitoring stations.

We now discuss the results of the simulations in these two situations.

1. Performance of the Filter. Base Case

Three cases were simulated to study the performance of the filter.
The parameters for the three cases are given in Table 4. The data were gen-
erated by solving the atmospheric diffusion equation numerically using the
same wind velocities, eddy diffusivity, and source emissions for all three
cases. In addition, the same random noise was employed in each of the three
cases to produce the noisy measured concentrations. The dynamic and measure-
ment noise, having the variances given in Table 4, were generated by the same
subroutine for each of the three cases.

TABLE 4. PARAMETERS USED IN BASE CASE SIMULATIONS

u(x,y,z,t) = 2 Kv(z,t) = 0.7 Q(x,y,z,t) = 0.01

v(x,y,z,t) = 2 Kvo(t) = 0,35 Ri(tk) = 0.01

Parameters Case A Case B Case C
c(x,y»,z,0) 0.1 0.1 0.3
co(x,y,z) 0 ‘ 0 0
Po(x,y,z,x,y,z) 102 104 102
PO(O,y,z,O,y,z) ' (1/4)2 (1/4)2 (1/4)2
P (%,0,2,%;0,2) am? o /e)? (1/4)2
Po(x,y,z,x',y',z') 0 0 0

X' Exy'Fy. 2 Fz
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Numerical ill-conditioning of the filter often results when there are
large initial uncertainties and relatively small noise variances. Thus, we
specifically considered such a situation to test the convergence of the filter
to the actual concentrations. The noise variances, Q(x,y,z,t) and R;(ty)
were chosen to be relatively small (0.01) so that measurements at 1ow con-
centration were the same order as the errori A large initial uncertainty
was assumed in case B, Po( »YsZsXsY,2) = 107, whereas re]at1ve]y §ma11 initial
uncertainties were chosen for cases A and C, P ( XsYsZsXsYaZ) = Initial
uncertainties at the upstream boundaries are smal] (1/4)2 because we have
assumed that these boundary concentrations are re]at1ve]y well known. The
true initial conditions are different in cases A and C, whereas the initial
estimates are taken to be the same.

Let us consider first the behavior of the variance P(x,y,z,x',y',z',t)
for the simulated cases. (Note that P 1s independent of the actua] data and
depends only on P_, Q and R.) Figures 5% and 6 show P(x;,y.sh,x; 5 ,h,t, ) for
cases A and B of Table 3 at each of the five measuremen% 16cat16ns 5se
values represent the variance of the estimate error at height h,

- N 2
P(x'l ’y'i’h’x'i "y'i’h’tk) = E{[C(X.'s.Y.lsh’tk) - C(Xi a.y1 ’h’tk)] }

Figures 7 and 8 show P(x,y,h,x,y,h,t, ). The algorithm is seen to guarantee
nonnegativity of the computed varianEes. Moreover, the variances show the
same general trend in cases A and B. The numerical stability of the square
root algorithm is evidenced by the lack of sensitivity of P to the choice of
a priori variance for the Tow noise level cases.

The estimated concentrations at each of the five measurement locations
are compared with the true and measured concentrations in Figures 9 and 10
for cases A and C, respectively. In both cases the estimates display the
same general agreement with the true concentrations, and the estimates are,
as expected, closer to the true concentrations than are the measurements.
The true and estimated concentration distributions are compared in Figure 11
for case A. Similar distributions are shown in Figure 12 for case C. Simu-
lation and accuracy results for case C were consistently similar to those
for case A.

Estimation error variances are shown in Figures 13 and 14 for cases A
and C, respectively. The actual error variances are considerably smaller
than those predicted by the filter shown in Figures 5 and 6. Thus, good
filter performance is demonstrated in situations with relatively low levels
of dynamic and measurement noise, situations often prone to numerical errors.

The estimated concentration is compared with the true concentration for
case A in Figure 15. The estimated concentration field tends to be smoother
than the actual field. This behavior reflects the smoothing aspects of the
filter.

The computer storage and time requirements for the simulations of Table 3
were (IBM 370/158)

*}n this and subsequent figures, numbers on the curves refer to the monitor-
ing Tocations in Figure 2.

27



Core memory 1100 K bytes
Computation time (CPU) 78.5 min

2. Performance of the Filter. Effect of Number of Measurement Locations

Simulation studies were performed to evaluate the effects of the
number of measurement locations. Case A of the former section was selected
as the base case. The five measurement locations shown in Figure 3 represent
the potential monitoring sites. Three measurement situations have been con-
sidered. The conditions for the three cases are given in Table 5. Other
parameters of the simulation are the same as those given in Table 4 for case A.
Mon1tor1ng station 3, which is located at the center of the region, is used
in all three cases. The three monitoring stations used in Case II were cho-
sen arbitrarily.

The estimation results are compared at each of the potential monitoring
sites in Figure 16. The most surprising result of this simulation is the
fact that the filtering algorithm is able to generate meaningful, but not
accurate, state estimates even in case I in which only one measurement sta-
tion exists. The results of case I at the potential monitoring site 4 are
not acceptable since the concentrations are poorly estimated at the end of
the simulation. The results of cases II and III are acceptable, however.

The calculated filter variances and the actual estimation error vari-

ances are shown in Figure 17 as a function of the number of measurements.
In Figure 17, the plotted values represent the calculated filter variance

TABLE 5. MEASUREMENT CONDITIONS

Base Case Case A
Measurement Situations Case 1 Case II Case III
Number of Measurements | 1 3 5
1 - 0 0
2 - 0 0
Monitoring Station 3 ¢ 0 0
(Figure 3) 4 - - 0
5 - - 0
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Figure 7. (continued)
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Figure 8. (continued)
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Figure 8. (continued)
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5

QZ] p(x(z’yl’h’xzﬁylsh,tk)
2 ~ 2

and the actual estimation error variance

5 N
2
221[°(xz’y2’h’tk) - c{xp,y,,h,t )]

where the summation is taken at the five potential monitoring sites. As an-
ticipated, after a sufficient time of filter operation, i.e.,t > 105, both
the filter and actual estimation error variances are inversely proportional
to the number of measurement locations. At the initial stage, where the
effects of measurement errors are more significant than the filtering effects,
there appears to be no great advantage in using many monitoring stations.
However, after the initial stage, the filters with three and five monitoring
stations show the much improved performance as compared to that with only one
station. In this respect, we note that t = 105, as indicated in Fiqure 17,
gives a critical time for the filter operation. After this initiation time,
the accuracy of the filter is, roughly speaking, inversely proportional to
the number of measurement locations.

E. APPLICATION OF THE PRESENT METHOD TO MONITOR SITING PROBLEMS

There are a number of methods that have been suggested for the design of
a monitoring network (Appendix D). A useful discussion of many criteria for
siting stations can be found in Liu et al. (1977). 1In general, the approaches
focus on the situation in which one has an air quality model available and
then uses the predicted concentration fields under varying meteorological
conditions to select monitoring sites. These approaches are ideally suited
for the case in which there are no current stations (or air quality data) in
the region.

In most cases, however; several monitoring stations are already in
existence, and it is desirable to use the information available from the
existing stations as well as the information that can be obtained from the
basic air quality model to locate new stations (or move old ones), for more
effective surveillance of pollutant concentrations. The present filtering
method provides the pollutant concentration distribution over an urban region
by making proper use of both the limited observed data and the basic atmo-
spheric difflision equation. Therefore, the nresent method can provide the
monitoring network designer with an effective computational technique to
evaluate different criteria for monitor siting that require knowledge of the
full concentration distribution over the region. For example, one of the
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siting criteria often suggested is to locate stations at local points of maxi-
mum concentration. (For other criteria we refer the reader to Liu et al.
(1977).) The evaluation of the concentration distribution can be effectively
performed by making use of the present filtering algorithm. We may note, as
we have already observed in Section III.B, that the filter variance is com-
pletely independent of the source emissions. This implies that the perform-
ance of the filter as a whole is quite sensitive to the large sources in the
region while the filter variance, or the filter gain, is determined only by
the diffusion model, i.e., wind velocity components and diffusion factors,
e.g., eddy diffusivities. Thus, it is easy to take into account the occur-
rence of various wind field patterns and diffusion factors to reflect an im-

pact of these factors on a potential monitor as well as a source-monitor
relationship.

A problem in the application of the present method to the actual air
pollution situations is the identification of the noise statistics, i.e., Q
and R. As we have seen in the previous sections, the filter variance func-
tion P essentially carries all the information necessary to resolve completely
the filtering problem.  We have observed that P is independent of the actual
data and depends only on Q and R if the initial condition is specified.

Therefore, the proper identification of Q and R is very important for the
present algorithm,

In general, Q determines the steady-state (t-«) level of the filter
variance. The filter variance equation with Q = 0, i.e., no dynamic noise,
is notoriously unstable; it frequently gives negative diagonal entries in P.
On the other hand, in situations with high dynamic noise level, the filter
algorithm shows better numerical stability, but the results cannot ofen be
regarded as accurate or reliable. Hence, it is clear that there are some

lower and upper bounds in the choice of Q to limit the correlations within a
reasonable value, e.qg.,

0 < Qmini Q<Q

The identification of Q is based on our judgment as to the essential adequacy
of the atmospheric diffusion model for the given situation. Thus the choice

of Q is problem (model) dependent and appropriate values are generally deter-
mined from prior simulation studies.

max

The choice of R depends on how the discrepancies between data and pre-
diction are expected to vary with location. The identification of R can be
carried out through a statistical analysis of past model validation studies.
Let the predicted and observed concentrations at the monitoring time t, and
the monitoring location X5 be given by c(x ,t,) and c(x ,tk), respect1be
For a series of N model runs, we can form~ R gt each t Tas

N
_ ] ~ A
Rij(tk) - N‘nzl [C(fiatk) = C(fi’tk)]n[c(fj’tk) = c(fj’tk)]n

where the subscript n denotes the realization at n-th model run. Thus, these
identification problems involve the off-line statistical data analysis based
on the air quality model.
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At present the resources required for the computer time and storage re-
quirements for a realistic situation would be prohibitive for most air pollu-
tion control agencies. In the test situation considered here, large computer
costs and storage were required when only a 13x13 mesh was used to represent
thebregion. Increases in both would occur as the mesh points increase in
number.

Techniques for estimating the mean concentration field over a region
given sparse measurements have also been developed using more simplified
interpolation procedures such as the inverse of some power of distance and
the calculus of variations (see Appendix D). It is desirable to compare
results from the relatively sophisticated scheme developed in this work and
simpler, less expensive, techniques such as those discussed in Appendix D 1in
relation to the improvement achieved per unit of resource expended.
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SECTION IV
CONCLUSIONS

This study is an investigation of the application of estimation (filter-
ing) theory to air pollution. In particular, we have explored the use of
filtering algorithms to estimate the distribution of air pollutant concentra-
tions. The estimated concentration distribution is then used for the siting
of additional monitoring stations.

The specific conclusions of this study are:

1. The filter is able to produce estimates that follow the changes in
pollutant concentrations as a function of time and location.

2. The numerical stability of the filter is not sensitive to the choice
of a priori filter statistics and Tow noise levels.

3. The estimate uncertainty is, roughly speaking, inversely propor-
tional to the number of measurement stations.

4., The time of filter operations and the number of measurement points
are the most significant factors that determine the filter
performance.

The filter is shown to produce very effectively the real-time estimation
of the fine structure of the pollutant distribution over a region on the basis
of sparse measurement data. The results reported herein, thus, can be ‘effec-
tively used in an air monitor siting study.
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APPENDIX

A. Distributed Parameter Filtering Theory

The urban atmosphere can be considered as a stochastic, distributed
parameter system the state of which is the (ensemble mean) pollutant concen-
trations as a function of location and time. In this section we review the
essential results from distributed-parameter filtering theory that are rele-
vant to the air pollution estimation problem.

The system model consists of equation (5) with the measurement process
given by equation (8). As we have noted, (5) is not the exact equation for
the ensemble mean because of eddy diffusivities Ky and K, representation of
the turbulent diffusion process. We propose to add an artificial random
forcing term to the right hand side of (5) to account for discrepancies be-

tween c, as predicted by (5) and the true (but unknown) ensemble mean
concenttation.

The system is abstractly described by

ac(x,t)
—t— = Lelt) + &lx.t) (A1)

on a connected open domain Q of an m-dimensional Euclidean space Em, with
boundary 902. The m-dimensional spatial coordinate vector is denoted by x.
The state c(x,t) is a scalar ensemble mean concentration, and Ly is a spatial
elliptic differential operator associated with (5). The process noise

g(§,t) is a scalar distributed white Gaussian process with properties:

E{g(x,t)} = 0
E{e(x,t)ely,T)} = Qlx,y,t)8(t-1)

where Q(x,y,t) is symmetric with respect to the spatial variables x and y,
and positive semi-definite variance function. The initial state c(%,t)) is a
white Gaussian process and only its mean Co(f) and variance Po(f,g), i.e.,

E{c(f,to)} = co(f) A

ECle(x,t ) - c (x)1lc(y,t)) - c (y)1} = P (x.y)
are assumed to be known. The boundary conditions have been assumed to be
inhomogeneous ,

(A.2)

(A.3)

Lc(x,t) = ¢(x,t) » X € 30 (A.4)
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where Ly is a linear boundary differential operator and d(x,t) is a known
deterministic function. It is clear that (5? falls within the class (A.1),
and there is no loss of generality in assuming, in this discussion, that
the state and other functions are scalar.

The measurement process is represented as
wl(tk) = C(l(l,tk) + nz(tk) s 2=1,2,..., M (A.5)
where nz(tk) is a white Gaussian process with properties:
E{“i(tn)} =0

E{n; (t ) (€)= Ry ()8 (A.6)

n°m

where R..(t ) is a positive variance. It is important to note that (A.5)
represeﬁ%s Bhe most important class of measurement situations in the air
poliution estimation problem, i.e., discrete-time measurements at M-discrete
points in space.

The filtering problem is as follows:

Given a realization {wy(ty), 2 =1,2,..., M; k = 1,2,... },
find the estimate of the state c(x,t) that maximizes the conditional
probability density functional of the state.

This optimal estimation problem can be solved most effectively by using the
maximum 1ikelihood approach based on the theory of the semigroup of linear
operators in Hilbert space. We now discuss briefly the optimal sulution of
the linear distributed filtering problem.

First we consider the time update equations, i.e., equations which de-
scribe the time evolution of the filter state between measurements. Since
there is no additional information between the measurements, the maximization
of the conditional probability is achieved by simply taking the expectation
of the state. Hence, from (A.1) and (A.4), the following time update equa-
tions hold for the optimal estimate c(x,t),

5¢(x,t) . )
—5t— = Lelxt) b <t 2 e (A.7)
LbE(x,t) = o(x,t) , x € 0% (A.8)

The estimation error

C(x,t) = c(x,t) = c(x,t) (A.9)
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has the variance defined by
P(x,y,t) = E{c(x,t)c(y,t)} (A.10)

By definition, the variance function P(x,y t) is symmetric with respect to x
and y and positive semi-definite. -

Subtracting (A.7) and (A.8) from (A.1) and (A.4) respectively, we can
obtain the following equations for the estimation error c(x t).

c(x,t) .
T = LXC(f,t) + g(‘)fst) tk <t < tk+'| ( * ])
LbE(f’t) =0 s X € 9 (A-]Z)

It is important to note that the estimation error satisfies the homogeneous
boundary condition (A.12) while the optimal estimate satisfies the inhomo-
geneous boundary condition (A.8). The general solution of (A.11) with homo-
geneous boundary condition (A.12) can be expressed in the form:

~

c(x,) = | 6lxtay,t )3yt dy
Q

t
+ f JG(g.t;y,T)E(y,r) dydt (A.13)
t' Q
where t' is a suitable initial time and G(x,t;y,T) is the Green's function

associated with (A.11) and (A.12). Note that (x tiy, T) satisfies the
equation,

g%'G(f,t;X,r) = LXG(§,t;Z,T) (A.14)
with the terminal condition

G(f,t';x,t') = 8(x - y) (R.15)
and boundary condition

L G(x,tsy,T) = 0, X € 30 (A.16)

Using (A.13) with (A.10) we obtain the estimation error variance function as

P(ayat) = [[ Blx.tirst IP(r.s £ 6y, tis ') drds

57



t
+ []] stxetsrmatsmatytis, drser (A.17)
t' o
Formal differentiation of (A.17) with respect to t together with the use of

(A.14) - (A.16) gives the following differential equations for the estimation
error variance:

Pyt L! + t (A.18
—‘—gf—""" - LxP(E’X’t) + P(é,!,t) y Q(E’X’ ) . )
LbP(x,x,t) =0 R x € 39 (A.19)
P(x,y,t) Ly =0 y €30 (A.20)

where the formal operator L' is defined by the relation P(x,y,t)L' =
L. P(x,y,t), and 1s an opera¥or to the left. The same definition ¥s utilized
f0r L'T Thus it has been shown that the variance function P(5,y,t) has the
homoaneous boundary conditions (A.19) and (A.20). ~

It is important to note that the predicted (a priori) information at the
start of the measurement interval coincides with the filtered results before
any data have been included. This explains the initialization of the time
update equations: initial conditions of (A.7) and (A.18) should be filtered
(a posteriori) estimate and variance, respectively.

At each measurement instant, the solution to (A.7) with boundary condi-
tion (A.8), and the solution to (A.18) with boundary conditions (A.19) and
(A.20) constitute the current estimate and variance. These become a priori
(predicted) estimates and are combined with the new data at t=t to update
the estimate and variance. The equation defining the optimal eEf]mate at
measurement instant time tk+1 is

+ _° - - -1
C(f’tk+1) = c(f,tk+1) + ig] jZ] P(§,§i,tk+])[A (tk+])]ij

-[wj(tk+])- c(fj,t;+])1 (A.21)

where the superscripts - and + denote the time instants immediately prior to
and immediately subsequent to the measuring instant, respectively. Note that

c(5,tk ) 1s a solution to (A.7) and (A.8) at t, .. The variance function
P(f,!,f} obeys the following equation at the mektlrement instant te
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POXsYstiay) = PURY st

M

] JZ] P(X,S 5oty yq) [N (tk+1)] LICIRANNY (A.22)

]
H~ =

i

Note that P(x,y,tE+1) is a solution to (A.18), (A.19), and (A.20). The
matrix A(tk+1) in (A.21) and (A.22) is defined by its element as

(M1 145 = PUSSsatiey) + Ryj(tyyy) (A.23)

It is important to note that (A.22) does not depend on the actual measure-
ments. Hence, we can quite routinely generate variance functions correspond-
ing to candidate air pollution models and measurement strategies. In this

way estimation accuracy m1ght be determined prior to the occurrence of the
actual event.

B. Finite Difference Approximation and Square Root Implementation of Dis-
tributed Parameter Filter

The major impediment to the application of distributed parameter filter-
ing is the spatial dimensionality of the filter. If m=3 (most gen:ral air
pollution problems have three spatial variables), then the filter variance
P(x,y t) is a function of six spatial variables. Numerical solutions of par-
tidl differential and/or difference equations having more than three spatial
dimensions are rarely attempted, particularly for equations as complex as the
variance Riccati equation of the distributed parameter filter. The key prob-
lem, therefore, in the application of distributed parameter filtering to air
pollution analysis, is the development of efficient methods for solving the
variance equations of the filter.

B.1 Finite Difference Approximation of Distributed Parameter Filter

Approximation of the filter is, of course, required at some point since
distributed parameter systems span an infinite-dimensional space and it is
only possible numerically to obtain solutions in a finite-dimensional sub-
space. In order to work with the solutions of the filter, we develop a finite
difference approximation.

In discussing the finite difference approximation it is useful to consider
a specific form of the atmospheric diffusion equation. If turbulent diffusion
in the horizontal directions and vertical wind velocity component can be ne-

glected, the atmospheric diffusion equation, with the addition of a dynamic
error, becomes
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ac ac .2y () &) '
5t T ulz) 55+ v(z) 5y - 32 { Ky (2) 371 + E(x.y,2,t) (B.1)
where x e[O,Xmax], ye [0, Ymax]’ and z¢ [0, Zmax]' The boundary condi-

tions are given by,

¢ c(x,y,0,t) _
Ko 37 S(x,y,t)

(B.2)
ac(x,y, Zot)

Y4

where S(x,y,t) is the surface flux of the pollutant. Other boundary condi-
tions are given at the upwind boundaries:

c(0,y,z,t) <h (8.3)
c(x,0,z,t) = < .

where ¢y, can be a function of time.

Let Ax = Xmax/Nx’ Ay = Ymax/Ny’ and Az = Zmax/Nz’ where Nx’ Ny, and NZ

are the numbers of mesh points in the x,y,z directions, respectively, and
let At be a suitable finite difference time step. Let us denote x, = iAx,

yj = jAy, z = kAz, and tc = oAt. We shall use the following notalion:

g?Jk = g(x'l ,.YJ-,Zk.tO)
(B.4)
s 1 +
A SUDCHIES JULIEHN
where 6 ¢ [0,1) and let 6t denote the forward difference operator:
9 - (% . C B.5)
895k = (i3 - Gige)/at - (8.5

Based on the present model (B.1), we can construct a family of finite
difference approximations associated with parameter 6 which represent solu-
tions to the state time update equation (A.7):
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v=1] W ka

N
+ L (k) Z A(3) 0,8 (B.6)

kv "ijv

- 1)%0,8 Y (2)0,0
Gtclak ==l (k) 2: A ) o LZ(k) 3;% A§v)c?v

where
L](k) = u(zk)
Ly(k) = v(z,) (B.7)
aKV(zk)
92

L3(k) Kv(zk) +

The superscripts (1), (2), and (3) on the coefficient matrix A refer

to the x, y, and 2z coordinate directions, respectively.” If 6 = 0,
(B.6) yields the so-called Crank-Nicolson method; for 6 = 1, (B.6) is a
simple forward difference method. The fully d1screte equation (B.6) requires
the solution of a system of N X N X N linear algebraic equations at each
time level.

In order to ascertain the stab1]1ty and accuracy of the appro).imation,
we apply the time-splitting techngiue in the actual implementatior of (B.6).
The technique consists of app1y1ng each 1-dimensional finite difference method
independently and in succession, with no significance attached to the result
of the former calculation step. In this framework the original finite g1f-
ference approximation (B.6) might be decomposed into the 2-dimensional "advec-
tion part," and into the 1-dimensional "diffusion part."

(a) Advection part:

§1/3%0 1) 0,0 : (B.8)
St “ijk T T L (k) 2: Aiv Cuik

Ny (2)720+1/3,
1/3“0+1/3 cott/3,8 B.
N i =L, (k) §: Ay Civk (B.9)

(b) Diffusion part:

§1/320+2/3 (3) c0%2/3,86 B.10
8¢ Cijk = LK) 2% Ay Ciiy (8.10)
where 61/3 is a difference operator defined by
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1/3 o ot+1/3 0

8¢ 9ijx = (9y5k " - 945/8t (B.11)

This decomposition is consistent and also improves the numerical stability
and accuracy. In other words, the time-splitting approach decomposes the
original 3-dimensional finite difference equation into a simpler and better
conditioned 1-dimensional finite difference equation.

The standard Crank-Nicolson second-order method is applied to the diffu-
sion part (B.10). This implies 6 = 0 in (B.10), and the method is uncondi-
tionally stable. Fromm's (1968) second-order, zero-average phase error method
is applied to the advection part (B.8) and (B.9). Then (B.8) and (B.9) can
be represented as:

~o+1/3 _ %o 1 ~g _ o o o “o
Ciik = Sk Y7 %l gk T Sienak t Cie2,3,k T Gk

+ %'(“k)z(gg—1,j,k 2ka * Eg+1,j,k)

o - B o1
AL L G L G

g (BACTTY3 a3 T )

a7 - 28 e - 2 xR (B.13)

where a, = u(zk)At/Ax and Bk = v(zk)At/Ay. The method is stable for a + Bkil,

and improves the phase error properties considerably. We note that the bound-
ary conditions (B.2) and (B.3§ can be easily incorporated into these finite
difference equations.

The numerical procedure (B.8) - (B.10) can be formally combined so that
the time update equation for the optimal estimate can be written as follows:

c(c +1) = ¢(o + 1,0) (o) (B.14)

where c(o) is the N. x N x N_-dimensional state vector with elements c K
and ¢(c + 1,0) is the co¥resp5nd1ng state transition matrix associated i
with“the finite difference routine (B.8) - \B.10). It is important to note
that (B.14) is a completely formal expression, and that, in the actual cal-
culation, neither computation nor storage of &(c + 1,0) is required.
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Using similar notation as in (B.14), the measurement process (A.5) can
be represented in vector form as:

w(o) = H(o)e(o) + n(o) (B.15)

where w(o) is the M-dimensional measurement vector, H(o) is the suitably de-
fined M x N N N_ measurement matrix, and n(o) is the M-dimensional white
Gaussian se6u¥née with the covariance matrix R(o) whose elements are defined
by R1J(to) in (A.6).

B.2 Square Root Implementation of Distributed Parameter Filter

The finite difference method may be also effectively applied to the time
update equation for the estimation error variance. The basic problem in this
approach lies in the dimensionality of the filter variance equation (A.18),
for which extensive numerical computations are necessary.

Usually large~dimensioned systems are overly sensitive to numerical
errors and the effects of numerical errors are generally manifested in vari-
ous type of numerical difficulties. Difficulties relating to computer round-
off appeared in even the very early applications of Kalman filtering proce-
dure. Numerics is the dominant error source in the Kalman algorithms, and
they completely obscured the important effects of mismodeling and lead to
misleading estimates of the filter accuracy.

The measurement update equation of the filter variance (A.22) is sensi-
tive to the effects of computer roundoff and is susceptible to an accuracy
degradation due to the differencing of positive terms. This numerical accu-
racy degradation is often accompanied by a computed variance that ioses its
positive definiteness. An alternative and more consistently reliable solu-
tion to the numerical 1nstab111ty problem is to perform some of the computa-
tions using an algorithm that is numerically better conditioned. As such
an alternative we utilize the square root implementation of the filter vari-
ance equations.

The direct application of the finite difference routine to the vari-
ance equation (A.18) results in the following expression (using the same
notation of Section B.1.):

N
o _ X (1),0,6 A(1)p0
thijkkmn T L1(k) & Asy pvakzmn - L1(") §:1 v P1Jk\)mn
(2),0 y (2)
B L2(k) 2: A P1vk2mn L (" & Amv 1Jk2vn
N

(3)p0,0 (3)40,0
* LS(k) 2:]Akv P1Jv2mn * L3(n) 3;% Anv P1Jk1mv
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* Q5 jkemn (B.16)
i, e=1,..., Nx y jJam=T1,..., Ny; k, n=1,..., NZ
where the variance function is discretized by
0 - ] 1 ]
P1Jk2mn - P(X1 ,.Yszk,Xz,.Ym,Zn,to) (8017)

Note that (B.16) involves the computation of p? which has six subscripts
for six spatial coordinate directions. However it is not difficult to
relate the 6-dimensional subscript with the corresponding 2-dimensional matrix
subscript by the transformation

Jjk&mn

(1,J,k,2,myn)
-
>

(i+Nx(j-1) + NXNy(k-1), g+ N (m-1) + NXNy (n-1)) (B.18)

It is important to note that this matrix subscripting can be incorporated
into efficient FORTRAN implementation. In this way, using the state transi-
tion matrix ¢(o+1,0) of (B.14), it is possible to represent (B.16) in the
formal matrix form:

P(0+1) = 0(0+1,0)P(0) + P(0)3" (0+1,0) + Q(0) (8.19)

where P(o) and Q(o) are suitably defined NN N x NN N, matrices. Note that
P(o) is a symmetric positive semidefinite fatrfx. XY

In order to include the effects of numerical errors in the filter design
requirements, we utilize the covariance square root implementation (Kaminski
et al. (1971)). The covariance square root filter is a data processing algo-
rithm based on a triangular square root factorization of the estimation error
covariance matrix and is reputed to be more accurate and stable than the con-
ventional non-square root algorithms. The use of square root matrices im-
plicitly preserves symmetry and assures nonnegative eigenvalues for the com-
puted variance. The square root algorithms achieves accuracy that is compati-
ble with a Kalman filter that uses twice their numerical precision.

Factorization of a symmetric matrix with nonnegative eigenvalues is al-
ways possible. As one might expect, the covariance square root is not
“uniquely determined, however, a unique square root can be defined by a tri-
angular square root matrix. There are three basic algorithms for obtaining
the triangular form of the square root matrix. The first, and generally the
fastest of the algorithms, employs the Cholesky decomposition. The second
algorithm is known as the Householder orthogonalization transformation. This
method usually yields more accurate results than the Cholesky decomposition
procedure, however, it is considerably slower. The third method is the
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modified Gram-Schmidt procedure. The method is comparable to the Householder
algorithm with respect to the computation time and accuracy.

The covariance square root matrix $(k) is defined by
S(K)ST (k) = P(K) (8.20)

Then the filter time update equations (B.14) and (B.19) can be summarized
in the following covariance square root form:

c_ (k+1) = 8(k#1,k)c, (K) (8.21)
S(k+1) = 8(k+1,k)S, (k) (8.22)
§_(k+1)§f(k+1) = §(k+1)§T(k+1) + g(k) (B.23)

where the subscripts - and + denote the value of the estimate, or covariance
square root, at the time immediately prior to and immediately subsequent to
the measuring instant, respectively. In the actual computation of (B.22),
we apply the same time-splitting technique as (B.8) - (B.10).

(a) Advection part:

N
1/3ck . _ X (1)K, (B.24)
8¢ Spq Ly (k) 3;% Asy, s.\,],q
Ny :
1/3k+1/3 _ 2) k+1/3,8 (B.25)
S’ S)q L, (k) 3;% A s\)2q

(b) Diffusion part:

N
1/3.k+2/3 _ L (3)ck+2/3,0 B.26)
500 7 L3k T AGISTG (

where the subscripts are defined by

©

1]
wdo

+

Nx(j-l) + NxNy(k-l)

q=4+ Nx(m-l) + NxNy(n-l)
= i - - B.27
vp = v+ N (3-1) + NXNy(k 1) ( )
vy, = 1+ Nx(v-l) + NxNy(k-l)
v, =i +

Nx(j-l) + NxNy\v-l)
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We may note that it is not necessary to compute and store the state transi-
tion matrix ¢(k+1,k) in the procedure (B.24)-(B.26). As indicated by the
subscripts of §, only the matrix multiplication from the left is involved in
the computation of the time update factors of S. Thus, different from (B.19),
we can arrange a simple and efficient numerical implementation for the time
update of covariance square root.

We use a modified Gram-Schmidt orthogonalization procedure in the fac-
torization of (B.23). (For detail see Appendix C.) The modified Gram-
Schmidt algorithm is reputed to have accuracy that is comparable with the
Householder algorithm. Unlike the classical procedure, the modified algo-
rithm produces almost orthogonal vectors, and reorthogonalization and pivot
strategies are unnecessary. From this viewpoint, it is possible to interpret
the square root process as a Gram-Schmidt orthogonalization of an appropri-

. ately defined state vector.

Using the measurement equation (B.15), define the Cholesky square root
matrices V(k) and G(k) by

V(k) = RV/2(k)
- - (B.28)

(k) (ST (KT (k) + R(K)1'2

-~

6(k)

where the superscript 1/2 is reserved for the Cholesky square root (see Appen-
dix C). Then the filter measurement update equations (A.21) and (.22) can
be summarized in the following covariance square root form:

(1) + 5 (k)T () HT ()6 7T (ko167 (ke1)

1O >

(k) -
SQw(kH) - H(kH)e_(k+1)] (8.29)

5, (k#1) = S_(k+1)
- s (ke )ST (R DT (ke 1)6 T (k) L6(k#T) + V(k#1) 17 H(KH)S_(k$T)  (B.30)

The filter measurement update equations (B.29) and (B.30) involve Cholesky
decomposition of two MxM matrices as depicted in (B.28) and inversion of two
triangular Cholesky square roots. Since matrix inversion of the triangular
matrix preserves triangularity, this procedure is a costly operation in terms
of computer execution time, especially when M << NxNyNz'

In general, algorithms involving square root matrices reduce the dynamic
range of numbers entering into the computations. This factor, together with
the greater accuracy that square root algor:.thms guarantee, directly affects
computer word length requirements. A rule of thumb is that square root algo-
rithms can use half the word length required by conventional non-square root
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algorithms. The modified Gram-Schmidt triangularization, Cholesky decompo-
sition and its inverse algorithm are described in Appendix C.

C. Square Root Matrix

Factorization of a symmetric matrix with nonnegative eigenvalues (a
positive semidefinite matrix) is always possible. Since nxn matrices that
are symmetric can be completely described by n(n+1)/2 of their elements,
their square roots are not uniquely determined in general. They are, how-
ever, related to one another by orthogonal transformations.

If §] and §2 are square roots of a positive semidefinite matrix P, that

is,
_ T _ T
P =513 = 5% (c.1)
then there exists a matrix I such that
S, = ST and TTT = T'T = 1 (C.2)

in other words, T is orthogonal. It is important to note that the use of
different square root matrices does not alter the results.

Using an upper or Tower triangular matrix, a unique square root can be
determined since symmetric nxn matrix and triangular nxn matrices are both
characterized by n(n+1)/2 of their elements. By computing only the upper or
lower triangular nonredundant entries, symmetry and positive semidefiniteness
of the covariance matrix are preserved. Upper and lower triangula - factori-
zation involves basically the same techniques and computation time. Here
we summarize the lower triangular factorization of the covariance matrix.

C.1 Lower triangular Cholesky decomposition
Any symmetric po§itive semidefinite matrix P has a lower triangular

factorization, P = SS'. 'S is computed from the following recursive
algorithms: vt ~

For i = 1,..., n

1'] 2
AV S (C.3)
i LA J
0 , (3 < 1)
A | g (C.4)
ras - S S, ) (J = i+], s N
Sii { SR jk 1k} )

where n = dim P,



C.2 Inversion of lower triangular matrix
Matrix inversion of a lower triangular matrix preserves lower triangu-
larity. §'1 is computed from the following recursive algorithms:

For i = 1,..., n

e (C.5)

S.. = (C.6)

C.3 Modified Gram-Schmidt orthogonalization
Let fi,..., fn be 1inear independent N vectors with N>n. Consider the
recursions:

For i = 1,..., n

Sy =Y AT £ 7
0 (J <)
51-J- } (C.8)
1 (i)T (1) i = 9
S__f1 fJ (J i+l,..., n)
ii
f(i41) _ L) _ o f(d) (j = i+1,..., n) (c.9)
Then ™ ~ b
-
r‘fT
~1
. ot (C.10)
[f]’ T fn] §§
T
f
_ N J
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where S is lower triangular.

Then the factorization (B.23) can be handled by constructing a suitable
orthogonal matrix T such that

sT(k) sT(k)
T = (C.11)
AOIIE:
where
W(k) = Q"/2(k). (c.12)

Using the modified Gram-Schmidt procedure (C.7)-(C.9), the transformation
(C.11) can be performed without explicit storage or computation of T.

For the technical details and a more compliete discussion of the matrix
factorization algorithms we refer the reader to Bierman (1977).

D. Discussion of Approaches to the Design of a Monitoring System

In this Appendix we outline prior approaches that have been proposed for
the monitoring system design problem. The object of this Appendi. is to pro-
vide the reader with some perspective on other approaches, their advantages
and shortcomings, and their comparison with the approach taken here.

Seinfeld (1972) posed the optimal monitoring location problem from the
point of view of source surveillance. Given an atmospheric diffusion model
he proposed that monitors be located at points where the pollutant concentra-
tions are most sensitive to changes in source emissions. He developed an
optimization routine that would automatically find those locations with maxi-
mum sensitivity. The results of that work can be viewed as complimentary to
those of the present work since we have not considered the criterion of
source surveillance here.

Gustafson and Kortanek (1973, 1976) have essentially employed a regres-
sion approach to the optimal monitor siting problem. In their 1973 work they
propose to determine an optimal regression model by minimizing the differences
between observed and calculated concentrations. Let f(x) represent the con-
centration of a pollutant at location x. The observations can then be repre-
sented by f(x) + n(x) where n(x) is white, Gaussian.noise. The authors pro-
pose that f(X) be répresented By

f(x) = .E] a;0;(x) + n(x) (D.1)
1:
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where {¢.} is an appropriate set of functions, and {a;} are unknown constants.
The opti%a] location problem is posed as determining d set of measurement
locations, X1 Xoseees Xy to minimize

N n >
. 0. (x.) - f(x.
jZ] P; {151 230 (x;) (ﬁ& (D.2)
where pj are an appropriate set of weighting coefficients.

In more recent work, Gustafson and Kortanek (1976) proposed a scheme
based on a Teast squares fit of sparse measurement data to an analytical dis-
persion formula. The concentration of a pollutant at location x is expressed
as v

M
c(f) = Z q.v.(x) (D.3)

where q, is the strength of source j, and v. is the concentration produced at
x by a dource of unit strength at source j.v Clearly, v, is a function only
of meteorology. If concentrations are measured at N stations at locations,
X19%pse e Xy yielding measurements Cys Coseres Cppo then the authors propose
that "the M pseudo-source strengths qj, J=1,2,..., M can be determined from

M

4

4 qjvj(fi) = C, i=1,2,..., N (D.4)

i

The solution to (D.4) for the g. can be obtained by least squares. Once the
q. have been determined, then tﬂey can be used to predict concentrations at
other locations for the purpose of choosing new monitoring stations. The key
to this approach is that the source strengths are treated as unknown in order
to determine the model that is to be used subsequently for siting. This ap-
proach is not as desirable as one based on a good source inventory, such as
that of Liu et al. (1977).

Hougland and Stephens (1976ab) presented a location model which defines
a measure of relationship between an emission source and a potential monitor
site. The measures, called coverage factors, are defined for each combina-
tion of source, potential monitor, and wind direction. For a tentative
assignment of samplers to potential monitor site, a "source oriented sum
(S0S)" is calculated. Then a heuristic nonlinear programming technique is
used to search for those combinations of sampler assignments that minimize
the source oriented sum for the number of monitors allowed on assignment. This
model is expressed as follows:
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N N

S W
Maximize SOS = Y Max  {A,. X.}
Ny
subject to: } X, =M
=1 J
J
where: S0S = source oriented sum

i,j,k = indices over NS sources, NM potential monitors,
and Nw wind directions, respectively

Aijk = coverage factor for source i, wind direction k,
and potential monitor site j
M= number of monitors allowed to be assigned to

potential sites

0 ; if a sampler is not assigned to potential
X, = monitor site j

1, if a sampler is assigned to potential
monitor site j

The contribution of this model is that it defines a source-monitor relation-
ship, it uses this relationship in a optimization scheme for monitor network
design, and is a completely source-oriented model.

Vukovich (1976) proposed an objective variational analysis model (OVAM)
to establish an optimum sampling network (OSN). If the parameters in the
diffusion equation are specified over the urban region, then it is possible
to Qetermine the distribution of a particular pollutant using an objective
variational analysis model. This technique provides the pollution distribu-
tion by making proper use of the sparse measurement data and the governing
diffusion equation. Then the representative data is incorporated into a
reg(ession model, and combined with the site selection algorithm to yield the
optimal sampling network. The criterion that establishes the OSN is the vari-
ance function, which yields a measure of the predictability over the area,
as well as the .correlation and sums of squares of deviations between observed
and predicted values. One of the most important steps of the technique is
the selection of the regression model.

. Buell (1975) proposed a linear regression approach that is basically
equivalent to that of Gustafson and Kortanek. It is presumed that there
exist a few existing monitoring stations or at least a few points at which
observations have been made. On the basis o. this given starting network
of measurement points, the criterion (D.2) is used to construct the linear
regression model and to interpolate concentrations. Using this interpolation
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TABLE D.1 SUMMARY OF PREVIOUS APPROACHES TO OPTIMAL AIR POLLUTANT MONITOR SITING

Investigators Siting Criterion Comments

Seinfeld (1972) Locate monitors at points of maximum Approach based on atmospheric diffusion equa-
sensitivity to changes in emission tion air quality model. Need source inventory
rates from major sources, the "source- and meteorological data for region. Method
surveillance" siting criterion. applicable to inert and reactive pollutants.

Gustafson and Locate monitors so as to determine an Approach based on statistica! optimal experi-

Kortanek (1973) optimal regression fit to the concen- mental design. Regression fit of 1imited
tration field. usefulness. Sites sensitive to particular

regression expression chosen.

Gustafson and Construct a model by determining best Treats source strengths as unknown and deter-

Kortanek (1976) source strengths to match model to mines the best linear model (inert species)
observed data. to fit the observed concentration data. Once

model is formed, additional monitor sites can
be selected. Of limited usefulness if actual
source inventory is available.

Vukovich (1976) Fits wind field by objective analysis A more sophisticated variant of Gustafson and
and then fits a regression model to Kortanek (1973). Optimal sites chosen on basis
concentration field. of regression model for concentration field.

Non-reactive pollutants only.

Hougland and Defines a coverage factor that erequ Applicable to non-reactive pollutants only.
Stephens (1976ab) on source strength, frequency distri-
bution of wind speed and direction.

Liu et al. (1977) Exercise air quality diffusion madel Does not require prior monitoring data., Appli-
given source inventory and meteorology cable to inert and reactive pollutants. Best
to produce concentration field. lLocate way to approach siting in a region where no

monitors on basis of characteristics stations currently exist.
of field.

Buell (1975) Locate additional monitors at points A starting network of monitoring stations is
at which the mean square error of assumed. Regression fit of concer rations and
estimates is largest. interpolation over a region is performed.

Optimization is carried out based on a heuristic
one-step-at-a-time method. Similar to Gustafson
and Kortanek.

of pollutant concentrations over a region, the location of the point yielding
the maximum error of estimation is found. This point is then chosen as the
best location for a new measurement station. This point is added to the
existing observation points. The process is then repeated; the location of
the point yielding the maximum mean square error is found, using the new
observation station. A second new measurement station is located, etc. 1In
this work, special consideration is given to the calculation of the residual
variances or the effects of limited range of influence. The factor analysis
method is utilized to specify the residual variances which enter into the
diagonal elements of the covariance (or correlation coefficient) matrix.

E. Documentation of Program
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E.1 Function

The program accepts a set of monitoring station locations and pollutant
concentration data at these stations and produces a grid of estimates of the
pollutant concentration. Data cards describing the grid of surface pollu-
tant fluxes, eddy diffusivities, and wind vectors over the region of inter-
est are also required.

E.2 Program Flowsheet and Subroutines

The flowsheet of the program is given in Figure E.1. Subroutines re-
quired there are as follows:

COVAC

MGS
CHOLKY
INVTRY

FROMM

TRIG

For the time-update computation of the filter square root
variance

For the modified Gram-Schmidt orthogonalization procedure
For the Cholesky decomposition procedure

For the inverse matrix generation of a triangular square
root matrix

For the Fromm's second-order, zero average phase error
finite difference method

For the solution of an algebraic equation with a tria:gular
coefficient matrix.
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INPUT DATA MEASUREMENTS
Main Program
]
FROMM -—‘ COVAC
TRIG Filter Variance N JP___

MGS

CHOLKY

INVTRY

Prediction

Filter Gain

Filtering Estimate

|

Updated Variance

e e e e m e e e o o o o e S e e o e e e e G e = A " e S o > - = 8 = - o

OuTPUT

Figure E.1 Flowsheet of the Program
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E.3 Input

Variables

Definition Physical Variable Program Variable Comment
c(xi,yj,zk,t) C(1,J,K) Estimate
Filter S (t) P(1,d) Square root variance
states 1j
1.J.('c) PA(I,Jd) Filter variance
AX DX
By DY Mesh spacings
Az DZ
Mesh At DT
conditions
Nx LL
Ny MM Mesh numbers
NZ NN
tk T
Time condi-
Measurement| M NUMBER Number of stations
conditions
h ERIT Effective meas.

height
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Physical Variable

Program Variable

Input Needed

co(x,y,Z) .
Po(x,y,z,x' y'.z')

X

Yy
Wy (ty )
S(x,y )
u(x,y)
v(x,y)
Ky(z)
VO
Q(z2)

€(I,d,K)
P(I,J)
IX(L) -
IV(L)
0BS(L,K)
SOURCE (I,J)
u(1,d)
v(I,J)
ED(K)

DK

Q(K)
R(I)

C(I,J,K), T =1
P(I,J), I, d =
IX(L) , L =1,.
IY(L), L = 1,..
0BS(L,K), L =1
SOURCE (I,J), I

u(r,d), I

V(I,J3), I

ED(K), K= 1,...

Q(K), K
R(I), I

1,...

1,..
1,..

1, ...

seeos LLy Jd=1,..., MM; K=1,..., NN

1,..., LL*MM*NN
..» NUMBER
. » NUMBER
»...» NUMBER, K =

!
—
-
.

1,..., LL; J

1}
p—
v

Ly d=1,..., MM

sy d=1,..., MM

» NN

» NN
» NUMBER




E.4 Output Variables

Physical Variable Program Variable Type of Output
c(x,y,z,t) C(I,J,K) The computed grid maps are
P(X,Y>ZsX,Ys2Z,t) PA(I,I) written and/or 3-dimensional

perspectives are drawn.

E.5 Error Messages
A warning message is printed by the program when:
1. Negative concentraiion is calculated. (If C(I,J,K) < - 10.)
2. Too large a concentrationis calculated. (OVERFLOW if C(I,J,K) > 103.)
3. Too large diagonal entries of the filter variance are calculated
(COVARIANCE OVERFLOW if PA(I,I) > 10'9.)
4, Too large correlations of the filter variance are calculated.

(If PA(I,JF > PA(I,I)*PA(J,Jd).)
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