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ABSTRACT

This report describes a mathematical model which relates
collection efficiency to electrostatic precipitator (ESP)

size and operating parameters. It gives procedures for
calculating particle charging rates, electric field as a
function of position in wire-plate geometry, and the theo-
retically expected collection efficiencies for various
particle sizes and ESP operating conditions. It proposes
methods for empirically representing collection efficiency
losses caused by non-uniform gas velocity distributions,

gas bypassing the electrified regions, and particle reentrain-
ment due to rapping of the collection electrodes. Incorporating
these proposed techniques into a mathematical model of ESP
performance reduces the theoretically calculated overall
collection efficiencies. It compares the redﬁced efficiencies
with those obtained from measurements on ESPs treating flue
gas from coal-fired generating stations. It also presents the
effects of changes in particle size distributions on calcu-
lated collection efficiencies obtained from the mathematical
model. A procedure for estimating the program output by hand
calculation is given, and a complete listing of the FORTRAN

computer program is contained in an Appendix.
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CONCLUSIONS

Calculation of overall collection efficiency of polydisperse
particulate in an electrostatic precipitator from theoretical
relationships gives results highér than those obtained from
performance measurements on coal-fired power boilers. Correc-
tions to the idealized or theoretical collection efficiency

to estimate the effects of non-uniform gas flow, rapping
reentrainment, and gas by-passing the electrified sections
reduce the overall values of calculated efficiency to the
range of values obtained from field measurements. These
calculations suggest that the theoretical model may be used

as a basis for quantifying performance under field conditions
if sufficient data on the major non-idealities become
available. The computer model in its present state of
development is useful for qualitatively indicating performance
trends caused by changes in specific collecting area, electrical
conditions, and particle size distributions, provided that
back corona does not exist. Current density, applied voltage,
and the particle size distribution are the most important
variables in the calculation of overall mass collection

efficiency for a given specific collection area.

viii



A MATHEMATICAL MODEL OF ELECTROSTATIC PRECIPITATION

SECTION I

INTRODUCTION
Because of the complexity of the factors which influence collec-
tion efficiency in electrostatic precipitators, it is necessary
to use a high speed computer to predict precipitator performance
from the applicable theoretical relationships. A computer model
of electrostatic precipitation has been developed by Southern
Research Institute as part of a research program sponsored by
the Environmental Protection Agency with the objective of
improving the understanding of the factors which influence
precipitatof performance. The computer model predicts particulate
collection efficiency under ideal conditions as a function of the
dust properties and the operating parameters and includes
relationships for estimating the effect of gas velocity distribu-

tion, particle reentrainment, and gas sneakage.

In general, a comparison of the overall mass efficiency predicted
from the theoretical model with measured efficiencies obtained
under field conditions indicates that the theoretical projections
are higher than the field measurements. Corrections to the
idealized or theoretical collection efficiency to include
estimated effects of the previously mentioned non-idealities
reduce the theoretical values to the range obtained from field
measurements. These calculations and comparisons suggest that
the theoretical model may be used as a basis for quantifying
performance under field conditions, if sufficient data on the

major non-idealities become available.

The Southern Research Institute mathematical model uses the
Deutsch equation to predict the collection fraction nj for the
i-th particle size in the j-th incremental length of the
precipitator. Thus, the Deutsch equation is applied in the
form

- o A- Q
-1 - e 1,] ]/ , (1)



where
w. . = migration velocity of the i-th particle size
in the j-th increment
A4 = collection plate area in the j-th increment

Q = volumetric flow rate.

Since the Deutsch equation is based on the assumption that the
migration velocity is constant over the collection area of the
precipitator, it is necessary to make the incremental lengths
sufficiently small so that the electric field at the plate and

the charge accumulated by a given particle size remain essentially

constant over the increment.

The collection fraction (fractional efficiency) n; for a given
particle size over the entire length of the precipitator is

determined from

5 L DTS Ay/0Q
= 35 = _3 '

Nj 1 Ni,1

ni , (2)

where Nj, j is the number of particles of the i-th particle size
per cubic meter of gas entering the j-th increment. The quantity
Ni,j can be written in the form

cwi s 4 Ai_1/Q -wi -1 A3-1/0
1,] 1 J 1 P = N: = e
Nj,j = Ni,j-1-(1l-e INj ,j-1 = Ni, j-1

(3)

where N, Ni, o the number of particles of the i-th particle

i,1 7
size per cubic meter of gas in the inlet size distribution.



The overall collection efficiency n for the entire polydisperse

aerosol is obtained from
n= 2 niP; | (4)

where Pj is the percentage by mass of the i-th particle

size in the inlet size distribution.

The following list gives the major operations which are performed

by the computer program in evaluating equations 2 and 4:

1) Read input data, which include the particle size
distribution in the form of a histogram, applied voltage, total
current, total plate area, plate to plate and wire to wire
spacing, gas volume flow, precipitator length, gas temperature
and pressure, average density of dust particles, corona wire
radius, the standard deviation of the gas velocity distribution,
the percentage reentrainment and gas sneakage per stage, the
number of stages over which reentrainment and sneakage are
assumed to occur, and an estimated efficiency. Those data
which are dependent on a given electrical section of the pre-
cipitator are inputed in the sectionalized form.

2) Compute the number of particles in each size band
of the input mass histogram.

3) Divide the precipitator into .305 meter (1 foot) length
increments and compute the amount of material removed per incre-
ment from the estimated efficiency.

4) Calculate space charge due to particulate in each
increment based on the estimated efficiency per increment, and
calculate the reduced free ion density in each increment for use

in the calculation of particle charge.



5) Compute the electric field at the plate and calcu-
late the average charging field from the electrode spacing
and applied voltage.

6) Calculate the charge on each size particle at the
end of each increment of length.

7) Calculate a migration velocity for each size particle
at the end of each length increment.

8) Compute the number of particles removed in each size
band after each length increment of travel from the Deutsch
equation.

9) Calculate the mass median diameter and the weight of
the collected dust for each increment.

10) After the required calculations have been performed in
all length increments, calculate an overall mass efficiency, and
compare this value with the input estimated efficiency. 1If the
difference is greater than 0.05%, the program returns to the
first length increment, and repeats all calculations using the
newly computed overall efficiency as the input value of efficiency.
Usually, only one iteration is required.

11) After convergence on overall efficiency has been
obtained, print the collection efficiency and compute the
effective migration velocity for each size range. Calculate
a precipitation rate parameter from the overall efficiency.

The above operations complete the calculation of
theoretical or ideal performance that would be expected under
a given set of input conditions. Corrections to these theo-
retical projections are obtained by operating on the effective
migration velocities for each particle size as follows:

12) For a given value of gas velocity standard deviation,
calculate a correction factor for the effective migration
velocities, using the theoretical efficiency for each particle

size.



13) Calculate a correction factor for the effective
migration velocities, using assumed values of number of
stages and the percent loss per stage from reentrainment and/
or sneakage.

14) Obtain an "apparent" effective migration velocity
for each particle size by dividing the theoretical values by
the product of the two correction factors described above,
and calculate a corrected efficiency for each particle size
from the Deutsch equation.

15) Calculate a corrected overall efficiency and pre-

cipitation rate parameter.

The fundamental steps in the precipitation process are particle
charging, particle collection, and the removal and disposal of
the collected material. Therefore, in order to calculate the
efficiency of particle collection, it is necessary to mathemati-
cally model the electric field, the particle charging process,
the mechanism by which charged particles are transported to the
collection electrode from the gas stream, and efficiency losses

caused by reentrainment or other non-idealities.

Figure 1 gives a simplified block diagram of the precipitator
model computer program. The program is structured around
three major loops, the outermost of which is a direct itera-
tion that converges on the overall mass efficiency. An
initial estimate of the overall mass efficiency is required
because the space charge on the particulate at any point in
the precipitator is a function of the particle charge and

the number and size of particles remaining in the gas.

The program contains a calculation procedure which estimates
the effect of particulate space charge on the average free ion

density and the electric field near the collecting electrode.

5



[ READ DATA |

[CALC. NO. OF PART. IN EACH SIZE BAND]

{ CALC. NO. OF LENGTH INCREMENTS AND no,/INCREMENT FROM n, ESTIMATEH

[ CALC. SPACE CHARGE DUE TO PARTICULATE BASED ON n, ESTIMATE |ea—

[CALC. REDUCED FREE ION DENSITY FOR PARTICLE CHARGING CALC.|

| COMPUTE AVERAGE FIELD FOR CHARGING |

]
{CALL E FIELD, COMPUTE FIELD AT PLATE]|

]
| CALL CHARGE, CALC. CHARGE ON EACH SIZE PART.H

[CALC. n FOR EACH SIZE FROM W FOR EACH SIZE |

| CALC. NO. OF PART. REMOVED IN EACH SIZE |

[ SUM WEIGHT OF PARTICLES REMOVED |

Y

[CALC. SIZE DISTRIBUTION TO NEXT SECTION)
[ REPEAT FOR EACH PART. SIZE

i
[CALC. MMD AND WEIGHT COLLECTED FOR THIS INCREMENT |
REPEAT FOR EACH INCREMENT

{CHECK OVERALL COMPUTED n,WITH n, ESTIMATE, REPEAT IF REQUIRED |

I REPEAT TILL CONVERGES t 0.05%

[CALC. EFFECTIVE WeFOR EACH SIZE ]

¥

[ CALC. PRECIPITATION RATE PARAMETER ]

]
| CALC. CORRECTION FACTOR FOR GAS VELOCITY |-

[CALC. CORRECTION FACTOR FOR REENTRAINMENT-SNEAKAGE |

|

| CALC. REDUCED EFFECTIVE We|

[ CALC. REDUCED EFFICIENCY |
REPEAT FOR EACH PART.SIZE )

[[CALC. REDUCED OVERALL EFFICIENCY ]

[CALC. REDUCED PRECIPITATION RATE PARAMETER |

[ PRINT RESULTS |

END

Figure 1. Simplified flow diagram of precipitator model
computer program
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The second major loop includes the calculations which must
be performed in each incremental length, and the inner-most

loop contains the calculations dependent upon particle size.

The following sections present the mathematical relationships
used to calculate particulate space charge, electric fields,
particle charging rates, collection efficiency, and the
degradation of collection efficiency caused by non-ideal
effects. The calculation of particle charging rates is given
in considerable detail because the charging model was developed
under contract with EPA's Control Systems Laboratory and the
detailed mathematical development has not been published prior
to the date of this report. Input data format and a typical
example of the program output are also presented, as well as

a discussion of the determination of the input parameters, and
examples of typical results obtained from the program. The
Appendix contains a listing of the FORTRAN variables used in
the program and a listing of the main program with all of

the subroutines.



SECTION II
DESCRIPTION OF CALCULATIONS

ELECTRICAL CONDITIONS

Space Charge Calculations

It is well known that the introduction of a significant number
of fine dust particles into an electrostatic precipitator
significantly influences the voltage-current characteristics
of the interelectrode space. Qualitatively, the effect is
seen by an increased voltage for a given current compared to

a dust-free situation. The increased voltage results from

the lowered mobility of the charge carriers which occurs as
the highly mobile gas ions are bound to the relatively slow
dust particles, thus creating a "space charge”. It is desir-
able to determine the space charge resulting from dust
particles because this quantity influences the electric field
near the collecting electrode as well as the charging dynamics.
Also, the space charge is a function of location along the
length of a precipitator and must be determined on an

incremental basis along this length.

If we ignore the presence of free electrons, the current
density at the collecting electrode results from charge trans-

ported by both ions and particulate in accordance with the
relationship



where

jp = total current density, amps/m?

E, = average electric field, volts/m
charge on ions, coul/m?

gi = ion mobility, m?/(volt-sec)

pp = charge on particles, coul/m?

bp = particle mobility, m?/ (volt-sec)
pT = Pi t+ pp

be = egfective mobility of ions and particulate,
m°/(volt-sec) .

Thus, an effective mobility may be defined as

ibj + ppb
be = —i-i ’ Po7p : (6)

Py

The values of b, are estimated as follows. First,

Jp _ Eoppbyp Ip (7)
Ip Eoppbp + Egpibj B jb + 3i ’

The quantity jp is estimated by (a) calculating the total

charge on all particulate present in the inner-electrode space

in a given length increment using the saturation charge from
field charging, and (b) multiplying this value of charge by an
estimated removal rate for the length increment under considera-
tion to obtain the coul/sec, or current, transported by the
particulate. If it is assumed that the current density due to
the particulate is only a small fraction of the total current
density (ji>>jp) and that the mobility of the ion charge carriers
is, on the average, 200 times that of the particulate, then

ppbp
<< 1
pibi (e



and

Jp - Ppbp/Pibj v Ppbp v _Ppbp - Pp

jr  ppbp/oibi + 1 pibi  pi(200bp)  200p;

Oglesby and Nichols! have shown that equation 6 can be
re-arranged to yield

b bj
ud 2] _1
be = lpi + pp - pp (1 - 57 M1 5o

Now, since we have assumed that bj = 200 bp,

bi o
be = [pj + pp = pp (1 - 0.005)] 5= =

Pi
. G2) bi

The value be can therefore be estimated from a knowledge of
carrier ion mobility and the ratio of ionic space charge to

total space charge. The space charge ratio can be obtained

by manipulation of equation 4q:

Pp_ = 200 Jp_

Pi Jp

: + p: 200 j
pe + 1.0 = Dp _pl = Er_= _—2' j + 1.0 .
Pi Py Pi T

Substitution of equation (12) into equation (1l1l) gives
T
i (200 3, + 37

be=b

Although the foregoing procedure provides a basis for esti-
mating the effect of particulate space charge, several of

the assumptions are of questionable accuracy. Specifically,

The current carried by the particulate may be
significant.
* Particle mobility varies with size, and the

assumption that bj = 200 bp on the average

10

(9)

(10)

(11)

(12)

(13)



may be considerably in error.

For small particles, the saturation field
charge is not an appropriate value of charge
to use for estimation of the particle contri-

bution to current.

As a result of these problem areas, additional work on
developing a more accurate space charge calculation pro-

cedure is planned.
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Electric Field Calculations

Since the particle migration velocity is a function of the elec-
tric field at the plate, it is necessary to calculate the electric
field adjacent to the collection electrode. The method employed
for this calculation is a numerical technique introduced

by Leutert and Bdhlen.? The equations which must be solved

are written in discrete form in two dimensions as

= - P 14

axZz * Ay 2 €0 ' and , (14)

2 _ AV Ap [ AV Ap 15

P eo (3x zx * Ay Ay ) (1)
where p = space charge, coul/m?®

y = distance parallel to gas flow from wire
to wire, m

x = distance perpendicular to gas flow from
wire to plate, m

€o = permittivity of free space, coul?/(N-m?).

Figure 2 shows a partial grid illustrating the nomenclature
used in the numerical solution to the above equations. The

initial point for which a solution is obtained is designated

point "0". As the calculation progresses to neighboring points,
each point in the grid becomes point "Q0". Using the relation-
ships

AV o 1 A%Ve _ 1 (Vu-Vo Vo-V2

Bx = 2a Ve V2), 57 T 3 ( a - =) (16)

and

A%, 1 WaVo _ VoV,

Ay2 T a ' a a

equation 14 becomes, in terms of the grid points on figure 2,

1 2
Vo = Z(Vy +V, + V3 + Vs +a_€P_Q.) (17)
0

12



Figure 2. Partial grid showing nomenclature used in
the numerical analysis.
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From the relationships

_ v - AV
Bx = Eox’ By = Eoy

]

Ap in x direction Po - 02

i

Ap in y direction Po—=P3

and Ax = Ay = a,

equation 15 may be transformed into a function of the space
charge at the surrounding points and Eox and Egy. Solving the
resulting equation for the space charge at the point "0" gives

-€0 € 2
Po = 57 (Eox + Egqy) = 1/2 [{Z% (Egx + Eoy)!

1
+ 4{§£(onp2 + Eoypa)}lz, (18)

Figure 3 shows additional nomenclature used in the numerical

analysis. The boundary conditions are:

<
I

Vo on the wire,

<
I

0 on the plate,

av 0 along line AB,

AV = o along lines BC, CD, and AD, and
3%

p = j/{%¥ (b)] near the plate.
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In order to begin the iteration, it is necessary to establish
an initial estimate of the potential grid in the inter-
electrode region and to estimate a space charge for the corona
region. The initial estimate of the potential grid is obtained
from an expression developed by Cooperman® which describes the
electric field for wire-plate geometry at voltages less than
that required for initiation of the corona. A computer program
was written which obtains a numerical solution to equations 14

and 15 by the following steps:

l. V is computed at every point in the integration
grid using Cooperman's expression.

2. p is computed at every point in the integration
grid from equation 18.

3. V is recomputed at every point in the integration
grid using equation 17.

4. Steps 2) and 3) are repeated alternately until
convergence occurs. Convergence on the potential
grid is obtained when the value of the potential
at each point in the grid is within one volt of
the value calculated at that point in the previous
iteration.

5. The computed current density [obtained using the
relationship j = p (%%) b] is compared with the
measured current density. If the computed and
measured current densities do not agree within .1%
then the space charge representing the corona
region is adjusted and steps 1) through 5) are repeated

until agreement is obtained.

This procedure iterates on a grid of electric field and space
charge density until convergence is obtained. The major
approximation, and one that is seemingly unavoidable in practice,
is the assumption that the motion of all charge carriers can, on
the average, be described by a single effective mobility. The
space charge introduced by the particulate present in flue gas

would reduce the effective mobility. The program estimates

16



the effect of reduced mobility by using equation 13 of Section
II. However, it is necessary to limit the mobility reduction

in order to prevent nonconvergence of the grid under certain

conditions.

In order to check the accuracy of the calculation procedure,
the computer program has been used to calculate potential
profiles and electric fields based on the geometry and
operating conditions for electric field measurements reported
in the literature. Figure 4 shows calculations based on the
geometry and operating conditions reported by Penney and
Matick * and their experimental results. Reasonable agreement
is found for the potential profiles from the wire to the

plate and from a point midway between wires to the plate.
Also, excellent agreement is found for the field near the

plate (the slope of the potential curve).

Tassicker® performed a series of experiments to measure the
field and current density at the plate in precipitators of
different geometry. Figure 5 shows some of his data on a
wire-plate precipitator. Corona wires were adjacent to the
points x = -10 and x = +10 cm. Thus, the positions x = +5,

X = -5 correspond to positions at the plate midway between
the corona wires, and the position x = 0 corresponds to a
position at the plate adjacent to a corona wire. The general
shape and magnitude of the electric field at the plate show
good agreement. Notice that, although the field is fairly
uniform along the plate, there is a maximum opposite the corona
wire. Since the calculated results appear to match the
available data rather well, it may be concluded that Leutert
and Bohlen's technique provides a basis for computing
electric fields in the region of interest adjacent to the

collecting electrode.

17
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CHARGING RATE CALCULATIONS

Particle charging in industrial electrostatic precipitators
is performed by electrons and negatively charged gas ions
which originate from a negative corona discharge. Although
the gases present in stack gases are ordinarily good elec-
trical insulators, processes such as naturally occurring
radiation and flame ionization continuously produce a small
number of ion-electron pairs in each cubic centimeter of gas.
These sources of ionization provide initiating electrons for
the corona process. If an electric field is applied to
these gases, positive ions and free electrons will be driven
by the electrical force, and the electrons, because of their
greater mobility, will move at a higher velocity than the
relatively sluggish positive ions. When the electric field
reaches some critical value, the free electrons will acquire
sufficient energy to remove a valence electron from some of
the neutral gas molecules through collisions. The newly
freed electrons, together with the ionizing electrons, will
again accelerate and ionize other neutral gas molecules.
This process, termed avalanche multiplication, will continue
as long as the localized electric field exceeds the critical
value for electron avalanche. Peek® has studied this phe-
nomenon in detail and has derived a semi-empirical relation-
ship that relates the field strength required for electrical

breakdown to electrode geometry, temperature, and pressure.

For the case of industrial electrostatic precipitators with
negative corona electrodes, the corona process will produce
negative charge carriers in the region between the corona
and the collecting electrodes. The electrons will flow
toward the collecting electrode, and the positive ions will

20



travel toward and strike the corona electrode. The free
electrons flowing from the corona region will travel
toward the collection electrode and attach to electro-
negative gases such as oxygen, water vapor, and sulfur
dioxide. The ionized electronegative gases are the

major carriers of the corona current and thus predominate

in the particle charging process.

When a stable corona current has been established under
typical flue gas conditions, two particle charging
mechanisms are active in moving the ions to the dust
particles: field charging and diffusion charging. For
the purposes of this discussion, it will be assumed that,
with both mechanisms, negatively charged ions are the
exclusive carriers of charge in the space between the
corona region immediately surrounding the discharge

electrode and the collecting electrode.

The mathematical relationships describing field charging and
diffusion charging have been derived in the literature and
are summarized by White.” The charging rates predicted by
the field charging equations are in good agreement with
experimental data for large particles (r > 2 um) and moderate

to high external electric fields;®’ ?

and the charging rates

predicted by the diffusion charging equations are in good

agreement with experimental data over a fairly broad range of

8 ,10 .
Neither

the field nor the diffusion charging equations are adequate

particle sizes where the external electric is low.

for predicting charging rates for particles with radii in the

11

.8 um to 2 um region when an electric field is applied.
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The computer program described in this report employs

two different models to account for the charging process.
The program user specifies which model should be employed,
based upon the specific objectives for using the program.
The following is a discussion of the two particle charg-

ing models and their intended uses.

Sum of the Classical Field and Diffusional Charging Rates

7

The classical field charging rate ’ is given by

(g%) _ Neebjgs (1 - 92 ,
field € ds
where Ny, = undisturbed ion concentration, #/m?

e = electronic charge, coulombs
b; = ion mobility, m?/(volt-sec)

£¢ = permittivity constant, coul?/(N-m?)

g = 1lnstantaneous charge on the particle, coulombs

gqs = saturation charge, coulombs

The conventional saturation charge dq does not take into
account the persistence of the momentum of the ions due to
the external electric field and the transient behavior of
the field. Thus, a modified saturation charge qs' is used

to account for these factors. It is given by

K-1 al
K+2 (a+x_)3
m

q.' = 4re, (a+Am)2 (L.2 Eo) (1 + 2 )

S
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where a = particle radius, m
Am = an adjustable parameter = miA , where
A = ion mean free path, m
m = number of mean free paths
Eo = average charging field, volts/m

K = relative dielectric constant of the

particle.

The effect of the modified saturation charge is to allow
a greater charge to accumulate on the particle than the
conventional saturation charge before the field charging

mechanism ceases.

The classical diffusional charging rate’ is given by

v
(gg) = Ngema?v exp (-eV/kT) , (21)
t . .
diffusion
where V = ion mean thermal speed, m/sec

V = potential near the surface of the charged
particle, volts
k = Boltzmann's constant, joules/°K

T = absolute temperature, °K.

The potential near the surface of the charged particle is
approximated by

ve_—21 g (22)
4TT€o a .
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The total charging rate can be estimated by adding the
rates given by equations 19 and 21. Then,

aq _ dg ag
= (32) + (F2) (23)
dt  dt'fje1qa 9% aiffusion
- 119_3%3,'&_ (1 - E‘g_)u Neema?¥ exo (-eV/kT)
s

Equation 23 reduces to the classical diffusional equation

in the absence of an applied electric field and approaches

the results obtained from the classical field charging

equation for large particles and high fields. The charging
rates predicted are lower than those found experimentally.

The disagreement is largest in the particle size range where
both field and diffusional charging are important. The disagree-
ment is due mainly to the fact that the effects of the external
electric field on the diffusional charging process have been
neglected.

Equation 23 is solved by summing up incremental amounts of
charge Agq acquired in successive time intervals At, where
initially g = 0 and t = 0. This procedure is straightforward
and the compuﬁer program runs relatively fast when it utilizes
this charging model. Thus, if the user is interested in an
approximate precipitator performance or wants to examine
trends under certain conditions, employment of this charging
model would save significant amounts of computer time. This
charging model is selected for use by the computer program
when a certain indicator (NCALC) is read into the program as
1l in the input data. This indicator is the third piece of
information of data card set 7 as described in the section

which discusses data card format.
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Southern Research Institute Model

Figure 6 shows the two dimensional physical model which

is used as the basis for the theoretical development of

the charging process.  The particle shown in this sketch,
and its environment, are considered to be representative of
the average of a large number of similar systems which make
up the aerosol under investigation. Because the ion concen-
tration may only be 10 times as large as the particle
concentration, and because of the screening effect of
neighboring charged particles, macroscopic theories based on
diffusion due to ion concentration gradients may not be
applicable. The approach used in the SRI model is to apply
some ideas from kinetic theory in order to calculate the
charging rate in terms of the prbbability of collisions

between ions and the particle of interest.

In this theory particle charging is largely attributed to the
thermal motion of the ions and the electric field acts as a
perturbation on the thermal charging process. Although in
practical situations the thermal kinetic energy of the ions is
always much greater than the kinetic energy gained from the
external electric field, experiments show that the charging
rate is greatly enhanced by the application of a field.® The
effect of the applied electric field is to modify the ion dis-
tribution near the particle in such a way that the average

ion concentration is increased. Murphy et al!? estimated

an increase in ion concentration by a factor up to 440

times as large as the normal Maxwell Boltzmann distribu-

tion would predict when the particle field and applied field
are antiparallel, depending on the amplitude of the applied
field. When the two fields are parallel, however, the
decrease was less than a factor of 3. Thus, the changes in
ion concentration do not cancel and there is a large net

increase in ion concentration near the particle.
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Figure 6. Two dimensional physical model for developing
a charging theory
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Figure 7 is a simplified diagram which is used to define the
nomenclature used in the theoretical development. The
physical description, however, is based on the conceptual
representation shown in Figure 6, where the particle of
interest is surrounded by gas molecules, ions, and other
charged particles. The particle is assumed to be spherical
and only components of electric field due to charge on the
particle and the applied field are considered. The external
electric field is taken to be uniform and directed along the
negative z axis. The dashed line in Figure 7 labeled rg
corresponds to points in space where the radial component of
the total electric field is equal to zero. The angle 8,
corresponds to the azimuthal angle at which ro is equal to
the particle radius, a. The point of intersection between
ro and the particle surface will always lie on the hemisphere
defined by 6, < m/2. As the charge on the particle increases,

8o will go to zero and r, will exceed "a" for all angles.

If the space charge in the region outside the volume of
interest is homogeneous, we can write an expression for the
radial component of the electric field very near the particle

as follows:!?

_ K-1 a’ ne
E,r = Eo cos 6(1 + 2 ) ;T) T Tme,c? ¢ (24)
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Z AXIS

Eo=900kV/m
0 =0.46um
n =160

ng= 285

Figure 7. Model for Mathematical Treatment of Charging

Rate. Along the line r = rp(8), the radial

component of the electric field is equal to
zero.
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where

Er = radial component of electric field
(V/m),
EO = external field (V/m),
K = particle dielectric constant,
a = particle radius (m),
r = radial distance to point of interest (m),
n = number of charges on particle,
e = electronic charge (1.6 x 10-!*% coul.),
€, = the permittivity of the gas (%8.85 x 107'2

coul?/N-m?), and

® = the azimuthal angle measured from the z axis (radians).

For the purposes of discussion, we will define three areas
of interest on the particle surface. One area, designated
by Region I, is that bounded by 6 = 0 and 8 = 645; a second
region, Region II, is bounded by 6 = 65 and 6 = m/2; and the
third region of.interest, Region III, is the "dark side" of
the particle where 6 > m/2. Our approach to arriving at an
equation for the charging rate, dgq/dt, is to quantify the
probability that ions can reach the particle surface in each

of these three regions.

The rate at which ions reach the particle surface 1is

dn _ 1dq _ . 25
I - s ar - P NS(EO,a,e). (25)

P = the probability that a given ion will move towards

the particle. From kinetic theory, P = 1/4 %A, where

¥ is the mean thermal speed of the ions given by

_ '/ 8KT (26)
v _( m )
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and A 1s the surface area of the particle on which the

ions may impinge.

NS(EO,a,S) = the ion concentration near the particle
surface. From classical kinetic
theory, NS(EO,a,G) can be related to

the equilibrium ion concentration, No'
by the expression

_ -AV(E ,a,0)/kT
Ns(Eo,a,B) = Noe o

AV (Ep,a,8) = the energy difference between the particle
surface (r=a) and some larger distance (r=r')
where the equilibrium ion distribution is

undisturbed.

Thus, for diffusion to the entire surface of a
spherical particle, we write

dJ;‘ = N em az%-AV(EO,a,e)/kT. (27)
(o]

Up to this point, the derivation is similar to that
given by White!* for the classical diffusional charging
rate. For diffusional charging, AV is set equal to
ne2/4ﬂeoa, the potential energy at the particle surface,
and the influence of the applied field is not taken

into account. ({In this case, r' = «,)
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Because of collisions with neutral molecules, the
energy of the ions is not conserved, and hence,
there is no potential energy function associated
with the electric field given by equation 24.
However, a minimum amount of work must be done

in moving an ion from some point in space (defined
by r = r') to the particle surface. This minimum

work is given by

a a
AV = —.— = = —Ee_z.——
(Eo,a,e) f F.dr /qErdr rr— + eEor cos 9 (28)
rl rl O
3 r=a
X _ K-1a
K+2 7 ot
r=r

If expression (28) is used for AV, Ng(Eg.a,0) becomes

2 [
- _ ne‘ (r'-a)
Ns(Eo'a’e) No exp [{4neokTar'

[Bar'?-r'®(k+2) + a’(K-1)]eE cos ©
. o } . (29)

KT(xr') 2 (K+2)

If 8 is set equal to zero in equation (29) and the resulting
equation is used for Ng, equation 25 becomes identical to that
given by Liu and Yeh!® as a solution to the diffusional equa-
tion. Our approach to the solution of this differential equa-
tion for the charge as a function of time is quite different,

however, and yields a smaller charging rate.
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Ideally, we would like to apply equation (29) to

the entire particle surface by averaging over the

angle 6. To do this, it is necessary to choose

some radial distance r'(6) where the ion density

is undisturbed. If we choose r' = o the point at

which the radial component of the electric field (Er)

is zero, we can only apply equation 27 in its

present form to Region 1I, as defined in Figure 5.

In Region I, ro < a and the argument of the

exponential becomes positive. This can be inter-

preted from energy considerations to mean that any

ion which is near the particle surface in Region I

and moving toward the particle has a 100% probability

of impacting on the particle surface. 1In charging

Region III, no finite r, exists. Thus,

the charging rate in each region must be

calculated separately and the rates added to

yield the total charging rate:

#- (@) (@) (F)_
I IT IIT

Equation 27 was developed using expressions from

kinetic theory which, in turn, are based on the

assumption that the system is in equilibrium. In

solving equation 27 for the charge as a function

of time, we will assume that the charging dynamics

can be approximated by a series of steady states

so that the expressions in equation (30) may be applied.

Nevertheless, in reaching the ultimate expression for
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q(Not), we will consider the motion of the ions due to

the applied field.

In Region I, the argument of the exponential in equation 27
becomes positive. In this case, equation 27 predicts
charging rates which are too large to be approximated by
steady state solutions. 1In fact, the charging rate is
limited to the rate at which ions are brought into the
system by the external field. This rate is given by the
product of the current density and the surface area (Ajy) of

Region I:
dj = j -'--_ = 1 f
(dt) J AI =bjeNo ErdAI . (31)

This is identical to the charging equation developed by
Pauthenier’® which we refer to as the classical field
charging equation. We may write this equation in a more

conventional and useful form,

dq)} _ . n
(dt)I = NobleSE(l - n_)2 ’ (32)
)
where
- K-1 2
ng = (1 + 2 z53) Eoa /e, (33)
8o = arc cos (n/ng), and (34)

the other symbols have been previously defined.
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When n > ngr T is greater than "a" for all
values of the angle 8, and this charging

mechanism ceases (AI -+ 0).

In Region II charge is acquired by the particle due to ion
diffusion which is enhanced by the presence of the applied

electric field. 1In this case, equations 25 and 29 apply,

and the charging rate is

v

evN A
(Qg) = —sII ’ where (35)

dt II 4

NS is the magnitude of the ion density at the
particle surface averaged over Region II.

Explicitly,

27 jfZ
= 5 Ns(Eo,a,6)31n6d6d¢

o (36)
w72 r Where

™
in6d6d
g' j; sin )

(o]

2

NS(EO,a,e) is given by equation 29, Using

this expression for ﬁs and writing AII in terms

of "a" and 8, we find

3 21 n/2

(%%)II azsin6d9d¢ or

mn/2 _
(glg) ema N v f ex [ ;ne (r a) . 37)
at 11 9 41me kTar

o

2_. 3 I (K- i

[3arO r, (K+2) + a’ (K l)]eEO cos 6 }]51n9d6
kTr 2(K+2)

le)
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For each value of the particle charge , a value of 8,

is calculated using equation (34) and the integration of
equation (37) is performed. The integration is complicated
by the dependence of rg on the angle 6. Thus for each

value of 8, a value of rp must be calculated. The magnitude
of ro is found from the condition that Er(Eg,a,8) = 0,

where Er(Ep,a,8) is given by equation 24. We find that ro
varies by factors of 20-60, depending on a and Eg, as 6

varies from 0 to m/2.

In Region III, the particle surface between the angles

& = /2 and 6 = , the electric fields due to the particle
charge and the external field are in the same direction and
there is no radial point ro for which the total electric
field is equal to zero. In this case, equations 27 and 29
would predict that no charging could occur on this side of
the particle. This is a result of our application of equili-
brium thermodynamics to a dynamic problem. Physically,

this means that the ions move in the direction of the electric
force and are swept from the system. In reality, additional
ions are swept into the system by the same electric field.

As Murphy et al pointed out!?the change in the ion density
(and hence, charging rate) near the particle surface is much
greater for small values of 6 than for the region 6 > 7/2
when an electric field is applied. Our calculations also
indicate that this is true. As an approximation, the effects
of the applied field are neglected in Region III and the

classical diffusional equation is used:

ra?VeN
(g%) = 2“'2' exp (-ne?/4megakT) . (38)
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In the preceding paragraphs, we have developed equations for
the charging rate for each of three charging regions on the
surface of the particles. The charging rate of the particle

is the sum of these rates:

gﬂ: dj + dj + dj or
- (g) - (%) - (@)
ralvN_e 1/2 ne(r_-a)
dq _ ) _n 2 0 /exp- o)
at ~NoPimnse(l-p—=)° + 2 {me _kTar
s 60 o (o)
[3ar02—r03(K+2) + a’(K-1)] eE_cos 6;] sin6de
+
KT r 2 (K+2)
o
. nazsNoe
— exp(-ne2/4neoakT) (39)

Equation (39) is integrated numerically using the gquartic

Runge~Kutta method!’ in the following procedure:
The initial conditions are taken to be n=o at t=0.
ng is calculated using .equation (33).

For each increment in the Runge-Kutta scheme, a value

of 65 is calculated from equation (34)

The integral over 0 in equation (39) is performed using
Simpson's Rule, and for each value of 8 which is
chosen for this integration, ro is calculated.

The three individual charging rates are calculated and

then added to give the total instantaneous charging

rate for a particular value of n.
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The charging model described by equation (39) reduces to the
classical diffusional equation in the absence of an applied
electric field and approaches the results obtained from the
classical field charging equation for large particles and
high fields. As is discussed below, the charging rates
predicted by equation (39) agree within 25% of Hewitt's

data over all particle sizes, electric field strengths, and
charging times. For practical charging times in electrostatic
precipitators, the agreement is within 15%. The model also
gives a good description of particle charging in the range of
particle sizes where both field and diffusional charging are

important.

Figures 8, 9, 10, and 11 give comparisons of charge values as
a function of Nyt for particle sizes of 0.18, 0.28, 0.56, and
0.92 ym diameter. The calculated charge values shown were
obtained with the SRI model and the sum of the field and
diffusion rates model for the indicated multiples of mean
free path. These comparisons indicate that A, has no appre-
ciable effect on the results obtained for m values of 0, 1,
and 2, with the SRI model, but considerable variation in
charge with Ap occurs with the sum of the rates model. These
comparisons also demonstrate close agreement obtained between
Hewitt's data and the results obtained with the SRI model.

Since the numerical method of finding the particle charge as a
function of time is extensive, the program runs slowly when it
utilizes this charging model. The user would want to employ this
model when he needs the best charging mechanism available in
order to compare with experimental results or for actual
precipitator sizing where time is not a factor. This charging
model is selected for use by the computer program when the
indicator NCALC is read into the program as 0 in the input

data.
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Figure 8. Comparison of charge values for 0.18 um
diameter particle
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Figure 9. Comparison of charge values for 0.28 pym diameter
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Figure 10. Comparison of charge values for 0.56 pm diameter
particle
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PARTICLE COLLECTION

Migration Velocity

Once the particle charge and electric field values have been
computed, the next step in calculating theoretical collection
efficiency is the calculation of the electrical drift velocity,
or migration velocity, resulting from the coulomb and viscous
drag forces acting upon a suspended particle. For particle
sizes and electrical conditions of practical interest, the

time required for the particle to achieve the steady-state
value of velocity is negligible, and the migration velocity

. . 8
1s gilven by:1

w=2p € (40)
6mau

where w migration velocity of a particle of radius a,
m/sec
q = charge on particle, coul
Ep = electric field near the collection electrode, volt/m
a = particle radius, m
U = gas viscosity, kg/m-sec
C = Cunningham correction factor, or slip correction
factor'?®
(1 + ax/a),
1.257 + 0.400 exp (-1.10 a/X)

mean free path of gas molecules.

where A
and A

Particle Collection Fractions

For the idealized case of laminar flow, the collection length
required for 100% collection of a particle with a known migration
velocity is easily calculated. However, laminar flow never occurs
in industrial precipitators, so the calculation is of academic
interest only. Consideration will therefore be limited to
turbulent flow conditions.
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Gas flow velocities in most cases of practical interest are
between 0.60 and 2.0 m/sec, while theoretical migration
velocities for particles smaller than 6.0 um are usually less
than 0.30 m/sec. The path of these smaller particles therefore
tends to be dominated by the turbulent motion of the gas

stream in the interelectrode region. Under these conditions,
the path of the particles is random, and the determination

of the collection efficiency of a given particle becomes, in
effect, the problem of determining the probability that a
particle will enter a laminar boundary zone adjacent to the
collection electrode in which capture is assured. The classical
equation for describing collection of monodisperse particles in
electrostatic precipitators under turbulent flow conditions was

derived by Deutsch:??
n=1.0 - exp (-pr/Q), (41)

where n = collection fraction of the particle size under
consideration
Ap = collection area, m?
w = migration velocity of particle of radius a, m/sec

Q = gas volume flow rate, m®/sec.

The assumptions on which the derivation of this equation is
based are:

a) Gas turbulence provides sufficient mixing to
establish a uniform particle concentration at any cross
section of the precipitator.

b) The gas velocity through and across the precipi-
tator is uniform except for a boundary layer near the wall.

c) The particle migration velocity near the collecting
surface is constant for all particles and small compared with
the average gas velocity. This implies that the equation is
strictly applicable only to a monodisperse aerosol with particle
diameters less than about 6 to 10 uym, under conditions such
that the migration velocity and hence the electric field at the
plate and the charge accumulated on a particle do not vary over

the length of collection area. 13



d) There are no disturbing effects, such as reentrain-

21
ment, back corona, etc.

In order to use equation (41) in the precipitator model and
approximate assumption c) it is necessary to use the incre-

22 . .
reports a series of experi-

mental length approach. White
ments using nearly monodisperse oil fumes under experimental
conditions that were consistent with all of the above
assumptions. The results demonstrated convincingly that
equation (41) adequately describes the collection of mono-
disperse aerosols in an electrostatic precipitator under

idealized conditions.

It has been common practice to correlate data from field
electrostatic precipitators with an equation with the same

functional form as equation 41:
no = 1 - exp (-Apwp/Q) , (42)

overall mass collection fraction

5
oy
o
v
o
i }
=3
It

3
Il

an empirical parameter (precipitation rate

parameter) .

The parameter wp characterizes the performance of a given
precipitator under a specified set of operating conditions,

and often varies widely, even among installations treating a
similar flue gas. Equation 42 is inadequate for design purposes
because it is a gross over-simplification in which particle

size effects and variations in electrical conditions are

lumped into the quantity wp.

Program Calculations

The computer program calculates a migration velocity for each
representative particle size at the end of each length increment
using equation 40. Particle charge and electric field values
employed in the calculation are calculated in the electric field

and particle charge subroutines from the residence time and
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electrical conditions pertaining to the length increment
under consideration. The fraction of particles collected
for each representative particle size in each length incre-

ment is obtained from the Deutsch equation as follows:

ny = 1.0 - exp (-Ajw/Q) , ) (43)
where ny = collection fraction for length increment

Ay = collection area for length increment, m?

Q = gas volume flow, m’/sec.

The number of particles removed in each size band is obtained

from

. = Y. ‘ (44)
XJC_XJOan ’

where Xjec = the number of particles of radius a per m? of

gas collected in a given length increment

X40 the number of particles of radius a per m® of

gas at the beginning of each length increment.

The total number of particles collected, the mass of particles
collected, and the number of particles entering the next length
increment are obtained from the quantity Xjc and the entering
size distribution. All the calculations are performed on the
basis of a cubic meter of gas. After these operations have
been completed for all representative particle sizes, the
program calculates the mass median diameter and the total

mass of the particulate collected in the length increment

under consideration, and then returns to the beginning of the
length increment loop to repeat the calculations for the

following length increment.

When the program has completed the required calculations for all
length increments, the overall mass efficiency is computed and
compared with the estimated value which was used for the space

charge calculations. If the disagreement is greater than
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+.05%, the computed overall mass efficiency is used for a

new estimate, and the program returns to the beginning of the
length increment loop and repeats the calculations for the
entire precipitator length. Usually, less than three itera-
tions are required to obtain agreement within the specified

limits.

The next operation performed by the program, after convergence
on the overall mass efficiency has been obtained, is the calcu-
lation of effective or length averaged migration velocities for

the different particle sizes from the Deutsch equation:

£
(1]
|

- A—g In (=) (45)
where we = effective migration velocity of particle of
radius a, m/sec
Ap = total collecting area
n = collection fraction for given particle size over
total length.

The values obtained for wg in this manner are in effect an
average of the values of w obtained in the incremental length
sections. A precipitation rate parameter, Wp, is computed

by the program from equation 42 after the individual efficiencies
and effective migration velocities have been obtained for all

particle sizes.

The calculation procedure described here in effect consists of
assuming that the Deutsch equation adequately describes the
mechanism by which monodisperse particles are transported to

the collection electrode. For particles larger than 10 um
diameter, the assumption is invalid because the motion of these
particles is not dominated by turbulence due to their relatively

high migration velocities. Under these conditions, the Deutsch
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model would be expected to under-predict efficiencies. The
practical effect in modelling precipitator performance will

be slight, however, since even the Deutsch equation predicts
ideal collection efficiencies greater than 99.6% for 10.0 um
diameter particles at relatively low values of current density
and collection area [i.e., a current density of 10x10~° amps/
cm? and a collection area to volume flow ratio of 39.4 m?/
(m®/sec) or 200 ft?/(1000 ft*/min)].

A more serious objection to the assumption of uniform turbulent
mixing of the particulate may be found in experimental measure-
ments obtained with a laser obscurometer which suggest that,
under certain conditions, a concentration of the fine fraction
of the particulate occurs in the space adjacent to the collec-
tion electrode.??® The causes for such a gradient and its
effect on predicted collection rates have not been determined
as of the date of this report.
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METHODS FOR REPRESENTING NON-IDEAL EFFECTS

In the preceding sections, a basis for calculating theoretical
collection efficiencies has been described. This section will
discuss the non-idealities which exist in full-scale electro-
static precipitators and describe calculation procedures for
estimating the effects on predicted collection efficiencies.

The factors of major importance are:

(1) Gas velocity distribution
(2) Gas sneakage

(3) Rapping reentrainment.

These non-idealities will reduce the collection efficiency
that may be achieved for a precipitator operating with a

given specific collecting area. Since the model is structured
around the Deutsch equation for individual particle sizes, it
is convenient to represent the effect of the non-idealities in
the model as correction factors which apply to the exponential
argument of the Deutsch equation. In the subsequent discussions,
these correction factors will be used as divisors for the
theoretical migration velocities. The resulting "apparent”
migration velocities are empirical quantities only and should
not be thought of as an actual reduction in the migration
velocity in the region of space adjacent to the collecting

electrode.

Effect of Gas Velocity Distribution

Although it is widely known that a poor velocity distribution
gives a lower than anticipated efficiency, it is difficult

to apply a numerical description for gas flow quality. White?"
discusses non-uniform gas flow and suggests corrective actions.
Prezler and Lajos25 assign a figure-of-merit based upon the
relative kinetic energy of the actual velocity distribution

compared to the kinetic energy of a uniform velocity. This
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figure of merit will be a measure of how difficult it may be

to rectify the velocity distribution but not necessarily a
measure of how much the precipitator performance would be
degraded. The following discussion will describe an approach
to the calculation of degradation of performance based upon

the velocity distribution, the theoretical or ideal efficiency,

and the Deutsch equation.

It will be assumed that the Deutsch equation as written applies
to each particle size with a known migration velocity, w, and
that the specific collection area and size of precipitator

are fixed.

Given:

It can be seen that

-An W
1 - = il S
n e A, ua (46)
and
1 An W k
— = —Q- —— — ——
1n (l-n Ay ua - un ' (47)
where

Ap = plate area
Aj = inlet cross sectional area
Q = inlet volume flow rate
w = migration velocity for a given particle size
Uy = average inlet velocity
x = 2p¥
Al

n = ideal collection fraction.
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From this form of the Deutsch equation it can be seen that the
logarithm of the inverse of the penetration is proportional to
the inverse of the velocity (and thus the transit time). The
precipitator can now be divided into a number of imaginery
channels corresponding to pitot traverse points. Using the
altered form of the Deutsch equation, the losses for all the
channels can be summed and averaged to obtain the mean loss in
the precipitator using an actual velocity distribution instead
of an assumed uniform distribution. This can be accomplished
as follows:

(1) Calculate constant k from the efficiency

predicted under ideal conditions:

N
1
SR RN "
i=1
or
1 N -k
= —= uj
P Nugy Z u;e * ! (49)
i=1
where . .
N = number of points for velocity traverse
uj = point values of velocity

ni = point values of collection fraction for

the particle size under consideration.

Note that the average penetration is a weighted average to
include the effect of higher velocities carrying more

particles per unit time than lower velocities.
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For any practical velocity distribution and efficiency, the
mean penetration obtained by summation over the velocity
traverse will be higher than the calculated penetration based
on an average velocity. If an apparent migration'velocity for
a given particle size is computed based upon the mean penetra-
tion and the Deutsch equation, the result will be a value lower
than the value used for calculation of the single point values
of penetration. The ratio of the original migration velocity
to the reduced "apparent" migration velocity is a numerical
measure of the performance degradation caused by a non-uniform
velocity distribution. An expression for this ratio may be
obtained by setting the penetration based on the average
velocity equal to the corrected penetration obtained from a
summation of the point values of penetration, and solvihg

for the required correction factor, which will be a divisor

for the migration velocity.

The correction factor "F" may be obtained from:

N
_5.1_42:  eko (- _
exp ( 7 ua) = Nag u; exp ( k/ui) =p . (50)
i=1
Therefore,
k
= - — . 51
F ug(ln p) (51)

Whether the quantity F correlates reasonably well with statis-
tical measures of velocity non-uniformity is yet to be
established. A limited number of traverse calculations seem
to indicate a correlation between the factor F and the
normalized standard deviation of the velocity traverse.

Figure 12 shows F as a function of the ideal efficiency for
several values of gas velocity standard deviation. These
curves were obtained by computer evaluation of equation 51,
and the data on which the calculations are based were obtained

from Preszler and Lajos.?®  The standard deviations have
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been normalized to represent a fraction of the mean. The
overlapping of the curves for standard deviations of 1.01
and 0.98 indicates that the standard deviation alone does
not completely determine the relationship between F and

collection efficiency.

The data in Figure 12 were used to obtain the following
empirical relationship between F, the normalized standard
deviation of the gas velocity distribution, and the ideal

collection predicted for the particle size under considera-

tion:
— 1.786 1
F =1+ 0.766 nog + 0.0755 ag 1n (ﬁ) ’ (52)
where
N _ 2
Vi £ )
oq = =1 (53)
u
a

This relationship is based on a pilot plant study, and should

be regarded as an estimating technique only. If it is desirable
to simulate the performance of a particular precipitator, the
preferred procedure would be to obtain the relationship

between F, n and Og for the conditions to be simulated from

a velocity traverse at the entrance to the unit.

Equation 52 is included in the computer program following
the theoretical calculations. The program evaluates F from
the ideal collection predicted for each particle size and
the value of Og chosen for the input data. The quantity F
is used in combination with an empirical representation of
reentrainment and sneakage as described in the following

sect Lon.
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Effect of Gas By-Passage

Gas sneakage occurs when gas by-passes the electrified areas

of an electrostatic precipitator by flowing through the hoppers
or through the high voltage insulation space. Sneakage is
reduced by frequent baffles which force the gas to return to
the main gas passages between the collection plates. If there
were no baffles, the percent sneakage would establish the minimum
possible penetration because it would be the percent volume
having zero collection efficiency. With baffles, the sneakage
re-mixes with part of the main flow and then re-by-passes in
the next unbaffled area. The limiting penetration due to
sneakage will therefore depend on the amount of sneakage gas

per section, the degree of re-mixing, and the number of sections.

If we make the simplifying assumption that perfect mixing occurs
following each baffled section, an expression for the effect of

gas sneakage may be derived as follows:

Let S = fractional amount of gas sneakage per section
n = collection fraction of a given size particle
obtained with no sneakage for total collection
area
ny = collection fraction per section of a given particle
size = 1 - (1 - n)l/Ns

Ng = number of baffled sections
Py = penetration from section j.

Then the penetration from section one is given by:
p1=S+(l-nj)(l-S) ’ (54)
and from section 2

P, = Sp; + (1L - ny) (1 - S)p,
pl[S + (1 - 'ﬂj)(l - 8)]
[+ (1 -n5) (1 -8))7 ’ (55)
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and from section Ng (the last section),

Pyg =[S+ (1= ny) (1= 8)]

s+ (1 -8)(1 - nt/Ns)Ns . (56)

Figure 13 shows a plot of the degradation of efficiency from
99.9% design efficiency versus percent sneakage with number of
baffled sections as a parameter. For high efficiencies, the
number of baffled sections should be at least four and the amount
of sneakage should be held to a low percentage. With a high
percentage of sneakage, even a large number of baffled sections
fails to help significantly. As the next section will indicate,

this graph can also be applied to reentrainment.

We can define a by-pass or sneakage factor, B, analogous to
the gas flow quality factor, in the form of a divisor for
the migration velocity in the exponential argument of the

Deutsch equation:

In (1 - n)
Ns 1n [S + (1-5) (1-n)1/Vs)

(57)

Figure 14 shows a plot of the factor versus sneakage for a
family of ideal efficiency curves for five baffled sections.

Similar curves can easily be constructed for different numbers

of sections.

The foregoing estimation of the effects of sneakage is a
simplification in that the sneakage gas passing the baffles will
not necessarily mix perfectly with the main gas flow, and

the flow pattern of the gas in the by-passage zone will not

be uniform and constant; The formula is derived to help in
designing and analyzing precipitators by establishing the

order of magnitude of the problem. Considerable experimental
data will be required to confirm the theory and establish

numerical values of actual sneakage rates.
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Effect of Rapping Reentrainment
Rapping reentrainment is defined as the amount of material

that is recaptured by the gas stream after being knocked from

the collection plates by rapping or vibration. With perfect
rapping, thke sheet of collected material would not reentrain,

but would migrate down the collection plate in a stick-slip

mode, sticking by the electrical holding forces and slipping

when released by the rapping forces. However, the rapping

forces are necessarily large to overcome adhesion forces, and
much of the material is released into the gas stream as sheets,
agglomerates, and individual particles. Most of the material

is recharged and recollected at a later stage in the precipitator.

We will make the simplifying assumptions that (1) the fraction of
material reentrained does not vary with particle size or
position, (2) the reentrained material is perfectly mixed in

the gas stream following rapping.

fraction of mass of a given particle size that
is reentrained

Let R

n = collection fraction of a given particle size
obtained with no reentrainment for total
collection area

n; = collection fraction per section of a given
particle size = 1 - (l—n)l/NR

Ng = number of stages over which the reentrainment is
assumed to occur

Py = penetration from section j.

Then the penetration from section 1 is given by

P, = Rnj + 1-nj (58)
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and from section 2,

p, = anp1 + (1 - nj)p1

P, [an + (1 - ny)]

[an

+ (1 -ny)? : (59)
and from the last section,

Py, = [Rny + (1 - ny) 1NR
[R(1 - (1 - MRy 4+ (1 - n)/NR)NR

[R - R(1 - MR 4 (1 - n)/NRNR

R+ (1-nY®R a-r¥ (60)

This is analogous to the formula for sneakage, so the effect
of reentrainment can be expected to be similar to the effect
of sneakage, provided that a constant fraction of the material
is always reentrained. It is doubtful that such a condition
exists, since precipitators frequently use different rapping
programs on different sections, agglomeration occurs during
collection, and different holding forces exist iﬁ different
sections. However, until sufficient data on rapping losses
PER SECTION as a function of particle size can be accumulated,
the relationship may be used to estimate the effect of rapping

reentrainment on precipitator performance.

Figure 15 shows the effect on resultant efficiency for a given
size particle of various degrees of reentrainment for a four-
section precipitator with the indicated values of no-reentrainment

efficiency.
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This analysis has considered only reentrainment due to rapping.
Other forms of reentrainment are known to occur, however, such
as: a) "saltation", losses which occur when large particles
impact previously deposited smaller particles on the collec-
tion electrode, b) losses due to bouncing of particles
following impaction on the collection surface, c) losses from
erosion of the deposited dust layer caused by excessive gas
velocity. These losses are expected to be relatively insigni-
ficant when compared with rapping losses, and the influence of
such losses on the performance of a precipitator designed for

high collection efficiencies is expected to be minor.

Since reentrainment and sneakage effects are estimated with
identical mathematical expressions, a combined correction
factor, B, is used in the computer model. From input values
of the fraction of material assumed to be lost by reentrain-
ment and sneakage, and the number of stages over which losses
are assumed to occur, the program computes B from the ideal

collection fraction for each particle size.

The correction factors B and F are used to calculate an
"apparent"” migration velocity for each particle size as

follows:

we! = =m - (61)

61



The program contains an "IF" statement which truncates all
collection fractions greater than 0.999999 at this value.
This procedure holds the product of F and B constant at these
high values of collection fraction for a given set of condi-

tions.

From we', a reduced collection efficiency is obtained from the

Deutsch equation. A reduced precipitation rate parameter is

obtained from

wp' = & 1n ) , (62)

AT l—nT'
where nT' is the overall mass collection fraction obtained

from the individual reduced collection fractions.
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SECTION III
INPUT DATA AND PROGRAM OUTPUT

INPUT DATA FORMAT

The input data required by the program consist of an estimate
of the overall efficiency, the operating parameters and
geometry of the electrostatic precipitator under considera-
tion, pertinent characteristics of the gas and suspended
particulate, and estimated values of parameters which account
for non-ideal éffects. Table 1 gives the input data required
with the data card format. All input data are converted to
MKS units prior to performing the calculations. The provisions
for electrical sectionalization require that the length of
each electrical section be rounded to the nearest integer
number of feet. If there are sections in parallel, these
must be combined by hand into overall sections across the
width of the precipitator. Procedures for measuring or

estimating the important input parameters are discussed below.

PARTICLE SIZE DISTRIBUTION

Since particle charge and electrical migration velocity are
functions of particle diameter, collection efficiency under a
given set of electrical conditions is also a function of
particle size. The overall mass collection efficiency is
therefore influenced by the size distribution of the particu-
late entering the precipitator. In-situ measurements of
particle size distributions in the range of interest for
coal-fired power plants are conducted primarily by inertial
sizing devices known as cascade impactors. The impactors can
be inserted directly into the duct or flue, thus eliminating
any condensation and sample loss problems which occur when

external sampling is used.
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TABLE 1

INPUT DATA AND DATA CARD FORMAT

Card
Set Variable Units Format
1 Number of different particle - 12
sizes (maximum of 20)
Number of submicron particle - 12
sizes (maximum of 8)
Overall Card Format (12,8%,12)
2 Particle diameters microns 10r8.0
3 Percentages of size distribution percent 10F8.0
for all particle diameters
4 Identification information - 40A2
5 Gas volume flow rate ft3/min 10F8.0
Dust load gr/ft? 10F8.0
Precipitator length ft 10F8.0
Gas velocity ft/sec 10F8.0
Estimated efficiency % 10F8.0
Dust density kg/m? 10F8.0
Dust resistivity-multiplier ohm-cm 10F8.0
of 10X
Value of x - 10F8.0
Gas temperature °F 10F8.0
Pressure atm 10F8.0
6 Fraction of sneakage and/or none 10r8.2
reentrainment
Normalized standard deviation none 10F8.2
of gas velocity distribution
Number of stages for sneakage none 10F8.2
and/or reentrainment
7 Number of steps for Runge-Kutta none 12
integration for charge sub-
routine 0
Number of points used in numerical none 12
integration for charge sub-
routine 0
Charge subroutine selector, 0 none I2
or 1 (see text, Section II)
Dielectric constant none El1l.4
Ion mobility m?/volt-sec Ell.4
Gas viscosity kg/(m-sec) Ell.4
Mean thermal speed of ions cm/sec Ell.4
Overall Card Format (3(12) ,4(E11.4))
8 Number of electrical sections none 12
in direction of gas flow
9 Lengths of electrical sections ft 40(12)
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Card
Set

10

TABLE 1

(Continued)

Variable

‘Area of first electrical section

Applied voltage of first section
Current for first section
Wire length for first section
Corona wire radius for first section
Wire to plate spacing for first
section
No. of wires per linear section
for first section
1/2 wire to wire spacing for
first section

Repeat for each electrical section

Overall Format

65

Units

fr2
volts
amps

in.
in.

none

in.

Format

E1ll.4
El11.4
Ell.4
Ell.4
E1ll.4
Ell.4

E11.4

Ell.4

(7(1PE1l1.4))



Table 2 shows some characteristics of several commercially
available cascade impactors.?® Measurements have been
conducted by Southern Research Institute with a modified
Brink impactor at the inlet of several precipitators
collecting ash from coal-fired boilers. Results from two

such measurements are presented in Figures 16 and 17.

Although the principle of operation of inertial impactors 1is
relatively simple, accurate results are obtained only with
careful attention to the technique employed in the use of the
devices. A detailed discussion of operating-procedures is
available elsewhere.?? The size distribution data are entered
into the program in the form of a histogram. Data card sets
1, 2, and 3 in Table 1 are employed to transmit the particle

size information.

MEASUREMENT OF RESISTIVITY

Measurement of dust resistivity is influenced by a number of
factors which cause the values as measured by the various
methods to differ by as much as two decades. Since the
useful current density in a precipitator can be strongly
influenced by resistivity, it is apparent that resistivity
must be known precisely if it is to be used as a basis for

precipitator performance or sizing.

The relationship between dust resistivity and current density
as given in the following section is based on resistivity
values as determined with a point-plane probe. The following
is a brief discussion of factors involved in measurement of
resistivity for the purpose of defining the problem. A more
complete discussion is presented in a report entitled

"Techniques for Measuring Fly Ash Resistivity."?®
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Table 2. SIZE FRACTIONATING POINTS OF SOME COMMERCIAL CASCADE
IMPACTORS FOR UNIT DENSITY SPHERES

Modified Andersen U. of W. ERC
Stage Brink Mark TIII (Pilat) Tag
0.85 LPM 14 LPM 14 LPM 14 LPM
Cyc 18.0 um
0 11.0 11.1 um
1 6.29 14.0 ym 39.0 um 7.7
2 3.74 8.71 15.0 5.5
3 2.59 5.92 6.5 4.0
4 1.41 4.00 3.1 2.8
5 0.93 2.58 1.65 2.0
6 0.56 1.29 0.80 1.3
7 0.80 0.49 0.9
8 0.51 0.6
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