

Research and Development

ENVIRONMENTAL ASSESSMENT OF
A LOW-EMISSION OIL-FIRED
RESIDENTIAL HOT WATER
CONDENSING HEATING SYSTEM
Volume II. Data Supplement

Prepared for

Office of Air Quality Planning and Standards

Prepared by

Industrial Environmental Research Laboratory Research Triangle Park NC 27711

RESEARCH REPORTING SERIES

Research reports of the Office of Research and Development, U.S. Environmental Protection Agency, have been grouped into nine series. These nine broad categories were established to facilitate further development and application of environmental technology. Elimination of traditional grouping was consciously planned to foster technology transfer and a maximum interface in related fields. The nine series are:

- 1. Environmental Health Effects Research
- 2. Environmental Protection Technology
- 3. Ecological Research
- 4. Environmental Monitoring
- 5. Socioeconomic Environmental Studies
- 6. Scientific and Technical Assessment Reports (STAR)
- 7. Interagency Energy-Environment Research and Development
- 8. "Special" Reports
- 9. Miscellaneous Reports

This report has been assigned to the INTERAGENCY ENERGY-ENVIRONMENT RESEARCH AND DEVELOPMENT series. Reports in this series result from the effort funded under the 17-agency Federal Energy/Environment Research and Development Program. These studies relate to EPA's mission to protect the public health and welfare from adverse effects of pollutants associated with energy systems. The goal of the Program is to assure the rapid development of domestic energy supplies in an environmentally-compatible manner by providing the necessary environmental data and control technology. Investigations include analyses of the transport of energy-related pollutants and their health and ecological effects; assessments of, and development of, control technologies for energy systems; and integrated assessments of a wide range of energy-related environmental issues.

EPA REVIEW NOTICE

This report has been reviewed by the participating Federal Agencies, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Government, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161.

ACUREX TECHNICAL REPORT TR-81-78/EE

ENVIRONMENTAL ASSESSMENT OF A LOW EMISSION OIL-FIRED RESIDENTIAL HOT WATER CONDENSING HEATING SYSTEM

VOLUME II: DATA SUPPLEMENT

April 1982

Acurex Project 7600 Contract 68-02-3188

For

EPA Project Officer - R. E. Hall
Combustion Research Branch
Energy Assessment and Control Division
Industrial Environmenta Research Laboratory
Research Triangle Park, North Carolina 27711

Ву

C. Castaldini
Acurex Corporation
Energy & Environmental Division
485 Clyde Avenue
Mountain View, California 94042

CONTENTS

Section		Page
1	Introduction	1
2	Preliminary Equipment Calibration	2
3	Complete Furnace Operating Data	7
4	Sampling Data Sheets	39
5	Analytical Laboratory Results	56
	Mass Emission Calculations	59
	Calculation	64 66 88 112
6	SAM IA Work Sheets	180

SECTION 1

INTRODUCTION

The purpose of this Data Supplement is to document data in greater detail than was practical in the final report (reference 1-1). It is intended to provide sufficient detail for researchers to perform their own analysis of the data. Readers are referred to the final report for objectives, description of the emission results, interpretations, and conclusions.

The data supplement contains the following information:

- Preliminary equipment calibration -- calibration data for the dry gas meters used to sample flue gas for both EPA Method 5 and Source Assessment Sampling System (SASS) trains
- Complete furnace operating data -- furnace water and flue gas temperatures throughout each burner-on/burner-off cycle; cooling water flowrate, and thermostat settings
- Sampling data sheets -- emission data obtained with continuous monitoring instrumentation: operating data tables for EPA
 Method 5 (for particulate mass emissions), EPA Method 8 (for SO₂ and SO₃ sampling), and SASS (for particulate, trace element, and organic sampling)
- Analytical laboratory results -- ultimate analysis of distillate fuel oil used in the test program: laboratory

analysis reports on particulate levels by gravimetric analysis; sulfur by turbimetric analysis; trace elements by Spark Source Mass Spectrometry (SSMS) analysis and Atomic Absorption (AA) analysis; anions by ion chromatography; Total Chromatographable Organic (TCO) emissions by onsite Gas Chromatography (GC); speciation of organic emissions by Gas Chromatography/Mass Spectrometry (GC/MS); biological assays of the extract and water discharge samples

 SAM IA work sheets -- Source Assessment Model IA evaluation of emission and effluent data to determine the potential hazard posed by both flue gas and water discharge samples

REFERENCE FOR SECTION 1

1-1. Castaldini, C., "Environmental Assessment of a Low-NO Residential Hot Water Condensing Heating System Burning Distillate Oil, Volume 1: Technical Results."

SECTION 2 PRELIMINARY EQUIPMENT CALIBRATION

Date 5-7-80

Orifice Meter

Operators BRANAM

Wet Bulb Tumperature

Time /34-/

Barometric Pressure 30-16

Orifice Magnehelic 702219m28

Primary Calibration Meter 433583

Ambient Temperature 70° Control Module # 043

METER CALIBRATION DATA

Τ.			Γ	T	One Melima			Tempe	rature					
	ifice mehelic	Primary Meter	Dry Test Meter	Gas Volume Primary Meter	Gas Volume Dry Test Meter	Py	imary Mete	r	Dr	y Test Met	er	Time		
1	ΔH _O i.wg.)	ΔH _p (fn.wg.)	Pdg (in. wg.)	V _p (ft.³)	V _d (ft.*)	Inlet, T _{p1} (°F)	Outlet, T _{po} ("F)	T _{pa} (°F)	Inlet, T _{di} (°F)	Outlet, T _{do} (°F)	Avg., T _{da} (°F)	t (min.)	°	K ₀
1).2												_	
7	0.4											<u> </u>	 	$\vdash\vdash$
	0.6									72	ļ			
	0.8			679.420	962.379 978.339	74	76 76	78	72	72	12.0	6.0	494	3 63 5
	1.0			16.273	15.96								├—	\vdash
L	1.2												┼	\vdash
1	1.4		<u> </u>					 				-		-
+-	1.6	ļ		679.420	9-8-329 997-547	80	76	82.75	12	72	72.0	5.0	-	2 621
+	1.8				T	97	78_	82.73	73	フノ	70.0	3,0	753	보절
+-	2.0	<u> </u>		20.579	A.208		<u> </u>	 			 		1	T
╅	2.4							 		!				
+-	2.6	 						†				1		
+	2.8			699.999	997.548	87	79	86.0	73 74	72	72.75	40	v. C7=	3.477
	3.0			18,175	18.883					\pm	<u> </u>		<u> </u>	↓
	3.2							<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>
	3.4						 	-		 	 	ļ	1_	<u> </u>
	3.6							1			1		↓_	↓_
4	3.8)			7/8:174	038.699	91	84	89.5	73	73 75	73.5	3.0	1.00	3.49
1	4.0		ļ	16.402	16.269			1	<u> </u>	 		<u> </u>	 	ــــ
1	4.2						1	1			1	1	1_	1
<u> </u>	4.4							1		1	1	 	_	_
1	4.6					<u> </u>	 	‡		1	1	<u> </u>		丄
1	4.8						 	1		1==	‡	1	1	1_
<u> </u>	5.0						$\pm -$	1			1		\perp	

1:013 3:722

Date 5-7-80

Orifice Meter

Operators BCANAM
Net Bulb Temperature

Time 1200

Orifice Magnehelic 702019 1728

Barometric Pressure 30:16

Primary Calibration Meter +433583

Ambient Temperature 70°

Control Module # 043

METER CALIBRATION DATA

Orifice	Orifice	Primary	Dry Test Meter	Gas Volume	Gas Volume			Tempe	erature					
Manometer ^{AH} ref	Magnehelic AH _O	Meter AH _p	Meter P _{dg}	Primary Meter	Dry Test Meter	Pr	imary Meta	er	Dı	y Test Met	ter	Time	İ	ł
(in.wg.)	(in.wg.)	(in.wg.)	(in. wg.)	(ft.*)	'd (ft.¹)	Inlet, T _{pi} (°F)	Outlet, T _{po} (°F)	Avg., T _{pa} (°F)	Inlet, T _{di} (°F)	Outlet, T _{do} (°F)	Avg., T _{da} (°F)		°	K ₀
	0.2													
	0.4													
	0.6													
	0.8			599.163	900.115	66 68	66	67.0	68	70 71	70.0	31.0	1.029	.699
	1.0			15.1	15.311								<u></u>	<u> </u>
	1.2												_	
	1.4							<u> </u>					<u> </u>	
	1.6												<u>. </u>	
	(1.8)			614.863	915.426	70	70	71.0	B	99 98	68:5	21.0	.464	73/
	2.0	ļ	ļ	16.036	15,623									
<u> </u>	2.2	<u> </u>		<u> </u>									<u> </u>	
	2.4	ļ		-										
	2.6			630.899	931.049	72	72		70	70		ļ		<u> </u>
	(F.B)		ļ	646.840	946.554	78	72	73.5	70	70	70.0	17.0	437	1719
	3.0		<u> </u>	15.941	15.505									<u> </u>
	3.2	<u> </u>												<u> </u>
	3.4													
	3.6		 	646.840	946.554	73	73		70	70	 	 		<u> </u>
	3.8		ļ	663.148	962.379	82	74	75.5	70	70	70.0	15.0	.491	.716
	4.0			16.308	15.825								_	_
	4.2			 										
	4.4			 								 	-	<u> </u>
	.4.6			 				1						<u> </u>
	4.8			_				 						<u> </u>
	5.0	•	<u> </u>	1				1			L		Aver	

Average

Date 5-7-80

Time 921

Orifice Meter

Orifice Magnehelic 5062-39454

Barometric Pressure 30.02

Primary Calibration Meter 433683

Ambient Temperature 700

Control Module 081

Operators BEAN AM

Wet Bulb Temperature

METER CALIBRATION DATA

Orifice	Orifice	Primary	D-1 Toss	Ges Volume	Gas Volume			Tempe	rature				1	İ
Manometer	Magnehelic	Meter	Dry Test Meter	Primary Meter	Dry Test Meter	Pr	imary Mete	r	Dr	y Test Met	er	Time	1 1	
AH _{ref} (1n.wg.)	ΔH _O (in.wg.)	ΔH _p (in.wg.)	Pdg (in. wg.)	Yp (ft.³)	ν _d (ft.³)	Inlet, T _{pi} (°F)	Outlet, T _{po} (°F)	Avg., T _{pa} (°F)	Inlet, T _{d1} (°F)	Outlet, T _{do} (°F)	Avg., T _{da} (°F)	t (min.)	°	ĸ _o
	0.2													
	0.4			1										
	0.6													
	(19)			531.811	184.100	65 65	65 65	65.0	1do 24	65 66	67.75	6.0		
	1.0		<u> </u>	15.812	15.611									
	1.2													
	1.4													
	1.6												Ш	
	13			547.623	199.711 215.065	65 66	65	65.25	70	98 96	695	4.0		
	2.0		ļ	15.503	15.364									
	2.2													
	2.4													
**************************************	2.6			563:106	215.065	65	45		72	10				
	23			581.871	213.005 233.770	66	66	65.5	78	168 70	72	40		L
	3.0		ļ	18.765	18.705									
	3.2													
<u>.</u>	3.4													
	3.6			581891	022	65	65							
	3.9			597.7/3	233.770	45	65	65.0	74	64 64	70	3.0	1023	<u></u>
	4.0			15.822	15.895									
	4.2			_				<u> </u>						
	4.4		i											
	4.6							<u> </u>						
	4.8		.,,					<u> </u>						
	5.0			1			 	·		 				

SECTION 3 COMPLETE FURNACE OPERATING DATA

* EACH ENTRY REMESANTS ONE MINUTE INTERVAL

	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					1
Cycle No.	Cooling Water Flowrate (gpm)	Thermostat Setting (°C)	Inlet Water Temperature F	Outlet Water Temperature F	Tank Water Temperature F	Exhaust Duct Temperature F	Ambient Temperature F
1	1.7	53.	56.	68	97	61	76
	ı		56	71	101	63	77
			56	76	107	68	74
			56	80	113	73	75
			56	84	119	76	74
			56	87	124	78	.77
			56	90	129	79	77
			56	92	/33	80	77
			56	94	136	92	80
			56	47	140	82	79
			56	99	144	83	80
			56	100		83	80
			56	103	151	83	77
			56	103	154	83	90
			56	100	153	81	99
			56	95	149	80	98
			56	93	145	78	96
			56	90	141	77	97
			56	88	/38	77	97
			56	87	/34	77	93
			56	84	/32	76	93
			56	83	j 29	75	93
	 		21.	(2)	126	74	92

							2
Cycle No.	Cooling Water Flowrate (gpm)	Thermostat Setting (°C)	Inlet Water Temperature F	Outlet Water Temperature F	Tank Water Tempgrature F	Exhaust Duct Temperature F	Ambient Temperature of
	1.7	53	56	80	124	74	92
		ı	56	79	121	72	90
			56	78	119	72	90
			56	77	117	72	89
			56	75~	115	72	89
			56	74	//3	72	88
			56	74	///	72	87
			56	73	109	72	87
			56	72	107	フス	87
			56	72	106	73	83
			56	71	104	72	85
			56	70	/o3	73	୧૩
			56	70	101	73	82
			56	69	100	73	84
			56	68	98	73	85
	٧	J	56	68	97	61	76
2	1.7	53	56	7/	100	63	73
			56	77	106	68	7/
			56	81	112	73	75
			56	84	118	76	77
			56	87	123	78	75
			56	90	138 -	79	74
		V	56	92	/33	ક્છ	74

							3
Cycle No.	Cooling Water Flowrate (gpm)	Thermostat Setting (°C)	Inlet Water Tempgrature F	Outlet Water Temperature F	Tank Water Temperature F	Exhaust Duct Temperature F	Ambient Temperature F
	1.7	53	5ω	94	136	81	72
			56	97	140	<i>ଓ ।</i>	73
			56	48	144	83	69
			55	100	147	83	72
			55	lo3	151	83	72
			55	104	153	84	72
			55	105	156	85	71
			55	102	156	79	8 2
			55	49	/63	77	80
			55	94	149	73	75
			54	90	145	7.2	78
			55	88	/41	72	74
			55	87	138	71	72
			<i>5</i> ก์	84	135	70	79
			55	83	132	69	73
			.54	81	129	68	72
			54	80	126	68	70
			<i>5</i> 5	73	/23	68	69
			54	78	121	67	69
			54	77	119	67.	69
			55	76	117	67	69
			54	75	114	67	69
		ţ	25	73	1/2	6.7	4.8

Cycle	Cooling Water	Thermostat	Indea Make				4
No.	Flowrate (gpm)	Setting (°C)	Iniet Water Temperature F	Outlet Water Temperature F	Tank Water Temperature F	Exhaust Duct Temperature F	Ambient Tempgrature F
	1.7	53	55	72	/10	67	69
			5 5	71	108	67	67
			55	7/	107	66	65
	J J	V	55	70	105	59	65
3	1.7	53,5	54	73	107	62	64
			55	78	//3	68	65
	l		55	83	118	73	66
i			55	87	/23	77	65
	<u> </u>		<u>55</u>	89	128	79	67
			55	41	/33	ક્છ	65
			55	43	137	81	68
			54	96	14-1	81	69
			55	98	145	82	. 68
				101	145	83	67
			55	102	151	84	7/
ļ			55	104	154	85	68
ŀ			55	106	157	86	69
ŀ			<u>55</u>	108	160	86	69
ļ.			.55	104	162	87	75
ļ			56	105	162	83	83
			<u>55</u>	100	157	81	85
ļ.			55	47	153	78	84
[V	v]	55	94	149	76	84

							5
Cycle No.	Cooling Water Flowrate (gpm)	Thermostat Setting (°C)	Inlet Water Temperature F	Outlet Water Temperature F	Tank Water Temperature F	Exhaust Duct Temperature F	Ambient Temperature F
	1.7	53.5	5.5	91	146	74	83
		1	55	90	142	72	86
			56	દ્વેક	138	72	79
			55	85	135	70	79
			55	84	132	69	75
			55	81	129	68	76
			55	80	126	68	75
			54	80	124	67	77
			55	ファ	121	67	76
			55	77	119	66	74
			55	76	117	66	77
			55	74	114	67	77
			55	74	//3	67	75
			วัก	73	111	66	72
			55	12	109	66	70
			55	72	107	66	72
			55	7/	106,	66	73
	y	\downarrow	55	70	104_	61	68
4	4 1.7	53.5	55	74	107	64	67
•			55	79	//3	70	68
			55	83	117	74	68
			55	87	/23	77	70
			ລ້ລ້	89	128	79	.69

Cycle No.	Cooling Water Flowrate (gpm)	Thermostat Setting (°C)	Inlet Water Temperature F	Outlet Water Temperature F	Tank Water Temperature F	Exhaust Duct Temperature F	Ambient Temperature F
	1.7	53,5	55	92	/32	క్రిం	70
			55	94	136	80	7/
			55	96	140	 કર	68
			65	44	145	83	70
			56	100	147	83	72
			56	/02	150	84	72
			<i>5</i> 5	104	153	85	72
			65	106	156	86	71
			<i>5</i> 5	107	159	87	73
			56	107	160	83	94
			55	101	157	81	88
			56	97	/53		83
			55	94	149	77	84
			56	42	145	74	80
			55	90	142	73	84
			56	88	/38	72	86
			56	36	135	7/	86
			55	84	/32	71	83
		Í	55	83	129	7/	76
			56	88	127	7/	80
			56	80	124	7/	ନ୍ତର
			56	පිථ	121	7/	୫୦
	,	- -	56	79	119	70	79

Cycle No.	Cooling Water Flowrate (gpm)	Thermostat Setting (°C)	Inlet Water Tempgrature F	Outlet Water Temperature F	Tank Water Temperature F	Exhaust Duct Temperature F	Ambient Temperature F
	1.7	53.5	55	77	117	70	78
		ì	56	76	115	. 70	77
			55	76	//3	70	77
			56	74	1/1	70	79
			65	73	109	70	75
			56	72	10.7	7/	77
			56	72	106	72	74
			56	72	104	71	74
		J	56	7/	103	62	7/
5	1.7	53.5	56	75	107	65	70
			56	80	11.2	7/	72
			56	84		74	70
			56	87	122	77	70
			56	40	127	74	7/
			56	<i>'</i> 12		80	73
			56	94	136	81	75
			56	97	139	82	72
			56	99	143	83	72
			56	100	147	83	74_
			56	103	<u> 15ט</u>	85	74
			56	104	<i>15</i> 3	85	74
			56	107	156	86	フフ
		· ·	56	108	158	86	81

-			

Cycle No.	Cooling Water Flowrate (gpm)	Thermostat Setting (°C)	Inlet Water Tempgrature F	Outlet Water Temperature F	Tank Water Tempgrature F	Exhaust Duct Tempgrature F	Ambient Temperature F		
	1.7	53.5	56	104	158	ક્રેટ	87		
		<u> </u>	56_	99	154	79	90		
			56	96	150	77	9/		
			56	43	146	75	92		
			56	91	142	74	85		
			56	89	139	74	90		
			56	87	135	74	89		
			56	85	/3.3	73	86		
	<u> </u>		56	84	/30	73	84		
			56	83	127	72	84		
			56	81	125	7/	8/		
	 		56	- 8c	122	7 0	84		
			56	79	119	71	81		
			56	78	117	64	ନ୍ଦ୍ର		
			56	77	115	69	80		
			56	76	114	7/	82		
			56	75	111	72	79		
			56	74	110	72	79		
	 		56	73	108	フス	77_		
			56	73	ive	71	77		
			56	72	104	71	フフ		
			56	72	/03	71	78°		
	1		50	71	102	62	.73		

Cycle No.	Cooling Water Flowrate (gpm)	Thermostat Setting (°C)	Inlet Water Temperature F	Outlet Water Temperature F	Tank Water Temperature F	Exhaust Duct Temperature F	Ambient Temperature F
6	1.7	53.5	56	73	103	63	73
			56	79	108 .	68	73
			56	81	//3	72	72
			56	85	118	77	73
			56	88	124	78	73
			56	_ 41	128	80	72
			56	93	133	80	74
			56	96	/37	82	7.5
			56	97	141	કર	75
			56	100	145	83	77
			56	103	148	83	77
			56	104	/5 ¹	84	77
- 1			.56	105	154	84	75
1			56	107	157	కివ్	80
1			56	102	156	81	84
1			56	99	152	79	90
-			56	94	148	77	92
			56	42	145	76	88
-			56	90	141	75	79
-			55	ક્ષક	/38	74	63
_			56	36	134	73	89
			56	84	/32	74-	88
Ĺ		<u> </u>	36	४ ३	129	74	. 97

Cycle No.	Cooling Water Flowrate (gpm)	Thermostat Setting (°C)	Inlet Water Temperature F	Outlet Water Temperature F	Tank Water Temperature F	Exhaust Duct Temperature F	Ambient Temperature F
	1.7	53.5	56	82	126	73	80
				80	/24-	74	80
			56 56	80	121	74	82
			56	79	//8	74	79
			56	77	117	73	83
			56	77	114	73	80
			56	76	//3	73	83
			56	75	110	72	80
			56	74	109	72	80
			56	7.3	/o 7	72	81
			56	73	106	72	8O
			56	72	104	72	81
			56	72	102	73	82
			56	71	101	63	78
			56	72	101	63	77
	7 1.7	53.5	57	77	/06	68	78
	/	1	56	કુટ	//]	73	75
			56	86	117	77	73
			57	87	/22	79	75
	 		5-7	90	127	80	74
			56	93	/3/	81	75
			56	75	/35	82	75
			56	98	140	83	7.3

//

Cycle No.	Cooling Water Flowrate (gpm)	Thermostat Setting (°C)	Inlet Water Temperature F	Outlet Water Temperature F	Tank Water Temperature F	Exhaust Duct Temperature F	Ambient Temperature F
	1.7	53,5	56	99	144	83	75
			56	101	146	<u>83</u>	76
			57	10:3	150	84	76
			57	105	153	85	77
			56	107	/55	85	83
			56	103	155	83	89
			56	99	152	81	94
			57	96	148	81	95
			57	93	145	80	93
			51	90	141	80 	40
			57	89	/37	78	90
			56	87	134	77	92
			56	86		75	94
			56	84	129	73	91
			57	83	125	74	89
			56	82	124	73	87
			56	81	121	74	89
			57	80	119	73	91
			56	78	116	73	88
			56	77	114	74	85
			56	77	113	73	34
			56	76	110	72	87
		V	56	7.5	109	12	83

	-
	-

Cycle No.	Cooling Water Flowrate (gpm)	Thermostat Setting (°C)	Inlet Water Tempgrature	Cutlet Water Temperature F	Tank Water Temperature F	Exhaust Duct Temperature F	Ambient Temperature O _F
···	1.7	53.5	57	74	107	72	84
			56	73	105	74	85
			56	72	104	75	83
			57	72	102	75	79
			56	72	101	74	81
			.56	7/	ioo	73	80
		<u> </u>	56	70	98	63	77
	8 1.7	53.5	56	72	100	64	76
		İ	56	77	106	64	80
			56	81	111	73	79
			56	84	117	77	78
			56	87	/22	79	77
			57	90	126	80	78
			57	93	131	80	79
			57	95	135	81	78
			56	97	139	४२	79
			56	99	143	୫2	77
			56	101	146	82	78
			56	103	149	83	80
			56	105	/52	83	ඉට
			56	103	154	83	91
			56	98	151	91	92
	V		57	44	147	80	, 86

Cycle No.	Cooling Water Flowrate (gpm)	Thermostat Setting (°C)	Inlet Water Temperature	Outlet Water Temperature F	Tank Water Temperature F	Exhaust Duct Temperature F	Ambient Temperature F
	1.7	53.5	56	92	143	78	91
	1	1	56	90	/39	77	96
			5.7	88	136	77	90
			56	87	/33	77	94
			57	85	131	75	88
			56	84	128	76	87
			57	83	125	77	87
			56	81	123	76	77
			57	80	120	74	93
			56	79	118	73	85
			56	77	116	72	86
			56	77	114	74	88
			57	76	112	73	88
			57	76	110	72	83
			57	75~	109	73	83
			57	74	107	75	86
			5-7	73	105	74	77
			57	72	104	73	79
			56	72	103	72	81
			57	7/	101	7.3	81
			56	70	100	67	80
		- J	-57	7/	99	63	80
	9 1.7 -	55	57	.75	103	66	82

Cycle No.	Cooling Water Flowrate (gpm)	Thermostat Setting (°C)	Inlet Water Temperature	Outlet Water Temperature F	Tank Water Tempgrature F	Exhaust Duct Temperature F	Ambient Temperature F
	1.7	55	56	80	108	7/	80
			57	83	114	76	පිට
			56	87	119	77	82
			56	કુવ	124	79	79
			56	42	129	80	80
			57	94	/33	81	79
			56	96	/37	8/	79
			56	44	141	81	78
			5.7	100	144	82	79
			56	103	14.8	८८	8/
			57	105	150	84	84
			57	101	151	82	87
			57	97	148	81	93
			56	94	145	୫୦	90
			57	91	140	79	91
			57	90	/37	78	90
			57	88	/34	77	93
			57	87	/3/	77	93
			57	85	129	77	85
			57	83	126	77	90
			56	81	<i>1</i> 23	フフ	83
			56	୫ ୯	121	7.5	80
	V	J	56	79	119	75	79

Cycle No.	Cooling Water Flowrate (gpm)	Thermostat Sgtting (°C)	Inlet Water Temperature F	Outlet Water Temperature F	Tank Water Temperature F	Exhaust Duct Temperature F	Ambient Temperature F
·	1.7	55	56	79	117	74	85
		ı	56	77	1/14	75	82
			5-7	76	112	74	85
			5-7	76	110	74	85
			57	7.5	109	74	88
			57	74	107	76	77
			56	73	106	76	77
			56	72	104	76	78
			56	72	102	74	78
			56	71	101	74	78
			56	7/	100	75	82
			57	70	99	63	77
10	17	55	56	72	100	64	75
10		i	56	77	106	69	77_
			57	કર	112	73	フフ
			57	85	117	76	78
	 		56	કહ	/22	77	78
			56	40	126	79	78
	h		57	92	131	80	78
			56	95	134	8/	77
			57	97	/38	8/	77
			56	44	/4-2	81	78
			56	101	145	82	. 80

Cycle No.	Cooling Water Flowrate (gpm)	Thermostat Setting (°C)	Inlet Water Temperature F	Outlet Water Temperature F	Tank Water Temperature F	Exhaust Duct Temperature F	Ambient Temperature F
	1.7	55	56	103	148	83	80
			56	104	152	84	78
			56	10.5	154	82	84
			56	100	/53	80	82
			56	46	149	79	84
			56	93	144	79	89
			56	90	141	78	83
	-		56	90	141	78	84
			56	90	141	78	<i>8</i> 2
			56	90	140	77	82
			56	90	140	77	೯೭
			5-6	90	/38	77	6 3
			56	87	/35	フフ	82
			56	86	/32	76	80
			56	83	/30	75	77
			55	ઇત્ર	127	7:5	77
			(56				}
			56, ADE	PROMEM			
			156	79			
			56	78			
			56	77	115	73	77
			56	77	114	72	76
	₩	Ÿ	56	760	//3	72	77

Cycl No.		Cooling Water Flowrate (gpm)	Thermostat Setting (°C)	Inlet Water Temperature	Outlet Water Temperature F	Tank Water Temperature F	Exhaust Duct Tempgrature F	Ambient Tempgrature F
		1.7	55	56	75	110	72	77
				56	74	109	72	75
				.56	73	107	73	74
				56	72	105	72	74
				56	72	104	72	78
				5-6	71	/03	73	76
		<u> </u>		56	70	101	62	74
	11	1.7	55	56	74	105	64	74
		ì		56	79	110	૯૬	75
				56	K 3	114	72	74
				56	४८	120	75	75
	!			56	୧୯	124	76	76
				56	90	/28	77	77
				56	93	/3:3	78	7.5
				56	45	/37	79	77
				56	લુક	141	80	76
	[56	100	145	81	77
				56	102	148	81	79
	ſ			57	104	/၁೮	82	78
				5 6	105	153	83	80
				56	104	155	81	81
				56	99	753	Si	8/
	Ţ	<i>y</i>		50	45	144	78	. 83

Cycle No.	Cooling Water Flowrate (gpm)	Thermostat Setting (°C)	Inlet Water Temperature F	Outlet Water Temperature F	Tank Water Temperature F	Exhaust Duct Temperature F	Ambient Temperature F
	1.7	55	56	93	145	77	80
			56	90	141	77	82
			56	89	/38	77	87
			.5 6	87	/35	76	8/
			56	8.5	132	75	80
			56	84	129	75	80
			56	४३	127	75	80
			56	81	124	75	78
			56	80	12/	74	78
			56	79	//9	75	83
			56	78	117	75	83
			56	77	//5	75	85
			56	77	//3	76	84_
			56	75	111	フフ	83
			56	74	104	77	86
			5 6	74	108	77	86
			5-6.	74	107	78	87
			57	73	105	79	84
			56	72	103	76	85
			56	72	101	79	84
			57	71	100	78	87
			57	7/	99	72	84
	J	J	57	7/	45	63	83

16	٩

							17
Cycle No.	Cooling Water Flowrate (gpm)	Thermostat Setting (°C)	Inlet Water Tempgrature F	Outlet Water Temperature F	Tank Water Tempgrature F	Exhaust Duct Tempgrature F	Ambient Tempgrature F
12	1.7	55	57	74	101	67	පිර
			56	S v	107	71	೪೩
			56	કર3	112	74	೪೩
			57	87	1/7	77	84
			57	89	/22	78	୫ଌ
			57	91	127	79	84
			56	93	/3/	79	86
			57	95	134	ଝ୦	୫୯
			57	97	/38	୫୦	87
			57	100	142	81	84
			57	99	145	82	91
1			57	94	143	81	95
			57	91	140	79	91
			57	89	137	80	92
[57	87	/33	79	94
L			57	86	130	79	93
L			56	84	128	80	90
L			57	83	124	81	91
			56	81	/2a	78	93
			57	80	130	77	91
1			57	79	118	80	90
			57	78	1110	80	90
Į.	ن	Ú	57	77	114	80	.91

	Cycle No.	Cooling Water Flowrate (gpm)	Thermostat Setting (°C)	Inlet Water Temperature F	Outlet Water Temperature F	Tank Water Temperature F	Exhaust Duct Temperature F	Ambient Temperature F
_		1.7	55	57	76	112	80	90
			1	56	76	110	77	87
				57	75	108	80	89
				57	74	107	78	86
				57	74	105	80	86
3				57	72	104	78	87
7				57	72	102	80	85
				57	72	100	79	8 <i>5</i>
				67	71	100	80	85
				57	7/	98	77	83
				57	70	97	79	84
				57	70	96	77	83
				56	69	95	79	86
				5-7	69	93	69	83
		J	\downarrow	57	69	93	64	82
	,	3 /.7	55	57	74	98	67	80
				57	78	104	70	83
				56	81	110	73	82
				57	85	115	76	80
				57	87	119	77	80
				57	89	124	77	80
				57	41	129	14	83
		Ų	J	57	43	133	74	87 -

Cycle No.	Cooling Water Flowrate (gpm)	Thermostat Setting (°C)	Inlet Water Temperature F	Outlet Water Temperature F	Tank Water Temperature F	Exhaust Duct Temperature F	Ambient Temperature F
	1,7	55	56	96	1.36_	80	81
	i		56	98	140	୫୦	୧૩
			57	100	144	81	83
			56	102	147	82	87
			56	102	149	83	100
			56	97	148	63	104
			57	93	144	83	102
			57	91	140	81	99
			56	89	/37	82	100
			56	87	/34	કુઢ	100
			56	85	/3/	82	98
			57	83	128	91	89
			57	જુરૂ	125	81	88
			56	81	123	81	89
		· ·	57	80	121	81	92
			56	79	119	80	87
			57	77	116	79	86
			56	77	114	77	86
			57	76	112	79	86
			57	75	110	75	87
			57	75	109	78	85
			56	73	107	78	84
			56	73	. 105	79	84

Cycle No.	Cooling Water Flowrate (gpm)	Thermostat Setting (°C)	Inlet Water Temperature F	Outlet Water Temperature F	Tank Water Tempgrature F	Exhaust Duct Temperature F	Ambient Tempgrature
	1.7	55	56	72	104	76	86
			57	7/	102	78	86.
			5 7	71	101	80	86
			56	70	100	80	87
			56	70	98	୫୦	86
			56	69	97	80	87
			56	64	96	80	87
	V	U	56	68	95	65	ନ୍ତର
14	1.7	55	57	71	97	67	8/
• •	i i		56	76	103	70	g/
			57	80	109	73	81
			57	૯ ૩	/13	76	80
			56	86	119	77	8/
			5-7	87	124	78	83
			56	90	128	79	84
			56	92	/32	80	84
			56	94	135	80	83
			57	96	/39	81	84
			56	99	143	82	85
			57	101	147	82	83
			57	102	149	ន3	93
			57	97	148	83	98
	<i>y</i>	Ü	57	94	144	83	93

Cycle No.	Cooling Water Flowrate (gpm)	Thermostat Setting (°C)	Inlet Water Temperature F	Outlet Water Temperature F	Tank Water Temperature F	Exhaust Duct Temperature F	Ambient Temperature F
	1.7	55	57	91	141	81	89
		1	57	୫୫	/37	81	90
			56	87	134	80	86
			56	85	131	୫୦	89
			56	83	/28	78	87
			57	5 3	126	78	92
			56	81	123	79	89
			3-7	80	121	77	86
			56	79	118	77	86
			56	78	116	76	87
			57	77	114	76	87
			57	76	112	76	85
			57	75	110	76	87
			57	75	109	77	86
			5-7	73	107	8°c	87
			57		106	81	87
			57	72	104	81	- ଟଣ
			56	72	103	85	88
			57	7/	101	ଝଠ	87
			56	71	100	80	85
			57	70	98	81	85
	V	J	57	69	97	71	81
1:	6 1.7	55	56	71	99	69	80

Cycle No.	Cooling Water Flowrate (gpm)	Thermostat Setting (°C)	Inlet Water Tempgrature	Outlet Water Temperature F	Tank Water Temperature F	Exhaust Duct Temperature F	Ambient Temperature F
	1,7	55	56	76	104	72	81
		l	56	80	109	74	81
			5-7	84	114	77	82
			57	87	120	78	81
			56	હક	124	78	82
			56	91	/ଅଟ	79	8 3
			56	43	/33	80	82
			57	45	136	81	81
			ゔ゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙	97	140	82	83
			57	99	144	82	82
			56	100	146.	82	<i>9</i> a
			56	100	149	६३	90
			66	96	147	83	98
			56	93	144	82	94
			57	90	141	81	93
			56	63	/37	80	92
			57	87	/33	୪ଥ	93
			57	84	/3/	79	93
			56	૯ 3	128	79	90
			56	82	125	79	91
			57	81	123	80	91
		1	57	୫୦	121	79	87
	V	~	56	78	//8	80	.86

Cycle No.	Cooling Water Flowrate (gpm)	Thermostat Setting (°C)	Inlet Water Temperature F	Outlet Water Temperature F	Tank Water Temperature F	Exhaust Duct Tempgrature F	Ambient Temperature F
	1.7	55	56	78	116	80	91
	Ì		56	77	114	80	91
			57	76	112	80	89
			5-7	75	110	81	89
			56	75	108	82	87
			56	74	107	೪೩	90
			56	73	105	81	91
			56	72	104	82	ક્ષ
			5-7	72	/0.3	82	87
			57	7/	101	8/	90
		<u> </u>	57	7/	/00	71	83
16	1.7	55	57	73	102	71	81
			57	78	107	73	8/
			57	83	112	76	8)
			56	୫5		78	83
			56	88	<i>12</i> 2	79	83
			56	90	/28	80	83
			56	93	/3/	80	83
			56	94	135	80	83
			57	96	/38	81	84
			57	98	142	82	84
			57	100	145	82	85
		J J	56	103	<i>148</i>	83	84

-	

Cycle No.	Cooling Water Flowrate (gpm)	Thermostat Setting (°C)	Inlet Water Temperature F	Outlet Water Temperature F	Tank Water Temperature F	Exhaust Duct Temperature F	Ambient Temporature
	1.7	55	56	101	151	83	95
		. 1	57	97	148	83	91
			57	93	146	8/	92
			56	91	141	८।	89
			57	89	138	81	90
			56	87	135	80	87
			56	४ ७	132	79	87
			56	84	128	80	87
			57	83	127	80	85
			56	6,5	124	80	89
			57	80	121	80	87
			57	80	119	8/	86
			57	78	117	82	- ୧୫
			57		115	82	87
			56	77		82	87
			56	76	///	83	86
			57	75	109	82	85
			56	74	107	82	કહ
			56	73	106	४२	87
			56	フス	j04_	83	87
			56	フス	103	९२	86
			57	71	102	કુટ	87
	b	V	57	7/	100	. 82	'8¢ ,

Cycle No.	Cooling Water Flowrate (gpm)	Thermostat Setting (°C)	Inlet Water Tempgrature F	Outlet Water Temperature F	Tank Water Temperature F	Exhaust Duct Temperature F	Ambient Temperature F
	1.7	55	57	70	99	72	83
17	1.7	วัว	57	73	100	70	82
		ı	56	78	106	72	83
			67	કર	110	75	83
			56	85	1160	77	84
			57	87	121	79	83
			57	90	125	80	· 83
			57	92	129	80	82
			56	43	/33	80	84
			56	96	/38	8/	83
			57	97	141	81	83
			57	99	144	೪೩	83
			57	102	148	82	83
			5 7	102	150	83	93
			56	97	148	\$3	92
			57	94	145	81	92
			57	91	14-1	80	91
			56	40	/38	80	92
			57	SS	135	79	90
			56	87	132	79	91
			57	84	129	80	89
			54	43	/27	82	87
	V	V	57	87	124	. 83	.89

	Cycle No.	Cooling Water Flowrate (gpm)	Thermostat Setting (°C)	Inlet Water Temperature F	Outlet Water Temperature F	Tank Water Temperature F	Exhaust Duct Temperature F	Ambient Temperature of
-		1.7	55	57	81	122	83	89
		i	,	56	74	119	83	87
				57	78	117	82	87
				56	77	115	8/	85
				57	77	113	81	84
ယ္ဟ				57	76	111	8/	83
01				56	74	109	81	82
				56	73	107	81	82
				5"6	73	105	81	80
				56	72	104	80	82
				56	72	103	80	80
		<u> </u>	V	5-6	71	Jo i	70	79
	18	1.7	55'	56	73	103	68	78
				56	78	/୦ଟ	72	77
				56	83	113	75	77
				56	85	//8	76	77
				56	87	123	78	78
				56	90	/28	78	78
				56	92	131	79	78
				56	94	136	४०	79
				55	96	/38	80	79
				56	98	/4-3	Sc	77
		Ÿ	V	56	100	146	80	フフ ツ

Cycle No.	Cooling Water Flowrate (gpm)	Thermostat Setting (°C)	Inlet Water Temperature F	Outlet Water Temperature F	Tank Water Temperature F	Exhaust Duct Temperature F	Ambient Temperature F
	1.7	55	56	101	149	81	82
		ı	56	104	151	82	8/
			56	105	155	83	80
			56	106	157	83	83
			56	105	158	<i>8</i> 3	90
			55	103	/58	83	91
			56	99	154	8/	92
			56	96	150	80	90
			56	93	146	78	88
			56	91	<i>J</i> #3	77	89
			56	89	139	77	91
			56	87	136	77	83
			56	86	/33	77	86
			56	83	/30	77	85
			56	83	128 ·	77	86
			56	81	125	77	86
			56	80	/22	77	83
			56	79	/20	77	81
			56	78	//8	77	82
			56	77	116	77	79
			56	76	114	77	80
			56.	76	112	77	82
		-	56	74	110	78	82

_	

	cle o.	Cooling Water Flowrate (gpm)	Thermostat Setting (°C)	Inlet Water Temperature F	Outlet Water Temperature F	Tank Water Tempgrature F	Exhaust Duct Temperature F	Ambient Temperature F
		1.7	55	56	74	108	78	82
				56	73	107	75	80
		Y	· ·	56	73	105	68	76
	19	1.7	55	56	76	109	69	76
				5 W	81	114	74	78
				56	86	130	77	78
				56	89	124	80	78
				56	92	/30	81	77
				56	95	/34	82	80
				56	98	/38	83	79
				56	100	14.2	84_	80
				56	101	146	83	88
				56	96	145	క్రవ	90
				56	92	142	81	89
				56	90	/38	80	87
				56	88		79	90
				56	86	131		87
				56	84	138	78	88
				56	83	126	77	85
				56	<u> </u>	124	77	86
				56	80	121	フフ	86
				56	79	//8	77	84
		V	V	56	78		76	, ga "

cle o.	Cooling Water Flowrate (gpm)	Thermostat Setting (°C)	Inlet Water Tempgrature	Outlet Water Temperature F	Tank Water Temperature F	Exhaust Duct Temperature F	Ambient Temperature F
	1.7	55	56	77	115	75	83
	The state of the s	ı	56	76	112	75	හිර
			56	75	(1)	77	83
			56	74	109	75	80
			56	74	107	75	83
			5 T·	72	105	74	79
			5 7.	72	104	74	79
			56	72	103	75	79
			5-6.	フマ	ال ال	76	78
			56	71	100	76	78
			57	70	44	76	78
			57	70	98	76	77
			56	64	96	76	77
			5 7	64	95	76	77
			56	68	94	68	76
			57	68	93	66	75_
			s 7	68	92	65	76
			57	68	41	64	75
	₩	V	57 '	67	41	63	75
		1	39801	59881		1	

SECTION 4 SAMPLING DATA SHEETS

oed Re		<u> 21-8</u>	0						-					ic Pre) L		
l bern Vater	nge tate tow	APAC Setting rate	1 <u>T</u> _ 1.7	95m	55 C				-			MECTED							No. 1/8	3
Tomo	Semple Point	Load	Steem Flow Ib/hr	0,	co,	co	SO ₂	MO	NO _R	NO ₂	0%1 NO	NO _x	NO ₂	2 Total	i '	Non- Methane	H ₂ O	Stack Gas Temp		
			17000			200	ppm	ppm	ppm	ppmn	ppm	ppm	ppm		Methane	HC	•	•1		MMENTS
	Exhaut		ļ	2.1	12.4	165	_	68	68	0			<u> </u>	Up+				607	Stuit of to	A - Cycle No
6:80	Duet			2.0	12,5	20	ļ	70	70	0			 	DO - Home	 			63.0	<u>_</u>	- [,
6:22	 			1.85	12.7	15		72	72	0					ļ			73.3		time
(:28	 			1.7	12.7	13		72	72	3			 	╟				78.3	-13-	=
5:32	 				12.7	10	-	72	72	3			├	 - 				81.7	Burner of	, v
J. 32				1165	12.1	10		16	- 12					世				03.4	Burne, of	<u> </u>
:58				2.05		150		66	66	0	-			\vdash				63	Start of C	en la slo Z
1:00				2.0		35		68	68	0								72.9		
1:02				2.0		35		70	70	0								703		Burner on
7:04				2.0		35		70	70	0								786		time = 14
7:06				2.0		30		72	72	0								84.3		
7:10				2.1		3 0		72	72	0				<u> </u>				84.3	•	
7:12				1.95		25		72.5	72.5	2								84.7	Burnerat	<u> </u>
	H												 	*		 		 	<u>'</u>	,
7:32				2.2	12.3	150		68	6 th	0				15				12/	C4 . L .) Z	(). 3
:36						25.2		68		0		 -		1,2	-			78.7	Stert of C	ter NA .
1:37					13.0			67.5		0			<u> </u>	0.8			 	79.6		
:39	1			2.05					10	0				1.0	 	 	 	80.8	 	Burner on
1:40	4			2.07					69	0				0.9	 	 	 	221		time = 15.
7.41	-			2.09	13.1				69	0			†	as		—		825	<u>† </u>	
:42				2.02					70	0				0.7	t			23.8	 	

40

0 - As Catte

Plant RESIDENTIAL WATER HEATER WITH M.A.N. Burner	Ambient Temperature 74-87 F Room oir
Location Houser Combustion Laboratory	Barometric Pressure
OperatorCASTALDIJI	Static Pressure Duct
Date 5-21-80	Fuel Distillate oil
Load Range (Afecity	Cl. + Ab 2/0

Thermostet setting at 53-55 C Sheet No. 2/3
WATER TION = 117, April

				17 Pp			DRY	INCORRE	CTED				MRECTED OZ DA		HYDR	CARBO	IS (HC)		Stock		
Time		mple pint	Loed WW	Flow 1b/hr x1000	07 %	CO ₂	5 8 8	SO ₂	NO spm	NO _g ppm	NO ₂ ppmn	NO ppm	NO _g ppm	NO ₂ ppm	Total HC 2	Methane	Non- Methane HC	H ₂ O	Gas Temp *#	COI	MAENTS
7:47	Fal	12mst			2.0	12.7	25		71	71	0				0.5				87.3	Burner 3	٠,
	Pu	4														ļ					·
8109	Н				2.5	12.6	150		60	60	0	 	 	 	3				63.9	Start of C	icle No 4
8:13	П			1	2.17				59	57	0				3				69.7	1	
8:11					2.21				65	65	1	i –			2.6				74,2		
8:12	П					12.6			63	63					2.3				76.9	1	Burner on
8:13					2.16				68	68					1.5				19.2		+ 15mi
8:14	П				2.14				70	70					1,5				801		
B: 15	П				2.11				70	70					1.4				824		
8:16	П				2.07	13.0	23		70	70					1,2				81.7	•	
8:17	П				2.05				71	71	l i				0,9				83.0		
8:24	Н				2.0	130	20		72	72	V				0.8				83.4	Burn	r off
8146					2.25	129	160		115	66.5	0	ļ —							(52	Start of C	w/4 No 5
9:50	H				2.2	12.7			67	67	 	 		 	+=	 	Н		79,2	13/3/ / ₁	70.000
8:52	H	-		 	2,15				63	69	 - - - - - - - - - 	 			1-	 			80.8		Burmon
8:56	H					12.8			67		 	†			-		\vdash		84.7		time : 14m
9:58	\vdash				2.1				69	69		<u> </u>			-	1			85.6	J	
9:00						12.9			69.5	67.5	\sqcap	1			_				B5.6	Burner.	o##
1,000											¥				-				1		11
	П																				
	7																				
																				AVE	AGE
											ļ										
											L		L	L	L		L				Form EED 042 12/

Operato Date	, <u> </u>	1111111 21-8					-		- - -				Stat	ometric tic Pre:	Sure (ouci _	0	,1	3 /8	
	<u> </u>		Sheem				JNCORRE				C00	RRECTED	TO	HYDRO	CARBON	S (HC)		Stack		
Time	Sample Point	Load	Flow Sb/hr x 1000	O ₂	œ,	80	SO ₂	NO ppm	NO _E	NO ₂	NO ppm	NO _g	NO ₂	Total HC-2	Methane	Non- Methane HC	H ₂ O	Gan Tamp *F		COMMENTS
	Februar				12,6	165		65	65	0								63.4	Start of	Cycle No. B
9:25	Duct			2.07	12.7	41.7		65.6	65.6	0				5.1				67.7		
9:26					12.9			67	67					5.0				68		
9:27		<u> </u>	<u> </u>		12.7			687	68.7	Щ			<u> </u>	4.4				72.4	<u> </u>	
9:20				2.07		42		68.6	68.6	Ц.,	<u> </u>	<u> </u>	<u> </u>	4.1				76.5	<u> </u>	Burner
9:29				2.01	12.6	41		67.3	67.3	Ц_	<u> </u>		<u> </u>	3.3				783	<u> </u>	200
9:30		<u> </u>			12.6			69.7	69.7	Ц			<u> </u>	3.1				78.6	L	time : 13mi
9:31					134			70.4	70.4	Ц	<u> </u>		ļ	2.6	L			80.4		<u> </u>
9:32		L			12.7			706	70.6	└		<u> </u>	ļ	2.9				81.7	L	
9:33				2.01				69.2	67.2	Ц_	<u> </u>		1	2.7				83	<u> </u>	♦
9:37				1.95	12.8	40		11	11									B3.B	Burner	•ff
10:01			<u> </u>	2.25	12.6	165		60	60				-					68×1	Ctart .	1- Cycle No. 7
10:01			<u> </u>		12.3			63	63					3.6				76.5		1
10:05			<u> </u>			400		65,2	65					2,9				79.2		Burneron
19:07				2.07	13.0	36.9		65.3	65					2.2				Bas		time = 13 min
19:10				2.06	13.0	40.5		67.6	68					1.6				830		
10:11					12.8			67.0	67					1.4				830		*
10:14				1,95	12.9	10.5		67.5	67.5				<u> </u>	<u> </u>				85.2	Rune	· of #
											ļ		ļ	-		-	-	 	-	(/
	-			-		 		 		├┼─	 	 	 	 	 	 	 	 	 	
			-	 		†			 	\vdash	t	\vdash	 	†		 		 	1	
	+			 	 	 		 		4	 	 	†	 	\vdash	 		 	1	
											1			1					1	AVERAGE
														T		T		T	I	

a - As cans

Form EED-083 12/78

				DIMI DIMI			ORA T	ORY		-					ometric						
										-					ic Pres						
ato		<u> 5</u>	-21-	80										Fue	ـــــــا	ا ۱۲۲۰	LATA	<u>. </u>)iL	-, 	
The Wate	nge.	nte Ion	CAPI t Sct Rotz	ting.	e+ 5 1.7 3	3-5: m	2,5			-		l co	MECTER	170		•		2	hee	+ 10.4	18
l		ı		Steem			DRY	INCORRE	CTED			07-	MECTED N 02 DA	Y	HYDRO	CARBON	IS (HC)		Stock		
Time	Sem		Loed MW	Flow lb/hr x1000	0,2	8.	00 00	90 ₂	NO ppm	NO _g ppm	NO ₂	NO ppm	NO ₃	NO ₂	Total HC	Methene	Non- Methane HC	H _g O	Geo Temp	COMM	ENTS
0:39	FχĻ	eut l			1.75	12.6			65	65	0				-				64	Start Sycle	L No.8
9:41	D.	et l			1.75	/2.6	12,5		67	67					1.8				77	7	Sternes ser
האים						12.7			70	70					1.7				79		11 = 14 m
0:47						13.4			62.7	68.7		<u> </u>			1.0				BOY		
0:53	\dashv				1.65	13.4	42		72	72		-			-				<i>E</i> 3.4	Burne of	<i>†</i>
	Н										+	 	-							· · · · · · · · · · · · · · · · · · ·	
1:17					2.1	12.6	165		64.2	64.2		1	_		-				66	Start Cycle	L No.9
1:18						12,6			64	64					4.1				74.1		
11:17					1.78	13.2	48		68.6	68.6					3.1				75.6		
1.20					2.01				-	67.5					3.4				77.4	Be	urney On
1:21					1.98	13,0	44		-	70.6					2.0				79.2	ti	m - 12 -
1:22		\Box			1.37	12.9	42			703	4				1.7				821		
1:23					1.91		44.7			12.6		 		!	1.4				80.8		
1:24					1.86	13.1	44.2		<u> </u>	63.8	4	 	ļ	<u> </u>	1,2				81,2	 	
1:25						13.2				72.2		<u> </u>	ļ		0.4				81.2	<u> </u>	
1;26	\dashv					13.3			<u> </u>	71.1		₩	<u> </u>	-	0.3				82.1	\ \	
1:29	-	-			1.75	13.6	43		-	72.0	+	╂	 	-	0.2				82.1	Bunes	t/
	-		- 1		-							 		 	1		-		 		
	\dashv	-+			t				 		-	 	 	 	1				 		
	\dashv				1						1	1	 		tl				 		
	_											1		·					1	· · · · · · · · · · · · · · · · · · ·	
	_								1				 								
	4								l		4	1									
_	_	-			Y	_						1		T	1				_	AVERA	O.E.

- As CaHa

Form EED-063 12/78

perator.	<u> </u>	rea C toldin 21-80 Buzz	<u> </u>			org tu			- - -				Stat	ic Pres	sure (Duct_	· 0.			Roan Air Cho
remo Deter	tot.	Bose Sething note	- to	53-59 7 pm	5°C	DBV I	INCORRE	CTED	···	···	COF	RECTED	TO	wner	CARBO		90		/8	
rime .	Sample Point	Lood Law	Steam Flow Ib/hr x 1000	O,	co³	8 ap 20	BO ₂	NO ppm	NO _E	NO ₂	0)(2) L 2 NO ppm	NO _H	NO ₂	Total	Methane	Non- Methane	н	Steek Gas Temp *F		COMMENTS
:53	Fabrut			2.2	13.0	165		-	65	0				Ξ					Start	Cycle No.10
:56	€ تين				13.4	46.4		-	67.8					2.4				76		78
:58					13.3	14.7			70.3				 	10		 		79		Burner on
1:00				1.89	13.0	42.7	L	-	7/.3					0.7		-		81 81.z		time = 13 min
1:0L				1.84	/3.2	45.3	<u> </u>	<u> </u>	71.9	+-			 	0.4			├	82	Bunn	<u> </u>
1:06					<u> </u>													32	Burn	- '{}
:29	-			60	12.2	/55	-	_	66	-		ļ		 -	-	<u> </u>	-	64,3	Start	Gela No 11
2:30	_					38.6		-	67.6					2.0				60.4		Rurus 24
:32	_				12.6			-	69.1		1			2.0				75.1		time = 13 h
:31				1.65	12.9	36.3			73					0.9				80.8		
: 12				1.50	/3.0	75		-	74	-				-		-	-	83	Burn	2//
08				195	12.5	IFO		_	66					_	<u> </u>			26.6	Start	Crele No. 12
109	+-	-			12.3	40,3		-	65	1	1		 	5.5	<u> </u>	1		70.6	1	1
:10	+				13.2	36		1 -	67.4	\vdash	1			3.8	1	1		73.8		Burne on
211					12.9			-	69.4					2,6				76.5		time = 10 h
:12	_			1,82		33.8		_	71.5					2,0				77.9		
:13				1.73	13.0				72.7					1.7		1		78.7		
:14				1.72		34,3			72.8					2.3	<u> </u>		<u> </u>	79.2		
: 15					12.8			-	73.3		<u> </u>	<u> </u>	<u> </u>	2.5	ļ	↓	 	79. c		Ψ
:18				1.45	13.0	18	i	-	75		1	l	ı	i –	i	İ	I	181.7	Burne	• 0/+

44

a - As C3 HB

cation erator	<u>-</u>	lenr	4 L WAT CX CC CASTA 5-2		ארנע	1 6	BOAA			- -				Stat	ometric tic Pre	; Prosi Bauro (ature _ oure Ouct ilete				Poon Air Burner
nd Rai	nge	lat	Cape Settling tate	ecity at	53-	S5 °C		MCORRE	C15D	_		CO	MECTEO	10			Sh		No.	6	/8
ime		mpte pent	Load MW	Steem Flow Ib/tr ±1000	O ₂	∞ ₂		SO ₂ ppm	NO ppm	NO _g	NO ₂	o <i>7≟0_t 1</i> NO ppm	NO _g	NO ₂	 	Methene	Non-	HgO	Stack Gas Temp *F		COMMENTS
3:46	\mathbf{F}_{p}	1			1.65	125	145		1	69	0				=				66.6	3401	Cycle No B
150	IJ,	*			1.81	12.9			-	69.5	1				4.7				76.7		Zeme 3
1:54	Ш				1.43				-	73.4					55				80.1		-time = 13
:56						140			_	73,2	Ц_		<u> </u>		5.7				81.2		<u> </u>
59	Н				1.62	13.3	45.3		-	72.1	\vdash	┼	<u> </u>		5.5	-	-		83	Bun	· off
										7										6/-	No 111
;15	Н					12.5			 -	62.5	├	 	 		=	-			66.6	1701	Grele No 14 Burne on
:27	Н					12.8				63.6		 			8				73.3		1Surme on
:27	Н					12.7			-	66.0	Н-	₩			6.7				77.4 801	 	tim - 12
(133 :67	Н				1.60	/3.0	40.5		 - -	67.1		 	 	 	3,8		-		83	Burn	n of t
											二				1						
:02	Н				 							\vdash			-				693	Sta.1	Crele do 15
+c:					1.71	12.7	-		-	65					4.7				71.5		Burn on
:06					1.74		-		-	67.7					3.8				783		10mm = 12
:03					1.67	13.2	_		-	10,1					3, 2				79,2		
:11					441	13.2	135	2	-	73.6					1.6				82.1		
: 13					1.45	13.0	131	!	_	72.0	Щ.	<u></u>			2.6				82.1		·
ाम					 				-		$\vdash\vdash$	┼	-		ļ-	-	\vdash		B3,4	Bun	es of t
	Н					 			 	 	$\vdash\vdash$	 	 		 		1		 	t	
	1				1	 			 	 	1	t	 	 	 		$\vdash \vdash$		 	 	· · · · · · · · · · · · · · · · · · ·
	۲	\vdash			t				 	 		1	 	<u> </u>	 				1	1	····································
_	-									 		+		 	1-	 	1		1	•	AVERAGE

∂- A1 (3 H8

Form EED-063 12/78

Location	<u> Han</u>	rex C	on ben	سون لم	labo	MAJ	Burd	F /	-										
Operato				417									Stat	ic Pres	sure C	ouct _			te 0i1
Date		5	-41-8	9									Fue	I			<u> </u>	17416	te Oil
oed Re	nga	Sc Hi	1 5	م ع	,51 (19m	Ş₽ L										21	heet	N	o. 7/8
			Steam				UNCORRE	CTED				PARECTED		HYDRO	CARBON	S (HC)		Stack	
Time	Sample Point	Load MW	Flow ib/hr #1000	0,	co,	CO PPM	SO ₂	NO ppm	NO _E	NO ₂	NO ppm	NO _X	NO ₂	Total HC ²	Methane	Non- Methane HC	нуо	Gas Tomp *F	COMMENTS
	Exhault				12.8	/15		-	62.7	0				5,2				71	Start Cycle No. 16
15:4s				2.02	13.0	29.B		_	68.0					3.7				76	
15:42				1.97	12.6	28.8		-	67.7					3.2				801	Brown on trine
15:44						24.7		<u> </u>	71.0	Щ.	<u> </u>	L	<u> </u>	1.9		L		624	= 12 min
12:46			<u> </u>			23.5		-	71.8	└	<u> </u>			2.3			ļ	تبلغا	
15:4B			L		13,2			-	68.5					-				82.5	
15:48	 		ļ	1.50	13.4	15		┕	710	\vdash	↓	.	1	ļ-				83.7	Burnoft
					<u> </u>	-			-		<u> </u>	-	<u> </u>				 		<u> </u>
17 10	\vdash		 	1	1.0.5	105			(7.4	├-├-	├	 		 _ -			 	105	61 16 18 18
16:13			 	1.0	12.7	125		 _ _	67.5		 	├ ──		6.1				07.7	Start Cycle No. 17
16:15	-							<u> </u>	69.9	 		-	 	5.7			┼──	75.1 78.7	΄ Ω
16:17	├ 			10.10	13.2	114.1		-	71.1		╂	+	 	7.6		 	├	78.6	Burne on tine - 12
16:21			 		13.1			<u> </u>	73,2	 	1	 	 	3,9			 	ROL	
16:23	\vdash	-	 		12.9			-	74.5	\vdash	1	┪	 	3.2		\vdash	┢	AL	(O calibration off
16:25					13.6				75.0	 	1-	 	 	-		1	 	81.5	To constitution of the
10 .23			-	11123	12.8	1.65		 	1/2/-	1	 	 	†	1				Va	1
			· · · ·		 	†			1			1		1				1	
16:47				1.95	12.5	15-5		_	68		1		1	-		1		684	Start Cycle 1618
6:50					12.6			-	68.1					4.4			1	76	Burne
16:52					12.8			-	72					3.1				781	time = 16mis
16:54				11.64	13.3	38.4		-	72.7				I	2.8				786	
16:56				1.44	13.2	37.5		-	74					2.3				Bay	
17:03	1,4			1.45	13.2	3.0		-	76					-				83.4	Burm. 2/5
																			AVERAGE
					T							T	1			1			

O FI C3HB

Form EED-063 12/76

Form EED-063 12/78

Plant Location Operator Date	<u>- A</u>	urex B	Comber ntochi 21-80	ntibu m	Lat	ic hin) N E	wen	- - -				Ami Bard Stat Fue	bient T ometric tic Pres	emper Press	rature _ sure _ Duct _	3. 3.	31-8 otili	3 F Room Temps Close to Surman
Load Re Therm	nge Ca ndod Tlass	setting rate	= 54	کا ان ح 7 ومس	<u> </u>					·					,		3	heet	J. 3/8
Time	Semple Point	Loed MW	Steem Flow lb/hr x1000	0,	∞,	CO	SO ₂	NO ppm	NO _g	NO ₂		NO _s		-	Methane	Non-	Hgo	Stock Gas Temp	COMMENTS
121.02	Enhant			0.5	 	165			Bz	0	-		 	 					Start Got No 19
17:25				0.5	 	35		+=	82.5		 	 	┼	 		 	 	 	Burne on Time
17:27			 	0.25	 	31,640		 	25.9		 		├─	 		 	 	 	= 6 Milia
17:28		<u> </u>	 	0.00	 	16,640		 _	86	1 4	 		1	 		 	<u> </u>	 	Burn old
Trees		 	-	1	 	10.01-		1	8	 	†		 	 				 	Burger oft Problem with Surner
			1	1	†	 	1	†	 	 	1	 	1	1		1	<u> </u>		Shut off become
				1		t			†	1			1	1		1			of improve operation
		Dur		401	N	5. 17	7	e Q	pren	erra.	woo	n	dere	7.					7 7 7
	1	130	1011	-	44.44		7.	4	45	u.	10	be	1	1		1			
			(1	V				1				1					
		Bur	u.	ones	150	ele	teris	este	1 7	Keen	tes	¥ _2	vas	ter	ese '50	ted			
	†		· · · · · · · · · · · · · · · · · · ·	†					i i				İ	1					1
			İ	1															
	0.1	Sex	t at	24	of a	¥ + 4	F	=	38.	2 16	1								
		V		<u> </u>			l	1								<u> </u>			
			at	en	101	76	<u> </u>	e	23.	\$ 160									
					 '	1	L	ļ	 	1 72	ļ	<u> </u>	 	ļ	ļ	-		 	
	L		0,1	her	• (├ ──	ļ	=	1/4.	7 /61	 	├	 			 		-	
<u> </u>	L	L		↓	ļ. —	 	 	 -	1275	 	-	 		-	<u> </u>		├	 	
		Total	His	416s_	burn	4 34	 	٠	242	4114	 	├ ──	 	┼	ļ	 	 	┼	
		2	 	 	\vdash			<u> </u>	0 0 4	37/	1. 7	 	 _	12 /	14-	1, 10	\vdash	+	<u> </u>
-		1241		1 C3+	╄	 	 	 	10.00	12, 1	1 /	7114	 -	13.0	7-2	1º/ M	 	+	
-			 	 	-	+	 	+	 	 	 	+	1	\vdash		_		 	AVERAGE
			 	 	 	 	 	 	 	 	 	 	1	 			 	1	
-				 	+	 	 	 	 	 	1	 	 	1		†	_	 	

		ACU Corp	REX poration				101		PA	RTICL	JLATE	TES	TF	IELC	D	ATA	SH	EET
		Plant	· Ac	urs/	Bar	ometric Pressure	29.	87		& Number			_					
		Date	5-17	-80		tic Pressure	-12510	Hao					IMPIN VOLU	IGER IMES	TIME	COS	Oz	СО
		Test Locatio	n Furnal	E MAN	Res ' Sta	ck Pressure	29.89			Veight				277 314	+27 +64			
		Run Number	#/	HUSS	= Pro	be Number	3'gbss		BWO	FILTER	DATA	-		40	+40			
						ot Coefficient			NUMB	ER TAP	E FINAL	WT.			/st #		l	1.1
						ot Number			B-5(mb)					and	Silica	go/s	gain
		Start Time _	0	621	Met	er Box Number	0						SILI			68.9	1	
		Operator				lice Coefficient	3.7	22/									<u> </u>	
						GAS			TEMPE	RATURES *	F			PUMP	T		BEGIN	
		SAMPLE POINT	CLOCK	VELOCITY HEAD	METER	METER	STACK	PROPE	1145141055	ORGANIC	01/51	GAS I	METER	VACUU	M 🗸	戸 4	ATE	-003
			l	FEM	∆H in. wg.	VOLUME FT'	STACK	PROBE	IMPINGER	MODULE	OVEN	IN	OUT	in. Hg	<u>'</u>	é	154	8 ·
	ceal	START	0	210	.78	347.831	63	247			245	74	74	2.5				
	W -1		5	206	176	360.0	78	251	-		247	77	75	3				
			10	205	.76	379.13	78	254			249	77	75	3				
		STOP	12.9			379-88 1								<u> </u>				
Ö	0659	SMRT	12.9	215	·78	379.881	64	251			252	72	76	3				
			17.9	200	•77_	392.35	77	251			251	82	76	3	_			
			22.9	205	176	405.16	82	255			251	90	77	3				
		3700	27.3			416.015												
	0734	START	27.3	205	.78	416.015	62	261			252	78	77	13				
	•		32.3	215	.76	428.79	79	255			251	84	7	7 3	\bot			
			37,3	210	177	441.48	83	260			254	92	79	3				
		STOP	42.0			453.141						<u></u>	<u> </u>		_	_		
	0810	START	42.0	210	179	453.141	62	277			252	80	79	3	丄			
	_		47.0	200	177	445.85	77	260			253	85	79	13				
			52.0	200	.77	478.41	82	254			251	93	80	3				
			56.7			490.384	85				<u> </u>	97	81					
	0846	SMRT	56.7	200	-78	490.384	66	269			251	80	80	<u> </u>				
			61.7	200	.77	503.14	77	253			252	86	79	<u> 3</u>				
			66.7	210	.77	515.77	82	250			251	92	80	<u>. 3</u>		l		
		grop	71.4			527.752												

AVG/TOTAL

		ACU Corp	REX poration			PAGE 2	of 2		PA	RTICL	JLATE	TES	T FI	ELD	DAT	ΓΑ	SHI	EET
		Plant	"ACURI	£×	_ Bar	ometric Pressure			Nozzle Size	& Number			iMPIN	GER I				60
		Date	5-17-80	<u> </u>	Stat	ic Pressure				Weight			VOLU	MES	IME C	:O2	02	CO
		Test Location	n Furdo	CE MAN	RES Star	k Pressure												
						be Number				FILTER						- 1		
		Stack Diame	ter inches_		Pito	t Coefficient			NUMB	ER TAP	E FINA	L WT.						
		Duct Dimens	ions in. x ir	n	Pito	l Number							SILIC					
		Start Time _			Met	er Box Number							GE			j		
		Operator			Orif	ice Coefficient			L	l			ليا					
				VELOCITY	ORIFICE	GAS		.	TEMPE	RATURES °	F			PUMP				
		SAMPLE POINT	CLOCK	HEAD	METER	METER VOLUME FT ³	STACK	PROBE	IMPINGER	ORGANIC	OVEN		METER	VACUUM in. Ho	√∆P	1		
				ΔP in. wg.	Ari in. wg.					MODULE		IN	OUT	ļ	ļ	┼-		
	0925	START	71.4	210	178	527.753	68	278			252	80	81	3	├ ─	┼		
			76.4	200	177	540.40	78	264	ļ		255	86	81	3	ļ —	┦—		-
			81.4	200	177	553.1	82	259	ļ		257	93	81	3	 	-	MUCE	
49		STOP	85.2			562-678			ļ					ļ	ļ	1 "	LICA	
9	1002	START	85.2	200	177	562.678	72	269	<u> </u>		257	81	81	3	 	13"		
	•		90.2	205	.78	576.29	70	259	ļ		258	88	81	3	ļ	╄		
		<u></u>	95.2	205	177	588.68	83	258			251	96	82	3		_		
		STOP	98.9	ļ		598.062			<u> </u>					<u> </u>	<u> </u>	<u> </u>		
	1040	START	98.9	200	,78	598.062	70	259			25/	82	82	3	<u> </u>	╄		
			103,9	190	.77	610.92	77	263	ļ		252	85	82	3_	<u> </u>	ļ		
			108.9	190	.77	623.51	82	259	ļ		253	95	82	3_	ļ	↓_	,	
		870P	112.2	<u> </u>		632.972			ļ				<u> </u>	ļ	<u> </u>	1		
	//18	START	112.2	190	.79	632.972	65	270			252	8/	82	3	<u> </u>	_		
	•		117.2	190	177	644.72	78	258			ಶಿಕ್ರವ	88	82	3	ļ	-		
			122.2	180	.77	657.42	83	254	ļ		253	95	83	3	ļ	<u> </u>		
		STOP	124.7	ļ		663,809		 	ļ			<u> </u>	ļ	<u> </u>	ļ	ـــ		
	1154	START	124.7	200	,79	663.809	65	264	<u> </u>		252	82	82	3	 	-		
			129.7	190	177	-	79	266	j		253	91	Ra	13		L		

268

82

75

134.7

138.3

STUP

AVG/TOTAL

200

.77

177

698 348

350.517

END LEAR RATE 1003 C 1349

3

252

98

83

		Plant .	ACURE.	×	Đại.	PAGE OF	29.0	7	ss R							D/	ATA	SHI	EET
		Date	5-81-8	30	S1a	ilic Pressure	25 in	H20	Nozzie Si	ze & N	umber/	<u>'^5</u>		IMPIN VOLU	IGER MES	TIME	CO2	O2	СО
		Test Locatio	n Euro	ACE (MA	N RESIDSIA	ck Pressure	29.89				1			500	520				
		Run Number	,/		Pro	be Number3	" glass		BWO		ILTER DA	TA		500					
						ot Coefficient			NUM	BER	TARE		L WT.				1		
						ot Number			826	mG-				\vdash			İ		
						ter Box Number								SILIC					
						fice Coefficient	3.535							750					
				1	T	GAS			TEM	PERATI	JAES °F				T	T	干		
		SAMPLE	CLOCK	VELOCITY HEAD	ORIFICE METER	METER	27.1			080	ANIC		GAS	METER	PUMP	∡ ا،	- 1	MAK K	
				Sen wg.	∆H in. wg.	VOLUME FT	STACK	PROBE	IMPINGE		DULE	OVEN	IN	OUT	in. Hg		· •	OUB B	aco
	0621	STORT	0	210	3.8	524./33	63	386		5	54	401	76	18	/3				
			5	206	3.9	545.00	78	376		5	5	<i>3</i> 97	77	RUN 78	13				
		STOP	12.9			578.W2											\top		
	0659	START	12.9	215	4.0	578.412	64	303			56	399	75	76	13				
50			17.9	200	40	599.3	77	378		5	6	397	79	76	13				
			22.9	206	4.0	620.4	82	377		5	7	397	86	77	13				
		STOP	27.3			639,063													
	0734	START	27.3	205	4.0	639.053	62	384		5	ર્ક	395	77	77	13				
	•		32.3	216	40	660.3	79	375		5	4	395	81	77	/3				
			37.3	210	410	681.7	83	376			14	394	88	79	13		5	9060	pnol
	asio	STOP	42.0			701.465								<u> </u>					
		START	42.0	210	4.0	701.465	62	406			55	399	79	79	14				
			47.0	200_	4.0	722.9	77	377	<u> </u>		6	397	84	79	14				
			59.0	200	40	744.2	82	379	<u> </u>	و ا	59	397	92	81	14				
		STOP	56.7			764-178	85	380	<u> </u>	6	0	397	96	84					
	0846	START	667	200	40	764.178	66	390	<u> </u>	5	0	399	77	79	14				
			61.7	200	4.0	785.7	76	382	<u> </u>		7	397	84	80	14				
			66.7	210	4.0	807.2	81	380		5	7	396	89	81	14				
		STOP	71.4			827.414													
	A025	CTART	71.4	210	440	Razinu	65	41910	j	15	4	400	81	81	14				

AVG/TOTAL

	-	ACUI Corp	REX oration			PAGE 2 OF	c 4	SAS	ss <u>Pa</u>	RTICL	LATE	TES	T F	ELD	DA	ГА :	SHE	ET
		Plant	ACUREY	·	. Baro	ometric Pressure.			Mossie Core	& Number			- AADIA	OFD I				
		Date	5-21-8	0	State	c Pressure			NOZZIE SIZE				IMPIN VOLU	MES	TIME C	CO2	O ₂	со
		Test Location	FURNA	ce Conn	RESADETAC	k Pressure			BWO	veignt						İ		
	-	Run Number			Prot	oe Number				FILTER	DATA		├ ──┤			Ì		
	,	Stack Diamet	er inches		Pilo	t Coefficient			NUMB	ER TAR	E FINA	L WT.	┝─┤		i		1	
	(Duct Dimens	ions in. x in	· 	Pito	t Number		· · · · · · · · · · · · · · · · · · ·					SILI			1	1	
	,	Start Time _		· · · · · · · · · · · · · · · · · · ·	Met	er Box Number							GE					
		Operator		· · · · · · · · · · · · · · · · · · ·	Orif	ice Coefficient			L									
						GAS			TEMPE	RATURES °	F	_		PUMP		T		
		SAMPLE POINT	CLOCK	VELOCITY HEAD	ORIFICE METER	METER				ORGANIC	OVEN	GAS	METER	VACUU	4 √ΔP			
		POINT	711012	AP In: WY.	ΔH in. wg.	VOLUME FT	STACK	PROBE	IMPINGER	MODULE	OVEN	IN	OUT	in. Hg				
			76.4	200	4.0	848.9	78	384		55	397	85	81	14	<u> </u>	CHI	- GEL	
			81.4	200	4.0	870.0	82	380		54	396	91	82	14			Tmh_	
		STOP	86.2			886.273										Clore	deno	1/2
	w2	STAT	86.2	200	4.0	886.273	72	44		55	401	81	81	13				
•	~	3//#/	90.2	205	4.0	907.5	70	383		51	397	90	82	(3				
5			952	205	4.0	929.1	83	342		51	397	102	85	13				
		Stop	98.9			944.715								<u> </u>				
	b40	START	98.9	200	4.0	944.715	70	414		55	400	84	84	12				
			103.9	190	40	966.2	.18	38/_		51	398	84	83	12		┸		
			108.9		4.0	987.8	82	378		53	397	92	84	12				
		STOP	112.2			1001.873								<u> </u>	.	丄		
	1118	START	112.2	190	4.0	1001-873	65	394	<u> </u>	52	401	81	83	13				
			117.2	190	4.0	1023,3	78	383	<u> </u>	51	399	84	83	13	<u></u>			
			122.2	180	4.0	1044.8	83	382	<u> </u>	53	397	91	84	/3	<u> </u>	1		
		STOP	124.7			1055.494									<u> </u>			
	1154	START	124.7	200	4.0	1055.494		413	<u> </u>	59	399	82.	82	13				
,	1		129.7	190	4.0	1078.	79	380	<u> </u>	56	398	89	83	13				
			134.7	200	4.0	1698,3	82	378		57	396	93	84	/3				
		STOP	138.3			1113:818								<u> </u>				
		START		185	4.0	1113.818	68	385		62	396	83	83	13				

START 138.3

AVG/TOTAL

		Corr	REX poration			PAGE 3 of		Sas	s .pa	ATIC	LATE	-TES	T FI	ELD	D	ATA	SHI	EET
		Plant	<i>Scule</i> ×	· • · · · · · · · · · · · · · · · · · ·	Bar	ometric Pressure _	····		Nozzie Size	& Number			il double					
		Date	5-01-6	<u> </u>	Sta	ic Pressure				Neight			IMPIN(VOLUI	MES	TIME	COs	Oz	co
		Test Locatio	n Fueni	ACE CIMM	· Residela	ck Pressure			BWO	//o.y								
						be Number			BWU	FILTER	DATA							
		Stack Diame	Her inches		Pito	t Coefficient			NUMB	ER TAR	E FINAL	. WT.	-	-				
		Duct Dimens	sions in. x i	n	Pito	1 Number			L									
		Start Time _			Met	er Box Number							SILIC					
		Operator			Ori	ice Coefficient			<u> </u>								<u> </u>	
			<u> </u>	Ī		GAS			TEMPE	RATURES .	F				T	Т		
		SAMPLE POINT	CLOCK	VELOCITY HEAD AP in: wg:	ORIFICE METER AH in. wg.	METER VOLUME FT'	STACK	PROBE	IMPINGER	ORGANIC MODULE	OVEN	GAS I	OUT	PUMP VACUUI in. Hg	, v –	ΙP		
			143.3	185	4.0	1136.	フフ	378		63	396	87	84	73	2			
			48.3	185	4.0	1156,2 RUN	81	374		64	396	93	85	13				
		STOP	151.6			1170.295									<u>. </u>			
	1308	· START	151.6	180	4.0	1170.295	67	384		69	401	83	84	/3		5	emovii arint	GRS
J.			1566	180	4.0	191.5	76	377		61	399	85	84	13				
Ϋ,			161.6	180	40	1213.4	81	380		57	398	92	85	/3			19ml CONDER	SPE
		STOP	162.9			1218.916												
	1347	_		190	4.0	1218.916	66	391		52	401	82	84	10	>			
	,,		167.9	180	40	1240.3	76	379		50	399	84	84	10				
			172.9		4.0	1261.8	8/	379		51	398	90	84	10				
		Stop	1760			1274.944												
	1426	START	176.0		4.0	1274.944	73	390		52	400	8/	83	10	5			
			181.0	180	4.0	1296.6	78	378		50	399	84	83	10	\Box			
			186.0	1	4.0	1319.	82	380		50	398	90	84	10	,			
		STOP	188.7			1329 388												
		START		195	4.0	1329.388	73	395		51	401	81.	82	10	,		· · · · · · · · · · · · · · · · · · ·	
			193.7	175	4.0	1350.9	77	385		49	398	83	82	10	5			
			198.7		40	372.4	82	383	1	50	399	90	1	1	$\sqrt{}$			

1382 355 1382 355

4.0

180

76

401

STOR 201.0

1538 START 201.0

AVG/TOTAL

81

82

10

392

ACUREX Corporation	
--------------------	--

PAGE 4 OF 4 SASS PARTICULATE TEST FIELD DATA SHEET

Plant Picker Barometric Pressure	Nozzie Size & Number IMPINGER TIME CO. 02 C	
Date FURNICE (MON. RESID) - Static Pressure	MOZZIE SIZE & NUMBER TIME CO2 O2 CO	٥
Test Location Stack Pressure	BWO	
Run Number Probe Number		
Stack Diameter inches	NUMBER TARE FINAL WT.	
Duct Dimensions in. x in Pitot Number		
Start Time Meter Box Number	SILICA GEL	
Operator Orifice Coefficient		لــ

T				GAS			TEMPE	RATURES °	F			PUMP		İ
. SAMPLE POINT	CLOCK	VELOCITY HEAD	ORIFICE METER	METER	STACK	PROBE	IMPINGER	ORGANIC	OVEN	GAS	METER	VACUUM	√∆P	
		FPM	ΔH in. wg.	VOLUME FT	STACK	PHOBE	IMPINGER	MODULE	OVEN	IN	OUT	in. Hg		
	206.0	155	4.0	1403,7	79	384		50	399	85	82	10		
	211.0	145	4.0	1427.	82	381		50	398	90	84	10		
STOP	213.6			1436.314										
START	213.6	160	4.0	1436.314	76	388		522	401	83	83	10		
	218.6	150	4.0	1457.6	78	378		51	399	86	83	10		
	223.6	145	4.0	1479.4	82	375		52	398	92	84	10		
STOP	226.1			1489.954										
START	286.1	145	4.0	1489 954	73	393		53	399	83	83	10		
	231.1	135	4.0	1511.2	77	378	<u> </u>	52	398	87	84	10		
<u> </u>	236 6	125	4.0	1535.2	81	375		53	397	94	85	10		LEAK CHEC
STOP	241.5			1555.997			ļ							1018@
							1				ļ			14-in th
							ļ. <u></u>							
į 						ļ								
						ļ								
		<u> </u>	ļ			<u> </u>	ļ			<u> </u>				· · · · · · · · · · · · · · · · · · ·
						ļ <u>.</u>	ļ							
						 	ļ							
					···									
											ļ			
AVG/TOTAL	<u> </u>			1031864	76					8	4			F FFD 004 4

		ACL Cor	JREX poration <i>Acuse</i> :	×	Q _n ,	PA rometric Pressure_	GE 104 29.0			RTICL			ST FI	ELD	DAT	TA	SHI	EET
			5-17-80)	Da	itic Pressure		·	1402216 2126			7/ <u>3</u>	IMPIN VOLU	GER T	IME C	CO2	O2	СО
		Test I ocatio	an Lugara	CE MAN	REG. O.	4	125.4	4-	MOICCUIAI I	Weight			102	55		\dashv		
		Run Numbe	or # /	HEATE METHOD	R 8 Pro	obe Number	1 BLACE		BWO	FILTER			100			j		1 1
		Stack Diame	eter inches_	4"		ot Coefficient			NUMB			L WT.	0	3				1
					Pito								(vi	8			-	
		Start Time				ter Box Number	043						SILIC	CA				
		Operator	Tree			fice Coefficient	.716						250					
				T		GAS			TEMPE	RATURES *	F					T	EAL R	2076
		SAMPLE	CLOCK	VELOCITY HEAD	METER	METER	STACK	PROBE	IMPINGER	ORGANIC	OVEN	GAS	METER	PUMP VACUUM	√AP	1.0	0/5€	2
		<u></u>	<u> </u>	ΔP in. wg.	ΔH in. wg.	VOLUME FT	STACK	PROBE	IMPINGEH	MODULE	OVEN	IN	OUT	in. Hg		13	5 hc/	
	1947	START	0	190	1.97	698.902	67	250				81	81	5		L	•	
			5	180	194	702.59	76	269				81	81	5	<u> </u>			
			10	185	1.924	706.31	8/	260				81	81	5				
		STOP	13.0		<u> </u>	708.562												
54	1426	START	13.0	190	1.95	708.562	73	253				81	8/	5				
	•		18.0	180	1.93	7/2.25	78	261				81	81	5		丄		
			23.0	185	1.92	715.88	82	275				81	81	5				
		500	25.7			717.964							<u> </u>	<u> </u>				
	1504	START	25.7	195	1.95	717.964	73	268				80	8 €0	5				
			30.7	175	1.95		80	267	ļ			80	8/	5	<u> </u>	丄		
			36.7	165	1.92		82	273				81	81	5		丄		
		STOP	38.0			727.145		ļ				<u> </u>		<u> </u>	 			
	V238	START	38.0	180	1.94	727.145	76	261				81	81	5	<u> </u>	丄		
			43.0	155	1.93	729.58	79	274				81	81	5	<u> </u>	4		
			48.0	145	1.92		82	273				81	81	5	<u> </u>			
			50.6			736,487						<u> </u>	<u> </u>					
	1615	START	50.6	160	194	7.36 : 487	76	278				81	81	5	<u> </u>			
			55.6	150	1.94	740.15	77	274				81	80	5	 	\bot		
		_	60.6	145	1.92	743.91	82	275			!	81	80	5	 	1		
		STOP	63,2			745.815			ļ						 	4		
		1							. 1									

		ACU Corp		r¢	Baro	pometric Pressure	PAGE S	2012						; T F	IELD	DA	TA	SHI	EE
		Date	5-17-8	0	Stat	ic Pressure			Nozzle Size	& Nur	mber			VOL	IGER T	IME	CO2	Oz	CO
		Test Location	Guarra	e man	RES SIN	at Process			Molecular V	Weight_									
		Dun Mumba		HEAT	eR Don	ck Pressure			BWO		TER DAT								
						be Number			NUMB		TARE		L WT.						
						t Coefficient										ļ			l
						t Number			<u> </u>	一十		1		SIL		- 1			
		Start Time _			Met	er Box Number				-		╁┈		GE		- 1	1		
		Operator			Orif	ice Coefficient													_
		SAMPLE	CLOCK	VELOCITY	ORIFICE	GAS		 	TEMPE	RATU	RES °F				PUMP	۱_	.		
		POINT	TIME	HEAD ΔP in. wg.	METER AH in. wg.	METER VOLUME FT ³	STACK	PROBE	IMPINGER	ORGA MOD		OVEN	GAS I	OUT	VACUUM in. Hg	√∆P			
	1648	START	63.2	145	1.95	745.815	74	275					81	81	5	<u> </u>			
			68.2	135	1.94		フフ	271					81	81	5	<u> </u>	\bot		
			73.5	125	1.92	753.48	81	273					81	81	5	<u> </u>	\bot		
!		3100	76.5			757.249								ļ		 			
55	בברו	START	76.5	130	1.94	757249	77	261	ļ <u>.</u>				87	81	5	 	\bot		
	1 7000		81.5	135	1.94	759.36	80	266	<u> </u>				81	81	5	<u> </u>			
			86.5	135	1.92	763.12	82	267	ļ				8/	8/	5	<u> </u>	┵		
		STOP	87.5		ļ	763,913							ļ		ļ	↓		ND L	
					<u> </u>			<u> </u>								├	_ê	ATE .	9-8
					<u> </u>														
								<u> </u>			\dashv					-	+		
				-															·····
								ļ	<u> </u>						-	<u> </u>			
		<u></u>		ļ	 			 	-				 		+	┼	-		
			ļ <u>.</u>	 	 			 	 						+	┼──	+		
			-	 				 -	 				 	 	 	┼	-		
		<u> </u>	<u> </u>		 		· · · · · · · · · · · · · · · · · · ·	 	 				ļ		 	 	+-		

1.94

AVG/TOTAL

65.011

SECTION 5 ANALYTICAL LABORATORY RESULTS

5.1 FUEL ANALYSIS REPORT

LABORATORY CERTIFICATE

ACURLA

CURTIS & TOMPKINS, Ltd.

ANALYTICAL. CHEMISTS - CONSULTING

SAMPLERS - INSPECTORS

MEMBERS OFFICIAL CHEMISTS AND/OR SAMPLERS FOR MANY COMMODITY AND TRADE ORGANIZATIONS

CORPORATE OR STAFF MEMBERSHIP IN PRINCIPAL SCIENTIFIC SOCIETIES

290 DIVISION STREET SAN FRANCISCO, CALIF. 94103 U.S.A.

CABLE ADDRESS AMALYST

REFEREE ANALYSES
RESEARCH — INVESTIGATIONS
UITAMIN ASSAYS — BIOCHEMISTRY

SPECIALISTS IN BULK COMMODITIES

Laboratory No. 80k10 Preliminary No. 4132

~ Reported 10/6/80 Sampled Received 9/8/80

ACUREX CORPORATION

Report on 5 samples of Oil

Mark

Sample # Sample Type (5) 80-1562, Fuel Oil

(All) Project No.: 7601.22, Customer No.: RB 59186A, rel. 01, Prime Contract: 68-02, 3188, Acurex Project: 7601, Date: September 5, 1980, Subcontract No.: RB59186A.

(5)

	,	<i>J</i>)	
	lst	2nd	3rd
	Test	Test	Test
Carbon (C),%	86.94		
Hydrogen (H), %	12.90		
Oxygen (0), by difference,%	0.01*		
Nitrogen (N), %	0.03	0.04	0.05
Sulfur (S),%	0.18	0,20	0.20
Heating Value: BTU/Pound	19,190		
Gravity, · OAPI @ 60°F	33.75		
5 ···• ·			

*Less Than

Curtis & somfilmo det.

5.2 PARTICULATE GRAVIMETRIC ANALYSES AND MASS EMISSION CALCULATIONS

PARTICULATE CALCULATIONS

FOR HIGH VOLUME STACK SAMPLER - METHOD 5

1. Volume of dry gas sampled at standard conditions, 68°F, 29.92 inch Hg (scf)

$$Vm_{std} = 17.64 \frac{Vm}{\alpha} \left(\frac{P_b + \frac{\Delta H}{13.6}}{T_{m,avg} + 460} \right) = 17.64 \left(\frac{350.517}{1.013} \right) \left(\frac{29.87 + 0.77}{543} \right)$$
or
$$Vm_{stack} = \left(\frac{Vm}{\alpha} + Vw_{std} \right) \left(\frac{T_{s,avg} + 460}{T_{m,avg} + 460} \right) \left(\frac{P_m}{P_s} \right)$$
 (acf at stack conditions)
$$= 336.4$$

2. Stack gas moisture condensed at standard conditions (scf)

$$Vw_{std} = 0.04707 VI_{c}$$

= 0.04707 (179.9) = 9.409

3. Stack gas proportion of water vapor, by volume

$$B_{wo} = \frac{Vw_{std}}{Vw_{std} + Vm_{std}}$$

$$= \frac{9.409}{9.409 + 336.4} = 2.7\%$$

4. Stack gas dry molecular weight (lb/lb-mole)

$$MW_{d} = 0.44 (\%CO_{2}) + 0.32 (\%O_{2}) + 0.28 (\%N_{2} + \%CO)$$

$$= 0.44 (12.9) + 0.32(1.9) + 0.28(85.2) = 30.14$$

5. Stack gas molecular weight (lb/lb-mole)

$$MW_s = MW_d (1 - B_{wo}) + 18 (B_{wo})$$

= 30.14(1-0.027) + 18 (0.027) = 29.81

6. Pressure stack, in. Hg

$$P_s = P_b + \frac{P_{st}}{13.6}$$

$$= 29.89$$

7. Stack gas velocity at stack conditions (ft/sec)

$$V_s = 85.49 (C_p) (\sqrt{\Delta P})_{avg} \sqrt{\frac{T_{s,avg} + 460}{P_s MW_s}}$$

= 200 ft/min = 3.3 ft/s

 $V_s = 85.49 (C_p) (\sqrt{\Delta P})_{avg} \sqrt{\frac{T_{s,avg} + 460}{P_s MW_s}}$ Velocity was not detectable with Pritot tube or inclined water manameter. Stack gas velocity was measured with hot wire anemometer

8. Stack gas volume at standard conditions (scfm)

$$Q_{s} = 60 (1 - B_{wo}) V_{savg} A_{s} \left(\frac{528}{T_{s,avg} + 460} \right) \left(\frac{P_{s}}{29.92} \right) =$$
or $Q_{a} = 60 V_{savg} A_{s} (acfm) = \frac{60(1 - 0.027)(3.3)}{4(1/44)} \frac{\sqrt{^{2}77}}{\sqrt{15+460}} \left(\frac{528}{75+460} \right) \frac{29.89}{\sqrt{29.92}} = \frac{16.72}{\sqrt{9.92}}$

9. Test percent isokinetic

$$\%I = \frac{17.33 (T_{s,avg} + 460) [0.04707 (W_{IC}) + Vm_{std}]}{\theta V_s P_s D_n^2}$$

$$= 104.4 \%$$

10. Particulate matter concentration, gr/scf

$$C_s = 15.432 \frac{M_p}{Vm_{std}} = \frac{15.432 (0.0175 grads)}{336.4} = \frac{8.028 \times 10^{-4}}{Vm_{stack}}$$
or $C_a = 15.432 \frac{M_p}{Vm_{stack}}$ (gr/acf) =

11. Emission rate of particulate matter, lb/hr

ER = 0.00857 (
$$Q_s$$
) Q_s
= $0.00857 (16.72) (P.028 \times 10^{-4}) = 1.15 \times 10^{-4} /6/hr$
= $0.00657 (16.72) (P.028 \times 10^{-4}) = 1.15 \times 10^{-4} /6/hr$
= $0.0063 /5 /10^{6} 3 t_w$
= $0.0063 /5 /10^{6} 3 t_w$
= $0.0063 /5 /10^{6} 3 t_w$
= $0.0063 /5 /10^{6} 3 t_w$
= $0.0063 /5 /10^{6} 3 t_w$
= $0.0063 /5 /10^{6} 3 t_w$
= $0.0063 /5 /10^{6} 3 t_w$

13. Emission rate of particulate matter, Ib/106 Btu

E = 2.679 x 10⁴
$$\left(\frac{M_p}{Vm_{std}}\right) F\left(\frac{20.9}{20.9 - \%O_2}\right)$$

PARTICULATE CALCULATIONS

1. Volume of dry gas sampled at standard conditions, 68°F, 29.92 inch Hg (scf)

$$Vm_{std} = 17.64 \frac{Vm}{\alpha} \left(\frac{P_b + \frac{\Delta H}{13.6}}{T_{m,avg} + 460} \right) = 17.64 \frac{1031.864}{1,003} \left(\frac{24.87 + \frac{4}{13.6}}{544} \right) = 1006.263$$
or
$$Vm_{stack} = \left(\frac{Vm}{\alpha} + Vw_{std} \right) \left(\frac{T_{s,avg} + 460}{T_{m,avg} + 460} \right) \left(\frac{P_m}{P_s} \right) \text{ (acf at stack conditions)}$$

2. Stack gas moisture condensed at standard conditions (scf)

$$Vw_{std} = 0.04707 VI_{c}$$

= 31.311

3. Stack gas proportion of water vapor, by volume

$$B_{wo} = \frac{Vw_{std}}{Vw_{std} + Vm_{std}}$$

$$= \frac{31.311}{1006.265 + 31.311} = 3.0\%$$

4. Stack gas dry molecular weight (lb/lb-mole)

$$MW_d = 0.44 (\%CO_2) + 0.32 (\%O_2) + 0.28 (\%N_2 + \%CO)$$

= 30.14

5. Stack gas molecular weight (lb/lb-mole)

$$MW_{s} = MW_{d} (1 - B_{wo}) + 18 (B_{wo})$$
$$= 30.14 (1-3.0) + 18 (3.0)$$

6. Pressure stack, in. Hg

$$P_8 = P_b + \frac{P_{st}}{13.6}$$

7. Stack gas velocity at stack conditions (ft/sec)

$$V_s = 85.49 (C_p) (\sqrt{\Delta P})_{avg} \sqrt{\frac{T_{s,avg} + 460}{P_s MW_s}}$$

= $v = 200 \text{ ft/min} \approx 3.3 \text{ ft/s}$

Velocity was to small to be detected

Velocity was to small to be detected

Velocity was to small to be detected

with pitot tube or inclined water

manometer _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas velocity was

meanieter _ Stack gas ve

8. Stack gas volume at standard conditions (scfm)

$$Q_{s} = 60 (1 - B_{wo}) Vs_{avg} A_{s} \left(\frac{528}{T_{s,avg} + 460}\right) \left(\frac{P_{s}}{29.92}\right) =$$
or $Q_{a} = 60 Vs_{avg} A_{s} (acfm) = 60 (1-0.03) 3.3 \frac{\pi}{4(144)} \frac{42}{75+460} \frac{27.87}{27.72} = 16.53$

9. Test percent isokinetic

$$\%I = \frac{17.33 (T_{s,avg} + 460) [0.04707 (W_{Ic}) + Vm_{std}]}{\theta V_s P_s D_n^2}$$

$$= 178 \frac{2}{3}$$

10. Particulate matter concentration, gr/scf

$$C_s = 15.432 \frac{M_p}{Vm_{std}} = 15.432 \frac{0.0240}{1006.26} = 0.0004$$

or $C_a = 15.432 \frac{M_p}{Vm_{stack}} (gr/acf) =$

11. Emission rate of particulate matter, lb/hr

ER = 0.00857 (
$$Q_s$$
) Q_s
= 0.00857 (16.53)(0.0004) = 0.0001 | 16/hr
= 0.0029 | 15/hr
12. Percent excess air at sampling point = 1.22 mg/s
% EA = $\frac{100 [\% Q_2 - 0.5 (\% CO)]}{0.264 \ \% N_2 - (\% Q_2 - 0.5 \times \% CO)}$

13. Emission rate of particulate matter, lb/10° Btu

E = 2.679 x 10°
$$\left(\frac{M_p}{Vm_{std}}\right) F\left(\frac{20.9}{20.9 - \%O_2}\right)$$

5.3 SULFUR ANALYSIS REPORT AND EMISSION CALCULATION

Haso4 Mist and SO2 Clean-Up and Analysis

Project No. <u>CHE/</u>						coll
H ₂ \$O ₄ A	list and S	O ₂ Train De	scription a	and Recove	ry Data	
mpinger Sequence mpinger Number G-S Standard () G-S Modified () Contents Concentration (°) nitial Volume (mi) Final Volume (ml) Container Number	1	100	3 H.C. 3 100 113		5 S. O. 250.09 276 85	6
Location of glass wool Location and type of file Total Condensate (No. 8-7) 45 A H2O2 Sample Blank No. PA Sample Blank No.		cin <u>glas</u> Cs	i filter_	···	05) 0.011 (±	<u> - 2.34</u> x12
, , , , , , , , , , , , , , , , , , ,		2\$O4 and \$	•	is		
Sample Number	102	103.				1
Volume of Tite ent for Sample (ml)	al	19.4			-	
Valume of Titrant for Blank (ml)	0.1	0.05				
Normality of Titrant	0.011	0.011				
T	250	250				
Ttl. Vol. of Soln. (ml)		510		İ		
Volume of Sample Aliquot Titrated (ml)	100	3/0				

5.4 TRACE ELEMENT ANALYSIS REPORT

COMMERCIAL TESTING & ENGINEERING CO.

BEHERAL OFFICES: 238 HORTH LA BALLE BTREET, CHICABO, ILLINOIS 80601 · AREA CODE 212 728-8434 MISTRUMENTAL AMALYSIS DIVISION, 14225 WEST ASTH AVENUE, GOLDEN, COLORADO 80401, PHONE: 283-278-9221

Reply to

Mr. Brent Higginbotham Acurex Corporation 485 Clyde Ave. Mountain View. CA 94042

Dote: September 23, 1980

IAD No.: 97-E697-116-28

Analyst: T. Bouts

P. O. No.:

Semple No.: 80-1535

XAD- BLANK

SPARK SOURCE MASS SPECTROGRAPHIC ANALYSIS
CONCENTRATION IN PPM WEIGHT

ELEMENT CONC ELEMENT CONC ELEMENT CONC ELEMENT CONC Terbium 0.3 Uranium Ruthenium -Vanadium Gadolinium 0.4 2 Thorium **Molybdenum** Titanium < 0.1 Niobium Scandium < 0.1 Bismuth Europium 170 0.6 Zirconium 1 Calcium Lead Samarium < 0.1 24 Neodymium Potassium Thallium Yttrium NR Praseodymium 0.2 0.2 Chlorine 1 Strontium Mercury 0.9 < 0.1 9 Sulfur Rubidium **Gold** Cerium 2 0.4 26 **Phosphorus** Platinum Lanthanum Bromine 1 0.2 Silicon *MC Selenium Iridium Barium 13 < 0.1 Aluminum Arsenic Osmi um Cesium 17 <0.1 0.2 Magnesium Rhenium Iodine Germanium 0.1 98 Gallium Sodium **Tungsten** Tellurium =3 6 <0.6 0.2 Fluorine Tantalum Antimony Zinc NR 13 Hafnium Tin 0.1 Copper Oxygen MC NR STD Lutetium Indium **Nickel** Ni trogen NR 3 Ytterbium Cobalt Carbon Cadmium 120 < 0.1 Thul tum Silver Iron Boron 39 Beryllium Erbium Palladium Manganese 0.1 29 Holmium Rhodium Chromium Lithium NR Hydrogen Dysprosium * Heterogeneous

STD - Internal Standard

NR - Not Reported

All elements not detected < 0.1 ppm

MC - Major Component

INT - Interference

Annound:

M Specolo

COMMERCIAL TESTING & ENGINEERING CO.

GENERAL OFFICES: 330 NORTH LA SALLE STREET, CHICAGO, ILLINOIS 80801 · AREA CODE 312 728-8434 INSTRUMENTAL ANALYSIS DIVISION, 14235 WEST 44TH AVENUE, GOLDEN, COLORADO 80401, PHONE: 303-278-9321

Reply to

To: Mr. Brent Higginbotham **Acurex Corporation** 485 Clyde Avenue Mountain View, California 94042

Date: September 26, 1980

Analyst: T. Bouts

P. O. No.:

Semple No.: 1475 MAN TEST

SPARK SOURCE MASS SPECTROGRAPHIC ANALYSIS

IAD No.: 97-E697-116-28

CONCENTRATION IN ug/ml 1st IMPINGER BLANK ELEMENT CONC. ELEMENT CONC. ELEMENT CONC ELEMENT CONC. Uranium Terbium Ruthenium Vanadium 0.002 Thorium Gadolinium Molybdenum 0.05 Titanium 0.01 Bismuth Europium Niobium Scandium 0.001 Lead <0.02 Samarium Zirconium 0.01 Calcium 6 Thallium Neodymium Yttrium Potassium 2 Mercury NR 0.006 Chlorine Praseodymium Strontium 0.3 Gold Cerium Rubidium Sulfur 0.2 Platinum Lanthanum Bromine 0.02 Phosphorus 3 Iridium Barium * 1 Selenium Silicon 0.4 Osmium Cesium Arsenic Aluminum 0.3 Iodine Rhenium 0.01 German i um 0.08 Magnesium Tungsten Tellurium Gallium . Sodium * 6 Tantalum Antimony 0.07 Fluorine Zinc **≃0.1** Hafnium Tin 0.2 0.07 Oxygen Copper NR Lutetium Indium STD 0.03 Nitrogen Nickel NR Ytterbium Cadmi um 0.004 Carbon Cobalt NR Thulium 0.5 Silver 0.09 Boron Iron 0.001 Erbium Palladium 0.006 Beryllium Manganese Ho 1 mium Rhodium 0.006 Lithium Chromium 0.002 Dysprosium NR Hydrogen STD - Internal Standard NR - Not Reported All elements not detected < 0.004 µg/m]

MC - Major Component INT - Interference >10 µg/m7

Reply to

MENERAL OFFICES: SES WORTH LA SALLE STREET, CHICAGO, ILLINOIS 60601 - AREA CODE 312 730-8434 MISTRUMENTAL AMALYSIS DIVISION, 14335 WEST 44TH AVENUE, GOLDEN, COLORADO 80401, PHONE: 302-278-9321

To: Mr. Brent Higginbotham Acurex Corporation 485 Clyde Ave. Mountain View. CA 94042

Date: September 25, 1980

Analyst: T. Bouts

P. O. No.:

FILTER BLANK

Sample No.: A-45 Blank Spark source mass spectrographic analysis IAD No.: 97-E697-116-28

> ug/cm² **CONCENTRATION IN**

ELEMENT CONC. ELEMENT CONC. ELEMENT CONC. ELEMENT CONC. <0.008 0.02 Uranium Terbium Ruthenium **Vanadium** 0.01 0.9 0.005 Thorium **Gadolinium** Molybdenum Titanium 0.01 0.002 Bismuth Niobium Scandium Europium 0.007 0.05 MC Calcium Lead Samarium Zirconium 0.5 0.004 0.003 Thallium Neodymium Yttrium Potassium 0.003 0.4 NR 0.04 Praseodymium Strontium Chlorine Mercury 0.8 Gold <0.001 0.01 Rubidium < 0.001 Sulfur Cerium 0.07 0.02 0.03 **Phosphorus** Platinum Lanthanum **Bromine** 0.005 MC 0.2 Selenium Silicon Iridium Barium 0.001 MC Osmium Cesium Arsenic Aluminum 0.001 **Magnes i um** Rhen i um Iodine Germanium >2 800.0 0.01 Sodium Tungsten Tellurium Gallium **≈0.005** 0.01 Fluorine Tanta lum Antimony Zinc 0.01 NR **Oxygen** Hafnium Tin Copper 0.01 NR STD Nickel Ni trogen Lutetium Indium < 0.001 NR Carbon Ytterbium Cadmium Cobal t 0.001 0.2 0.9 Boron Thulium Iron Silver 0.003 Beryllium **Erbium** Manganese Palladium 0.02 <0.001 Lithium Holmium Chromium Rhodium Hydrogen Dysprosium

STD - Internal Standard

NR - Not Reported

All elements not detected <0.001 µg/cm² MC - Major Component > 10 µg/cm²

INT - Interference

N Specols

Reply to

GENERAL OFFICES: 226 HOFTH LA SALLE STREET, CHICAGO, ILLINOIS 56601 - AREA CODE 312 726-6434 HISTRUMENTAL ANALYSIS DIVISION, 16325 WEST 44TH AVENUE, GOLDEN, COLORADO 80401, PHONE: 303-278-9321

To: Mr. Brent Higginbotham Acurex Corporation 485 Clyde Ave. Mountain View, CA 94042

Date: September 24, 1980

Analyst: L. Jacobs

P. O. No.:

Semple No.: 80-1312

TAP WATER BLANK

SPARK SOURCE MASS SPECTROGRAPHIC ANALYSIS IAD No.: 97-E697-116-28 CONCENTRATION IN µg/m]

ELEMENT	CONC.	ELEMENT	CONC.	ELEMENT	CONC.	ELEMENT	CONC.
Uranium		Terbium	-	Ruthenium	-	Vanadium	<0.001
Thorium		Gadolinium		Molybdenum	0.1	Titanium	0.1
Bismuth		Europium		Niobium	0.005	Scandium	
Lead	0.01	Samarium		Zirconium	0.02	Calcium	10
Thallium		Neodymium		Yttrium		Potassium	0.05
Mercury		Praseodymiu	m	Strontium	0.02	Chlorine	MC
Go1d		Cerium		Rubidium	≤0.002	Sulfur	0.4
Platinum		Lanthanum		Bromine	0.1	Phosphorus	0.9
Iridium		Barium	0.02	Selenium		Silicon	0.2
Osmi um		Cesium		Arsenic	0.004	Aluminum	0.004
Rhenium		Iodine		Germanium		Magnesium	MC
Tungsten		Tellurium		Gallium	0.009	Sodium	0.2
Tantalum		Antimony		Zinc	0.04	Fluorine	≃0.004
Hafnium		Tin		Copper	0.002	0xygen	NR
Lutetium		Indium	STD	Nickel	0.003	Ni trogen	NR
Ytterbium		Cadmium		Cobalt 1	≤ 0.002	Carbon	NR
Thulium		Silver		Iron	0.2	Boron	<0.001
Erbium		Palladium		Manganese	0.006	Beryllium	
Holmium		Rhodium		Chromium	0.07	Lithium	INT
Dysprosium	Chandand	* He	terogeneou	ıs		Hydrogen	NR

STD - Internal Standard

NR - Not Reported

All elements not detected < 0.002 µg/m1 MC — Major Component > 10 µg/m1 MT — Interference

M Specols

Reply to

GENERAL OFFICES: 228 NORTH LA BALLE STREET, CHICAGO, ILLINOIS 80601 - AREA CODE 212 728-8454 INSTRUMENTAL AMALYSIS DIVISION, 14225 WEST 46TH AVENUE, GOLDEN, COLORADO 80401, PHONE: 300-278-9521

To: Mr. Brent Higginbotham **Acurex Corporation** 485 Clyde Ave. Mountain View, CA 94042

Date: September 24, 1980

Analyst: T. Bouts

P. O. No.:

Sample No.: 80-1313 WATER TANK BANK SPARK SOURCE MASS SPECTROGRAPHIC ANALYSIS IAD No.: 97-E697-116-28 CONCENTRATION IN µg/ml

ELEMENT	CONC.	ELEMENT	CONC.	ELEMENT	CONC.	ELEMENT	CONC.
Uranium		Terbium		Ruthenium		Vanadium	0.003
Thorium		Gadolinium		Molybdenum	*0.1	Titanium	0.1
Bismuth		Europium		Niobium		Scandium	<0.001
Lead	0.03	Samarium		Zirconium	0.02	Calcium	10
Thallium		Neodymium		Yttrium		Potassium	2
Mercury	NR	Praseodymiu	m	Strontium	0.03	Chlorine	8
G o1d		Cerium		Rubidium	0.006	Sulfur	2
Platinum		Lanthanum		Bromine	0.3	Phosphorus	0.4
Iridium		Barium	0.2	Selenium		Silicon	2
Osmi um		Cesium		Arsenic	0.002	Aluminum	0.2
Rhenium		Iodine	0.01	Germanium		Magnesium	0.5
Tungsten		Tellurium		Gallium	<u><</u> 0.007	Sodium ·	2
Tantalum		Antimony		Zinc	*2	Fluorine	=0.1
Hafnium		Tin		Copper	4	Oxygen	NR
Lutetium		Indium	STD	Nickel	0.04	N i trogen	NR
Ytterbium		Cadmium		Cobalt	0.005	Carbon	NR
Thulium		Silver		Iron	0.3	Boron	0.002
Erbium		Palladium		Manganese	0.01	Beryllium	
Holmium		Rhodium		Chromium	0.008	Lithium	0.004
Dysprosium	al Sanadard	* Hete	rogeneous			Hydrogen	NR

STD - Internal Standard

NR - Not Reported

All elements not detected < 0.003 µg/m] MC - Major Component > 10 µg/m1 INT - Interference

Approved: Molperals

Reply to

GENERAL OFFICES: 238 NORTH LA BALLE STREET, CHICAGO, ILLINOIS 60801 - AREA CODE 312 726-8484 METRUMENTAL AMALYSIS DIVISION, 14395 WEST 44TH AVENUE, GOLDEN, COLORADO 80401, PHONE: 303-278-9321

To: Mr. Brent Higginbotham Acurex Corporation 485 Clyde Ave. Hountain View, CA 94042

Date: September 24, 1980

Analyst: T. Bouts

P. O. No.:

Semple No.: 80-1368 TANK SAMPLE PRIOR SPARK SOURCE MASS SPECTROGRAPHIC ANALYSIS IAD No.: 97-E697-116-28

CONCENTRATION IN 119/117 TO TEST

ELEMENT	CONC.	ELEMENT	CONC.	ELEMENT	CONC.	ELEMENT	CONC.
Uranium		Terbium		Ruthenium		Vanadium	0.007
Thorium		Gadolinium		Molybdenum	*0.4	Titanium	0.3
Bismuth		Europium		Niobium		Scandium	0.004
Lead	0.1	Samarium		Zirconium	0.05	Calcium	MC
Thallium		Neodymi um		Yttrium	0.05	Potassium	0.5
Mercury	NR	Praseodymiu	I II	Strontium	0.05	Chlorine	0.4
Gold		Cerium	0.008	Rubidium	<0.001	Sulfur	MC
Platinum		Lanthanum	0.01	Bromine	0.4	Phosphorus	0.4
Iridium		Barium	0.07	Selenium	0.1	Silicon	1
Osmium		Cesium		Arsenic	INT	Aluminum	0.1
Rhenium		Iodine		Germanium	0.002	Magnesium	0.6
Tungsten	0.02	Tellurium	0.02	Gallium	0.004	Sodium	0.8
Tantalum		Antimony		Zinc	MC	Fluorine	* =0.2
Hafnium		Tin		Copper	MC	0xygen	NR
Lutetium		Indium	STD	Nickel	1	Nitrogen	NR
Ytterbium		Cadmium		Cobalt	0.02	Carbon	NR
Thulium		Silver	0.03	Iron	MC	Boron	0.002
Erbium		Palladium		Manganese	0.2	Beryllium	
Holmfum		Rhodium		Chromium	0.7	Lithium	0.002
Dysprosium STD — Interna NR — Not Rep		* F	leterogene		7011	Hydrogen	NR

All elements not detected < 0.002 µg/ml MC — Mejor Component > 10 µg/ml MT — Interference

Approved: My Jacobs

Reply to

GENERAL OFFICES: 228 NORTH LA SALLE STREET, CHICAGO, ILLINOIS 60601 · AREA CODE 312 726-8434 INSTRUMENTAL ANALYSIS DIVISION, 14295 WEST 44TH AVENUE, GOLDEN, COLORADO 80401, PHONE: 203-278-9521

To: Mr. Brent Higginbotham **Acurex Corporation** 485 Clyde Avenue Mountain View, California 94042

Date: September 26, 1980

Analyst: T. Bouts

P. O. No.:

Sample No.: 1471 MAN TELT

SPARK SOURCE MASS SPECTROGRAPHIC ANALYSIS

ug/cm²

CONCENTRATION IN

IAD No.: 97-E697-116-28

FILTER ELEMENT CONC. ELEMENT CONC. ELEMENT CONC. ELEMENT CONC. 0.2 Uranium Terbium Ruthenium Vanadium 0.05 1 Thorium **Gadolinium** Molybdenum Titanium 0.005 <0.001 Bismuth Europium Niobium Scandium 0.2 0.006 MC Lead Samarium Zirconium Calcium 0.005 0.008 0.5 Thallium **Neodymi um** Yttrium Potassium 0.3 NR 0.003 0.08 Mercury Praseodymium Strontium Chlorine 0.03 < 0.001 Gold. Cerium Rubidium Sulfur 0.5 0.04 0.04 Platinum Lanthanum Bromine **Phosphorus** MC * 0.9 Iridium Barium Selenium Silicon <0.001 MC **Osmium** Cesium Arsenic Aluminum <0.006 4 Rhen i um Iodine Germanium Magnesium 0.009 MC **Tungsten** Tellurium Gallium Sodium 0.6 ≃1 Tantalum Antimony Zinc Fluorine NR 0.02 0.3 Hafnium Tin Copper **Oxygen** NR STD 0.04 Lutetium Indium Nicke1 Nitrogen 0.02 NR Ytterbium Cadmium Cobalt Carbon 0.7 MC 0.002 Thulium Iron Boron Silver 0.02 Beryllium **Erbium** Manganese **Palladium** 0.02 0.1 **Holmium** Chromium Lithium Rhodium NR Hydrogen Dysprosium

STD - Internal Standard

NR - Not Reported

All elements not detected < 0.001 µg/cm²

MC — Major Component >10 µg/cmi

Reply to

GENERAL OFFICES: 228 NORTH LA BALLE STREET, CHICAGO, ILLINOIS 60801 - AREA CODE 312 726-8434 HISTRUMENTAL ANALYSIS DIVISION, 14335 WEST 44TH AVENUE, GOLDEN, COLORADO 80401, PHONE: 303-278-9521

To: Mr. Brent Higginbotham

Acurex Corporation 485 Clyde Avenue

Mountain View, California 94042

Date: September 26, 1980

IAD No.: 97-E697-116-28

Analyst: T. Bouts

P. O. No.:

Semple No.: 1476

IST IMPINUER + OMC

SPARK SOURCE MASS SPECTROGRAPHIC ANALYSIS

CONCENTRATION IN ug/m]

ELEMENT CONC ELEMENT CONC. ELEMENT CONC. ELEMENT CONC. Uranium Terbium Ruthenium **Vanadium** 0.001 Thorium Gadolinium Molybdenum 0.008 Titanium 0.3 Bismuth Europium Niobium Scandium < 0.001 Lead 0.04 Samarium Zirconium 0.002 Calcium 1 Thallium Neodymium Yttrium Potassium 3 Mercury NR Praseodymium Strontium 0.002 Chlorine 0.04 Gold <0.001 Cerium Rubidium <0.001 Sulfur MC Platinum Lanthanum Bromine 0.004 **Phosphorus** 3 Iridium Barium 0.05 0.006 Selenium 1 Silicon Osmi um Cesium <0.001 Arsenic Aluminum >0.7 Rhenium Iodine Germanium Magnesium 0.6 Tungsten Tellurium 0.01 Gallium 0.002 Sodium MC Tanta lum <0.002 Antimony Zinc 0.2 **≈0.3** Fluorine Hafnium Tin 0.05 Copper 0.2 NR **Oxygen** Lutetium Indium STD 0.2 Nicke1 NR Ni trogen Ytterbium Cadmium 0.004 Cobalt Carbon NR Thul ium 0.03 Silver 0.4 Iron 0.003 Boron **Erbium** Palladium 0.04 Manganese **Beryllium Holmium** Rhodium 0.08 Chromium 0.005 Lithium **Dysprosium** Hydrogen N Specols

STD - Internal Standard

NR - Not Reported

All elements not detected < 0.001 µg/ml MC - Mejor Component >10 µg/m] INT - Interference

Reply to

BENERAL OFFICES: 298 NORTH LA BALLE STREET, CHICAGO, ILLINOIS 60801 - AREA CODE 312 728-6484 INSTRUMENTAL AMALYSIS DIVISION, 14335 WEST 44TH AVENUE, GOLDEN, COLORADO 80401, PHONE: 303-278-9521

To: Mr. Brent Higginbotham Acurex Corporation 485 Clyde Avenue Mountain View, California 94042

Date:

September 26, 1980

Analyst:

T. Bouts

P. O. No.:

Sample No.: 1369

SPARK SOURCE MASS SPECTROGRAPHIC ANALYSIS

IAD No.:

97-E697-116-28

ug/ml CONCENTRATION IN TANK WATER SAMPLE AFT. TEST ELEMENT CONC. CONC. CONC. ELEMENT CONC. ELEMENT ELEMENT Uranium Terbium Ruthenium Vanadium 0.002 Thorium **Gadolinium** Molybdenum 0.2 Titanium 0.2 0.01 Bismuth Europium Niobium Scandium 0.03 MC Lead 0.09 Samarium Zirconium Calcium <0.2 3 Thallium **Neodymi um** Yttrium Potassium 0.009 * MC Mercury NR Praseodymium Strontium Chlorine MC 601d Cerium Rubidium Sulfur 0.1 0.8 **Phosphorus** Platinum Lanthanum **Bromine** 0.1 6 Iridium Barium 0.02 Selenium . Silicon <0.009 0.7 **Aluminum** Osmi um Cesium Arsenic 2 Rhenium Iodine 0.004 Germanium Magnesium 2 0.002 Sodium Tungsten Tellurium 0.006 Gallium . MC **≃0.2** Fluorine Antimony 0.02 Zinc Tantalum <0.04 MC NR Hafnium <0.006 Copper 0xygen Tin * 0.7 NR STD Nickel Ni trogen Lutetium Indium * 0.07 NR 0.006 Cobalt Carbon Ytterbium Cadmium * 0.03 7 Thulium Boron Silver Iron **Erbium** Beryllium Palladium Manganese 0.5 0.003 Ho 1 m i um Chromium Lithium Rhodium Hydrogen Dysprosium

STD - Internal Standard

NR - Not Reported

All elements not detected < 0.002 µg/m1

MC - Major Component >10 µg/m]

INT - Interference

Approved:

W. Herterogeneous

Reply to

GENERAL OFFICES: 220 NORTH LA SALLE STREET, CHICABO, ILLINGIS 80801 - AREA CODE 312 720-0434 "HISTRUMENTAL ANALYSIS DIVISION, 1425 WEST 44TH AVENUE, GOLDEN, COLORADO 80401, PHONE: 303-278-9521

To: Mr. Brent Higginbotham Acurex Corporation 485 Clyde Ave. Mountain View, CA 94042

Date: September 23, 1980

Analyst: T. Bouts

P. O. No.:

Sample No.: 80-1473

TEST WAN - CAX

SPARK SOURCE MASS SPECTROGRAPHIC ANALYSIS CONCENTRATION IN PPM WEIGHT

IAD No.: 97-E697-116-28

ELEMENT	CONC.	ELEMENT	CONC.	ELEMENT	CONC.	ELEMENT	CONC.
Uranium		Terbium		Ruthenium		Vanadium	<0.1
Thorium		Gadolinium		Molybdenum	1	Titanium	± 2
Bismuth		Europium		Niobium		Scandium	*<0.1
Lead	0.3	Samarium		Zirconium	<0.1	Calcium	62
Thallium		Ne odym i um		Yttrium		Potassium	22
Mercury	NR	Praseodymiu	m	Strontium	0.2	Chlorine	1
€ o1d		Cerium	0.3	Rubidium		Sulfur	14
Platinum		Lanthanum	0.4	Bromine	0.8	Phosphorus	15
Iridium		Barium	0.9	Selenium	<0.1	Silicon	* 500
Osmi um		Cesium		Arsenic	<0.1	Aluminum	5
Rhenium		Iodine		Germanium		Magnesium	8
Tungsten		Tellurium		Gallium	*<0.1	Sodium	22
Tantalum	0.7	Antimony		Zinc	6	Fluorine	* =0.3
Hafnium		Tin		Copper	6	0xygen	NR
Lutetium		Indium	STD	Nickel	180	Nitrogen	NR
Ytterbium		Cadmium		Cobalt	0.7	Carbon	NR
Thu I fum		Silver		Iron	26	Boron	<0.1
Erbium		Palladium		Manganese	1	Beryllium	
Ho 1 mium		Rhodium		Chromium	11	Lithium	<0.1
Dysprosium		* <u>u</u>	eterogene	คดยร		bydrogen	NR
STD — Internal NR — Not Repo All elements no MC — Major C INT — Interfere	orted of detected < omponent		vyene	Approved:	N.Y.	kor	ls

Reply to

GENERAL OFFICES: 338 NORTH LA SALLE STREET, CHICAGO, ILLINOIS 60601 - AREA CODE 312 730-0434 INSTRUMENTAL AMALYSIS DIVISION, 14335 WEST 44TH AVENUE, GOLDEN, COLORADO 80601, PHONE: 203-278-9521

To: Mr. Brent Higginbotham Acurex Corporation 485 Clyde Ave. Mountain View, CA 94042

Date: September 22, 1980

IAD No.: 97-E697-116-28

Analyst: L. Jacobs

P. O. No.:

Sample No.: 80-1562

SPARK SOURCE MASS SPECTROGRAPHIC ANALYSIS DIESEL DIL - MAN TEST

CONCENTRATION IN PPM WEIGHT

ELEMENT C	DNC.	ELEMENT	CONC.	ELEMENT	CONC.	ELEMENT	CONC
Uranium		Terbium		Ruthenium		Vanadium	0.02
Thorium		Gadolinium		Molybdenum	0.1	Titanium	5
Bismuth		Europium		Niobium		Scandium	<0.01
Lead	0.2	Samarium		Zirconium	0.04	Calcium	MC
Thallium		Neodymium		Yttrium	0.02	Potassium	7
Mercury		Praseodymium		Strontium		Chlorine	* 70
Go1d		Cerium		Rubidium	<0.01	Sulfur	0.2
Platinum		Lanthanum		Bromine	0.3	Phosphorus	1
Iridium		Barium	0.3	Selenium		Silicon	25
Osmium		Cesium		Arsenic	0.02	Aluminum	MC
Rhenium		Iodine		Germanium		Magnesium	2
Tungsten		Tellurium	0.2	Gallium	0.02	Sodium	4
Tantalium		Antimony		Zinc	0.7	Fluorine	=1
Hafnium		Tin	0.03	Copper	0.5	Oxygen	NR
Lutetium		Indium	STD	Nickel	1	Nitrogen	NR
Ytterbium		Cadmium	0.02	Cobalt	0.04	Carbon	NR
Thulium		Silver		Iron	10	Boron	0.04
Erbium		Palladium		Manganese	0.2	Beryllium	
Holmium		Rhodium		Chromium	0.4	Lithium	0.02
Dysprosium		* Hete	rogeneous			Hydrogen	NR
STD — Internel SI NR — Not Report All elements not MC — Major Com INT — Interference	rd detected < rponent >	0.01 ppm	•	Approved: //	MS,	Jace	ed.

_	
	ì

ANALYSIS LABORATORIES

DATA REPORTING FORM

CUSTOMERCMEA	DATEJuly 10, 1980
	ACUREX CONTRACT NO
RESULTS REPORT TO	TELEPHONE
ADDRESS	MAN FURNACE SUSTEM

SAMPLE ID (CUSTOMER)	Fuel Hg	XAD Hg	1 Imp Hg	2&3 Hg	2&3 As	2&3 Sb	Water Hg	
SAMPLE ID (LAB)								
PARAMETER								UNITS
Blank	Less 1	Less 1	Less 1	Less 1	Less 10	Less 3	Less 1*	ug/L
Sample Aliquot	Less 1	Less 1	Less 1	Less 1	Less 10	Less 3	Less 1	ug/L
Total Sample			Less 1	Less 1	Less 10	Less 3	Less 1	ug/L
Total Sample	Less 0.1	Less 0.1						ug/g
Total Sample		Less 10	Less 1	Less 1	Less 10	Less 3		ug
						,		
								,

*All water tank samples were below 1 ug/L

ANALYST __ G. Nicoll

REVIEWER __ String Wiell

Form EED-057 4/80

GENERAL OFFICES: 226 NORTH LA BALLE STREET, CHICAGO, ILLINOIS 60601 - AREA CODE 312 726-6454

Reply to Instrumental Analysis Division 490 Orchard Street Golden, CO 80401

Phone: 303-278-9521

November 18, 1980

Mr. Brent Higginbotham Acurex Aerotherm Corp. 485 Clyde Avenue Mountain View, CA 94042

RE: IAD #97-E697-116-28

Analytical Report

We were asked as per phone conversation with Carlo Castaldini, on October 20, 1980, to check by atomic absorption, several elemental values on samples that were analyzed by spark source mass spectrometry (SSMS) and reported September 24, 1980.

Nickel was checked on the XAD Resins Acurex ID Nos. 80-1473 & 1533-37. Nickel contamination was due to combustion in the Parr combustion apparatus as they were prepared for SSMS. The samples were reprepped by ashing at approximately 600° C, dissolving the ash in aqua regia, and diluting with deionized water. Nickel was determined from this solution as well by flame atomic absorption.

Copper was found to be a major component on samples 80-1368 and 80-1369 by SSMS. This was quantitated by flame atomic absorption on a diluted portion of each of the samples.

The results of these analyses are presented in Table No. 1 and are reported in the appropriate units on the samples "as received".

Table No. 1

Sample #	Nickel (µg/g)	Copper (mg/l)
80_1473 PIAN KAD	2.4	

80-1368 Tank water prior to text 80-1369 Tank water after text	ŧ	505 4 80
--	---	--------------------

If there are any questions concerning these results, please call.

Bruce A. Hale Section Supervisor

as

IC ANALYSIS SHEET

Contractor	Acur	ex		F,C1	,Br,NO ₂	,NO ₃						
Sample Site _		Mountain	View	Sample Acquisition Date			Date _	May	21,	1980		_
Type of Sourc	e											_
Test Number .	<u></u>				Sample ID	Number .					·····	_
Sample Descri	ption _	Water Tank						·				
Analyst Respo	nsible .	E. Hagmanı	<u> </u>	Date /	Analyzed	July	21,	1980	Time	8pm	- 2am	
			G. Nicoll									
Instrument	Mic		- Wescan Cor									_
Elvent0.	0025M	Sodium Be	nzoate @ pH (5.0								
Column Flow	Rate _	1.50 ml/mi	n Pressure	1.0	8 KPSI		(Recorder	Speed	0.5	cm/min	
												_
Original Samp	ile Volur	ne or Mass			Multiple S	Standard A	ddition	: Yes		_ No	X	
Observations	30	min run, g	ood separati	on								_

IC ANALYSIS SHEET SO3,504

Contractor Acurex						· · · · · · · · · · · · · · · · · · ·
Sample Site Mountain View		Sample Acquisition	Date	May 21	, 1	980
Type of Source						
Test Number		Sample ID Number				
Sample Description Water Tank						
Analyst Responsible E. Hagmann	. Date A	Analyzed July	11,	1980 т	ime	8am - 8pm
Calculations and Report Reviewed ByG. Nicoll						
Instrument Micromeritics - Wescan Con-	ducti	vi ty				
0.0047M KHP @ pH 4.5						
Column Flow Rate 2.00 ml/min Pressure	0.79	KPSI		Recorder Si	peed	l cm/min
Sample Size						
Original Sample Volume or Mass		Multiple Standard A	ddition	: Yes		No X
Observations	rage	recovery at 8	38%			

IC ANALYSIS SHEET

Contractor Acurex		 							
Sample Site Mountain View		Sample A	.cquisitio	n Date	May	21,	1980		
Type of Source									
Test Number		Sample II	D Number	·					
Sample Description Water Tank									
Analyst Responsible E. Hagmann							8am -	3pm	
Calculations and Report Reviewed By G. Nicoll		· · · · · · · · · · · · · · · · · · ·			Repo	rt Date	July	23,	1980
Instrument Micromeritics - Wescan Con	<u>ductiv</u>	ity							
Eluent 5 x 10 ⁻³ M Phthalic Acid									
Column Flow Rate 2.00 m1/min Pressure	1.43	KPSI	· -		_ Record	er Speed	0.5	cm/n	nin
Sample Size 100 u1									
Original Sample Volume or Mass		Multiple	Standard	Additi	ion: Yes.		No .	Х	
Observations Spike and recovery: 106%	recov	ery					·· ·· · · · · · · · · · · · · · · · ·		

Water Tank Blank- Tap Water

lon	Uncorrected Semple Value	Blank Value	Corrected Sample Value	High/Low Calibration Standards or Con- centration Added	Dilution Factor	Assigned Concentration*	Detection Limit*
F -	ND	ND		5, 50		ND .	1
a-	2	ND	2	5, 50		2	1
Br —	ND	ND		5, 50		* ND	5
NO ₂	ND	ND		5, 50	<u> </u>	ND	2
NO3.	ND	ND		5, 50		ND	5
so ₃ =	ND	ND		50		ND	10
so ₄ =	ND	ND		50, 500, 1000		ND	10
P0 [≝]	ND	ND		10, 50		ND	3

^{*}Results: Mg/L values (in original sample or I — Interference; MC — major constituent, not quantified; NC — not computed; NG — sample value below blank; ND — not detectable ($< 2 \sigma$ blank or baseline).

^{*}Results: Mg/L values (in original sample or 1 — Interference; MC — major constituent, not quantified; NC — not computed; NG — sample value below blank; ND — not detectable (< 2 o blank or baseline).

Water Tank - Prior to Test

lon	Uncorrected Sample Value	Blank Value	Corrected Sample Value	High/Low Calibration Standards or Con- centration Added	Dilution Factor	Assigned Concentration*	Detection Limit*
F -	ND	ND		5, 50		ND	3
a -	3	ND	3	5, 50		3	2
Br —	ND	ND		5, 50		`. ND	10
NO2	ND	ND		5,50		ND	10
NQ_	7	ND	7	5, 50		7	5
so ₃ =	ND	ND		50		ND	10
so ₄ =	990	ND	990	50, 500, 1000		990	10
P0 [≡]	ND	ND		10, 50		ND	20

^{*}Results: mg/L values (in original sample or I — Interference; MC — major constituent, not quantified; NC — not computed; NG — sample value below blank; ND — not detectable (< 2 o blank or baseline).

Water Tank - Sample End of test

lon	Uncorrected Sample Value	Blank Value	Corrected Sample Value	High/Low Calibration Standards or Con- centration Added	Dilution Factor	Assigned Concentration*	Detection Limit*
F -	ND	ND		5, 50		ND .	3
a -	3	ND	3	5, 50		ND	2
Br —	ND	ND		5, 50		`. ND	10
NO ₂	ND	ND		5, 50		ND	10
NO3	7	ND	7	5, 50		7	5
so ₃ =	ND	ND		50		ND	10
so ₄ =	1000	ND	1000 gm	50, 500, 1000		1000	10
P04	ND	ND		10, 50		ND	20

^{*}Results: mg/L values (in original sample or I — Interference; MC — major constituent, not quantified; NC — not computed; NG — sample value below blank; ND — not detectable (<2 or blank or baseline).

5.5 ORGANIC ANALYSIS REPORT

ORGANIC COMPOUNDS (bp < 100° C)

Composity ACUTEX	
Type of Source Residential Hot Was	lample Assertion Date May 21,1935 Time 14:05
Type of Some Resident at Hot 120	ter Heating System
Tot Number No 1	tempte 10 Number - Euch of Sura cycle
Sample Description Ev houst 923	<u>'</u>
Analysi Responsible M. Gades es Bete A	mayand <u>May 23, 1985</u> Time
Analysi Responsible M. Good to ca Bete A Calculations and Report Reviewed By G. Nicoll	Report Date 124 23, 1980
Work	·
1. Column Flow Rate (mL/min)	2. Recorder Speed Chm/jegins
2. Full Scale (mV)	4. Columa Promure (psi)
S. Electro meter Set (A/mV) 10 ⁻¹²	6. Colibration Data 129 21, 1993
7. Sample Size (m.l.)	8. Gven Temperature (°C)
8. Plamo Flow Rotte (mt./min): H2	Air
18. Accommendation	1. Rango
12 Observations Futepritor at 12,000	cft/min

Resetts: PPM value (in original sample) or I — interference; NC — not computed; NG — sample value below blank; NO — not detectable (<2 σ blank or baseline).

	Uncorrected Sum of Peak Areas	Blank Valve	Retention Time	Corrected Sum of Peak Areas	Conc.	Prom/841 3	High/Low Calibration Standards	Conc. (ppm)
4	. 1.0	Ng	0.7 mia	1.0		0.087	9.9 pr-	< 0,2
15 2	ろり	NO	Lo main	No		0.11	10.5 pp.	10.2
123	NO	NO	L7 min	NO		0.17	11.2 pp.	< 0.5
4	ND	NO	3.9 mig	NY		C. 78	11.3 pp.	< 0.5
14	พจ	NO	94	NO		0.37	2 Pp==	<1.0
4	ND	NO	23.2 min	NO		0.53	11.1 Pp-	< 1.0
267	NC							

ORGANIC COMPOUNDS (bp < 100° C)

Contract HCushx	
	Sample Asquirition Date Hay 21, 1980 Time 12:45
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	the Heart of Custo.
Type of Source Residential Hot War	TEP TERTING STIER
Tort Member	Sample 18 Humber & Anim into burn cycle
Sample Domipties 4x42.2+ 935	
H Padas	May 23, 1980 Time
Analysi Responsible 11. Orevalue	Analyzad <u>May 23, 1980</u> Time Report Data <u>May 23, 1980</u>
Calculations and Report Reviewed By	Report Date 104 23, 1403
M.	
Wol	rkup
1. Column Flow Rate (mL/min)	2. Reserved Com/Anjin
3. Fell Scale (mV)	A. Caluma Pressure (stil)
E. Ebetronetar Set (WaV)	6. Colibration Date
7. Semple Size (mL) 1.0	8. Oven Temperature (°C) /50
8. Flame Flow Rates (m.L/min): - H2	Air
18. Attenuation 8	11. Range
12 Observations Integration at la	2,000 +1 1/min

Results: PFM value (in original sample) or I — interference; NC — not computed; NG — sample value below blank; ND — not detectable (<2 σ blank or baseline).

	Uncorrected Sum of Peak Areas	Blank Valve	Retaction Time	Corrected Sum of Pack Areas	Conc. (%)	Ppm/act Sonsitivity	High/Low Celibration Standards	Conc. (ppm)
F ₁	. 1.	NO	0.7 min	1.0		0.087	9.7 pp.	< 0.2
F2	ND	CA	LO min	No		0.11	19.5 Dela	<0.2
4	ND	NO	L7 min	ND		0.17	11.2 ppm	<0.5
4	NO	NO	3.7 4417	עא		0.28	11.3 pp	<05
4	พภ	GN	94 min	ND		0.37	12 0000	<1.
4	NO	ND	23,8 min	ND		0.53	Il Don	< 1.
167	NC			_				

ORGANIC COMPOUNDS (bp < 100° C)

Comman Acurex	
some so Mountain View	Sample Assessition Date May 21, 1980 Time 15:10
Type of Source Residential Hot	Jake Heating System
Test Number NO. /	_ Sample 10 Humber Beginning of Gara Cock
Sample Description	V
Analyst Responsible M. Gardina	Date Analyzed Mas 23, 1985 Time
Calculations and Report Reviewed By	11 Report Data Ma, 13 1980
•	Workup
1. Column Flow Rate (mL/min)	— 2. Recorder Speed / Coa_/ Jan.iu
1. Full Scale (mV)	4. Column Pressure (psi)
& Electrometer Set (A/mV)	6. Collegation Date 124 21, 1785
7. Sample Size (m.L) /. O	B. Oven Temperature (°C)
8. Finne Flow Rates (mt/min): H2	Air ————
12 Charging Jute erator at 12,	11. Range
12 Observations - HTE STATON (4)	VV TI /1119

Results: PPM value (in original sample) or I \sim laterforence; NC - net computed; NG - sample value below blank; ND - net detectable (<2 σ blank or baseline).

	Uncorrected Sum of Peak Areas	Blank Valve	Retention Time	Corrected Sum of Peak Areas	Conc. (%)	Ppm/acf Sensitivity	High/Low Celibration Standards	Cenc. (ppm)
14	. 5	NO	0.7 min	5		0.087	9.3 pp.	0.4
162	שמ	NO	1.0 min	Ŋ.)		0.11	10.5 py	40.2
153	ND	NO	1.7 44/4	ND		0.17	11.2 pp.	425
*	NO	NO	3.9 min	N D		0.28	11.3	< 0.5
24	N)	NO	94 mis	NO		0.37	12.0 pp	<1.0
4	ND	ND	23.3	とう		0.53	11.1 Pp.	< 1,5
24	NO						''	

DATA REPORTING FORM

CUSTOMERCMEA	DATEJuly 15, 1980
CUSTOMER CONTRACT NO. 307605.22	ACUREX CONTRACT NO
RESULTS REPORT TO	TELEPHONE
ADDRESS	
Mountain View May 21, 1980	RESIDENTIAL MAN FURNACE

SAMPLE ID (CUSTOMER)	Filter	XAD	ОМС	Tank Blank	Tap Water	Prior to Test	Tank Sample	
SAMPLE ID (LAB)								
PARAMETER								UNITS
TCO Blank		0.07	Less 0.02	Less 0.02	Less 0.02	Less 0.02	Less 0.02	mg
TCO Sample		74	Less 0.02	Less 0.02	Less 0.02	Less 0.02	0.50	mg
TCO, Corrected		74	Less 0.02	Less 0.02	Less 0.02	Less 0.02	0.50	mg
GRAV Blank	Less 2	4	Less 2	Less 2	Less 2	Less 2	Less 2	mg
GRAV Sample	3	22	5	6	Less 2	Less 2	Less 2	mg
GRAV, Corrected	3	18	5	6	Less 2	Less 2	Less 2	mg
TCO & GRAV	3	92	5	6	Less 2	Less 2	Less 2	mg
TCO & GRAV	0.1	3.2	0.2	0.2	Less 0.1	Less 0.1	Less 0.1	mg/dscm
Volume Analyzed				3665	3720	1300	10,000	m1
						<u> </u>		

ANALYST .	M. Gardn	er, G. Ni	coll	
REVIEWER	Jen : ag	Meodl		

92

IR REPORT

SAMPLE:

Filter Mountain View 5/21/80

Ron Runber - (m ⁻¹)	Internity	Assignment	Comments
		No Peaks	
•			
-			
•	ļ		
	 		
			•••
	ļ		
	1		
			•
			
	<u> </u>		
	 		
	<u> </u>		
L			

SAMPLE:

Filter Blank

Wan Runber - (m ⁻¹)	Birtersity	Assignment	Comments .
		No Peaks	
	·		
•			
	<u> </u>		
		·	
•			
·			
		-	
	•	•	• •
·			•• •
	 -		
	<u> </u>		
	<u> </u>		
<u> </u>	 		
	}		
			•
1			
		·	
	1	 	
	 	<u> </u>	·
	}		
L	<u> </u>	<u> </u>	

IR REPORT

BAMPLE:

XAD Mountain View 5/21/80

Internity	Assignment	Comments
W	0-н	
s	C-H Alkane	
s	C-H Alkane	
. W	0-н	
M		
W	·	
W	,	
W	C-0	
W	Not Assigned	
	·	
	•	<u> </u>
		••
		
		· · · · · · · · · · · · · · · · · · ·
		-
		
	·	
	S S W M W	S C-H Alkane S C-H Alkane W O-H M C=O W C-H Alkane W C-O W C-O W Not Assigned

	EPOR1

EAMPLE: XAD Blank

Warn Komber - (em ⁻¹)	Setterality	Assignment	Comments
		No Peaks	
•			
		•	
			•
		·	•••
			· · · · · · · · · · · · · · · · · · ·
			·
			
			,
		•	

IN REPORT

SAMPLE: OMC Mountain View 5/21/80

Wen Runber - (m ⁻¹)	Secto raity	. Assignment	Comments
		No Peaks	
		•	
		•	
			·
			
			•
		<u> </u>	
		· _ · _ · _ · _ · · _ · _ · · _ · · _ ·	
		·	
		•	

IR REPORT

SAMPLE: Tap Water Mountain View 5/21/80

Wan Kanber - (m ⁻¹)	Smaraity	Assignment	Comments .
		No Peaks	
•			
	·		
		•	
	•	. •	
		·	
	`	·	· ·
			
<u> </u>			
<u> </u>	 		
			
			·
	 		
	1	<u> </u>	
			

IR REPORT

SAMPLE: Tank Blank Mountain View 4/21/80

Wan Hunter - (cm ⁻¹)	lateralty	Assignment	Comments
		No Peaks	
	·		
	•		
•		·	
	'	·	
	•	•	•
<u> </u>			·
			•• •
			
}			
	 		
		<u> </u>	•
			
	1		
	<u> </u>	·	
	1	· ·	

IR REPORT

SAMPLE:

Tank Sample Mountain View 5/21/80

Ware Humber - (cm ⁻¹)	internity	Assignment Comme	
2905	S	C-H Alkane	
2845	S	C-H Alkane	
1190	S	Sulfonamide Fou	ind in GC/MS PNA
			
			
	•	•	
			•••
			•
		·	
		·	
	 <u>-</u>		

COMPOUNDS SOUGHT Detection Limit in nanograms

8	* 4-bromophenyl phenyl ether	40	* indeno(1,2,3-cd)pyrene
1	* bis (2-chloroisopropyl) ether	2	* pyrene
2	* bis (2-chloroethoxy) methane	20	2,3,7,8-tetrachlorodibenzo-p-dioxin
8	* hexachlorobutadiene	2	* acenaphthene
40	* hexachlorocyclopentadiene	100	* benzidine
1	* isophorone	8	* 1,2,4-trichlorobenzene
1	* naphthalene	8	* hexachlorobenzene
8	* nitrobenzene	8	* hexachloroethane
4	* N-nitrosodiphenylamine	3	* bis(2-chloroethyl)ether
40	* N-nitrosodi-n-propylamine	2	* 2-chloronaphthalene
3	* bis (2-ethylhexyl) phthalate	4	* 1,2-dichlorobenzene
3	* butyl benzyl phthalate	8	* 1,3-dichlorobenzene
1	* di-n-butl phthalate	4	* 1,4-dichlorobenzene
2	* di-n-octyl phthalate	20	* 3,3-dichlorobenzindine
2	* diethyl phthalate	10	* 2,4-dinitrotoluene
2	* dimethyl phthalate	10	* 2,6-dinitrotoluene
5	* benzo(a)anthracene	1	* 1,2-diphenylhydrazine (as azobenzene)
7	* benzo(a)pyrene	2	* fluoranthene
8	* 3,4-benzofluoranthene	4	* 4-chlorophenyl phenyl ether
8	* benzo(k)fluoranthene	40	anthanthrene
5	* chrysene	40	benzo(e)pyrene
1	* acenaphthylene	6	dibenzo(a,H)pyrene
1	* anthracene	6	dibenzo(a,i)pyrene
40	* benzo(ghi)perylene	40	dibenzo(c,g)carbozole
2	* fluorene	40	7,12 dimethyl benz(a)anthracene
1	* phenanthrene	40	3-methyl cholanthrene
40	<pre>* dibenzo(a,h)anthracene</pre>	40	perylene
		40	Benzo(c)phenanthrene

^{*}Authenic standard ran

@Molecular weight too high for direct analysis by Base/Neutral run

ANALYSIS LABORATORIES

DATA REPORTING FORM

CUSTOMERCMEA	July 21, 1980 DATE
CUSTOMER CONTRACT NO307605.22	ACUREX CONTRACT NO
RESULTS REPORT TO	TELEPHONE
ADDRESS	cm

SAMPLE ID (CUSTOMER)	Filter Bk	Filter	XAD Blank	Xad	OMC	0 Water Blk	Tank water		
SAMPLE ID (LAB)									
PARAMETER									UNITS
Amount injected	2	2	2	1	2	3	3		uL
Naphthalene*	Less 0.5	Less 0.5	Less 0.5	94	Less 0.5	Less 0.3	9		mg/L
Phenanthrene/									
Anthracene*	Less 0.5	Less 0.5	Less 0.5	4	Less 0.5	Less 0.3	2		mg/L
Naphthalene		Less 0.02		36	Less 0.02		0.4		ug/dscm
Phenanthrene/									
Anthracene		Less 0.02		2	Less 0.02		0.08		ug/dscm
Volume analyzed							10,000		mL

*Sample Aliquot @All water tank blanks are clean

ANALYST	
REVIEWER Strip Micoly	
/	

Form EED-057 4/80

102

	TC0	BRAV	TCO + GRAY	Consentration mg/dscm
Total Sample ¹	74	18	92	3.2
Tokon for LC ²	36	9	45	1.6
Recovered ³	-26	14	40	1.4

		TCB la	mg		CRAY is mg				TCO+	Consumbation
Fraction	Found in Fraction	Sienk	Con- rected	Total ^A	Found in Fraction	Slonk	Cor-	Total ⁴	GRAY Total mg	mg/dscm
1 .	25	<0.02	25	52	· 11	<1	11	23	75	2.6
2	0.09	< 0.01	0.09	0.2	1.0	<0.8	1	ż	.2	0.07
3	0.41	< 0.01	0.41	0.85	<0.8	<0.8	< 0.8	< 2	< '3	0.1
4	0.06	< 0.01	0.06	0.1	1.2	1.2	< 0.8	< 2	< 2 ·	< 0.07
8	< 0.01	< 0.01	<0.01	< 0.02	<0.8	< 0.8	< 0.8	< 2	< 2	< 0.07
	< 0.01	< 0.01	< 0.01	< 0.02	1.0	< 0.8	1.0	2	2	0.07
7	< 0.01	< 0.01	< 0.01	< 0.02	2.0	< 0.8	2.0	4	4	0.1
Sum	26	< 0.08	26	54	16	< 6	15	31_	85	3.0

^{1.} Quantity in antire sample, determined before LC Z. Pertion of whole sample used for LC, actual mg 3. Quantity recovered from LC column, actual mg 4. Total mg computed back to total sample

IR REPORT

RAMPLE:

MAN XAD 1473 F1

		•*			
Wen Renter ← (m²¹)	Internity •	Assignment	Communits		
2920	s .	CH Aliphatic hydrocarbons			
2840	S	CH Aliphatic hydrocarbons			
•	·				
	•		•		
•		·			
			•		
		·			
	•		•		
		••			
·			·		
			,		
	, .				
:					
<u> </u>	 				
		.:			
					
					
					
-					
L	<u> </u>	<u> </u>			

MAN XAD 1473 F2

Wen Rumber	Intendity	Assignment	Communits
Wen Runber - (m ⁻⁴)	•	-	•
		No Peaks	
•	•		
	•		•
			·····
•		·	•
		i	•
			• •
	 	·	
			-
			<u> </u>
	}		•
	i		
	<u> </u>		
	<u> </u>		
	<u> </u>		
<u>· </u>			
<u>: </u>			
····			
	·	·	
		1	
•			
		1	

BAMPLE: MAN XAD 1473 F3

Wan Kanter - (m ⁻¹)	Enteroity	· Assignment	Comments
		No Peaks	
		`	
·			
	·		
		•	
			<u>•· · </u>
			
			,
<u> </u>			
			·
		·	
L	<u> </u>	<u> </u>	

IR REPORT

BAMPLE: MAN XAD 1473 F4

Wan Henber < (m ⁻¹)	Betaralty •	Assignment	Comments .	
		No Peaks		
	·	No reaks		
	.•			
	•		•	
		v		
	·		•	
	· · · · · · · · · · · · · · · · · · ·			
			• • •	
	.•			
			•••	
			·	
.•				
.:		•		
·				
		. :		
.,				
	•	·		
	-			
	<u> </u>			

IR REPORT

MAN XAD 1473 F5

Ware Runber fenomity	Assignment Comments
	•
	No Peaks
•	
	,
•	
•	
 	
	·
	:
-	
	•
	· · · · · · · · · · · · · · · · · · ·
	

IR REPORT

BAMPLE: MAN XAD 1473 F6

		••			
Wen Runber -: (m ⁻⁴)	Sinternality	Assignment	Comments		
		No Peaks			
	.•				
			•		
	 				
	 	Ţ			
	 				
					
	<u> </u>		•		
			• •		
	ļ	 			
	<u> </u>				
	ļ	·			
	<u> </u>				
					
<u> </u>					
<u>:</u>					
.:	1				
	<u> </u>				
		.*			
	•	·			
		•			
1	1				

MAN XAD 1473 F7

		•
Wan Hunter - (m ⁻¹)	Streetly .	Assignment Comments
		No Peaks
		1010
	.•	
		•
	•	
-		*
	. •	
		•
•		•••
		· .
.•	· · · · · · · · · · · · · · · · · · ·	
•		
		•
		
		•
<u> </u>	<u> </u>	
	•	
	<u> </u>	
		•

-	220	OT

MS REPORT				
MPLE:	1473 Fl Mountain View XAD		•	
or Categories				
Intensity	Catagory			MW Ran
1,	Aliphatic hydrocarbons			
		•	•	
	•			
<u> </u>				
•	·			
	reifie Compounds			
Intensity	Category	m/e	Con	position
			<u> </u>	
				-
			-	
			 	
· · · · · · · · · · · · · · · · · · ·				
		1	Ť	
her				

5.6 BIOASSAY ANALYSES REPORT

GENETICS ASSAY NO. 5397 LBI SAFETY NO. 6391

CYTOTOXIC EVALUATION OF

SAMPLE #1473 (CMEA MOUNTAIN VIEW)

IN THE RODENT CELL (CHO)
CLONAL TOXICITY ASSAY

FINAL REPORT

SUBMITTED TO:

ACUREX CORPORATION
485 CLYDE AVENUE
MOUNTAIN VIEW, CALIFORNIA 94042

SUBMITTED BY:

LITTON BIONETICS, INC. 5516 NICHOLSON LANE KENSINGTON, MARYLAND 20795

LBI PROJECT NO. 20933

REPORT DATE: DECEMBER, 1980

PREFACE

This report contains a summary of the data compiled during the evaluation of the test compound. The report is organized to present the results in a concise and easily interpretable manner. The first part contains items I - IX. Items I - IV provide sponsor and compound identification information, type of assay, and the assay design reference number. All assay design references indicate a standard procedure described in the Litton Bionetics, Inc. "Screening Program for the Identification of Potential Mutagens and Carcinogens." Item V provides the initiation and completion dates for the study, and Item VI provides identification of supervisory personnel. Item VII identifies the tables and figures containing the data used by the study director in interpreting the test results. The interpretation itself is in Item VIII. Item IX provides the conclusion and evaluation.

The second part of the report, entitled Assay Design, describes the materials and procedures employed in conducting the assay. This part of the report also contains any appendices, as well as evaluation criteria used by the study director. The evaluation criteria are included to acquaint the sponsor with the methods used to develop and analyze the test results.

All test and control results presented in this report are supported by fully documented raw data which are permanently maintained in the files of the Department of Genetics and Cell Biology or in the archives of Litton Bionetics, Inc., 5516 Nicholson Lane, Kensington, Maryland, 20795.

Copies of raw data will be supplied to the sponsor upon request.

- I. SPONSOR: Acurex Corporation
- II. MATERIAL (TEST COMPOUND): GENETICS ASSAY NUMBER: 5397
 - A. Identification: Sample #1473 (CMEA Mountain View)
 - B. Date Received: October 9, 1980
 - C. Physical Description: Brown, opaque liquid
- III. TYPE OF ASSAY: Rodent Cell (CHO) Clonal Toxicity Assay
 - IV. ASSAY DESIGN NUMBER: 442
 - V. STUDY DATES:
 - A. Initiation: October 20, 1980
 - B. Completion: November 24, 1980
 - VI. SUPERVISORY PERSONNEL:
 - A. Study Director: Brian C. Myhr, Ph.D.
 - B. Laboratory Supervisor: Robert Young, M.S.
- VII. RESULTS:

The data are presented in Table 1 on page 4 and in Figure 1 on page 5.

VIII. INTERPRETATION OF RESULTS:

The test material, Sample No. 1473, was supplied as a SASS train organic extract in 10 ml of methylene chloride. The total organic content was given as 26 mg. A portion of the sample (8.20 ml) was solvent exchanged into an equal volume of dimethylsulfoxide (DMSO). The concentration of organics was therefore unchanged, and the value of 2.6 mg/ml (or $2.6~\mu g/\mu l$) was used to convert the doses obtained on a volume basis into the equivalent amount of organics per milliliter of culture medium.

The test material remained completely soluble after exchange into DMSO. Diluted stocks were prepared with DMSO just prior to testing, and the treatments were initiated with culture media containing 1:100 dilutions of the stocks. The highest test concentration was achieved with a 1:50 dilution of the solvent-exchanged sample, which introduced 2% DMSO into the medium. Vehicle control cultures were therefore exposed to

VIII. INTERPRETATION OF RESULTS: (continued)

culture media containing 1% and 2% DMSO in order to provide the reference points for determining the survival of the cells to treatments with the test material. No precipitation of test material in the culture medium was observed at any of the tested concentrations.

Seven test concentrations from 0.05 ul/ml to 20 ul/ml were evaluated for their effects on colony survival. As shown in Table 1 and Figure 1, none of the assayed concentrations caused significant changes in the numbers of colonies. This lack of observable toxicity was not conclusive, however, because the highest concentration corresponded to only 52 ug of organics/ml, which was essentially the midpoint of the concentration range where an EC50 would yield a moderate toxicity classification (see Evaluation Criteria). A sharp increase in toxicity could occur with a small increase in concentration, but it is reasonable to assume that 50% survival would not have been observed had the high dose been doubled. This concentration would have fallen just within the low toxicity region. Thus, the test material was evaluated as possibly having low toxicity or no detectable toxicity to CHO cells. The position of the EC50 could be further investigated by concentrating the extracted organic material.

IX. CONCLUSIONS:

The test material, Sample No. 1473, was evaluated as having low or nondetectable toxicity in the CHO Clonal Toxicity Assay. No toxicity was observed for concentrations up to the highest testable level of 52 μg of organics/ml.

Submitted by:

Study Director

Brian C. Myhr, 'PØ.D. Section Chief Mammalian Genetics Department of Genetics

and Cell Biology

Reviewed by:

David J. Brusick, Ph.D.

Director

Department of Genetics and Cell Biology

TABLE 1 RODENT CELL (CHO) CLONAL TOXICITY ASSAY

Sample Identity: Sample #1473, CMEA	EC50 Value: <u>>20 μ1/m1 (>52 μg/m1)</u>
MOUNTAIN VIEW Description of Test Sample: Clear, pale yellow solution in DMSO. LBI Assay No.: 5397	Toxicity Classification: Probably Low or Non- detectable pH Alterations: NONE Comments on Treatment:
Date Received: October 9, 1980	
Test Date: November 17, 1980	,
Vehicle: DMSO	
Cell Type: CHO-K1	
Cells Seeded per Dish: 200	

CLONAL TOXICITY DATA

Sample	Applied Concentration µl/ml	Dish #1	Dish #2	Dish #3	Average Count	Relative Survival* %	Cloning Efficiency %
NC	***	207	185	192	194.7		97.4
VC, 1%	10.0	180	177	172	176.3	100.0	88.2
VC, 2%	20.0	173	162	166	167.0	100.0	83.5
Test Test Test Test Test Test Test	0.05 0.2 0.5 2.0 5.0 10.0 20.0	183 C 185 161 161 166	192 192 189 187 190 178 171	189 183 179 183 164 180 154	188.0 187.5 184.3 177.0 171.7 174.7 165.0	106.6 106.4 104.5 100.4 97.4 99.1 98.8	

NC = Negative Control, F12 medium. VC = Vehicle Control, percent DMSO in F12 as noted. * Relative to 2% VC for 20 μ 1/ml and to 1% VC for other treatments. C = Contaminated.

FIGURE 1

RODENT CELL (CHO) CLONAL TOXICITY ASSAY EC₅₀ DETERMINATION

SAMPLE #1473, CMEA MOUNTAIN VIEW

ASSAY DESIGN NO. 442

RODENT CELL CLONAL (CHO) TOXICITY ASSAY

This assay conforms to one of the bioassay tests in the US Environmental Protection Agency (EPA) <u>IERL - RTP Procedures Manual</u>: <u>Level 1 Environmental Assessment Biological Tests</u> (September, 1980). Level 1 bioassays obtain preliminary information on the harmful biological effects of chemicals found in industrial feed and waste streams by using mammalian cells in culture to measure metabolic impairment and cellular death.

1. OBJECTIVE

The objective of this assay is to determine the concentration of a test article that will reduce the colony forming ability of Chinese hamster cells by 50% after a 24-hour exposure. This concentration is referred to as the $\rm EC_{50}$ value.

2. MATERIALS

A. Indicator Cells

The indicator cells used in this study are Chinese hamster CHO-K1 cells (American Type Culture Collection No. CCL 61). This cell type was derived from ovarian tissue and has spontaneously transformed to a stable, hypodiploid line of rounded, fibroblastic cells with unlimited growth potential. Monolayer cultures have a fast doubling time of 11 to 14 hours, and untreated cells can normally be cloned with an efficiency of 80% or greater. Permanent stocks are maintained in liquid nitrogen and laboratory cultures are maintained by serial subculturing. Laboratory cultures are periodically checked by culturing methods for the absence of mycoplasma contamination. This test system is specified by the IERL-RTP Procedures Manual.

B. Medium

The CHO-K1 cell line has an absolute requirement for proline and therefore must be maintained in a culture medium containing sufficient amounts of this amino acid. Ham's F12 medium, which contains 3 \times 10-4M L-proline, is used, supplemented with 10% fetal bovine serum, 100 units per milliliter of penicillin, 100 μg streptomycin per milliliter, and 0.5 μg amphotericin B (Fungizone) per milliliter.

C. Controls

Untreated cells are cloned to establish the control cloning efficiency. If the test article is dissolved in an organic solvent (usually dimethylsulfoxide), cells exposed to solvent in the medium

2. MATERIALS (Continued)

are cloned to provide the reference cloning efficiency for the effect of the test article. The final concentration of solvent in the growth medium is generally 1% or less. All controls are performed in triplicate.

D. Sample Forms

Solid samples are tested as a solution or are ground to fine particles (less than 5 $\mu m)$ and tested as a suspension in growth medium. Dry particulate articles, aqueous liquids, suspensions and slurries are added directly to the growth medium and tested as a suspension or solution. Liquids containing less than 0.2% organic solvent are generally tested directly; samples dissolved in organic solvents are solvent exchanged in dimethylsulfoxide (DMSO) before testing. Original sample volumes may be reduced a maximum of 10-fold during solvent exchange, and the concentration factor is used to convert assayed volumes into equivalent original sample volumes. All sample manipulations are performed as described in the IERL-RTP Level 1 Procedures Manual.

3. EXPERIMENTAL DESIGN

A. Dose Selection

Unless the approximate toxicity is already known or the sample size is limiting, the following dose ranges are tested for different sample forms. Dry particulate articles are dissolved or suspended in growth medium and tested at five dose levels from 1000 $\mu g/ml$ to 10 $\mu g/ml$. Aqueous samples, suspensions or slurries are tested from 600 $\mu liters/ml$ to 6 $\mu liters/ml$ in five dose steps. Samples that are solvent exchanged into DMSO are tested from 20 $\mu liters/ml$ to 0.2 $\mu liters/ml$, also in five dose steps. Solvent concentrations are 1% for all dose levels except the maximum applicable dose (MAD) of 20 $\mu l/ml$, which contains 2% solvent. A second dose study is performed with an appropriate dose range if the EC50 has not been properly located in the initial test; EC50 values greater than 1,000 $\mu g/ml$, 600 $\mu liters$ of aqueous sample/ml or 20 $\mu liters$ nonaqueous sample/ml are not determined.

B. Clonal Toxicity Assay

Cells from monolayer stock cultures in logarithmic growth phase are trypsinized, counted by hemacytometer and reseeded into a series of 60- or 100-mm culture dishes at 200 cells per dish. The cultures are incubated for 6 to 16 hours at 37°C to allow attachment of the cells and recovery of growth rate.

Test article is then applied (three dishes per dose), and the cultures returned to the incubator. If the test article causes a color change, an additional dish is treated with the high dose and the pH of the

3. EXPERIMENTAL DESIGN (Continued)

medium is determined. The pH is also recorded for the highest dose which results in a slight color change. After a 24-hour exposure period the medium is aspirated and the cells washed with Dulbecco's phosphate buffered saline (PBS; prewarmed to 37°C). The pH of the discarded medium for which initial pH measurements were made is again recorded. Fresh medium is placed on each culture and incubation continued for an additional 6 days to allow colony development. Medium is drained from the cultures and the surviving colonies are washed with PBS, fixed in methanol, and stained with Giemsa. Colony counting is performed by eye; colonies smaller than 50 to 100 cells are not counted.

4. ASSAY ACCEPTANCE CRITERIA

The assay is considered acceptable for evaluation of the test results if the following criteria are met:

- The average cloning efficiency of the CHO-K1 cells in the negative controls is 70% or greater, but not exceeding 115%.
- The distribution of colonies in the treated cultures is generally uniform over the surface of the culture dish.
- The data points for each test concentration critical to the location of the EC $_{50}$ are the averages of at least two treated cultures.
- A sufficient number of test concentrations are available to clearly locate the EC_{50} within a toxicity region as defined under Assay Evaluation Criteria.
- If the EC₅₀ value is greater than 1000 μ g/ml, 600 μ liters of aqueous sample/ml, or 20 μ liters of nonaqueous sample/ml, the plotted curve does not exceed 110% of the negative control.

5. ASSAY EVALUATION CRITERIA

The screened doses, pH values (if appropriate), colony counts, percent survivals (colony counts relative to control colony counts) and $\rm EC_{50}$ values are provided. The percent survival is plotted as a function of applied concentration and the $\rm EC_{50}$ value determined graphically by fitting a curve by eye through the data points. The $\rm EC_{50}$ is used to rank the test material using the standard evaluation criteria defined in the table below.

Sorbent extracts of known organic content are evaluated as nonaqueous liquids and in terms of their solid contents (μ g organics/ml), and are ranked using the more sensitive parameter. Where data on the original liquid or gas sample volumes is provided by the Sponsor, the EC₅₀ value is calculated in terms of these equivalent volumes per milliliter of culture medium; however, no evaluations are made as yet on this basis.

5. ASSAY EVALUATION CRITERIA (Continued)

Toxicity ^a	Solids (EC ₅₀ in µg/ml)	Aqueous Liquids (EC ₅₀ in µ1/m1)	Nonaqueous Liquids ^t (EC ₅₀ in µ1/m1)	
High	<10	<6	<.2	
Moderate	10 to 100	6 to 60	. 2-2	
Low	100 to 1000	60 to 600	2-20	
Not Detectable	>1000	>600	>20	

^aEvaluation criteria formulated by Litton Bionetics, Inc. for <u>IERL-RTP</u> Procedures Manual: Level 1 Environmental Assessment Biological Tests.

6. RECORDS TO BE MAINTAINED

All raw data, protocols, protocol modifications, test article weight and dispensation records and correspondence between LBI and the Sponsor are being maintained in a central file within the Department of Genetics and Cell Biology. These records will be filed under departmental assay number and held up to 2 years following submission of the final report to the Sponsor. After 2 years they will be transferred to the LBI archives for permanent storage.

^bCriteria for nonaqueous liquids are tentative and under evaluation.

Q.A. Inspection Statement (reference 21 CFR 58.35(b)(7))

PROJECT	20	1993		LBI Assay	No. 539	77
TYPE of	STUDY	Coder	Cell (CHO)	Clonal S	vicity.	assay

This final study report was reviewed by the LBI Quality

Assurance Unit on <u>Accentuer 1, 1980</u>. A report of findings was submitted to the Study Director and to Management on <u>Accentuer 1, 1980</u>.

The short-term nature of this study precluded inspection while it was in process. The Quality Assurance Unit inspects an in-process study of this type approximately once per month to assure that no significant problems exist that are likely to affect the integrity of this type of study.

Hatrice M. Cuccaro

Auditor, Quality Assurance Unit

LBI SAFETY NO. ___6391

MUTAGENICITY EVALUATION OF SAMPLE #1473

AMES SALMONELLA/MICROSOME PLATE TEST

FINAL REPORT

SUBMITTED TO:

ACUREX CORPORATION
485 CLYDE AVENUE
MOUNTAIN VIEW, CALIFORNIA 94042

SUBMITTED BY:

LITTON BIONETICS, INC. 5516 NICHOLSON LANE KENSINGTON, MARYLAND 20795

LBI PROJECT NO. 20988

REPORT DATE: DECEMBER, 1980

PREFACE

This report contains a summary of the data compiled during the evaluation of the test compound. The report is organized to present the results in a concise and easily interpretable manner. The first part contains items I-IX. Items I-IV provide sponsor and compound identification information, type of assay, and the protocol reference number. All protocol references indicate a standard procedure described in the Litton Bionetics, Inc. "Screening Program for the Identification of Potential Mutagens and Carcinogens." Item V provides the initiation and completion dates for the study, and Item VI provides identification of supervisory personnel. Item VII identifies the tables and/or figures containing the data used by the study director in interpreting the test results. The interpretation itself is in Item VIII. Item IX provides the conclusion and evaluation.

The second part of the report describes the materials and procedures employed in conducting the assay. This part of the report also contains evaluation criteria used by the study director, and any appendices. The evaluation criteria are included to acquaint the sponsor with the methods used to develop and analyze the test results.

All test and control results presented in this report are supported by fully documented raw data which are permanently maintained in the files of the Department of Genetics and Cell Biology or in the archives of Litton Bionetics, Inc., 5516 Nicholson Lane, Kensington, Maryland 20795. I. SPONSOR: Acurex Corporation

II. MATERIAL (TEST COMPOUND): GENETICS ASSAY NUMBER: 5397

A. Identification: Sample #1473

B. Date Received: October 9, 1980

C. Physical Description: Pale yellow liquid

III. TYPE OF ASSAY: Ames Salmonella/microsome Mutagenesis Assay

IV. PROTOCOL NUMBER: 401 (EPA-Level I)

V. STUDY DATES:

A. Initiation: November 7, 1980

B. Completion: November 13, 1980

VI. STUDY DIRECTOR: D.R. Jagannath, Ph.D.

VII. RESULTS:

The results of this assay are presented in Table 1.

VIII. INTERPRETATION OF RESULTS:

The test material, Sample No. 1473, was supplied as a SASS train organic extract in the 10 ml of methylene chloride. The total organic content was given as 26.0 mg. A portion of the sample (8.20 ml) was solvent exchanged into dimethylsulfoxide (DMSO) to a final volume of 8.20 ml. This solvent exchanged sample (test material) was examined for mutagenic activity in the Ames/Salmonella assay in the presence and absence of liver microsomal enzyme preparations from Aroclor-induced rats.

A negative control consisting of the solvent DMSO and specific positive compounds were also assayed concurrently with the test material.

DOSE RANGE:

The dose range employed for the evaluation of this test material was from 10.0 μ l to 200.0 μ l per plate. Based on the organic content of the sample the doses employed would equal to 26.0 μ g to 520.0 μ g per plate. The tests were conducted using two plates per dose level.

VIII. INTERPRETATION OF RESULTS: (continued)

TOXICITY

The test material did not exhibit toxicity with any of the indicator strains used in this assay.

The results of the tests conducted on the test material in the absence of an activation system was positive with the strain TA-98. The lowest dose at which the response was observed was at 100 μI or 260.0 μg organics per plate.

The results of the test conducted on the test material in the presence of rat liver activation system were negative.

IX. CONCLUSIONS:

(1) The SASS train organic extract sample #1473 exhibited genetic activity with the strain TA-98 in the nonactivation assays conducted in this evaluation and is considered as mutagenic under these test conditions. (2) Based on the EPA's 'Definition of Toxicity Categories for Health Effects Tests' the mutagenic activity of the sample is classified as 'Moderate' (see Table A). The specific Activity at the Minimum Effective Concentration (which is the number of revertants minus the background revertants divided by ug organics x 1000) of the sample (260.0 μ g) based on the results from TA-98 (nonactivation) was 92.31 revertants per mg of organics.

The classification of the mutagenic activity (item 2 above) and the Specific Activity of the sample (item 3 above) are given here to compare the potency of various samples belonging to the same class.

Submitted by:

Study Director

D.R. Jagannath, Ph.D.

Section Chief

Submammalian Genetics Department of Genetics

and Cell Biology

Reviewed by:

Department of Genetics and Cell Biology

TABLE A DEFINITION OF TOXICITY CATEGORIES FOR HEALTH EFFECTS ASSAYS*

		Samp1e			Range of Concentration or Dosage				
Assay ^a	Activity Measured ^D	Type ^C	MAD ^d	Units	High	Moderate	Low	Not Detectable (ND)	
Ames	MEC (mutagenesis)	S AL,NAL	5 200	mg/plate µl/plate	<0.05 <2	0.05-0.5 2-20	0.5-5 20-200	ND at >5 ND at >200	
RAM	EC _{so} (lethality)	S AL Nal	1 600 20	mg/ml µl/ml µl/ml	<0.01 <6 <0.2	0.01-0.1 6-60 0.2-2	0.1-1 60-600 2-20	ND at >1 ND at >600 ND at >20	
СНО	EC _{SO} (lethality)	S AL NAL	1 600 20	mg/ml µl/ml µl/ml	<0.01 <6 <0.2	0.01-0.1 6-60 0.2-2	0.1-1 60-600 2-20	ND at >1 ND at <600 ND at >20	
WAT	LD _{SO} (lethality and toxic signs)	S Al,nal	5 5	gm/kg ml/kg	<0.05 <0.05	0.05-0.5 0.5-0.5	0.5-5 0.5-5	ND at <5 ND at <5	

^aStandard test abbreviations are as follows:

Ames: Ames Salmonella/microsome mutagenesis assay RAM: Rabbit alveolar macrophage cytotoxicity assay

CHO: Rodent cell clonal toxicity assay

WAT: Acute in vivo test in rodents (whole animal test)

 $^{\mathrm{b}}$ Standard abbreviations for measured endpoints are as follows:

MEC: Minimum effective concentration

 EC_{50} : Calculated concentration expected to produce effect in 50 percent of population LD_{50} : Calculated dose expected to kill 50 percent of population

^CS = Solid, AL = Aqueous liquid, NAL = Nonaqueous liquid

dMAD = Maximum applicable dose

Evaluation criteria formulated by Litton Bionetics, Inc. for IERL-RTP Procedures Manual: Level 1 Environmental Assessment Biological Tests.

RESULTS TABLE 1 --------

A. MANE OR CODE DESIGNATION OF THE TEST COMPOUND: SAMPLE #1473

A. MANE OR CODE DESIGNATION OF THE TEST COMPOUND: SAMPLE OF SOLVENT: ONSO
C. TEST INITIATION DATES: 11/07/80
D. TEST COMPLETION DATE: 11/13/80
E. S-9 LOTO: 08089
NOTE: CONCENTRATIONS ARE GIVEN IN NICROLITERS PER PLATE

			•		RTA	N T S	5 P	E R	PL	ATE				
TEST	SPECIES		TA	-1535		74-	-1537		74	-78	TA	-1 00	*********	
HOMACTIVATION			1	2	3	1	2	3	1	2	3 1	2	3	
SOLVENT CONTROL PCSITIVE CONTROL			12	11 1018		6	9		22			193		
			770	1058		171	225		861	727	1303	1274		
TEST COMPOUND														
25.000000 UL			22 34	21 25		10	10		28 30			141		
50.000000 UL			17	21		10	3		30	?1	169 173			
100.000000 UL			21	23		10	Ä		58	30	176			
200.000000 UL			24	28		14	9		63	33		146		
ACTIVATION														
SOLVENT CONTROL	RAT	LIVER	,	9		,	9		14	15	190	176		
POSITIVE CONTROL+	- RAT	LIVER	118	150		179	161			1866		1746		
TEST COMPOUND														
10.000000 UL	RAT	LIVER	9	10		16	15		32	21	151	118		
25.990000 UL	RAT	LIVER	9	10		6	9		37	29	152			
20-000000 MT	RAT	LIVER	11	10		8	5		33		145			
100.000000 UL 200.000000 UL	RAT RAT	LIVER	6 17	11 14		3	3		23 29	29 24	193			
***************************************	-								27 		223	228		
TA-1537 9-ANIN TA-98 2-NITR	AZIDE HOACRIDII OFLUGREI AZIDE PLATE					50 UG 10 UG	PLAT PLAT PLAT	E E		TA-1535 TA-1537 TA-96 TA-100		rahine Rahine	2.5 UG/PLATE 2.5 UG/PLATE	

AMES SALMONELLA/MICROSOME PLATE ASSAY

1. OBJECTIVE

The objective of this study was to evaluate a test material for mutagenic activity in a bacterial assay with and without a mammalian S9 activation system.

2. RATIONALE

The Salmonella typhimurium strains used at LBI are all histidine auxotrophs by virtue of mutations in the histidine operon. When these histidine-dependent cells are grown in a minimal media petri plate containing a trace of histidine, only those cells that revert to histidine independence (his+) are able to form colonies. The trace amount of histidine allows all the plated bacteria to undergo a few divisions; this growth is essential for mutagenesis to occur. The his+ revertants are easily scored as colonies against the slight background growth. The spontaneous mutation frequency of each strain is relatively constant, but when a mutagen is added to the agar the mutation frequency is increased 2- to 100-fold. Cells which grow to form colonies on the minimal media petri plates are therefore assumed to have reverted, either spontaneously or by the action of a test substance to his+ genotype.

3. MATERIALS

A. Indicator Microorganisms

The <u>Salmonella</u> typhimurium strains used in this assay were obtained from Dr. Bruce Ames, University of California at Berkeley.¹⁻⁵ The following 4 strains were used:

Strain	Gene	Addi	Mutation Type		
Designation	Affected	Repair	LPS	R Factor	Detected
TA-1535	<u>his</u> G	Δ <u>uvr</u> B	<u>rfa</u>	-	Base-pair substitution
TA-1537	his C	Δ uvr B	rfa	-	Frameshift
TA-98	his D	Δ <u>uvr</u> B	rfa	pKM101	Frameshift
TA-100	his G	Δ <u>uvr</u> B	<u>rfa</u>	pKM101_	Base pair substitution

3. MATERIALS (Continued)

The aforementioned strains have, in addition to the mutation in the histidine operon, a mutation (\underline{rfa} -) that leads to defective lipopoly-saccharide coat, a deletion that covers genes involved in the synthesis of vitamin biotin (\underline{bio} -) and in the repair of ultraviolet (\underline{uv}) - induced DNA damage (\underline{uvrB} -). The \underline{rfa} - mutation makes the strains more permeable to many large molecules. The \underline{uvrB} - mutation decreases repair of some types of chemically or physically damaged DNA and thereby enhances the strain's sensitivity to some mutagenic agents. The resistant transfer factor plasmid (R factor) pKM101 in TA-98 and TA-100 is believed to cause an increase in error-prone DNA repair that leads to many more mutations for a given dose of most mutagens⁵. In addition, plasmid pKM101 confers resistance to the antibiotic ampicillin, which is a convenient marker to detect the presence of plasmid in the cells.

All indicator strains are kept at 4°C on minimal medium plates supplemented with a trace of biotin and an excess of histidine. The plates with plasmid-carrying strains contain in addition ampicillin (25 μ g/ml) to ensure stable maintenance of plasmid pKM101. New stock culture plates are made as often as necessary from frozen master cultures or from single colony reisolates that were checked for their genotypic characteristics (his, rfa, uvrB, bio) and for the presence of plasmid. For each experiment, an inoculum from the stock culture plates is grown overnight at 37°C in nutrient broth (Oxoid CM67).

B. Media

The bacterial strains were cultured in Oxoid Media #2 (nutrient Broth). The selective medium was Vogel Bonner Medium E with 2% glucose⁷. The overlay agar consisted of 0.6% purified agar with 0.5 mM histidine, 0.05 mM biotin and 0.1 M NaCl according to the methods of Ames et. al. 6

C. Activation System

(1) S9 Homogenate

A 9,000 x g supernatant prepared from Sprague-Dawley adult male rat liver induced by Aroclor 1254 (described by Ames et. al. 6) was purchased from Bionetics Laboratory Products, Litton Bionetics, Inc. and used in this assay.

(2) S9 Mix

Components	Concentration per Milliliter S9 Mix
NADP (sodium salt)	4 µmoles
D-glucose-6-phosphate	5 µmoles
MgCl ₂	8 µmoles
KC1"	33 µmoles
Sodium phosphate buffer	·
pH 7.4	100 µmoles
Organ homogenate from rat	·
liver (\$9 fraction)	100 μliters

4. EXPERIMENTAL DESIGN

A. Dosage Selection

All tests are run at a minimum of four concentrations. In the Standard EPA Level I Ames assays, five dose levels of the test material, dissolved in a suitable solvent, are added to the test system. The standard test doses for the extracted material are 10, 25, 50, 100 and 200 μ liters per plate. The solids are tested up to 5 mg per plate and at lower concentrations of 2.5, 1, 0.5, 0.1 and 0.05 mg per plate. The samples are retested over a narrower range of concentrations with strains showing positive results if there is enough sample.

B. <u>Mutagenicity Testing</u>

The procedure used is based on the paper published by Ames et. $\underline{a1}$.⁶ and is performed as follows:

(1) Nonactivation Assay

To a sterile 13 x 100 mm test tube placed in a 43°C water bath the following is added in order:

- (a) 2.00 ml of 0.6% agar containing 0.05 mM histidine and 0.05 mM biotin.
- (b) 0.05 ml of a solution of the test chemical to give the appropriate dose.
- (c) 0.1 ml 0.2 ml of indicator organism(s).
- (d) 0.50 ml of 0.2M phosphate buffer, pH 7.4.

This mixture is swirled gently and then poured onto minimal agar plates (see 3B, Media). After the top agar has set, the plates are incubated at 37°C for approximately 2 days. The number of his+ revertant colonies growing on the plates is counted and recorded.

(2) Activation Assay

The activation assay is run concurrently with the nonactivation assay. The only difference is the addition of 0.5 ml of S9 mix (see 3C:2, Activation System) to the tubes in place of 0.5 ml of phosphate buffer which is added in nonactivation assays. All other details are similar to the procedure for nonactivation assays.

A detailed flow diagram for the plate incorporation assay is provided in Figure 1.

FIGURE 1

REVERSE MUTATION ASSAY
[Agar Incorporation Method]

4. <u>EXPERIMENTAL DESIGN</u> (Continued)

C. <u>Control</u> <u>Compounds</u>

A negative control consisting of the solvent used for the test material is performed in all cases. For negative controls, step 'b' of Nonactivation Assays is replaced by 0.05 ml of the solvent. The negative controls are employed for each indicator strain and are performed in the absence and presence of S9 mix. The solvent used to prepare the stock solution of the test material is given in the Results section of this report. All dilutions of the test material are made using this solvent. The amount of solvent used is equal to the maximum volume used to give the appropriate test dose.

Specific positive control compounds known to revert each strain are also used in the assays. The concentrations and specificities of these compounds to specific strains are given in the following table:

Assay	Chemical	Solvent	Concentration per Plate (µg)	Salmonella Strains	
Nonactivation	Sodium azide 2-Nitrofluorene (NF)	Water Dimethyl- sulfoxide	1 10	TA-1535, TA-100 TA-98	
	9-aminoacridine (9AA)	Ethanol	50	TA-1537	
Activation	2-anthramine (ANTH)	Dimethyl- sulfoxide	2.5	For all strains	

5. EVALUATION CRITERIA

Statistical methods are not currently used and evaluation is based on the criteria included in this protocol.

Plate test data consist of direct revertant colony counts obtained from a set of selective agar plates seeded with populations of mutant cells suspended in a semisolid overlay. Because the test material and the cells are incubated in the overlay for approximately 2 days and a few cell divisions occur during the incubation period, the test is semiquantitative in nature. Although these features reduce the quantitation of result, they provide certain advantages not contained in a quantitative suspension test:

- The small number of cell divisions permits potential mutagens to act on replicating DNA, which is often more sensitive than nonreplicating DNA.
- The combined incubation of the test article and the cells in the overlay permits constant exposure of the indicator cells for approximately 2 days.

A. Surviving Populations

Plate test procedures do not permit exact quantitation of the number of cells surviving chemical treatment. At low concentrations of the test material, the surviving population on the treatment plates is essentially the same as that on the negative control plate. At high concentrations, the surviving population is usually reduced by some fraction. Our protocol will normally employ several doses ranging over two or three log concentrations. This does not apply to spot tests and tests performed on fabrics and like materials which are tested at a single concentration.

j

B. Dose-Response Phenomena

The demonstration of dose-related increases in mutant counts is an important criterion in establishing mutagenicity. A factor that might modify dose-response results for a mutagen would be the selection of doses that are too low (usually mutagenicity and toxicity are related). If the highest dose is far lower than a toxic concentration, no increases may be observed over the dose range selected. Conversely, if the lowest dose employed is highly cytotoxic, the test material may kill any mutants that are induced, and the test material will not appear to be mutagenic.

5. **EVALUATION CRITERIA** (Continued)

C. <u>Control Tests</u>

Positive and negative control assays are conducted with each experiment and consist of direct-acting mutagens for nonactivation assays and mutagens requiring metabolic biotransformation in activation assays. Negative controls consist of the test material solvent in the overlay agar together with the other essential components. The negative control plate for each strain gives a reference point to which the test data is compared. The positive control assay is conducted to demonstrate that the test systems are functional with known mutagens.

D. <u>Evaluation Criteria for Ames Assay</u>

Because the procedures used to evaluate the mutagenicity of the test material are semiquantitative, the criteria used to determine positive effects are inherently subjective and are based primarily on a historical data base. Most data sets are evaluated using the following criteria:

(1) Strains TA-1535, TA-1537

If the solvent control value is within the normal range, a test material producing a positive response equal to three times the solvent control value is considered mutagenic.

(2) Strains TA-98 and TA-100

If the solvent control value is within the normal range, a test material producing a positive response equal to twice the solvent control value for TA-98 and TA-100 is considered mutagenic.

(3) Pattern

Because TA-1535 and TA-100 are both derived from the same parental strain (G-46) and because TA-1538 and TA-98 are both derived from the same parental strain (D3052), to some extent there is a built-in redundancy in the microbial assay. In general, the two strains of a set respond to the same mutagen and such a pattern is sought. Generally, if a strain responds to a mutagen in nonactivation tests, it will do so in activation tests.

(4) Reproducibility

If a test material produces a response in a single test which cannot be reproduced in additional runs, the initial positive test data lose significance.

5. EVALUATION CRITERIA (Continued)

E. Evaluation Criteria for Toxicity

(1) Complete toxicity

When there are no revertants observed on the plate(s) treated with the test compound, the test compound is defined as toxic to all or any of the indicator strains at that (those) particular dose(s).

(2) Slight toxicity

When there are fifty or less percent revertants on the plate(s) treated with the test compound as compared to the solvent control plate(s), the test compound is defined as slightly toxic to all or any of the indicator strains at that (those) particular dose(s).

F. Relation Between Mutagenicity and Carcinogenicity

It must be emphasized that the Ames <u>Salmonella/Microsome Plate Assay</u> is not a definitive test for chemical carcinogens. It is recognized, however, that correlative and functional relations have been demonstrated between these two endpoints. The results of comparative tests on 300 chemicals by McCann <u>et. al.¹</u> show an extremely good correlation between results of microbial mutagenesis tests and <u>in vivo</u> rodent carcinogenesis assays.

All evaluations and interpretation of the data to be presented in the final report will be based only on the demonstration, or lack, of mutagenic activity.

REFERENCES

- 1. McCann, J., Choi, E., Yamasaki, E. and Ames, B.N.: Detection of carcinogens as mutagens in the <u>Salmonella/microsome test</u>: Assay of 300 chemicals. Proc. Nat. Acad. Sci. USA, 72:5135-5139, 1975.
- 2. Ames, B.N., Gurney, E.G., Miller, J.A. and Bartsch, H.: Carcinogens as frameshift mutagens: Metabolites and derivatives of 2-acetyl-aminofluorene and other aromatic amine carcinogens. Proc. Nat. Acad. Sci. USA, 69:3128-3132, 1972.
- 3. Ames, B.N, Lee, F.D. and Durston, W.E.: An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc. Nat. Acad. Sci. USA, 70:782-786, 1973.
- 4. Ames, B.N, Durston, W.E., Yamasaki, E. and Lee, F.D.: Carcinogens are mutagens: A simple test system combining liver homogenates for activation and bacteria for detection. Proc. Nat. Acad. Sci. USA, 70:2281-2285, 1973.
- McCann, J., Springarn, N.E., Kobori, J. and Ames, B.N.: Detection of carcinogens as mutagens: Bacterial tester strains with R factor plasmids. Proc. Nat. Acad. Sci. USA, 72:979-983, 1975.
- 6. Ames, B.N., McCann, J. and Yamasaki, E.: Methods for detecting carcinogens and mutagens with the <u>Salmonella/mammalian-microsome</u> mutagenicity test. Mutation Res., <u>31</u>:347-364, 1975.
- 7. Vogel, H.J. and Bonner, D.M.: Acetylornithinase of <u>E. coli</u>; Partial purification and some properties. J. Biol. Chem., <u>218</u>: 97-106, 1956.

Q.A. Inspection Statement (reference 21 CFR 58.35(b)(7))

PROJECT 20988	LBI Assay No. <u>539.7</u>
TYPE of STUDY AMES Platz TE	s7
This final study report was re	viewed by the LBI Quality
Assurance Unit on	
submitted to the Study Director and to	Management on $12/3/60$
	study precluded inspection while
it was in process. The Quality Assurar	nce Unit inspects an in-process
study of this type approximately once p	per month to assure that no
significant problems exist that are like	cely to affect the integrity of
this type of study.	
	Mitaled & Elis
	Auditor. Ouality Assurance Unit

GENETICS ASSAY NO. 5394

LBI SAFETY NO. 6378

CYTOTOXIC EVALUATION OF

SAMPLE # 1452 (WATER TANK DRAIN, END OF TEST)

IN THE RODENT CELL (CHO) CLONAL TOXICITY ASSAY

FINAL REPORT

SUBMITTED TO:

ACUREX CORPORATION
485 CLYDE AVENUE
MOUNTAIN VIEW, CA 94042

SUBMITTED BY:

LITTON BIONETICS, INC. 5516 NICHOLSON LANE KENSINGTON, MARYLAND 20795

LBI PROJECT NO. 20933

REPORT DATE: DECEMBER 1980

PREFACE

This report contains a summary of the data compiled during the evaluation of the test compound. The report is organized to present the results in a concise and easily interpretable manner. The first part contains items I - IX. Items I - IV provide sponsor and compound identification information, type of assay, and the assay design reference number. All assay design references indicate a standard procedure described in the Litton Bionetics, Inc. "Screening Program for the Identification of Potential Mutagens and Carcinogens." Item V provides the initiation and completion dates for the study, and Item VI provides identification of supervisory personnel. Item VII identifies the tables and figures containing the data used by the study director in interpreting the test results. The interpretation itself is in Item VIII. Item IX provides the conclusion and evaluation.

The second part of the report, entitled Assay Design, describes the materials and procedures employed in conducting the assay. This part of the report also contains any appendices, as well as evaluation criteria used by the study director. The evaluation criteria are included to acquaint the sponsor with the methods used to develop and analyze the test results.

All test and control results presented in this report are supported by fully documented raw data which are permanently maintained in the files of the Department of Genetics and Cell Biology or in the archives of Litton Bionetics, Inc., 5516 Nicholson Lane, Kensington, Maryland, 20795.

Copies of raw data will be supplied to the sponsor upon request.

- I. SPONSOR: Acurex Corporation
- II. MATERIAL (TEST COMPOUND): GENETICS ASSAY NUMBER: 5394
 - A. Identification: Sample #1452 (Man Test 5/21/80, #5 Gal, Water Tank Drain, End of Test)
 - B. Date Received: October 6, 1980
 - C. Physical Description: Clear, colorless liquid
- III. TYPE OF ASSAY: Rodent Cell (CHO) Clonal Toxicity Assay
 - IV. ASSAY DESIGN NUMBER: 442
 - V. STUDY DATES:
 - A. Initiation: November 19, 1980
 - B. Completion: December 1, 1980
 - VI. SUPERVISORY PERSONNEL:
 - A. Study Director: Brian C. Myhr, Ph.D.
 - B. Laboratory Supervisor: Robert Young, M.S.
- VII. RESULTS:

The data are presented in Table 1 on page 3 and in Figure 1 on page 4.

VIII. INTERPRETATION OF RESULTS:

The test material, Sample No. 1452, was supplied as a colorless, aqueous solution that did not contain any obvious suspended material. A portion of the sample (18 ml) was combined with 10X F10 medium and supplements to yield 30 ml of culture medium containing the test material at a concentration of 600 μ l/ml. This was the highest concentration applied to the CHO cells. Lower concentrations were achieved by serial dilution with F10 culture medium. The treatments were initiated by replacing the F12 medium in the cell cultures with F10 medium containing the test material. After the 24 hour exposure period, the cultures were returned to F12 medium and incubated for colony development. The test material did not cause any visible precipitation of culture medium components, but a shift to a slightly acidic pH of 6.26 was observed for the 600 μ l/ml concentration. The pH remained normal (above 7.0) for the other test concentrations.

VIII. INTERPRETATION OF RESULTS: (continued)

Two trials of the assay were performed. The first trial was considered insufficient for evaluation because the average cloning efficiency of the negative controls was 67.4%, which was slightly below the 70% criterion used for an acceptable assay. The results of the second trial are presented in Table 1 and Figure 1.

Seven test concentrations from 6 μ l/ml to 600 μ l/ml were evaluated for their effects on colony survival. As shown in Table 1, complete lethality was obtained for treatments in the 60 to 600 μ l/ml concentration range. In contrast, the treatments with 6 to 30 μ l/ml were essentially nontoxic to the cells. Thus, an extremely sharp survival curve was obtained, as shown in Figure 1, with an EC50 apparently located at 45 μ l/ml. [In the first trial (results not shown), an EC50 value of 52 μ l/ml was obtained for a somewhat broader survival curve]. The EC50 was therefore located at the upper end of the 6-60 μ l/ml concentration range, which is the range defined for moderate toxicity for aqueous liquids (see Evaluation Criteria). Since complete lethality was obtained at the boundary between moderate and low toxicity, an evaluation of moderate toxicity to CH0 cells appeared appropriate.

IX. CONCLUSIONS:

The test material, Sample No. 1452, was evaluated as having moderate toxicity in the CHO Clonal Toxicity Assay. The EC50 value was $45~\mu\mbox{l/m}$.

Submitted by:

Study Director:

•

 Ω $e \Lambda$

Brian C. Myhr.

Section Chief Mammalian Genetics

Department of Genetics

and Cell Biology

Reviewed by:

David J. Brusick, Ph.D.

Director

Department of Genetics

and Cell Biology

TABLE 1

RODENT CELL (CHO) CLONAL TOXICITY ASSAY

Sample Identity: Sample #1452. (Water	EC50 Value: 45 ul/ml			
Tank Drain, End of Test)	Toxicity Classification: Moderate			
<pre>Description of Sample: <u>Clear, colorless</u></pre> <pre>aqueous liquid</pre>	pH Alterations: pH 6.26 at 600 µl/ml			
LBI Assay No.: 5394	Comments on Treatment: Normal pH			
Date Received: October 6, 1980	for treatments with 6 to 300 µ1/m1			
Test Date: November 25, 1980 (Trial 2)				
Vehicle: None				
Cell Type: CHO-Kl				
Cells Seeded per Dish: 200				

CLONAL TOXICITY DATA

Sample	Applied Concentration µl/ml	Dish #1	Dish #2	Dish #3	Average Count	Relative Survival %	Cloning Efficiency %
NC		187	193	187	189.0	100.0	94.5
Test	6.0	190	219	183	197.3	104.4	
Test	10.0	214	210	181	201.7	106.7	
Test	30.0	167	190	178	178.3	94.3	
Test	60.0	0	0	0	0	0	
Test	100.0	0	0	Ó	Ō	Õ	
Test	300.0	0	Ô	Ö	Ō	Ö	
Test	600.0	Ō	Ō	Ö	Ö	Ö	

NC = Negative Control, F12 medium.

FIGURE 1

RODENT CELL (CHO) CLONAL TOXICITY ASSAY ${\sf EC_{50}} \ {\sf DETERMINATION}$

SAMPLE #1452 (WATER TANK DRAIN, END OF TEST)

ASSAY DESIGN NO. 442

RODENT CELL CLONAL (CHO) TOXICITY ASSAY

This assay conforms to one of the bioassay tests in the US Environmental Protection Agency (EPA) <u>IERL - RTP Procedures Manual</u>: <u>Level 1 Environmental Assessment Biological Tests</u> (September, 1980). Level 1 bioassays obtain preliminary information on the harmful biological effects of chemicals found in industrial feed and waste streams by using mammalian cells in culture to measure metabolic impairment and cellular death.

1. OBJECTIVE

The objective of this assay is to determine the concentration of a test article that will reduce the colony forming ability of Chinese hamster cells by 50% after a 24-hour exposure. This concentration is referred to as the EC_{50} value.

2. MATERIALS

A. Indicator Cells

The indicator cells used in this study are Chinese hamster CHO-K1 cells (American Type Culture Collection No. CCL 61). This cell type was derived from ovarian tissue and has spontaneously transformed to a stable, hypodiploid line of rounded, fibroblastic cells with unlimited growth potential. Monolayer cultures have a fast doubling time of 11 to 14 hours, and untreated cells can normally be cloned with an efficiency of 80% or greater. Permanent stocks are maintained in liquid nitrogen and laboratory cultures are maintained by serial subculturing. Laboratory cultures are periodically checked by culturing methods for the absence of mycoplasma contamination. This test system is specified by the IERL-RTP Procedures Manual.

B. Medium

The CHO-K1 cell line has an absolute requirement for proline and therefore must be maintained in a culture medium containing sufficient amounts of this amino acid. Ham's F12 medium, which contains 3 x 10-4M L-proline, is used, supplemented with 10% fetal bovine serum, 100 units per milliliter of penicillin, 100 μg streptomycin per milliliter, and 0.5 μg amphotericin B (Fungizone) per milliliter.

C. Controls

Untreated cells are cloned to establish the control cloning efficiency. If the test article is dissolved in an organic solvent (usually dimethylsulfoxide), cells exposed to solvent in the medium

2. MATERIALS (Continued)

are cloned to provide the reference cloning efficiency for the effect of the test article. The final concentration of solvent in the growth medium is generally 1% or less. All controls are performed in triplicate.

D. Sample Forms

Solid samples are tested as a solution or are ground to fine particles (less than 5 $\mu m)$ and tested as a suspension in growth medium. Dry particulate articles, aqueous liquids, suspensions and slurries are added directly to the growth medium and tested as a suspension or solution. Liquids containing less than 0.2% organic solvent are generally tested directly; samples dissolved in organic solvents are solvent exchanged in dimethylsulfoxide (DMSO) before testing. Original sample volumes may be reduced a maximum of 10-fold during solvent exchange, and the concentration factor is used to convert assayed volumes into equivalent original sample volumes. All sample manipulations are performed as described in the IERL-RTP Level 1 Procedures Manual.

3. EXPERIMENTAL DESIGN

A. Dose Selection

Unless the approximate toxicity is already known or the sample size is limiting, the following dose ranges are tested for different sample forms. Dry particulate articles are dissolved or suspended in growth medium and tested at five dose levels from 1000 μ g/ml to 10 μ g/ml. Aqueous samples, suspensions or slurries are tested from 600 μ liters/ml to 6 μ liters/ml in five dose steps. Samples that are solvent exchanged into DMSO are tested from 20 μ liters/ml to 0.2 μ liters/ml, also in five dose steps. Solvent concentrations are 1% for all dose levels except the maximum applicable dose (MAD) of 20 μ l/ml, which contains 2% solvent. A second dose study is performed with an appropriate dose range if the EC₅₀ has not been properly located in the initial test; EC₅₀ values greater than 1,000 μ g/ml, 600 μ liters of aqueous sample/ml or 20 μ liters nonaqueous sample/ml are not determined.

B. Clonal Toxicity Assay

Cells from monolayer stock cultures in logarithmic growth phase are trypsinized, counted by hemacytometer and reseeded into a series of 60- or 100-mm culture dishes at 200 cells per dish. The cultures are incubated for 6 to 16 hours at 37°C to allow attachment of the cells and recovery of growth rate.

Test article is then applied (three dishes per dose), and the cultures returned to the incubator. If the test article causes a color change, an additional dish is treated with the high dose and the pH of the

3. EXPERIMENTAL DESIGN (Continued)

medium is determined. The pH is also recorded for the highest dose which results in a slight color change. After a 24-hour exposure period the medium is aspirated and the cells washed with Dulbecco's phosphate buffered saline (PBS; prewarmed to 37°C). The pH of the discarded medium for which initial pH measurements were made is again recorded. Fresh medium is placed on each culture and incubation continued for an additional 6 days to allow colony development. Medium is drained from the cultures and the surviving colonies are washed with PBS, fixed in methanol, and stained with Giemsa. Colony counting is performed by eye; colonies smaller than 50 to 100 cells are not counted.

4. ASSAY ACCEPTANCE CRITERIA

The assay is considered acceptable for evaluation of the test results if the following criteria are met:

- The average cloning efficiency of the CHO-K1 cells in the negative controls is 70% or greater, but not exceeding 115%.
- The distribution of colonies in the treated cultures is generally uniform over the surface of the culture dish.
- The data points for each test concentration critical to the location of the EC₅₀ are the averages of at least two treated cultures.
- A sufficient number of test concentrations are available to clearly locate the EC₅₀ within a toxicity region as defined under Assay Evaluation Criteria.
- If the EC₅₀ value is greater than 1000 μ g/ml, 600 μ liters of aqueous sample/ml, or 20 μ liters of nonaqueous sample/ml, the plotted curve does not exceed 110% of the negative control.

5. ASSAY EVALUATION CRITERIA

The screened doses, pH values (if appropriate), colony counts, percent survivals (colony counts relative to control colony counts) and EC_{50} values are provided. The percent survival is plotted as a function of applied concentration and the EC_{50} value determined graphically by fitting a curve by eye through the data points. The EC_{50} is used to rank the test material using the standard evaluation criteria defined in the table below.

Sorbent extracts of known organic content are evaluated as nonaqueous liquids and in terms of their solid contents (μg organics/ml), and are ranked using the more sensitive parameter. Where data on the original liquid or gas sample volumes is provided by the Sponsor, the- EC_{50} value is calculated in terms of these equivalent volumes per milliliter of culture medium; however, no evaluations are made as yet on this basis.

5. ASSAY EVALUATION CRITERIA (Continued)

Toxicity ^a	Solids (EC ₅₀ in µg/ml)	Aqueous Liquids (EC ₅₀ in µ1/m1)	Nonaqueous Liquids ^t (EC ₅₀ in µl/ml)
High	<10	<6	<.2
Moderate	10 to 100	6 to 60	. 2-2
Low	100 to 1000	60 to 600	2-20
Not Detectable	>1000	>600	>20

^aEvaluation criteria formulated by Litton Bionetics, Inc. for <u>IERL-RTP</u> Procedures Manual: Level 1 Environmental Assessment Biological Tests.

6. RECORDS TO BE MAINTAINED

All raw data, protocols, protocol modifications, test article weight and dispensation records and correspondence between LBI and the Sponsor are being maintained in a central file within the Department of Genetics and Cell Biology. These records will be filed under departmental assay number and held up to 2 years following submission of the final report to the Sponsor. After 2 years they will be transferred to the LBI archives for permanent storage.

^bCriteria for nonaqueous liquids are tentative and under evaluation.

Q.A. Inspection Statement (reference 21 CFR 58.35(b)(7))

PROJECT	20	993		LB:	I Assay No	s. <u>539</u>	4
TYPE of	STUDY	Codent	(ell (CHO)	Clonal.	Sovices	tu au	lau
						1	

This final study report was reviewed by the LBI Quality

Assurance Unit on <u>Occurles 3, 1980</u> A report of findings was submitted to the Study Director and to Management on <u>Occurles 3, 1980</u>

The short-term nature of this study precluded inspection while it was in process. The Quality Assurance Unit inspects an in-process study of this type approximately once per month to assure that no significant problems exist that are likely to affect the integrity of this type of study.

Hattice Mr. Cuceare
Auditor, Quality Assurance Unit

GENETICS ASSAY NO. 5394

LBI SAFETY NO. 6378

MUTAGENICITY EVALUATION OF SAMPLE #1452

AMES SALMONELLA/MICROSOME PLATE TEST

FINAL REPORT

SUBMITTED TO:

ACUREX CORPORATION
485 CLYDE AVENUE
MOUNTAIN VIEW, CA 94042

SUBMITTED BY:

LITTON BIONETICS, INC. 5516 NICHOLSON LANE KENSINGTON, MARYLAND 20795

LBI PROJECT NO. 20988

REPORT DATE: DECEMBER, 1980

PREFACE

This report contains a summary of the data compiled during the evaluation of the test compound. The report is organized to present the results in a concise and easily interpretable manner. The first part contains items I-IX. Items I-IV provide sponsor and compound identification information, type of assay, and the protocol reference number. All protocol references indicate a standard procedure described in the Litton Bionetics, Inc. "Screening Program for the Identification of Potential Mutagens and Carcinogens." Item V provides the initiation and completion dates for the study, and Item VI provides identification of supervisory personnel. Item VII identifies the tables and/or figures containing the data used by the study director in interpreting the test results. The interpretation itself is in Item VIII. Item IX provides the conclusion and evaluation.

The second part of the report describes the materials and procedures employed in conducting the assay. This part of the report also contains evaluation criteria used by the study director, and any appendices. The evaluation criteria are included to acquaint the sponsor with the methods used to develop and analyze the test results.

All test and control results presented in this report are supported by fully documented raw data which are permanently maintained in the files of the Department of Genetics and Cell Biology or in the archives of Litton Bionetics, Inc., 5516 Nicholson Lane, Kensington, Maryland 20795.

- I. SPONSOR: Acurex Corporation
- II. MATERIAL (TEST COMPOUND): GENETIC ASSAY NUMBER: 5394
 - A. Identification: Sample Number 1452 and its Extract
 - B. Date Received: October 6, 1980
 - C. Physical Description: Neat Sample: Colorless Liquid Extract : Green Liquid
- III. TYPE OF ASSAY: Ames Salmonella/microsome Mutagenesis Assay
 - IV. PROTOCOL NUMBER: 401 (EPA-LEVEL I)
 - V. STUDY DATES:
 - A. Initiation: November 21, 1980
 - B. Completion: November 25, 1980
 - VI. SUPERVISORY PERSONNEL:
 - A. Study Director: D.R. Jagannath, Ph.D.
- VII. RESULTS:

The results of this are presented in Tables 1 and 2.

VIII. INTERPRETATION OF RESULTS:

The test material, Sample No. 1452 was received as a clear colorless liquid (1 gallon) with no visible suspended particulates. An aliquot of the neat sample (3250 ml) was concentrated 500 fold by passing through the XAD-2 resin column at a flow rate of 3 ml per minute. The resin was then extracted with methylene chloride in a Soxhlet apparatus for 24 h. The extract (250 ml) was concentrated to approximately 5 ml using a Kuderna Concentrator. The concentrated extract was then solvent exchanged by sequential addition of Dimethylsulfoxide (DMSO) and evaporation of residual methylene chloride in a warm water bath under a stream of nitrogen. Final sample size in DMSO was 6.5 ml which represents a 500 fold concentration factor. The concentrate was a clear solution with a pale blue/green color.

The test materials, neat sample #1452 and its extract were examined for mutagenic activity in the Ames <u>Salmonella</u> assay in the presence and absence of liver microsomal enzymes from Aroclor induced rats.

Solvent controls, distilled water for the neat sample and DMSO for the extract of the sample, and specific positive controls were also assayed concurrently with the test materials.

DOSE RANGE: The dose range employed for the neat sample was from 10.0 ul to 200.0 ul per plate and for the extract it was from 5.0 ul to 100.0 ul per plate (due to the limited amount of the extract). The organic content of the sample was not supplied by the sponsor.

TOXICITY: The test materials, neat sample and its extract were not toxic to any of the strains used in this assays.

RESULTS:

The results of the tests conducted on the test material, neat sample, in the absence of an activation system was negative. However, the extract of the sample exhibited genetic activity with the strain TA-98 in the absence of an activation system. The response was slightly above two times the background level and was observed at the highest concentration of 100 ul per plate.

The results of the tests conducted on the test materials neat sample and its extract were all negative in the presence of rat liver activation system.

Dose-related increases in the number of revertants were also observed with the base-pair substitution strain TA-100 in the non-activation and activation assays performed on the extract. However these increases did not meet the criteria for a positive response.

IX. CONCLUSION:

The test material, neat sample #1452 and its extract were tested in the Ames/Salmonella assay and were compared for their mutagenic activities. neat sample did not exhibit genetic activity in any of the assays conducted in this evaluation and was considered not mutagenic under these conditions. However, the extract of the sample #1452 exhibited genetic activity with the strain TA-98 in the nonactivation assays conducted in this evaluation and is considered as mutagenic. Based on the EPA's "Definition of Toxicity Catagories for Health Effects Tests" the mutagenic activity of the neat sample #1452 is classified as 'ND' and the mutagenic activity of the extract of the sample #1452 is classified as 'low'. Since organic content of the sample was not available the specific activity has not been calculated.

Submitted by:

Study Director

Reviewed by:

Department of Genetics

and Cell Biology

D.R. Jagannath, Ph.D.

Section Chief

Submammalian Genetics Department of Genetics

and Cell Biology

A. NAME OR CODE DESIGNATION OF THE TEST COMPOUND: SAMPLE #1452 (EXTRACT)

A. MARE OR COUL D: SIGNATION OF THE TEST COMPOUND: SAMPLE
B. SCLUENT: DN2
C. TEST INITIATION DATES: 11/21/A0
D. TEST COMPLETION DATE: 11/25/A0
E. S-9 LOTG: DROOP
NCTE: CONCENTRATIONS ARE GIVEN IN MICROLITERS PER PLATE

					TANT	5 PE	R	PLI	TF			
TEST	SPECIES		TA-	1535	¥ A	-1=37		T A-	98	7.6	-100	
	~~~~~		1	·	3 1	?	3	1	?	3 1	2	3
HONACTIVATION			•		,	·	.,	•	•		•	•
SOLVENT CONTROL .			29	39	13	11		25	25	126	176	
PGSITIVE CONTROL+			650	662	797	848		1013	990	701	654	
TEST COMPOUND												
10.000000 UL			31	29	A	11		20	??	142	119	
25.000000 UL			31	27	9			34	20		142	
50.000000 UL			32	31	16	9		22	22	115	132	
109.000000 UL			29	30		A		29	33	128	150	
20 <b>0.0000</b> 00 UL			22	19	9	12		33	56	1 39	129	
MOITVATION												
SOLVENT CONTROL	RAT	LIVER	27	31	10	16		46	50	145	135	
OSITIVE CONTROL.	• RAT	LIVER	163	164	262	210		1 30 2	1263	1585	1523	
TEST COMPOUND												
10.000000 UL	RAT	LIVER	27	11	10	7		36	28	100	78	
25.000000 UL	RAT	LIVER	27	19	4			29		77	95	
F6.000000 UL	RAT	LIVER	42	15	5	10		2€	17	87	87	
100.000000 UL	RAT	LIVER	28	16		9		2 *	25	52	76	
200.00000 UL	RAT	LIVER	?1	14	7	٨		16	74	106	93	
• •								• • •				
	AZIDE					G/PL 11			TA-1535			
	IGACRIDI					C/PI 4T			TA-1537			
	OFLUORE	N.				G/PL4*			TA-98	?-ANTH		
TA-100 SODIU*	APIDE				10 U	F/PLATI	5		TA-100	2-ANTH	PAMINE	2.5 UG/PLATE

TA-100 SODIUM APIDE SOLVENT 200 UL/PLATE

<u>156</u>

RESULTS TARLE 2

A. NAME OF CODE DESIGNATION OF THE TEST COMPOUND: SAMPLE #1452 (EXTRACT) B. 1 SOLVENT: DMSO

C. TEST INITIATION DATES: 11/21/90
O. TEST COMPLETION DATE: 11/25/80
E. S-9 LOTH: DB009

MOTE: CONCENTRATIONS ARE GIVEN IN MICROLITERS PER PLATE

			₩ 6		A T	N T 9	PE	R	PL	TF					
TEST	SPECIES	TISSUE	TA-	1535		TA-	1537		T A-	-98		TA-	-100		
			1	?	3	1	?		1	?	3	1	2	3	
NCNACTIVATION			·	·	•										
SCLUENT CONTROL			32	35		7	7		31	25	1	44	191		
POSITIVE CONTROL.	•		620	662		791	848		1013	898	7	01	654		
TEST COMPOUND															
5-000000 UL			11	19		10	4		30	3.3	1	64	162		
10.000000 UL			17	22		11	13		28	31	1	74	173		
25.000000 UL			20	12		17	16		38	32	1	78	164		
50-000000 UL			23	23		16	14		44	96	2	13	199		
100.000000 UL	***		27	15		19	20		69	e.k	2	33	228		
ACTIVATION															
SOLVENT CONTROL	RAT	LIVER	34	27		18	9		39	37	1	53	143		
POSITIVE CONTROL	** RAT	FIVER	163	164		262	210		1302	1243	15	85	1523		
TEST COMPOUND															
5.000000 UL	RAT	LIVER	42	42		7	P		3.3	37	1	42	119		
10.00000 UL		LIVER	53	40		7	13		41	43	1	21	154		
25.000060 UI		LIVER	26	34		1.1	19		39	37	1	72	142		
50.000000 U		LIVER		45		18	23		45	49	2	08	193		
100.000000 U		LIVER	32	34		29	29		57	<b>5</b> 3		39	182		
••							- / Pu . T .		***	TA-153		<b>T</b> 446	RAMINE	2.5 UG/PLATS	
	JOISA MI	• • •					G/PLATE G/PLATE			TA-153			RAPTNE		
	NOACRID									TA-133			PAMENE		
	TROFLUOR	EWE					C/PLATE								
	UM AZIDE L/PLATE					10 0	c/PLATF	•		TA-100	2- an	***	RAPINE	S.O DOWERIE	

TABLE A

DEFINITION OF TOXICITY CATEGORIES FOR HEALTH EFFECTS ASSAYS*

<del> </del>		Sample			Rand	Range of Concentration or Dosage					
Assay ^a	Activity Measured ^b	Type	MAD ^d	Units	High	Moderate	Low	Not Detectable (ND)			
Ames	MEC (mutagenesis)	S AL,NAL	5 200	mg/plate μl/plate	<0.05 <2	0.05-0.5 2-20	0.5-5 20-200	ND at >5 ND at >200			
RAM	EC _{SO} (lethality)	S AL Nal	1 600 20	mg/ml µl/ml µl/ml	<0.01 <6 <0.2	0.01-0.1 6-60 0.2-2	0.1-1 60-600 2-20	ND at >1 ND at >600 ND at >20			
СНО	EC ₅₀ (lethality)	S AL NAL	1 600 20	mg/ml µl/ml µl/ml	<0.01 <6 <0.2	0.01-0.1 6-60 0.2-2	0.1-1 60-600 2-20	ND at >1 ND at <600 ND at >20			
WAT	LD _{SO} (lethality and toxic signs)	S AL,NAL	5 5	gm/kg ml/kg	<0.05 <0.05	0.05-0.5 0.5-0.5	0.5-5 0.5-5	ND at <5 ND at <5			

^aStandard test abbreviations are as follows:

Ames: Ames <u>Salmonella</u>/microsome mutagenesis assay

RAM: Rabbit alveolar macrophage cytotoxicity assay

CHO: Rodent cell clonal toxicity assay

WAT: Acute in vivo test in rodents (whole animal test)

 $^{\mbox{\scriptsize b}}$ Standard abbreviations for measured endpoints are as follows:

MEC: Minimum effective concentration

EC₈₀: Calculated concentration expected to produce effect in 50 percent of population

LD₅₀: Calculated dose expected to kill 50 percent of population

c_S = Solid, AL = Aqueous liquid, NAL = Nonaqueous liquid

dMAD = Maximum applicable dose

Evaluation criteria formulated by Litton Bionetics, Inc. for <u>IERL-RTP</u> Procedures Manual: Level <u>1 Environmental Assessment Biological Tests</u>.

## AMES SALMONELLA/MICROSOME PLATE ASSAY

## 1. OBJECTIVE

The objective of this study was to evaluate a test material for mutagenic activity in a bacterial assay with and without a mammalian S9 activation system.

## 2. RATIONALE

The Salmonella typhimurium strains used at LBI are all histidine auxotrophs by virtue of mutations in the histidine operon. When these histidine-dependent cells are grown in a minimal media petri plate containing a trace of histidine, only those cells that revert to histidine independence (his+) are able to form colonies. The trace amount of histidine allows all the plated bacteria to undergo a few divisions; this growth is essential for mutagenesis to occur. The his+ revertants are easily scored as colonies against the slight background growth. The spontaneous mutation frequency of each strain is relatively constant, but when a mutagen is added to the agar the mutation frequency is increased 2- to 100-fold. Cells which grow to form colonies on the minimal media petri plates are therefore assumed to have reverted, either spontaneously or by the action of a test substance to his+ genotype.

## 3. MATERIALS

## A. <u>Indicator Microorganisms</u>

The <u>Salmonella typhimurium</u> strains used in this assay were obtained from Dr. Bruce Ames, University of California at Berkeley.¹⁻⁵ The following 4 strains were used:

Strain	Gene		tional M	Mutation Type	
Designation	Affected	Repair	LPS	R Factor	Detected
TA-1535	<u>his</u> G	Δ <u>uvr</u> B	rfa	•	Base-pair substitution
TA-1537	<u>his</u> C	Δ <u>uvr</u> B	<u>rfa</u>	-	Frameshift
TA-98	<u>his</u> D	Δ uvr B	rfa	pKM101	Frameshift
TA-100	his G	Δ <u>uvr</u> B	rfa	pKM101 ⁻	Base pair substitution

## 3. MATERIALS (Continued)

The aforementioned strains have, in addition to the mutation in the histidine operon, a mutation ( $\underline{rfa}$ -) that leads to defective lipopoly-saccharide coat, a deletion that covers genes involved in the synthesis of vitamin biotin ( $\underline{bio}$ -) and in the repair of ultraviolet ( $\underline{uv}$ ) - induced DNA damage ( $\underline{uvrB}$ -). The  $\underline{rfa}$ - mutation makes the strains more permeable to many large molecules. The  $\underline{uvrB}$ - mutation decreases repair of some types of chemically or physically damaged DNA and thereby enhances the strain's sensitivity to some mutagenic agents. The resistant transfer factor plasmid (R factor) pKM101 in TA-98 and TA-100 is believed to cause an increase in error-prone DNA repair that leads to many more mutations for a given dose of most mutagens⁵. In addition, plasmid pKM101 confers resistance to the antibiotic ampicillin, which is a convenient marker to detect the presence of plasmid in the cells.

All indicator strains are kept at 4°C on minimal medium plates supplemented with a trace of biotin and an excess of histidine. The plates with plasmid-carrying strains contain in addition ampicillin (25  $\mu$ g/ml) to ensure stable maintenance of plasmid pKM101. New stock culture plates are made as often as necessary from frozen master cultures or from single colony reisolates that were checked for their genotypic characteristics (his, rfa, uvrB, bio) and for the presence of plasmid. For each experiment, an inoculum from the stock culture plates is grown overnight at 37°C in nutrient broth (0xoid CM67).

## B. Media

The bacterial strains were cultured in Oxoid Media #2 (nutrient Broth). The selective medium was Vogel Bonner Medium E with 2% glucose⁷. The overlay agar consisted of 0.6% purified agar with 0.5 mM histidine, 0.05 mM biotin and 0.1 M NaCl according to the methods of Ames et. al. 6

#### C. Activation System

## (1) S9 Homogenate

A 9,000 x g supernatant prepared from Sprague-Dawley adult male rat liver induced by Aroclor 1254 (described by Ames et. al.⁶) was purchased from Bionetics Laboratory Products, Litton Bionetics, Inc. and used in this assay.

#### (2) \$9 Mix

Components	Concentration per Milliliter S9 Mix
NADP (sodium salt)	4 µmoles
D-glucose-6-phosphate	5 µmoles
MgC1 ₂	8 µmoles
KC1	33 µmoles
Sodium phosphate buffer pH 7.4	100 μmoles
Organ homogenate from rat liver (S9 fraction)	100 μliters

## 4. EXPERIMENTAL DESIGN

## A. <u>Dosage Selection</u>

All tests are run at a minimum of four concentrations. In the Standard EPA Level I Ames assays, five dose levels of the test material, dissolved in a suitable solvent, are added to the test system. The standard test doses for the extracted material are 10, 25, 50, 100 and 200 pliters per plate. The solids are tested up to 5 mg per plate and at lower concentrations of 2.5, 1, 0.5, 0.1 and 0.05 mg per plate. The samples are retested over a narrower range of concentrations with strains showing positive results if there is enough sample.

## B. <u>Mutagenicity Testing</u>

The procedure used is based on the paper published by Ames  $\underline{\text{et. al.}}^6$  and is performed as follows:

## (1) Nonactivation Assay

To a sterile 13 x 100 mm test tube placed in a 43°C water bath the following is added in order:

- (a) 2.00 ml of 0.6% agar containing 0.05 mM histidine and 0.05 mM biotin.
- (b) 0.05 ml of a solution of the test chemical to give the appropriate dose.
- (c) 0.1 ml 0.2 ml of indicator organism(s).
- (d) 0.50 ml of 0.2M phosphate buffer, pH 7.4.

This mixture is swirled gently and then poured onto minimal agar plates (see 3B, Media). After the top agar has set, the plates are incubated at 37°C for approximately 2 days. The number of his+ revertant colonies growing on the plates is counted and recorded.

#### (2) Activation Assay

The activation assay is run concurrently with the nonactivation assay. The only difference is the addition of 0.5 ml of S9 mix (see 3C:2, Activation System) to the tubes in place of 0.5 ml of phosphate buffer which is added in nonactivation assays. All other details are similar to the procedure for nonactivation assays.

A detailed flow diagram for the plate incorporation assay is provided in Figure 1.

FIGURE 1

REVERSE MUTATION ASSAY
[Agar Incorporation Method]



## 4. EXPERIMENTAL DESIGN (Continued)

## C. <u>Control Compounds</u>

A negative control consisting of the solvent used for the test material is performed in all cases. For negative controls, step 'b' of Nonactivation Assays is replaced by 0.05 ml of the solvent. The negative controls are employed for each indicator strain and are performed in the absence and presence of S9 mix. The solvent used to prepare the stock solution of the test material is given in the Results section of this report. All dilutions of the test material are made using this solvent. The amount of solvent used is equal to the maximum volume used to give the appropriate test dose.

Specific positive control compounds known to revert each strain are also used in the assays. The concentrations and specificities of these compounds to specific strains are given in the following table:

Assay	Chemical	Solvent	Concentration per Plate (µg)	Salmonella Strains
Nonactivation	Sodium azide 2-Nitrofluorene (NF)	Water Dimethyl- sulfoxide	1 10	TA-1535, TA-100 TA-98
	9-aminoacridine (9AA)	Ethanol	50	TA-1537
Activation	2-anthramine (ANTH)	Dimethyl- sulfoxide	2.5	For all strains

## 5. EVALUATION CRITERIA

Statistical methods are not currently used and evaluation is based on the criteria included in this protocol.

Plate test data consist of direct revertant colony counts obtained from a set of selective agar plates seeded with populations of mutant cells suspended in a semisolid overlay. Because the test material and the cells are incubated in the overlay for approximately 2 days and a few cell divisions occur during the incubation period, the test is semiquantitative in nature. Although these features reduce the quantitation of result, they provide certain advantages not contained in a quantitative suspension test:

- The small number of cell divisions permits potential mutagens to act on replicating DNA, which is often more sensitive than nonreplicating DNA.
- The combined incubation of the test article and the cells in the overlay permits constant exposure of the indicator cells for approximately 2 days.

## A. Surviving Populations

Plate test procedures do not permit exact quantitation of the number of cells surviving chemical treatment. At low concentrations of the test material, the surviving population on the treatment plates is essentially the same as that on the negative control plate. At high concentrations, the surviving population is usually reduced by some fraction. Our protocol will normally employ several doses ranging over two or three log concentrations. This does not apply to spot tests and tests performed on fabrics and like materials which are tested at a single concentration.

#### B. Dose-Response Phenomena

The demonstration of dose-related increases in mutant counts is an important criterion in establishing mutagenicity. A factor that might modify dose-response results for a mutagen would be the selection of doses that are too low (usually mutagenicity and toxicity are related). If the highest dose is far lower than a toxic concentration, no increases may be observed over the dose range selected. Conversely, if the lowest dose employed is highly cytotoxic, the test material may kill any mutants that are induced, and the test material will not appear to be mutagenic.

## 5. EVALUATION CRITERIA (Continued)

## C. Control Tests

Positive and negative control assays are conducted with each experiment and consist of direct-acting mutagens for nonactivation assays and mutagens requiring metabolic biotransformation in activation assays. Negative controls consist of the test material solvent in the overlay agar together with the other essential components. The negative control plate for each strain gives a reference point to which the test data is compared. The positive control assay is conducted to demonstrate that the test systems are functional with known mutagens.

## D. <u>Evaluation Criteria for Ames Assay</u>

Because the procedures used to evaluate the mutagenicity of the test material are semiquantitative, the criteria used to determine positive effects are inherently subjective and are based primarily on a historical data base. Most data sets are evaluated using the following criteria:

## (1) Strains TA-1535, TA-1537

If the solvent control value is within the normal range, a test material producing a positive response equal to three times the solvent control value is considered mutagenic.

#### (2) Strains TA-98 and TA-100

If the solvent control value is within the normal range, a test material producing a positive response equal to twice the solvent control value for TA-98 and TA-100 is considered mutagenic.

#### (3) Pattern

Because TA-1535 and TA-100 are both derived from the same parental strain (G-46) and because TA-1538 and TA-98 are both derived from the same parental strain (D3052), to some extent there is a built-in redundancy in the microbial assay. In general, the two strains of a set respond to the same mutagen and such a pattern is sought. Generally, if a strain responds to a mutagen in nonactivation tests, it will do so in activation tests.

#### (4) Reproducibility

If a test material produces a response in a single test which cannot be reproduced in additional runs, the initial positive test data lose significance.

## 5. EVALUATION CRITERIA (Continued)

## E: <u>Evaluation Criteria for Toxicity</u>

## (1) Complete toxicity

When there are no revertants observed on the plate(s) treated with the test compound, the test compound is defined as toxic to all or any of the indicator strains at that (those) particular dose(s).

#### (2) Slight toxicity

When there are fifty or less percent revertants on the plate(s) treated with the test compound as compared to the solvent control plate(s), the test compound is defined as slightly toxic to all or any of the indicator strains at that (those) particular dose(s).

## F. Relation Between Mutagenicity and Carcinogenicity

It must be emphasized that the Ames <u>Salmonella/Microsome Plate Assay</u> is not a definitive test for chemical carcinogens. It is recognized, however, that correlative and functional relations have been demonstrated between these two endpoints. The results of comparative tests on 300 chemicals by McCann <u>et</u>. <u>al</u>. show an extremely good correlation between results of microbial mutagenesis tests and <u>in</u> vivo rodent carcinogenesis assays.

All evaluations and interpretation of the data to be presented in the final report will be based only on the demonstration, or lack, of mutagenic activity.

## REFERENCES

- McCann, J., Choi, E., Yamasaki, E. and Ames, B.N.: Detection of carcinogens as mutagens in the <u>Salmonella/microsome test</u>: Assay of 300 chemicals. Proc. Nat. Acad. Sci. USA, <u>72</u>:5135-5139, 1975.
- 2. Ames, B.N., Gurney, E.G., Miller, J.A. and Bartsch, H.: Carcinogens as frameshift mutagens: Metabolites and derivatives of 2-acetyl-aminofluorene and other aromatic amine carcinogens. Proc. Nat. Acad. Sci. USA, 69:3128-3132, 1972.
- 3. Ames, B.N, Lee, F.D. and Durston, W.E.: An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc. Nat. Acad. Sci. USA, 70:782-786, 1973.
- 4. Ames, B.N, Durston, W.E., Yamasaki, E. and Lee, F.D.: Carcinogens are mutagens: A simple test system combining liver homogenates for activation and bacteria for detection. Proc. Nat. Acad. Sci. USA, 70:2281-2285, 1973.
- 5. McCann, J., Springarn, N.E., Kobori, J. and Ames, B.N.: Detection of carcinogens as mutagens: Bacterial tester strains with R factor plasmids. Proc. Nat. Acad. Sci. USA, 72:979-983, 1975.
- 6. Ames, B.N., McCann, J. and Yamasaki, E.: Methods for detecting carcinogens and mutagens with the <u>Salmonella/mammalian-microsome</u> mutagenicity test. Mutation Res., 31:347-364, 1975.
- 7. Vogel, H.J. and Bonner, D.M.: Acetylornithinase of  $\underline{E}$ .  $\underline{coli}$ ; Partial purification and some properties. J. Biol. Chem.,  $\underline{218}$ : 97-106, 1956.

# Q.A. Inspection Statement (reference 21 CFR 58.35(b)(7))

PROJECT 20988	LBI Assay No. <u>5394</u>
TYPE of STUDY AMES PLATE TEST	
This final study report was revie	wed by the LBI Quality
Assurance Unit on $12/5/80$ .	A report of findings was
submitted to the Study Director and to Man	agement on
The short-term nature of this stu	
it was in process. The Quality Assurance	Unit inspects an in-process
study of this type approximately once per	month to assure that no
significant problems exist that are likely	to affect the integrity of
this type of study.	
M	telel f. Ell

Auditor, Quality Assurance Unit

TOXIC EVALUATION OF
SAMPLE #1452
(WATER TANK DRAIN, END OF TEST)

 $\frac{\text{RODENT}}{\text{RODENT}} \underbrace{\frac{\text{IN THE}}{\text{QUANTAL}}}_{\text{ASSAY}} \underbrace{\text{TOXICITY}}$ 

FINAL REPORT

## SUBMITTED TO:

ACUREX CORPORATION
485 CLYDE AVENUE
MOUNTAIN VIEW, CA 94042

## **SUBMITTED BY:**

LITTON BIONETICS, INC. 5516 NICHOLSON LANE KENSINGTON, MARYLAND 20795

LBI PROJECT NO. 22064

REPORT DATE: DECEMBER, 1980

#### PREFACE

This report contains a summary of the data compiled during the evaluation of the test compound. The report is organized to present the results in a concise and easily interpretable manner. The first part contains items I - VIII. Items I - III provide sponsor and compound identification information and identify the type of assay. The assay was conducted and evaluated according to procedures recommended in <a href="IERL-RTP Procedures Manual: Levell Environmental Assessment Biological Tests">IERL-RTP Procedures Manual: Levell Environmental Assessment Biological Tests</a> (Litton Bionetics, Inc., Kensington, MD, September, 1980, in press). Item IV provides the initiation and completion dates for the study, and Item V provides identification of supervisory personnel. Item VI identifies the tables and figures containing the data used by the study director in interpreting the test results. The interpretation itself is in Item VII. Item VIII provides the conclusion and evaluation.

The second part of the report, entitled Assay Design, describes the materials and procedures employed in conducting the assay. This part of the report also contains evaluation criteria used by the study director, and any appendices. The evaluation criteria are included to acquaint the sponsor with the methods used to develop and analyze the test results.

All test and control results presented in this report are supported by fully documented raw data which are permanently maintained in the files of the Department of Genetics and Cell Biology or in the archives of Litton Bionetics, Inc., 5516 Nicholson Lane, Kensington Maryland, 20795.

Copies of raw data will be supplied to the sponsor upon request.

- I. SPONSOR: Acurex Corporation
- II. MATERIAL (TEST COMPOUND): GENETICS ASSAY NO.: 5394
  - A. Identification: Sample #1452 (Man Test 5/21/80, #5 Gal, water tank
    - drain, end of test)
  - B. Date Received: October 6, 1980
  - C. Physical Description: Clear, colorless liquid
- III. TYPE OF ASSAY: Rodent Quantal Toxicity Assay
- IV. STUDY DATES:
  - A. Initiation: October 22, 1980
  - B. Completion: November 24, 1980
  - V. SUPERVISORY PERSONNEL:
    - A. Study Director: David J. Brusick, Ph.D.
    - B. Laboratory Supervisor: Joan McGowan
- VI. RESULTS:

The data are presented in Table 1 on pages 3 and 4.

#### VII. INTERPRETATION OF RESULTS:

The test material, Sample No. 1452, was concentrated 10-fold (as described under Assay Design) prior to administration by oral gavage to 10 male and 10 female weanling CD-1 mice. A single average dose of 5 ml/kg was given, which corresponded to 0.08 ml for the males and 0.07 ml for the females. The animals were observed for 14 days for toxic signs or lethality. Survivors were weighed and necropsied on Day 14 after dosing.

All twenty animals survived the exposure with no evidence of any compound-related toxic signs. Both the male and female mice showed good weight gains, and no observations were obtained at necropsy that indicated compound-related lesions (Table 1). The test material was therefore considered to have no detectable toxicity in this assay, and according to the Evaluation Criteria, an LD50 determination was unnecessary.

## VIII. CONCLUSIONS:

The test material, Sample No. 1452, concentrated 10-fold, had no detectable toxicity to weanling CD-1 mice in the Rodent Quantal Toxicity Assay. The applied dose was 5 ml/kg.

Submitted by:

Study Director

Director

Department of Genetics

and Cell Biology

TABLE 1 QUANTAL TOXICITY DATA WITH WEARLING MICE

Quantal Toxicity: Weanling mice Sponsor: Acurex Corporation Test Article: Sample No. 1452 Vehicle: Not Applicable

Study Dates: 11/10/80 to 11/24/80

Animal Room No.: 4S

Animals: Charles River CD-1 mice, P.O. 100760

Dose: 5 ml/kg administered P.O.

Animal No.	Initial Weight gm	Final Weight gm	Visible Toxic Signs ^a	Gross Necropsy Findings
Males	** ***********************************			
1101 1102 1103 1104 1105 1106 1107 1108 1109	16.1 16.7 14.2 14.4 15.6 13.5 16.2 13.0 14.8	24.2 25.5 22.1 21.7 23.2 22.2 23.7 23.7 23.8	NTS ^b NTS NTS NTS NTS NTS NTS NTS NTS NTS	Small mucoid lump in bladder Both eyes opaque Small mucoid lump in bladder NSL ^C NSL Both eyes opaque NSL NSL •Both eyes opaque •Mesenteric lymph nodes slightly enlarged
1110	16.6	25.2	NTS	<pre>'Left kidney slightly pale Both eyes opaque</pre>

## Mean Body Weight:

Initial 15.1  $\pm$  1.3 gm (Standard Deviation) Final 23.5  $\pm$  1.3 gm (Standard Deviation)

Animals observed for 14 days.

b NTS = No Toxic Signs.

C NSL = No Significant Lesions.

TABLE 1 (continued)

QUANTAL TOXICITY DATA WITH WEANLING MICE

Animal No.	Initial Weight gm	Final Weight gm	Visible Toxic Signs ^a	Gross Necropsy Findings
Females				
1111	14.1	19.8	nts ^b	NSL ^C
1112	14.4	20.0	NTS	NSL
1113	14.3	20.4	Possible nasal irritation	Uterine horns enlarged/ fluid
1114	14.5	20.2	NTS	NSL
1115	12.5	19.0	NTS	NSL
1116	14.0	21.2	NTS	Uterine horns enlarged/ fluid
1117	13.3	18.7	NTS	NSL .
1118	12.1	19.9	NTS	NSL
1119	13.5	19.7	NTS	Left kidney slightly smaller than right
1120	11.9	16.7	NTS	NSL

Mean Body Weight:

Initial 13.5  $\pm$  1.0 gm (Standard Deviation) Final 19.6  $\pm$  1.2 gm (Standard Deviation)

^aAnimals observed for 14 days.

b_{NTS} = No Toxic Signs.

 $^{^{\}rm C}$ NSL = No Significant Lesions.

## ASSAY DESIGN

## RODENT QUANTAL TOXICITY ASSAY

This assay conforms to one of the bioassay tests in the US Environmental Protection Agency (EPA) <u>IERL-RTP Procedures Manual: Level 1 Environmental Assessment Biological Tests</u> (September, 1980). Level 1 bioassays obtain preliminary information on the harmful biological effects of chemicals found in industrial feed and waste streams.

## 1. OBJECTIVE

The objective of this assay was to evaluate the acute toxicity of a test material when administered by oral gavage to male and female weanling mice.

The assay consisted of recording any lethality and toxic signs that occurred over a 14-day period following a single treatment and then collecting necropsy information on animals that died or were killed at the end of the observation period.

## 2. TEST MATERIAL

A test material described as Sample #1452 (Man Test 5/21/80, #5 Gal, Water Tank Drain, End of Test) was received as a clear, aqueous liquid containing no obvious particulate material. The sample was stored at  $4^{\circ}$ C in its original one-gallon amber glass container.

An aliquot of 600 ml of test material was concentrated 10-fold to 60 ml by lyophilization prior to testing. A total volume of 1.5 ml of the concentrate was then utilized for oral dosing of a group of 20 weanling mice. The concentrate was stored at  $4^{\circ}\text{C}$  in an amber glass bottle.

## 3. EXPERIMENTAL DESIGN

Nine nursing female Charles River CD-1 mice with six pups each (three male and three female) were obtained from Charles River Breeding Laboratories, Inc., Wilmington, Massachusetts on November 5, 1980. The birth date of the pups was October 19, 1980. The animals were quarantined for 5 days upon receipt. The litters were individually housed on Absorb-Dri bedding in polycarbonate cages and were cared for according to Litton Bionetics, Inc., Department of Genetics and LAMS Standard Operating Procedures. Purina certified laboratory chow and water (pH 2.5) were provided ad libitum. The pups were

## 3. EXPERIMENTAL DESIGN (continued)

maintained with mothers until weaned. The animals were identified by eartags and cage cards and were released for study on November 10, 1980.

Prior to initiation of dosing, ten male and ten female weanling mice were individually weighed; the volume of the test material to be administered was based on the mean weight values for each sex. The test material (10-fold concentrate of Acurex Sample #1452) was administered once at 5 ml/kg on November 10, 1980. The weanling mice were 23 days old. The animals were observed at the time of dosing, 2 hours later, and daily thereafter. On day 14, the surviving animals were fasted overnight. They were subjected to gross necropsy the next day.

## 4. ASSAY EVALUATION CRITERIA

Immediately following administration of the test material and at frequent intervals during the first day, observations of the frequency and severity of all toxic signs or pharmacological effects (as listed in Table A) will be recorded. Particular attention will be paid to the time of onset and disappearance of the signs. Daily observations will be made and recorded on all animals through a 14-day period. At termination of the observation period, all surviving animals will be weighed, killed, and then gross necropsies performed. Necropsies will also be performed on all animals that die during the course of this study.

If no mortality occurs in the quantal study, no further studies will be performed with the test substance and the LD $_{50}$  should be reported as greater than 5 ml/kg or 5 g/kg. The test material is ranked as having nondetectable toxicity (ND) at the maximum applicable dose (MAD). Effluent samples which produce harmful effects in vivo and do not result in deaths will be noted in the results summary. Such observations are difficult to quantitate but provide insight into the sublethal effects of a sample on rodents. Further investigations may be recommended from observations of nonlethal toxic effects.

If a single animal in the quantal study dies in the 14-day observation period, a quantitative study will be performed. An LD $_{50}$  will be calculated by the method of Litchfield and Wilcoxin. If the data are not suitable for calculation of a precise LD $_{50}$ , i.e., total mortality occurs for the lowest dose, an estimate of the LD $_{50}$  could be made or the LD $_{50}$  could be expressed as 0.05 ml/kg or 0.05 g/kg or less. Occasionally, it may be necessary to use a different series of dosages in a repeat study to accurately locate the LD $_{50}$ . The calculated LD $_{50}$  value is used to rank the toxicity of the test material according to the dose ranges presented in Table B.

TABLE A. DEFINITION OF PHARMACOLOGICAL TOXIC SIGNS

Organ System	Observation and Examination	Common Signs of Toxicity
CNS and somatomotor	Behavior	Change in attitude to observer, unusual vocalization, restless-ness, sedation
	Movements	Twitch, tremor, ataxia, catatonia, paralysis, convulsion, forced movements
	Reactivity to various	Irritability, passivity,
	stimuli	anaesthesis, hyperaesthesis
	Cerebral and spinal reflexes	Sluggishness, <b>a</b> bsence
	Muscle tone	Rigidity, flaccidity
Autonomic	Pupil size	Myosis, mydriasis
nervous system		
	Secretion	Salivation, lacrimation
Respiratory	Nostrils	Discharge
Noop Looky	Character and rate	Bradypnoea, dyspnoea, Cheyne-
	of breathing	Stokes breathing, Kussmaul breathing
Cardiovascular	Palpation of cardiac	Thrill, bradycardia, arrhy-
	region	thmia, stronger or weaker beat
	Events	Diarrhea, constipation,
	abdominal shape	Flatulence, contraction
	feces consistency and color	Unformed, black or clay colored
Gastrointestinal	Vulva, mammary glands	Swelling
	Penis	Prolapse
	Perianal region	Soiled
Skin and fur	Color, turgor,	Reddening, flaccid skinfold,
Skill alla Tui	integrity	eruptions, piloerection
Mucous membranes	Conjunctiva, mouth	Discharge, congestion,
MUCOUS MEMDI diles	oonganoorva, measu	hemorrhage cyanosis, jaundice
Eva	Eyeball	Exophthalmus, nystagmus
Eye	Transparency	Opacities
Others	Rectal or paw skin	Subnormal, increased temperatur
ULIET'S	Injection site	Swelling
	General Condition	Abnormal posture, emaciation

## 4. ASSAY EVALUATION CRITERIA (continued)

Observations are also made and recorded daily on all animals through the 14-day period. As in the quantal phase, no attempt is made to quantitate or rank the observations. The average animal body weight of each group is determined initially and at the termination of the experiment. The average weights and the weights as fractions of the control are reported for each dose level. Necropsy observations are recorded and reported.

TABLE B. ACUTE IN VIVO RODENT ASSAY EVALUATION CRITERIA

Toxicitya	Solids (LD50 in g/kg)	Liquids (LD ₅₀ in ml/kg)
High	<0.05	<0.05
Moderate	0.05 to 0.5	0.05 to 0.5
Low	0.5 to 5	0.5 to 5
Not Detectable	>5	· >5

aEvaluation criteria formulated by Litton Bionetics, Inc. for <u>IERL-RTP Procedures Manual: Level 1 Environmental Assessment Biological Tests.</u>

## 5. RECORDS TO BE MAINTAINED

All raw data, protocols, protocol modifications, test article weight and dispensation records and correspondence between LBI and the Sponsor are being maintained in a central file within the Department of Genetics and Cell Biology. These records will be filed under departmental assay number and held up to 2 years following submission of the final report to the Sponsor. After 2 years they will be transferred to the LBI archives for permanent storage.

## Q.A. Inspection Statement (reference 21 CFR 58.35(b)(7))

PROJECT 22064 LBI Assay No. 5394
TYPE of STUDY Rodent QUANTAL TOXIC: 6 ASSAY
This final study report was reviewed by the LBI Quality
Assurance Unit on $12/10/80$ . A report of findings was
submitted to the Study Director and to Management on 12/10/80
The short-term nature of this study precluded inspection while
it was in process. The Quality Assurance Unit inspects an in-process
study of this type approximately once per month to assure that no
significant problems exist that are likely to affect the integrity of
this type of study.
mather of Elico
Auditor, Quality Assurance Unit

## SECTION 6 SAM IA WORK SHEETS

1. SOURCE/CON		TION:	WACE /	n.n.N/	HADWICK					LEVEL LEVEL	1 <u>×</u>	Page / ol 5
2. EFFLUENT STR			POS STRE			3. TOTA	L MASS RATE (	OF DISCHARG	98 98		g/s	
CODE NO.		NAME									<u></u>	
4. COMPLETE TH	E FOLLO	VING TABLE FO	OR THE EFFLU	ENT STRE	AM OF LINE 2	<u> </u>						
A	8	С	D	E	F	G	н	1	J	K	L	M
24	5.	š	ž	9	. 8			7			WEIGHTED DISC	HARGE SEVERITY
SPECIES OR MED CATEGORY NAME	MEG ID NUMBES	SPECIES ON CATEGORY CONCENTRATION	HEALTH DIMEG CONCENTRATIO	MEG ASSUMED MEALTH	ECOLOGICAL DMEG CONCENTRATION	MEG ASSUMED - ECOLOGY	CISCHARGE SEVENTY - MEALTH (C.D)	DISCHANGE SEVENITY - ECOLOGICAL (C/F)	HEALTH DAMEG EXCEEDED	GBGBBCKB SBWG BCO1 BCO1	(E SVIT = A) (C3576 (AEVIL)	(FCDLOGICAL BARED) (F LINE 3)
UMITS "		ug/m3	ug/m3				_		_	-	9/1	••
ALIPHATIC HYDROCARBONS	01		3 5×105	DIABOU			7.44.0-3				7.25×10	
METHANE	OJ AQQO	3.4×103	,	UEONIC			1.2×10-3				1.2×10	
ALDEMADE S	OTA	1.0×10 ²	2.5×102	c19060			4-0×10-1				3.92×101	
CARBOXYLIC ACIDS	1		1.0×103	OBARO			2.0×10-1				196×101	
NAPHALENE	0218030	3.6×10	2.2×105	OZIAWZO			1.6410-4				1.6×10 ²	
PHENANTIPENE	21A 180	2.0	1.6×103	214180			1.320-3				1.27×10_1	ļ <del></del>
LITHIUM.	27	2.4.710	2.2×10	2711000			1.1410-2				1.1	
(IF MORE SPACE IS NE	EDED USE	CONTINUATION	SHEET)									ļ
5 TOTAL DISCH HEALTH BASI ECOLOGICAL JENTER HERE	BASED (	H) 5a	2:72×10 /	EET)		ECC	AL WEIGHTED I ALTH BASED ( & DLOGICAL BASE TER HERE AND	D ( Σ col. M)	6b			g/s g/s

CONTINUATION	DIET FO	OR WORKSHEET	· · · · · · · · · · · · · · · · · · ·								Page 2 el 5	
I. SOURCE/CON	ITAOL OF	TION RES	DENTIAL P	LENACE	M.A.N	/HAD:V	KK				reaer s ——	
2. EFFLUENT 81	REAM		_	TREAM								
CODE NO.			NAME								,	
A	-	Ç ·	0	E .	- F	G	н		+-	×	MEIGHTED DISCH	M ARGA SEVERIT
SPECES ON MESS CATEGORY NAME	MEG CO MANAGE ON CATEGORY	SPECIES ON CATEGORY CONCENTRATION	MANTH DAGG CONCENTATIO	MEO ASSUMED - MEALTH	ECOLOGICAL PART CONCENTRATION	ME ASSUMED - ECOLOGY	DECLARGE TO THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE	Discussed BENEATY - ECOLOGICAL RC-1	MANTH DATE ESCREDED		PACALYN BASED, PACALYNE 3,	SCOOCL SASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO PASSO
unar's	-	ug/m3	ug/m3	-		-	-	-	-	-	9%	•
Godium.	58	>2.2.102	2.0×10 ³	288100	· 		71.1210-1				>1.1210	· · · · · · · · · · · · · · · · · · ·
Brassium	29	4-2×101	2.0×10 ³	298100			2.1×10-2				2.1	
Rubbium	30	4.2×10	1.2×105	308000			3.5×10-7				3.4×10-5	•
CKSIUM	3/	42×0-2	8.2410	3/1900			5.1×10-7	•			5.0NO5	<del></del>
MAGNESIUM	33	3.8×10'	6.0×10	35.A000			63×10-3				6.24101	
CALCIUM	34	>5.4×10'		341200			3.4×10				3.3×10	
STRONTIUM	35	82×101	3.1×103	STACOC			7.1210-5				7.040-3	
BARIUM	36	3.9	_	36A000			7.8×10		<b>↓</b>		7.7×10-1	
BORON	37	75.4×10	3.1×103	37AWU			71.740-2				>1.7	
ALUMINUM	38	27.1×10	5.2×103	38 8000			>1.44×102			<b> </b>	>1.4	
BAHI UM	39	8.9×10-2	5.0×10	34000			1.8×105				1.8×10-3	

CONTINUATION O	HEET FO	NONKSHEET									LEVEL 1-7-	
1. SOUNCE/CON	TROL OP	TION RES	DENTIAL	FURNA	E MA	N / HAZ	wick				rever s	
2. EFFLUENT ST	REAM		S STREAM									
CODE NO.			NAME				<del></del>			r		
A		<u> </u>	<u> </u>	-		<u> </u>	H	!	<del>                                     </del>		MEIGH1ED DISCH	
CATEGORY NAME	MEG ED NUMBER ON CATEGORY	SPECIES OF CATEGORY CONCENTRATION	MEATE PAGE CONCINTATE	MEG ASSUME 	FCOLDOCAL DAFG CONCENTRATION	- ECOLOGY MEG ASSUMED	00000000000000000000000000000000000000	Dischange Haviary - Robiosica (C-8)	A & MALTH DAGS		PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PASSON PA	ACOLOGICAL BAMED. R . LIME 3.
LPHTS	_	ug/m3	ug/m3	-			-		-	_	•	9%
co.	Habiao	3.1×104	4-04104	#28100			7.7×101				7.6×101	
SINCON	4-3	>7.9×101	1.0×104	A-3A000			>7.9×10-3				7.74×10	
GERMANIUM	44	<3.3×10 ⁻²	1	JULACO O			∠59×0 ⁻⁵				<5.8×10.3	•
TIN	46	1-1×10-1		458100	·		1.1×10-5	•			1.1×10-3	
LEAD	46	2.8.	1.5 × 102	464000			19×10-2				1.9	
No.	4-76VOC	9.7×104	9.0×103	47BIGC			1.12101		8		111×103	
PHOSPHOROUS	48	2.2	1.0×10 ²	W8/1200			2.2410-2				2.2.	
ARSENIC	49	1.7. ×10-1	2.0	<b>49800</b> 0			8.5×10-2				8.4	
ANTIMONY	50	5.1×10-2	5.0210	509000			1.0×10-4				9.8×10 ³	
SULFUR	53	4.8×102	1.0×103	53840			4.8410				4.7410	
802	538a	1.3×105	1.3×104	53B10U			10×101		V		9.8×102	

CONTINUATION	WEST PE	MORKENSET	7			<u></u>					Page 4 of 5	
I. SOUNCE/CON			ESDENTIAL	- FURN	ACE M	A.N /	MOWICK				rever 3	
2. EFFLUENT ST			S STREAM		•			· •				
CODE NO.			NAME									
A		Ĉ.	0	•		G	н		1	-	MEIGHTED DISCH	M AGGA MANAGATA
SPECIES ON MED CATEGORY MAME	MEG 40 NAMEER OF CATEGORY	Prediction of Carteson	MAN PAG CONCINTATO	MEG ASSUMED — MEALTO	SCOLOGICAL DAGG CONCLIMATION	ME ATRUMED - BEDLOGY	200	Present Marint - Popolecu 6-51				#CD-00-CA.
uno?8		ug/m3	ug/m3			-	-		-	-	9/1	
SELENIUM	54	2.5 × 10-1	2.0+102	54AOU			1.3×10-3				1.3×10-1	
TAMURIUM	55	#2×10-1	10×102	559000	. <del></del>		4.2×10-3		<u> </u>		4.1×101	
FLUORINE	56	1.4×10	2.0x103	560 W			7.0×10-3				6.9×10-1	•
BROMINE	58	1.7 -	1.0+10#	588100			17×10-4	•			1.7×10-2	
YTTRIUM	61	2.8 ×10-1	1.0×103	61 #200			2.8×10-4		ļ		2.7×10-2	
TITANIUM	62	1.3 × 101	60×103	ware			22×10-3		ļ		2.2×10-1	
VANADIUM	65	1.1	5.0×102	650000	<del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del>		2.2×103	<del></del>			2.2+10	
TANTALUM_	67	5.1×10+	5.0×103	678200			1040-4		<b> </b>		9.8×10-3	
CHROMIUM	68	3.4	1.0	BROOD			3:4		~		3.3×102	
MOLYBDENUN	69	2.8	5.0×103	19A000			5.6×10-4	<del></del>	.   _		5.5×10-2	
MANGANISE	71	1.4	5.0×103	TIABOC		<u> </u>	2.8×104				28×10-2	

1. SOURCE/CON			DENTIAL FUE	ennce .	man   H	DWKK				LEVEL 1 4 LEVEL 2	
B. EFFLUENT ST	REAM		AS STREA								
CODE NO.			NAME						.,		
	-	- <u> </u>	O A	-		G				asichita dac	wace mocul
SPECIES OF MED CATEDORY MAN	ato e nuesta es Categor	STECKS OF CATEGORY	MALIA POGO ANTANTA	of G ASSAULD	SCOLOGICAL BACA CONCENTATION	ME ASSUME - SEALBEY	14 14 14 14 14 14 14 14 14 14 14 14 14 1	99Cmacs 64766.74 655.05cca	MALYN PALS PALS PALS PALS PALS PALS PALS PALS	4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4	40000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
LPSTS	-	•		-		-		<b></b> \		••	~
IRON .	72	1.5×10	1.0×103	22A20U	•		1.5×10-2			1.47	
CORALT	74	1.1210-1	5.040	74.4000			2.2×10-3			2.2×10-1	
NICKEL	76	8.6	1.5 + 10	71.A000			5.7×10-1			5.6×101	•
COPPE R	78	5.9-	2.0 ×102	18A000			3.0×10-2	•		3.0	
SILVER"	79	5.44/03	1.0×10	79.000			5.4×10-4			6.3×10-2	
ZINC	81	7.5	4.0×103	814000			19×10-3			1.9×10-1	
MERCURY	83	48×101	5.0×101	83100C			9.6×10-3			9.4×101	
LANTHANUM	84	1.1×10-1	1.1×105	BHAOIU		,	1.0×10-6			9.8×10-5	
CERIUM	84	1.5×10	3.7×104	RUMAL			4:17106			4.0×10-4	
NEODY MIUM	84	5.4×10-3		BHUDHE							

1. SOUNCE/CON RESIDEN		_	M.A.N.	Haz	na ic.K					LEVEL :	<u> </u>	Page   at 4
2. EFFLUENT ST			WATER (	,		1	L MASS RATE	OF DISCHARGE	10-2		9/1	ı
					<del></del>	<u> </u>						
4. COMPLETE TH								·	,	·		
<u> </u>	-	C	D	E		G	н	<del> </del>		- K	<u> </u>	<u></u>
PPECES OF MED CATEGORY MANE	MES 10 NUMBER OR CATEGORY	SPECIES ON CATEGORY CONCENTRATION	HEATH PARE CONCENTRATIO	WEG ASSUMED - MEALTH	ECO. DOJCAL DAEG CONCENTRATION	MEG ASSUMED - BCDLOGV	PASCHARGE RESERVENTY INCOL	DISCHAGE REVENTY - EDUCAGA (A)	PALTH DAME DAME ENCREDED	100 E	WEIGHTED DIGC	200000 200000 200000 2000000
unts "	-	49/1	ug/l	_		_		_	_	-	91	•
NAPHTHOLENS	214020	,	_	214020	1.0×102	219020	5.3×10 ⁷	4.040-3			-8 2.49×10	1.88 × 104
PHENAMBLENG	214180	8.0×10-2	2.4×10+	219180			3.3410-6				1.55210	
MAGNESIUM	33	1.0 × 102	9.0×104	33/1000	8.7×10#	33,4000	1-1410-3	12+103			5.2×10 5.	5.6×10-5
CALCIUM	34	>1.0×104	2.44105	344900	1.6×10*	344000	4-24-10-2	6.2×10			>2.0x/0 ³	729×152
STRONTIUM	35	20×10'	4.6×104	35 MOOU			N. WX 10 4				2.1×10-5	
GERMANIUM	144	2.0	8.4×103	ww.000	~		2.4×10+			· .	1.120-5	
LEAD.	46	7.0×101	2.5×10 ²	#4ACOO	5-0×10	44,000	2.8 4101	7.4		V	13×10-2	6.6× 10°
IF MORE SPACE IS NO	EDED USE	CONTINUATION S	  deet									
5 TOTAL DISCH HEALTH BASE ECOLOGICAL JENTER HERE	D ( I col BASED (	H) 5a	<u>  86×10²   1-26×10⁴   Summary Sh</u>			HEA	LTH BASED ( ) LOGICAL BAS	DISCHARGE S ; col L) 6a ED ( E col M) 6 AT LINE 8 OF	<b></b>	5	8:7 :B×10 ²   SHEET	9/6

CONTINUATION I	H067 F0	0 WORKENSET	·								Page 2 et 4	
I. SOURCE/CON	TAOL OF	TION RESIZ	DENTIAL LU	RNACE	m.A.N	HADW	1614				LEVEL 1	•
8. EFFLUENT ST	REAM	WASTE W	STER (LIC	שיטו ב								
CODE NO.			NAME		•							
<u> </u>		c	0	E	<b>F</b>	6	H		-	N		WAGE MAGRIT
PFC41 OF WES	ato e caledo	SACES OF CATEGORY	#14.2 #10.00 #1.41.000	MEC ASSUMED MEALTH	FER DOCAL Bad D CONCENTRATION	MC ASSUMD - BEDLOGV	######################################	Britange Mythit - Box occu-	MALTA BAC LICITORD	90000000000000000000000000000000000000		**************************************
LIMITS.		ugli	uall			-		- ,	-	1	•	•
NITRATE	NFI AFFOU	"		478180	4.5×10 ²	47 <b>0</b> 80	9.3×10-2	1.6×10		1	1-4410 ⁻³	7.5×10-1
SULFATE		1.0x106			_	538160	67×101	2.2×10 ³	V	~	3.2.	1.04102
SELENIUM	54	1.0×102	50210	549000	2.5×101	SHAWO	2.0	4.0	V	/	9.44102	1.9×10-1
TELLERIUM	55	2.0×10	15HO3	55 Acco	~ ~		1.3×10			,	6.1×10 4	
FLUORINE	56	1.0×102	3.0×104	568100			33x10 ⁻³				1.6×10-4	
CHLORIDE	57/1200	1.0×103	11x105	578100	<b>~</b> ~		9.1×10-3				1-38×10 -#-	
BROMINE	58	1.0×10 ²	1.5 ×105	BAW.			67×10-4			1	3·1×10-5	
SCANDIUM	60	40	80×105	bonea			5.0×10-6	_ ~			2.44107	
YTTRIUM	61	50×101	1.5×10+	GIABOO			3.3x1ō ³				1.6×10-4	~
TITANIUM	62	2.0×10 ²	9.0×104	magas	8.24102	Lancou	2.2×10-3	2.4×10			10×104	1.1×10-2
ZIRCONIUM	63	3.0x 10'	7.5×104	630000			4.0×10*				1.9×10-5	~ ^

CONTINUATION			· · · · · · · · · · · · · · · · · · ·								Page 3 of 4	
1. SOUNCE/CON				furno ca	E M.A.N	HAZ	wick:				reaer 3 reaer 1	
& EFFLUENT BT		WASTA	WATER (	LIOUIS	STREAM	)						
CODE NO.		71.13.12	NAME									
A		G :	9	6	•	G	М		-	-		M MAGE MARKET
######################################	MES O TAMBER OF CATEGORY	SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIA	ALL'IN PAC CO-CINTATO	AG ASSARTS	SCALCEUTAVION	ME ASSUMED - BEDLOGV	200 200 200 200 200 200 200 200 200 200	Piccing Bythin Bolocica Beli	144. 144. 144. 144. 144. 144. 144. 144.			SCA COLOR LA LA LA LA LA LA LA LA LA LA LA LA LA
uets.	-	nall	uall	-		_	-	- \	-	-	9%	•
Vanapum.	65	.40	2.5×103	651000	1.5×102	65AWU	1.6×103	274102			7.5×10	1.3×10-3
CHROMIUM	68	7.0×102		LBACO		63,000 U		2.8	1	V	1.3×101	1.3×10-1
MONT BDENUM	69	3.0×10 ²		GAOOU		(Ancov	40×163	4-3×10 ⁻²			1.9×10+	2.0×103
Tungsten	70	2.0×101		70 Acco	-		1.3410-3				61×105	
MANGANESS	7/	1.9×102	2.5×102	718000	1.0×10 ²	719000	7.640	1:9		1	3.600-2	8.940-2
FRON	72	71.0×10*	1.5×10 ³	720200	2.5×10 ²	T2A200		4.0210	<u>~</u>	~	3.2×10-1	1.9.
COBALT	フム	2.0×10	_	1		THADOU	2.7410-2	8.0×10-2			1.3x10 ³	3.8×6 ³
NICKE L	76	1.0×103		764000	1.01.01	764000	4.4	1.0x102	V	V	2.120	47
COPPER	78	5.0×105	5.0×10	78 Appo	5.0×101	RAWU	100.	1.0×10k	~	~	47	4.7×10 ²
SILVER	79	3.0×10'	2:5×102	79,000	50	74000	1.2×10	6.0		1	5.6×10-3	2.840
ZINC	81	>1.0×10"	2.5×104	BIRDOU	10×102	BIAWO	>4.0×10	>1.0×10 ²		1	>1.9×10	747.

CONTINUATION O			DENTIAL /	Fuennce	M.A.	v HA	DWICK				Page # d # LEVEL 1 LEVEL 2	
8. EFFLUENT BT	REAM	WASTE W			STREAM)			•				
CODE NO.			NAME									
A	6	C :	0	•		G			-		MIGHTED DISC	<u> </u>
PPECES OF WES	MES CATEGORY	STECHS OF CATALOGS	ALTA PAGE PAGE PAGE PAGE PAGE PAGE PAGE PAG	#6 485,440 - #64,7#	SCA DOCAL DAGS CONCLUTATOR	erc atsuero - Bcoloev	Proceeding Marketon of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process of the Process o	- 800,000.04 - 800,000.04 - 800,000.04	MAN TO DATE OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF T	- 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5		400000 m
LPOTS	-	49/2	ugle	-		-		-	-	-	•	~
Lawmanum	84	1.0×10	1.7×106	84400	·		5.9×106				2.8×10	
CERIUM	84	8.0	5.5×105	BANDO	<u></u>		1.4210				66×10-7	
		•										-
		-						•				
<u>-</u>												<del> </del>
	-											
			-									
	<del> </del> -								_			
•												

TECHNICAL REPORT DATA (Please read Instructions on the reverse before completing)				
EPA-600/7-82-038b		3. RECIPIENT'S ACCESSION NO.		
4. TITLE AND SUBTITLE Environmental Assessment of a Low-emission oil-		5. REPORT DATE May 1982		
fired Residential Hot Water Condensing Heating System; Volume II. Data Supplement		6. PERFORMING ORGANIZATION CODE		
7. AUTHOR(S)		8, PERFORMING ORGANIZATION REPORT NO.		
C. Castaldini				
9. PERFORMING ORGANIZATION NAME AND ADDRESS Acurex Corporation		10. PROGRAM ELEMENT NO.		
485 Clyde Avenue		11. CONTRACT/GRANT NO.		
Mountain View, California 94042		68-02-3188		
12. SPONSORING AGENCY NAME AND ADDRESS EPA, Office of Research and Development		13. TYPE OF REPORT AND PERIOD COVERED Final; 7/80-2/81		
		14. SPONSORING AGENCY CODE		
Industrial Environmental Research Research Park, NC 27		EPA/600/13		

15. Supplementary NOTES IERL-RTP project officer is Robert E. Hall, Mail Drop 65, 919/541-2477. Volume I. gives technical results.

16. ABSTRACT The report gives results of a test program measuring air and water emissions from a high-efficiency hot-water residential heating system of European design, utilizing a condensing flue gas system and a low emission burner. Criteria and noncriteria emissions, including trace elements and organic species in both flue gas and condensate waste water streams, were measured. NO (as NO2), CO, total UHC (as propane), and total particulate emissions measured about 37, 12, 1.5, and 2.7 ng/J heat input, respectively. Absorption of sulfates and nitrates in the waste water resulted in a constant pH of 3.0. Total organic emissions in the flue gas measured 3.5 mg/dscm; they were below the detectable limit in the waste water. Several inorganic trace elements, including chromium, copper, iron, and nickel, in the waste water were attributed to leaching of heat transfer metal surfaces by the warm acidic water. Bioassays were also performed to evaluate the potential health hazard of the streams. Results indicate nondetectable to moderate toxicity and mutagenicity.

17. KEY WORDS AND DOCUMENT ANALYSIS				
DES	CRIPTORS	b.IDENTIFIERS/OPEN ENDED TERMS	c. COSATI Field/Group	
Pollution Assessments Hot Water Heating Residential Buildin Fuel Oil Flue Gases	Waste Water Condensates Measurement gs	Pollution Control Stationary Sources Environmental Assess- ment	13B 14B 07D 13A 13M 21D 21B	
Release to Public		19. SECURITY CLASS (This Report) Unclassified 20. SECURITY CLASS (This page) Unclassified	21. NO. OF PAGES 193 22. PRICE	