EPA-460/3-76-015 August 1976

MEASUREMENT OF SULFATE AND SULFUR DIOXIDE IN AUTOMOTIVE EXHAUST

U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Air and Waste Management
Office of Mobile Source Air Pollution Control
Emission Control Technology Division
Ann Arbor, Michigan 48105

MEASUREMENT OF SULFATE AND SULFUR DIOXIDE IN AUTOMOTIVE EXHAUST

by

Melvin N. Ingalls and Karl J. Springer

Southwest Research Institute 8500 Culebra Road San Antonio, Texas 78284

Contract No. 68-03-2118

EPA Project Officer: Richard Lawrence

Prepared for

ENVIRONMENTAL PROTECTION AGENCY
Office of Air and Waste Management
Office of Mobile Source Air Pollution Control
Emission Control Technology Division
Ann Arbor, Michigan 48105

August 1976

This report is issued by the Environmental Protection Agency to report technical data of interest to a limited number of readers. Copies are available free of charge to Federal employees, current contractors and grantees, and nonprofit organizations - in limited quantities - from the Library Services Office (MD35), Research Triangle Park, North Carolina 27711; or, for a fee, from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161.

This report was furnished to the Environmental Protection Agency by Southwest Research Institute, San Antonio, Texas, in fulfillment of Contract No. 68-03-2118. The contents of this report are reproduced herein as received from Southwest Research Institute. The opinions, findings, and conclusions expressed are those of the author and not necessarily those of the Environmental Protection Agency. Mention of company or product names is not to be considered as an endorsement by the Environmental Protection Agency.

Publication No. EPA-460/3-76-015

ABSTRACT

This report describes the testing of four different groups of cars for sulfates and sulfur dioxide. The collection and analytical techniques used to obtain the sulfate and sulfur dioxide emission rates are described. Sulfate and sulfur dioxide emissions rates in grams per kilometre are presented for a variety of test cycles including the light duty Federal Test Procedure (FTP), the Highway Fuel Economy Test (HFET), and the Sulfate Emissions Test number 7 (SET-7). In addition to sulfates and sulfur dioxide, the usual gaseous emissions of hydrocarbons(HC), carbon monoxide (CO) and oxides of nitrogen (NO $_{\rm X}$) were measured and reported in grams per kilometre. Total particulate weight on the sulfate filter was determined for tests on two of the groups of cars. In addition, for these same two groups of cars, the sampling tunnel residue from each test car was examined by X-ray fluorescent techniques for content of various elements.

The first of the four groups of cars was tested to characterize sulfate emissions from eight automobiles. Four of these were gasoline powered catalyst cars, three were gasoline powered noncatalyst cars, and one was diesel powered. The second group, consisting of four catalyst cars, were operated for 80,500 km (50,000 miles) to determine the effect of distance accumulation on sulfate emissions. The third group, two 1975 production catalyst cars, was tested in support of the EPA effort to develop a sulfate test procedure. The last group, consisting of eight cars, was part of the EPA sulfate baseline. Of these eight cars, six were production 1975 models (including one diesel), and two were experimental cars with three-way catalysts.

FORWARD

This project was conducted for the U.S. Environmental Protection Agency by the Department of Emissions Research of Southwest Research Institute. The laboratory testing phase of the project began in July 1974 and was completed in May 1976. This project was conducted under EPA Contract No. 68-03-2118 and was identified within Southwest Research Institute as Project 11-4015. The baseline testing reported in Section VII of this report was conducted under Task Order Contract No. 68-03-2196, Task 2, and reported here as specified in that contract.

The EPA Project Officer for this project was Mr. Richard D. Lawrence of the Characterization and Control Branch, Emission Control Technology Division, Office of Mobile Source Pollution Control, EPA, Ann Arbor, Michigan. Mr. Karl J. Springer, Director, Department of Emissions Research at SwRI served as Project Manager. The project was under the supervision of Mr. Melvin N. Ingalls, Senior Research Engineer, as Project Leader. Mr. Harry E. Dietzmann, Senior Research Chemist, supervised the development and application of the chemical analysis. Although a number of SwRI personnel assisted in the laboratory testing, key individuals included J. T. Jack, lead technician, A. J. Winfield, technician, and D. J. Bynum, laboratory assistant. Among others, key personnel involved with the chemical analysis were J. H. Herrington, lead technician, D. L. Milligan, technician and W. M. Saegert, laboratory assistant.

TABLE OF CONTENTS

			Page
ABSTF	RACT		ii
FOREW	V ORD		iv
LIST	OF FIG	TURES	vii
LIST	OF TAE	LES	xi
SUMMA	ARY		1
	1	Sulfate and Sulfur Dioxide Emission Measurement	1
		Test Cycle Development	1
		Sulfate Emissions	2
		Sulfate Emission Variation with Distance Traveled	3
		Sulfate Storage by Catalysts	4
		Relationship of Net Filter Weight to Sulfate Weight	4
		Analysis of Sulfate Tunnel Residue	4
I.	IN	TRODUCTION	5
	A.	Objectives	5
	в.	Report Organization	5
		On-Site Project Reviews	5
	D.	man de la management de	6
II.	EM	ISSIONS MEASUREMENT PROCEDURES AND EQUIPMENT	7
	Α.	General Procedures	7
		Sulfate Collection and Analysis	7
		Sulfur Dioxide by Pulsed Fluorescence	11
			11
	D.		13
	-	BCA Analysis EPA Method 8 Tests	13
	E.	EPA Method 8 Tests	13
III.	SU	LFATE EMISSIONS CHARACTERIZATION	17
	A.	Purpose	17
	в.	Cars Tested	17
	c.	Fuels Used	17
	D.	Test Sequence	21
	E.		24
IV.	EF	FECTS OF DISTANCE ACCUMULATION	47
	A.	Purpose	47
	в.	Cars Tested	47
	c.	Fuel Used	47
		Vehicle Maintenance	50
		Test Sequence	50
	F.		55

TABLE OF CONTENTS (Cont'd)

			Page
v.	SUL	FATE REGULATION STUDIES	125
	A.	Background	125
	B.	Purpose	125
	c.	Cars Tested	125
	D.	Fuel Used	125
		Test Schedule and Procedures	128
	F.	Test Results	131
VI.	BAS	ELINE TESTING	143
	A.	Background	143
		Purpose	143
		Cars Tested	143
		Fuel Used	143
		Test Sequence and Procedure	145
	F.	Test Results	146
LIST OF	REFI	ERENCES	151
APPEND]	CES		
	A.	The second common mendantal or port to printing choice	
	в.	and animage aloogaate and interference cuecks	
	c.	Checks and Exhaust Recovery Tests	
	D.	and Jon Port 11000date and varidation lests	
	E.	Method-8 Determination of Sulfuric Acid Mist and Sulfur Dioxide Emissions from Stationary Sources	
	F.	Analysis of Fuels Used	
	G.	1	
		zation Cars	
	н.	Transfer to the distance Accumulation Care	
	I.	Supporting Information for Procedural Development Study	
	J.	Supporting Information for Baseline Studies	

LIST OF FIGURES

Figure		Page
1	Emissions Collection and Analysis Equipment	8
2	Speed vs Time Traces of FTP, HFET and SET-7 Driving Cycles	9
3	Schematic of Sulfate Sample Collection System	10
4	Components of Sulfate Collection and Analysis System	12
5	SO ₂ -BCA Flow Schematic	14
6	Photographs of SO ₂ Sample Collection System	15
7	Method 8 Impingers in Place During a Test	16
8	Non-Catalyst Sulfate Characterization Cars	19
9	Catalyst Equipped Sulfate Characterization Cars	20
10	Regulated Gaseous Emissions From 1975 FTP Tests of Eight Cars	26
11	Gaseous Emission in g/km From Tests at 48 km/hr on Eight Cars	27
12	Gaseous Emissions in g/km From Tests at 96 km/hr on Eight Cars	28
13	Sulfuric Acid and Sulfur Dioxide Emissions From 1975 FTP Tests on Eight Cars	29
14	Sulfuric Acid and Sulfur Dioxide Emissions From Tests at 48 km/hr on Eight Cars	30
15	Sulfuric Acid and Sulfur Dioxide Emissions From Tests at 96 km/hr on Eight Cars	31
16	Percent of Fuel Sulfur Recovered in Vehicle Ex- haust as Sulfuric Acid and Sulfur Dioxide for FTP Tests on Eight Cars	34
17	Percent of Fuel Sulfur Recovered in Vehicle Ex- haust as Sulfuric Acid and Sulfur Dioxide for 48 kph Steady State Tests on Eight Cars	35
18	Percent of Fuel Sulfur Recovered in Vehicle Ex- haust as Sulfuric Acid and Sulfur Dioxide for 96 kph Steady State Tests of Eight Cars	36

Figure		Page
19	Comparison of Method 8 and BCA SO ₂ and Sulfate Results in mg/km for 48 and 96 kph Steady State Tests for Two Non Catalyst Cars	40
20	Comparison of Method 8 and BCA Results as Percent of Fuel Sulfur Recovered for Two Non Catalyst Cars	42
21	Comparison of Filter Weight and Sulfate Weight Per Filter by BCA Analysis for Three Cars	44
22	Emissions from FTP Tests at Distance Intervals on Four Cars	59
23	Emissions from SET-7 Tests at Distance Intervals for Four Cars	60
24	Emissions from HFET tests at Distance Intervals for Four Cars	61
25	Sulfate and Sulfur Dioxide Emissions from FTP Tests at Distance Intervals for Four Cars	71
26	Sulfate and Sulfur Dioxide Emissions from SET-7 Tests at Distance Intervals for Four Cars	72
27	Sulfate and Sulfur Dioxide Emissions from HFET Tests at Distance Intervals for Four Cars	. 73
28	Sulfate and Sulfur Dioxide Emissions from Acceleration to 48 kph Tests at Distance Intervals for Four Cars	74
29	Sulfate and Sulfur Dioxide Emissions from 48 kph Steady State Tests at Distance Intervals for Four Cars	75
30	Sulfate and Sulfur Dioxide Emissions from Acceleration to 96 kph Tests at Distance Intervals on Four Cars	76
31	Sulfate and Sulfur Dioxide Emissions from 96 kph Steady State Tests at Distance Intervals on Four Cars	77
32	Sulfate Emissions from FTP Tests as a Function of Distance Traveled for Four Cars	81
33	Sulfate Emissions from SET-7 Tests as a Function of Distance Traveled for Four Cars	82

Figure		Page
34	Sulfate Emissions from HFET Tests as a Function of Distance Traveled for Four Cars	83
35	Sulfate Emissions from Acceleration to 48 kph Tests as a Function of Distance Traveled for Four Cars	84
36	Sulfate Emissions from 48 kph Steady State Tests as a Function of Distance Traveled for Four Cars	85
37	Sulfate Emissions from Acceleration to 96 kph Tests as a Function of Distance Traveled for Four Cars	86
38	Sulfate Emissions from 96 kph Steady State Tests as a Function of Distance Traveled for Four Cars	87
39	Exhaust Sulfur Recovery from FTP Tests at Distance Intervals for Four Cars	95
40	Exhaust Sulfur Recovery from SET-7 Tests At Distance Intervals for Four Cars	96
41	Exhaust Sulfur Recovery for HFET Tests at Distance Intervals for Four Cars	97
42	Exhaust Sulfur Recovery for Acceleration to 48 kph At Distance Intervals for Four Cars	98
43	Exhaust Sulfur Recovery for 48 kph Steady State Tests at Distance Intervals for Four Cars	99
44	Exhaust Sulfur Recovery for Acceleration to 96 kph Tests at Distance Intervals for Four Cars	100
45	Exhaust Sulfur Recovery for 96 kph Steady State Tests at Distance Intervals for Four Cars	101
46	Cumulative Sulfur Recovered in Exhaust as a Function of Sulfur Consumed, EM-1 at 0 and 3200 km	106
47	Cumulative Sulfur Recovered in Exhaust as a Function of Sulfur Consumed, EM-1 at 8050 and 16,100 km	107
48	Cumulative Sulfur Recovered in Exhaust as a Function of Sulfur Consumed, EM-1 at 24,100 km	108
49	Cumulative Sulfur Recovered in Exhaust as a Function of Sulfur Consumed, EM-2 at 0 and 3200 km	109

Figure		Page
50	Cumulative Sulfur Recovered in Exhaust as a Function of Sulfur Consumed, EM-2 at 8050 and 16,100 km	110
51	Cumulative Sulfur Recovered in Exhaust as a Function of Sulfur Consumed, EM-2 at 24,100 km	111
52	Cumulative Sulfur Recovered in Exhaust as a Function of Sulfur Consumed, EM-3 at 0 and 3200 km	112
53	Cumulative Sulfur Recovered in Exhaust as a Function of Sulfur Consumed, EM-3 at 8050 km	113
54	Cumulative Sulfur Recovered in Exhaust as a Function of Sulfur Consumed, EM-3 at 16,100 and 24,100 km	114
55	Cumulative Sulfur Recoveries in Exhaust as a Function of Sulfur Consumed, EM-4 at 0 and 3200 km	115
56	Cumulative Sulfur Recoveries in Exhaust as a Function of Sulfur Consumed, EM-4 at 8050 km	116
57	Cumulative Sulfur Recoveries in Exhaust as a Function of Sulfur Consumed, EM-4 at 16,100 and 24,100 km	117
58	Net Filter Weight Versus BCA Sulfate Weight as Ammonium Sulfate for all Non FTP Test on Non Air-Injected Cars	119
59	Net Filter Weight Versus BCA Sulfate Weight as Ammon- ium Sulfate for all Non FTP Tests on Air-Injected Car	s 120
60	Net Filter Weight Versus BCA Sulfate Weight as Ammon- ium Sulfate for All FTP Tests on Non Air-Injected Car	
61	Net Filter Weight Versus BCA Sulfate Weight as Ammon- ium Sulfate for FTP Test on Air-Injected Cars	122
62	General Views of Cars and Test Equipment	127
63	Catalyst Temperature over San Antonio Version of Ann Arbor Road Course for AMC Hornet No. D50-36	132
64	Catalyst Temperature over San Antonio Version of Ann Arbor Road Course for AMC Hornet No. D50-34	133
65	Sulfate Emissions from Part I of Procedural Develop- ment Study	136

Figure		Page
66	Sulfate Emissions from Repetitive Tests of	
	Various Test Cycles	140
67	Sulfate Emissions for Baseline Test Sequence	
	from Eight Baseline Cars	148

LIST OF TABLES

Table		Page
1	Description of Sulfate Characterization Cars	18
2	Fuels Used in Sulfate Emissions Characterization Studies	22
3	Test Sequence for Sulfate Characterization Cars	23
4	Exhaust Emissions Summary of Cars Tested for Sulfate Characterization Project	25
5	Summary of EPA Method 8 Test Results	38
6	Comparison of Filter Weights and Sulfate Weights Per Filter by BCA Analysis for Three Cars	45
7	Results of X-Ray Fluorescent Analysis of Sulfate Sampling Tunnel Particulate Residue for Sulfate Characterization Cars	46
8	Cars Tested in Distance Accumulation	48
9	Fuel Batches used in Distance Accumulation Study	49
10	Test Sequence for 0 and 3200 kilometre Tests	51
11	Test Sequence for 8,050 kilometre Test on All Cars and 16,100 kilometre Test on cars EM-1 and EM-2	52
12	Test Sequence for 24,100 kilometre Tests on all Cars and 16,100 kilometre Tests on Cars EM-3 and EM-4	53
13	Test Sequence for Tests at 32,200 kilometres, 48,300 kilometres, 64,400 kilometres and 80,500 kilometres for all cars	54
14	Average Hydrocarbon Emissions by Test Type for Distance Interval Tests on Four Cars	56
15	Average CO Emissions by Test Type for Distance Interval Tests on Four Cars	57
16	Average ${ m NO}_{ m X}$ Emissions by Test Type for Distance Interval Tests on Four Cars	58
17	Sulfur Dioxide and Sulfate Emissions at Distance Intervals - Car EM-1 1975 Federal Plymouth Gran Fury, Monolithic Catalyst, without Air Pump	63

LIST OF TABLES (cont'd)

<u>Table</u>		Page
18	Sulfur Dioxide and Sulfate Emissions at Distance Intervals - Car EM-2 1975 Federal Chevrolet Impala Pelleted Catalyst, without air pump	65
19	Sulfur Dioxide and Sulfate Emissions at Distance Intervals - Car EM-3 1975 California Plymouth Gran Fury, Monolithic Catalyst, with air pump	67
20	Sulfur Dioxide and Sulfate Emissions at Distance Intervals - Car EM-4 1975 California Chevrolet Impala, Pelleted Catalyst, with air pump	69
21	Average Sulfate Emissions by Test Type from Distance Interval test on Four Cars	80
22	Regression Analysis and Deterioration Factors for SET-7 Tests at Distance Intervals on Four Cars	89
23	$\mathrm{NO}_{\mathbf{x}}$ and Sulfur Emissions from Selected Tests on SwRI Car EM-3	92
24	Results of Emission Tests at 80 kph Steady State On Four Cars with EGR System Operating Normally and Disabled	93
25	Test Sequence Total Sulfur Recovery	118
26	Results of X-Ray Fluorescent Analysis of Sulfate Sampling Tunnel Particulate Residue for Distance Accumulation Cars	124
27	Description of Vehicles Tested for Procedural De- velopment Studies	126
28	Comparison of AMC and SwRI Light Duty FTP Emissions from Two 1975 Hornet Sportabouts	126
29	Sulfate Test Schedule, Part I	129
30	Part II Test Schedule	130
31	Summary of Emissions from Car EM-5 on Part I Test Sequences	134
32	Summary of Emissions from Car EM-6 on Part I Test Sequences	135
33	Statistical Summary of Emissions From Tests on Part II, Test Sequence A, B, C and D	, 138

LIST OF TABLES (cont'd)

<u>Table</u>		Page
34	Statistical Summary of Sulfate Emission from Repetitive SET-7 Tests, Part II, Sequence E	142
35	Sulfate Baseline Cars Tested at Southwest Research Institute	144
36	Sulfate Baseline Test Sequence	146
37	Summary of Sulfate and SO ₂ Emissions from Baseline Tests at SwRI	147

SUMMARY

Four groups of cars were tested for exhaust sulfate emissions in separate phases of this study. Each group was tested for a different purpose. However, the results from one group supplemented the results from another group to give a more complete understanding of exhaust sulfate emissions. Therefore, the developments, findings and conclusions from this study will be presented by topic rather than by test phase.

1. Sulfate and Sulfur Dioxide Emission Measurement

This project proved the capabilities of a sulfate sampling tunnel 21 cm (8.4 inches) in diameter and approximately 3 meters (10 feet) in total length. This tunnel, while smaller than the 46 cm (18 inch) diameter EPA dilution tunnel, has the advantages of being compact and more compatible with existing 8.5 m³/min (300 CFM) constant volume sampling (CVS) systems and automotive emissions test facilities. Because of the successful use of the tunnel on this project, it has become the primary candidate for use by EPA and by industry.

A TECO pulsed fluorescence (PF) SO₂ analyzer was originally scheduled for use on the project to monitor dilute SO₂ continuously. However, when the PF unit was placed in service measuring SO₂ on dilute automobile exhaust, it greatly overstated the amount of SO₂ in the exhaust due to some unknown interference. The effects of the interference were found to be a function both of exhaust SO₂ level and fuel composition and sulfur level.

To replace the PF analyzer, a wet chemistry method for SO_2 was developed utilizing a sample collection procedure similar to EPA stationary source Method 6. The amount of SO_2 collected was determined using the same Barium Chloranilate (BCA) procedure that was used to determine the amount of H_2SO_4 collected on the sulfate filters.

At the start of the project, some researchers felt that the stationary source Method 8 procedure might be acceptable for use in measuring automotive exhaust sulfates and SO₂. In actual tests, the Method 8 procedure yielded lower SO₂ values, higher sulfuric acid values and recovered less of the total sulfur than the BCA procedure. It is felt that Method 8 is inferior to the BCA procedure for measuring automotive exhaust sulfates because it gives erroneously high sulfate values.

2. Test Cycle Development

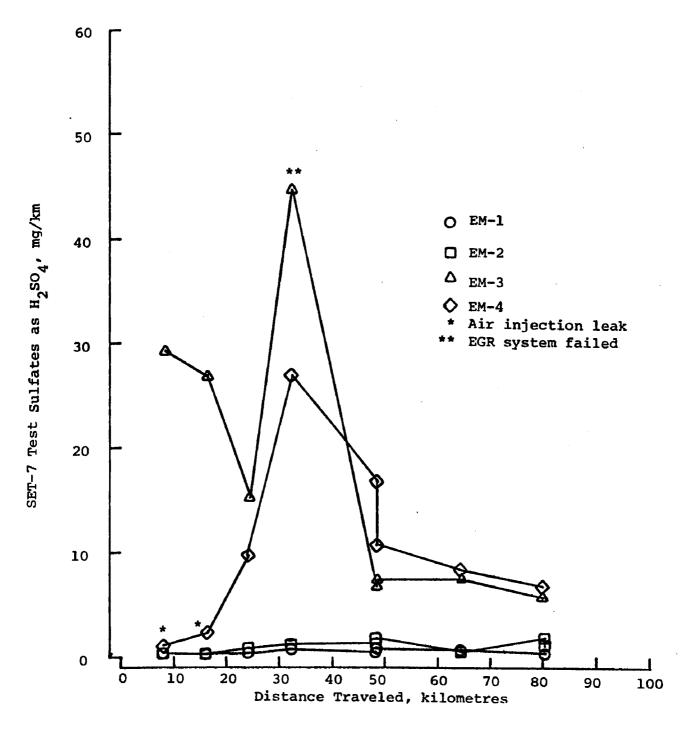
The work done on cycle development during this project was part of the overall EPA effort to develop a standardized sulfate test procedure. As such, SwRI was one of four laboratories performing test cycle development studies. The results contained in this report were based on tests on two 1975 Federal AMC Hornet Sportabouts.

By the time the laboratory work had begun, the SET-7 driving cycle had been chosen by EPA as the candidate driving cycle. Twenty

repetitive SET-7 tests were run on each of the two Hornets to ascertain the test-to-test variability. The coefficient of variation of the sulfate emissions was 26.6 percent on one car and 30.7 on the other car.

In an effort to reduce test-to-test variability, the SET-9 driving cycle was developed by EPA and tested at SwRI, using 12 repetitive tests. These results were then compared with 12 repetitive SET-7 tests by the same driver. The average sulfate emissions from the SET-9 tests were approximately 16 percent higher than the sulfates from the SET-7 tests. The coefficient of variation for the two types of tests were not sifnificantly different, being 3.99 for the SET-7 tests and 5.40 for the SET-9 tests. From these test series it appeared that the SET-9 did not offer any real improvement in test-to-test repeatability over the SET-7. Tests were also run to determine the effects of preconditioning and driver-to-driver differences. The SET-7 has since been slightly modified (SET-7D). This is the cycle which is known as the Congested Freeway Driving Schedule (CFDS).

3. Sulfate Emissions


During the course of this project, exhaust sulfate emissions were measured on a variety of test cycles including the FTP, SET-7, HFET, accelerations from 0 to 48 and 96 kilometres per hour (kph) (30 and 60 mph), and from 48 and 96 kph cruise conditions. Sulfate emissions varied from less than 0.01 mg/km for a non air-injected catalyst car (probably operating in a storage mode) during an acceleration to 48 kph to 77.11 mg/km for an air-injected catalyst car during an acceleration to 96 kph. A higher value of 97.30 mg/km was observed for one car after a prolonged (5 hours) preconditioning at 56 kph.

The sulfate emissions also varied widely depending on the type of car tested. In general, noncatalyst cars produce the least sulfates and oxidation catalyst cars without air injection, slightly more sulfates. Odidation catalyst cars with air injection in general produce the most sulfates. One car equipped with a three-way (oxidation-reduction) catalyst without air injection demonstrated sulfate levels on the same order of magnitude as noncatalyst cars. Diesel cars are a special case. The diesel car tested converted approximately the same percentage of fuel sulfur to sulfates as did the noncatalyst cars and nonair-injected catalyst cars. However, because of the high level of sulfur in the diesel fuel (average of 0.23 versus 0.04 weight percent for gasoline used in this project) the sulfate emissions in mg/km were similar to air-injected catalyst cars.

One of the significant findings of the study was that some malfunctions of the emission control system can affect sulfate emissions. It was found, for instance, that disconnecting the fuel evaporative cannister from the carburetor had no effect on the SET-7 sulfate emissions. However, a leak in the air injection system on one of the catalyst cars tended to lower the sulfate emissions on most test cycles. One of the most interesting findings is that an inoperative EGR system will significantly increase sulfate emissions on some cars, particularly air-injected catalyst cars.

4. Sulfate Emission Variation with Distance Traveled

The sulfate emissions also varied with distance accumulated on the car. The change in sulfate emissions with distance traveled was measured on four catalyst cars. The variation in sulfate emissions was found to be dependent upon both the driving cycle and the type of car. For example, as shown on the graph below, on the SET-7 tests, there was almost no change in sulfate emissions over 80,500 km (50,000 miles) for the nonair-injected cars. For the air-injected cars, the sulfate emissions decreased significantly in an exponential fashion from 8,050 km (5,000 miles) to 80,500 km (50,000 miles).

5. Sulfate Storage by Catalysts

From the testing of catalyst cars during this project, it appears that whether a given vehicle operating condition is a sulfur storage or release mode, is dependent not only on what the condition is, but also the distance accumulated on the vehicle. Whether a given operating condition is a storage or release mode also varies from vehicle to vehicle. Three of the four cars tested to 80,000 km, stored sulfur during some of the test cycles and released sulfur during other test cycles. However, one car, EM-4, (pellet w/air) apparently stored sulfur during all test cycles except for the acceleration to 96 kph at the 24,100, 32,200 and 48,300 km test points.

Except for car EM-4, the acceleration from 0 to 96 kph (0-60 mph) always exhibited the largest release of sulfur, while the 48 kph (30 mph) cruise condition showed the largest storage of sulfur compounds. The total sulfur recoveries from the tests performed varied from 10.7 percent at 48 kph (30 mph) cruise on a nonair-injected catalyst car with 32,000 km accumulated use, to 335 percent during an acceleration from 0 to 96 kph (0-60 mph) on a nonair-injected catalyst car at essentially zero kilometres traveled.

6. Relationship of Net Filter Weight to Sulfate Weight

For two of the test phases, the filters used to collect the exhaust sulfates were weighed before and after the test on which they were used. On one phase of the project, the filters were weighed with the sulfate in the form in which it was collected, sulfuric acid. No consistent relationship between net filter weight and sulfate weight were shown by these tests even though the filters were weighed in a controlled-humidity chamber after a stabilization period. During a later phase of the project, the filters were subjected to an ammonia atmosphere after the test but prior to the "after-test" weighing. This converted the sulfuric acid to ammonium sulfate releasing the water vapor. When treated in this manner, there was a good linear relationship between weight of particulate collected on the filter and weight of sulfate from the BCA analysis for all cars on all tests except the 1975 FTP. The FTP tests exhibited a different slope and considerably more scatter.

7. Analysis of Sulfate Tunnel Residue

For two phases of this project, the sulfate tunnel was swept out at the end of each test series on each car. The particulate residue was collected and quantitatively analyzed for various elements using X-ray fluroescence. The analysis was for platinum (Pt), palladium (Pd), aluminum (Al), nickel (Ni), iron (Fe), sulfur (S), lead (Pb), zinc (Zn), copper (Cu) and tin (Sn). Of these 10 elements, no platinum, palladium, nickel, copper or tin was found in any of the samples. Chromium, silicon, and manganese were found in some of the samples. The largest part of each sample was iron. From a visual inspection of the samples, it appears that rust, probably from the exhaust system, is the major constituent of the residue. The other elements were found in much smaller quantities and their origin is not certain.

I. INTRODUCTION

In 1971 and 1972 EPA sponsored studies at Dow Chemical Company (1,2)* showed that catalyst equipped cars emitted a larger mass of particulate emissions than noncatalyst cars. The additional particulate mass was shown to be sulfuric acid. (3)

EPA studies have been conducted since that time to determine the level of sulfuric acid emissions from automobile exhaust. (4,5,6) The work covered in this report is one of these studies.

A. Objectives

The original objective of this project was to provide data on the emissions of sulfate (measured as sulfuric acid) and sulfur dioxide (SO₂) from passenger cars powered by gasoline and diesel engines. These data could then be used to compare different type engines and catalysts. Two additional objectives were to determine the change in sulfate emissions with mileage accumulation, and to investigate the phenomenon of sulfate storage where possible.

As the project progressed the need by the EPA for further information on sulfate emissions led to the inclusion of two additional studies in the project. One of these studies was in support of the EPA effort to produce a "Notice of Proposed Rule Making" (NPRM) for sulfates. The other study was the SwRI contribution to the EPA sulfate baseline project.

B. Report Organization

This report has a separate section for each of the study areas; characterization, NPRM, baseline and mileage. Each section covers the objective, test schedule and test results for the study area. Test procedures and equipment common to all areas of investigation are covered in one section.

C. On-Site Project Reviews

Five project reviews at SwRI by the EPA Project Officer occurred during the testing phase of the project. On September 17, 1974, Mr. Joseph H. Somers and Mr. Richard D. Lawrence of the EPA visited the Department of Emissions Research at SwRI for an inspection and discussion of the project. Several items of procedure were discussed. It was decided that the test gasoline would have a sulfur level of 0.04 percent and the test diesel fuel a sulfur level of 0.25 percent. On January 24, 1975, Mr. Richard Lawrence, EPA Project Officer, again visited SwRI to review the project. It was decided at that time to proceed with the test schedule using the SwRI-BCA procedure for SO₂. On October 27 and 28, 1975, Mr. Lawrence visited the Department of Emissions Research at SwRI to review the status of both Contract 68-03-2118 and Task 2 of Contract 68-03-2196. Specific items discussed included reviewing the data obtained from the four mileage accumulation cars, a discussion of the lower than expected emissions on Car EM-4 a review of the future test schedule, a discussion of the final report out-

^{*}Superscript numbers in parentheses refer to the List of References at the end of this report

line, and a discussion of the proposed extension of the distance accumulation to 80,500 km on each of the four cars. During the visit all of the baseline cars were at the laboratory. A brief inspection of the cars was made and the test schedule and results discussed.

On April 15 and 16, 1976, Mr. Richard Lawrence visited the Department of Emissions Research to review the status of the project and discuss the outline and contents of the final report. As a result of these discussions, it was decided to run the back-to-back 50 mph tests to determine the effect of an inoperative EGR system on sulfate emissions at the conclusion of the 80,500 km tests.

D. Project Reviews - Ann Arbor

In addition to these visits to SwRI by the Project Officer, two meetings were held at the EPA facility at Ann Arbor, Michigan to discuss the results of testing done under this contract. Mr. Melvin Ingalls attended these meetings representing the Department of Emissions Research at SwRI.

The first meeting was held on July 15, 1975, in Ann Arbor, Michigan, with all four laboratories working on sulfate testing in support of the sulfate regulation studies present. As a result of this meeting, the test schedule for the Part II testing was changed. The testing requested of SwRI was outlined in an EPA memo from J. H. Somers to J. P. DeKany, dated July 18, 1975.

The second meeting was hald on August 19, 1975, in Ann Arbor, with representatives from all four laboratories again in attendance. The results of each laboratory's testing in support of a sulfuric acid test procedure were discussed. In addition, the EPA presented their analysis of the data from all four labs.

II. EMISSIONS MEASUREMENT PROCEDURES AND EQUIPMENT

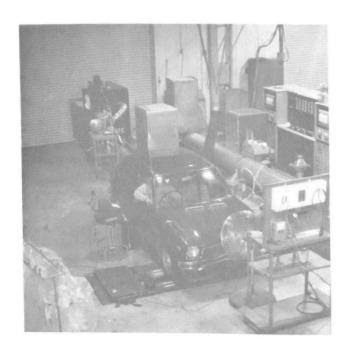
This section covers the measurement procedures and equipment used to obtain and analyze the gaseous exhaust emissions and exhaust sulfates in the form of sulfuric acid.

A. General Procedures

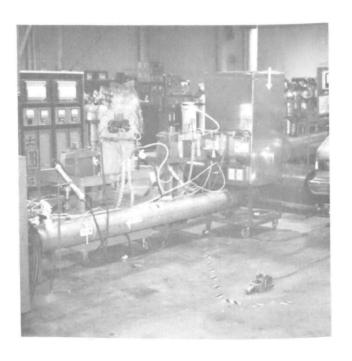
All exhaust emission tests performed during this study were on cars under 6,000 pounds GVW. The 1975 light duty Federal Test Procedure (FTP) without evaporative emissions, was followed in terms of procedure and equipment as much as possible for all tests. It is assumed that the reader is familiar with this test procedure. If not, it can be found in 40 CFR Part 85, Subpart A. The latest recodification was published in the Federal Register, Volume 40, Number 126, dated June 30, 1975.

The gasoues emissions of hydrocarbons (HC), carbon monoxide (CO), and oxides of nitrogen (NO $_{\rm X}$) were collected and analyzed using the procedures of the light duty FTP. The tests were performed on a Clayton chassis dynamometer with the vehicles manually driven. A Constant Volume Sampler (CVS), with a nominal capacity of 350 CFM was used. To collect the sulfate sample, the usual CVS system was modified by inserting a three meter long tunnel approximately 21 cm in diameter between the CVS room air filter box and the entrance to the CVS heat exchanger. Figure 1 shows various views of the test area, CVS system and the analysis instruments for the bagged gaseous emissions.

There were three main driving cycles used during this project. The first was the driving cycle used in the light duty FTP, known as the LA-4 cycle or the Urban Dynamometer Driving Schedule (UDDS). The second was the Highway Fuel Economy Test (HFET) cycle. The third cycle was developed specifically as a sulfate test cycle and is identified as Sulfate Emission Test 7 or SET-7. The speed time traces of these three cycles are shown in Figure 2. A complete speed versus time listing for the SET-7 is contained in Appendix A. In addition to the driving cycles, tests were run at constant 48 kph (30 mph) and constant 96.5 kph (60 mph) conditions during the characterization studies.

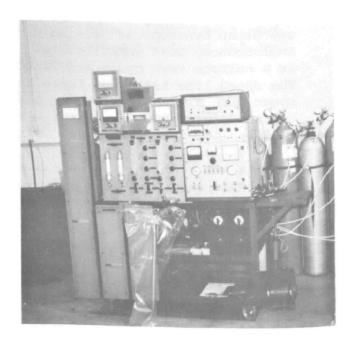

At the conclusion of the characterization tests on each car, the sulfate tunnel was swept out with a fine bristled brush. The resulting particulate matter was analyzed using an X-ray fluorescense analyzer for a variety of elements.

B. Sulfate Collection and Analysis


The exhaust sulfates were collected as sulfuric acid on 47 mm Fluoropore* membrane filters with 0.5 μ m pore size. The samples were obtained isokinetically using a pitot type probe centered in the 21 cm diameter tube. Figure 3 is a schematic of the collection system.

For some parts of the study, the filters were weighed before and after

^{*}Fluoropore is a registered trademark of the Millipore Corporation.
Fluoropore filters are made of PTFE (Polytetrofluorelthylene) bonded to polyethylene net.


General View of Test Area

Dilution Air Filter Box and Sulfate Tunnel

Vehicle Exhaust Connection to CVS System

Emission Analyzers for Bagged Gaseous Emissions

FIGURE 1. EMISSIONS COLLECTION AND ANALYSIS EQUIPMENT

FIGURE 2. SPEED VS. TIME TRACES OF FTP, HFET AND SET-7 DRIVING CYCLES

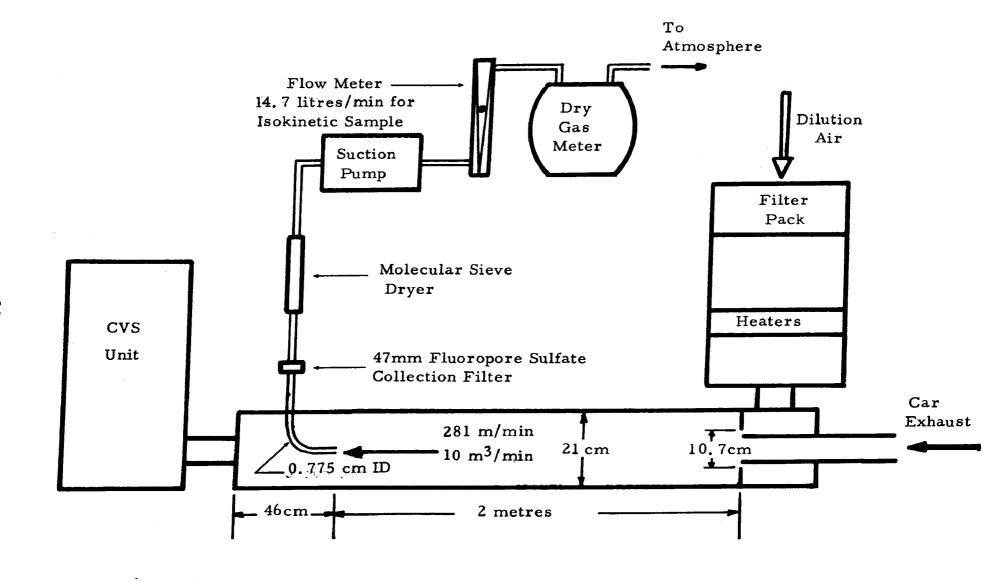
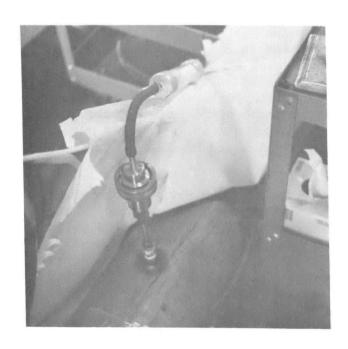


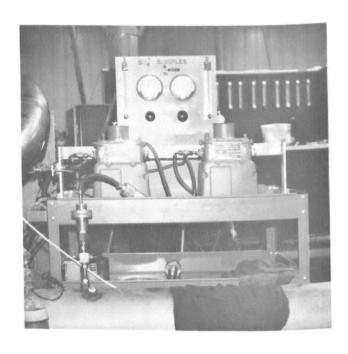
FIGURE 3. SCHEMATIC OF SULFATE SAMPLE COLLECTION SYSTEM

use, using a Mettler microgram balance located in a temperature and humidity controlled chamber. After the test and weighing of the used filter (when required) the filters were leached in a 10 ml solution of 60 percent isopropyl alcohol and 40 percent distilled water (IPA solution). A portion of the mixture was injected into a liquid chromatograph system using a flow through cell in a Model 25 Beckman UV visible spectrophotometer set at 310 nm. A high pressure liquid chromatograph sampling valve and one ml loop was employed. to insure sample injection repeatability.

Once injected, the sample passed through a strong cation exchange resin column to remove possible interfering cations and to convert ammonium sulfate to sulfuric acid. The solution then passed through a column packed with barium chloranilate. The barium combines with the sulfate in the sample to form barium sulfate, releasing chloranilic acid. The concentration of the released chloranilic acid, which is proportional to the amount of sulfate in the sample, is measured by the UV spectrophotometer. This method of sulfate determination is commonly called the barium chloranilate (BCA) procedure for sulfates. It was developed by Dr. Silvestre Tejeda of the EPA at their Research Triangle Park, N.C., facility. Figure 4 contains photographs showing the various components of the sulfate collection and analysis system. A complete description of the analytical procedure is contained in Appendix B.

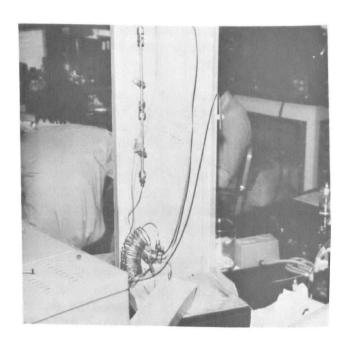

Part way through the project, an improvement in filter handling was recommended by the EPA at Research Triangle Park and subsequently put into practice. This improvement involved exposing the used filters to ammonia gas to convert the sulfuric acid on the filters to ammonium sulfate which is a solid and hence should be more stable. In addition, it is not hydroscopic, so that moisture from the air is not taken up on the filter to add to the filter weight.

The first car tested in the project was run on leaded fuel. During the test preparations the question arose as to whether the cation exchange column could remove all the lead in the sample. More importantly, it was questioned whether the chloride and bromide ions from the ethylene dichloride and ethylene dibromide in the leaded fuel (which would be anions like sulfate) would interfere in the BCA procedure. A series of tests were run to answer these questions. The results indicated that the BCA procedure could not be used with leaded fuel. A detailed presentation of the results of these tests is included in Appendix B. The BCA procedure has recently been modified to eliminate these interferences.


C. Sulfur Dioxide by Pulsed Fluorescence

Originally it was planned that a TECO Model 40 Pulsed Fluorescent (PF) $\rm SO_2$ Analyzer would be used to measure the exhaust $\rm SO_2$ emissions. Considerable work was done investigating interferences and the instrument's ability to measure $\rm SO_2$ in dilute automobile exhaust at fuel sulfur levels on the order of 0.04 percent.

The interference tests essentially showed that in an air-rich sampling system such as the CVS, the interferences from CO, CO_2 , NO_X and at least two of the aromatic hydrocarbons would be negligible. However, when the PF unit was placed in service measuring SO_2 during tests on an actual car running on 0.05 percent sulfur fuel, it greatly overstated the amount of SO_2 in the


Sulfate Filter Holder on Probe

Sample Collection System With Total Flow Meters

UV Spectrophotometer

BCA Column, Cation Exchange Column and Sample Loop

FIGURE 4_{τ} COMPONENTS OF SULFATE COLLECTION AND ANALYSIS SYSTEM

exhaust. The exhaust SO₂ reading on the instrument was found to be a function of both exhaust SO₂ level and composition of the fuel. Complete details of both the interference checks and the actual car tests are contained in Appendix C.

Almost three months of effort were expended in trying to adapt the PF unit for SO_2 determination on CVS tests of automobiles without success. It was felt that more than enough effort had been expended and that an alternate method would have to be used for SO_2 determination.

D. Sulfur Dioxide Procedure Using Bubblers and BCA Analysis

The procedure developed to replace pulsed fluorescent measurement of SO_2 involved bubbling a sample of the exhaust gas through a 3 percent solution of hydrogen peroxide (H_2O_2). A schematic of the sample collection equipment is shown in Figure 5. A sample of the exhaust gas was drawn through the glass probe and a 0.5 μm Fluoropore filter to remove any sulfuric acid, then in series through two impingers filled with 25 ml of 3 percent solution of H_2O_2 where the SO_2 is oxidized to SO_4^- and stays in the solution. The second bubbler serves only as a back-up to insure that all the SO_2 is collected.

After the test, the 25 ml of hydrogen peroxide solution was evaporated to 10 ml. Several drops of ammonium hydroxide solution (1M) were then added to convert the mixture to ammonium sulfate and the sample evaporated to dryness. The remaining white residue of ammonium sulfate was dissolved in a 60-40 percent IPA solution and analyzed using the barium chloranilate procedure used to analyze the filters. Several photographs showing various parts of the collection and analysis systems are contained in Figure 6. A complete description of the analytical procedure called the SwRI SO₂-BCA procedure is contained in Appendix D.

Extensive experiments were conducted to validate the sampling and extraction procedures. The experiments were conducted in both areas of the procedure; the sample acquisition and the sample analysis. The detailed description and results of these tests are also listed in Appendix D. The validation experiments proved that the $\rm SO_2$ -BCA method gave satisfactory sulfur recoveries on non-catalyst vehicles. These sulfur recovery levels were orders of magnitude better than the TECO PF analyzer and an improvement over what others had reported using titration or gravimetric analysis of hydrogen peroxide $\rm SO_2$ collection systems.

E. EPA Method 8 Tests

At the start of the project, it was felt by some researchers that the EPA stationary source Method 8 test might be an acceptable procedure for use in determining automotive exhaust sulfates and SO2. Consequently, some of the characterization cars were scheduled to use the Method 8 sampling procedure concurrently with the sulfate filter tests.

Method 8 is a wet chemical procedure utilizing four impingers. The first impinger contains 80 percent isoproponal and is used to entrain the sulfuric acid in the sample. A filter is placed between the first and second impinger to prevent any sulfuric acid carryover to the second impinger. The second and

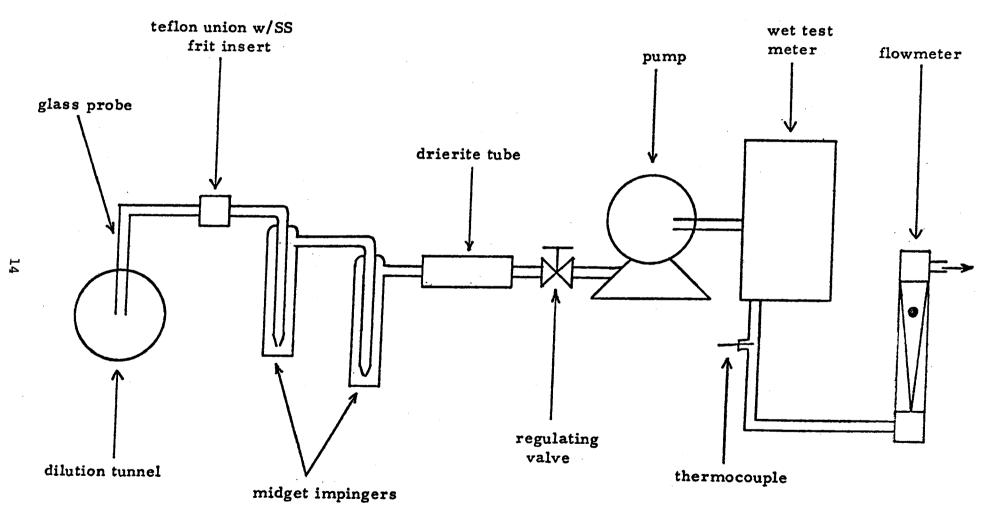
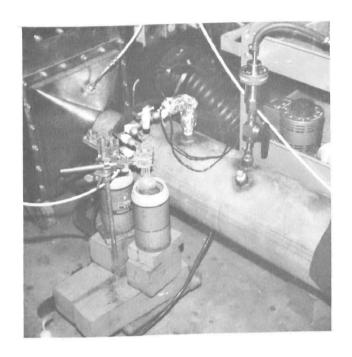



FIGURE 5. SO₂-BCA FLOW SCHEMATIC

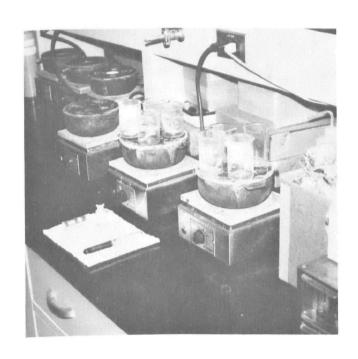


FIGURE 6. PHOTOGRAPHS OF SO 2 SAMPLE COLLECTION SYSTEM

third impinger contain a solution of 3 percent hydrogen peroxide to trap the SO_2 in the sample. The fourth impinger contains silica gel.

The analysis for sulfuric acid is performed using the solution from the first impinger; the analysis for SO₂, using the solution from the second and third impinger. The analytical procedure uses the barium-thorin titration method. A complete description of Method 8, as given in the Federal Register is contained in Appendix E. Figure 7 is a photograph of the Method 8 impingers in place during a test.

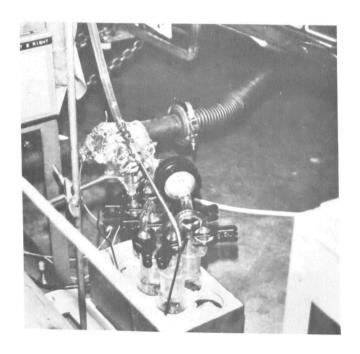


FIGURE 7. METHOD 8 IMPINGERS IN PLACE DURING A TEST

III. SULFATE EMISSIONS CHARACTERIZATION

This section covers the sulfate emission testing of eight cars selected under the original scope of the project.

A. Purpose

The purpose of this phase of the project was to provide data on the emissions of sulfate (SO_4) expressed as sulfuric acid (H_2SO_4) and sulfur dioxide (SO_2) from various types of passenger cars powered by both gasoline and diesel engines. The primary use of the data is to permit comparisons between different type engines and catalyst systems.

B. Cars Tested

To meet the objective of this phase of the project, a variety of engines and catalysts were selected for testing. Since sulfate emissions were thought to be a problem when catalysts were used in the exhaust system, a noncatalyst 1972 car was chosen as a baseline. At the time this work was done, the sulfate detection procedure could not be used with leaded fuel. Therefore, it was necessary to choose a baseline car that was manufactured with the capability to run on unleaded gasoline.

To test sulfate emissions from catalyst cars, it was considered desirable to have both pelleted and monolithic catalysts. It was also desired to have each of the catalyst types with and without air injection systems.

Current model non catalyst cars were also included to characterize sulfate emissions from cars which met the then current standards wihout catalysts. Three cars were chosen in this category. One was powered by a conventional spark-ignition engine without a catalyst but calibrated to meet the 1975 standards. Another of these cars was powered by the Honda compound vortex controlled combustion(CVCC) engine. The remaining car was powered by a diesel engine. Table 1 lists the eight cars together with a brief description of engine and exhaust systems. Figures 8 and 9 are pictures of the cars tested.

The cars were obtained from various sources. The 1972 Plymouth is owned by SwRI and used as a general transportation car by the Department of Emissions Research. The Honda Civic CVCC and Mercedes 240D cars were government-provided emission test cars. The Ford Granada was obtained from an automobile dealership where it had been operated on long term lease service. The four catalyst cars were leased new for this project to study the effects of mileage on sulfate emissions from catalyst cars.

C. Fuels Used

Three different fuels were used for this part of the project, a leaded gasoline for one series of tests on the 1972 Plymouth, an unleaded gasoline for all other tests of both catalyst and non catalyst cars, and 2-D diesel fuel for the diesel car.

31

TABLE 1. DESCRIPTION OF SULFATE CHARACTERIZATION CARS

Make	Model	Model Year	Engine CID	Engine Cycle	Catalyst Type	Air Pump
Plymouth	Fury	1972	360	Conventional gasoline	None	None
Honda	Civic CVCC	1974	90	Strat. Charge gasoline	None	None
Ford	Granada	1975	351W	Conventional gasoline	None	Yes
Plymouth	Gran Fury (Federal)	1975	360	Conventional gasoline	Monolith	No
Chevrolet	Impala (Federal)	1975	350	Conventional gasoline	Pelleted	No
Plymouth	Gran Fury (Calif)	1975	360	Conventional gasoline	Monolith	Yes
Chevrolet	Impala (Calif)	1975	350	Conventional gasoline	Pelle te d	Yes
Mercedes	240D	1975	147	Conventional diesel	None	No

1972 Plymouth

1975 Honda CVCC

1975 Ford Granada

1975 Mercedes 240D

FIGURE 8. NON-CATALYST SULFATE CHARACTERIZATION CARS

1975 Federal Plymouth Gran Fury 1975 Federal Chevrolet Impala

1975 California Plymouth Gran Fury 1975 California Chevrolet Impala

FIGURE 9. CATALYST EQUIPPED SULFATE CHARACTERIZATION CARS

The leaded fuel used was a base stock, a Phillips unleaded gasoline which was obtained by EPA, Research Triangle Park, in a large batch for use in several emissions projects. Sufficient tetraethyl lead in the form of "motor mix" was added to this fuel at SwRI to bring the lead concentration to 3 g/gallon. This gasoline meets the EPA specifications for leaded FTP emissions test fuel except for the 50 percent distillation point of 199°F and the Reid Vapor Pressure (RVP) of 10.2.

The unleaded gasoline was locally obtained Gulf Crest gasoline as sold at local retail stations. This gasoline meets the EPA specifications for unleaded FTP emissions test fuel except for Research Octane Number (RON) of 92.0 and the 10, 90, and 100 percent distillation points of 119°F, 352°F and 420°F respectively.

The diesel fuel used was a commercially-available Gulf 2D diesel fuel. This fuel was chosen rather than a diesel fuel blended to meet the EPA specifications for emissions test fuel. The emission test fuel is higher in sulfur and aromatics than normal diesel fuels.

From the Bureau of Mines Gasoline Survey available at the time for leaded gasoline, the national average sulfur content was estimated to be 0.04 percent. It was decided to use 0.04 percent sulfur level in all gasoline fuels. Later Bureau of Mines surveys available after the project had begun, which contained more information on unleaded gasoline, showed the average fuel sulfur level for unleaded fuel to be approximately 0.03 percent. However, it was decided not to change the fuel sulfur level in the middle of the project. From similar Bureau of Mines surveys of diesel fuel, it was decided to use 0.23 percent sulfur in the diesel fuel.

Thiophene was added to increase the sulfur levels of the gasoline stock to the required percentage. Ditertiary butyl disulfide was added to the diesel fuel to obtain the required sulfur percentage.

The list of fuels used is shown in Table 2, together with the actual weight percent sulfur in the fuel. A complete analysis of each fuel is included in Appendix F.

D. Test Sequence

After receipt of the vehicles, the engines were checked to insure that timing, idle speed and dwell were within manufacturers specification and that the engine was running properly. A visual inspection was made for loose vacuum lines, spark plug wires, etc. The car was tuned as necessary, so that the items checked were within specifications prior to testing. The test sequence for both noncatalyst and catalyst cars is shown in Table 3. Unfortunately, this test series was planned, and for the most part conducted, before the sulfate test cycle (SET-7) had been developed; thus, it is conspicuously absent from the test series.

TABLE 2. FUELS USED IN SULFATE EMISSIONS CHARACTERIZATION STUDIES

		SwRI Fuel Code	Description	Base Stock Source	Local Additives	Fuel Sulfur Percent	Cars Using Fuel
	1.	EM-208F	leaded gasoline	unleaded Phillips EPA Contract 68-02-1122	Thiopene & Motor Mix	0.051	'72 Plymouth
	2.	EM-212F	unleaded gasoline	Gulf Crest	Thiophene	0.041	Honda CVCC, '75 Ford Granada 4 catalyst cars
22	3.	EM-246F	2D diesel	Gulf 2D	Ditertiary Butyl Disulfide	0,23	Mercedes 240D

TABLE 3. TEST SEQUENCE FOR SULFATE CHARACTERIZATION CARS

- A. Test sequence for the Non Catalyst vehicles.
 - 1. Check vehicle specifications and tune as required.
 - 2. Condition vehicle on modified AMA route for 200 miles.
 - Soak vehicle for 10 hours. (Do not run "hot start LA-4" following 200 mile conditioning).
 - 4. Run 1975 FTP, 30 and 60 mph.
 - 5. Repeat "3 4" once.
- B. Test sequence for the catalyst equipped vehicles
 - Check vehicle specifications (timing, dwell, idle speed, etc.)
 Tune as required.
 - 2. Condition vehicle on modified AMA route for 500 miles.
 - 3. Soak vehicle for 10 hours. (Do not run "hot start LA-4" following the 500 mile conditioning).
 - 4. Run 1975 FTP, 30 and 60 mph.
 - 5. Repeat "2 4" above once.

Both gaseous emissions (including SO₂) and sulfates were measured during the test series. The regulated gaseous emissions were obtained using the standard CVS procedures, except that the 1975 FTP was run as two complete 23 minute cycles, rather than as a 23 minute cycle and a hot 505 second cycle. The emissions from the two complete cycles were then added, weighting the cold cycle 43 percent and the hot cycle 57 percent. If it is assumed that the emissions from the stabilized portion of the cold and hot 23 minute cycle are the same, then it can be shown mathematically that the two 23 minute cycles will give the same results as the regular three bag '75 FTP.

Sulfur dioxide and sulfates were obtained on all cars using the BCA method explained in the Test Procedure section. For the FTP, one filter was obtained for each 23 minute cycle. The sulfates from each filter were then added in the same manner as the gaseous emissions. The EPA stationary Method 8 procedure, also explained in the Test Procedure section, was used to obtain SO₂ and sulfates from the 1972 Plymouth using both leaded and unleaded fuels, and the 1975 Honda CVCC.

It should be pointed out that the cars were not all tested on the same base fuel. Six of the seven gasoline powered cars were tested using a nominal 0.04 percent sulfur fuel. The fuel for the 1972 Plymouth contained 0.05 percent sulfur.

After the test series was completed on a car, the sulfate tunnel was carefully swept out with a fine bristled brush. Any particulates deposited in the tunnel during the test were thus collected for analysis using X-ray fluroescence techniques.

The sulfate filters were weighed prior to processing by the BCA method. During the project, a filter ammoniation technique was developed at EPA Research Triangle Park, to provide a more stable form of sulfate on the filters and sharper peaks during analysis. This technique was adopted at SwRI during the project. Thus, some filters were weighed with the sulfate as $\rm H_2SO_4$ and some with the sulfate as ammonium sulfate, $\rm (NH_4)_2SO_4$.

E. Test Results

The test results from the eight cars tested under this part of the project fell into four different classifications and are covered in the following four subsections.

Gaseous and BCA Sulfate Test Results

A summary of the gaseous emissions and the sulfate emissions using the BCA procedure is given in Table 4. The emission standards in grams/kilometre for a 1975 FTP type test are also included for reference. Figures 10 to 12 show the emissions results in the form of histograms for the regulated emissions at the three test conditions. The two sulfur emissions (SO₂ and sulfate) are shown in Figures 13 to 15 for each test type. For the detailed data on individual tests see Appendix G.

Figure 10 shows that all cars met their respective $NO_{\mathbf{X}}$ standard except

TABLE 4. EXHAUST EMISSIONS SUMMARY OF CARS TESTED FOR SULFATE CHARACTERIZATION PROJECT

								Exhaust	t Emission	s	Bari	ium Chlorani:	late
		Test		Fuel %				g/km			% Fuel S	: Fuel S	Total S
Vehicle	Make	Type	Fuel	_ <u>s</u>	Catalyst	HC	co	NOx	SO ₂ -BCA	H ₂ SO ₄ -BCA	as SO ₂	as H ₂ 504	Recovery
1	1972 Plymouth	19 75 FTP	leaded	0.051	none	2.89	55.04	3.19	0.14		89.5		89.5
1	1972 Plymouth	1975 FTP	unleaded	0.051	none	2.63	51.30	3.45	0.16	2.1	99.8	0.9	100.8
2	Honda CVCC	1975 FTP	unleaded	0.041	none	0.71	2.43	0.55	0.05	0.4	81.7	0.5	82.2
3	1975 Granada	1975 FTP	unleaded	0.041	none	1.01	5.77	2.07	0.10	0.5	90.0	0.3	90.3
4	1975 49S Ply.	1975 FTP	unleaded	0.041	mono w/o air	0.32	7.27	1.41	0.09	0.3	58.8	0.1	58. 9
5	1975 4 95 Chev.	1975 FTP	unleaded	0.041	pel w/o air	0.40	9.59	1.25	0.06	0.1	45.8	0.1	45.9
6	1975 Cal. Ply.	1975 FTP	unleaded	0.041	mono w/air	0.26	3.23	0.75	0.24	6.2	120.9	2.9	123.8
7	1975 Cal. Chev.	1975 FTP	unleaded	0.041	pel w/air	0.44	7.89	1.01	0.06	8.9	44.1	4.2	48.4
8	1975 Mercedes	1975 FTP	diesel 2	0.230	none	0.09	0.47	0.10	0.34	10.1	96.0	1.9	97.92
1	1972 Plymouth	48 kph	leaded	0.051	none	1.51	28.93	0.41	0.08		91.9		91.9
1	1972 Plymouth	48 kph	unleaded	0.051	none	1.21	32.00	0.38	0.08	0.1	89.0	0.1	89.1
2	Honda CVCC	48 kph	unleaded	0.041	none	0.07	1.08	0.37	0.04	0.2	113.0	0.5	113.5
3	1975 Granada	48 kph	unleaded	0.041	none	0.22	1.15	0.49	0.06	0.1	82.6	0.1	82.7
4	1975 498 Ply.	48 kph	unleaded	0.041	mono w/o air	0.03	0.04	0.83	0.01	2.4	17.3	2.6	19.8
≥ 5	1975 49S Chev.	48 kph	unleaded	0.041	pel w/o air	0.03	0.06	0.25	0.01	8.3	13.8	7.3	21.1
ບັກ 6	1975 Cal. Ply.	48 kph	unleaded	0.041	mono w/air	0.03	0.06	0.62	0.02	4.8	30.7	4.8	35.5
7	1975 Cal. Chev.	48 kph	unleaded	0.041	pel w/air	0.07	0.04	0.19	0.01	32.2	13.5	25.6	39.1
8	1975 Mercedes	48 kph	diesel 2	0.230	none	0.02	0.15	0.53	0.15	3.4	79.0	1.2	80.2
1	1972 Plymouth	96 kph	leaded	0.051	none	1.08	6.75	3.63	0.08		103.7		103.7
1	1972 Plymouth	9 6 kph	unleaded	0.051	none	0.98	7.40	3.66	0.08	1.8	88.0	1.4	89.4
2	Honda CVCC	96 kph	unleaded	0.041	none	0.02	0.56	1.40	0.04	0.9	105.4	1.3	106.7
3	1975 Granada	96 kph	unleaded	0.041	none	0.17	1.79	1.62	0.06	0.2	98.8	0.2	99.0
4	1975 4 95 Ply.	96 kph	unleaded	0.041	mono w/o air	0.02	1.62	0.57	0.12	0.3	174.2	0.3	174.5
5	1975 49S Chev.	96 kph	unleaded	0.041	pel w/o air	0.01	0.85	0.75	0.15	0.2	157.4	2.3	158.8
6	1975 Cal. Ply.	96 kph	unleaded	0.041	mono w/air	0.03	0.05	0.38	0.03	43.7	41.1	42.0	83.1
7	1975 Cal. Chev.	96 kph	unleaded	0.041	mono w/air	0.02	0.02	0.62	0.02	17.9	28.7	16.0	39.5
8	1975 Mercedes	96 kph	diesel 2	0.230	none	0.01	0.36	1.08	0.37	13.3	124.9	2.9	127.8

Note: Results from Vehicles 4 to 7 are for 2000 mile tests.

FTP Standards in terms of g/km and 1975 - cold/hot procedure

Year	HC	co	NO.
1972 .	1.85	17.25	×
1975 Fed.	0.9	9.3	1.9
1975 Cal.	0.6	5.6	1.2

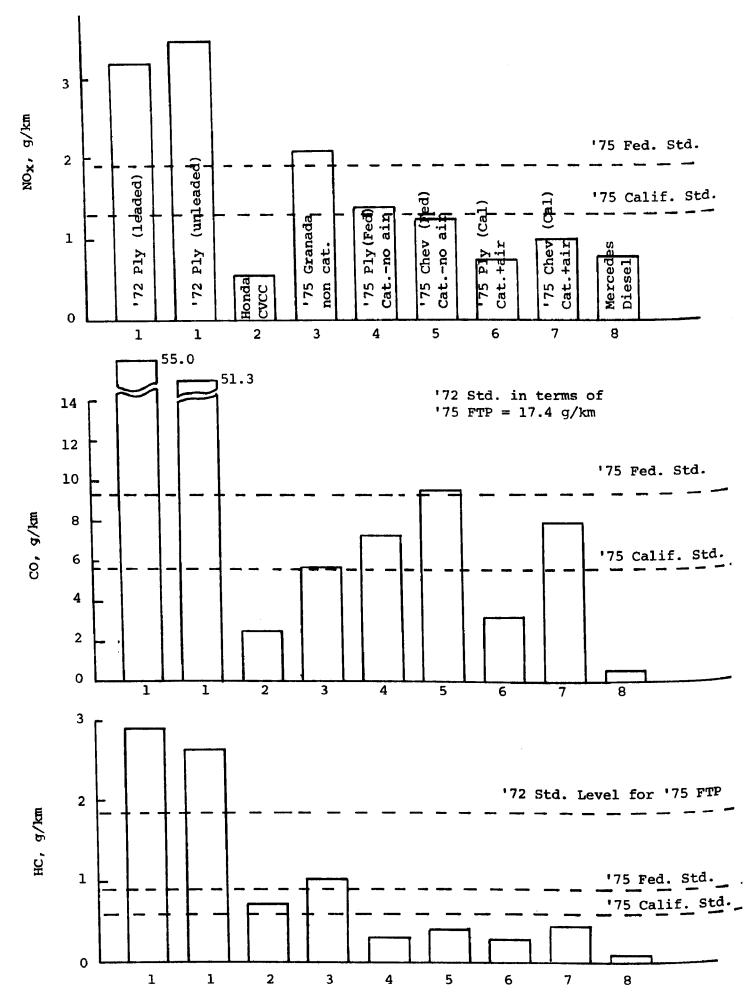


FIGURE 10. REGULATED GASEOUS EMISSIONS FROM 1975 FTP TESTS OF EIGHT CARS

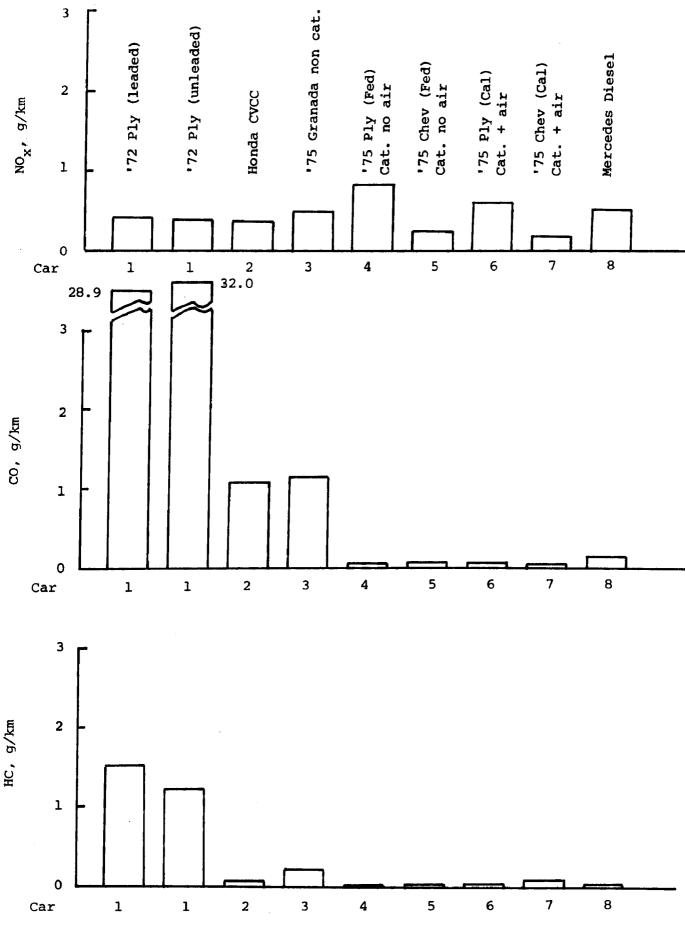
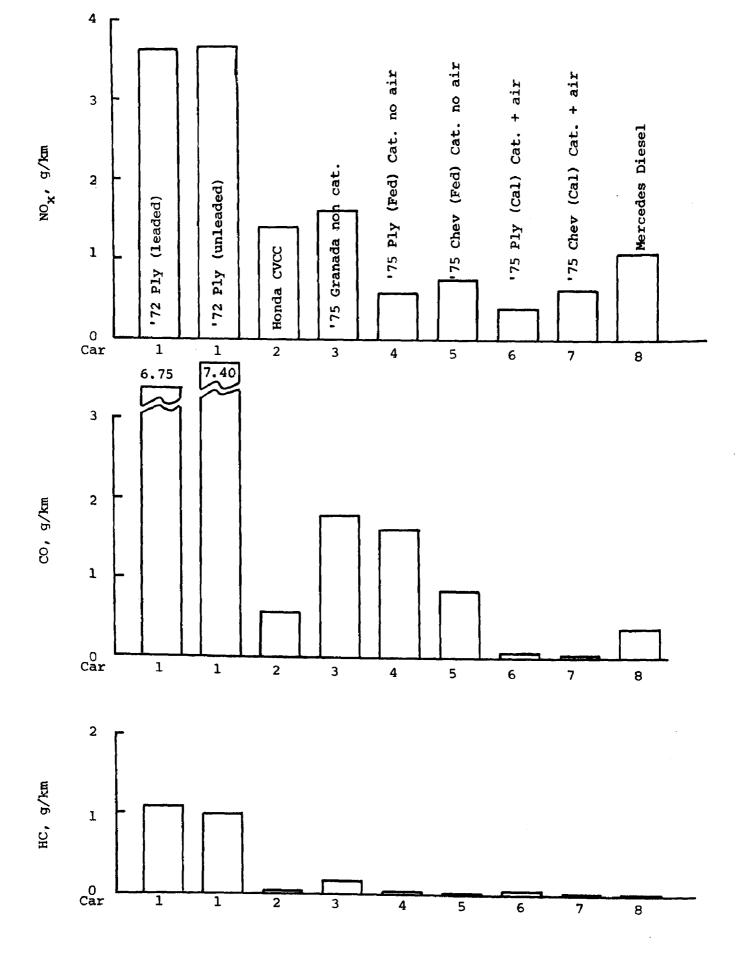



FIGURE 11. GASEOUS EMISSION IN $_{\mbox{\scriptsize g}}/_{\mbox{\scriptsize km}}$ FROM TESTS AT 48 km/hr ON EIGHT CARS

FTGURE 12. GASEOUS EMISSIONS IN g/km FROM TESTS AT 96 km/hr ON EIGHT CARS

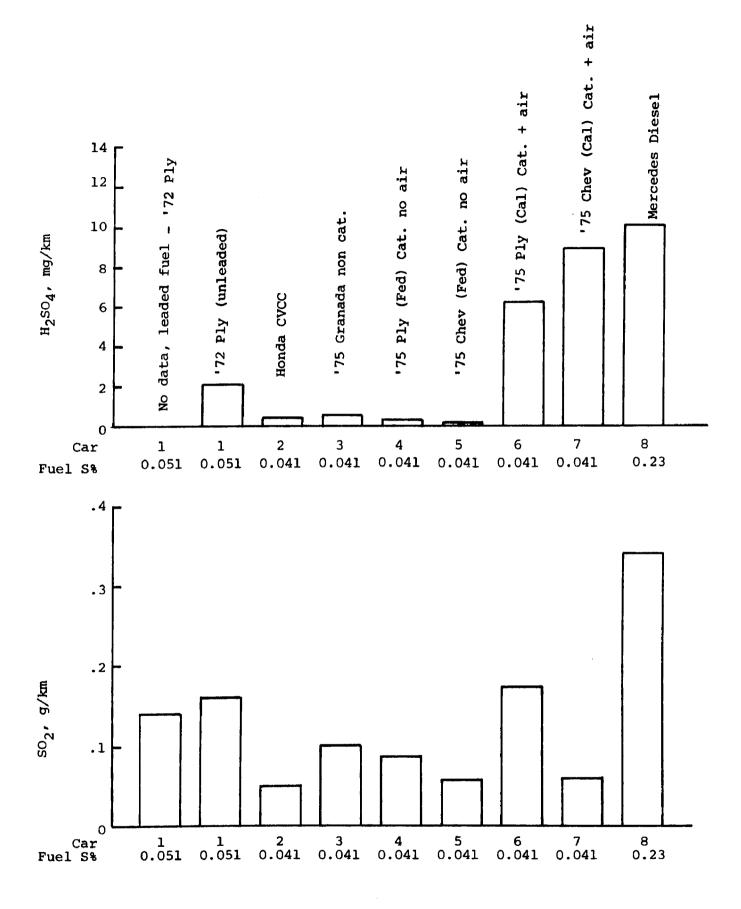


FIGURE 13. SULFURIC ACID AND SULFUR DIOXIDE EMISSIONS FROM 1975 FTP TESTS ON EIGHT CARS

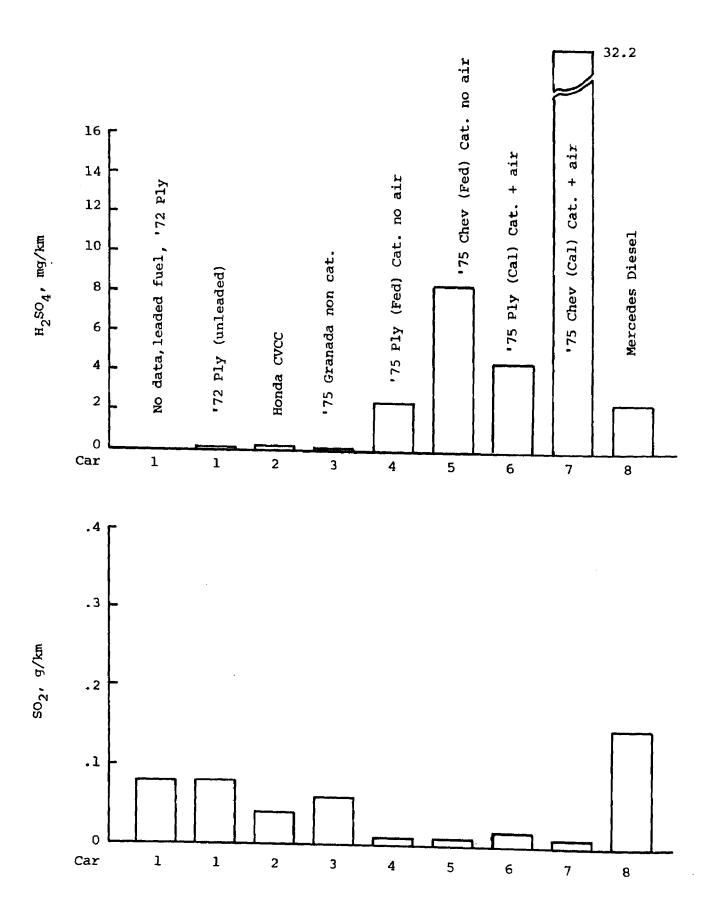


FIGURE 14. SULFURIC ACID AND SULFUR DIOXIDE EMISSIONS FROM TESTS AT 48 km/hr ON EIGHT CARS

FIGURE 15. SULFURIC ACID AND SULFUR DIOXIDE EMISSIONS FROM TESTS AT 96 km/hr ON EIGHT CARS

5

6

8

3

2

1

Car

1

for the 1975 Federal Ford Granada. The 1972 Plymouth, the 1975 Federal Chevrolet and the 1975 California Chevrolet did not meet their respective CO standards. The 1972 Plymouth and the 1975 Federal Ford Granada did not meet their respective HC standards. In general, however, the cars were considered close enough to their standards that they could be considered typical of their respective model.

The HC and CO emissions at 48 and 96 kph (30 and 60 mph) constant speed conditions are significantly lower than the FTP emissions for all cars. It is particularly interesting to compare the CO emissions for the 1972 Plymouth and the four catalyst cars (cars 4 through 7) at the 48 kph constant speed condition. The catalyst car CO emissions are approximately 2 percent of the 1972 car CO emissions at this condition. The NO_X emissions at 48 kph are less than the FTP NO_X emissions. The 96 kph NO_X emissions are approximately the same as the FTP emissions for all cars, except for the Honda CVCC and the 1975 Federal Plymouth.

The sulfate emissions, shown in Figures 13 to 15, are somewhat more difficult to compare since the percent sulfur in the fuel is not the same for all cars. Since it is not certain that the sulfate emissions are directly proportional to the amount of sulfur in the fuel for a given car, no attempt will be made to adjust the emissions in mg/km to a single fuel sulfur level.

The sulfate emissions from the gasoline fueled, non-catalyst cars are in general agreement with those seen by other researchers. The 30 and 60 mph sulfate levels are in good agreement with the Ford and Exxon data summarized in Reference 7. The 1975 FTP sulfate levels of the 1972 Plymouth are approximately one and a half times the levls obtained by EPA-RTP on similar non-catalyst cars. (7) It should also be mentioned that the sulfate levels from the 1972 Plymouth are approximately 10 times the sulfate emissions seen from 1975 FTP tests of a 1972 Chevrolet engine tested on a special engine dynamometer by the Department of Emissions Research at SwRI. (8)

A careful comparison of the test data from these two different "vehicles" indicates that this difference is real. The 1972 Plymouth had been operated for approximately 30,000 miles on leaded fuel prior to being tested with unleaded fuel in this program. It is possible that despite efforts to ensure that the lead "motor mix" components were purged from the exhaust system prior to testing for sulfate, some artifacts of leaded fuel operation remained in the exhaust system contaminating the sulfate samples. See Appendix B for a discussion of the interferences to the BCA system caused by lead, bromine and chlorine compounds.

It is likely, considering that the car was operated for 500 miles to purge the motor mix compounds, that the FTP sulfate emission level from this car is real. The large percentage variation in noncatalyst FTP sulfate emis sions that would result from comparing this car with others is largely due to the small absolute magnitude of the noncatalyst FTP sulfate emissions.

The 48 kph steady state sulfate emissions in g/km are the lowest of the three test conditions. This is not surprising since sulfate emissions for a given noncatalyst vehicle tend to be a function of the amount of fuel used and the 48 kph condition uses the least fuel. It is interesting to note

that the Honda has higher sulfate emissions at the 48 kph and 96 kph conditions than the Granada, despite the fact the Honda has considerably lower fuel consumption.

The sulfate emissions from the catalyst cars were also in general agreement with those found by other researchers. (7) As can be seen in Figures 13 to 15, catalyst cars equipped with air injection and calibrated to meet the 1975 California standard of 0.6 g/km HC, 5.6 g/km CO and 1.3 g/km NO $_{\rm X}$, in general, have higher sulfate emissions than catalyst cars without air injection and calibrated to meet the 1975 Federal Standard of 0.9 g/km HC, 9.3 g/km CO and 1.9 g/km NO $_{\rm X}$.

For the catalyst cars without air injection (cars 4 and 5), the 48 kph cruise condition produced the largest amount of sulfates in terms of mg/km. The catalyst cars equipped with air injection systems (cars 6 and 7) do not show the same results. Car 6 produces the most mg/km of sulfates at 96 kph and the least mg/km of sulfates at 48 kph. Car 7 produces the most sulfate at 48 kph and the least during the FTP test. The diesel car sulfate emissions in mg/km are in good agreement with those seen on single car tests at $\mathrm{GM}^{(9)}$ and $\mathrm{EPA}^{(10)}$ considering the size of the car tested in each case. The GM and EPA tests were on smaller cars. The GM test on a "small diesel-powered car" gave 9.94 g/km by a 1972 FTP using No. 2 diesel fuel with 0.39 percent sulfur. The EPA baseline test on a prototype diesel-powered VW Rabbit gave 5.3 g/km on a 1975 FTP using No. 2 diesel fuel with 0.27 percent sulfur. The sulfate emissions from the diesel car are probably a function of the fuel consumed since the lowest sulfate emissions are at 48 kph and the highest at 96 kph. While the diesel car has the highest sulfate emissions of any of the noncatalyst cars, it should be kept in mind that the test diesel fuel contained approximately six times the sulfur contained in the test gasoline.

Since the cars were run on fuels with three different sulfur levels, it is instructive to compare the cars in terms of percentage of fuel sulfur converted to sulfuric acid. This is done in Figures 16 to 18. The noncatalyst gasoline powered cars had total sulfur recoveries between 82 percent and 114 percent for the three different test types. This range should probably be considered the range of values obtainable for complete sulfur recovery using the SO₂-BCA method. There is apparently no temporary storage and release of sulfur compounds associated with the noncatalyst cars. Less than 1.5 percent of the fuel sulfur was converted to exhaust sulfuric acid for any of the three test conditions run on the three non catalyst cars (cars 1 to 3).

The catalyst cars without air injection had total recoveries of approximately 45 to 59 percent for the FTP and approximately 19 to 21 percent for the 48 kph test. These total sulfur recoveries indicate that there is a net sulfur storage in the catalyst during these tests. The total sulfur recoveries for these two cars from the 96 kph tests were approximately 175 and 159 percent, indicating a net sulfur release from the catalyst for this test. The highest percentage of fuel sulfur converted to exhaust sulfuric acid for the test series run on the catalyst cars without air injection was 7.3 percent. This occurred on the 48 kph test of car number 5. It is interesting that on both these cars the highest fuel sulfur conversion to sulfuric acid occurred at 48 kph; the test condition with the smallest total sulfur recovery.

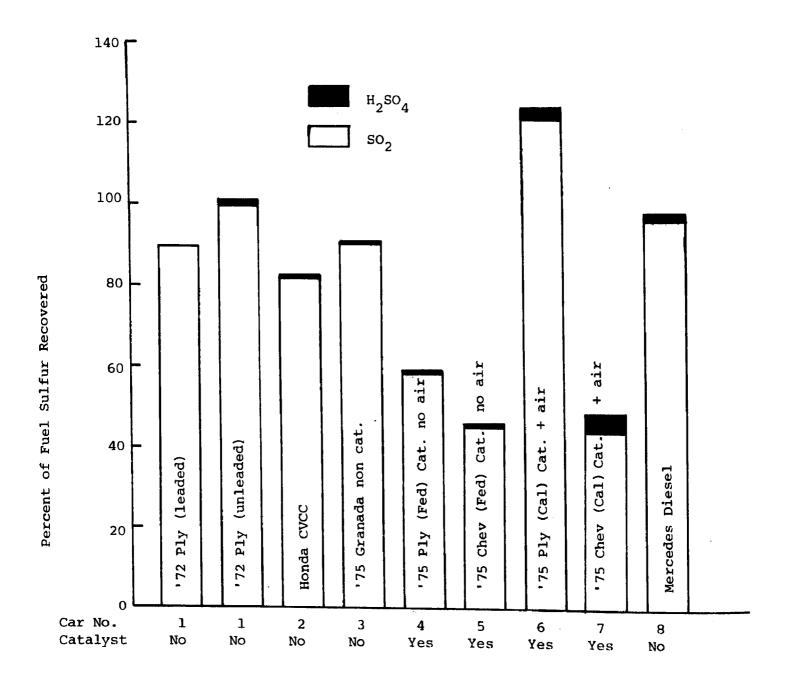


FIGURE 16. PERCENT OF FUEL SULFUR RECOVERED IN VEHICLE EXHAUST AS SULFURIC ACID AND SULFUR DIOXIDE FOR FTP TESTS ON EXGHT CARS

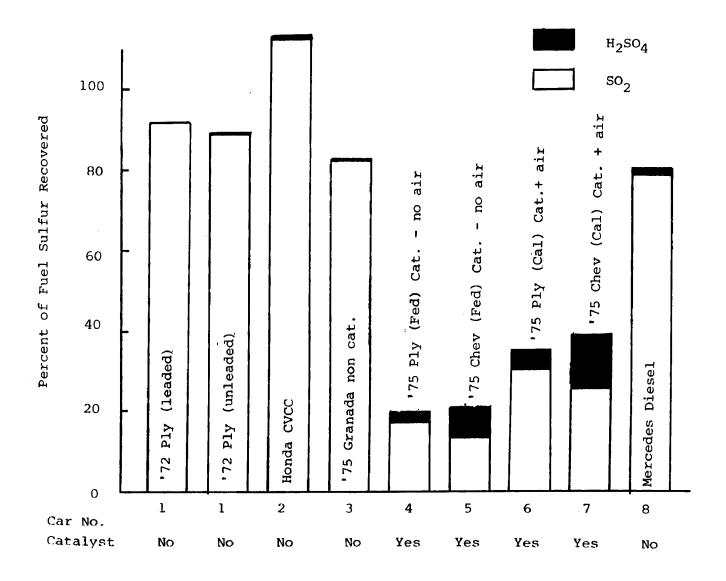


FIGURE 17. PERCENT OF FUEL SULFUR RECOVERED IN VEHICLE EXHAUST
AS SULFURIC ACID AND SULFUR DIOXIDE FOR 48 kph STEADY STATE TESTS OF EIGHT CARS

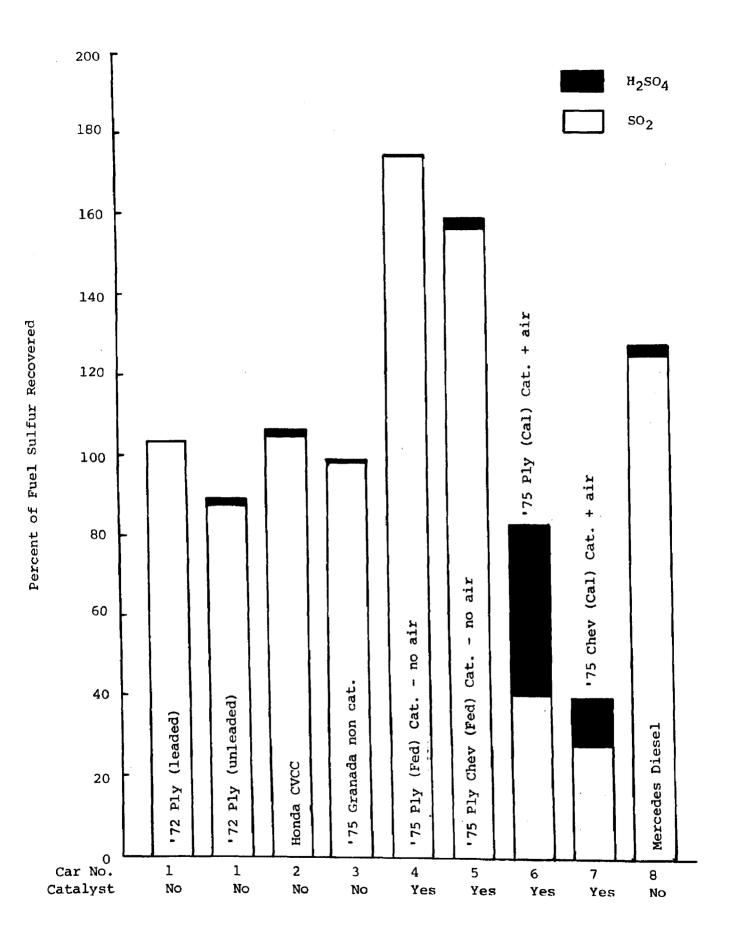


FIGURE 18. PERCENT OF FUEL SULFUR RECOVERED IN VEHICLE EXHAUST AS SULFURIC ACID AND SULFUR DIOXIDE FOR 96 kph STEADY STATE TESTS OF EIGHT CARS

The results from catalyst cars with air injection (cars 6 and 7) are again, harder to interpret. Examining the total sulfur recoveries from the FTP it appears that car 6 had a net release of sulfur and car 7 a net storage of sulfur during this test. Both cars definitely stored sulfur during the 48 kph run as evidenced by their total recoveries of approximately 36 percent for car 5 and 39 percent for car 7. Unlike the catalyst cars without air injection, cars with air injection (6 and 7), did not release sulfur during the 96 kph test. Car 6 may have had some storage, but the sulfur recovery data indicates essentially complete recovery of the fuel sulfur. Car 7 definitely stored sulfur during the 96 kph test.

For car 6, more of the fuel sulfur was converted to sulfuric acid (42 percent) at 96 kph than at any other test condition. Car 7, like the two non-air injected cars converted the largest amount of fuel sulfur to sulfuric acid (20 percent) during the 48 kph test.

The diesel car had total recoveries ranging from approximately 80 to 128 percent for the three tests. It is felt that this range of recoveries represents complete fuel sulfur recovery for each test, with no storage or release of sulfur. The maximum percent of fuel sulfur converted to sulfuric acid for any of the diesel car tests was 2.9 percent at the 96 kph condition. The conversion percentage is similar to the non-catalyst gasoline cars. This indicates that the relatively higher diesel mg/km sulfate emissions are caused by the diesel fuel sulfur levels being higher than the gasoline levels (0.23 versus 0.04).

Results of Method 8 Tests

As explained in Section II of this report, at the beginning of the project, it was felt by some researchers that EPA stationary source Method 8 test might be an acceptable procedure for determining automobile exhaust sulfates and SO₂. To determine the Method's applicability, steady state tests at 48 and 96 kph were run on the 1972 Plymouth, with leaded and unleaded fuel, and on the 1975 Honda CVCC. The results of these tests are presented in Table 5. The top part of the table contains the results of the tests with leaded and unleaded fuel on the 1972 Plymouth. The lower part of the table contains the test results from the 1975 Honda CVCC.

The SO₂ levels from the leaded fuel 48 and 96 kph tests on the 1972 Plymouth using Method 8 were 0.07 and 0.08 g/km, respectively. No sulfate was detected from leaded fuel tests of this car using Method 8, even after sampling for 90 minutes at 48 kph and 60 minutes at 96 pkh. This does not necessarily mean that no sulfuric acid was formed in the exhaust. it merely indicates that it was not detected by the sampling method. The problem was one of obtaining a definite end-point for the sulfate analysis procedure of Method 8. In the analysis of the leaded fuel tests, the solution from the first (sulfate) bubbler did not turn a bright yellow when the thorin indicator was added as it did in the unleaded fuel tests and in the SO₂ bubblers from both unleaded and leaded fuel tests. The color produced was a dirty orange-yellow that did not change regardless of the amount of barium perchlorate added during the titration. Thus, it is uncertain what the leaded fuel test results demonstrate. It may be that there is no sulfate present,

TABLE 5. SUMMARY OF EPA METHOD 8 TEST RESULTS

Test Date	Test Type	Test Duration min	SO ₂ ,	H ₂ SO ₄ , Mg/km	Percent Fuel S as SO ₂	Percent Fuel S as H ₂ SO ₄	Percent Fuel S Recovered
		1972 Ply Lead	mouth Wi ed Fuel,	th 360 CID (0.051% Su	Engine ilfur)	-	
10/22/74	48 kph	90	0.074		80.2	-	80.2
11/7/74	48 kph	90	0.062		78.5	_	78.5
11/18/74	48 kph	90	0.080		88.1	_	1.88
2/17/75	48 kph	90	0.050		52.9	_	52.9
2/18/75	$48~\mathrm{kph}$	90	0.067	ted	73.5	_	73.5
Average	48 kph	90	0.067	detected	74.5	-	74.5
11/8/74	96 kph	70	0.070		69.6		(0. (
11/8/74	96 kph	60	0.080	None	84.1	-	69.6
11/18/74	96 kph	60	0.082	ž	78.0	-	84.1
11/21/74	96 kph	60	0.076			-	78.0
Average	96 kph		0.077		$\frac{71.3}{75.8}$	-	$\frac{71.0}{75.8}$
		Unlea	ded Fuel	(0.051% St	ılfur)		
1/27/75	48 kph	90	0.045	= ==			
1/28/75	48 kph.	90 90	0.065	5.52	69.9	3.9	73.8
Average	48 kph	90 90	0.065	$\frac{4.28}{4.25}$	74.8	$\frac{3.2}{3.6}$	<u>78.0</u>
		90	0.065	4.97	72.2	3.6	75.8
1/29/75	96 kph	60	0.074	3.73	85.1	2 4	0 = 0
1/29/75	96 kph	60	0.071	3.31		2.8	87.9
Average	96 kph	60	0.073	3.52	$\frac{75.1}{80.0}$	$\frac{2.3}{2.6}$	$\frac{77.4}{82.6}$
	<u>:</u>	1975 Honda C	livic With	n a 1500cc	CVCC F-~	:a	
		Unlea	ded Fuel	, (0.041% S	ulfur)	ine	
2/10/75	48 kph	90	0 027	1 / -			
2/19/75	48 kph	90	0.027	1.67	81.5	3.3	84.8
Average	48 kph	90	$\frac{0.027}{0.027}$	$\frac{1.55}{1.61}$	$\frac{84.3}{83.0}$	$\frac{3.2}{3.2}$	$\frac{87.5}{86.2}$
2/6/75	96 kph	60	0.007			- • -	JU, =
2/10/75	96 kph	60 60	0.036	4.99	83.7	8.5	92.2
Average	96 kph	60	$\frac{0.036}{0.036}$	$\frac{3.15}{4.07}$	$\frac{90.4}{87.0}$	$\frac{5.2}{6.8}$	95.6 93.9
							-

or it may be that the lead in the exhaust reacts with the thorin indicator giving the color observed.

Thus for the leaded fuel tests, only the fuel sulfur converted to SO_2 was measured in the exhaust. The percentage of fuel sulfur recovered in this manner was approximately 75 percent for both the 48 and 96 kph tests.

For the tests of the 1972 Plymouth using unleaded fuel, the Method 8 SO_2 levels for 48 and 96 kph averaged 0.06 g/km and 0.07 g/km, respectively. Note that the SO_2 emissions from the unleaded fuel show good agreement with the SO_2 emissions from the leaded fuel tests.

The unleaded fuel sulfate emissions using the Method 8 procedure averaged 5.0~mg/km of H_2SO_4 at 30 mph and 3.5~mg/km of H_2SO_4 at 60 mph. The Method 8 sulfate results are questionable since no definite pink end-point occurred for the sulfate sample in the titration procedure. During the titration procedure, the sulfate sample color turns from a bright yellow to a dirty-orange-yellow very gradually with no sharp end-point. The Method 8 SO_2 samples do, however, have a reasonably good pink end-point.

The total sulfur recovery for the unleaded fuel tests on the 1972 Plymouth was approximately 76 percent for the 48 kph tests and 83 percent for the 96 kph tests. Note that these recoveries are in close agreement with the leaded fuel tests. The sulfate emissions expressed as percent of fuel sulfur averaged 3.6 for the 48 kph tests and 2.6 for the 96 kph tests.

The SO_2 emissions from tests on the Honda CVCC were 0.03 g/km for the 48 kph tests and 0.04 for the 96 kph tests, as shown in the lower part of Table 5. These SO_2 emissions are lower than the Plymouth SO_2 emissions as would be expected since fuel used on the Honda tests has a lower sulfur level and the Honda used less fuel.

The total sulfur recovery for the Honda was somewhat better than the total recovery for the Plymouth. The Honda had a total sulfur recovery of 86 percent at 48 kph and 94 percent at 96 kph. The percent of fuel sulfur recovered as sulfuric acid was 3.2 percent at 48 kph and 6.8 percent at 96 kph. As was the case with the sulfate samples from the Plymouth, there was no distinct end-point in the titration of the sulfate samples from the Honda CVCC.

The Method 8 test results and the BCA test results in mass units per kilometre are compared in Figure 19. As can be seen in the figure, the $\rm SO_2$ emissions by Method 8 are always lower than the $\rm SO_2$ emissions by BCA. However, they are generally within 0.015 g/km of the BCA $\rm SO_2$ emissions. The Method 8 $\rm SO_2$ emissions at 48 kph averaged about 22 percent less than the BCA- $\rm SO_2$ emissions. At 96 kph, the Method 8 $\rm SO_2$ emissions averaged about 8 less than the BCA- $\rm SO_2$ emissions.

Recall that for leaded fuel tests of the Plymouth, sulfate was measured using Method 8 only. The barium chloranilate procedure for analyzing sulfate on filters was not useable with leaded fuel because of the interferences from the scavengers used with the lead. Therefore, there is no comparison data available for the leaded fuel tests on the Plymouth. For the remainder of the tests, Method 8 sulfate results in mg/km were from 2 to 50

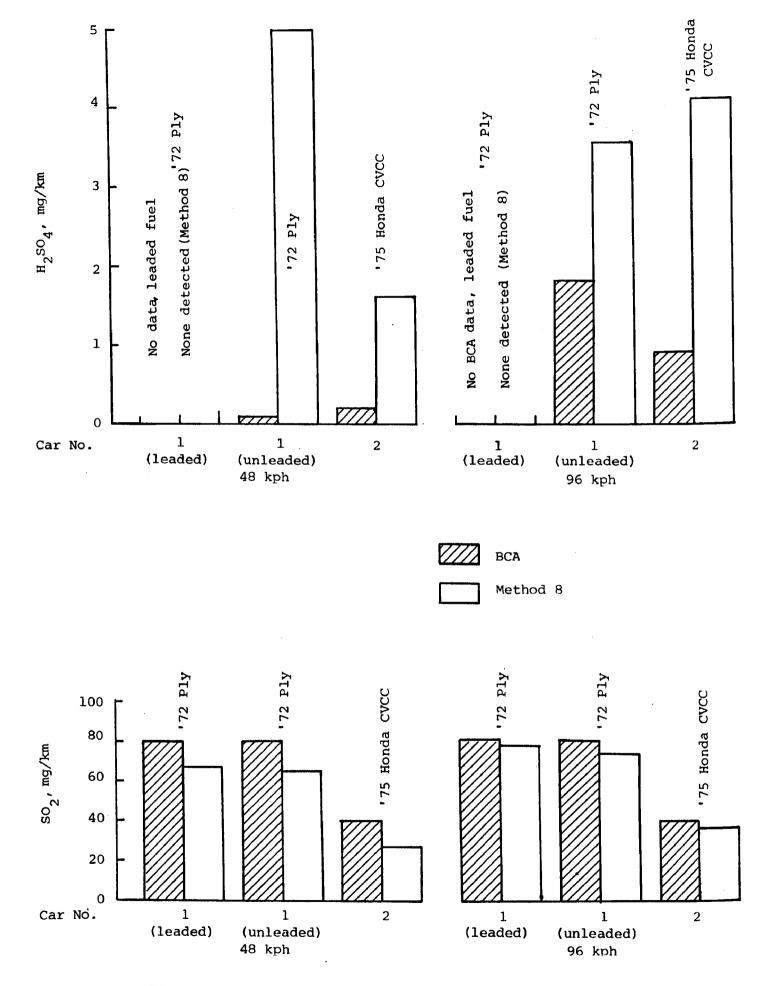


FIGURE 19. COMPARISON OF METHOD 8 AND BCA SO, AND SULFATE RESULTS IN mg/km FOR 48 AND 96 kph STEADY STATE TESTS FOR TWO NON CATALYST CARS

times higher than the BCA sulfate results.

Figure 20 shows the comparison of Method 8 and BCA results in terms of percent of fuel sulfur recovered as SO₂ and sulfuric acid. At 48 kph, the total recovery by the BCA procedure averaged 98 percent, while the total recovery by Method 8 averaged 79 percent. At 96 kph, the total recovery by the BCA procedure averaged 100 percent, while the total recovery by Method 8 averaged 84 percent. In all cases the total recovery by BCA was greater than the total recovery by Method 8. The BCA values were closer to the desired 100 percent recovery. The percentage of fuel sulfur recovered as sulfuric acid was less for the BCA procedure for all tests.

In summary, the Method 8 procedure yielded lower SO₂ values, higher sulfuric acid values, and recovered less of the total fuel sulfur than the BCA procedure. It is felt that the Method 8 procedure as outlined in the Federal Register for stationary sources is inferior to the BCA procedure because of the problem of obtaining a definite titration end-point for the sulfate sample. Apparently, Method 8 can yield accurate results at higher sulfate levels that are more free from interferences such as may be the case for stack samples, but is not as satisfactory for sulfate in automobile exhaust.

Of course, there are improvements that could be made to Method 8, such as passing the sample through a cation exchange column prior to titration and the use of automatic titration equipment. However, at the conclusion of these three sets of tests, it was felt that there was no need to develop the Method 8 procedure further. The BCA procedure for analyzing sulfate filters was entirely satisfactory and there was no pressing need for an alternate method. Therefore, the use of Method 8 was discontinued.

Filter Particulate Weights

As mentioned in the introduction, sulfuric acid emissions from catalyst cars were originally confirmed during studies of particulate emissions from gasoline-powered automobiles. There was some interest as to how much of the total particulate mass collected on a filter was sulfuric acid. It should be mentioned that although the 21 cm tunnel is adequate for sulfate, no claim was made that the 21 cm diameter sulfate sampling tunnel is an adequate tunnel for total particulate sampling. No checks were run to determine its ability to collect particulate matter over the range that might be seen in automobile exhaust. Thus, no claim is made that a representative sample of all exhaust particulates were collected on the sulfate filter. Nevertheless, each sulfate filter was weighed on a microgram balance before and after use.

The three noncatalyst gasoline-powered cars were tested prior to the initiation of the filter ammoniation procedure, thus the sulfate on the filter is in the form of sulfuric acid when weighed. Since sulfuric acid is hydroscopic, there is also some amount of water associated with the sulfuric acid on the filter. The amount of water is dependent in part, on the amount of sulfuric acid and the humidity of the environment to which it has been exposed. Thus, it is not unreasonable to expect a varying amount of water from filter to filter. This makes interpretation of the net filter

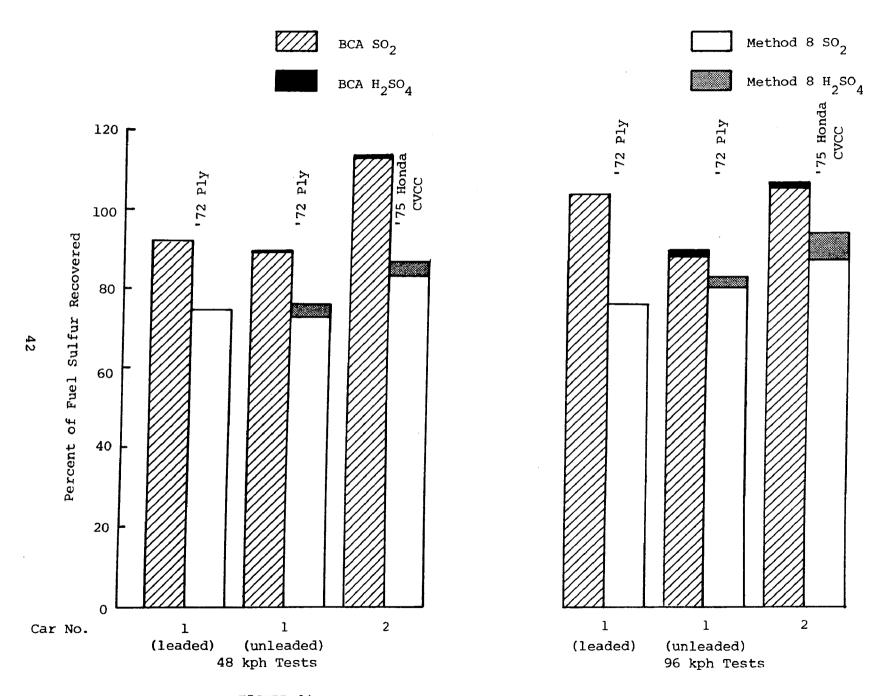


FIGURE 20. COMPARISON OF METHOD 8 AND BCA RESULTS AS PERCENT OF FUEL SULFUR RECOVERED FOR TWO NON CATALYST CARS

weight difficult. This variability is not due to conditions under which the filter was weighed since the temperature and humidity were rigidly maintained.

Table 6 contains the net filter weights obtained from the microgram balance together with the sulfate, as sulfuric acid, per filter from the BCA analysis. Figure 21 is a plot of these data. As can be seen from the figure there is no simple relationship between the net balance weight and the BCA sulfuric acid weight.

Starting with the four catalyst cars, the sulfate laden filters were exposed to ammonia gas prior to the after test weighing. This exposure converted the sulfuric acid to ammonium sulfate. This compound has the advantage of not being hydroscopic, thus eliminating the problem of absorbed water on the filter.

The sulfate characterization tests were only a small part of the sulfate testing done on the four catalyst cars. Since the report section of distance accumulation includes a discussion of the relationships between filter weight and BCA sulfate weight for all tests on these cars, those results will not be covered here.

Elemental Analysis of Tunnel Sweepings

There has been some concern that catalysts may emit, as particulate matter from the exhaust, amounts of the noble metals used in the catalyst. To investigate this problem as well as to try and identify, on an elemental basis, any difference in exhaust particulate emissions from several car types the sulfate tunnel particulate residue was analyzed by X-ray fluorescence techniques.

After the test series was completed on each gasoline-powered car, the sulfate sampling tunnel was swept out with a fine bristle brush. The tunnel residue from the diesel car tests was not collected. The special problem of diesel engine particulate is currently being researched at SwRI(11) in a far more rigorous and complete manner than could be done with the amount of effort allotted to the examination of tunnel residue.

Elemental analysis of the tunnel residue for each car, as percent of sample by weight, is shown in Table 7. The analysis was requested for platinum (Pt), palladium (Pd), aluminum (Al), nickel (Ni), iron (Fe), sulfur (S), lead (Pb), zinc (Zn), copper (Cu), and tin (Sn). Of these 10 elements, no platinum, palladium, nickel, copper or tin was found in any of the samples. Chromium, silicon, and manganese were found in some of the samples and are included in Table 7. The detection limits for the 10 elements requested are also shown in Table 7.

Examination of Table 7 indicates that the largest part of each sample was iron. From a visual inspection of the samples, the iron is apparently in the form of rust, probably from the exhaust system. The other elements were found in much smaller quantities. It is thought that the silicon may be from traces of the glass SO₂ probe which was broken rather frequently during test preparations. The genesis of the other elements is open to speculation.

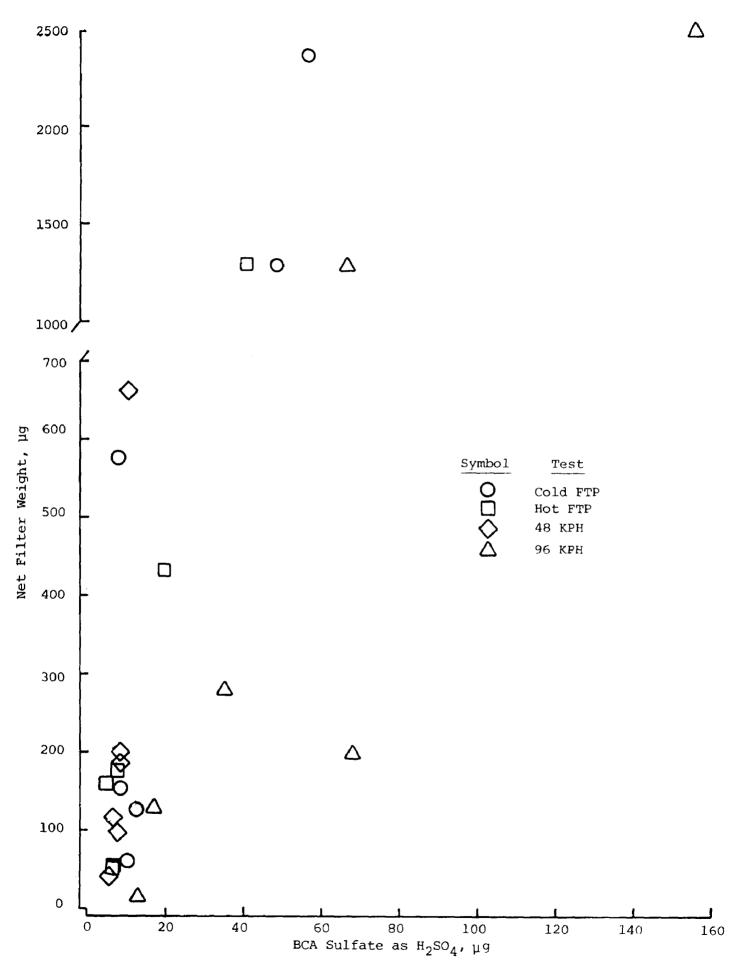


FIGURE 21. COMPARISON OF FILTER WEIGHT AND SULFATE WEIGHT PER FILTER BY BCA ANALYSIS FOR THREE CARS

TABLE 6. COMPARISON OF FILTER WEIGHTS AND SULFATE WEIGHTS
PER FILTER BY BCA ANALYSIS FOR THREE CARS

Date	Test	Filter No.	Balance net µg/filter	BCA SO ₄ = μg/filter	BCA as H ₂ SO ₄
		197	73 PLYMOUTH, UNL	EADED FUEL	
1/28/75	FTP Cold	47-FH-122	2363	55 .63	56.80
1/28/75	FTP Hot	47-FH-123	1297	39.58	40.41
1/27/75	48 kph	47-FH-121	663	10.19	10.40
1/29/75	96 kph	47-FH-128	2763	151.78	154.97
1/29/75	FTP Cold	47-FH-126	1370	47.26	48.25
1/29/75	FTP Hot	47-FH-127	432	19.21	19.61
1/28/75	48 kph	47-FH-125	118	6.66	6.80
1/29/75	96 k ph	47-FH-129	1285	65.10	66.47
			1975 HONDA CIVIO	c cvcc	
2/11/75	FTP Cold	47-FH-146	62	9.95	10.16
2/11/75	FTP Hot	47-FH-147	178	7.65	7.81
2/11/75	48 kph	47-FH-142	189	8.58	8.76
2/10/75	96 kph	47-FH-143	281	34.57	35.30
2/12/75	FTP Cold	47-FH-148	155	8.40	8.58
2/12/75	FTP Hot	47-FH-149	161	4.44	4.53
2/19/75	48 kph	47-FH-152	205	8.38	8.55
3/12/75	96 kph	47-FH-210	197	67.02	68.43
			1975 FORD GRAM	NADA	
3/10/75	FTP Cold	47-FH-189	578	7.81	7.97
3/10/75	FTP Hot	47-FH-190	53	6.37	6.50
3/06/75	48 kph	47-FH-177	100	7.38	7.53
3/06/75	96 kph	47-FH-178	128	16.90	17.25
3/07/75	FTP Cold	47-FH-179	127	11.92	12.17
3/07/75	FTP Hot	47-FH-180	55	6.37	6.50
3/07/75	48 kph	47-FH-181	41	5.66	5.78
3/07/75	96 kph	47-FH-182	17	12.83	13.10

4

TABLE 7. RESULTS OF X-RAY FLUORESCENT ANALYSIS OF SULFATE SAMPLING TUNNEL PARTICULATE RESIDUE FOR SULFATE CHARACTERIZATION CARS

	Total Weight Collected	Weight X-rayed			Ele	ements,	Percent	by Wei	ght	
Car	grams	mg	Al	Fe	s	PB	An	Cr	Si	Mn
72 Plymouth										
(Leaded fuel) 72 Plymouth	2.316	2.46	0.3	13.7	0.7	2.5			0.2	
(Unleaded)	1.629	1.75	0.2	18.3	0.6			0.3	0.3	
75 Honda CVCC	1.285	2.47		30.2	0.1			0.2	0.1	0.3
75 Ford Granada	0.113	1.43		21.0	0.9	2.6	0.4		0.9	
EM-1 2000 mi	0.053	1.36	0.4	29.3	0.2			0.2	0.4	0.2
EM-2 2000 mi	0.163	2.16	0.2	24.2	0.3			0.1	0.1	0.4
EM-3 2000 mi	0.051	1.31	0.4	28.1	0.5				0.9	
EM-4 2000 mi	0.019	1.46	0.2	21.8	0.2				0.1	
Detection limits, µg Detection limit, wt % of 1000 µg			1.0	1.0	1.0	12.5	1.0			
sample			0.1	0.1	0.1	1.25				

Note: Detection limit for Pt, Ni, Cu, Sn and Pd are all 1.0 µg or 0.1% of 1000 µg sample.

IV. EFFECTS OF DISTANCE ACCUMULATION

This section covers the sulfate emission testing of four catalyst cars at regular intervals during an accumulation of approximately 80,500 kilometres on each vehicle.

A. Purpose

The purpose of this portion of the project was to measure HC, CO, NO_X , SO_2 and sulfates on four catalyst equipped cars to determine the behavior of sulfate emissions with distance accumulation. Where possible, the conditions of storage and release of sulfur compounds from the catalyst were to be identified.

B. Cars Tested

To meet the objectives of this part of the project, four popular full size, 1975 passenger cars were selected for testing. Two of the cars were Chevrolet Impalas equipped with pelleted catalysts. The other two cars were Plymouth Gran Furys equipped with monolith catalysts. One of each of the models was manufactured to meet 1975 California emission standards and was equipped with an air injection system upstream of the catalyst. Table 8 gives a complete description of the four cars. Pictures of the four cars are shown in Figure 9 of Section III.

C. Fuel Used

Initially the cars were scheduled to complete the distance accumulation program at 24,100 km. One 15,000 litre batch of fuel was felt to be sufficient for the testing scheduled. As the project progressed, additional tests were added to the test sequence consuming the fuel at a faster rate than planned. Just prior to the 16,000 km test on all cars, a new 15,000 litre batch of fuel was obtained from the same supplier. After the 24,100 km tests, the distance accumulation was extended to 80,500 km. Because available tankage had already been committed to other projects, it was not possible to secure one batch of fuel for the 24,100 to 80,500 km distance accumulation. Thus, two additional batches of fuel were required to complete the 80,000 km accumulation on all four vehicles.

The base fuel used was Gulf Oil company's "Gulf Crest" brand of unleaded gasoline. This fuel was chosen because of its low sulfur content as delivered and its commercial availability, since it was desired to operate the cars on a typical retail gasoline. As mentioned in the characterization section, a sulfur level of 0.040 percent was chosen based on Bureau of Mines gasoline surveys of leaded fuels in the early 1970's. Thiophene, a sulfur compound occurring naturally in gasoline, was used to increase the fuel sulfur level to a nominal 0.040 percent.

Table 9 lists the four fuel batches used and the sulfur content of each batch after addition of thiophene. Also shown are the test sequences for which each fuel batch was used. Complete analyses of the fuels designated EM-212F, EM-250F and EM-254F and the sulfur analysis of all four fuels are contained in Appendix F.

TABLE 8. CARS TESTED IN DISTANCE ACCUMULATION

SwRI Car Number	EM-1	EM-2	EM-3	EM-4
Manufacturer Model Model Year	Plymouth Gran Fury 1975	Chevrolet Impala 1975	Plymouth Gran Fury 1975	Chevrolet Impala 1975
Applicable Emission Std.	'75 Fed.	'75 Fed.	'75 Calif.	'75 Calif.
Date Manufactured	9/74	3/75	3/75	4/75
Veh. Ident. No.	PH41K5D- 114692	1L69H5S- 137797	PH41J5D- 209866	1L69L5J- 216102
Engine Size, litres Arr. & No. of Cyl. Engine Serial No.	5.90 V-8 5E114692	5.73 V-8 15S137797- VO312CMJ	5.90 V-8 5E209866	5.73 V-8 15J21602- VO411CMM
Transmission	Automatic	Automatic	Automatic	Automatic
Catalyst Type Catalyst Serial No. Air Injection	Monolith NO	Pelleted 009454 NO	Monolith YES	Pelleted 094546 YES
Carburetor Mfgr. No. of Carb. Barrels Car. Serial No.	Holley 2 R7226A- 3830563 2494	Rochester 2 22-5-TH- 7045114	Carter 4	Rochester 4 7045504- TM0505
Ignition System	Breakerless Electronic		Breakerless Electronic	Breakerless Electronic
Tires	Radial GR78-15	Radial HR78-15	Radial GR78-15	Radial HR78-15

TABLE 9. FUEL BATCHES USED IN DISTANCE ACCUMULATION STUDY

Fuel* Pct. Sulfur	EM-212-F	EM-243-F	EM-250-F	EM-254-F
	0.0415	0.0420	0.0405	0.0410
Used: From	11/26/74	9/15/75	12/30/75	2/25/76
To	9/15/75	12/30/75	2/25/76	5/15/76
Used for Distance Accumulation on EM-1 EM-2 EM-3 EM-4	to approx. 16,000 km to approx. 16,000 km to approx. 16,000 km to approx. 16,000 km	16,000 to 32,200 km 16,000 to 32,200 km	32,200 to 55,000 km 32,200 to 60,000 km 32,200 to 48,000 km 32,200 to 56,000 km	
Used for tests on: EM-1 EM-2 EM-3 EM-4	to 8,050 km	16,000, 24,100, 32,200 km	48,300 km	64,400, 80,500 km
	to 8,050 km	16,000, 24,100, 32,200 km	48,300 km	64,400, 80,500 km
	to 8,050 km	16,000, 24,100, 32,200 km	48,300 km	64,400, 80,500 km
	to 8,050 km	16,000, 24,100, 32,200 km	48,300 km	64,400, 80,500 km

^{*}Base fuel for all fuel batches was Gulf Oil Company "Gulf Crest" brand unleaded gasoline.

D. Vehicle Maintenance

The vehicles were maintained according to the maintenance schedule provided by the car manufacturer. Basically, the Plymouths, cars EM-1 and EM-3, received scheduled maintenance at approximately 8,000 kilometre intervals; the Chevrolets, cars EM-2 and EM-4, at approximately 12,000 kilometre intervals. The complete maintenance schedule for each car is included in Appendix H.

Engine oil level was checked daily (usually this was equivalent to 650 kilometres) and added as needed. Brake linings were also replaced as needed. Tires were replaced on all four cars between the 48,300 and 64,400 kilometre tests with tires of the same size and type as those being replaced.

There were several items of unscheduled maintenance. On car EM-3, the EGR system vacuum amplifier was found to have failed sometime after the 24,100 kilometre test and prior to the 32,200 kilometre test. It was replaced after the 32,200 km test. Also, on this car, a valve guide insert was installed on the exhaust valve of the number one cylinder at approximately 50,000 kilometres to correct a low compression problem in that cylinder. The transmission on car EM-4 failed and was rebuilt at approximately 33,500 kilometres. A leak in the catalyst air injection system on car EM-4 was discovered and corrected at 19,000 kilometres. From test data on the car, it is assumed that this leak started sometime between the 3,200 and 8,050 kilometre tests.

E. Test Sequence

The test plan called for emission tests in factory new condition (i.e., less than 150 kilometres) and at 3,200, 8,050, 16,100 and 24,100 kilometres. During the test program the distance was extended to 80,500 kilometres with emissions tests at 32,200, 48,300, 64,400 and 80,500 kilometres. The distance was accumulated by driving the cars over a modified MVMA durability schedule per MSAPC Advisory Circular 37, dated December 20, 1973 for 55 mph top speed. A copy of this procedure is contained in Appendix H, together with a description of the actual route driven. In addition, all wide-open throttle accelerations were eliminated from the schedule to prevent inadvertent purging of stored sulfates.

The "zero" kilometre and 3,200 kilometre test sequence is shown in Table 10. The time period during which the cars were accumulating 24,100 kilometres was one of rapid change in sulfate test cycles and scheduling philosophy. As a result of this, the 8,050 mile tests on all cars incorporated the SET-7 test and the Highway Fuel Economy Test (HFET), as shown in Table 11. This test sequence was also used for the 16,100 kilometre tests of EM-1 and EM-2. The test sequence was changed again to that shown in Table 12 for the 16,100 kilometre tests of EM-3 and EM-4 and the 24,100 kilometre test on all four cars.

The test sequence for tests up to and including the 24,100 kilometre test were run twice with approximately 500 kilometres of durability driving between each test sequence. For tests following the 24,100 kilometre test, the test sequence shown in Table 13 was run only once, except for the 80,500

TABLE 10. TEST SEQUENCE FOR 0 AND 3200 KILOMETRE TESTS

TEST	DESCRIPTION
1	Cold start LA-4 cycle
	10 minute soak
2	Hot start LA-4 cycle
	Soak 10 min. or as required while preparing SO_X sampling equipment, but not over one hour
3	Start vehicle, accelerate to 48 kph in about 15 seconds, then 48 kph cruise for 20 minutes, sampling from "key on"
4	Cruise at 48 kph for 30 minutes
	Soak 10 min, or as required while preparing SO_X sampling equipment, but not over one hour
5	Start vehicle, accelerate to 96 kph in about 30 seconds then 96 kph cruise 20 minutes, sampling from "key on"
6	Cruise at 96 kph 20 minutes

TABLE 11. TEST SEQUENCE FOR 8 050 KILOMETRE TEST ON ALL CARS AND 16,100 KILOMETRE TEST ON CARS EM-1 AND EM-2

TEST	DESCRIPTION
1	Cold start LA-4
	10 minute soak
2	Hot start LA-4
	Soak 10 minutes*
3	SET-7 test
	Soak 10 minutes*
4	SET-7 test
	Soak 10 Minutes*
5	HFET test
	Soak 10 minutes*
6	HFET test
	Soak 10 minutes*
. 7	Start vehicle, accelerate to 48 kph in about 15 seconds, then 48 kph cruise for 20 minutes, sampling from "key on"
8	Cruise at 48 kph for 30 minutes
	Soak 10 minutes*
9	Start vehicle accelerate to 96 kph in about 30 seconds, then 96 kph cruise for 20 minutes, sampling from "key on"
10	Cruise at 96 kph for 20 minutes

^{*}or as required while preparing $\mathrm{SO}_{\mathbf{X}}$ sampling equipment, but not over one hour

TABLE 12. TEST SEQUENCE FOR 24,100 KILOMETRE TEST ON ALL CARS AND 16,100 KILOMETRE TESTS ON CARS EM-3 AND EM-4

TEST	DESCRIPTION
1	1975 light duty FTP (single sulfate and SO_2 sample)
	10 minute soak*
2	SET-7 test
	10 minute soak*
3	SET-7 test
	10 minute soak*
. 4	HFET test
	10 minute soak
5	SET-7 test
	10 minute soak
6	SET-7 test
	10 minute soak
7	Start vehicle, accelerate to 48 kph in about 15 seconds, then 48 kph cruise for 20 minutes, sampling from "key on"
8	Cruise at 48 kph for 30 minutes
	Soak 10 minutes
9	Start vehicle, accelerate to 96 kph in about 30 seconds, then 96 kph cruise for 20 minutes, sampling from "key on"
10	Cruise at 96 kph for 20 minutes

^{*}or as required while preparing $\mathrm{SO}_{\mathbf{X}}$ sampling equipment, but not over one hour

TABLE 13. TEST SEQUENCE FOR TESTS AT 32,200 KILOMETRES, 48,300 KILOMETRES, 64,400 KILOMETRES AND 80,500 KILOMETRES FOR ALL CARS

TEST	DESCRIPTION
1	1975 ${ m FTP}^1$ (single sulfate and ${ m SO}_2$ sample
	5 minute idle ²
2	SET-7 test
	5 minute idle
3	SET-7
	5 minute idle
4	HFET test
	5 minute idle
5	SET-7 test
	5 minute idle
6	SET-7 test
	5 minute idle
7	Accelerate to 48 kph in about 15 seconds, then 48 kph cruise for 20 minutes
8	Cruise at 48 kph for 30 minutes
	5 minute idle
9	Start vehicle, accelerate to 96 kph in about 30 seconds, then 96 kph cruise for 20 minutes
10	Cruise at 96 kph for 20 minutes

 ^1No preconditioning following mileage accumulation on modified AMA cycle. ^2All idles are 5.0 \pm 0.5 minutes.

Sulfate, SO2, HC, CO, NO $_{\rm X}$ and CO $_{\rm 2}$ emissions are taken during all test modes except idle.

kilometre test which was run in duplicate. The replicate 80,500 km tests or cars EM-1 and EM-2 were not averaged as was done for cars EM-3 and EM-4, because of the erratic emissions results obtained from cars EM-1 and EM-2. The test data from these two cars was thoroughly checked for possible errors which might have caused the erratic emission results. Since no errors were found, it is concluded that the variation in emissions is due to vehicle operation. Because 48,300 kilometres was a major maintenance point for all cars, the test sequence was run before maintenance and after maintenance plus 500 kilometres durability driving.

It is emphasized that in the discussions to follow, the tests identified as "acceleration to 48 kph" and "acceleration to 96 kph," include not only the actual acceleration from 0 to the indicated speed, but also a portion of time at the stabilized speed.

F. Test Results

The test results from the four cars tested under this phase of the project fell into four different classifications and are covered in the following four subsections; 1. Gaseous and BCA Sulfate Emissions, 2. Storage of Sulfur Compounds, 3. Particulate Weights, and 4. Analysis of Tunnel Residue.

1. Gaseous and BCA Sulfate Emissions

A summary of the average gaseous emissions is given for each test type on all four cars at each distance interval in Tables 14 through 16 for HC, CO, and NO, emissions, respectively. To aid in determining any trends with distance, this information has been plotted as Figures 22 to 24. Results for each individual test are contained in Appendix H. Figure 22 shows the ${
m HC}$, ${
m CO}$ and ${
m NO}_{
m X}$ emissions from the FTP tests on all four cars at each distance interval test. For comparison purposes, the 1975 Federal and 1975 California emission standards in terms of grams/kilometre are shown on the plots. can be seen from this figure, the HC emissions were generally within the applicable standard throughout the 80,500 kilometres on all cars. The exceptions being car EM-4 at 8,050 and 16,100 kilometres, EM-3 at 48,300 and 80,500 kilometres, and the second test of EM-2 at 80,500 kilometres. The high HC emissions from car EM-4 at 8,050 and 16,000 kilometres are attributed to a leak in the air injection system. In fact, the high HC emissions helped lead to the discovery of the leak shortly after the 16,000 kilometre test. was a general tendency for HC emissions from all cars to increase from the 48,300 km test to the 80,500 km test.

The CO emissions from the FTP were generally above the applicable standard. EM -1 had CO emissions below the 1975 Federal CO standard of 9.3 g/km for 4 of the 10 tests and CO emissions from EM-2 were below the standard 2 of 10 times. The CO emissions from EM-3 were below the 1975 California CO standard of 5.6 g/km 6 of 10 times. The CO emissions from car EM-4 were never below the 1975 California CO standard. The general trend of CO emissions was increasing after the 3,200 km test for all cars, with the largest increases after the 48,300 km tests. This increase in both HC and CO emissions after 38,300 km may be an indication of catalyst deterioration.

TABLE 14. AVERAGE HYDROCARBON EMISSIONS BY TEST TYPE FOR DISTANCE INTERVAL TESTS ON FOUR CARS

Test	Car				HC Emission					
Type_	Number	0 km	3200 km	8050 km	16100 km	24100 km	32200 km	48300 km B/A	_64400 km	80500 km**
FTP	EM-1	0.39	0.32	0.30	0.32	0.25	0.31	0.49/0.44	0.63	0.66/0.59
	EM-1 EM-2	0.49	0.40	0.42	0.34	0.35	0.39	0.36/0.24	0.39	0.80/3.47
		0.56	0.26	0.48	0.49	0.44	0.46**	0.64/0.41	0.57	0.68
	EM-3 EM-4	0.37	0.44	1.12*	1.68*	0,42	0.27	0.43/0.47	0.61	0.60
	E-IVI	0.5.	0.11	1.12					0.02	0.00
SET-7	EM-1			0.12	0.11	0.09	0.13	0.28/0.39	0.51	0.31/0.52
	EM-2			0.07	0.11	0.12	0.12	0.11/0.06	0.27	0.34/1.51
	EM-3			0.04	0.03	0.03	0.06**	0.17/0.06	0.15	0.13
	EM-4			0.95*	1.18*	0.09	0.06	0.12/0.14	0.18	0.17
FET	EM-1			0.09	0.06	0.06	0.07	0. 26/0. 31	0.41	0.19/0.38
				0.04	0.05	0.06	0.05	0.07/0.03	0.20	0.13/1.35
	EM-2			0.03	0.03	0.03	0.04**	0.19/0.07	0. 20	0.12
	EM-3 EM-4			0.35*	0.39*	0.06	0.04	0.07/0.10	0.13	0.08
	EM-4	7		0.33	•			,	0.10	3.3 5
Accel to 48 kph	EM-1	0.14	0.11	0.09	0.09	0.03	0.03	0.12/0.11	0.11	0.09/0.17
	EM-2	0.06	0.07	0.11	0.04	0.02	0.03	0.03/0.02	0.43	0.05/0.21
	EM-3	0.04	0.04	0.07	0.04	0.05	0.09**	0.18/0.10	0.42	0.53/0.09
7 •	EM-4	0.12	0.16	*15.0	0.21*	0.08	0.11	0, 16/0 , 40	0.08	0.26
48 kph	EM-1	0.03	0.03	0.02	0.03	0.04		0.05/0.04	0.05	0.06/0.06
	EM-2	0.08	0.03	0.03	0.04	0.03		0.03/0.02 [.]	0.24	0.05/0.04
	EM-3	0.03	0.03	0.05	0.04	0.05		0.24/0.10	0.22	0.34/0.10
	EM-4	0.04	0,07	0.10*	0.07*	0.07	0.04**	0.05/0.21	0.05	0.24
	F24 1	0.06	0.08	0.06	0.05	0.05	0.03	0.09/0.12	0. 19	0.08/0.31
Accel to 96 kph	EM-1	0.09	0.03	0.04	0.02	0.04		0.05/0.05	0.08	0.00/0.45
	EM-2		0.05	0.04	0.04	0.04		0.20/0.11	0.15	0.16
	EM-3	0.03 0.08	0.14	0.15*	0.02*	0.06		0.10/0.15	0.08	0.05
	EM-4	0.08	0.14	0.15	0,04	••••			0.00	0.03
96 kph	EM-l	0.04	0.02	0.03	0.02	0.02		0.15/0.04	0.68	0.09/0.81
	EM-2	0.01	0.01	0.03	0.02	0.02		0.15/0.02	0.19	0.06/0.02
	EM-2 EM-3	0.02	0.03	0.03	0.02	0.03	0.03**). 12/0.09	0.12	0.08
	EM-3 EM-4	0.03	0.02	0.01*	0.00*	0.07	0.03	0.06/0.18	0.09	0,06
* si- injection syste		0.03								

B = Before Maintenance

A = After Maintenance

FTP Standards: '75 Federal = 0.9 g/km
'75 California = 0.6 g/km

^{*} air injection system leak

**EGR system inoperative

***Duplicate Tests on Cars EM-1 and 2 not averaged.

See explanation page 55.

TABLE 15. AVERAGE CO EMISSIONS BY TEST TYPE FOR DISTANCE INTERVAL TESTS ON FOUR CARS

Test	Car	CO Emissions g/km								
Түре	Number	0 km	3200 km	8050 km	16100 km	24100 km	32200 km	48300 km B/A	64400 km	80500 km ***
FTP	EM-1	9.73	7. 27	8. 16	8.75	6.90	10.89	12.57/11.03	15.58	11.77/15.25
	EM-2	13.42	9.59	10.16	9. 81	11.79	10.04	9.61/5.22	11.91	14.74/24.43
	EM-3	7.18	3.23	4.62	5.69	7.61	3.55**	6.72/5.07	5.52	8.43
	EM-4	9. 36	7.89	8. 23*	11.40*	11.11	7. 97	9.03/10.37	12. 92	11.43
SET-7	EM-1			7.44	4. 32	2.59	5.74	11.11/14.57	18. 92	10.51/18.41
	EM-2			3.07	4.55	5.97	5. 93	4.68/1.69	12.25	9. 14/9. 44
	EM-3			0.48	0.45	0.85	0.22**	0.67/0.72	0.86	1, 17
	EM-4			5.35*	5. 7 4 *	3. 22	0.87	3.01/4.03	6.91	4.38
FET	EM-1			4.61	1,77	1.30	4, 91	11.56/12.26	16. 17	6.47/13.80
	EM-2			1.02	1.76	2.07	1.42	3.08/0.67	10.45	3.56/3.00
	EM-3			0.06	0.09	0.07	0.08**	0.69/0.14	0.21	0.14
	EM-4			1.71*	1.38*	1.02	0.11	0.78/1.50	0.37	1. 36
ທ Accel to 48 kph ≺	oh EM-1	0.38	0.81	1.06	0.68	0.12	0.06	0.60/0.91	1.08	0.79/0.88
	EM-2	0.79	0.66	0.74	0.18	0.24	0.20	0.11/0.04	11.27	0.07/0.57
	EM-3	0.20	0.08	0.20	0.16	0.04	0.17**	0.27/0.21	0.09	0.10/.08
	EM-4	0.36	0.21	0.47*	0.35*	0.11	0.23	1.00/0.65	0.54	0.23
48 kph	EM-1	0.01	0.04	0.04	0.06	0.03	0.01	0.00/0.00	0.02	0.01/0.00
	EM-2	3.54	0.06	0.20	0.34	0.00	0.04	2.17/0.00	8.40	0.00/0.02
	EM-3	0.04	0.0 6	0.03	0.22	0.04	0.02**	0.04/0.03	0.04	0.03/0.02
	EM-4	0.02	0.04	0.13*	0.18*	0.05	0.02	0.01/0.06	0.02	0.04
Accel to 96 kg	oh EM-l	0.64	1.61	0.92	0.70	0.14	0.76	3.17/3.45	7.87	2.70/10.97
	EM-2	0.77	0.50	0.34	0.08	1.14	2.38	2.28/1.22	5.40	0.50/1.88
	EM-3	0.81	0.60	0.11	0.24	0.72	0.08**	1.76/1.62	0.06	1.30
	EM-4	2.07	1.58	I.78*	0. I 4 *	1.14	0.11	1.75/2.63	0.27	0.18
96 k p h	EM-1	2.56	1.62	1.05	1.33	0.09	1.56	9.45/1.72	22.31	20.86/23.70
	EM-2	0.69	0.85	0.82	0.35	1.46	0.54	16.07/1.10	17.88	3.73/0.08
	EM-3	0.56	0.05	0.06	0.13	0.03	0.03**	0.05/0.04	0.04	0.03
	EM-4	0.01	0.02	0.06*	0.04*	0.07	0.01	0.08/0.05	0.23	0.18

^{*} air injection system leak

B = Before Maintenance A = After Maintenance

FTP Standards: '75 Federal = 9.3 g/km '75 California = 5.6 g/km

^{**} EGR system inoperative

^{***} Duplicate Tests on Cars EM-1 & 2 not averaged, See explanation page 55.

	Test	Car				NO, E	missions	g/km			
	Type	Number	0 km	3200 km	8050 km	16100 km	24100 km	32200 km	48300 km	64400 km	80500 km***
									B/A		
	FTP	EM-1	1.08	1.41	1.40	1.65	1.80	2.69	1.79/2.02	1.70	2. 27/1. 97
		EM-2	0.96	1.25	1.29	1. 32	1.49	2.62	1.91/1.60	1.99	2.04/1.76
		EM-3	0.68	0.75	0.66	1.02	1.10	3. 26**	1.07/0.93	1.98	2.00
		EM-4	0.85	1.01	1. 16*	I. I1*	1.14	1.25	1.81/0.99	1.30	1.03
	SET-7	EM-1			1. 16	1.41	1.73	2. 18	1.45/2.12	1.62	1.99/1.84
		EM-2			1. 19	1.12	1.34	2.07	1.63/1.60	1.50	2.27/1.66
		EM-3			0.55	0.77	0.86	3.00**	0.81/0.80	1.52	1.92
		EM-4			0. 96*	0.78*	1.00	1.28	0.96/0.84	1.00	0.88
	FET	EM-1			1. 22	1. 91	1.77	2.47	1,72/1,73	1.79	2.44/2.01
		EM-2			1.10	0. 98	1, 32	1.99	1.53/1.41	1.45	2.21/1.82
		EM-3			0.48	0.61	0.75	3.38**	0.87/0.85	1.11	2.32
		EM-4			0.77*	0.78*	0.89	1. 16	0.86/0.70	1.10	0.88
	Accel to 48 kph	EM-1	0.78	1.06	0.79	0.95	0.67	1.19	0.94/0.82	1.09	0.99/1.42
ပၢ ထ	100001 00 10 Mp.1	EM-2	0.28	0.28	0.35	0.46	0. 40	0.70	0.56/0.61	0.63	0.62/0.53
		EM-3	0.71	0.67	0.69	0.55	0.88	0.92*÷	0.79/0.87	1.07	2.14/1.37
		EM-4	0.25	0.21	0.19*	0.15*	0.20	0.15	0.48/0.26	0.65	0.25
	48 kph	EM-1	0.68	0.83	0.85	0.80	0.65	1.19	0.98/0.75	0.87	0.86/0.94
	10 kpn	EM-2	0.15	0.25	0.45	0.36	0.58	0.68	0,72/0.56	0.79	0.80/0.60
		EM-3	0.98	0.62	0.67	0.53	0.80	0.98**	0.64/0.74	0.89	2.21/1.37
		EM-4	0.21	0.19	0.15*	0.13*	0.17	0.18	0.34/0.32	0.28	0.19
	Accel to 96 kph	EM-1	1. 34	1.33	1.96	2.17	1. 94	2. 58	1.75/1.63	2.09	2. 29/2. 12
	recei to 70 kpn	EM-2	1.03	1.07	1.08	0.89	1.33	2.49	1.65/1.57	1.93	2.26/1.64
		EM-3	0.51	0.43	0.51	0.59	0. 90	4. 22**	1.15/1.04	1.33	2.77
		EM-4	0.69	0.72	0.76*	0.30*	1.49	1.38	0,96/0.91	1.43	0.93
	96 kph	EM-1	0.44	0.57	1. 14	1. 24	2, 26	1. 91	1, 22/1, 55	2.08	2,20/2.22
	, h	EM-2	0.66	0.75	0.95	1.22	1. 17	1. 98	1.78/1.04	1.45	1,74/1.49
		EM-3	0.46	0.38	0.50	0.54	0.95	3.72**	1, 17/0, 96	1. 93	2.79
				0.62	0.75*	0.30*	1.17	1.15	0,72/0.86	1. 30	0.96
		EM-4	0.62	0,04	V. 75"	J	1. 1 (1.15	, ,	1. 50	

^{*} Air Ins Leak

B = Before Maintenance

A = After Maintenance

FTP Standards: '75 Federal = 1.9 g/km

 1 75 Calif. = 1.2 g/km

^{**} Inoperative EGR System

^{***} Duplicate tests on cars EM-1 & 2 not averaged. See explanation page 55.

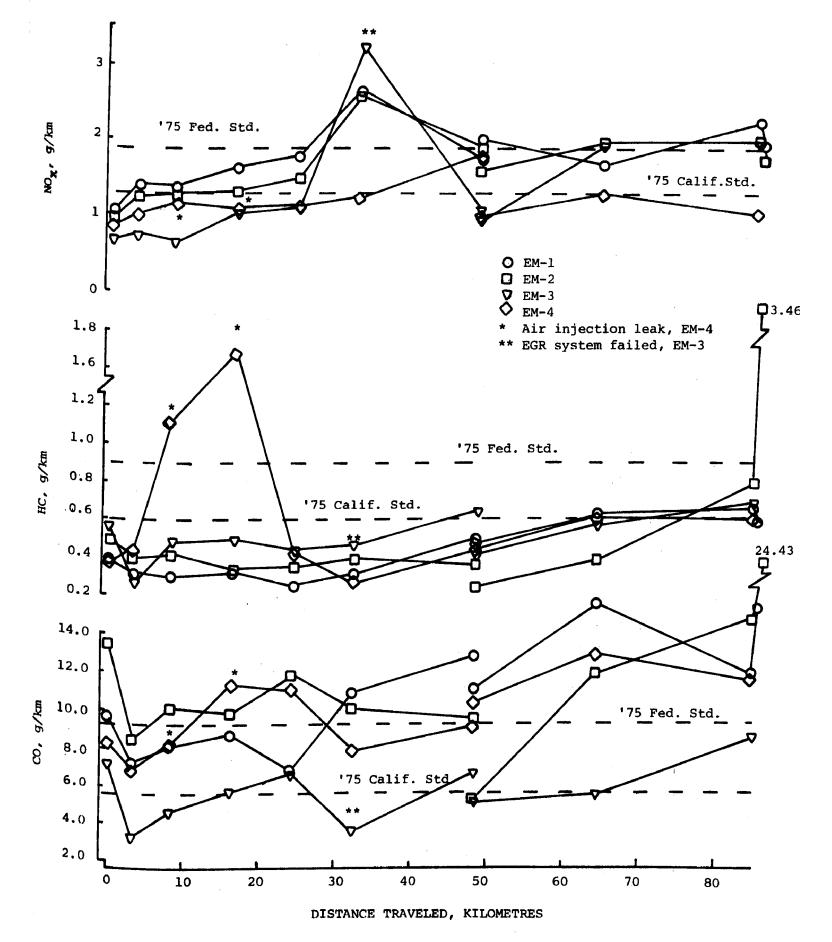


FIGURE 22. EMISSIONS FROM FTP TESTS
AT DISTANCE INTERVALS ON FOUR CARS
59

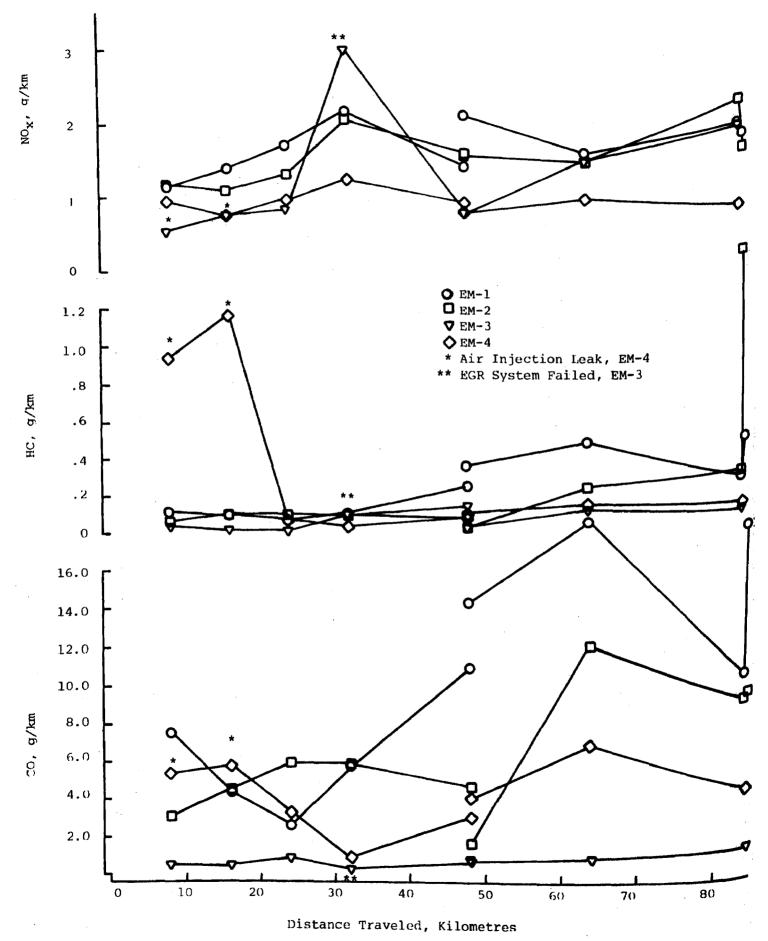


FIGURE 23. EMISSIONS FROM SET-7 TESTS AT DISTANCE INTERVALS FOR FOUR CARS 60

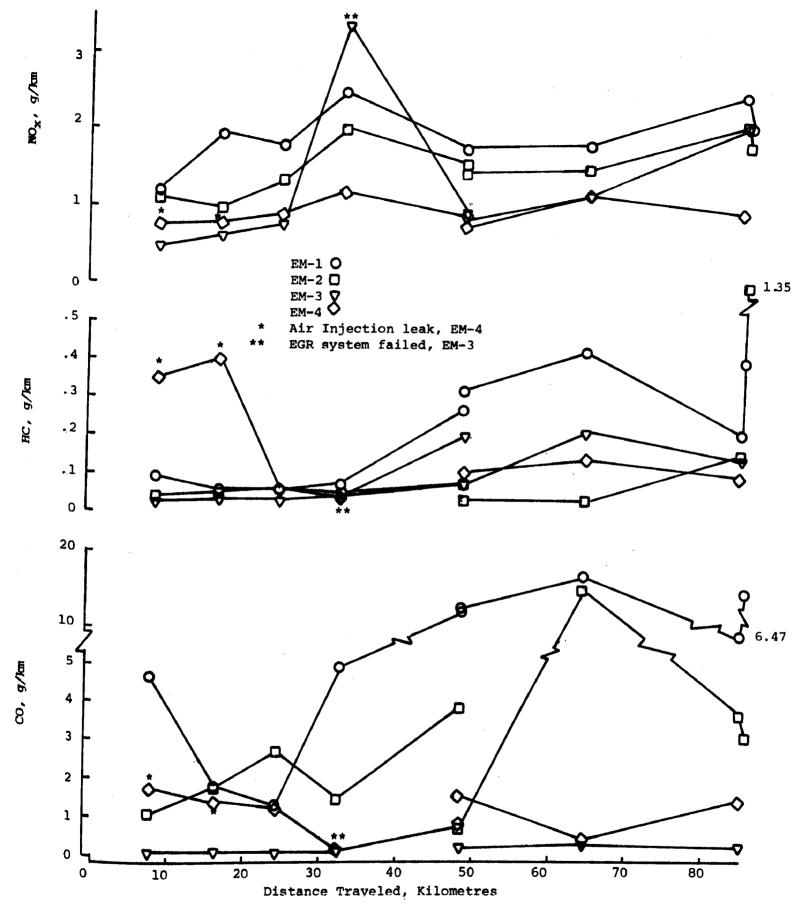


FIGURE 24, EMISSIONS FROM HFET TESTS AT DISTANCE INTERVALS FOR FOUR CARS

The NO $_{\rm X}$ emissions from all cars were within their respective standards through the 24,100 kilometre test. Except for EM-4, the general trend of NO $_{\rm X}$ emissions was increasing for the 80,500 km.

The vacuum amplifier in the EGR system of car EM-3 failed between the 24,100 and 32,200 km tests, causing the large increase in NO $_{\rm X}$ at the 32,200 km test. It was replaced after the 32,200 km test. The subsequent test at 48,300 km showed a reduction in NO $_{\rm X}$ emissions. After this test, the NO $_{\rm X}$ emissions from EM-3 again increased for the remaining two tests. At the conclusion of the 80,500 km test, the tailpipe NO $_{\rm X}$ emissions from EM-3 were checked at 48 kph as tested at 80,500 km and with a spare (but used) vacuum amplifier. The spare vacuum amplifier test resulted in NO $_{\rm X}$ emissions of 250 ppm compared with 380 ppm with the vacuum amplifier used during the 80,500 km tests. The vacuum amplifier used during the distance accumulation from 32,200 to 80,500 km was checked for proper operation and it was ascertained that the diaphram had not failed. However, it is felt that vacuum amplifier deterioration must be at least partially responsible for the increase in NO $_{\rm X}$ emissions from EM-3 following the 48,300 km test.

In general, the emissions from the SET-7 tests and HFET tests presented in Figures 23 and 24, show the same trends as the FTP tests. The increase in CO emissions from car EM-1 after the 24,100 km test, and from car EM-2 after the 48,300 km test are more pronounced in both the SET-7 and HFET tests than in the FTP test.

The SO₂ and sulfate emissions from each test type at each distance interval are shown in Tables 17 to 20 for cars EM-1 to EM-4, respectively. As an aid to understanding the comparative magnitudes and trends of the emissions, these emissions in terms of m/km have been plotted as histograms in Figures 25 to 31.

Each figure shows the ${\rm SO}_2$ and sulfate emissions at all distance intervals for one test type on all four cars. This allows cars to be compared on the basis of both catalyst type and whether or not there is air injection.

In comparing the sulfate emission results from these cars, it must be kept in mind that several factors not measured in this study have been shown to have direct influence on the amount of sulfate produced by a catalyst. (12, 13) These factors include amount of oxygen in the exhaust, catalyst temperature, and space velocity of the catalyst system. Some conclusions about effects of oxygen can be drawn by comparing the air-injected and nonair-injected systems. However, it would be inappropriate to draw conclusions about the relative sulfate producing ability of monolith or pelleted catalyst without knowing the catalyst temperatures, oxygen levels and space velocities of each system during each test type. Thus, in the discussion that follows, where one car produced more or less sulfates than another car, it is the total catalyst system operation that should be compared, not just the form of the catalyst substrate.

The results are presented in the order in which the tests were run in the test sequence; i.e., FTP, SET-7, HFET, acceleration to 48 kph, steady-

TABLE 17. SULFUR DIOXIDE AND SULFATE EMISSIONS
AT DISTANCE INTERVALS - CAR EM-1
1975 Federal Plymouth Gran Fury
Monolithic Catalyst, Without Air Pump

		m	g/km	% Fuel	"S" as	Total Sulfur
Test Type	Kilometers	$\overline{so_2}$	H ₂ SO ₄	SO ₂	H_2SO_4	Recovery
				1/ 70	0.45	47. 20
FTP	0	68	0.98	46.70	0.45	47.20
	3200	86	0.27	58,82	0.14	58.98
	8050	89	0.86	70.70	0.43	71.14
	16100	127	0.82	98. 32	0.41	98.72
	24100	113	2.18	98.60	1.23	99.83
	32200	137	0.69	105.36	0.36	105.70
	48300	169	1.47	125.43	0.71	126.14
	48300*	110	1.80	79.96	0.86	80.82
	64400	159	2.77	120.93	1.37	122.30
	80500	167	1.80	126.33	0.89	127.22
	80500	88	1.22	64.63	0.58	65.22
SET-7	8050	100	0,33	113.13	0.24	113.37
	16100	95	0.29	108.52	0.22	108.77
	24100	86	0.42	100.13	0.32	100.45
•	32200	125	0.80	137.84	0.57	138.41
	48300	75	0.49	78.95	0.34	79.29
	48300*	60	0.59	62.91	0.41	63.31
	64400	73	0.63	72.59	0.41	73.00
	80500	92	0.41	93.44	0.27	93.71
	80500	54	0.41	53.60	0.27	53.87
FET	8050	65	0.25	04 40	0.23	86.91
-	16100	93	0.23	86.68	0.48	131.37
	24100	88	0.54	130.89	0.53	131.13
	32200	123		130.60	0.81	153.76
	48300	59	0.99	152.95 75.99	0.19	76.18
	48300*		0.23 0.20	35.73	0.17	35.90
		28 63		73. 52	0.65	74.29
	64400		0.86	· ·	0.25	75.19
	80500	62	0.31	74.94		
	80500	28	0.19	32.15	0.15	32.30
18 kph accel	0	26	0.54	37.80	0.54	38.50
	3200	27	0.12	41.75	0.12	41.87
	8050	17	0.26	27.18	0.11	27.29
	16100	23	0.85	39.18	0.97	40.15
	24100	26	0.37	46.04	0.43	46.47
	32200	7	0.01	11, 15	0.00	11.15
	48300	16	0.56	27.96	0.65	28.60
	48300*	19	0.46	32.15	0.51	32.66
	64400	18	0.48	29.25	0.51	29.76
	80500	21	0.15	35.66	0.17	35.83
aften -	80500	19	0.14	32.70	0.16	32.86
after maintenan	ce					

TABLE 17. (Cont'd.) SULFUR DIOXIDE AND SULFATE EMISSIONS
AT DISTANCE INTERVALS - CAR EM-1
1975 Federal Plymouth Gran Fury
Monolithic Catalyst, Without Air Pump

		r	ng/km	% Fuel "S" as		Total Sulfur
Test Type	kilometers	SO ₂	H ₂ SO ₄	SO ₂	H ₂ SO ₄	Recovery
48 kph S/S	0	8	0.32	12.89	0.32	13.22
	3200	11	2.40	17.27	2.56	19.83
	8050	8	0.34	22.34	0.39	22.86
	16100	12	0.83	20.44	0.99	21.43
	24100	11	1.39	20.03	1.74	21.77
	32200	14	1.07	24.07	1.22	25.29
	48300	11	1.20	19.57	1.39	20. 97
	48300*	21	1.20	36.69	1.38	38.07
	64400	14	0.75	29.51	0.84	25.35
	80500	9	0.67	16.47	0.78	17.25
	80500	9	0.51	15.62	0.51	16.20
96 kph accel	0	237	13.10	323.67	11.68	335.35
	3200	208	2.00	273.56	3.15	276.71
	8050	96	2.64	141.12	2.45	145. 98
•	16100	157	13.51	267.77	14.32	282.10
	24100	90	62.84	143.80	64.11	207. 92
	32200	151	6.68	185.03	5.36	190.39
	48300	132	1.77	173.85	1.52	175.37
	48300*	116	1.39	155.19	1.21	156.40
	64400	106	2.14	132.19	1.75	133.94
	80500	111	1.11	150.39	0.98	151.37
	80500	83	.76	102.31	0.61	102.92
96 kph S/S	0	76	0.18	109.83	0.16	109.99
	3200	94	0.20	131.06	0.18	131.25
	8050	64	0.31	94.16	0.10	96.76
	16100	59	1.38	103.39	1.56	104.96
	24100	75	18.75	121.23		'
	32200	107	0.68	13306	15.83 0.55	137.06 133.61
	48300	67	0.24	91.98	0.33	92.20
	48300*	40	0.21	54.61	0.19	54.61
	64400	76	0.12	95. 1 6	0.19	95.25
	80500	43	0.16	52.51	0.13	52.64
	80500	42	0.08	53.01	0.13	53.08
	00500		0.00	22.01	0.07	55.00

^{*} after maintenance

TABLE 18. SULFUR DIOXIDE AND SULFATE EMISSIONS AT DISTANCE INTERVALS - CAR EM-2 1975 Federal Chevrolet Impala Pelleted Catalyst, Without Air Pump

			4.	<i>M</i> F	1 11611	m . 1 G 14
m .			ng/km		1 "S" as	Total Sulfur
Test Type	kilometers	SO ₂	H ₂ SO ₄	SO ₂	H ₂ SO ₄	Recovery
FTP			0 50	_	0.27	_
TIP	0	-	0.58			4E 00
	3200	56	0.11	45.84	0.06	45,88
	8050	101	0.13	80.19	0.10	80.29
	16100	86	1.00	66.31	0.50	66.81
	24100	105	1.26	82.46	0.65	83.10
	32200	123	2.39	95.42	1.21	96.63
	48300	107	1.31	80.93	0.65	81.58
	48300*	78	0.78	63.45	0.42	63.87
	64400	115	0.90	88.86	0.46	89.31
	80500	120	1.13	89 . 94	0.55	90.49
	80500	170	1.56	122.61	0.73	123.34
SET-7	8050	117	0.40	130.60	0.29	130.89
	16100	92	0.30	100.40	0.22	100.62
	24100	87	0.77	96.47	0.56	97.03
	32200	97	1. 18	102.78	0.81	103.59
	48300	115	1.33	120.16	0.90	121.06
	48300*	105	1.88	117.13	1.37	118.50
	64400	115	0.52	117.97	0.35	118.32
	80500		1.89	101.31	1.24	102.55
		102		128.76	0.73	129.49
	80500	126	1.09	120.70	0.13	20,,
HWFET		110	1.51	137.09	1.24	138.33
	8050	110	0.76	113.94	0.63	114.51
	16100	· 87		115.44	1.03	116.47
	24100	96	1.34	170.00	1.63	171.63
	32200	130.	1.91	148.67	2.15	150.82
	48300	137	3.03	128.80	2.28	131.08
	48300*	100	2.70	158. 10	0.60	158.70
	64400	143	0.83	126.58	0.77	127.35
	80500	111	1.03	98.94	1.22	100.16
	80500	87	1.64	70 <u>.</u> 7 -	1. 22	200, 20
48 kph accel	0		0.44	-	0.31	-
- Pri accel	3200	45	0.44	60.62	0.36	61.08
	8050	-	0.09	_	0.08	-
	16100	22	0.04	30.91	0.04	30.95
	24100	37	0.14	54.36	0.14	54.50
	32200	28	0.54	39.96	0.51	40.47
	48300	28 18	0.20	27.20	0.20	27.40
	48300*	15	0.01	23.12	0.01	23.13
		57	0.98	80.35	0.89	81.24
	64400		0.36	38.83	0.33	39.16
	80500	28		41.24	0.37	41.61
	80500	27	0.38	71.47	0.01	

TABLE 18 (Cont'd.) SULFUR DIOXIDE AND SULFATE EMISSIONS AT DISTANCE INTERVALS - CAR EM-2 1975 Federal Chevrolet Impala Pelleted Catalyst, Without Air Pump

		mg/km		_% Fuel	"S" as	Total Sulfur
Test Type	kilometers	so_2	H_2SO_4	SO ₂	H ₂ SO ₄	Recovery _
1011						
48 kph S/S	0	-	0.09	-	0.07	-
	3200	10	8.29	13.75	7.32	21.05
	8050	18	2.93	12.05	2,97	15.02
	16100	35	3.55	51.92	3.42	55.34
	24100	10	2.39	15.67	2.44	18.11
	32200	16	1.46	19.46	1.18	20.63
	48300	6	2.29	8.49	2.16	10.65
	48300*	10	0.87	16.50	0.93	17.43
	64400	57	0.10	83.53	0.10	83.63
	80500	13	0.96	19.58	0.99	20.56
	80500	17	0.28	26.04	0.28	26.32
96 kph accel	0	•	6.23	-	4.62	-
	3200	119	4.28	160.32	5.73	166.03
	8050	140	5.50	177.93	4.63	182.57
	16100	116	8.01	142.37	6.59	148.96
	24100	115	34.30	145.10	27.78	172.87
	32200	169	12.07	186.39	8.72	195.11
	48300	177	16.01	208.81	12.37	221.18
	48300*	145	23.05	186.02	19.26	205.28
	64400	209	2.22	249.52	1.74	251.25
	80500	130	13.36	152.19	10.25	162.44
	80500	77	12.31	101.86	10.63	112.49
					20.00	
96 kph S/S	0	-	3.16	_	2 52	_
	3200	119	1.82	157.36	2.52 1.44	158.80
	8050	138	4.41	176.82	3.60	
	16100	115	4.59	149.69	3.75	180.42 151.89
	24100	73	5.47	85.55		
	32200	137	3.51		4.13	89.68
	48300	113	1.07	172.65	2.88	175.53
	48300*	123	3.01	130.14	0.80	130.95
	64400	105	0.26	166.80 127.02	2.67	169.46
	80500	28	1.53	33.35	0.20 1.19	127. 23 34. 55
	80500	65	5.58	81.94	4.62	86.56
	-			014 /1	7.04	80.50

^{*} after maintenance

TABLE 19. SULFUR DIOXIDE AND SULFATE EMISSIONS
AT DISTANCE INTERVALS - CAR EM-3
1975 California Plymouth Gran Fury
Monolithic Catalyst, With Air Pump

Test Type	kilometers	SO2	mg/km H2SO4	% Fuel SO2	11S11 as H2SO4	Total Sulfu r Recovery
FTP		147	1 41	02 74	0.70	04.22
- 11	0 3200	147	1.61 6.16	93.76	0.70	94.32
	8050	237	4.43	120.92 88.08	2.89	123.80
	16100	113 98	4.43 5.74	65.02	2.59 2.50	90.66
	24100	96 186	5. 74 5. 67	121.62	2.44	67.52 124.05
	32200**		11.35 **	178.76	5.91	184.67
	48300	224		83.31	1.33	84.65
	48300*	116	2.84	122.10	1.94	124.04
	48300* 64400	169 100	4.12 4.37	72.75	2.08	74.83
	80500	140	6.92	91.76	2.95	94.71
	80500	140	0.72	,1.,0	2. ,5	/1 1
SET-7	8050	72	29.09	76.86	20.23	97.09
	16100	68	26.67	69.21	17.81	87.02
	24100	81	15.27	81.18	9.91	91.09
	32200**	85	44.59**	95.88	33.01	128.89
	48300	96	6.62	101.31	4.55	105.86
	48300	101	7.05	100.27	4.56	104.83
	64400	153	7.47	152.62	4.87	157.49
	80500	101	5.67	96.04	3.52	99.56
77727	-					
HWFET	8050	61	44.59	78.07	38.31	116.38
	16100	54	51.92	64.56	40.82	105.38
	24100	46	38.01	53.60	29.46	83.06
	32200**	75	45.08 **	99.88	39.33	139.21
	48300	59	12.93	70.75	10.11	80.87 65.67
	48300*	45	14.55	54.25	11.42	
	64400	67	11.41	72.64	8.14	80.79
	80500	72	10.34	80.96	7.60	88.56
48 kph accel	0	17	0.23	25.10	0.22	25.33
Lat accet	3200	36	0.10	56.89	0.10	56.99
	8050	23	0.37	36.90	0.41	37,31
	16100	13	0.07	22.01	0.07	22.08
	24100	14	0.17	21.46	0.17	21.63
	32200**	7	0.64 **	11.82	0.68	12.50
	48300	13	0.40	22.43	0.46	22,89
	48300*	19	0.37	33.35	0.42	33,77
	64400	33	3.18	40.33	2.55	42.89
	80500	27	4.90	32.46	3.87	36.33
	80500	18	0.25	30.74	0.27	31.01

^{*}after maintenance

^{**}EGR system inoperative

TABLE 19 (Cont'd.) SULFUR DIOXIDE AND SULFATE EMISSIONS
AT DISTANCE INTERVALS - CAR EM-3
1975 California Plymouth Gran Fury
Monolithic Catalyst, With Air Pump

			mg/km	% Fuel	''S'' as	Total Sulfur
Test Type	kilometers	SO ₂	H2.SO4	SO ₂	H ₂ SO ₄	Recovery
48 kph S/S	0	13	8.43	20.25	8.76	29.00
-	3200	19	4.42	30.69	4.78	35.46
	8050	17	3.42	29.19	3.86	33.05
	16100	10	1.75	16.88	1.94	18.82
	24100	15	2.63	25. 36	2.96	28.32
	32200**	24	8.02 **	38.69	8.38	47.07
	48300	16	0.91	27.71		
	48300*	22	0.66		1.04	28.75
	64400		35.44	39.56	0.77	40.33
	80500	29 33	26.62	36.92	29.68	66.60
	80500	22		42.92	22.29	65.20
	30300	22	1.17	36.41	1.29	37.69
96 kph accel	0	135	28.07	167.24	23.04	190.27
	3200	151	23.66	200.31	20.44	220.75
	8050	106	61.74	150.87	57.29	208.16
	16100	65	62.98	86.85	54.82	141.67
	24100	110	26.01	140.12	19.90	160.02
	32200**	69	77.11 **	94.43	68.69	163.11
	48300	82	24.80	111.41	22.00	
	48300*	88	7.25	118.92		133.41
	64400	53	49.32	64.85	6.43 39.72	125.35 104.58
	80500	89	18.44	107.87	14.65	122.52
96 kph S/S	0	24	20 01			
*	3200	28	20.01 4 3. 65	30.13	16.77	46.90
•	8050	24		41.06	41.96	83.02
	16100	22	27.99	33.60	26.26	59.86
	24100		46.11	32.44	43.70	76.15
	32200**	26	24.83	32.36	20.68	53.03
	48300	25	32.53 **	29.28	33.97	63.24
	48300	30	21.22	43.86	20.14	64.00
		·30 42	19.66	39.68	17.08	56.76
	64400	34	19. 76	53.60	16.62	70.22
	80500	J#	14.83	44.90	12.59	57.48

^{*} after maintenance

^{**}EGR system inoperative

TABLE 20. SULFUR DIOXIDE AND SULFATE EMISSIONS
AT DISTANCE INTERVALS - CAR EM-4
1975 California Chevrolet Impala
Pelleted Catalyst, With Air Pump

			ng/km		1"S" as	Total Sulfur
Test Type	kilometers	SO ₂	H2SO4	SO ₂	H2SO4	Recovery
FTP	0	120	2.42	75.45	1.01	76.45
T T.	3200	59	8.89	44.14	4.24	48.37
	8050**	105	0.52	78.83	0.33	79.15
	16100**	140	0.72	95.93	0.32	96.25
	24100	106	3.23	72.40	1.45	73.65
	32200	56	16.15	41.50	7.87	49.37
	48300	103	11.08	77.78	5.48	83.26
	48300*	72	7.58	53.06	3.64	56.70
	64400	137	6.27	91.43	2.73	94.15
	80500	116	2.80	79.82	1.28	81.10
	00300			•		
SET-7	8050**	79	1.01	83.27	0.69	83.96
	16100**	78	2.33	81.76	1.59	83.35
	24100	77	9.63	76.90	6.35	83.25
	32200	58	26.9	62.00	18.93	80.93
	48300	70	16.93	71.81	11.38	83.19
	48300*	66	10.88	66.79	7.14	73,93
	64400	97	8.34	88.72	4.99	93.71
	80500	75	6.80	73.21	4.45	77.66
•						7/ 04
${ t HWFET}$	8050**	60	4.19	73.55	3.39	76.94
	16100**	53	4.48	63.03	3.51	66.54
	24100	60	9.75	67.30	7. 12	74.42
	32200	6 4	16.41	79.75	13.39	93.15
	48300	62	13.83	73.53	10.65	84.17
	48300*	58	14.81	67.72	11.23 8.56	78.95 100.48
	64400	90	12.87	91. 91		
	80500	48	2.79	45. 65	2.03	47.69
48 kph accel	0	22	4.72	22.08	3.10	26. 16
	3200	20	13.30	23.44	10.18	33.61
	8050**	68	13.44	82.06	10.73	92.79
	16100**	13	1.87	16.09	1.52	17.60
	24100	11	6.69	12.69	5.27	17.96
	32200	31	8.26	41.36	7.22	48.58
	48300	26	-	39.47	-	•
	48300*	19	7.41	28.21	7.30	35.50
	64400	23		34.20		
	80500	28	4.23	35.53	3.58	39.11

^{*} after maintenance ** Leak in air injection system

TABLE 20 (Cont'd.) SULFUR DIOXIDE AND SULFATE EMISSIONS AT DISTANCE INTERVALS - CAR EM-4 1975 California Chevrolet Impala Pelleted Catalyst, With Air Pump

Test Type	kilometers SO ₂	g/km H ₂ SO ₄	% Fuel "S" as SO ₂ H ₂ SO ₄		Total Sulfur Recovery	
48 kph S/S	0 20 3200 11 8050** 26 16100** 9 24100 14 32200 29 48300 16 48300* 16 64400 12 80500 18	35.55 32.23 13.75 7.81 30.78 26.63 3.72 9.70 2.92 10.70	20.82 13.45 32.47 13.97 18.57 38.61 25.01 23.59 17.05 24.48	24. 21 25. 60 11. 43 8. 03 26. 01 23. 48 3. 72 9. 40 2. 75 9. 18	45.03 39.05 43.90 22.00 44.58 62.08 28.74 32.99 19.80 33.66	
96 kph acce	1 0 60 3200 56 8050** 65 16100** 60 24100 71 32200 50 48300 103 48300* 72 64400 78 80500 36	17.03 27.77 16.10 8.35 35.63 66.98 45.90 17.92 24.02 24.48	62. 25 66. 27 81. 58 77. 76 75. 95 55. 57 124. 13 85. 80 89. 15 42. 99	11.79 21.71 13.24 7.04 24.86 49.05 45.90 13.94 18.01 19.11	80.63 87.97 94.81 84.80 100.80 104.63 160.31 99.74 107.16 62.10	
96 kph S/S	0 63 3200 22 8050** 53 16100** 53 24100 46 32200 17 48300 70 48300* 62 64400 65 80500 40	15.70 17.87 10.17 13.79 24.28 27.20 17.85 18.70 8.74 9.10	71.71 28.71 68.95 72.90 52.93 21.73 86.57 75.64 75.05	11.84 15.99 8.76 12.20 18.23 22.55 14.50 15.02 6.63 7.36	84.37 39.49 77.71 85.09 71.16 44.28 101.06 90.66 81.68 55.39	

^{*} after maintenance

^{**} Leak in air injection system

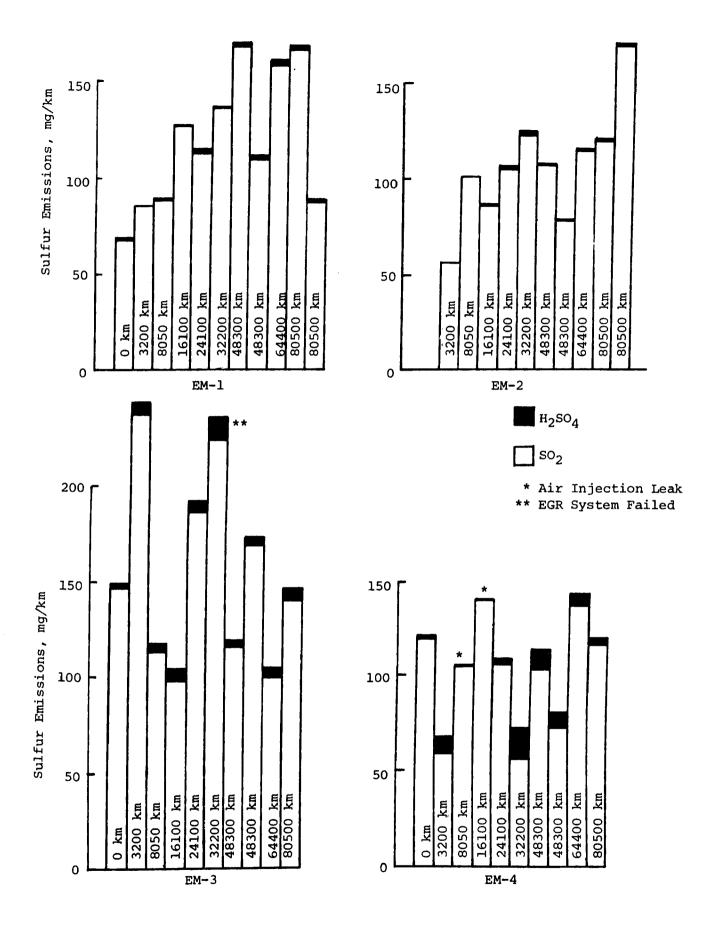


FIGURE 25. SULFATE AND SULFUR DIOXIDE EMISSIONS FROM FTP TESTS AT DISTANCE INTERVALS FOR FOUR CARS



FIGURE 26. SULFATE AND SULFUR DIOXIDE EMISSIONS FROM SET-7 TESTS AT DISTANCE INTERVALS FOR FOUR CARS

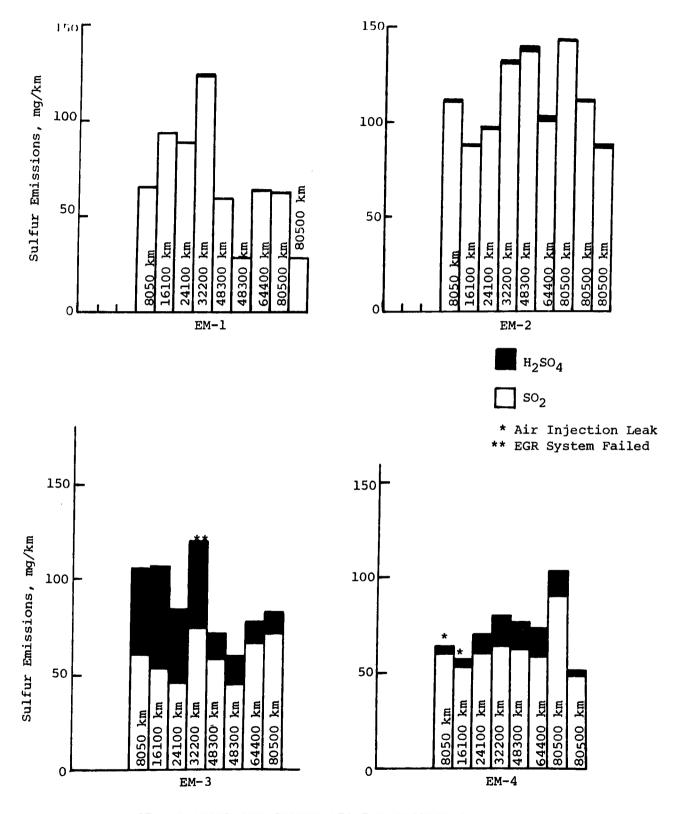


FIGURE 27. SULFATE AND SULFUR DIOXIDE EMISSIONS FROM HFET TESTS AT DISTANCE INTERVALS FOR FOUR CARS

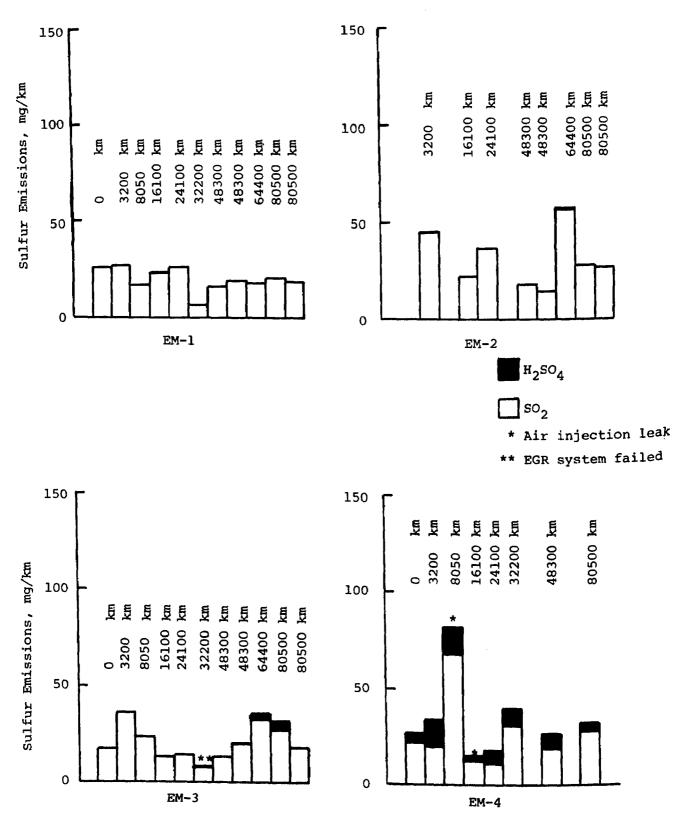


FIGURE 28. SULFATE AND SULFUR DIOXIDE EMISSIONS FROM ACCELERATION TO 48 kph TESTS AT DISTANCE INTERVALS FOR FOUR CARS

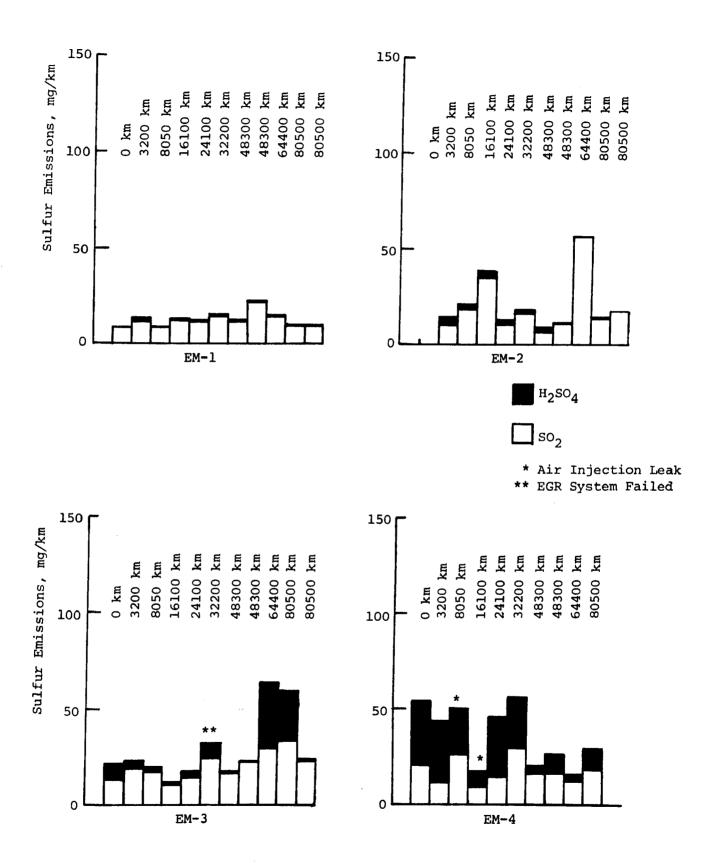


FIGURE 29. SULFATE AND SULFUR DIOXIDE EMISSIONS FROM 48 kph STEADY STATE TESTS AT DISTANCE INTERVALS FOR FOUR CARS

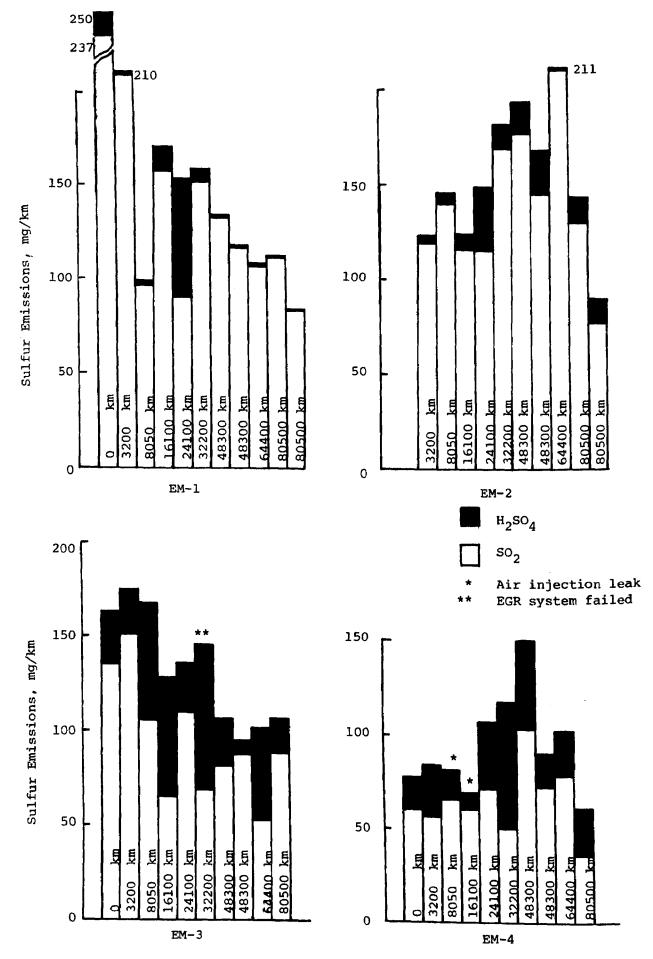


FIGURE 30. SULFATE AND SULFUR DIOXIDE EMISSIONS FROM ACCELERATION TO 96 kph TESTS AT DISTANCE INTERVALS ON FOUR CARS 76

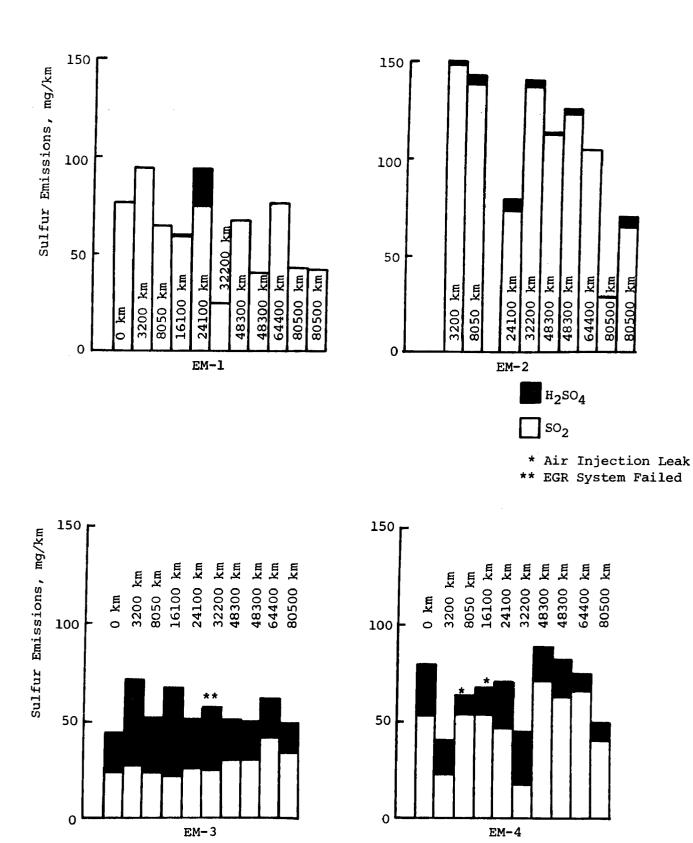


FIGURE 31. SULFATE AND SULFUR DIOXIDE EMISSIONS FROM 96 kph STEADY STATE TESTS AT DISTANCE INTERVALS ON FOUR CARS

state 48 kph, acceleration from 0 to 96 kph and steady-state 96 kph. For the nonair-injected cars, the most sulfur emissions, regardless of specie, n general were produced during the acceleration from 0 to 96 kph. The FTP produces the next highest, then the SET-7, HFET, 96 kph steady-state, and then the acceleration to 48 kph. The lowest sulfur emissions were from the 48 kph steady-state tests.

The rank order for the air-injected cars was somewhat different. For these two cars, the highest sulfur emissions were from the FTP. The acceleration from 0 to 96 kph produced the next highest emissions, then the SET-7, HFET test, 96 kph steady-state, and the 48 kph steady-state. The lowest sulfur compound emissions were from the acceleration to 48 kph.

It is interesting to note that the 48 kph steady-state sulfur emissions were either the lowest or next lowest sulfur emissions. In fact, the total sulfur emissions at 48 kph (30 mph) were on the order of one-tenth of the total sulfur emissions from the FTP.

For the FTP tests, cars EM-1 and EM-3 produced, on the average, more total sulfur emissions than EM-2 and EM-4. The air-injected monolith catalyst (EM-3) appeared to produce more total sulfur emissions during the FTP tests than the nonair-injected monolith (EM-1). The air-injected pelleted catalyst (EM-4) appeared to produce approximately the same total sulfur emissions as the nonair-injected pelleted catalyst (EM-2).

A comparison of average SET-7 total sulfur emissions for the non-air-injected cars shows that car EM-2 produced somewhat more total sulfur emissions than car EM-1. For the air-injected cars, EM-4 produces less total sulfur than EM-3. The air-injected monolith (EM-3) appeared to produce somewhat more total sulfur emissions during the SET-7 test than the non-air-injected (EM-1). However, the air-injected pelleted catalyst (EM-4) produced less total sulfur emissions than the nonair-injected pelleted catalyst (car EM-2.) The comparisons between the various catalyst configurations made for the SET-7 tests also hold for the HFET tests.

The total sulfur emissions from the acceleration to 48 kph and the 48 kph steady-state were too low to make meaningful comparisons; however, it appears that car EM-4 had the highest total sulfur emissions at both conditions.

The sulfur emissions from the acceleration from 0 to 96 kph were the highest of all tests for the nonair-injected cars. It is not surprising then, that at this condition, the nonair-injected cars produced more total sulfur emissions than the air-injected cars, comparing like models (i.e., EM-1 to EM-3 and EM-2 to EM-4). When the total sulfur emissions from the nonair-injected cars are compared, the pelleted system (EM-2) had greater emissions than the monolith system (EM-1). However, when the air-injected car sulfur emissions are compared, the pelleted system had lower emissions than the monolith system.

At the 96 kph conditions, car EM-2 produced the highest total sulfur emissions. The two cars with monolith catalyst (cars EM-1 and EM-3) produced approximately the same total sulfur emissions. The nonair-injected

pelleted catalyst car (EM-2) produced greater total sulfur emissions than the air-injected pelleted catalyst car (EM-4).

The main purpose of this study, of course, is to investigate the exhaust sulfate emissions. While the histograms provide a good means to visualize the fraction of the sulfur emissions emitted as sulfuric acid, they provide only a gross comparison of sulfate emissions between tests and cars. This is because for some of the tests, the sulfate emissions from the non air-injected cars were too small to be represented accurately on the scale used for the histograms. Therefore, the sulfate emissions for each test type were averaged over the 80,500 km and presented in Table 21.

As can be seen from the table, the highest average sulfate emission from all cars is 33.6 mg/km from the acceleration from 0 to 96 kph for EM-3, the smallest average sulfate emission is 0.31 mg/km from the acceleration to 48 kph for EM-2. However, the rank order of sulfate emissions by test type is different for each car. This is a somewhat curious finding since sulfate emissions might reasonably to expected to be a function of the type of driving. Apparently, there are enough differences in the operations of the total emission control system on each car to cause these differences in rank order. The SET-7 test fell in the middle of the sulfate emission ranking for all four cars. Table 21 also shows that air-injected cars (EM-3 and EM-4) produced more sulfate emissions from each test type than the nonair-injected cars (EM-1 and EM-2).

From the tables, large variations in sulfate emissions from car-to-car for each type of test may be noted. The largest variation is for the 96 kph steady-state test where the highest average sulfate value is approximately 76 times the lowest. The acceleration to 96 kph test has the smallest variation, the highest sulfate value being 3.2 times the lowest value. Car EM-1 had the lowest average sulfate emissions for 5 of the 7 test types. Car EM-2 had the lowest average sulfate emissions from 2 of the test types. The highest sulfate emissions for each test type were more evenly divided between cars EM-3 and EM-4, with EM-3 having the highest emissions on 4 of the test types and EM-4 on 3 of the test types.

As mentioned before, the scale of the histograms in Figures 25 to 31 makes it difficult to determine the changes in sulfate emissions with distance accumulation. Therefore, the sulfate emissions in mg/km have been plotted versus distance traveled in kilometres and presented in Figures 32 to 38 for each test type. As explained, emissions control system malfunctions occurred during certain tests of EM-3 and EM-4. These malfunctions were corrected as discovered. However, for the tests at which the malfunctions occurred, the sulfate emissions were affected. This fact should be taken into consideration when evaluating the results presented in Figures 32 to 38. In the case of EM-4, which had an air-injection system leak at the 8,050 km and and 16,100 km tests, it appeared that this leak may have affected the sulfate conditioning of the catalyst, causing lower sulfates at the 24,100 km test than would have been seen had the air-injection system not leaked at all.

As a general rule, the sulfate emissions from the nonair-injected cars showed little change over the 80,500 km distance accumulation. The

TABLE 21. AVERAGE SULFATE EMISSIONS BY TEST TYPE FROM DISTANCE INTERVAL TEST ON FOUR CARS

Sulfate Emissions

	EM	-1	EM	-2	EM	- 3**	EM	-4*
Test Type	mg/km	Rank Order	mg/km	Rank Order	mg/km	Rank Order	mg/km	Rank Order
FTP	1.35	3	1.01	6	4.65	6	7.30	7
SET-7	0.49	5	1.04	5	13.98	4	13.25	4
HFET Accel to	0.45	6	1.63	4	26.25	3	11.74	5
48 kph	0.36	7	0.31	7	1.00	7	19.03	2 .
48 kph Accel to	0.97	4	2.11	3	8.55	5	17.43	3
96 kph	9.81	1	12.49	1	33.59	1	7.49	6
96 kph	2.03	2	3.13	2 .	26.26	2.	28.42	1

^{*}excluding 8050 and 16100 km tests with leaking air injection system **excluding 32200 km test with failed EGR

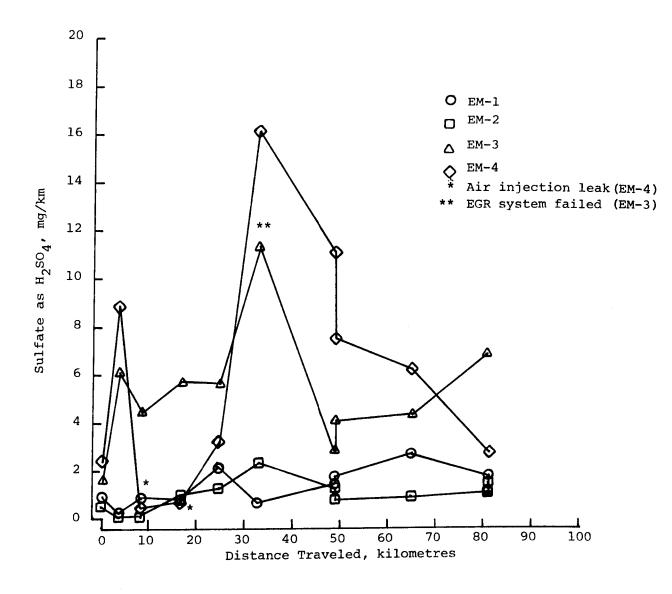


FIGURE 32. SULFATE EMISSIONS FROM FTP TESTS AS A FUNCTION OF DISTANCE TRAVELED FOR FOUR CARS

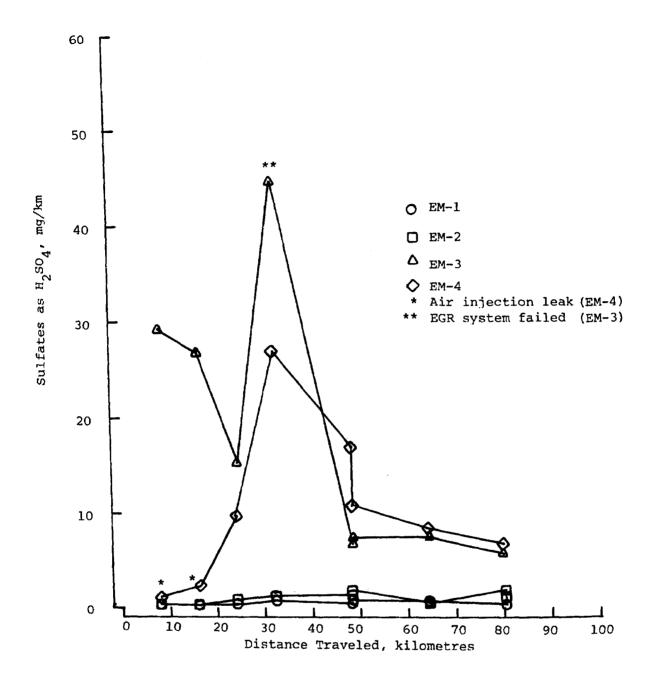


FIGURE 33. SULFATE EMISSIONS FROM SET-7 TESTS AS A FUNCTION OF DISTANCE TRAVELED FOR FOUR CARS

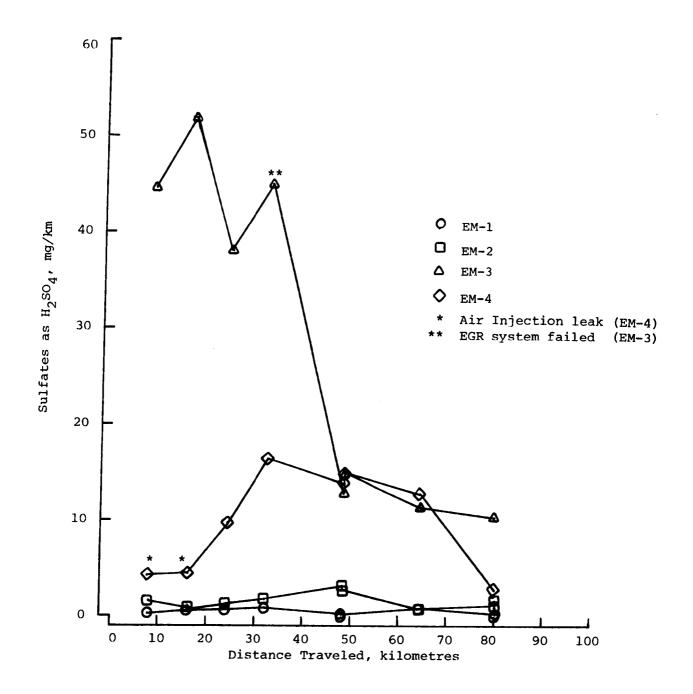


FIGURE 34. SULFATE EMISSIONS FROM HFET TESTS AS A FUNCTION OF DISTANCE TRAVELED FOR FOUR CARS

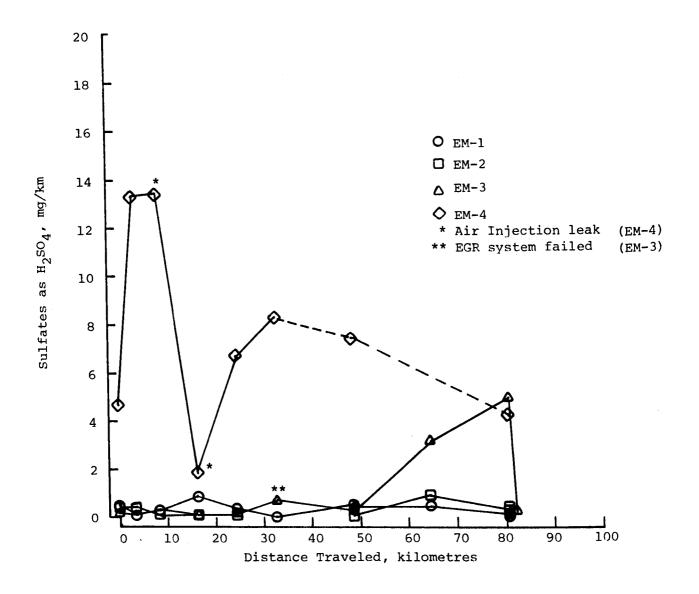


FIGURE 35. SULFATE EMISSIONS FROM ACCELERATION TO 48 KPH TESTS AS A FUNCTION OF DISTANCE TRAVELED FOR FOUR CARS

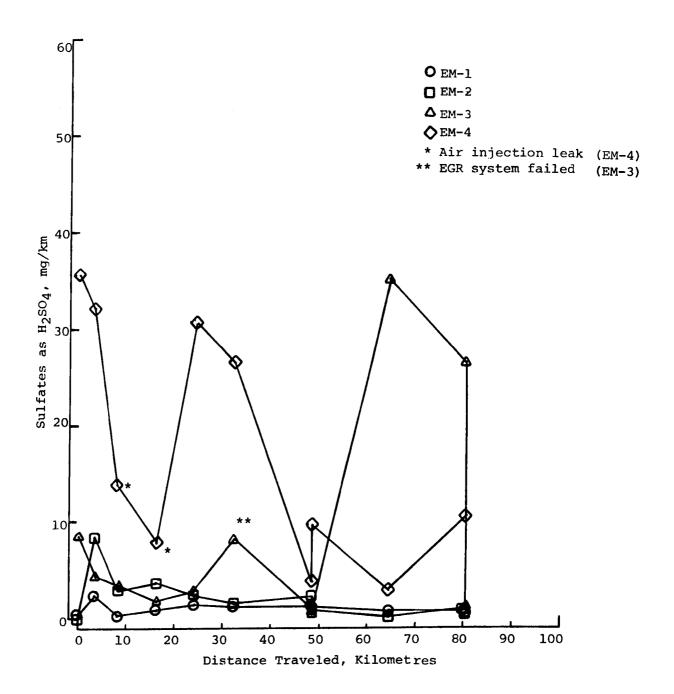


FIGURE 36. SULFATE EMISSIONS FROM 48 KPH STEADY STATE TESTS AS A FUNCTION OF DISTANCE TRAVELED FOR FOUR CARS

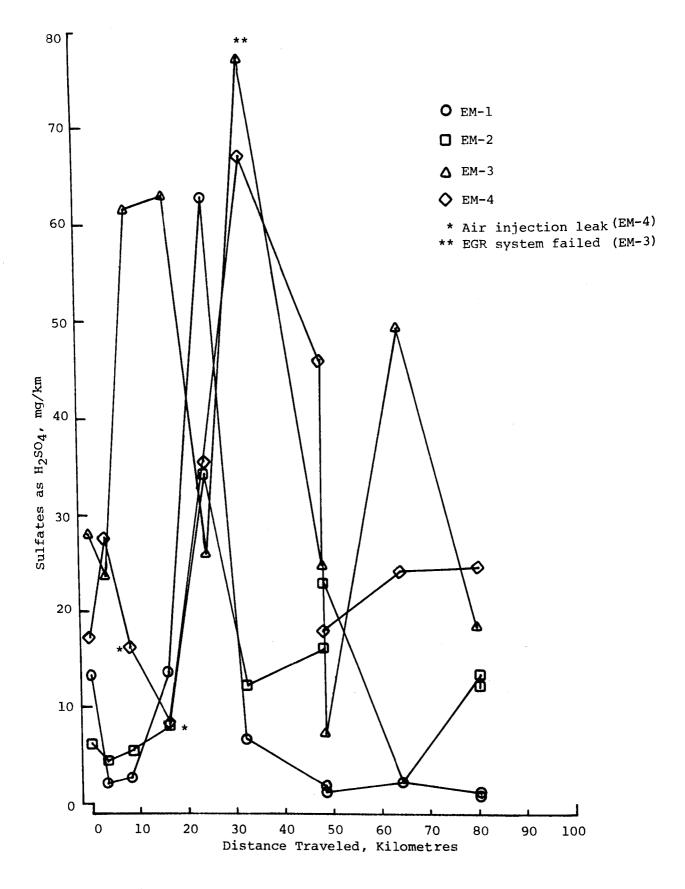


FIGURE 37. SULFATE EMISSIONS FROM ACCELERATION TO 96 KPH TESTS AS A FUNCTION OF DISTANCE TRAVELED FOR FOUR CARS

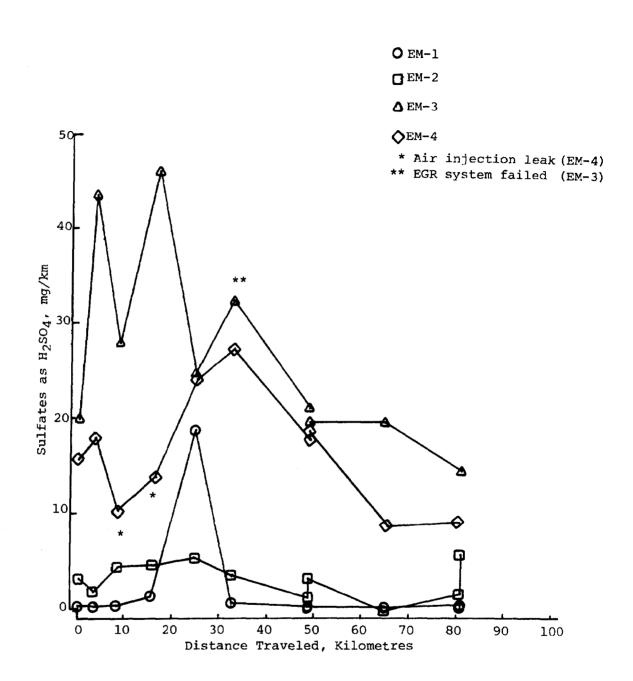


FIGURE 38. SULFATE EMISSIONS FROM 96 KPH STEADY STATE TESTS AS A FUNCTION OF DISTANCE TRAVELED FOR FOUR CARS

exception is the acceleration to 96 kph. The sulfate emissions from this test for all cars varies widely over the 80,500 km. The sulfate emissions for car EM-1 from the 24,100 km test at 96 kph, were considerably higher than any of the other kilometre test points at 96 kph. It is felt, however, that this is a valid value considering that it is from replicate tests. It is also interesting to note that the CO emissions from EM-1 are much lower for the 96 kph test at this kilometre point. This is perhaps an indication of a higher oxygen feed level to the catalyst during this particular test. What would have caused this higher oxygen level is not known.

The sulfate emissions from the two air-injected cars, EM-3 and EM-4, do not follow similar patterns with distance. As mentioned previously, this may be caused by the emission control system malfunctions at various points in the distance accumulation of the two cars.

For car EM-3, the higher speed tests (SET-7, HFET, accel to 96 kph, and 96 kph steady-state) show a similar pattern of sulfate emissions. As the distance traveled increases from 0 to between 8,000 and 16,000 km, the sulfate emissions increase. Thereafter, as distance traveled increased from 16,000 km to 80,500 km, the sulfate emissions decreased. For the FTP, the sulfate emissions from EM-3 increased as distance increased to about 3,200 km. From 3,200 km to 80,500 km, the sulfate emissions were essentially constant. The sulfate emissions from the acceleration to 48 kph and the 48 kph steady-state tests were essentially constant at a level corresponding to the nonair-injected cars to a distance of approximately 50,000 km. From 50,000 km to 80,000 km the sulfate emissions increased, then abruptly decreased to the pre-50,000 km level during the replicate 80,500 km test.

The sulfate emissions for EM-4, from all tests except the acceleration to 48 kph and 48 kph steady-state tests, increased between 0 and 32,000 km, then decreased between 32,000 km and 80,500 km. It is possible that the peak sulfate emission level might have been reached prior to 32,000 km if the air injection system had not been leaking between approximately 6,000 km and 19,000 km. For the acceleration to 46 kph and the 46 kph steady-state tests of EM-4, the sulfate emissions apparently reached their peak within the first 3,000 km of operation, and decreased continuously thereafter.

Since the SET-7 test cycle represents the driving mode where the highest level of sulfate would be expected, the sulfate emissions from the SET-7 deserve special attention. A regression analysis was performed on the SET-7 sulfate emissions for each car separately. First, a linear regression equation was obtained and a deterioration factor calculated using the procedure for light duty certification deterioration factors (14) from the equation values at 8,050 and 80,500 km. The linear equations and deterioration factor calculated from these equations together with the coefficient of determination (r²) for each equation are shown in Table 22. Also shown are the minimum, maximum and average value of the SET-7 sulfate emissions for each car with indications at which distance test point the minimum and maximum occurred.

From this table, it can be seen that both EM-1 and EM-2 have deterioration factors greater than 1.0, indicating the SET-7 emissions increased with distance. However, the $\rm r^2$ values for the regression equations

TABLE 22. REGRESSION ANALYSIS AND DETERIORATION FACTORS FOR SET-7 TESTS AT DISTANCE INTERVALS ON FOUR CARS

Linear Regression: Sulfate in mg/km = a + b (km)

Car	Distance Used	a	<u>b</u>	Coeff. of Determination (r2)
EM-1 EM-2 EM-3(1)	3200 to 80500 3200 to 80500 8050 to 80500	0.40 0.46 27.96	$+2.24 \times 10^{-6}$ $+13.02 \times 10^{-6}$ -337.85×10^{-6}	0.106 0.342 0.794
EM-4(2)	32200 to 80500	35.48	-392.98×10^{-6}	0.775

Exponential Regression: Sulfates in mg/km =aeb(km)

Car	Distance Used	a	b	Coeff. of Determination (r2)
EM-3(1)	8050 to 80500	30.79	-24.23×10^{-6}	0.858
EM-4(2)	32200 to 80500	57.37	-28.14×10^{-6}	0.866

	Average SET	-7 Sulfates, mg/k	Linear Deterioration	Exp. Deterioration	
Car	Minimum	Maximum	Mean	<u>Factor</u>	Factor
EM-1 EM-2 EM-3(1) EM-4(2)	0.29(16100 km) ⁽³⁾ 0.30(16100 km) 5.67(80500 km) 6.80(80500 km)	0.80(32200 km) 1.89(80500 km) 29.09(8050 km) 26.90(32200 km)	0.49 1.04 13.98 13.25	1.384 2.677 0.030 0.119	- 0.173 0.130

⁽¹⁾ excluding failed EGR test at 32200 km

⁽²⁾ excluding tests with leaking air injection system

⁽³⁾ numbers in parentheses are distances at which max or min occurs

of these two vehicles indicate that the data fit the equation poorly. This fact and the consideration of low absolute levels of the sulfate emissions themselves, should be considered when drawing conclusions from these deterioration factors. The deterioration factors for cars EM-3 and EM-4 are less than 1.0, indicating that the SET-7 sulfate emissions decreased with distance traveled. Examination of Figure 33, the plot of SET-7 sulfate emissions versus distance, indicates that an exponential curve might fit the SET-7 sulfate emissions from EM-3 and EM-4 better than a linear equation. An exponential regression analysis was performed on these sulfate emissions using an equation of the form $y = ae^{bx}$. The results of the analysis are also shown in Table 22. Comparing the coefficients of determination of the exponential curve with those obtained from the linear regression, it can be seen that the exponential equation does indeed give a better fit (r2 closer to 1.0 for the exponential equations). A new deterioration factor was then calculated using the 8,050 and 80,500 km values from the exponential equations for each car. These deterioration factors are also shown in Table 22.

Apparently then, SET-7 sulfate emissions from nonair-injected cars changed little, if any, during 80,500 km of distance accumulation. SET-7 sulfate emissions from air-injected cars decreased significantly in an exponential fashion from 8,050 km (5,000 miles) to 80,500 km (50,000 miles).

It should be remembered that in the above analysis, certain data from EM-3 and EM-4 were not used because of malfunctions in the emission control of the car during those certain tests. While it was not one of the purposes of this study, one of the significant findings is that emission control system malfunctions have a definite effect on sulfate emissions.

Once the fact that the air-injected catalyst cars had higher sulfate emissions than non air-injected cars was established, it was obvious that any leak in the air injection system would lower the sulfate emissions. This is what happened at the 8,050 and 16,100 km test points on EM-4. In fact, the lower sulfate emissions were one of the causes of the investigation for a leak. Another malfunction that affects sulfate emissions was not so obvious. After the 32,200 km test of EM-3, a check of the NO_x emissions indicated a malfunction of the EGR system. As explained earlier, this malfunction was caused by a failure of the vacuum amplifier in the EGR system. The sulfate emissions were also high, but the two facts were not connected at the time, since except for the FTP and SET-7 tests, sulfate emissions at the same, or higher, levels had been observed on previous tests.

It was not until a similar situation occurred during the 48,300 km "after maintenance" tests on EM-3 that the two facts were connected. While reviewing the $NO_{\rm X}$ emissions as each test was completed, it became obvious that the EGR system was not functioning. The EGR system had been visually inspected prior to testing and appeared to be operational. However, after the test each line was traced to insure there were no leaks. Finally, an almost inaccessible connection to a solenoid in the system was found to be loose. It is perhaps fortunate that the leak developed since it revealed an unexpected relationship between EGR and sulfate emissions.

The hose was connected and proper operation of the EGR system veri-

fied. The car was operated for 500 km on the modified AMA cycle and then retested. It is this test series on February 19, 1976, that is reported as the "after maintenance" tests for the 48,300 kilometre test point.

The sulfate filters from the tests with the inoperative EGR were processed to compare sulfate emissions with and without EGR. Table 23 shows the NO_{X} and sulfur emissions from both the 48,300 km after maintenance FTP, SET-7 and FET tests, together with the NO_{X} and sulfur emissions from the 24,100 and 32,200 km tests for comparison. Note that for 5 of the 6 tests, when the EGR system was inoperative, the sulfate emissions were considerably higher than the sulfate emissions from tests with the EGR functioning. Thus, while the results are not 100 percent consistent, it does appear that an EGR system failure increases sulfate emissions as well as NO_{X} emissions.

To further investigate this phenomenon, a series of two tests were run on each car at the conclusion of the 80,500 km tests. The test series consisted of two 80 kph steady-state tests, 10 to 15 minutes long. For one of the two tests, the EGR system was disabled by disconnecting the vacuum actuation line at the EGR valve. The other test was run with the EGR system functioning normally. On car EM-4, a third test was run with the vacuum line disconnected and plugged. With the line unplugged, there was a vacuum "leak", as well as an inoperative EGR system; with the line plugged, the integrity of the vacuum system was preserved and only the EGR system was inoperative.

Table 24 shows the results of these tests. In addition to the usual gaseous emission and sulfates, the temperature at the inlet to the catalyst and the oxygen level at the exit of the catalyst are also shown. For each car, the test with the EGR valve disabled showed an increase in NO_X. This increase varied from approximately 10 percent for EM-1 to approximately 200 percent for EM-4. The sulfate emissions also increased for the EGR disabled test except for car EM-1. Thus, the changes in sulfate emissions ranged from negligible for car EM-1 to approximately 170 percent for the test with the vacuum line plugged on car EM-4.

For 3 of the 4 cars, when the EGR system was disabled, the exhaust gas temperature into the catalyst decreased. On two of the cars, the O_2 content at the exit of the catalyst decreased when the EGR was disconnected, one one car there was no change and on one car the oxygen increased. It has been shown in several studies (12, 13) that decreasing catalyst temperature increases the amount of sulfates formed. Thus, it is not surprising that the car with the largest temperature decrease, (EM-4), also had the largest sulfate increase.

This series of tests was not intended to be a thorough investigation of this phenomenon. Rather, they were to be a verification that a malfunctioning EGR system could lead to increased sulfate emissions. It is felt that the test accomplished this purpose and has defined an area that requires further study.

To summarize the sulfate emissions results from the four distance accumulation cars, the air-injected catalyst cars have significantly higher sulfate emissions than the nonair-injected catalyst cars for all test cycles. The reason for this cannot be stated with certainty, since as explained previously, some important parameters were not measured. However, it is felt

TABLE 23. NO_x AND SULFUR EMISSIONS FROM SELECTED TESTS ON SwRI CAR EM-3

		Test	EGR	σ/i	km	mg/km	% Fuel S as	% Fuel Sas	Total
Miles	Date(s)	Type	Operative?	NOx	SO ₂	H ₂ SO ₄	$\frac{\text{H}_2\text{SO}_4}{\text{H}_2\text{SO}_4}$	SO ₂	Recovery
15,000	11/3, 11/5/76	FTP	Yes	1.10	0.186	5.67	2.44	121.62	124.05
20,000	12/19/75	FTP	No	3.26	0.224	11.35	5.91	178.76	184.67
30,000	2/6/76	FTP	Yes	1.07	0.116	2.84	1.33	83.31	84.65
30,000	2/18/76	FTP	No	2.46	0.086	3.66	1.89	68.33	70.23
30,000	2/19/76	FTP	Yes	0.93	0. 169	4.12	1.94	122.10	124.04
15,000	11/3, 11/5/75	SET-7	Yes	0.86	0.081	15.27	9.91	81.18	91.09
20,000	12/19/75	SET-7	No	3.00	0.085	44.59	33.01	95.88	128.89
30,000	2/6/76	SET-7	Yes	0.81	0.096	6.62	4.55	101.31	105.86
30,000	2/18/76	SET-7	No	2.67	0.063	49.09	35.46	69.89	105.35
30,000	2/19/76	SET-7	Yes	0.80	0.101	7.05	4.56	100.27	104.83
15,000	11/3, 11/5/75	FET	Yes	0.75	0.046	38.01	29.46	53.60	83.06
20,000	12/19/75	FET	No	3.38	0.075	45.08	39.33	99.88	139.21
30,000	2/6/76	FET	Yes	0.87	0.059	12.93	10.11	70.75	80.87
30,000	2/18/76	FET	No	2.87	0.040	62.79	55.93	54.79	110.72
30,000	2/19/76	FET	Yes	0.85	0.045	14.55	11.42	54.25	65.67

Note: SET-7 is average of 4 sets

TABLE 24. RESULTS OF EMISSION TESTS AT 80 kph STEADY STATE ON FOUR CARS WITH EGR SYSTEM OPERATING NORMALLY AND DISABLED

Tes ⁻	t Car	Operative			g/kr	n	mg/km	% Fuel as	% fuel as	Total	Avg.Cat. Inlet	O ₂ % Out of
No.	. <u>No.</u>	EGR	HC	CO	NOX	SO ₂	H ₂ SO ₄	H ₂ SO ₄	so ₂	Recovery	Temp °F	Cat.
1	1 EM-		0.06	0.21	3.03	0.054	0.01	0.00	81.49	81.50	888°	1.00%
1	2 EM-	1 no (1)	0.05	0.27	3.31	0.079	0.01	0.00	123.86	123.86	939°	.75%
1	1 EM-	2 yes	0.03	0.12	1.36	0.033	1.27	1.15	45.33	46.48	1143°F	1.13%
1	2 EM-	2 no	0.04	0.11	2.33	0.042	1.59	1.41	57.09	58.50	1119°F	0.83%
1	1 EM-	3 yes	0.07	0.02	1.58	0.020	44.16	46.74	32.13	78.87	881°F	6.00%
1	2 EM-	3 no	0.06	0.02	4.36	0.019	55.60	60.72	31.56	92.27	831°F	6.00%
	1 EM-	4 yes	0.02	0.02	0.42	0.030	10.72	9.12	38.83	47.95	1081°F	5.50%
	2 EM-		0.01	0.03	1.24	0.022	17.15	16.35	32.55	48.90	974°F	6.00%
1	3 EM-	4 no (2)	0.02	0.04	1.28	0.020	29.28	27.36	28.68	56.04	976°F	6.13%

Notes: (1) Except where noted when EGR system is inoperative, the vacuum line to the EGR valve was disconnected, but not plugged.

⁽²⁾ For this test vacuum line to EGR valve was disconnected and plugged.

that the higher oxygen level in the air-injected catalyst was the cause of the higher sulfates. For the air-injected catalyst cars, the sulfate emissions from the SET-7 test increased as distance traveled increased from 0 to between 8,000 and 16,000 km. The SET-7 sulfate emissions then decreased exponentially as distance traveled increased to 80,500 km. The reason for this decrease is only speculative, but one possibility is that the catalyst efficiency is decreasing, so that along with its decreasing ability to oxidize CO and HC, it also decreases in ability to oxidize SO₂ to SO₃. The SET-7 sulfate emissions from the non air-injected catalyst cars showed little change with distance traveled for the entire 80,500 km.

The smallest sulfate emission observed during this study was less than 0.01 mg/km. This occurred on the accelerations to 48 kpm during the 32,000 km test series on EM-1. The largest sulfate emission observed was 77.11 mg/km. This occurred on the acceleration to 96 kpm during the 32,200 km test series on EM-3. The highest sulfate emissions from each car occurred during the acceleration to 96 kph test. The lowest occurred during the acceleration to 48 kph test for three of the four cars. Sulfate emission variations were noted (1) with whether or not air was injected, (2) with distance traveled, and (3) with test cycle. These findings indicate that there are large differences in sulfate emissions from cars in actual operation on the road.

2. Storage of Sulfur Compounds

One of the objectives of this study was to investigate, where possible, the storage and release of sulfur compounds from the catalyst systems. This storage and release of sulfur on a test cycle basis can easily be seen if the exhaust sulfur emissions are expressed in terms of percent by weight of the sulfur consumed with the fuel. If there is no net storage or release of sulfur from the catalyst, the exhaust sulfur emissions should equal 100 percent of the fuel sulfur consumed during the test. Recovery of sulfur in the exhaust in excess of 100 percent indicates a net release of sulfur during the test. A recovery of less than 100 percent indicates a net storage during the test. For purposes of these discussions, the term "total recovery" means the sum of the exhaust sulfur in SO₂ expressed as percent of fuel sulfur and the exhaust sulfur in sulfate (as H₂SO₄) expressed as percent of fuel sulfur.

Tables 17 to 20 contain the values of sulfur in SO₂ as percent of fuel sulfur, sulfur in sulfate as percent of fuel sulfur, and total recovery for each test type at all distance intervals for each of the four cars. This information is plotted by test type in Figures 39 to 45 to aid in interpreting the data. The results from all four cars are shown in each figure to facilitate comparison between cars.

An examination of the figures shows that the storage or release of sulfates is not necessarily the same for all cars on a particular test. There are also apparent changes in storage with distance traveled for some cars on some tests.

Before discussing the sulfate storage of each car on each test cycle, it should be pointed out that the SO_2 collection procedure is a wet chemistry procedure that requires considerable sample handling and thus is more prone to errors than the other emission measurements made during this study. Thus,

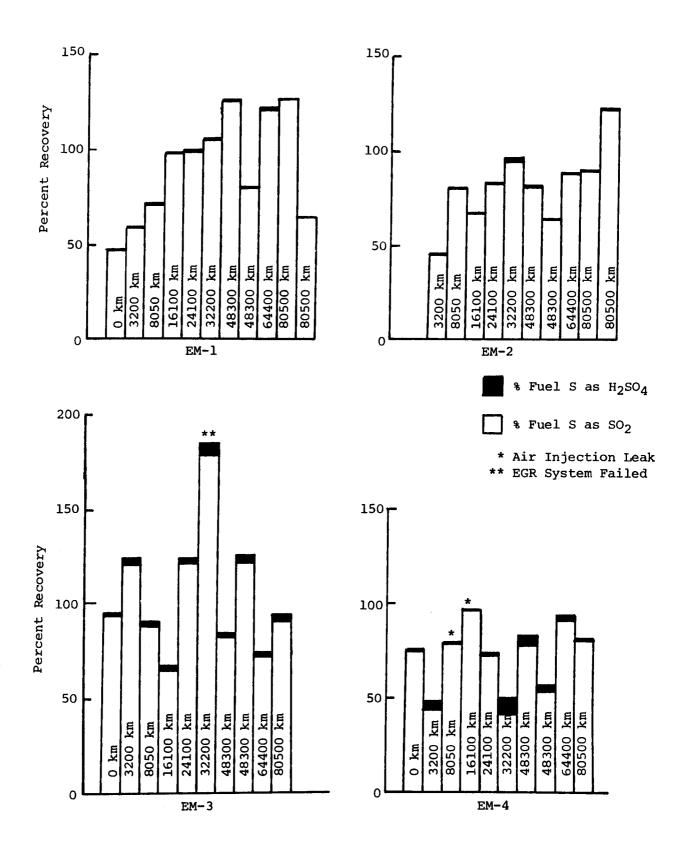


FIGURE 39. EXHAUST SULFUR RECOVERY FROM FTP TESTS AT DISTANCE INTERVALS FOR FOUR CARS

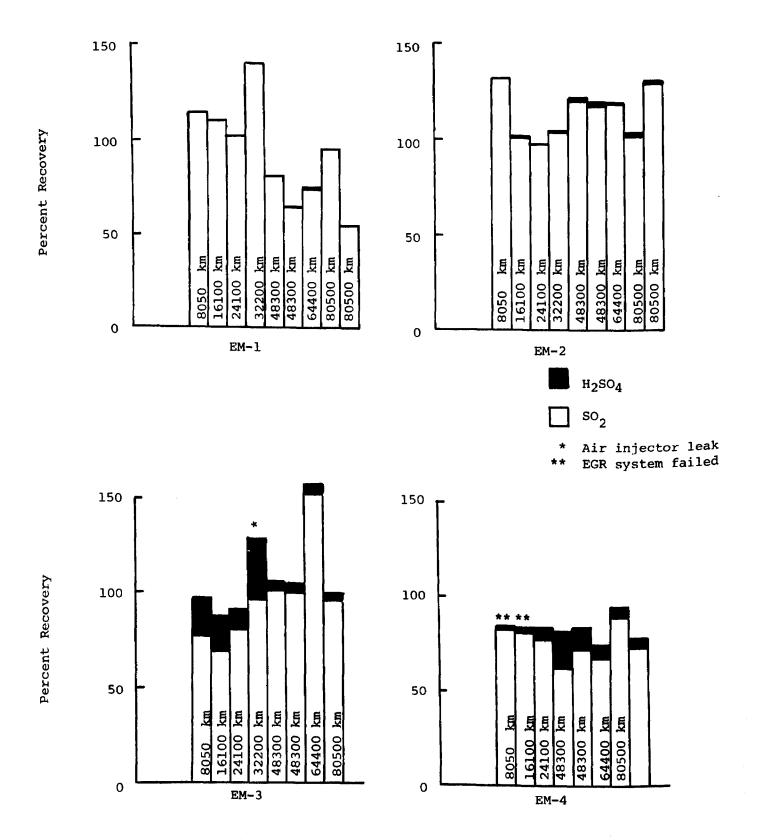


FIGURE 40. EXHAUST SULFUR RECOVERY FROM SET-7 TESTS AT DISTANCE INTERVALS FOR FOUR CARS

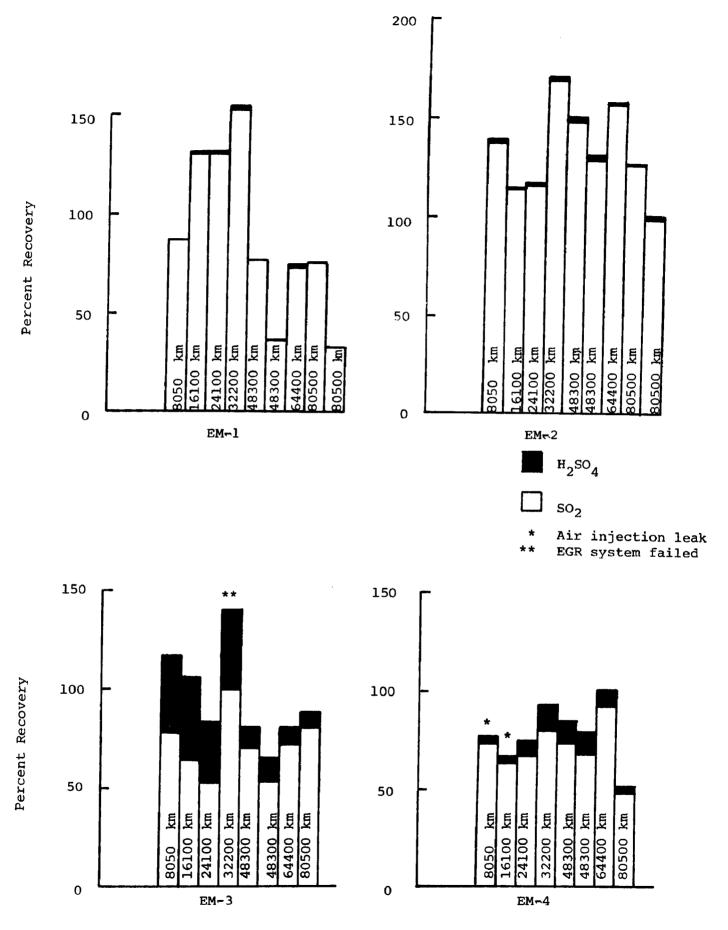


FIGURE 41. EXHAUST SULFUR RECOVERY FOR HFET TESTS AT DISTANCE INTERVALS FOR FOUR CARS

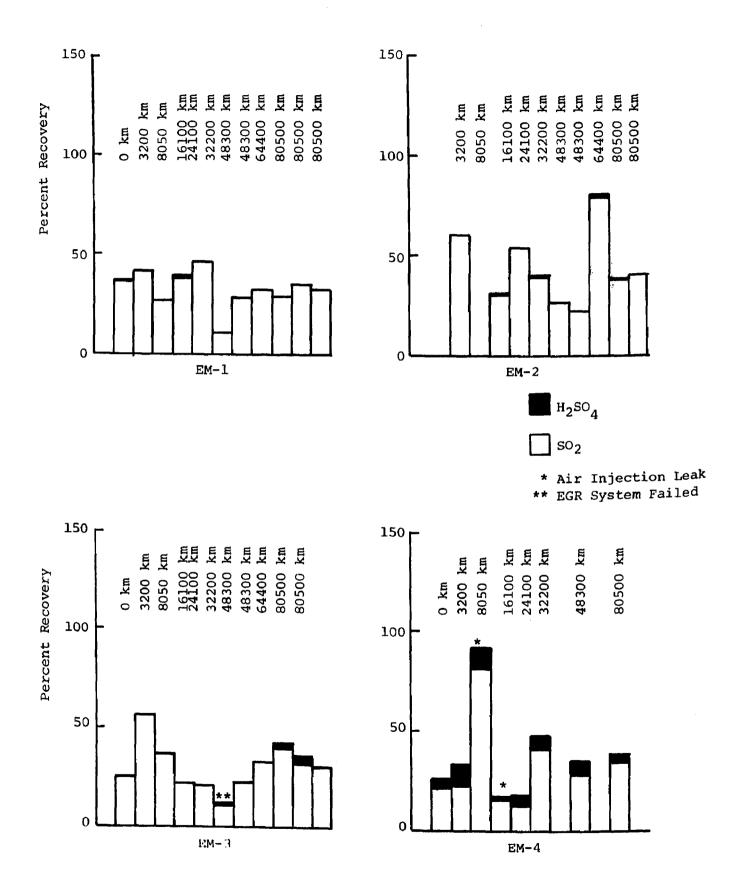


FIGURE 42. EXHAUST SULFUR RECOVERY FOR ACCELERATION TO 48 kph TESTS AT DISTANCE INTERVALS FOR FOUR CARS

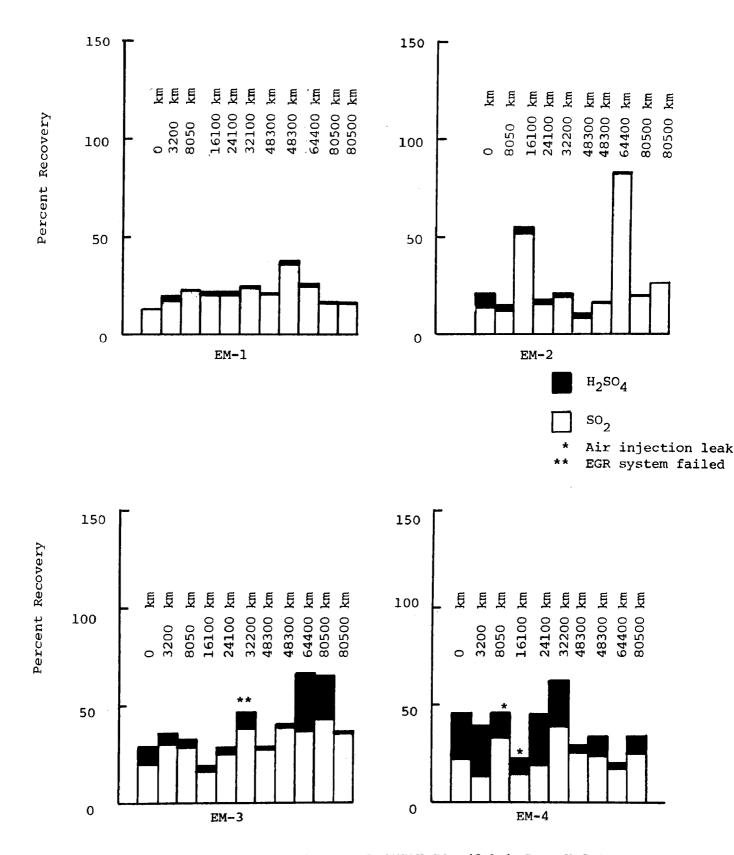


FIGURE 43. EXHAUST SULFUR RECOVERY FOR 48 kph STEADY STATE TESTS AT DISTANCE INTERVALS FOR FOUR CARS

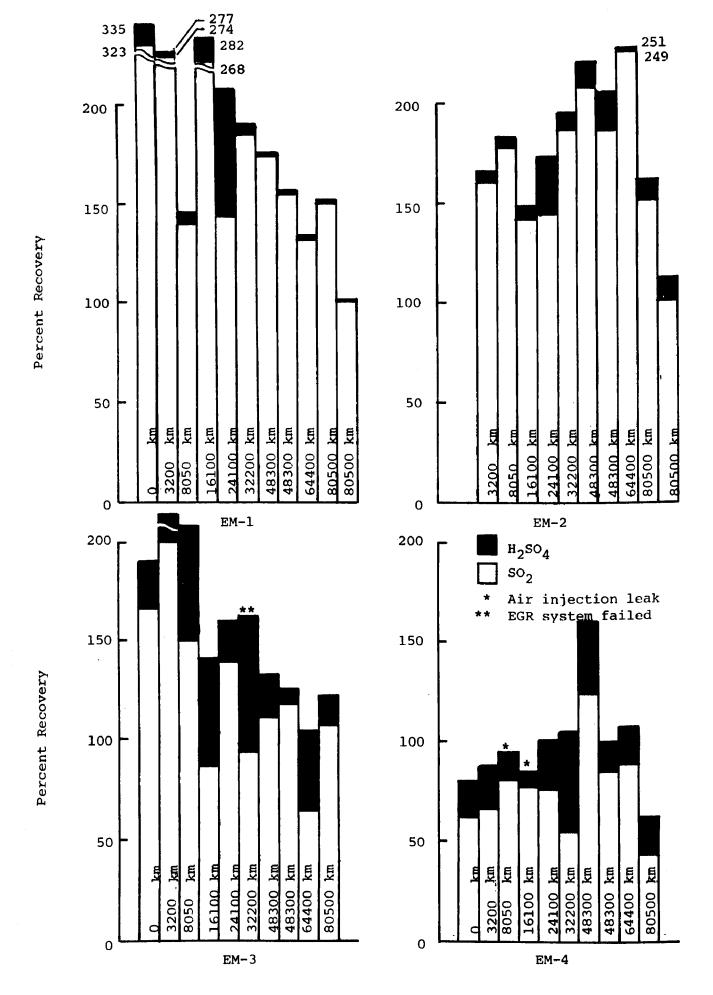


FIGURE 44. EXHAUST SULFUR RECOVERY FOR ACCELERATION TO 96 kph TESTS AT DISTANCE INTERVALS FOR FOUR CARS

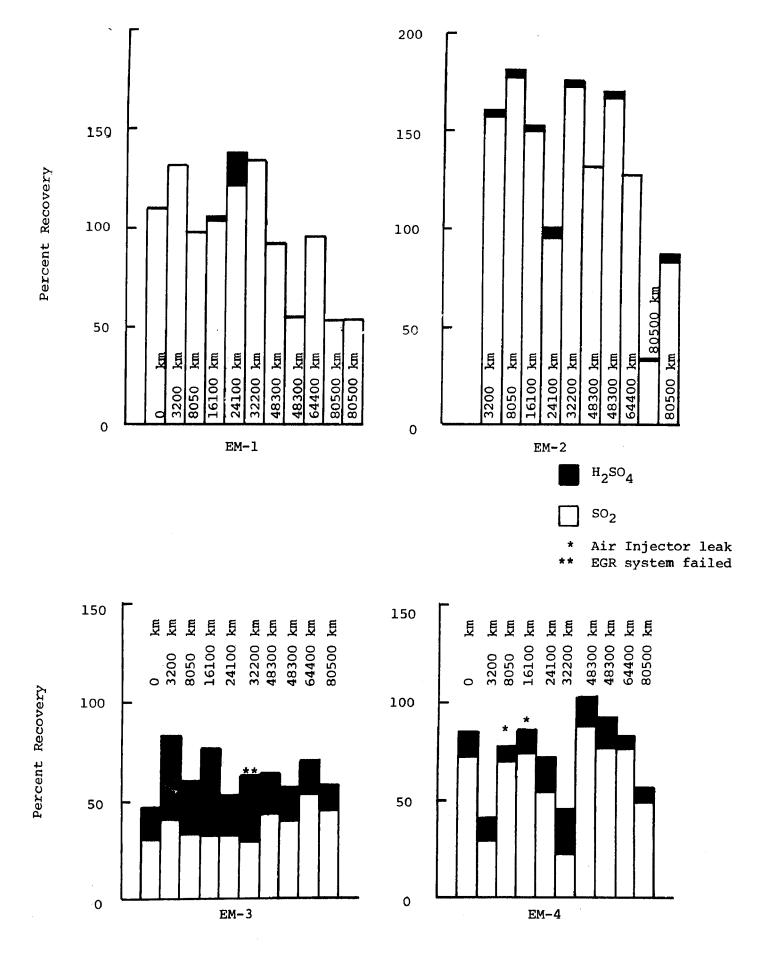


FIGURE 45. EXHAUST SULFUR RECOVERY FOR 96 kph STEADY STATE TESTS AT DISTANCE INTERVALS FOR FOUR CARS

 ${\rm SO}_2$ differences between two tests of less than ± 10 percent may not be significant. However, if the data for each car is considered over the complete 80,500 km distance accumulation, the trend and total recovery level should be sufficiently valid to draw correct conclusions.

For the FTP tests, car EM-l apparently stored sulfur compounds at a decreasing rate as distance traveled increased. At zero kilometres EM-l had a net storage of about half of the sulfur consumed with fuel. As distance traveled increased, the net storage decreased. After approximately 50,000 km, there was an apparent release of sulfur compounds from the catalyst during the FTP test. Car EM-2 showed the same trend, except that it apparently was just at the equilibrium condition (no net storage or release) by the end of the 80,500 km accumulation. Thus, both the non air-injected cars stored sulfur during the FTP at zero kilometres, but by the time 80,500 km had been accumulated, they were no longer storing sulfur during the FTP test.

As was pointed out earlier, the data from the replicate tests of 80,500 km of cars EM-1 and EM-2 were not averaged because of the erratic emissions results obtained. This is most obvious in total sulfur recovery from the three nonsteady-state tests (FTP, FET, and SET-7) on car EM-1. The test data was checked throughly for errors, but none were found. While the catalyst was obviously storing more sulfur during the replicate tests, the reasons for this are not known.

The total recovery for car EM-3 was close enough to 100 percent for the total distance accumulated (neglecting the test with failed EGR) to indicate that there is no net storage or release of sulfur compounds during the FTP and that there was no change with distance traveled. The FTP is apparently a net storage test for car EM-4, since it never reached 100 percent recovery (neglecting the two tests with air leaks) during the entire distance accumulation. However, from 3,200 km to 80,500 km, there is an increase in total recovery, indicating that less sulfur was being stored as distance traveled increased. Just how the leak in the air injection system affected the change in sulfur storage with distance traveled is not known. The two air-injected cars then, displayed different sulfur storage characteristics during the FTP tests.

For the SET-7 tests, car EM-1 had generally decreasing total recovery over the 80,500 km. It may have actually been releasing a small amount of stored sulfur at the 8,050 km accumulation, however by 80,500 km the total recovery was approximately 50 percent. It should be noted that the SET-7 results shown in Figure 40 are the average of all SET-7 tests run at the particulate distance accumulation point. Both the number and sequence of the SET-7 tests changed during the lower distances on all cars. However, the test sequence was the same from 24,100 km onward for all cars. For car EM-2, the total recovery never dropped below essentially 100 percent, it can be concluded that the SET-7 test is one of net release of stored sulfates for car EM-2. Thus, for the SET-7 test, the two nonair-injected cars showed opposite trends with distance accumulation

The total recovery from car EM-3 in general shown little variation

from 100 percent over the entire 80.500 km accumulation. If the tests with the failed EGR system are neglected, the average recovery for EM-3 is 106 percent. The total recovery for car EM-4 also shows little change between 24,100 km and 80,500 km. The data 80,510 and 16,100 km are neglected because of the leak in the air injection system at that time. However, the average total recovery of 84 percent indicates that EM-4 was operating in a storage mode during the SET-7 tests.

The HFET tests have total recovery patterns that are somewhat difficult to ascertain. The total recovery from car EM-1 appears to increase from near 100 percent to around 154 percent between 8,050 km and 32,200 km. During this distance interval, car EM-1 was operating in a net release mode during the HFET. After 32,200 km, the total recovery for EM-1 dropped to between 30 and 70 percent by 80,500 km. In this distance interval, EM-1 stored sulfur during the HFET. Car EM-2 exhibited a somewhat similar pattern of increasing then decreasing total recovery. However the total recovery was always over 100 percent indicating that EM-2 was always releasing stored sulfur during the HFET. Again for this test, the two non air-injected cars have somehwat different patterns of total recovery.

Car EM-3 operated in a release mode, with recoveries slightly over 100 percent for the 8,050 and 16,100 km tests. After that the car stored sulfur during the HFET at a constant rate for the remaining tests to 80,500 km. The average total recovery (excluding the test with failed EGR) was approximately 80 percent. It is difficult to determine, given the accuracy of the SO₂ method, whether the total recovery from EM-4 remained constant from 24,100 to 80,500 km or whether it decreased somewhat. In either case, the total recovery was always at or below 100 percent, indicating that the HFET was a storage mode for EM-4.

The acceleration to 48 kph test and the 48 kph steady-state test are sulfur storage modes for all cars. However, there is no obvious pattern with distance traveled for any of the four cars. For the acceleration to 48 kph, cars EM-1, EM-3 and EM-4 had average total recoveries of approximately 35 percent. Car EM-2 had an average total recovery of approximately 45 percent. For the 48 kph steady tests, the two non airinjected cars, EM-1 and EM-2 had average total recoveries of approximately 22 and 29 percent respectively. The air-injected cars, EM-3 and EM-4, had somewhat higher total recoveries during the 48 kph steady state tests. Both of these cars averaged approximately 40 percent recovery.

The acceleration to 96 kph test was definitely a sulfur release mode for EM-1, EM-2 and EM-3. Cars EM-1 and EM-3 appear to have had declining total recoveries as the distance traveled increased from 0 to 80,500 km. However, even at the 80,500 km test the recoveries from both these cars were above 100 percent, indicating that their catalysts were still releasing stored sulfur. Car EM-2, while always operating in the release mode, had increasing total recoveries from 0 to approximately 64,000 km. After this, the total recovery apparently dropped. However, it was still above 100 percent at 80,500 km. Car EM-4 had a total recovery of 80 percent at the zero kilometre tests, indicating that it was storing sulfur at this time. The total recovery for EM-4 continued to increase as distance traveled in-

creased to 48,300 km. From approximately 24,100 km, the total recovery was above 100 percent, indicating that the catalyst was releasing stored sulfur. The total recovery for EM-4 decreased as distance traveled increased from 48,300 to 80,500 km. At the 80,500 km test the recovery was approximately 60 percent, indicating that the catalyst was once again storing sulfur.

At 96 kph, the two nonair-injected cars, EM-1 and EM-2, exhibited similar patterns of total recovery. Both cars had recoveries above 100 percent at zero kilometres indicating the release of stored sulfur. The total recovery for EM-1 started to drop after 32,200 kilometers of distance traveled. From the 48,300 km test on, the total recovery was below 100 percent indicating the storage of sulfur in the catalyst. While the total recovery from car EM-2 started to decline at the 48,300 km test, it did not go below 100 percent until the 80,500 km test.

The air-injected cars, EM-3 and EM-4, showed little change in total recovery from the 96 kph test over the entire 80,500 km. The average total recovery for EM-3 was 63 percent, indicating that 96 kph was a storage mode for this car. The total recovery at 96 kph for car EM-4 varied considerably from test to test, but there is no apparent pattern. The average total recovery was 72 percent, indicating for this car also, 96 km was a storage mode.

Throughout the tests, various patterns of storage and release have been seen. In every case where the pattern changed abruptly in mganitude or direction, the test data and vehicle were checked. Occasionally, as with the air injection leaks on EM-4 and the failed EGR system on EM-3, a reason for the change was found. For the remainder of the cases no errors or malfunctions were found. The test plan did not provide for any more detailed investigation of the causes of the storage and release phenomena.

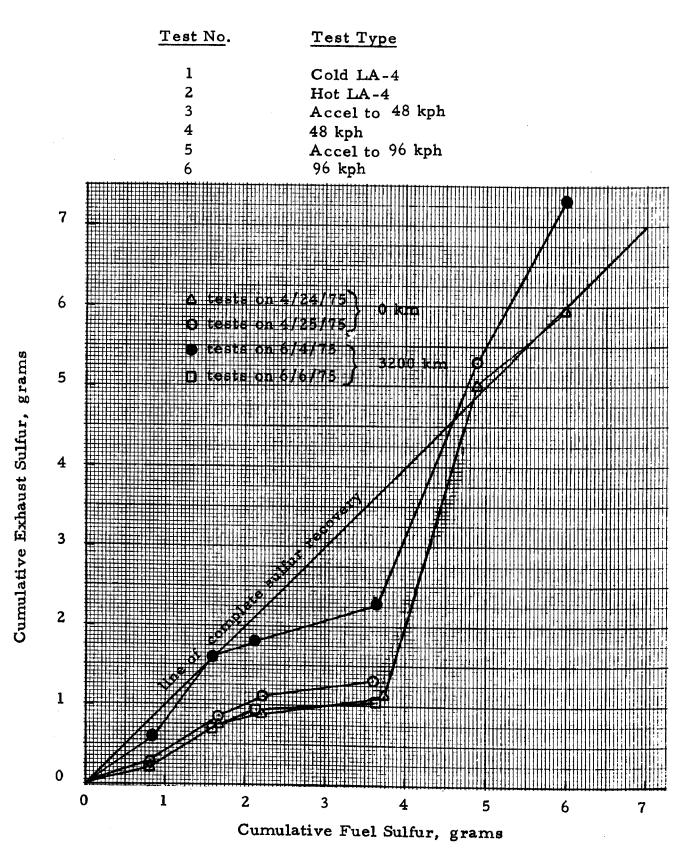
In summary then, it appears that whether a given vehicle operating condition is a storage or release mode, is dependent not only on what the condition is, but also the distance accumulated on the vehicle. Cars EM-1, 2 and 3 stored sulfur during some test cycles and released sulfur during other test cycles. However, EM-4 apparently stored sulfur during all test cycles except for the acceleration to 96 kph test at 24,100, 32,200 and 48,300 km.

As mentioned earlier, the recoveries shown in Figures 39 and 45 are often averages of repetitive test sequences. In the case of the SET-7 and HFET tests, they are also the average of repetitive tests within a given test sequence. Thus, the histograms do not show if, for instance, a SET-7 has a different total recovery following an FTP, than it would following a HFET. Nor do the histograms indicate whether there is a net storage or release of sulfur over the entire test sequence performed at each distance interval.

As means of examining both of these cases, the cumulative exhaust sulfur recovered from each test sequence was calculated to allow comparison with the cumulative fuel sulfur consumed. This can be done, since, except for 5 minute periods at idle conditions between tests, the exhaust was

sampled during the entire test sequence. Plots of cumulative exhaust sulfur as a function of cumulative fuel sulfur are shown in Figures 46 to 57 for the test sequences through 24,100 km distance accumulation. The three different test sequences used are shown for each car. The test sequences after 24,100 km are not shown, since to do so would make it difficult to follow any one test sequence due to a confusion of lines and data points.

The plots are presented without discussion, except to point out that the total sulfur recovery for the entire test sequence is generally within 80 to 120 percent except for EM-4. Car EM-4 shows the trend noted earlier of continual net sulfur storage. Table 25 shows the total recovery for each test sequence for all four cars.


3. Particulate Weights

One of the objectives of this study was to determine the relationship between the total collected weight of particulates and the weight of sulfate from the BCA analysis on each of the filters. As part of the test procedure, each filter was weighed on a microgram balance before and after use and the increase in weight calculated. The weight of sulfates on the filter from the BCA analysis was multiplied by 1.3757 to convert from weight as sulfate ion (SO_4^-) to weight as ammonium sulfate, $(NH_4)_2SO_4$. This was necessary since the sulfate on the filter at the time it was weighed was in the form of ammonium sulfate.

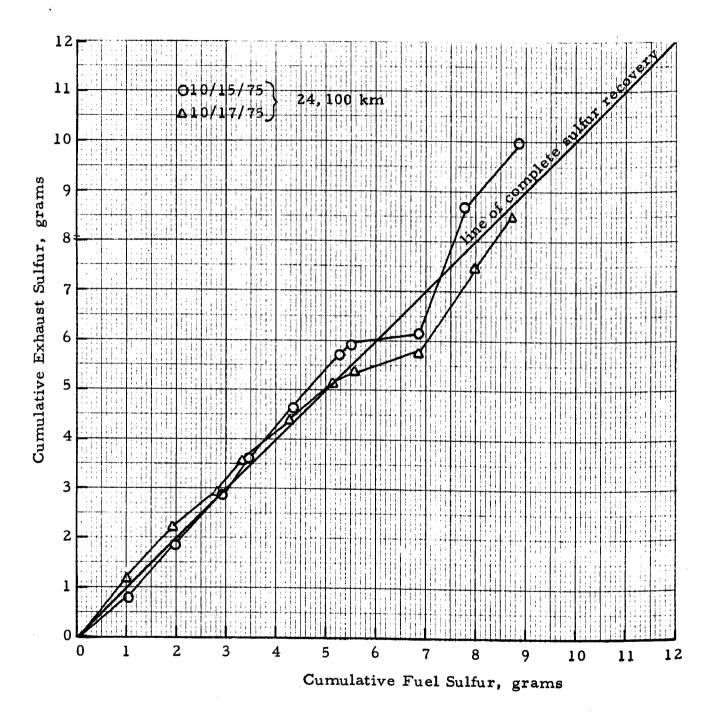
Plots of the BCA sulfate weight versus the balance weight are shown as Figures 58 to 61. Since a preliminary analysis indicated that there might be a different relationship between the weighed and BCA sulfates for the FTP tests than for the other tests, the FTP test results were plotted separately. In addition, the non air-injected cars have been separated from the air-injected cars to examine any differences that might occur between the two different types of catalyst systems.

From an examination of the plots, it is difficult to determine if there is a difference in the correlation of the filter weight and BCA sulfate weight between the air-injected and non air-injected cars on either the FTP and non FTP tests. To better quantify the relationships between filter weight and BCA weight and the differences between air-injected and non air-injected cars, a linear regression was performed on each group. The resulting regression equations are shown on each figure together with a plot of the equation. The correlation coefficient is also shown for each equation.

While there is some scatter in the data, for the non-FTP tests, the correlation coefficients are sufficiently high to indicate good linear fit. The fit is slightly better for the air-injected cars than the non air-injected cars. However, the intercepts and slopes of the two equations are close enough to conclude that there is probably no difference in the balance weight-BCA relationship for the two sets of cars. The FTP tests show considerable scatter and corresponding poorer correlation coefficients. Also, the intercepts and slopes of the air-injected and non air-injected groups are different enough to suspect there is a difference in the balance weight-BCA relationship for the FTP tests on the two sets of cars. Thus, it appears

1975 Federal Plymouth Gran Fury Monolithic Catalyst, no air injection 0.0415% fuel Sulfur

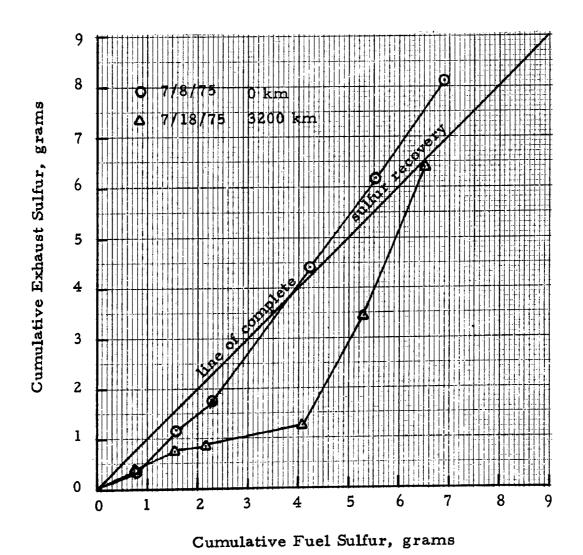
FIGURE 46. CUMULATIVE SULFUR RECOVERED IN EXHAUST AS A FUNCTION OF SULFUR CONSUMED, EM-1 AT 0 AND 3200 km


	Test No.	Test Type
	1 2 3 4	Cold LA-4 Hot LA-4 SET-7 SET-7
	5 6	HWFET HWFET
	7	Accel to 48 kph
	8	48 kph
	9	Accel to 96 kph
	10 10 (1000) 1000) 1000	96 kph
		6/26/75
g	΄ Δtests on	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
am	8 ————————————————————————————————————	8/11/75
g	7 ♥tests on	8/13/75
fur		357/0
Sul	6	
umulative Exhaust Sulfur, grams		
Хh	5	
ъ Н		
ativ	4	
nal		
Cun	3	
J		
	2	
	1	
	0	
	0 1 2 3	4 5 6 7 8 9 10

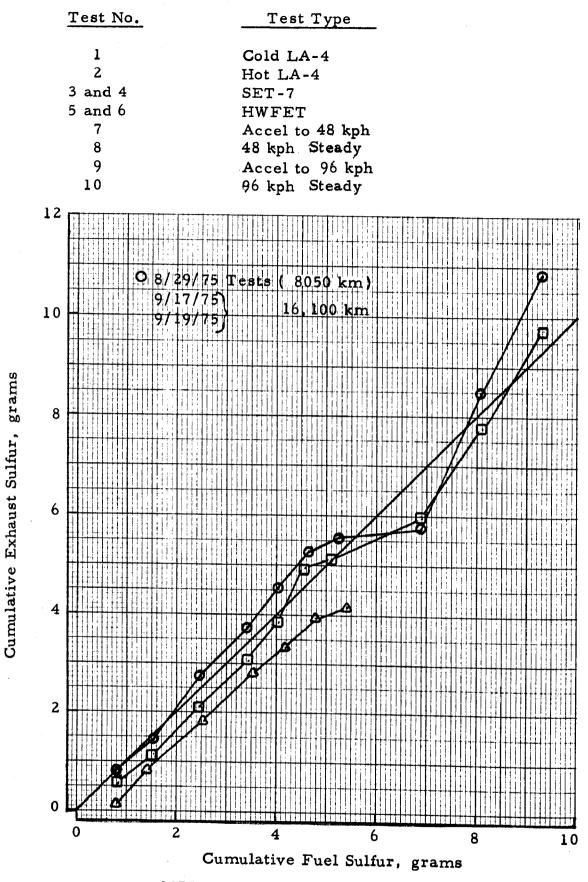
Cumulative Fuel Sulfur, grams

1975 Federal Plymouth Gran Fury Monolithic Catalyst, no air injection 0.0415% fuel Sulfur

FIGURE 47. CUMULATIVE SULFUR RECOVERED IN EXHAUST AS A FUNCTION OF SULFUR CONSUMED, EM-1 AT 8050 AND 16, 100 km

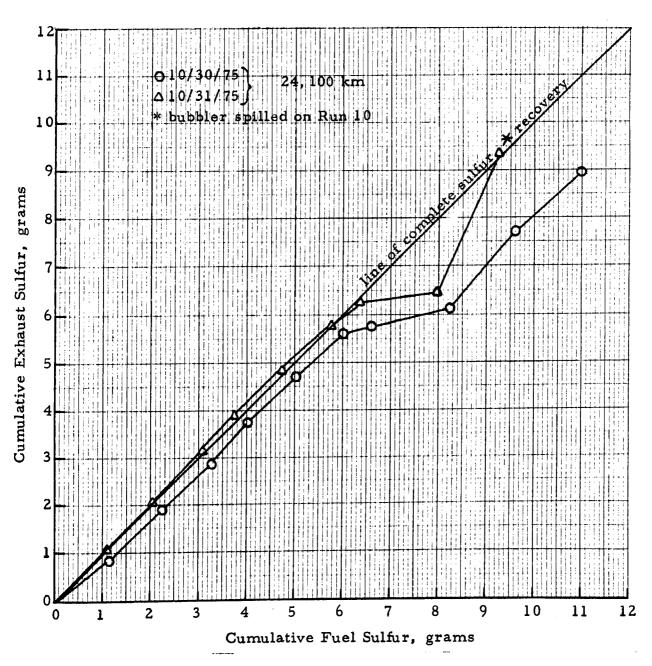

Test No.	Test Type	Test No.	Test Type		
1	FTP	6	SET-7		
2	SET-7	7	accel to 48 kph		
3	SET-7	8	48 kph		
4	HWFET	9	accel to 96 kph		
5	SET-7	10	96 kph.		

1975 Federal Plymouth Gran Fury Monolithic Catalyst, no air injection 0.0415% fuel Sulfur


FIGURE 48. CUMULATIVE SULFUR RECOVERED IN EXHAUST AS A FUNCTION OF SULFUR CONSUMED, EM-1 AT 24,100 km

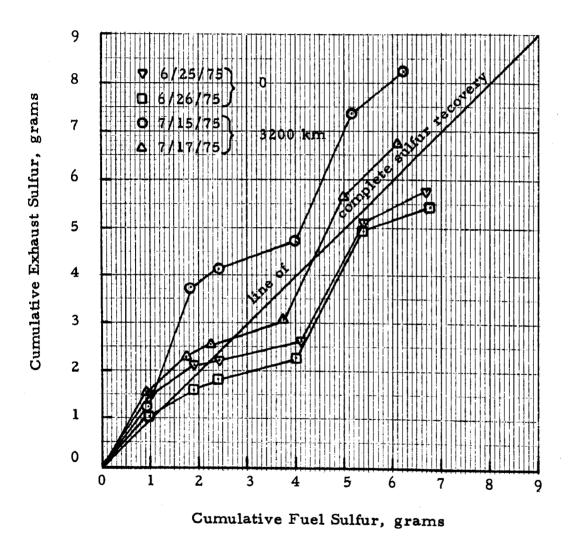
Test No.	Test Type
1	Cold LA-4
2	Hot LA-4
3	Accel to 48 kph
4	48 kph
5	Accel to 96 kph.
6	96 kph

1975 Federal Chevrolet Impala
Pelleted Catalyst, no air injection
0.0415% fuel Sulfur


FIGURE 49. CUMULATIVE SULFUR RECOVERED IN EXHAUST AS A FUNCTION OF SULFUR CONSUMED, EM-2 AT 0 AND 3200 km

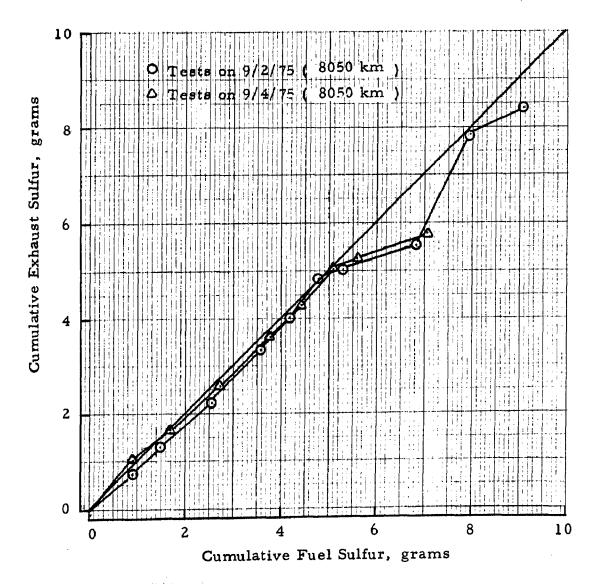
1975 Federal Chevrolet Impala Pelleted Catalyst, no air injection 0.0415% fuel Sulfur

FIGURE 50. CUMULATIVE SULFUR RECOVERED IN EXHAUST AS A FUNCTION OF SULFUR CONSUMED, EM-2 AT 8050 AND 16, 100 km


Test No.	Test Type	Test No.	Test Type	
1	FTP	6	SET-7	
2	SET-7	7	accel to 48 kph	
3	SET-7	8	48 kph	
4	HWFET	9	accel to 96 kph	
. 5	SET-7	10	96 kph	

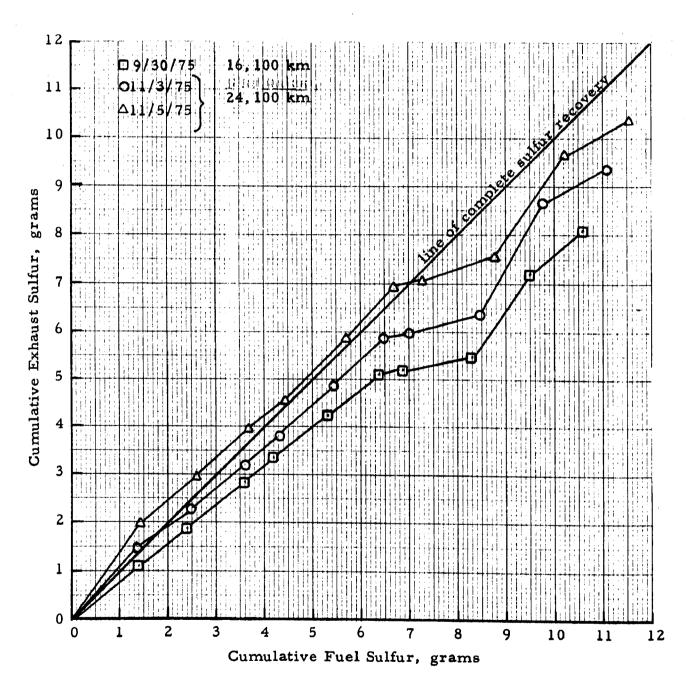
1975 Federal Chevrolet Impala Pelleted Catalyst, no air injection 0.0415% fuel Sulfur

FIGURE 51. CUMULATIVE SULFUR RECOVERED IN EXHAUST AS A FUNCTION OF SULFUR CONSUMED, EM-2 AT 24, 100 km


Test No.	Test Type
1	Cold LA-4
2	Hot LA-4
3	Accel to 48 kph
4	48 kph
5	Accel to 96 kph
6	96 kph

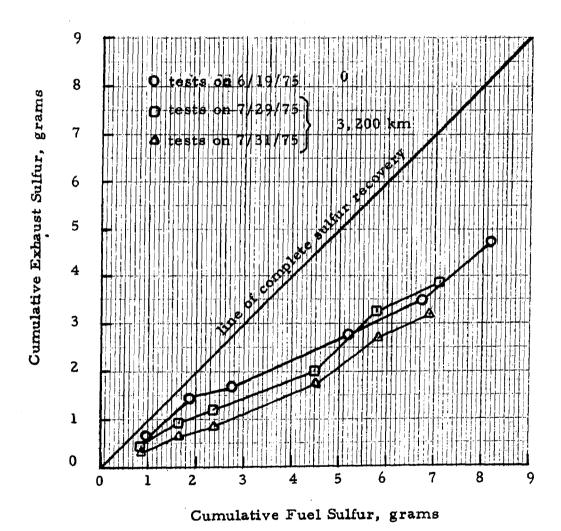
1975 California Plymouth Gran Fury Monolithic Catalyst, with air injection 0.0415% fuel Sulfur

FIGURE 52. CUMULATIVE SULFUR RECOVERED IN EXHAUST AS A FUNCTION OF SULFUR CONSUMED, EM-3 AT 0 AND 3200 km 112


Test No.	Test Type
1	Cold LA-4
2	Hot LA-4
3 and 4	SET-7
5 and 6	HWFET
7	Accel to 48 kph
8	48 kph Steady
9	Accel to 96 kph
10	96 kph Steady

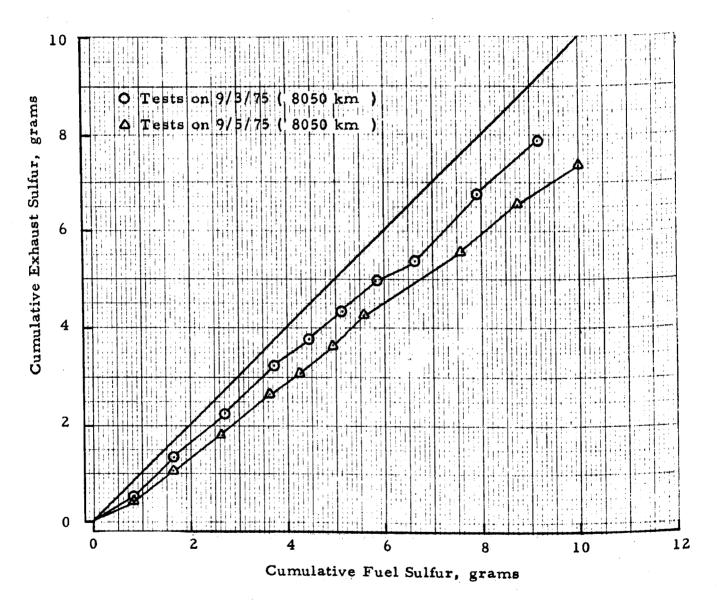
1975 California Plymouth Gran Fury Monolithic Catalyst, with air injection 0.0415% fuel Sulfur

FIGURE 53. CUMULATIVE SULFUR RECOVERED IN EXHAUST AS A FUNCTION OF SULFUR CONSUMED, EM-3 AT 8050 km


Test No.	Test Type	Test No.	Test Type
1	FTP	6	SET-7
2	SET-7	7	accel to 48 kph
3	SET-7	. 8	48 kph
4	HWFET	9	accel to 96 kph
5	SET-7	10	96 kph

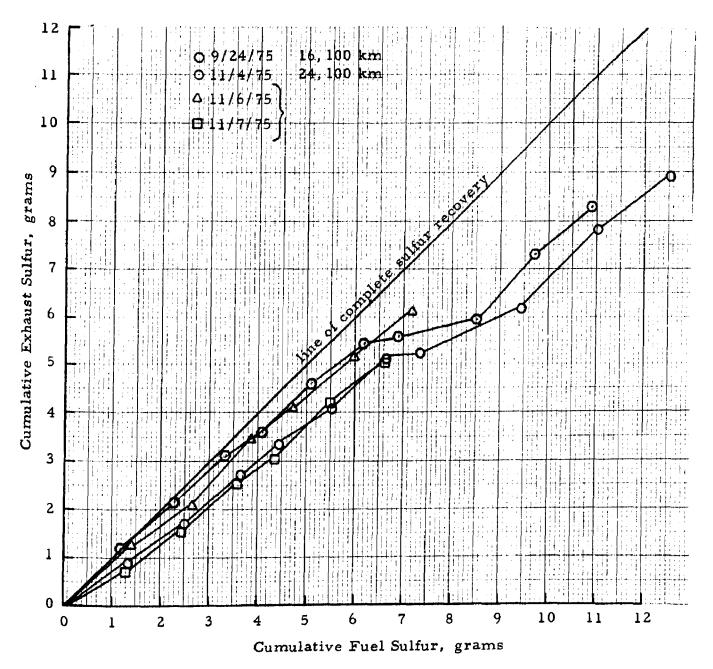
1975 California Plymouth Gran Fury Monolithic Catalyst, with air injection 0.0415% fuel Sulfur

FIGURE 54. CUMULATIVE SULFUR RECOVERED IN EXHAUST AS A FUNCTION OF SULFUR CONSUMED, EM-3 AT 16, 100 AND 24, 100 km 114


Test Type
Cold LA-4
Hot LA-4
Accel to 48 kph
48 kph
Accel to 96 kph
96 kph

1975 California Chevrolet Impala
Pelleted Catalyst, with air injection
0.0415% fuel Sulfur

FIGURE 55. CUMULATIVE SULFUR RECOVERIES IN EXHAUST AS A FUNCTION OF SULFUR CONSUMED, EM-4 AT 0 AND 3200 km


Test No.	Test Type
1	Cold LA-4
2	Hot LA-4
3 and 4	SET-7
5 and 6	HWFET
7	Accel to 48 kph
8	48 kph Steady
9	Accel to 96 kph
10	96 kph Steady

1975 California Chevrolet Impala Pelleted Catalyst, with air injection 0.0415% fuel Sulfur

FIGURE 56. CUMULATIVE SULFUR RECOVERIES IN EXHAUST AS A FUNCTION OF SULFUR CONSUMED, EM-4 AT 8050 km

Test No.	Test Type	Test No.	Test Type
1	FTP	6	SET-7
2	SET-7	7	accel to 48 kph
3	SET-7	8	48 kph
4	HWFET	9	accel to 96 kph
5	SET-7	10	96 kph

1975 California Chevrolet Impala Pelleted Catalyst, with air injection 0.0415% fuel Sulfur

FIGURE 57. CUMULATIVE SULFUR RECOVERIES IN EXHAUST AS A FUNCTION OF SULFUR CONSUMED, EM-4 AT 16, 100 AND 24, 100 km

TABLE 25. TEST SEQUENCE TOTAL SULFUR RECOVERY

Distance Test	Percent	of Fuel Sulfur	Recovered in	n Exhaust
Point	EM-1	EM-2	EM-3	EM-4
			-	
0 km	99	163	87	-
0 km	-	141	81	58
3200 km	122	138	132	54
3200 km	-	98	111	46
8050 km	89	117	92	84
8050 km	81	=	-	75
16100 km	107	104	76	76
16100 km	112		-	-
24100 km	109	-	84	71
24100 km	97	82	90	-
32200 km	122	119	119	73
48300 km	93	119	90	89
	• •	,	, •	0,
48300 km (after maint)	72	118	-	-
64400 km	84	133	109	
80500 km	90	92	88	-
80500 km	57	105	89	60
Average	95	118	96	69

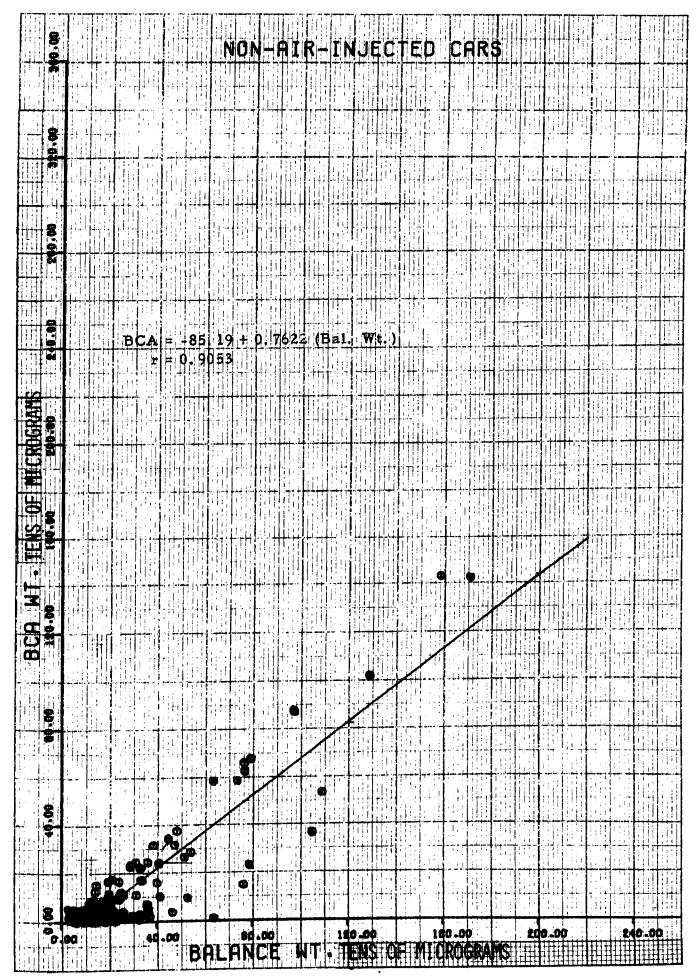


FIGURE 58. NET FILTER WEIGHT VERSUS BCA SULFATE WEIGHT AS AMMONIUM SULFATE FOR ALL NON-FTP TEST ON NON AIR-INJECTED CARS

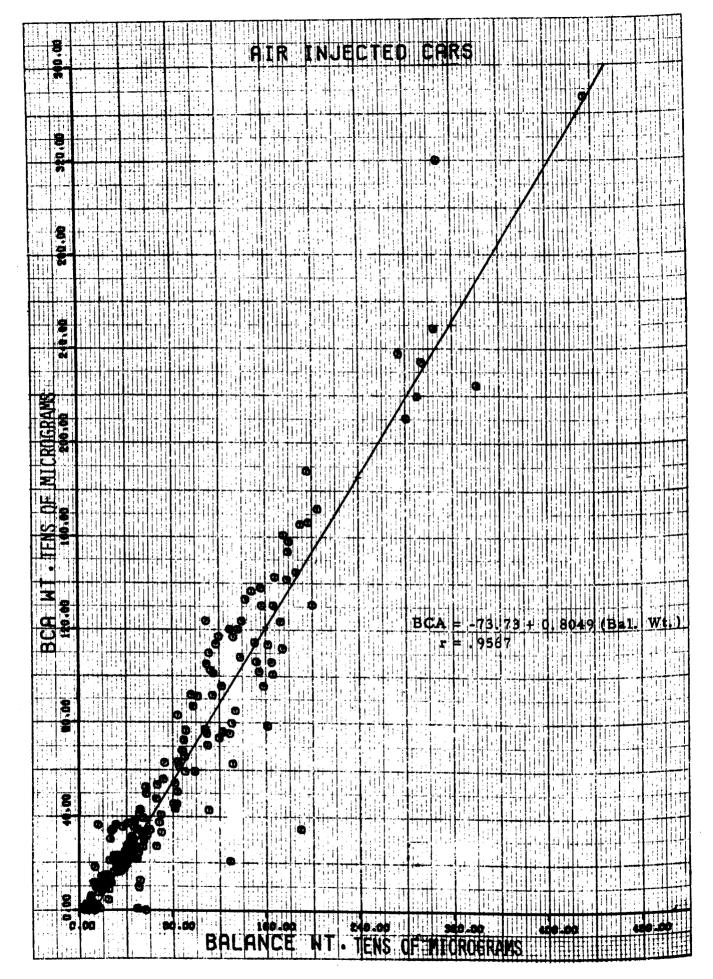


FIGURE 59. NET FILTER WEIGHT VERSUS BCA SULFATE WEIGHT AS AMMONIUM SULFATE FOR ALL NON FTP TESTS ON AIR-INJECTED CARS

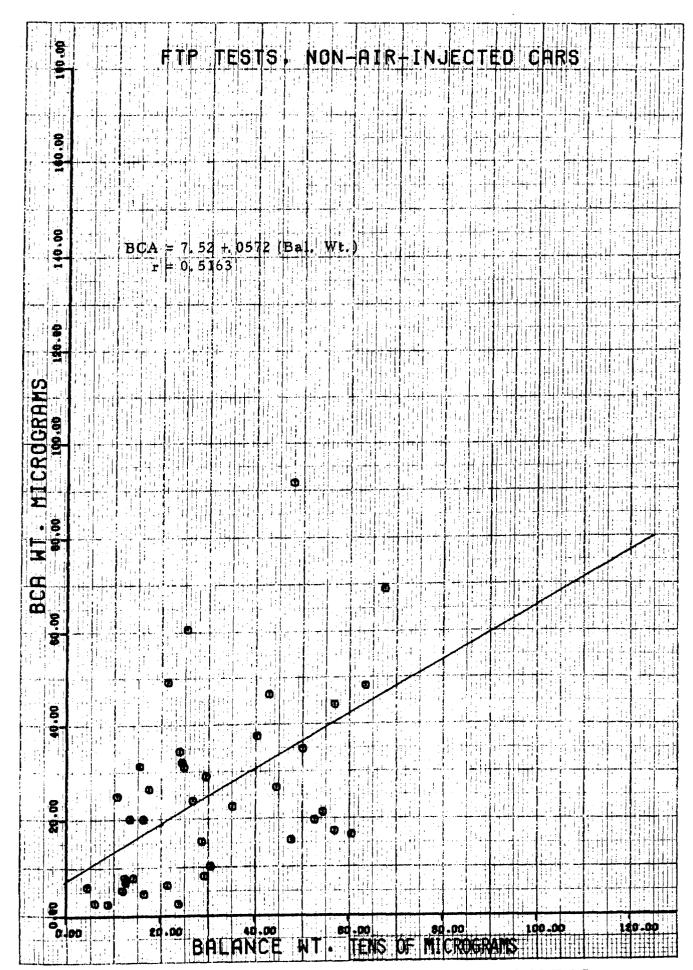


FIGURE 60. NET FILTER WEIGHT VERSUS BCA SULFATE WEIGHT AS AMMONIUM SULFATE FOR ALL FTP TESTS ON NON AIR-INJECTED CARS

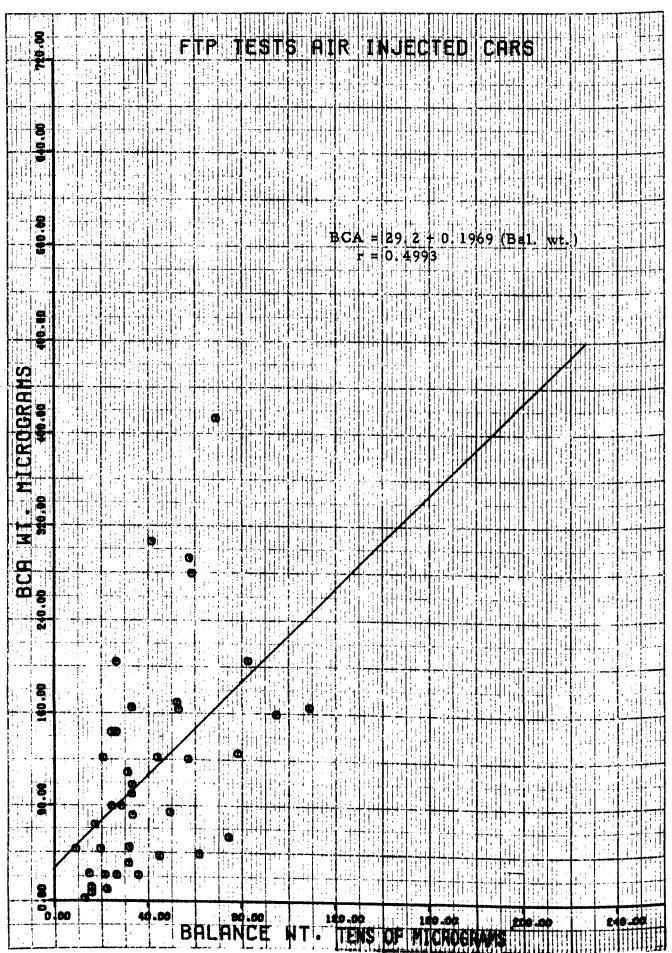


FIGURE 61. NET FILTER WEIGHT VERSUS BCA SULFATE WEIGHT AS AMMONIUM SULFATE FOR FTP TEST ON AIR-INJECTED CARS

that weighing the filters does, for some tests, give an indication, though not exact, as to the amount of sulfate on the filter. It is not recommended that weighing replace the BCA analysis. However, weighing the filter can provide a good quality control check. This check must be considered against the extra time required to weigh the filter after the test. This usually amounts to 8 to 12 hours since the filter must be conditioned in the same temperature and humidity environment in which it was weighed before the test.

4. Analysis of Tunnel Residue

At the conclusion of each distance test sequence on each car, the paraticulate residue in the sulfate tunnel was collected and qualitatively analyzed for various elements using X-ray fluorescence.

The resulting elemental analysis, as a percent of sample by weight, is shown in Table 26. The analysis was requested for platinum (Pt), palladium (Pd), aluminum (Al), nickel (Ni), iron (Fe), sulfur (S), lead (Pb), zinc (Zn), copper (Cu) and tin (Sn). Of these 10 elements, no platinum, palladium, nickel, copper, or tin was found in any of the samples. Chromium, silicon, and manganese were found in some of the samples and are included in Table 26.

As was the case when this same type of analysis was done on the sulfate characterization cars, the largest part of each sample was iron. This is not surprising, since from a visual inspection of the samples, it appears that rust, probably from the exhaust system, is the major constituent. The other elements were found in much smaller quantities and their origin is not certain. The X-ray detection limits for various elements are included in Table 7 in Section III.

TABLE 26. RESULTS OF X-RAY FLUORESCENT ANALYSIS OF SULFATE SAMPLING TUNNEL PARTICULATE RESIDUE FOR DISTANCE ACCUMULATION CARS

	Total Weight Collected	Weight X-rayed								
Car	grams	<u>mg</u>	Al	<u>Fe</u>	<u>s</u>	Pb	Zn	Cr	Si	Mn
EM-1 2000 mi	0.053	1.36	0.4	29.3	0.2			0.2	0.4	0.2
EM-2 2000 mi	0.163	2.16	0.2	24.2	0.3			0.1	0.1	0.4
EM-3 2000 mi	0.051	1.31	0.4	28.1	0.5				0.9	
EM-4 2000 mi	0.019	1.46	0.2	21.8	0.2				0.1	
EM-2 10000 mi	0.123	1.65		29.6	0.7				0.2	
EM-3 10000 mi	1.265	1.78		36.0	0.5					
EM-4 10000 mi	0.133	1.62	0.2	32.6	0.3				0.2	
EM-1 15000 mi	0.190	1.66	1.0	31.0	0.5				0.5	
EM-2 15000 mi	0.016	1.20	0.5	16.8	0.8		1.3		5.1	

V. SULFATE REGULATION STUDIES

This section covers the testing done in support of the EPA activities to develop regulations for sulfate exhaust emissions during the period from April through August 1975.

A. Background

On January 31, 1975, the EPA published an Issue Paper (15) which presented an evaluation of the potential public health impact of sulfate emissions from catalyst equipped cars. The risk-benefit analysis contained in that paper was the basis for the EPA decision to grant a one year delay in the statutory standards and to recommend to Congress a further five-year delay. Then on March 5, 1975, it was announced that the EPA had begun the activities necessary to develop a sulfate emission standard with the necessary driving cycle, test procedures and etc. The standard would be applicable beginning with the 1979 model year. The Department of Emissions Research at SwRI was selected as one of four laboratories to participate in the test procedure development. The other participating laboratories were Exxon Research; EPA, Research Triangle Park; and EPA, Ann Arbor.

B. Purpose

This phase of the project had two principal purposes. One was to compare alternate preconditioning procedures and test sequences. The second purpose was to investigate the test-to-test variability of sulfates for the proposed driving cycle compared to other driving cycles on the cars provided. As testing progressed, two additional objectives were added. One was to investigate the effects of the evaporative emission canister, the second to investigate driver-to-driver differences.

C. Cars Tested

For the SwRI portion of this procedural development study, two 1975 AMC Hornet Sportabouts were obtained by EPA from American Motors Corporation. These cars were designed to meet the Federal emissions standard and to be sold outside California. AMC catalyst cars with V-8 engines are one of the few car models for 49-state use equipped with air injection to the catalyst. The two cars were identical except for color and could be considered "matched cars" for emissions testing purposes. The AMC Engineering Department designation for the two cars was D50-34 and D50-36. At SwRI, these two cars were designated EM-5 and EM-6, respectively. Table 27 is a description of the cars. Figure 62 shows general views of the cars and test equipment.

Upon receipt of the cars, a 1975 FTP was run on each car for comparison with AMC tests conducted prior to shipment to SwRI. The comparison of these two sets of tests is shown in Table 28.

D. Fuel Used

The base fuel used for all tests under this phase of the project except Sequence E of Part II was an unleaded gasoline obtained by EPA in a

TABLE 27. DESCRIPTION OF VEHICLES TESTED FOR PROCEDURAL DEVELOPMENT STUDIES

	SWRI No.		
	EM-5	EM-6	
Manufacturer	AMC	AMC	
Model	Hornet Sportabout	Hornet Sportabout	
Model Year	1975	1975	
Inertia Weight Class	3500 lbs	3500 lbs	
Engine Size	304 CID V-8	304 CID V-8	
Catalyst	160 in 3 pelletized	160 in 3 pelletized	
Air Injection	yes	yes	
Vehicle Identification No.	A5A 087H2O9929	A5A 087H214562	
Manufacturer Engine Design	D50-34	D50-36	
Idle rpm	700	700	
Timing	5° BTDC	5° BTDC	
Curb Weight	3401 (lbs)	3406 (lbs)	
Odometer Miles When Received	2995	3152	

TABLE 28. COMPARISON OF AMC AND SWRI LIGHT DUTY FTP EMISSIONS FROM TWO 1975 HORNET SPORTABOUTS

•	F	missions, g	rams/km	
	Car D60-34		Car D50-36	
	SWRI	AMC	SwRI	AMC
HC	0.27	0.28	0.24	0.26
CO	2.77	2.39	2.13	1.96
$NO^{\mathbf{x}}$	1.19	1.61	1.29	1.78

FIGURE 62. GENERAL VIEWS OF CARS AND TEST EQUIPMENT

large batch, by Dr. R. Bradow of EPA-ORD, Research Triangle Park, North Carolina. An analysis of that fuel is presented in Appendix F. By the time this phase of the project had begun, additional data had become available on national average gasoline sulfur content. This information showed the average fuel sulfur content to be approximately 0.03 percent rather than the 0.04 percent that had been used in previous phases of the project. Thiophene had been added to the base fuel to bring its sulfur level up to 0.03 percent. This fuel was identified within SwRI as EM-236-F.

The fuel used during the tests of car EM-3 under Sequence E of Part II of this phase was the same fuel the car was using for distance accumulaion. This fuel was an unleaded gasoline with a sulfur level of 0.04 percent. The fuel is described in Section IV of this report and in Appendix F.

E. Test Schedule and Procedures

The test schedule was divided into two parts. The first part was designed to investigate differences in sulfate emissions from the SET-7 due to test order and to investigate test-to-test variability of sulfate emissions. The test schedule for both cars for Part I is shown in Table 29. Note that two different types of road distance accumulations are specified, the AMA durability cycle and the Ann Arbor Road Route.

The route used by SwRI for the AMA durability cycle is described in Appendix H. The route used for the Ann Arbor Road Route, named the San Antonio Sulfate Preconditioning Route, is described in Appendix I. Item 1 of the Part I schedule, 3000 miles of AMA durability running was performed by AMC prior to shipment of the cars to SwRI. Catalyst temperatures were recorded on a multipoint temperature recorder during all tests. Catalyst temperature on each car was taken during one of the Ann Arbor Road Route preconditioning runs. The catalyst temperature and vehicle speed were manually recorded every 30 seconds over the road course. At the end of each test sequence (i.e., after the FET in Part 2A), the catalyst conversion efficiency was checked on the dynamometer at 30 mph and at 50 mph by sampling the exhaust before the catalyst for 2 minutes then after the catalyst for 2 minutes at each speed. It was realized that stable conditions were notreached during this time. The purpose of this sample was to ensure that the catalyst was performing consistently while putting a minimum amount of extra miles on the vehicle.

After completion of the Part I testing, the EPA held a meeting on July 15, 1975 in Ann Arbor, Michigan. In attendance were all four laboratories working on sulfate testing in support of the sulfate regulation studies. As a result of this meeting, the original test schedule for the Part II testing was changed. The testing requested of SwRI was outlined in an EPA memo from J. H. Somers to J. P. DeKany, dated July 18, 1975. This schedule was further modified by a telephone conversation on July 30, 1975 with Mr. Dick Lawrence, contract Project Officer. The resulting Part II test sequence is shown in Table 30.

In Part II of this phase, a third car, the 1975 California Plymouth Fury (car EM-3) used in the study of distance accumulation on sulfates,

TABLE 29. SULFATE TEST SCHEDULE, PART I

- 1. Run AMA to 3,000 miles (regular AMA, 11 laps, 70 mph maximum speed)
- 2. Sequence A. Ann Arbor Road Route 1 hour 1 LA-4 (hot start)

• 4 hot start sulfate emission tests (SET)

Ann Arbor Road Route - 1 hour

1 LA-4 (hot start)

Overnight soak

- Federal Test Procedure (FTP)
- Fuel Economy Test (FET)

Repeat A

Repeat A again

- 3. Run 300 miles of modified AMA*
- 4. Sequence B. Ann Arbor Road Route 1 hour 1 LA-4 (hot start) Overnight soak
 - FTP
 - SET 2 times
 - FET

Repeat B

Repeat B again

- 5. Run 300 miles of modified AMA
- 6. Sequence C. Ann Arbor Road Route 1 hour 1 LA-4 (hot start)

 Overnight soak
 - FTP
 - FET
 - SET 2 times

Repeat C

Repeat C again

- 7. Sequence D. Run SET x times until stable sulfate emission value is obtained
- 8. Sequence E. Run a series of 12 SET-7 tests, 6 with fuel evaporative emissions canister connected, 6 with canister disconnected on car EM-5 only

^{* 55} mph top speed, no WOT accels

Sulfate and SO₂ emissions taken

TABLE 30. PART II TEST SCHEDULE

Sequence A: (Car EM-5, 1975 49 State Hornet)

12 Replicate SET-7 Tests with One Driver

Sequence B: (Car EM-5, 1975 49 State Hornet)

5 Constant Speed 35 mph Tests (1 hour, each test)

2 SET-7

Sequence C: (Car EM-5, 1975 49 State Hornet)

5 Constant Speed 50 mph Tests (20 minutes, each test)

2 SET-7

Sequence D: (Car EM-5, 1975 49 State Hornet)

12 SET-9 Tests with One Driver

Sequence E: (Car EM-3, 1975 California Plymouth Gran Fury)

30 SET-7 Tests With Three Drivers

was included in the test series to investigate driver-to-driver differences. The car is described in Section IV of this project. Also in Part II, a "noise free" version of the SET-7 test, designated as SET-9, was evaluated.

F. Test Results

1. Part I Results

As part of the test, catalyst temperatures on each of the two cars was measured on the San Antonio sulfate preconditioning route. The temperature and vehicle speed, as a function of time, is shown in Figures 63 and 64. These temperatures can be compared with the temperatures during the various dynamometer test cycles.

The purpose of this part of the test program was to investigate differences in sulfate emissions due to preconditioning and the order of testing in the test sequence. Tables 31 and 32 list the mean emission levels for each test sequence in Part I by test cycle. For Sequence D which was 20 repetitive SET-7 cycles and Sequence E on EM-5 which was also repetitive SET-7 test, the standard deviation and coefficient of variation are also listed. A complete listing of the results for each test is contained in Appendix I. As an aid to comparing the various tests, the sulfate emissions for each test are plotted in Figure 65.

It should also be noted that the FTP tests in Sequence A were performed in a slightly different manner than the FTP tests of Sequence B and C. For Sequence A, two 23 minute LA-4 cycles were run, one with a cold start and one with a hot start, one bag sample and one sulfate filter were taken during each 23 minute period. The results of the two cycle were then averaged, weighting the cold cycle 43 percent and the hot cycle 57 percent. For Sequence B and C, a regular "3 bag" FTP was run, taking only one sulfate filter and one SO_2 sample for the entire FTP. This means that while the emissions of HC, CO, and NO_X are weighted for the cold and hot start portions of the test, the sulfate and SO_2 emissions are not weighted.

From the examination of the tables, it appears that the order of the SET-7 test in the test sequence has an effect on the sulfate emissions; but little, if any, effect on the HC, CO, and NO_X. When the two SET-7 tests followed an FTP test, the average sulfates from the first SET-7 were approximately 50 percent higher than those from the first SET-7 following an HFET. However, on the average, the second of the two SET-7 tests following an FTP had approximately 25 percent lower sulfate emissions than those from the second SET-7 following an HFET.

While the FTP was always first in the test order, there was a difference in the gaseous and sulfate emissions between Sequence A and Sequences B and C. At least part of this difference is probably due to the differences in test procedure explained earlier. The two procedures are mathematically equivalent for the gaseous emissions, but not for the sulfate emissions. The sulfate emissions from the HFET are also higher for Sequence A than for Sequences B and C.

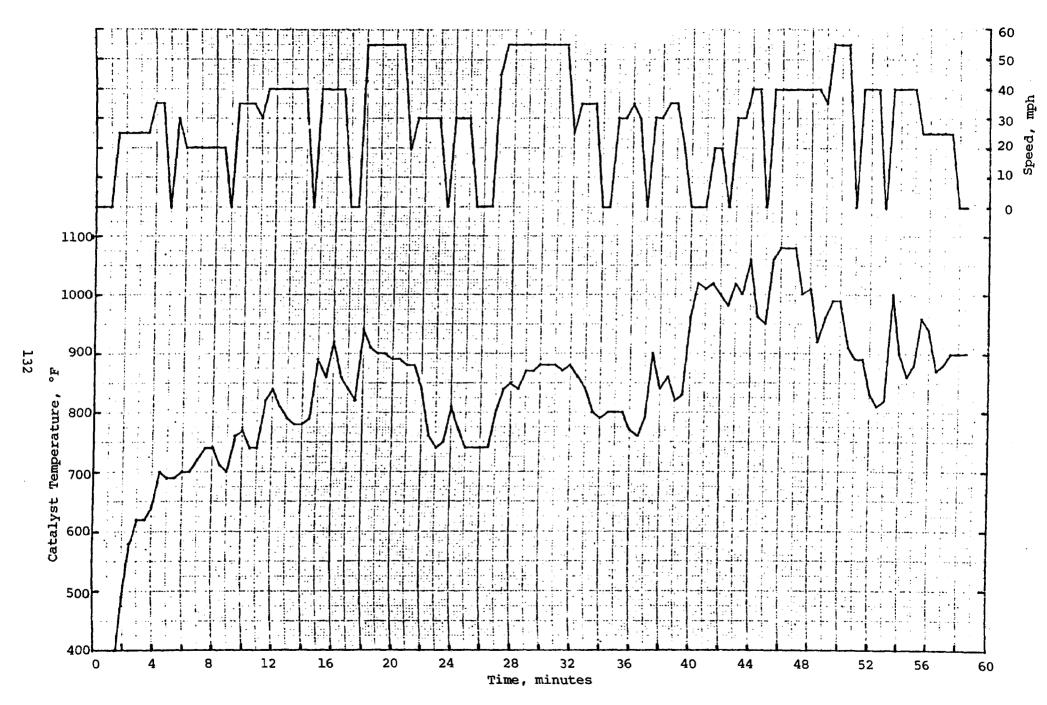


FIGURE 63. CATALYST TEMPERATURE OVER SAN ANTONIO VERSION OF ANN ARBOR ROAD COURSE FOR AMC HORNET NO. D50-34

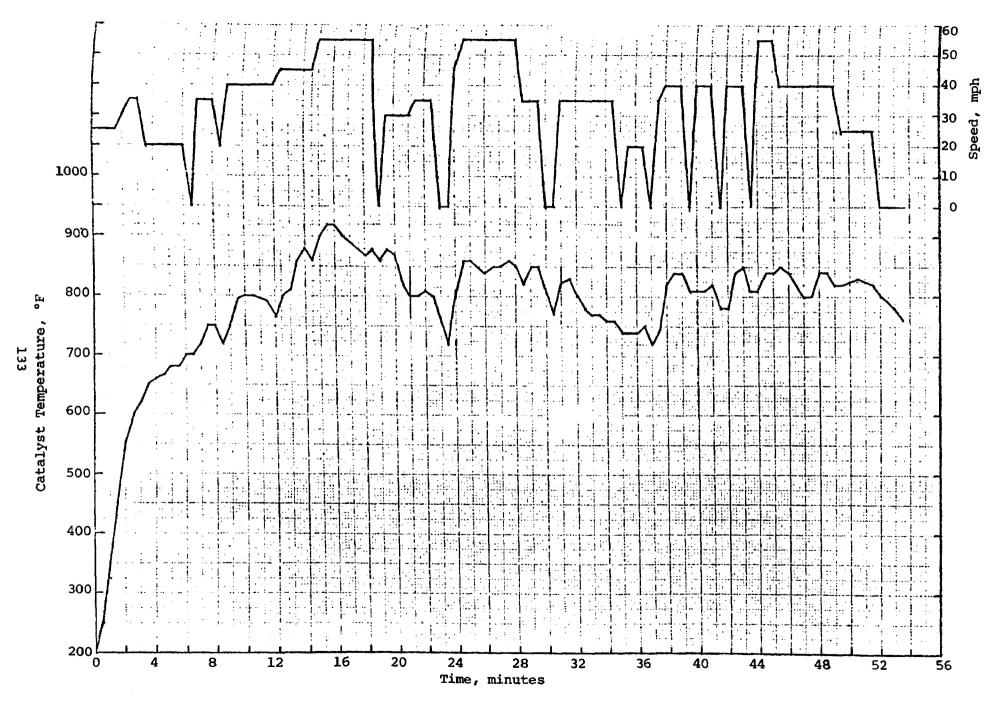


FIGURE 64. CATALYST TEMPERATURE OVER SAN ANTONIO VERSION OF ANN ARBOR ROAD COURSE FOR AMC HORNET NO. D50-36

TABLE 31. SUMMARY OF EMISSIONS FROM CAR EM-5 ON PART I TEST SEQUENCES

					Average Emissions					
		Test		•	·	g/km		n	ng/km	
Cycle	Sequence	No.	Replicates	Statistic	HC	CO	NOx	SO ₂	H ₂ SO ₄	
SET-7	Α	1	3	Mean	0.07	0.19	1.20	48	19.84	
SET-7		2	3	Mean	0.07	0.11	1.30	-	25.36	
SET-7		3	3	Mean	0.07	0.15	1.23	-	37.06	
SET-7		4	3	Mean	0.07	0.10	1.28	-	47.21	
SET-7	В	2	3	Mean	0.08	0.08	1.65	-	20.50	
SET-7		3	3	Mean	0.06	0.07	1.68		17.73	
SET-7	С	3	3	Mean	0.07	0.11	1.44	42	14.47	
SET-7		4	3	Mean	0.05	0.09	1.44	41	23.81	
SET-7	D	1 to 20	20	Mean	0.06	0.10	1.50	36.25	35.70	
SET-7		1 to 20	20	Std. Dev.	0.01	0.09	0.54	10.33	9.46	
SET-7		1 to 20	20	Coef. Var.	8.3%	88.9%	36.4%	28.5%	26.6%	
SET-7	D	4 to 20	17	Mean	0.06	0.10	1.36	38.35	37.86	
SET-7		4 to 20	17	Std. Dev.	< 0.01	0.10	0.10	9.70	7.17	
SET-7		4 to 20	17	Coef. Var.	8.2%	100.0%	7.3%	25.30	18.9%	
SET-7	E	2 to 5	4	Mean	0.06	0.06	1.80	45.50	40.2	
SET-7		2 to 5	4	Std. Dev.	0.00	0.02	0.14	11.96	6.47	
SET-7		2 to 5	4	Coef. Var.	0.00%	43.3%	7.6%	26.3%	16.1%	
SET-7	E	7 to 12	6	Mean	0.06	0.06	1.66	33.43	42.37	
SET-7		7 to 12	6	Std. Dev.	0.01	0.04	0.22	12.42	5.55	
SET-7		7 to 12	6	Coef. Var.	8.32%	55.3%	13.5%	37.2%	13.1%	
FTP	A *	5	3	Mean	0.27	2.46	1.13	33	10.16	
FTP	В	1	3	Mean	0.42	4.58	1.86	-	4.90	
FTP	C	1	3	Mean	0.43	4.33	2.04	25	4. 91	
HFET	A	6	3	Mean	0.06	0.09	1. 32	34	61.14	
HFET	В	4	3	Mean	0.06	0.05	1.62	-	27.68	
HFET	C	2	3	Mean	0.05	0.07	1.44	25	31.18	

^{*}H₂SO₄ and SO₂ emissions are weighted averages based on one sample for cold LA-4 and one sample for hot LA-4.

					Average Emissions				
		Test				g/km		mg	/km
Cycle	Sequence	No.	Replicates	Statistic	HC	CO	$NO_{\mathbf{x}}$	SO ₂	H ₂ SO ₄
SET-7	A	1	3	Mean	0.07	0.025	1.35	38	26.48
SET-7		2	3	Mean	0.07	0.31	1.35	-	30.41
SET-7		3	3	Mean	0.07	0.11	1.40	32	36.07
SET-7		4	3	Mean	0.07	0.20	1.42	36	49.17
SET-7	В	2	3	Mean	0.06	0.02	1.48	_	36.86
SET-7		3	3	Mean	0.06	0.08	1.42	-	29.41
SET-7	С	3	3	Mean	0.05	0.03	1.41	34	22.17
SET-7		4	3	Mean	0.07	0.02	1.58	35	36.77
SET-7	D	1 to 20	20	Mean	0.06	0.14	1.34	43	33.45
SET-7		1 to 20	20	Std. Dev.	<0.01	0.13	0.07	14.54	10.28
SET-7		1 to 20	20	Coef. Var.	6.2%	90.4%	5.5%	33.7%	30.74
SET-7	D	4 to 20	17	Mean	0.06	0.13	1.35	42	35.97
SET-7		4 to 20	17	Std. Dev.	40.01	0.13	0.07	14.54	7.56
SET-7		4 to 20	17	Coef. Var.	7.9%	95.9%	5.4%	34.8%	21.0%
FTP	A *	5	3	Mean	0.26	1. 99	1.27	_	13.03
FTP	В	1	3	Mean	0.41	3.51	2. 11	_	13. 10
FTP	<u> </u>	ī	3	Mean	0.44	3.34	2.09	28	9.66
HFET	A	6	3	Mean	0.06	0.02	1.48	19	72.00
HFET	В	4	3	Mean	0.05	0.02	1. 37	17	40.02
HFET	C	2	3	Mean	0.03	0.02	1.86	- 36	40.02 42.98

^{*}H₂SO₄ and SO₂ emissions are weighted averages based on one sample for cold LA-4 and one sample for hot LA-4.

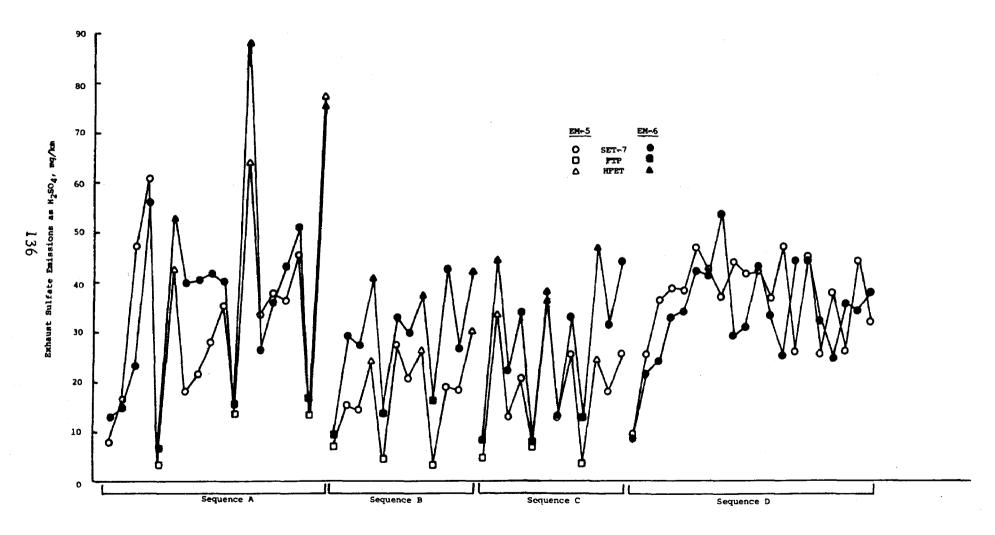


FIGURE 65. SULFATE EMISSIONS FROM PART I OF PROCEDURAL DEVELOPMENT STUDY

The sulfate emissions thus reach higher levels for all test cycles during Sequence A than any other sequence. Sequence A had a different long term preconditioning (regular AMA durability cycle instead of modified AMA durability cycle) than Sequences B and C. It is possible, therefore, that the differences are due to preconditioning. Yet, the regular AMA durability cycle has a section of wide open throttle (WOT) accelerations which the modified durability cycle does not. This would appear to indicate that the regular AMA durability would purge more stored sulfur from the catalyst, giving lower sulfate emissions on subsequent tests. However, the dynamics of sulfate production by the catalyst and the effects of sulfur storage are still not fully understood. At this time, all that can be said is that there is a possibility that preconditioning contributed to the differences in sulfate emissions seen between Sequence A and Sequences B and C. It should also be mentioned that the results from other laboratories did not always follow the same trends seen here.

An examination of Sequence D data indicates that from a cold start, about three SET-7 tests are required to reach relatively stable sulfate emission levels. Note that when the first three SET-7 tests in Sequence D are not used, the coefficient of variation is 18.9 percent compared with 26.6 percent for all tests in Sequence D.

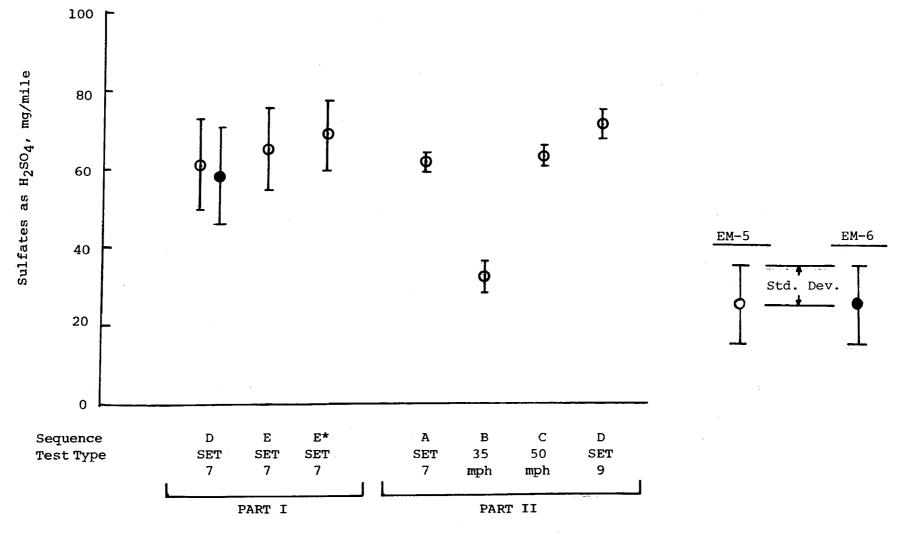
Test Sequence E was run to determine the effect of the fuel evaporative emission canister on sulfate emissions. It was thought that perhaps in some modes the canister could release fuel vapors into the carburetor and possibly have an adverse effect on sulfate emissions. The average sulfate emissions from tests with the canister connected to the engine were compared with the average sulfate emissions with the canister disconnected. The average sulfate emissions are essentially the same for the two sets of tests being 40.2 and 42.37 for the connected and disconnected tests, respectively. The coefficients of variation are 16.1 for the tests with the canister connected and 13.1 for tests with the canister disconnected. Thus, it appears that the fuel evaporative emissions canister has no effect on repetitive SET-7 sulfate emissions.

2. Part II Results

The purpose of the testing under Part II of this phase was to investigate test-to-test repeatability. The repeatability of the SET-7 test was compared to that obtained at 35 mph cruise, 50 mph and an alternate sulfate test cycle SET-9. The sulfate emission differences of tests with different drivers were also investigated. It was requested that the test results from this part of the test program be expressed in grams (or milligrams) per mile so that the results could easily be compared with other laboratories working on this project. Therefore, the data in this section will be in those units rather than in all metric units as is done for the other sections of this report.

Table 33 lists the mean, standard deviation and coefficient of variation of the exhaust emissions for test Sequences A, B, C, and D. For the two SET-7 tests at the end of Sequences B and C, only the mean and the range are shown. Appendix I contains the results for each individual

TABLE 33. STATISTICAL SUMMARY OF EMISSIONS FROM TESTS ON PART II, TEST SEQUENCE A, B, C, AND D


Test Sequence	Test Cycle	Variable	HC, g/mile	CO,	NO_{x} , g/mile			Avg. Cat. Temp., ° F	
A	SET-7	Mean	0.10	0.06	2.18	60,12	56.73	912	12
		Std. Dev.	0.02	0.03	0.11	10.28	9.29	3.0	(tests 1-12)
		Coef. Var, %	15.7	53.9	5.1	17.1	16.4	0.3	
A	SET-7	Mean	0.09	0.06	2.19	59.61	61.35	912	9
		Std. Dev.	0.02	0.04	0.12	11.04	2.45	2.8	(tests 4-12)
		Coef. Var, %		64.3	5.3	18.5	4.0	0.3	•
В	35 mph	Mean	0.06	0.04	2.37	40.44	28.48	751	5
	_	Std. Dev.	0.03	0.03	0.08	13.24	8.65	8.4	(tests 1-5)
		Coef. Var, %	58.2	82.2	3.2	32.8	30.4	1.1	
μ	35 mph	Mean	0.07	0.03	2.36	44.30	32.02	749	4
138		Std. Dev.	0.02	0.03	0.08	11.6	4.01	8.8	(tests 2-5)
		Coef. Var, %	28.6	100.0	3.5	26.2	12.5	1.2	
	SET-7	Mean	0.08	0.04	2.78	146.31	122.93	922	2
		Range	0.00	0.06	0.25	48.95	67.26	1	
С	50 mph	Mean	0.06	0.02	1.97	33.42	62.06	966	5
		Std. Dev.	0.01	0.03	0.15	4.46	2.98	5 . 4	(tests 1-5)
		Coef. Var, %	16.7	104.6	7.6	13.3	4.8	0.6	
	50 mph	Mean	0.06	0.02	1.99	33.39	62.91	965	4
	_	Std. Dev	0.01	0.02	0.16	5.15	2.64	5.7	(tests 2-5)
•		Coef. Var, %	23.5	115.5	8.0	15.4	4.2	0.6	
	SET-7	Mean	0.11	0.11	2.54	65.68	72.71	906	2
		Range	0.20	0.09	0.09	11.51	1.49	3.0	
D	SET-9	Mean	0.11	0.09	2,30	46.76	68.29	907	12
		Std. Dev.	0.05	0.11	0.10	12.95	7.19	5.3	(tests 1-12)
		Coef. Var, %	45.8	119.7	4.2	27.8	10.5	0.6	·
	SET-9	Mean	0.10	0.07	2.31	50.88	70.93	905	9
		Std. Dev.	0.02	0.04	0.08	5.85	3.82	2.5	(tests 4-12)
		Coef.Var,%	21.1	63.0	3.6	11.5	5.4	0.3	

test. The table contains the statistical summary for each sequence based on all tests in the sequence and also based only on the tests considered to represent a stabilized condition.

The sulfate results from Sequence A of Part II show better repeatability than seen in the Part I tests. The reasons for this are not known. However, two items may contribute to the improved repeatability. The first item is that only one driver was used for all 12 tests; the second is that the spectrophotometer areas indicating the sulfate concentrations were determined using an automatic computer integrating system starting with Sequence A of Part II instead of manual integration with a polar planimeter. It should be noted that the catalyst bed temperatures from Part II, Sequence A show better repeatability than in the Part I tests.

The sulfate emissions coefficient of variation from the stabilized SET-7 tests of Sequence A can be compared with the sulfate emission coefficient of variation for the other test types. When this is done, it appears that the SET-7 test cycle repeatability is as good as, or better than, the other test cycles. In fact, the sulfate coefficient of variation for all test cycles compares favorably with the coefficient of variation from the gaseous emissions of the same test cycle. When the SET-7 tests are compared to the SET-9 tests, the average sulfate emissions from the SET-9 tests are found to be approximately 16 percent higher than the sulfates from the SET-7 tests. The coefficient of variation for the two types of tests are not significantly different, being 4.0 for the SET-7 test and 5.4 for the SET-9 tests. From these test series it would appear that the SET-9 does not offer any real improvement in test-to-test repeatability over the SET-7.

The differences in sulfate emissions between the two SET-7 tests following the 35 mph sequence and the two SET-7 sets following the 50 mph tests are worthy of vote. If the 35 mph test sequence is examined on a test by test basis using Table I-llin Appendix I, it can be seen that the 35 mph test started out in a storage mode and apparently finally reached equilibrium at the fifth test, after four hours of running. The first SET-7, which had the highest sulfate emissions seen during the entire project (157 mg/mi), apparently was releasing a portion of the sulfur stored during the previous five hours of running at 35 mph. This conclusion is supported by the fact that the second SET-7 test of this sequence has a considerably lower sulfate emission rate. The SET-7 tests following the 50 mph tests, which apparently were operating close to equilibrium for all tests, showed little difference in sulfate emissions between the two tests. In addition, the level of sulfates was lower than the SET-7 tests following the 35 mph sequence and more in line with the sulfate levels from the stabilized SET-7 tests of Sequence A. These tests again support the conclusion, reached in the discussion of the Part I results, that differences in SET-7 sulfate emissions can occur because of differences in prior operation of the car. To help in comparing the various repetitive tests, including those from Part I, the average sulfate emissions and standard deviation for each test sequence are shown in Figure 66.

* Fuel evap cannister disconnected

FIGURE 66. SULFATE EMISSIONS FROM REPETITIVE TESTS OF VARIOUS TEST CYCLES

In order to ascertain if part of the variation seen in SET-7 sulfate emissions in Part I were due to driver effects, test Sequence E was run using car EM-3. This test sequence consisted of 30 SET-7 tests using three different drivers. A statistical summary of these tests is shown in Table 34. The results of each individual test are given in Table I-14. The tests were run on two different days, 15 tests on each day. In keeping with the finding from Part I, the first three tests on each day were considered warm-up tests and not used in the analysis. Remember that car EM-3 with 0.04 percent sulfur fuel was used for this test sequence, while EM-5 with 0.03 percent sulfur fuel was used for Sequences A, B, C, and D of Part II. The tests of the 1975 California Plymouth give an average sulfate emission level of 26.7 mg/mile (exclusive of the first three tests on each day of testing) at the 0.0415 percent fuel sulfur level. If this average level is normalized to 0.03 percent fuel sulfur, the sulfate emission level would be 19.3 mg/mile.

Examining the table, it can be seen that there is a considerable difference in the average sulfate emissions between the two test days. reason for this difference is not known. The coefficients of variation for the data groupings are in the 20 to 30 percent range. This is more like the coefficient of variation seen in Part I Sequence D for car EM-5. is a difference in the average sulfate emissions for each driver, whether each day is considered separately or all the data is taken together. determine if the differences were statistically significant, an analysis of variance (ANOVA) was run for each test day separately and both days together with driver as the independent variable. The results of the ANOVA are also shown in Table 34. When the test days are considered separately, the driver was a significant variable at the 0.10 level, but not at 0.025 for each day. When the two days are considered together, the driver was not a significant variable below the 0.10 level. Considering the difference in average sulfate emissions for the two days, perhaps more emphasis should be placed on the results from the individual days. In that case, it appears that driver difference may explain some, but not all, of the test-to-test variation seen in the sulfate emissions.

TABLE 34. STATISTICAL SUMMARY OF SULFATE EMISSION FROM REPETITIVE SET-7 TESTS (CALIF. PLYMOUTH)

Part II, Sequence E

		Average H ₂ SO ₄ mg/mile	No. of Tests	Std. Dev. mg/mile	Coefficient of Variation Percent
Tests 4 to 15 Tests 4 to 15	8/1/75 8/5/75	20, 58 32, 24	11 12	3.96 8.65	19.2 26.8
Tests 4 to 15	8/1 and 8/5	26.66	23	8.95	33.6
Driver A Tests	8/1/75	18.38	5	3,97	21.6
Driver B* Tests	8/1/75	18.59	2	-	-
Driver C Tests	8/1/75	24.32	4	1.31	5.4
Driver A Tests	8/5/75	31.16	5	6.78	21.7
Driver B* Tests	8/5/75	24.53	3	4.93	20.1
Driver C* Tests	8/5/75	39.37	4	8.25	21.0
Driver A Tests	8/1 and 8/5	24.77	10	8.53	34.4
Driver B* Tests	8/1 and $8/5$	22.15	5	4.77	21.5
Driver C* Tests	8/1 and 8/5		8	9.77	30.7

Results of ANOVA

Groups *	F statistic	Significance
Drivers on 8/1/75	5, 15	0.05 <p<0.025< td=""></p<0.025<>
Drivers on 8/5/75	4.00	0.10 <p<0.05< td=""></p<0.05<>
Drivers on 8/1 & 8/5/76	2.50	p<0.10

^{*} Not including first three tests from each day

VI, BASELINE TESTING

As part of the EPA sulfate baseline study, SwRI measured sulfate emissions on eight cars. While administratively this work was done under Task 2 of Task Order 68-03-2196, the test results are reported here, as specified in the task order.

A. Background

To gain information on the sulfate emission levels on a broad spectrum of cars, the EPA initiated a sulfate baseline study in the late summer of 1975. This program involved the testing of 59 vehicles for sulfuric acid and gaseous emissions (HC, CO, NO $_{\rm X}$). A variety of catalyst and noncatalyst cars were tested. These cars included both current production cars and cars designed to meet advanced emissions standards. Five different laboratories participated in this program.

B. Purpose

There were two main purposes of this study. The first was to obtain sulfate emission factors on a wide group of different in-use and prototype vehicles. These emission factors can then be used to evaluate sulfate emissions from individual emission control systems and vehicles as well as being used for input to air quality models assessing the impact of automotive sulfate emissions. The second purpose of the study was to determine the effect on sulfate emission from vehicles meeting increasingly stringent emission standards for HC, CO and NO_x.

C. Cars Tested

As its part of the baseline study, the Department of Emission Research at SwRI tested eight cars. Two of the cars were 1975 production models without catalysts. One was a 1975 production model with catalyst and air injection, designed to meet 1975 Federal emission standards. Two were 1975 California production models with catalysts and air injection. One was a 1975 production model diesel powered car. The remaining two were prototype fuel injected vehicles with three-way catalysts. A complete description of the cars is given in Table 35.

Cars I-3 and I-4 were obtained from local rental sources. Car IIA-1 was one of the cars used in the procedural development phase of this project and was supplied by the manufacturer. Cars IIB-1 and IIB-6 were two of the distance accumulation cars leased new for the distance accumulation study. Car III-7 was supplied by EPA. Car IV-4 and IV-17 were in reality one car with two different exhaust catalyst systems. The car was a prototype loaned to EPA by the manufacturer.

D. Fuel Used

The fuel that had been planned for use on the baseline gasoline powered cars was part of the batch of Phillips Petroleum unleaded gasoline obtained in a large batch by Dr. R. Bradow of EPA-RTP. An analysis of this fuel is

TABLE 35. SULFATE BASELINE CARS TESTED AT SOUTHWEST RESEARCH INSTITUTE

					Distance	
EPA Number	Year	<u>Make</u>	<u>Model</u>	Engine CID	Accumulated km (3)	Catalyst
1-3	1975	Ford	Granada	351W	9,886	No
1-4	1975	Dodge	Coronet	318	16,605	No
IIA-1	1975	Hornet	Sportabout	304	8,473	Yes w/air
IIB-1	1975	Chevrolet	Impala (1)	350	24,135	Yes w/air
IIB-6	1975	Plymouth	Gran Fury (1)	360	16,090	Yes w/air
111-7	1975	Mercedes	_{240D} (2)	147	2,824	No
IV-4	197x	Ford	Pinto	140	1,900	3-way Degussa + Oxidation w/air
IV-17	197X	Ford	Pinto	140	1,900	3-way Engelhard TWC-9

⁽¹⁾ California model
(2) Diesel powered
(3) On catalyst cars, distance accumulated refers to distance accumulated on catalyst

contained in Appendix F. Thiophene was added to the fuel to raise the fuel sulfur level to 0.03 percent. This doped fuel was identified within SwRI as EM-236-F. This fuel was used for the tests of cars I-3, I-4, IIA-1, and IV-4.

Recall that cars IIB-1 and IIB-6 were part of the distance accumulation project. Since the cars were still in the process of accumulating distance, it was felt that the fuel used for the baseline tests should be the same as used in the distance accumulation project. This fuel, identified as EM-212-F had a nominal sulfur level of 0.04 percent.

The diesel fuel used for car III-7 was a commercially-available Gulf 2D diesel fuel. This fuel was chosen rather than a diesel fuel blended to meet the EPA specifications for emissions test fuel. The emission test fuels are higher in sulfur and aromatics than normal diesel fuels. The diesel fuel used was numbered EM-246-F.

Car IV-17 started its preconditioning on the Phillips fuel, EM-236-F, however, engine operation problems were encountered during the preconditioning of car IV-17. With the assistance of representatives from Ford Motor Company, the problem was traced to stuck fuel injectors.

The car ran approximately 750 miles on the Phillips fuel before encountering operational problems. New injectors were installed and after 60 miles of operation and an overnight soak, the new injectors were also stuck. It seems unlikely that a fuel that the car had run on for 800 miles would cause new injectors to stick after a single overnight soak. More likely, something in either one barrel of the fuel or in the vehicle fuel tank was the cause.

To eliminate either cause, the vehicle fuel tank was drained, removed from the vehicle and thoroughly cleaned. Water and some biological growth were found in the drained fuel and in the fuel drum from which the vehicle had been fueled. It was likely that this growth was what fouled the injectors. The vehicle was refueled with the Gulf Oil Company Gulf Crest unleaded fuel used throughout the mileage accumulation part of this project, except that the sulfur level was adjusted to 0.03 percent. This fuel was identified as EM-243-F.

E. Test Sequence and Procedure

The test sequence for all eight cars is shown in Table 36. As shown in the table, the non-catalyst cars received the normal FTP preconditioning. In this case, the preconditioning consisted of 1 LA-4 driving schedule, followed by step 1 of the test procedure, an overnight soak. The catalyst cars with air injection were all operated for 1609 km on the modified AMA durability route shown in Appendix H prior to an overnight soak. The prototype car with the three-way catalyst was operated for 805 km on this route prior to an overnight soak with each exhaust configuration. The test procedures were the same as those used in the other phases of this project and outlined in Section II of this report.

TABLE 36. SULFATE BASELINE TEST SEQUENCE

Preconditioning

Car	Procedure				
I-3, I-4, III-7	Normal FTP preconditioning				
II-AI, II-BI, II-B6	1000 Miles Modified AMA				
IV-4, IV-17	500 Miles Modified AMA				

Test Procedure

Step	Operation				
1	12-20 hour soak				
2	1975 FTP (1 sulfate filter, 1 SO ₂ sample)				
3	Idle (5 minutes)				
4	SET-7				
5	Idle				
6	SET-7				
7	Idle				
8	HWFET				
9	Idle				
10	SET-7				
11	Idle				
12	SET-7				

Repeat Steps 1 to 12 without any other preconditioning.

Emissions of HC, CO, NO $_{\rm X}$, CO $_{\rm 2}$, H $_{\rm 2}$ SO $_{\rm 4}$ and SO $_{\rm 2}$ are to be taken during all test modes except idle.

F. Test Results

A summary of the sulfate and SO_2 test results is given in Table 37. A listing of the complete test results for each test is contained in Appendix J. To aid in the comparison of the H_2SO_4 emissions, Figure 67 contains histograms of the sulfate emissions for each car.

The sulfate emissions from the two noncatalyst cars agree with sulfate emissions seen on other noncatalyst cars tested at SwRI and at other laboratories. Cars IIA-1, IIB-1 and IIB-6 all had been tested rather extensively and their baseline test results are as expected from past tests Recall that cars IIB-1, IIB-6 were tested using a fuel with 0.04 percent sulfur. While it is not known if sulfate emissions vary directly with fuel sulfur content, if it is assumed that they do, the results from cars IIB-1 and IIB-6 can be adjusted to 0.03 percent sulfur fuel. When this is done, the average SET-7 test sulfate emissions are 6.82 mg/km for car IIB-1 and 23.43 mg/km for car IIB-6. The reasons for the differences in these two

TABLE 37. SUMMARY OF SULFATE AND SO₂ EMISSIONS FROM BASELINE TESTS AT SWRI

			_					
EPA Car Number	I-3	I-4	IIA-I	IIB-1	IIB-6	III-7	IV-4	IV-17
Make	Ford	Dodge	Hornet	Chevrolet	Plymouth	Mercedes	Ford	Ford
Model	Granada	Coronet	Sportabout	Impala	Gran Fury	240D	Pinto	Pinto
Model Year	1975	1975	1975	1975	1975	1975	197X	197X
Engine CID	351W	318	304	350	360	147	140	140
Catalyst	None	None	Pelleted	Pelleted	Mono.	None	3-way Degussa	3-way TWC-9
Test Dates Percent S in Fuel	10/23,11/6/75 0.030	10/28-29/75 0.030	10/7-8/75 0.030	11/6-7/75 0.0415	10/2-3/75 0.0415	11/18-19/75 0.23	10/6-7/75 0.0300	10/28-29/75 0.030
FTP								
mg/km								
H ₂ SO ₄	0.88	1.05	8.67	3.12	5.50	11.06	24.46	0.53
so ₂ *	66	73	38	109	88	338	34	53
Percent of Fuel S					-	330	74	JJ
H ₂ \$O ₄	0.70	0.73	8.38	1.41	2.40	2.05	27.99	0.58
sõ ₂ *	81.53	76.10	57.81	74.07	58.33	96.32	61.26	90.82
Total Recovery	82.23	76.83	66.19	75.48	60.73	98.36	89.25	91.40
SET-7 (8 tests per car)								
mg/km								
H ₂ SO ₄	0.36	1.68	16.24	9.43	32.41	10.84	50.95	0.11
so, T	55.5	54.25	50	80	69	303	34	52
Percent of fuel S							~ -	32
H ₂ SO ₄	0.41	1.64	21.38	6.16	21.59	2.41	78.67	0.16
so ₂	94.84	80.12	96.57	79.42	69.19	102.83	79.46	121.55
Total Recovery	95.25	81.75	115.60	85.57	93.57	105.24	156.26	121.71
HWFET								
mg/km								
H ₂ SO ₄	0.45	2.17	38.01	10.09	58.56	9.50	51.74	0.15
so ₂	65	50	36	58	62	326	35	50
Percent of fuel S								
$^{ m H_2SO_4}$	0.56	2.47	55.84	7.18	45.84	2.29	84.81	0.25
sō ₂ ·	120.55	87.55	81.78	62.01	73.85	120.31	87.06	129.50
Total Recovery	121.11	90.02	137.62	69.19	119.68	122.60	171.87	129.75

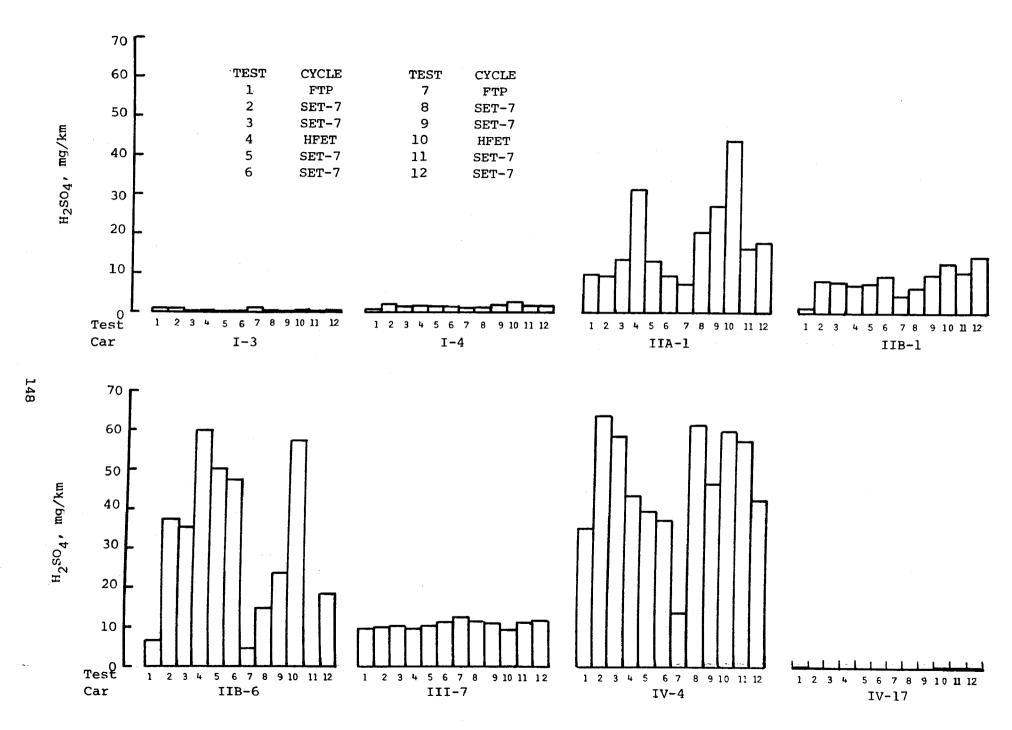


FIGURE 67. SULFATE EMISSIONS FOR BASELINE TEST SEQUENCE FROM EIGHT BASELINE CARS

cars with similar emissions systems are fully discussed in Section IV of this report.

The test results from car IV-4 are of interest since this car is a 197X Ford Pinto equipped with an experimental fuel injection system together with a Degussa three-way catalyst followed by an air injected oxidation catalyst. This system would appear to offer the possibility of high sulfate emissions. Examination of the data contained in Table J-6 shows this to be the case, with an average of 51 mg/km for the SET-7 tests. The total recovery indicates that a great deal of storage must take place at some operating conditions. The stored sulfur appears to have been given up during the SET-7 and FET tests, since the total recovery (which starts at almost 200 percent) decreased toward 100 percent with each successive SET-7 test.

It is interesting to compare the test results from car IV-4 and car IV-17 since these are both the same car but with different catalyst systems. Car IV-17 was equipped with an Engelhard TWC-9 three-way catalyst and no air injection. A comparison of both systems in Table 37 shows significantly lower sulfate emissions levels for the car with the TWC-9 catalyst; for example, 0.11 mg/km H₂SO₄ for the TWC-9 catalyst versus 50.95 mg/km H₂SO₄ for the Degussa catalyst car for an average SET-7. It has been shown in a tightly controlled fuel-air ratio near stochhometric produces almost no sulfates. (16) It is reasonable to conclude, therefore, that the high sulfate emissions from car IV-4 are probably due to the air injected-oxidation catalyst downstream of the three-way catalyst.

The diesel car was a special case. The diesel car tested converted approximately the same percentage of fuel sulfur to sulfates as did the non catalyst cars and non air-injected catalyst cars. However, because of the high level of sulfur in the diesel fuel (average of 0.23 versus 0.03 weight percent for gasoline used in most of the baseline) the sulfate emissions in mg/km were similar to the air-injected catalyst cars.

No attempt has been made to rank order the sulfate emissions of these cars or to otherwise statistically analyze the test results. Since this was only a small part of the total EPA baseline, it should be analyzed in the context of the results from all the baseline cars.

One general conclusion seems to be warranted however. It appears that noncatalyst cars produce the least sulfates and that air-injected catalyst cars, the most sulfates. The diesel seems to fall at the lower end of the air-injected catalyst range. The three-way catalyst alone appears to be capable to attaining sulfate emission levels as low as noncatalyst cars.

LIST OF REFERENCES

- Moran, J. B., Manary, O. J., Fay, R. H. and Baldwin, M. J., "Development of Particulate Emission Control Techniques for Spark-Ignition Engines." EPA-OAP Publications APTD-0949 (NTIS PB 207312) July, 1971.
- Gentel, J. E., Manary, O.J. and Valenta, J. C., "Characterization of Particulates and other Nonregulated Emissions From Mobile Sources and the Effect of Exhaust Emissions Control Devices on These Emissions." EPA OAWP Publication APTD-1567, March, 1973.
- 3. Pierson, W. R., Hammerle, R. H. and Kummer, J. T., "Sulfuric Acid Aerosol Emissions from Catalyst-Equipped Engines." SAE Paper 740287 presented at SAE Automotive Engineering Congress, Detroit, February, 1974.
- 4. EPA Contract 68-03-0497 "An Assessment of Sulfate Emission Control Technology." Exxon Research and Engineering Company, contractor.
- 5. Bradow, R. L., Carpenter, D. A., et al. "Sulfate Emissions from Catalyst and Non-Catalyst Equipped Automobiles." SAE Paper 740528, October, 1974.
- 6. EPA Contract 68-02-1275 "Protocol to Characterize Gaseous Emissions as a Function of Fuel and Additives Composition Prototype Vehicles." Southwest Research Institute, contractor.
- 7. Bradow, R. L. and Moran, J. B., "Sulfate Emissions from Catalyst Cars: A Review." SAE Paper 750090, February, 1975.
- 8. Dietzmann, Harry. E., "Protocol to Characterize Gaseous Emissions as a Function of Fuel and Additives Composition." Final report EPA-600/2-75-048, September, 1975
- 9. Begeman, C. R., Jackson, M. W. and Nebel, G. J., "Sulfate Emissions from Catalyst-Equipped Automobiles." SAE Paper 741060, October, 1974.
- 10. Somers, J. H., Garbe, R., Fett, C. E. and Baines, T. M., "Automotive Sulfate Emissions, A Baseline Study." To be presented at the American Chemical Society Meeting, San Francisco, California, August, 1976.
- 11. EPA Contract 68-02-1777 "Characterization of Diesel Gaseous and Particulate Emissions." Southwest Research Institute, contractor.
- 12. Beltyer, M., Campion, R. J., Harlan, J. and Hochhauser, A. M., "The Conversion of SO₂ Over Automotive Oxidation Catalyst." SAE Paper 750095, February, 1975.
- 13. Hammerle, R. H. and Mikkor, M., "Some Phenomena Which Control Sulfuric Acid Emission from Automotive Catalysts." SAE Paper 750097, February, 1975.

LIST OF REFERENCES (cont'd)

- 14. Federal Register Vol. 38, Number 124, Thursday, June 28, 1973, Paragraph 85.075-28.
- 15. Moran, J. B., "Issue Paper: Estimated Public Health Impact as a Result of Equipping Light-Duty Motor Vehicles with Oxidation Catalysts." EPA, January 31, 1975.
- 16. Cohn, J. G., Mannion, W. A., Thomson, C. E. and Hansel, J. G., "Effect of Three Way Conversion Catalyst Operation on the Chemical State of Automotive Sulfur Emissions." SAE Paper 750096, February, 1975.

APPENDIX A SPEED VERSUS TIME LISTING OF SET-7 DRIVING CYCLE

PAGE 1 OF 7

CYCLE DIST = 13.51 MI AVG SPEED = 34.78 MPH

SEC	MPH	SEC	мрн	SEC	MPH	SI	EC	MPH
0	0.0							
ĭ	0.0	51	23.10	101	29.10	1.4	= 1	20.00
Ş	0.0	52	24.50	101	28.70		51 52	19.80
3	0.0	53	26.00	103	29.60		52 53	20.00
4	0.0	54	27.60	103	30.30		54	19.60
5	0.0	55	28.80	105	30.70		5 5	18.10
6-	0.0	56	29.60	106	30.00		56	15.70
7	0.0	57	31.50	107	29.40		57	12.60
8	0.0	58	32.50	108	27.80		58	10.30
9	0.0	59	32.50	109	25.60		59	10.00
10	0.0	60	31.20	110	25.00		60	9.50
11	1.60	61	29.50	111	25.00		61	9.70
12	4.50	62	29.10	112	24.80		62	10.00
13	7.20	63	29.40	113	23.50		63	10.00
14	9.70	64	30.80	114	23.00	10	64	10.00
15	11.70	65	30.80	115	23.00		65	10.00
16	13.30	66	30.80	116	23.60		66	10.50
17	14.30	67	30.70	117	24.00		67	11.80
18	14.90	68	30.70	118	25.00		68	13.60
19 20	15.00 15.70	69 70	30.70	119	26.30		69	15.20
21	16.20	70 71	29.70	120	27.30		70	16.80
22	15.40	. 72	28.80	121	28.30		71	18.40
23	14.70	73	27.20	122	29.30		72	19.60
24	14.70	74	25.00 22.50	123	29.90		73	20.00
25	15.00	75	20.50	124	30.40		74	20.20
26	15.00	76	19.30	125 126	31.90		75	20.00 19.80
27	14.90	77	19.30	127	32.40 32.40		76	20.00
28	13.90	78	19.50	128	32.40		77 78	19.50
29	11.60	79	20.70	129	31.60		79	18.20
30	10.00	80	21.30	130	31.00		80	16.20
31	10.00	81	20.60	131	29.60		81	13.50
32	10.00	82	20.10	132	28.90		82	10.90
33	10.00	83	20.00	133	27.80		83	10.00
34	10.70	84	20.30	134	26.30		84	10.00
35	12.20	85	20.10	135	24.40		85	9.70
36	13.50	86	20.00	136	22.10		86	10.00
37	14.50	87	20.40	137	19.70		87	10.30
38	14.80	88	21.10	138	17.40	1	88	10.30
39	15.00	89	22.20	139	15.80	1	89	10.00
40	15.20	90	23.40	140	15.00		90	10.10
41	15.50	91	24.50	141	15.00		91	10.60
42	15.00	92	25.50	142	15.00		92	11.60
43	15.00	93	26.60	143	15.10		93	12.90
44 45	15.20 15.10	94 95	27.70	144	16.10		94	14.00
46	15.80	96	28.70 29.50	145	17.40		95	15.10
47	17.00	97	30.80	146	18.60		96	16.20
48	18.60	98	30.60	147	19.70		97	17.30
49	20.20	99	30.40	148 149	20.00 20.50		98	18.40 19.30
50	21.60	100	29.90	150	20.50		99	19.30
~ •				130	~ v + 0 0	-	00	4 7 9 7 0

PAGE 2 OF 7

SEC	мРн	SEC	MPH	SEC	мрн	SEC	MPH
201	20.00	251	56.00	301	46.00	351	51.10
202	20.00	252	56.50	302	46.90	352	50.20
203	20.00	253	56.50	303	48.00	353	49.80
204	20.40	254	56.30	304	49.00	354	49.50
205	21.40	255	56.00	305	49.90	355	49.50
206	22.70	256	55.50	306	50.90	356	49.40
207	24.60	257	55.20	307	51.90	357	49.60
208	26.50	258	55.00	308	52.90	358	49.80
209	28.20	259	54.80	309	53.80	359	50.00
210	29.80	260	54.50	310	54.50	360	50.00
211	31.50	261	54.20	311	54.90	361	50.20
212	33.20	262	53.90	312	55.20	362	50.40
213	34.90	263	54.00	313	55.00	363	50.30
214	36.70	264	54.50	314	54.70	364	50.00
215	38.20	265	54.50	315	54.30	365	49.70
216	39.30	266	52.80	316	53.50	366	49.00
217	40.00	267	50.40	317	53.00	367	47.80
218	40.70	268	50.00	318	52.70	368	46.20
519	41.00	269	49.60	319	53.30	369	44.00
550	41.00	270	49.70	320	53.70	370	41.00
551	41.00	271	50.00	321	53.70	371	38.00
555	41.00	272	50.50	322	53.70	372	34.70
553	40.00	273	50.30	323	54.50	373	31.40
224	39.50	274	50.00	324	55.00	374	28.10
225	39.30	275	49.30	325	55.00	375	24.80 21.80
556	39.60	276	47.80	326	55.20	376	20.50
227	39.90	277	45.30	327	55.40	377	20.00
558	40.00	278	42.30	328	55.50	378 379	20.00
559	40.40	279	40.20	329	55.60	380	20.00
230	41.20	280	40.00	330	55.60	381	19.70
531	42.20	281	39.80	331	55.50	382	18.50
535	43.60	282	39.70	332	55.40	383	16.30
533	44.90	283	40.00	333	55.30	384	13.20
234	46.20	284	40.20	334	55.30 55.30	385	10.60
235	47.40	285	40.50	335 336	55.60	386	10.00
236	48.60	286	42.40	337	55.90	387	10.00
237	49.80	287	44.20	338	56.10	388	9.90
538	51.00	288	45.00	339	56.10	389	9.60
239	52.30	289	45.50	340	56.10	390	8.90
240	53.40	290	45.20	341	56.10	391	7.90
241	54.30	291	45.40	342	55.90	392	6.70
242	54.90	292	45.00 45.00	343	55.60	393	5.60
243	55.30	293	44.80	344	55.30	394	5.00
244 245	55.50	294 295	44.00	345	55.10	395	4.80
246	55.50	29 5 296	43.80	346	54.90	396	4.30
247	55.00	297	43.50	347	54.70	397	4.00
248	55.00	298	44.10	348	54.10	398	4.50
249	55.00	299	44.60	349	53.30	399	5.00
250	55.00 55.00	300	45.30	350	52.20	400	5.00
-50	22.00	300	75450				

PAGE 3 OF 7

401 5.00 451 7.80 501 9.40 551 32.30 402 5.00 452 10.20 502 9.00 552 29.80 403 5.40 453 12.10 503 7.10 553 26.80 404 7.20 454 13.50 504 5.20 554 223.50 406 9.80 456 15.20 506 5.00 555 20.20 407 9.70 457 15.00 507 5.00 557 14.00 408 9.50 458 14.80 509 5.00 559 9.80 410 9.30 460 14.80 510 500 559 9.80 411 9.50 461 14.80 511 5.00 562 9.50 412 9.90 462 15.00 512 5.00 562 9.50 413 10.20 463 15.10 513	SEC	MPH	SEC	MPH	SEC	MPH	SEC	MPH
402 5.00 452 10.20 502 9.00 552 29.80 403 5.40 453 12.10 503 7.10 553 26.80 404 7.20 454 13.50 504 5.20 554 23.50 405 9.00 455 14.50 505 5.00 555 20.20 407 9.70 457 15.00 507 5.00 557 14.00 408 9.50 458 14.80 508 5.00 558 11.00 409 9.20 459 14.80 509 5.00 559 9.80 410 9.30 460 14.80 510 5.00 560 9.60 411 9.50 461 14.80 511 5.00 561 9.50 412 9.90 462 15.00 512 5.00 562 9.50 413 10.20 463 15.10 513 5.00 563 9.50 414 10.40 464 15.20 514 4.40 564 9.50 415 10.70 465 15.30 515 3.00 565 9.60 416 12.10 466 15.30 515 3.00 565 9.60 416 12.10 466 15.30 516 1.00 566 9.90 417 13.50 467 16.70 517 0.0 567 10.40 418 14.70 468 18.80 518 0.0 568 11.40 419 15.00 469 20.70 519 0.0 569 12.50 422 15.00 472 24.50 522 0.0 577 13.50 423 14.70 473 24.80 522 0.0 577 13.50 424 15.00 474 25.00 524 0.0 577 15.80 425 15.00 474 25.00 526 0.0 577 15.80 426 15.10 476 26.20 527 0.0 577 15.30 428 17.00 481 25.00 522 0.0 577 15.80 429 18.90 479 25.50 529 3.30 588 15.00 433 19.90 480 25.20 520 520 588 15.50 433 19.90 480 25.20 520 520 589 3.30 587 15.50 428 17.00 478 26.10 525 0.0 577 15.30 429 18.90 479 25.50 529 3.30 589 15.50 431 10.00 481 25.00 531 9.40 581 11.30 432 20.00 482 24.30 532 12.70 582 8.00 433 19.90 480 25.20 530 6.30 580 14.30 433 19.90 480 25.20 530 6.30 580 14.30 434 20.00 481 25.00 531 9.40 581 11.30 435 19.80 485 16.40 535 22.60 585 5.00 436 18.80 489 9.40 533 32.00 587 55.00 437 16.80 487 10.20 537 29.00 587 55.00 438 13.80 488 9.70 538 32.00 588 5.00 439 10.50 489 9.40 539 34.50 589 6.10 444 0.0 494 8.40 544 35.30 599 9.90 445 0.0 495 8.80 545 35.20 599 10.00 446 0.0 496 8.80 545 35.20 599 9.90 447 0.0 497 9.00 547 35.00 599 9.90	401	5.00	451	7.80	501	9.40	551	32 30
403 5.40 453 12.10 503 7.10 552 26.80 404 7.20 454 13.50 504 5.20 554 23.50 405 9.00 455 14.50 505 5.00 555 17.00 406 9.80 456 15.20 506 5.00 556 17.00 407 9.70 457 15.00 507 5.00 557 14.00 408 9.50 458 14.80 508 5.00 557 14.00 409 9.20 459 14.80 509 5.00 559 9.80 410 9.30 460 14.80 510 5.00 560 9.60 411 9.50 461 14.80 511 5.00 561 9.50 412 9.90 452 15.00 512 5.00 562 9.50 413 10.20 463 15.10 513 5.00 563 9.50 414 10.40 464 15.20 514 4.40 564 9.50 415 10.70 465 15.30 516 1.00 566 9.90 416 12.10 466 15.30 516 1.00 566 9.90 417 13.50 467 16.70 517 0.0 567 10.40 418 14.70 468 18.80 518 0.0 568 11.40 419 15.00 469 20.70 519 0.0 569 12.50 421 15.20 471 24.30 521 0.0 571 14.50 422 15.00 472 24.50 522 0.0 572 15.20 423 14.70 473 24.80 523 0.0 573 15.60 424 15.00 475 25.40 522 0.0 577 15.80 425 15.00 475 25.40 525 0.0 577 15.50 426 15.10 476 26.00 526 0.0 577 15.80 427 16.20 477 26.20 527 0.0 577 15.80 431 20.00 481 25.00 531 16.00 588 11.30 432 20.00 482 24.30 532 12.70 582 8.00 433 10.00 481 25.00 531 9.40 581 11.30 442 15.00 476 26.00 526 0.0 577 15.50 428 17.60 478 26.10 528 0.50 578 15.50 431 20.00 481 25.00 531 16.00 583 500 587 432 17.60 478 26.10 528 0.50 578 15.50 433 10.00 481 25.00 531 16.00 583 500 587 433 10.00 481 25.00 531 16.00 583 500 587 434 20.00 482 24.30 532 12.70 582 8.00 435 19.80 479 25.50 529 3.30 579 15.00 436 18.80 486 13.10 536 25.90 586 5.00 437 16.80 487 10.20 537 29.00 587 55.00 448 20.00 481 25.00 531 16.00 583 5.00 438 13.80 488 9.70 538 32.00 588 5.00 444 0.0 494 8.80 541 35.30 599 9.90 445 0.0 495 8.80 541 35.30 599 9.90 446 0.0 496 8.80 541 35.30 599 9.90								
404 7.20 454 13.50 504 5.20 554 23.50 405 9.00 455 14.50 505 5.00 555 20.20 406 9.80 456 15.20 506 5.00 555 17.00 407 9.70 457 15.00 507 5.00 557 14.00 408 9.50 458 14.80 508 5.00 558 11.00 409 9.20 459 14.80 509 5.00 559 9.80 410 9.30 460 14.80 510 5.00 560 9.60 411 9.50 461 14.80 511 5.00 561 9.50 412 9.90 462 15.00 512 5.00 562 9.50 413 10.20 463 15.10 513 5.00 563 9.50 414 10.40 464 15.20 514 4.40 564 9.50 415 10.70 465 15.30 515 3.00 565 9.60 416 12.10 466 15.30 516 1.00 566 9.90 417 13.50 467 16.70 517 0.0 567 10.40 418 14.70 468 18.80 518 0.0 568 11.40 419 15.00 469 20.70 519 0.0 569 12.50 420 15.00 470 22.60 520 0.0 570 13.50 421 15.20 471 24.30 521 0.0 571 14.50 422 15.00 472 24.50 522 0.0 573 15.60 424 15.00 474 25.00 522 0.0 573 15.60 425 15.00 476 26.00 526 0.0 573 15.60 426 15.10 476 26.00 526 0.0 577 15.30 427 16.20 477 26.20 527 0.0 577 15.30 428 17.60 478 26.10 528 0.50 578 15.50 431 20.00 481 25.00 522 0.0 577 15.30 432 20.00 482 24.30 523 0.0 577 15.30 433 10.00 481 25.00 526 0.0 577 15.30 434 20.00 481 25.00 526 0.0 577 15.30 439 19.90 480 25.20 530 6.30 580 598 19.40 430 19.90 480 25.20 530 6.30 580 598 598 431 20.00 482 24.30 532 12.70 582 80.00 433 12.00 481 25.00 531 9.40 581 11.30 434 20.00 481 25.00 531 9.40 581 11.30 435 19.80 489 9.40 533 34.50 589 589 500 444 4.50 498 899 440 533 5.30 599 10.00 445 18.80 486 13.10 536 25.90 586 5.00 438 13.80 486 13.10 536 25.90 586 5.00 439 10.50 489 9.40 533 34.50 589 6.10 440 7.20 490 890 544 35.30 599 10.00 444 0.0 494 8.40 544 35.30 599 10.00 445 1.80 492 8.50 542 35.30 599 9.90								
405 9.00 455 14.50 505 5.00 555 20.20 406 9.80 456 15.20 506 5.00 556 17.00 407 9.70 457 15.00 507 5.00 557 14.00 408 9.50 458 14.80 508 5.00 558 11.00 409 9.20 459 14.80 509 5.00 559 9.80 410 9.30 460 14.80 510 5.00 561 9.60 411 9.50 461 14.80 511 5.00 562 9.50 413 10.20 463 15.10 513 5.00 563 9.50 414 10.40 464 15.20 514 4.40 564 9.50 415 10.70 465 15.30 515 3.00 565 9.60 416 12.10 466 15.30 516 1.00 566 9.90 417 13.50 467 16.70 517 0.0 567 10.40 418 14.70 468 18.80 518 0.0 568 11.40 420 15.00 469 20.70 519 0.0 569 12.50 421 15.20 471 24.30 521 0.0 571 14.50 422 15.00 472 22.450 522 0.0 571 15.20 423 14.70 473 24.80 523 0.0 574 15.80 424 15.00 475 25.40 522 0.0 574 15.80 425 15.00 475 25.50 522 0.0 574 15.80 426 15.10 476 26.00 526 0.0 576 15.50 427 16.20 477 26.20 527 0.0 577 15.50 428 17.60 478 26.10 528 0.50 577 15.30 431 20.00 481 25.00 531 9.40 581 11.30 433 20.00 481 25.00 531 9.40 581 11.30 433 20.00 482 24.30 531 16.00 583 5.00 434 20.00 483 22.60 532 0.0 577 15.30 433 10.00 481 25.00 526 0.0 576 15.50 443 19.90 479 25.50 529 3.30 580 14.30 431 10.80 488 9.70 539 3.40 581 11.30 433 10.00 481 25.00 534 19.30 584 5.00 436 18.80 486 13.10 536 25.90 586 5.00 437 19.80 489 9.40 539 3.50 589 6.10 440 7.20 490 9.00 540 35.50 599 9.90 447 0.0 496 9.10 546 33.30 599 19.00 446 0.0 496 9.10 546 33.30 599 9.90								
406 9.80 456 15.20 506 5.00 556 17.00 407 9.70 457 15.00 507 5.00 557 14.00 408 9.50 458 14.80 508 5.00 558 11.00 409 9.20 459 14.80 509 5.00 559 9.80 410 9.30 460 14.80 510 5.00 560 9.60 411 9.50 461 14.80 511 5.00 561 9.50 412 9.90 462 15.00 512 5.00 562 9.50 413 10.20 463 15.10 513 5.00 563 9.50 414 10.40 464 15.20 514 4.40 564 9.50 415 10.70 465 15.30 515 3.00 565 9.60 416 12.10 466 15.30 516 1.00 566 9.90 417 13.50 467 16.70 517 0.0 567 10.40 418 14.70 468 18.80 518 0.0 568 11.40 419 15.00 469 20.70 519 0.0 569 12.50 420 15.00 470 22.60 520 0.0 571 13.50 421 15.20 471 24.30 521 0.0 571 14.50 422 15.00 472 24.50 522 0.0 571 14.50 423 14.70 473 24.80 523 0.0 573 15.60 424 15.00 474 25.00 524 0.0 571 15.20 425 15.00 475 25.40 525 0.0 574 15.80 426 15.10 476 26.00 526 0.0 576 15.50 427 16.20 477 26.20 527 0.0 577 15.30 428 17.60 478 26.10 528 0.50 578 15.50 429 18.90 489 224.30 532 12.70 582 8.00 433 20.00 481 25.00 531 16.00 583 5.00 433 20.00 481 25.00 531 19.40 581 11.30 433 20.00 481 25.00 531 19.40 581 11.30 433 20.00 483 22.60 533 16.00 583 5.00 435 19.80 485 16.40 535 12.70 582 8.00 436 18.80 486 13.10 536 25.90 586 5.00 437 16.80 487 10.20 537 29.00 587 5.00 438 13.80 488 9.70 538 32.00 588 5.10 444 0.0 494 8.40 544 35.30 599 9.80 449 2.20 499 8.90 548 35.00 597 9.80 449 2.20 499 8.90 548 35.00 599 9.90								
407 9.70 457 15.00 507 5.00 557 14.00 408 9.50 458 14.80 508 5.00 558 11.00 409 9.20 459 14.80 508 5.00 559 9.80 410 9.30 460 14.80 510 5.00 560 9.60 411 9.50 461 14.80 511 5.00 562 9.50 413 10.20 463 15.10 513 5.00 563 9.50 414 10.40 464 15.20 514 4.40 564 9.50 415 10.70 465 15.30 515 3.00 565 9.60 416 12.10 466 15.30 516 1.00 566 9.90 417 13.50 467 16.70 517 0.0 566 9.90 418 14.70 468 18.80 518 0.0 568 11.40 420 15.00 469 20.70 519 0.0 569 12.50 421 15.20 471 24.30 521 0.0 571 14.50 422 15.00 470 22.60 520 0.0 571 14.50 423 14.70 473 24.80 523 0.0 571 15.20 421 15.20 471 24.30 521 0.0 571 14.50 422 15.00 475 25.40 525 0.0 572 15.20 425 15.00 475 25.40 525 0.0 575 15.50 426 15.10 476 26.00 526 0.0 577 15.30 427 16.20 477 26.20 527 0.0 577 15.30 428 17.60 478 26.10 528 0.0 578 15.50 429 18.90 479 25.50 529 3.30 580 14.30 431 20.00 481 25.00 531 6.30 580 14.30 432 20.00 482 24.30 532 12.70 582 8.80 433 20.00 483 22.60 533 16.00 583 5.00 435 19.80 485 16.40 535 22.60 585 5.00 436 18.80 486 13.10 536 25.90 586 5.00 437 16.80 487 10.20 537 29.00 587 5.00 438 13.80 488 9.70 538 32.00 588 5.00 444 0.0 494 8.40 544 35.30 591 8.60 445 0.0 495 8.80 544 35.30 591 8.60 446 0.0 496 9.10 546 35.10 599 9.90								
408 9.50 458 14.80 508 5.00 558 11.00 409 9.20 459 14.80 509 5.00 559 9.80 410 9.30 460 14.80 510 5.00 561 9.50 411 9.50 461 14.80 511 5.00 561 9.50 412 9.90 462 15.00 512 5.00 562 9.50 413 10.20 463 15.10 513 5.00 563 9.50 414 10.40 464 15.20 514 4.40 564 9.50 415 10.70 465 15.30 515 3.00 565 9.60 416 12.10 466 15.30 515 3.00 566 9.90 417 13.50 467 16.70 517 0.0 566 9.90 418 14.70 468 18.80 518 0.0 568 11.40 419 15.00 469 20.70 519 0.0 569 12.50 420 15.00 470 22.60 520 0.0 570 13.50 421 15.20 471 24.30 521 0.0 571 14.50 422 15.00 472 24.50 522 0.0 571 14.50 423 14.70 473 24.80 523 0.0 573 15.60 424 15.00 474 25.00 524 0.0 573 15.60 425 15.00 475 25.40 525 0.0 575 15.50 426 15.10 476 26.00 526 0.0 576 15.30 427 16.20 477 26.20 527 0.0 577 15.30 433 20.00 481 25.00 531 6.30 580 14.30 433 20.00 482 24.30 532 12.70 582 8.00 433 10.90 480 25.20 530 6.30 580 14.30 433 20.00 481 25.00 531 12.70 582 8.00 433 20.00 482 24.30 532 12.70 582 8.00 433 20.00 483 22.60 534 19.30 584 5.00 434 19.80 485 16.40 535 22.60 585 5.00 435 19.80 485 16.40 535 22.60 585 5.00 436 18.80 486 13.10 536 25.90 588 5.10 439 10.50 499 8.80 541 35.30 591 8.60 444 0.0 494 8.40 544 35.30 591 8.60 445 0.0 495 8.80 544 35.30 591 8.60 446 0.0 496 9.10 546 35.10 596 9.90 447 0.0 497 9.00 547 35.00 597 9.80 449 2.20 499 8.90 548 35.00 597 9.80 449 2.20 499 8.90 548 35.00 599 9.90								
409 9.20 459 14.80 509 5.00 559 9.80 410 9.30 460 14.80 510 5.00 560 9.60 411 9.50 461 14.80 511 5.00 561 9.50 412 9.90 402 15.00 512 5.00 563 9.50 413 10.20 463 15.10 513 5.00 563 9.50 414 10.40 464 15.20 514 4.40 564 9.50 415 10.70 465 15.30 515 3.00 565 9.60 416 12.10 466 15.30 515 3.00 566 9.90 417 13.50 467 16.70 517 0.0 567 10.40 418 14.70 468 18.80 518 0.0 568 11.40 420 15.00 470 22.60 520 0.0 570 13.50 421 15.20 471 24.30 521 0.0 571 14.50 422 15.00 472 22.4.50 522 0.0 572 15.20 423 14.70 473 24.80 523 0.0 573 15.60 424 15.00 474 25.00 524 0.0 574 15.80 425 15.00 476 26.00 526 0.0 575 15.50 426 15.10 476 26.00 526 0.0 577 15.50 427 16.20 477 26.20 527 0.0 577 15.30 431 20.00 481 25.00 531 12.70 581 11.30 432 20.00 482 24.30 532 12.70 582 8.00 433 10.99 480 25.20 530 6.30 580 14.30 434 20.00 481 25.00 531 16.00 583 5.00 435 19.80 485 16.40 535 22.60 585 5.00 436 18.80 486 13.10 536 25.90 586 5.00 437 16.80 487 10.20 537 29.00 587 550 438 13.80 488 9.70 538 32.00 588 5.10 440 7.20 490 9.00 540 35.50 599 7.40 441 4.50 491 8.80 541 35.30 591 8.60 437 16.80 487 10.20 537 29.00 586 5.00 444 0.0 494 8.40 534 35.30 591 8.60 445 0.0 495 8.80 541 35.30 591 8.60 446 0.0 496 9.10 546 35.10 596 9.90 447 0.0 497 9.00 547 35.00 597 9.80 449 2.20 498 8.90 548 35.00 598 9.80								
410 9.30 460 14.80 510 5.00 560 9.60 411 9.50 461 14.80 511 5.00 561 9.50 412 9.90 462 15.00 512 5.00 562 9.50 413 10.20 463 15.10 513 5.00 563 9.50 414 10.40 464 15.20 514 4.40 564 9.50 415 10.70 465 15.30 515 3.00 565 9.60 416 12.10 466 15.30 516 1.00 566 9.90 417 13.50 467 16.70 517 0.0 567 10.40 419 15.00 469 20.70 519 0.0 568 11.40 419 15.00 469 20.70 519 0.0 568 11.40 420 15.00 470 22.60 520 0.0 570 13.50 421 15.20 471 24.30 521 0.0 571 14.50 422 15.00 472 24.50 522 0.0 571 14.50 423 14.70 473 24.80 523 0.0 573 15.60 424 15.00 475 25.40 525 0.0 574 15.80 425 15.00 476 26.00 526 0.0 576 15.50 426 15.10 476 26.00 526 0.0 576 15.50 427 16.20 477 26.20 527 0.0 577 15.30 431 20.00 481 25.00 531 9.40 581 11.30 432 20.00 483 22.60 533 1.60 583 5.00 433 10.90 480 25.20 530 531 9.40 581 11.30 433 20.00 481 25.00 531 9.40 581 11.30 433 20.00 484 19.60 534 19.30 582 8.00 435 19.80 485 16.40 535 22.60 585 5.00 436 18.80 486 13.10 536 25.90 586 5.00 437 16.80 487 10.20 537 29.00 587 550 438 13.80 488 9.70 538 32.00 587 590 444 4.50 491 8.80 541 35.30 591 8.60 445 0.0 493 8.10 543 35.30 592 9.70 446 0.0 494 8.40 534 35.30 592 9.70 447 0.0 497 9.00 547 35.00 597 9.80 449 2.20 498 8.90 548 35.00 597 9.90								
411 9.50 461 14.80 511 5.00 561 9.50 412 9.90 462 15.00 512 5.00 562 9.50 413 10.20 463 15.10 513 5.00 563 9.50 414 10.40 464 15.20 514 4.40 564 9.50 415 10.70 465 15.30 515 3.00 565 9.60 416 12.10 466 15.30 516 1.00 566 9.90 417 13.50 467 16.70 517 0.0 567 10.40 418 14.70 468 18.80 518 0.0 568 11.40 419 15.00 469 20.70 519 0.0 568 11.40 420 15.00 470 22.60 520 0.0 570 13.50 421 15.20 471 24.30 521 0.0 571 14.50 422 15.00 472 24.50 522 0.0 571 14.50 424 15.00 473 24.80 523 0.0 571 15.20 425 15.00 476 26.00 524 0.0 574 15.80 426 15.10 476 26.00 526 0.0 576 15.50 427 16.20 477 26.20 527 0.0 577 15.30 428 17.60 478 26.10 528 0.50 578 15.50 429 18.90 479 25.50 529 3.30 579 15.00 431 20.00 481 25.00 531 9.40 581 11.30 432 20.00 482 24.30 532 12.70 582 8.00 433 19.90 480 25.20 530 6.30 580 14.30 433 20.00 481 25.00 531 9.40 581 11.30 433 20.00 484 19.60 534 19.30 584 5.00 435 19.80 486 13.10 536 25.90 586 5.00 436 18.80 486 13.10 536 25.90 586 5.00 437 16.80 487 10.20 537 29.00 587 5.00 438 13.80 488 9.70 538 32.00 588 5.10 440 7.20 490 9.00 540 35.50 591 8.60 434 0.0 493 8.10 543 35.30 591 8.60 444 0.0 494 8.40 534 35.30 591 10.00 445 0.0 495 8.80 544 35.30 591 10.00 446 0.0 496 9.10 546 35.10 596 9.90 447 0.0 497 9.00 547 35.00 597 9.80 449 2.20 498 8.90 548 35.00 598 9.80		and the second s						
412 9.90 462 15.00 512 5.00 562 9.50 413 10.20 463 15.10 513 5.00 563 9.50 414 10.40 464 15.20 514 4.40 564 9.50 415 10.70 465 15.30 515 3.00 565 9.60 416 12.10 466 15.30 516 1.00 566 9.90 417 13.50 467 16.70 517 0.0 567 10.40 418 14.70 468 18.80 518 0.0 568 11.40 420 15.00 469 20.70 519 0.0 569 12.50 421 15.20 471 24.30 521 0.0 571 14.50 422 15.00 472 24.50 522 0.0 571 14.50 423 14.70 473 24.80 523 0.0 572 15.20 424 15.00 474 25.00 524 0.0 574 15.80 425 15.00 475 25.40 525 0.0 574 15.50 426 15.10 476 26.00 526 0.0 575 15.50 427 16.20 477 26.20 527 0.0 577 15.50 428 17.60 478 26.10 528 0.50 578 15.50 431 20.00 481 25.00 531 9.40 581 11.30 432 20.00 482 24.30 532 12.70 582 8.00 433 20.00 481 25.00 531 9.40 581 11.30 433 20.00 481 25.00 531 9.40 581 11.30 433 20.00 482 24.30 532 12.70 582 8.00 436 18.80 486 13.10 536 25.90 585 5.00 437 16.80 487 10.20 537 29.00 587 5.00 438 13.80 488 9.70 538 32.00 587 5.00 440 7.20 490 9.00 540 35.50 599 7.40 441 4.50 491 8.80 541 35.30 591 10.00 445 0.0 493 8.10 543 35.30 592 970 448 0.20 498 8.90 544 35.30 599 9.90								
413 10.20 463 15.10 513 5.00 563 9.50 414 10.40 464 15.20 514 4.40 564 9.50 415 10.70 465 15.30 515 3.00 565 9.60 416 12.10 466 15.30 516 1.00 566 9.90 417 13.50 467 16.70 517 0.0 567 10.40 418 14.70 468 18.80 518 0.0 568 11.40 419 15.00 469 20.70 519 0.0 569 12.50 420 15.00 470 22.60 520 0.0 570 13.50 421 15.20 471 24.30 521 0.0 571 14.50 422 15.00 472 24.50 522 0.0 571 14.50 423 14.70 473 24.80 523 0.0 573 15.20 424 15.00 474 25.00 524 0.0 574 15.80 425 15.00 475 25.40 525 0.0 575 15.50 426 15.10 476 26.00 526 0.0 576 15.50 427 16.20 477 26.20 527 0.0 577 15.30 428 17.60 478 26.10 528 0.50 578 15.50 429 18.90 479 25.50 529 3.30 579 15.00 431 20.00 481 25.00 531 9.40 581 11.30 432 20.00 483 22.60 531 9.40 581 11.30 433 20.00 483 22.60 533 16.00 583 5.00 435 19.80 485 16.40 535 22.60 585 5.00 436 18.80 486 13.10 536 25.90 586 5.00 437 16.80 487 10.20 537 29.00 587 5.00 438 13.80 488 9.40 539 34.50 589 6.10 440 7.20 490 9.00 540 35.50 599 7.40 441 4.50 491 8.80 543 35.30 593 10.00 442 1.80 492 8.50 543 35.30 593 10.00 443 0.0 493 8.10 543 35.30 593 10.00 444 0.0 494 8.40 544 35.30 591 10.20 445 0.0 495 8.80 545 35.20 595 10.10 446 0.0 496 9.10 546 35.10 596 9.90 449 2.20 499 8.90 549 34.80 599 9.90								
414 10.40 464 15.20 514 4.40 564 9.50 415 10.70 465 15.30 515 3.00 565 9.60 416 12.10 466 15.30 515 3.00 565 9.60 417 13.50 467 16.70 517 0.0 567 10.40 418 14.70 468 18.80 518 0.0 568 11.40 419 15.00 469 20.70 519 0.0 569 12.50 421 15.20 471 24.30 521 0.0 571 14.50 422 15.00 472 24.50 522 0.0 571 14.50 423 14.70 473 24.80 523 0.0 573 15.60 424 15.00 474 25.00 524 0.0 574 15.80 425 15.00 475 25.40 525 0.0 574 15.80 426 15.10 476 26.00 526 0.0 576 15.50 427 16.20 477 26.20 527 0.0 577 15.30 429 18.90 479 25.50 529 3.30 579 15.50 433 20.00 481 25.00 531 9.40 581 11.30 433 20.00 481 25.00 531 9.40 581 11.30 433 20.00 481 25.00 531 9.40 581 11.30 433 20.00 483 22.60 533 16.00 583 5.00 434 20.00 484 19.60 534 19.30 584 5.00 587 19.80 485 19.80 485 16.40 535 22.60 585 5.00 587 5.00 431 19.80 485 16.40 535 22.60 585 5.00 587 5.00 431 19.80 488 19.60 534 19.30 584 5.00 433 19.80 488 10.40 535 22.60 585 5.00 587 5.00 436 18.80 486 13.10 536 25.90 586 5.00 437 16.80 487 10.20 537 29.00 587 5.00 587 5.00 438 13.80 488 9.70 538 32.00 588 5.00 587 6.00 587 5.00 438 13.80 488 9.40 539 34.50 589 6.10 444 4.50 499 8.80 543 35.30 599 7.40 444 0.0 494 8.40 544 35.30 599 7.40 445 0.0 495 8.80 545 35.20 599 7.40 446 0.0 496 9.10 546 35.00 599 9.90 549 34.80 599 9.90								
415 10.70								
416 12.10 466 15.30 516 1.00 566 9.90 417 13.50 467 16.70 517 0.0 567 10.40 418 14.70 468 18.80 518 0.0 568 11.40 419 15.00 469 20.70 519 0.0 569 12.50 420 15.00 470 22.60 520 0.0 570 13.50 421 15.20 471 24.30 521 0.0 571 14.50 422 15.00 472 24.50 522 0.0 571 14.50 423 14.70 473 24.80 523 0.0 573 15.60 424 15.00 474 25.00 524 0.0 574 15.80 425 15.00 475 25.40 525 0.0 575 15.50 426 15.10 476 26.00 526 0.0 575 15.50 427 16.20 477 26.20 527 0.0 577 15.30 428 17.60 478 26.10 528 0.50 578 15.50 429 18.90 479 25.50 529 3.30 579 15.00 431 20.00 481 25.00 531 9.40 581 11.30 431 20.00 483 22.60 533 16.00 583 5.00 434 20.00 484 19.60 534 19.30 584 5.00 435 19.80 485 16.40 535 22.60 585 5.00 436 18.80 486 13.10 536 25.90 586 5.00 437 16.80 487 10.20 537 29.00 587 5.00 438 13.80 488 9.70 538 32.00 588 5.10 440 7.20 490 9.00 540 35.50 599 9.90 448 0.20 498 8.90 543 35.30 599 9.90 449 2.20 498 8.90 549 34.80 599 9.90								
417 13.50								
418 14.70								
419 15.00 469 20.70 519 0.0 569 12.50 420 15.00 470 22.60 520 0.0 570 13.50 421 15.20 471 24.30 521 0.0 571 14.50 422 15.00 472 24.50 522 0.0 572 15.20 423 14.70 473 24.80 523 0.0 573 15.60 424 15.00 474 25.00 524 0.0 574 15.80 425 15.00 475 25.40 525 0.0 575 15.50 426 15.10 476 26.00 526 0.0 576 15.50 427 16.20 477 26.20 527 0.0 577 15.30 428 17.60 478 26.10 528 0.50 578 15.50 429 18.90 479 25.50 529 3.30 579 15.00 431 20.00 481 25.00 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
420 15.00 470 22.60 520 0.0 570 13.50 421 15.20 471 24.30 521 0.0 571 14.50 422 15.00 472 24.50 522 0.0 572 15.20 423 14.70 473 24.80 523 0.0 573 15.60 424 15.00 474 25.00 524 0.0 574 15.80 425 15.00 475 25.40 525 0.0 574 15.80 426 15.10 476 26.00 526 0.0 575 15.50 427 16.20 477 26.20 527 0.0 577 15.30 428 17.60 478 26.10 528 0.50 578 15.50 429 18.90 479 25.50 529 3.30 579 15.00 430 19.90 480 25.20 530 6.30 581 11.30 431 20.00 481 25.00<								
421 15.20 471 24.30 521 0.0 571 14.50 422 15.00 472 24.50 522 0.0 572 15.20 423 14.70 473 24.80 523 0.0 573 15.60 424 15.00 474 25.00 524 0.0 574 15.80 425 15.00 475 25.40 525 0.0 575 15.50 426 15.10 476 26.00 526 0.0 576 15.50 427 16.20 477 26.20 527 0.0 577 15.30 428 17.60 478 26.10 528 0.50 578 15.50 429 18.90 479 25.50 529 3.30 579 15.00 431 20.00 481 25.00 530 6.30 580 14.30 432 20.00 482 24.30 532 12.70 582 8.00 433 20.00 483 22.60								
422 15.00 472 24.50 522 0.0 572 15.20 423 14.70 473 24.80 523 0.0 573 15.60 424 15.00 474 25.00 524 0.0 574 15.80 425 15.00 475 25.40 525 0.0 575 15.50 426 15.10 476 26.00 526 0.0 576 15.50 427 16.20 477 26.20 527 0.0 577 15.30 428 17.60 478 26.10 528 0.50 578 15.50 429 18.90 479 25.50 529 3.30 579 15.00 430 19.90 480 25.20 530 6.30 580 14.30 431 20.00 481 25.00 531 9.40 581 11.30 432 20.00 482 24.30 532 12.70 582 8.00 433 20.00 483 22.6								
423 14.70 473 24.80 523 0.0 573 15.20 424 15.00 474 25.00 524 0.0 574 15.80 425 15.00 475 25.40 525 0.0 575 15.50 426 15.10 476 26.00 526 0.0 576 15.50 427 16.20 477 26.20 527 0.0 577 15.30 428 17.60 478 26.10 528 0.50 578 15.50 429 18.90 479 25.50 529 3.30 579 15.00 430 19.90 480 25.20 530 6.30 580 14.30 431 20.00 481 25.00 531 9.40 581 11.30 432 20.00 482 24.30 532 12.70 582 8.00 433 20.00 483 22.60 533 16.00 583 5.00 435 19.80 486 13.								
424 15.00 474 25.00 524 0.0 574 15.80 425 15.00 475 25.40 525 0.0 575 15.50 426 15.10 476 26.00 526 0.0 576 15.50 427 16.20 477 26.20 527 0.0 577 15.30 428 17.60 478 26.10 528 0.50 578 15.50 429 18.90 479 25.50 529 3.30 579 15.00 430 19.90 480 25.20 530 6.30 580 14.30 431 20.00 481 25.00 531 9.40 581 11.30 432 20.00 482 24.30 532 12.70 582 8.00 433 20.00 483 22.60 533 16.00 583 5.00 434 20.00 484 19.60 534 19.30 584 5.00 435 19.80 485 16								
425 15.00 475 25.40 525 0.0 575 15.50 426 15.10 476 26.00 526 0.0 576 15.50 427 16.20 477 26.20 527 0.0 577 15.30 428 17.60 478 26.10 528 0.50 578 15.50 429 18.90 479 25.50 529 3.30 579 15.00 430 19.90 480 25.20 530 6.30 580 14.30 431 20.00 481 25.00 531 9.40 581 11.30 432 20.00 482 24.30 532 12.70 582 8.00 433 20.00 483 22.60 533 16.00 583 5.00 434 20.00 484 19.60 534 19.30 584 5.00 435 19.80 485 16.40 535 22.60 585 5.00 436 18.80 486 1								
426 15.10 476 26.00 526 0.0 576 15.50 427 16.20 477 26.20 527 0.0 577 15.30 428 17.60 478 26.10 528 0.50 578 15.50 429 18.90 479 25.50 529 3.30 579 15.00 430 19.90 480 25.20 530 6.30 580 14.30 431 20.00 481 25.00 531 9.40 581 11.30 432 20.00 482 24.30 532 12.70 582 8.00 433 20.00 483 22.60 533 16.00 583 5.00 434 20.00 484 19.60 534 19.30 584 5.00 435 19.80 485 16.40 535 22.60 585 5.00 436 18.80 486 13.10 536 25.90 586 5.00 437 16.80 487								
427 16.20 477 26.20 527 0.0 576 15.30 428 17.60 478 26.10 528 0.50 578 15.50 429 18.90 479 25.50 529 3.30 579 15.00 430 19.90 480 25.20 530 6.30 580 14.30 431 20.00 481 25.00 531 9.40 581 11.30 432 20.00 482 24.30 532 12.70 582 8.00 433 20.00 483 22.60 533 16.00 583 5.00 434 20.00 484 19.60 534 19.30 584 5.00 435 19.80 485 16.40 535 22.60 585 5.00 436 18.80 486 13.10 536 25.90 586 5.00 437 16.80 487 10.20 537 29.00 587 5.00 438 13.80 488 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
428 17.60 478 26.10 528 0.50 578 15.50 429 18.90 479 25.50 529 3.30 579 15.00 430 19.90 480 25.20 530 6.30 580 14.30 431 20.00 481 25.00 531 9.40 581 11.30 432 20.00 482 24.30 532 12.70 582 8.00 433 20.00 483 22.60 533 16.00 583 5.00 434 20.00 484 19.60 534 19.30 584 5.00 435 19.80 485 16.40 535 22.60 585 5.00 436 18.80 486 13.10 536 25.90 586 5.00 437 16.80 487 10.20 537 29.00 587 5.00 438 13.80 488 9.70 538 32.00 588 5.10 440 7.20 490								
429 18.90 479 25.50 529 3.30 579 15.00 430 19.90 480 25.20 530 6.30 580 14.30 431 20.00 481 25.00 531 9.40 581 11.30 432 20.00 482 24.30 532 12.70 582 8.00 433 20.00 483 22.60 533 16.00 583 5.00 434 20.00 484 19.60 534 19.30 584 5.00 435 19.80 485 16.40 535 22.60 585 5.00 436 18.80 486 13.10 536 25.90 586 5.00 437 16.80 487 10.20 537 29.00 587 5.00 438 13.80 488 9.70 538 32.00 588 5.10 439 10.50 489 9.40 539 34.50 589 6.10 440 7.20 490 9								
430 19.90 480 25.20 530 6.30 580 14.30 431 20.00 481 25.00 531 9.40 581 11.30 432 20.00 482 24.30 532 12.70 582 8.00 433 20.00 483 22.60 533 16.00 583 5.00 434 20.00 484 19.60 534 19.30 584 5.00 435 19.80 485 16.40 535 22.60 585 5.00 436 18.80 486 13.10 536 25.90 586 5.00 437 16.80 487 10.20 537 29.00 587 5.00 438 13.80 488 9.70 538 32.00 588 5.10 439 10.50 489 9.40 539 34.50 589 6.10 440 7.20 490 9.00 540 35.30 591 8.60 442 1.80 492 8.5								
431 20.00 481 25.00 531 9.40 581 11.30 432 20.00 482 24.30 532 12.70 582 8.00 433 20.00 483 22.60 533 16.00 583 5.00 434 20.00 484 19.60 534 19.30 584 5.00 435 19.80 485 16.40 535 22.60 585 5.00 436 18.80 486 13.10 536 25.90 586 5.00 437 16.80 487 10.20 537 29.00 587 5.00 438 13.80 488 9.70 538 32.00 588 5.10 439 10.50 489 9.40 539 34.50 589 6.10 440 7.20 490 9.00 540 35.50 590 7.40 441 4.50 491 8.80 541 35.30 591 8.60 442 1.80 492 8.50<								
432 20.00 482 24.30 532 12.70 582 8.00 433 20.00 483 22.60 533 16.00 583 5.00 434 20.00 484 19.60 534 19.30 584 5.00 435 19.80 485 16.40 535 22.60 585 5.00 436 18.80 486 13.10 536 25.90 586 5.00 437 16.80 487 10.20 537 29.00 587 5.00 438 13.80 488 9.70 538 32.00 588 5.10 439 10.50 489 9.40 539 34.50 589 6.10 440 7.20 490 9.00 540 35.50 590 7.40 441 4.50 491 8.80 541 35.30 591 8.60 442 1.80 492 8.50 542 35.30 593 10.00 443 0.0 493 8.10 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
433 20.00 483 22.60 533 16.00 583 5.00 434 20.00 484 19.60 534 19.30 584 5.00 435 19.80 485 16.40 535 22.60 585 5.00 436 18.80 486 13.10 536 25.90 586 5.00 437 16.80 487 10.20 537 29.00 587 5.00 438 13.80 488 9.70 538 32.00 588 5.10 439 10.50 489 9.40 539 34.50 589 6.10 440 7.20 490 9.00 540 35.50 590 7.40 441 4.50 491 8.80 541 35.30 591 8.60 442 1.80 492 8.50 542 35.30 592 9.70 443 0.0 493 8.10 543 35.30 593 10.00 445 0.0 494 8.40				25.00				
434 20.00 484 19.60 534 19.30 584 5.00 435 19.80 485 16.40 535 22.60 585 5.00 436 18.80 486 13.10 536 25.90 586 5.00 437 16.80 487 10.20 537 29.00 587 5.00 438 13.80 488 9.70 538 32.00 588 5.10 439 10.50 489 9.40 539 34.50 589 6.10 440 7.20 490 9.00 540 35.50 589 6.10 441 4.50 491 8.80 541 35.30 591 8.60 442 1.80 492 8.50 542 35.30 592 9.70 443 0.0 493 8.10 543 35.30 593 10.00 445 0.0 494 8.40 544 35.30 594 10.20 445 0.0 495 8.80				24.30				
435 19.80 485 16.40 535 22.60 585 5.00 436 18.80 486 13.10 536 25.90 586 5.00 437 16.80 487 10.20 537 29.00 587 5.00 438 13.80 488 9.70 538 32.00 588 5.10 439 10.50 489 9.40 539 34.50 589 6.10 440 7.20 490 9.00 540 35.50 590 7.40 441 4.50 491 8.80 541 35.30 591 8.60 442 1.80 492 8.50 542 35.30 592 9.70 443 0.0 493 8.10 543 35.30 593 10.00 445 0.0 494 8.40 544 35.30 594 10.20 445 0.0 495 8.80 545 35.20 595 10.10 446 0.0 496 9.10								
436 18.80 486 13.10 536 25.90 586 5.00 437 16.80 487 10.20 537 29.00 587 5.00 438 13.80 488 9.70 538 32.00 588 5.10 439 10.50 489 9.40 539 34.50 589 6.10 440 7.20 490 9.00 540 35.50 590 7.40 441 4.50 491 8.80 541 35.30 591 8.60 442 1.80 492 8.50 542 35.30 591 8.60 443 0.0 493 8.10 543 35.30 593 10.00 444 0.0 494 8.40 544 35.30 593 10.00 445 0.0 495 8.80 545 35.20 595 10.10 446 0.0 496 9.10 546 35.10 596 9.90 447 0.0 497 9.00 <				•				
437 16.80 487 10.20 537 29.00 587 5.00 438 13.80 488 9.70 538 32.00 588 5.10 439 10.50 489 9.40 539 34.50 589 6.10 440 7.20 490 9.00 540 35.50 590 7.40 441 4.50 491 8.80 541 35.30 591 8.60 442 1.80 492 8.50 542 35.30 592 9.70 443 0.0 493 8.10 543 35.30 593 10.00 444 0.0 494 8.40 544 35.30 594 10.20 445 0.0 494 8.80 545 35.20 595 10.10 446 0.0 496 9.10 546 35.10 596 9.90 448 0.20 498 8.90 548 35.00 598 9.80 449 2.20 499 8.90 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
438 13.80 488 9.70 538 32.00 588 5.10 439 10.50 489 9.40 539 34.50 589 6.10 440 7.20 490 9.00 540 35.50 590 7.40 441 4.50 491 8.80 541 35.30 591 8.60 442 1.80 492 8.50 542 35.30 592 9.70 443 0.0 493 8.10 543 35.30 593 10.00 444 0.0 494 8.40 544 35.30 593 10.00 445 0.0 495 8.80 545 35.20 595 10.10 446 0.0 496 9.10 546 35.10 596 9.90 447 0.0 497 9.00 547 35.00 597 9.80 448 0.20 498 8.90 548 35.00 598 9.80 449 2.20 499 8.90 5								
439 10.50 489 9.40 539 34.50 589 6.10 440 7.20 490 9.00 540 35.50 590 7.40 441 4.50 491 8.80 541 35.30 591 8.60 442 1.80 492 8.50 542 35.30 592 9.70 443 0.0 493 8.10 543 35.30 593 10.00 444 0.0 494 8.40 544 35.30 593 10.00 445 0.0 495 8.80 545 35.20 595 10.10 446 0.0 496 9.10 546 35.10 596 9.90 447 0.0 497 9.00 547 35.00 597 9.80 448 0.20 498 8.90 548 35.00 598 9.80 449 2.20 499 8.90 549 34.80 599 9.90								
440 7.20 490 9.00 540 35.50 590 7.40 441 4.50 491 8.80 541 35.30 591 8.60 442 1.80 492 8.50 542 35.30 592 9.70 443 0.0 493 8.10 543 35.30 593 10.00 444 0.0 494 8.40 544 35.30 593 10.00 445 0.0 495 8.80 545 35.20 595 10.10 446 0.0 496 9.10 546 35.10 596 9.90 447 0.0 497 9.00 547 35.00 597 9.80 448 0.20 498 8.90 548 35.00 598 9.80 449 2.20 499 8.90 549 34.80 599 9.90 450 5.00 599 8.90 549 34.80 599 9.90								
441 4.50 491 8.80 541 35.30 591 8.60 442 1.80 492 8.50 542 35.30 592 9.70 443 0.0 493 8.10 543 35.30 593 10.00 444 0.0 494 8.40 544 35.30 593 10.00 445 0.0 494 8.80 545 35.20 595 10.10 446 0.0 496 9.10 546 35.10 596 9.90 447 0.0 497 9.00 547 35.00 597 9.80 448 0.20 498 8.90 548 35.00 598 9.80 449 2.20 499 8.90 549 34.80 599 9.90								
442 1.80 492 8.50 542 35.30 592 9.70 443 0.0 493 8.10 543 35.30 593 10.00 444 0.0 494 8.40 544 35.30 593 10.00 445 0.0 495 8.80 545 35.20 595 10.10 446 0.0 496 9.10 546 35.10 596 9.90 447 0.0 497 9.00 547 35.00 597 9.80 448 0.20 498 8.90 548 35.00 598 9.80 449 2.20 499 8.90 549 34.80 599 9.90							590	
443 0.0 493 8.10 543 35.30 593 10.00 444 0.0 494 8.40 544 35.30 593 10.00 445 0.0 495 8.80 545 35.20 594 10.20 446 0.0 495 8.80 545 35.20 595 10.10 447 0.0 496 9.10 546 35.10 596 9.90 447 0.0 497 9.00 547 35.00 597 9.80 448 0.20 498 8.90 548 35.00 598 9.80 449 2.20 499 8.90 549 34.80 599 9.90 450 5.00 500 549 34.80 599 9.90			_				591	
444 0.0 494 8.40 544 35.30 594 10.20 445 0.0 495 8.80 545 35.20 595 10.10 446 0.0 496 9.10 546 35.10 596 9.90 447 0.0 497 9.00 547 35.00 597 9.80 448 0.20 498 8.90 548 35.00 598 9.80 449 2.20 499 8.90 549 34.80 599 9.90 450 5.00 500 599 9.90							592	9.70
445 0.0 495 8.80 545 35.30 594 10.20 446 0.0 496 9.10 546 35.10 596 9.90 447 0.0 497 9.00 547 35.00 596 9.90 448 0.20 498 8.90 548 35.00 598 9.80 449 2.20 499 8.90 549 34.80 599 9.90 450 5.00 500 599 9.90								
446 0.0 496 9.10 546 35.10 596 9.90 447 0.0 497 9.00 547 35.00 597 9.80 448 0.20 498 8.90 548 35.00 598 9.80 449 2.20 499 8.90 549 34.80 599 9.90 450 5.00 500 599 9.90								
447 0.0 497 9.00 547 35.10 596 9.90 448 0.20 498 8.90 548 35.00 598 9.80 449 2.20 499 8.90 549 34.80 599 9.90 450 5.00 500 500 549 34.80 599 9.90								
448 0.20 498 8.90 548 35.00 598 9.80 449 2.20 499 8.90 549 34.80 599 9.90							596	
449 2·20 499 8·90 549 34·80 599 9·90 450 5·00 500 550 570 570 590 9·90							597	
450 5.00 500 0.50 577 54.60 599 9.90							598	9.80
450 5.00 500 9.50 550 33.90 600 9.90							599	
	→ 50	3.00	500	Y•50	550	33.90	600	9.90

PAGE 4 OF 7

SEC	MPH	SEC	MPH	SEC	MPH	SEC	MPH
601	9.30	651	20.00	701	41.00	751	56.00
602	8.00	652	19.80	702	42.40	752	56.00
603	6.30	653	19.70	703	43.80	753	56.00
604	5.00	654	19.70	704	44.90	754	55.50
605	5.00	655	19.90	705	45.10	755	55.00
606	5.20	656	19.90	706	45.40	756	55.00
607	5.40	657	20.00	707	46.10	757	55.00
608	5.10	658	20.20	708	46.70	758	55.00
609	5.00	659	20.00	709	47.10	759	54.70
610	5.90	660	20.80	710	47.10	760	54.80
611	8.10	661	22.10	711	47.00	761	55.00
612	10.20	662	24.00	712	46.30	762	55.00
613	12.30	663	26.40	713	45.60	763	54.90
614	14.30	664	28.70	714	45.20	764	54.50
615	15.30	665	30.80	715	44.90	765	53.70
616	16.00	666	32.90	716	45.00	766	52.60
617	16.60	667	35.00	717	45.10	767	51.30
618	16.50	668	37.10	718	45.40	768	50.30
619	16.00	669	39.30	719	45.80	769	49.70
620	16.10	670	41.50	720	46.80	770	49.50
621	15.80	671	43.20	721	48.10	771	49.20
622	15.20	672	44.40	722	49.20	772	48.90
623	14.90	673	45.00	723	50.30	773	48.70
624	15.10	674	45.30	724	51.50	774	48.50
625	15.10	675	45.60	725	52.60	775	48.70
626	14.90	676	45.80	726	53.70	776	48.80
627	14.50	677	45.70	727	54.60	777	48.90
628	13.60	678	45.10	728	55.00	778	50.00
629	12.30	679	44.50	729	55.40	779	50.10
630	10.80	680	44.00	730	55.80	780	50.30
631	10.00	681	43.90	731	55.90	781	50.30
632	10.10	682	44.10	732	56.50	782	50.00
633	10.60	683	44.60	733	57.00	783	50.00
634	10.90	684	45.00	734	57.00	784	50.20
635	10.80	685	45.10	735	57.00	785	50.10
636	9.90	686	45.00	736	56.70	786	50.20
637	9.20	687	44.90	737	55.80	787	50.60
638	9.70	688	44.30	738	54.90	788	51.20
639	10.00	689	43.30	739	54.20	789	51.90
640	10.40	690	41.90	740	53.80	790	52.50
641	11.30	691	40.50	741	53.30	791	53.10
642	12.70	692	39.80	742	52.80	792	53.80
643	14.00	693	39.70	743	52.70	793	54.40
644	15.20	694	40.00	744	53.00	794 705	54.80
645	16.50	695	40.00	745	54.00	795	55.00
646	17.80	696	40.00	746	55.00	796	55.50
647	19.00	697	40.00	747	55.80	797	55.70
648	19.80	698	40.00	748	55.90	798 700	56.00
649	20.20	699	40.10	749	55.90	799	56.30
650	20.10	700	40.30	750	56.00	800	56.50

PAGE 5 OF 7

SEC	MPH	SEC	MPH	SEC	MPH	SEC	MPH
801	56.20	851	45.20	901	19.70	951	18.70
802	56.00	852	45.00	902	19.40	952	20.60
803	55.50	853	45.00	903	19.70	953	22.30
804	55.00	854	45.00	904	19.90	954	24.00
805	55.00	855	45.00	905	20.00	955	25.70
806	55.00	856	45.00	906	20.10	956	27.60
807	54.50	857	45.00	907	20.90	957	29.00
808	54.70	858	45.00	908	21.90	958	29.90
809	55.00	8 59	45.00	909	22.90	959	30.20
810	55.50	860	45.00	910	23.90	960	30.50
811	56.00	861	44.90	911	24.80	961	30.80
812	56.50	862	44.50	912	25.30	962	30.60
813	56.00	863	43.60	913	25.60	963	30.80
814	55.50	864	42.30	914	25.40	964	30.60
815	55.00	865	40.90	915	25.30	965	30.40
816	55.00	866	40.00	916	25.20	966	30.20
817	55.00	867	40.00	917	25.00	967	30.10
818	55.00	868	39.70	918	25.00	968	30.20
819	55.00	869	39.40	919	25.00	969	30.30
820	55.00	870	39.30	920	24.80	- 970	31.20
821	55.00	871	39.00	921	23.90	971	32.30
822	55.00	872	39.50	922	22.30	972	33.20
823	55.00	873	39.70	923	20.50	973	34.30
824	54.70	874	40.00	924	20.00	974	34.90
825	54.00	875	39.50	925	20.00	975	35.20
826	52.90	876	37.70	926	20.00	976	35.50
827	51.50	877	35.30	927	20.00	977	35.20
828	50.30	878	35.00	928	20.00	978	35.10
829	50.00	879	35.00	929	19.70	979	35.00
830	49.70	880	35.00	930	19.50	980	35.00
831	50.00	881	35.00	931	19.30	981	34.80
832	51.30	882	35.00	932	19.10	982	34.20
833	51.70	883	35.00	933	19.30	983	33.00
834	52.00	884	35.00	934	19.50	984	31.50
835	52.00	885	35.00	935	19.70	985	30.20
836	51.70	886	34.80	936	19.90	986	30.00
837	51.40	887	34.60	937	19.10	987	29.80
838	51.20	888	33.00	938	17.50	988	29.60
839	51.00	889	30.00	939	15.60	989	29.80
840	50.70	890	27.50	940	15.00	990	29.60
841	50.30	891	25.00	941	15.00	991	29.80
842	50.00	892	25.00	942	14.70	992	29.60
843	50.20	893	25.30	943	14.30	993	29.40
844	50.50	894	25.50	944	14.00	994	29.80
845	50.30	895	25.20	945	14.20	995	30.30
846	50.10	896	24.90	946	14.50	996	30.90
847	50.00	897	24.40	947	14.70	997	31.80
848	49.70	898	23.10	948	15.00	998	32.90
849	49.20	899	21.30	949	15.60	999	33.90
850	47.30	900	20.00	950	16.90	1000	34.90

PAGE 6 OF 7

SEC	мРН	SEC	MPH	SEC	MPH	SEC	MPH
1001	35.90	1051	40.70	1101	55.50	1151	52.90
1002	36.90	1052	40.80	1102	55.30	1152	53.60
1003	37.90	1053	40.90	1103	55.10	1153	54.30
1004	38.80	1054	40.70	1104	54.90	1154	54.80
1005	39.50	1055	40.50	1105	54.70	1155	55.20
1006	40.50	1056	40.70	1106	54.50	1156	55.50
1007	41.00	1057	40.80	1107	54.30	1157	55.70
1008	41.40	1058	40.60	1108	54.10	1158	55.90
1009	41.60	1059	40.80	1109	53.90	1159	56.00
1010	41.30	1060	40.80	1110	53.70	1160	56.10
1011	41.00	1061	40.90	1111	53.50	1161	55.90
1012	40.70	1062	42.50	1112	53.40	1162	55.80
1013	40.50	1063	44.00	1113	53.30	1163	55.60
1014	40.40	1064	45.00	1114	53.20	1164	55.40
1015	40.30	1065	45.00	1115	53.30	1165	55.20
1016	40.20	1066	45.50	1116	53.40	1166	55.10
1017	41.90	1067	46.00	1117	53.60	1167	55.20 55.30
1018	43.70	1068	46.30	1118	53.80	1168 1169	55.20
1019	45.00	1069	46.60	1119	54.00	1170	55.10
1020	45.50	1070	46.30	1120	54.20 54.30	1171	55.10
1021	46.00	1071	46.00	1121	54.30	1172	55.00
1022	46.40	1072	45.70	1122	54.40	1173	55.00
1023	46.30	1073	45.40	1123 1124	54.60	1174	55.00
1024	46.10	1074	45.10 44.90	1125	54.80	1175	54.90
1025 1026	45.90	1075 1076	44.70	1126	54.90	1176	54.70
1027	45.70	1077	44.50	1127	55.00	1177	54.50
1028	45.50 45.30	1078	44.30	1128	54.80	1178	54.60
1029	45.10	1079	44.50	1129	54.10	1179	54.60
1030	45.00	1080	44.60	1130	52.60	1180	54.70
1031	44.90	1081	44.80	1131	50.80	1181	54.80
1032	44.40	1082	45.00	1132	50.20	1182	54.90
1033	43.60	1083	45.00	1133	49.90	1183	54.80
1034	42.40	1084	45.10	1134	50.10	1184	54.70
1035	40.80	1085	45.80	1135	50.00	1185 1186	54.60 54.70
1036	38.80	1086	47.00	1136	50.10	1187	54.70
1037	36.90	1087	48.40	1137	50.20	1188	54.80
1038	35.50	1088	49.60	1138	50.30	1189	54.70
1039	35.00	1089	50.90	1139	50.10 50.00	1190	54.60
1040	35.00	1090	52.10	1140 1141	50.00	1191	54.70
1041	35.00	1091	53.40	1142	50.00	1192	55.00
1042	35.00	1092	54.40	1143	49.90	1193	55.00
1043	35.00	1093	55.00	1144	49.70	1194	55.00
1044	35.00	1094	55.50 56.00	1145	49.90	1195	55.00
1045	35.10	1095 1096	56.30	1146	50.00	1196	54.90
1046	36.30	1097	56.50	1147	50.30	1197	54.50
1047	37.70	1098	56.30	1148	50.90	1198	53.80
1048	39.10	1099	56.00	1149	51.60	1199	52.70
1050	40.00 40.50	1100	55.30	1150	52.30	1200	51.40
• 420	₩U• ⊃U	1100	55,55				

PAGE 7 OF 7

SEC	MPH	SEC	MPH	SEC	мРН	SEC	MPH
1201	50.40	1251	55.00	1301	49.20	1351	53.90
1202	49.80	1252	54.80	1302	49.00	1352	54.30
1203	49.00	1253	54.50	1303	49.20	1353	54.50
1204	48.30	1254	54.00	1304	49.10	1354	54.40
1205	48.00	1255	53.70	1305	49.10	1355	54.40
1206	47.90	1256	53.80	1306	49.10	1356	54.40
1207	48.00	1257	53.70	1307	49.60	1357	54.20
1208	48.30	1258	53.90	1308	49.90	1358	54.00
1209	48.30	1259	54.30	1309	50.30	1359	53.60
1210	48.30	1260	54.70	1310	51.10	1360	53.10
1211	48.30	1261	55.00	1311	51.90	1361	53.50
1212	48.70	1262	55.00	1312	52.70	1362	53.40
1213	50.10	1263	54.70	1313	53.60	1363	53.40
1214	50.30	1264	54.50	1314	54.40	1364	53.40
1215	50.40	1265	54.80	1315	54.90	1365	53.00
1216	50.40	1266	54.90	1316	55.10	1366	51.00
1217	50.10	1267	55.00	1317	55.30	1367	48.00
1218	49.90	1268	55.10	1318	55.70	1368	45.00
1219	50.00	1269	55.10	1319	56.00	1369	42.00
1220	50.00	1270	55.70	1320	56.20	1370	39.00
1221	50.00	1271	56.30	1321	56.00	1371	36.00
1222	50.20	1272	56.60	1322	55.50	1372	32.80
1223	50.50	1273	56.80	1323	55.70	1373	29.50
1224	50.90	1274	56.50	1324	55.70	1374	26.20
1225	51.00	1275	56.10	1325	55.70	1375	22.90
1226	50.70	1276	55.70	1326	55.70	1376	19.60
1227	50.90	1277	55.60	1327	55.50	1377	16.60
1228	50.80	1278	55.60	1328	55.70	1378	14.00
1229	51.60	1279	55.60	1329	55.90	1379	12.00
1230	52.30	1280	55.30	1330	56.20	1380	11.00
1231	53.00	1281	55.00	1331	56.60	1381	10.00
1232	53.70	1282	54.90	1332	56.70	1382	10.00
1233 1234	54.40	1283	54.60	1333	56.30	1383	10.00
1235	54.90	1284	54.10	1334	56.00	1384	8.80
1236	55.10	1285	53.30	1335	56.00	1385	6.70
1237	55.40 56.10	1286	52.30	1336	55.80	1386	4.60
1238	56.30	1287	51.20	1337	55.70	1387	2.50
1239	56.30	1288	50.40	1338	55.50	1388	1.50
1240	56.10	1289	50.00	1339	55.30	1389	0.90
1241	56.20	1290 1291	49.70	1340	55.00	1390	0.0
1242	56.30	1292	49.50	1341	55.20	1391	0.0
1243	56.00	1293		1342	55.30	1392	0.0
1244	56.00	1294	48.30 47.80	1343	55.20	1393	0.0
1245	55.70	1295		1344	55.20	1394	0.0
1246	55.20	1296	48.00	1345	55.00	1395	0.0
1247	55.00	1297	48.20 48.20	1346	54.80	1396	0.0
1248	55.00	1298		1347	54.70	1397	0.0
1249	55.10	1299	48.30	1348	54.50	1398	0.0
1250	55.20	1300	48.70	1349	54.00		
	22450	1300	49.40	1350	53.60		

APPENDIX B

BCA-SULFATE PROCEDURE AND INTERFERENCE CHECKS

DETERMINATION OF SOLUBLE SULFATES: BARIUM CHLORANILATE METHOD (Adapted from a procedure supplied to SwRI by EPA, ORD developed by Dr. L. Teajeda, EPA, RTP, March, '74.)*

1. Principle and Applicability

- 1.1 This method is for the determination of watersoluble sulfates from diluted automobile exhausts collected on Fluoropore filters. This method is quite general and may be used for trace sulfate analysis of any sample from which sulfates can be leached out with water or aqueous alcoholic solutions. There are interferences from some anions and methods for minimizing or eliminating these are still being worked out. The method as written is applicable to sulfate analysis of exhaust emissions from cars run on non-leaded gasoline.
- 1.2 Auto exhaust is mixed with air in a dilution tunnel and sampled through isokinetic probes. SO₃ reacts with available moisture in the exhaust to form H₂SO₄ aerosols and is trapped on Fluoropore** filters with 0.50 micron pore size. The sulfate is extracted from the filter with 60/40 isopropyl alcohol/water solution (i. e. 60 ml isopropyl alcohol (IPA) + 40 ml water). The extract is fed by a high pressure liquid (chromatographic) pump through a column of cation exchange resin to remove cationic interferences and then through a column of solid barium chloranilate where BaSO₄ precipitates out. An equivalent amount of reddish colored acid chloranilate ion is released^{1,2} and is measured colorimetrically at 310 nm^{3,4}. To use this method for aqueous sulfate solutions, four parts by volume of the solution are mixed with six parts of IPA before feeding through the Columns. Manual method or a dynamic sampling system can be used.

2. Range and Sensitivity

Working concentration range and sensitivity depend on sample size. A sensitivity better than $0.5~\mu g~SO_4^=$ per ml in 60% IPA and working range of $0-25\mu g/ml$ were obtained using a 0.5~ml external sampling loop injection system in conjunction with a du Pont liquid chromatograph UV detector. Sensitivity may be further increased by increasing the alcohol content of the solvent, as this would further decrease the solubility of $BaSO_4$ and barium chloranilate. This, however, requires a much tighter control of the water/IPA ratio in the sample and in the mobile phase. To minimize spurious results arising from water imbalance, it is recommended that both the extracting solvent and the mobile phase for analytical runs be taken from the same stock solution. Sample size as large as 1.5~ml has been successfully used.

^{*} The reader is advised to obtain the most recent version of the EPA BCA method from EPA, Ann Arbor, Michigan.

^{**}Registered trade mark. Obtainable from Millipore Corp., Bedford, Mass.

3. Interferences

Cations interfere negatively by reacting with the acid chloranilate to form insoluble salts. These, however, are conveniently removed by passing the sample through a cation exchange resin in the hydrogen form. Some anions such as Cl. Br., F., PO4 interfere positively by precipitating out as barium salts with subsequent release of acid chloranilate ions. Some buffer systems 2-5 are reported to minimize anion interference. These systems are being investigated for possible incorporation in the present procedure. Alternative clean-up methods are also under consideration. Fortunately, for non-leaded exhaust samples collected on filters, ionic interference is minimal. Interference from aromatic compounds is minimized by using a 300 nm cut-off filter in the optical path of the detector system or by using a spectrophotometer with narrow (i. e. 2.0nm) slit width.

4. Stability

- 4.1 Sulfuric acid standards containing 10 and 100 µg SO₄ /ml in 60% IPA are stable for at least one month when stored in tightly capped volumetric flask which has been cleaned with 1:1 nitric acid and copiously rinsed with deionized water. Alternative storage containers are capped polyethylene reagent bottles.
- 4.2 For samples known to contain cations, it is advisable to remove these cations by external treatment with cation exhange resin prior to injection into the sampling loop.
- 4.3 As the barium chloranilate column is depleted each time sulfate samples are fed through, it is good practice to run sulfuric acid standards before and after the sample.
- 4.4 Exposure of alcoholic samples, standards, and solvents to the atmosphere should be minimized, since IPA solution picks up atmospheric water on standing.

5. Apparatus

A schematic of the principal components of the set-up is shown in Figure B-1.

- 5.1 Hardware
 - a. Reservoir (LR) for the solvent (60% IPA).
 - b. High pressure (HPS) capable for delivery liquid at flow rates of up to 3 ml/min at pressures as high as 1000 psi.

- c. Flow or pressure controller (FC).
- d. High pressure switching valve (SV) equipped with interchangeable external loop (L).
- e. Ultraviolet detector (D) equipped with appropriate filters to isolate a narrow band of radiation centered at 310 nm.
- f. Recorder to monitor detector response.
- g. Cation exchange resin column (CX) standard 1/4" O.D. x 10" stainless steel column packed with analytical grade Dowex 50W-X2 cation exchange resin in hydrogen form.
- h. Barium chloranilate column (BC) standard 1/4" O.D. x 5" stainless steel column packed with barium chloranilate.

5.2 Principle of Operation

Solvent (60% IPA) in reservoir (LR) is continuously fed through cation exchange (CX) and barium chloranilate columns at flow rates of about 3 ml/min. by a high pressure source (HPS). Background absorbance is continuously measured by a UV detector (D) at 310 nm and visually monitored on a strip chart recorder. A switching valve (SV) is used for filling the external sampling loop (L) with samples injecting the sample into the columns. Samples may be introduced into the sampling loop by syringe injection. At CX cations are removed and at BC, color reaction takes place. The BaSO₄ precipitate is retained in the column while the acid chloranilate is carried by the solvent through the detector system for colorimetric measurement.

For manual operation SV may be retained or replaced by a similar switching valve equipped with an extended handle for manual switching.

6. Reagents

- 6.1 Isopropyl alcohol (IPA) spectroquality grade or equivalent. Volatile solvent, safety class 1B.
- 6.2 60% IPA. Add four parts water to six parts IPA by volume. Store in tightly capped bottle. About three liters are needed for a 12 hour operation.
- 6.3 Barium chloranilate, suitable for sulfate analysis.
- 6.4 Dowex 50W-X2 cation exchange resin, hydrogen form, 100-200 mesh.
- 6.5 Hydrochloric acid (4N). Add 30 ml concentrated hydrochloric acid to 60 ml deionized water. (Danger, strong acid)
- 6.6 Standard sulfuric acid (1N). Dilute to the mark 2.8 ml of concentrated sulfuric acid with deionized distilled water in a liter volumetric flask which has been washed in 1:1 nitric acid and copiously rainsed with deionized distilled water. Standardized against accurately weighed sodium carbonate to get exact normality. 0.1N H₂SO₄ is equivalent to 4800 µg/SO₄=/ml. (Danger, strong acid.)

6.7 Standard sulfate solution (1000 μ g SO₄=/ml). Dissolve 1.4787 gm sodium sulfate which has been heated up to 105°C for four hours and cooled in a dessicator and dilute to 1000 ml.

7. Procedure

- 7.1 Column preparation
 - 7.1.1 Barium chloranilate column (BC). In order to prepare a full column with minimum dead volume connect two lengths of standard 1/4" O.D. stainless steel tubings as shown in Figure 2. b = 2'', a = 5''. Connect a small funnel to open end of B with a Tygon tubing sleeve. Fill the funnel half way with barium chloranilate and use a vibrator (i.e. electric pencil engraver) to pack the solid in column. Continue operation until B is about half filled. Remove funnel, plug empty space with glass wool, and cap the end with a 1/4" to 1/16" reducer. Plumb column B directly to SV in Figure B-1. Connect a Tygon tubing at A and direct tubing to waste reservoir. Activate liquid pump, set flow controller at pressure drop of about 600 psi. Let solvent flow for 20 minutes. Deactivate pump, disconnect column A from column B. Connect a glass wool plugged 1/4" to 1/16" reducer to uncapped end of column Α.
 - 7.1.2 Cation exchange resin column (CX). Add cation exchange resin, 100-200 mesh, Dowex 50W-X2 to 80 ml of 4N HCl in a 150 ml beaker until a wet volume equivalent to 20 ml has settled at the bottom. Let soak for at least three hours with occasional stirring using a glass rod. Decant the acid, add 100 ml deionized distilled water, stir and slowly decant the liquid as soon as most of the solid has settled down at the bottom. Repeat rinsing procedure several times until rinse liquid gives a neutral reaction to pH paper.

Connect two standard 1/4" O.D. stainless steel tubings as in 7.1.1 with b = 5" and a = 10". Connect a small funnel to open end of B with Teflon or Tygon tubing sleeve. Clamp composite tube vertically and connect open end of A to vacuum line equipped with liquid trap. Fill funnel with deionized distilled water and turn on vacuum slowly until composite tube is completely filled with water. Add water until funnel is half-filled, stop vacuum and add slurry of freshly washed resin. Let resin settle by gravity until resin top is seen above B. Turn on vacuum slowly, keep adding resin slurry until composite tube is completely filled. Proceed as in 7.1.1 beginning with sentence: "Remove funnel, plug empty space..."

7.2 Priming System for Analytical Run

Connect the cation exchange and barium chloranilate columns with 1/4" union packed with glass wool as shown in Figure 1. Fill solvent reservoir (LR) with 60% IPA, activate liquid pump, detector, recorder, switching valve, sampler, and peristalic pump. Allow to cycle normally to clean out all components. For this initial operation, dip the sampling probe in at least 100 ml of 60% IPA. Set liquid flow rate at about 3 ml/min. Let run for at least 30 minutes. Deactivate switching valve, sampler, and peristaltic pump. Leave other components in operating mode. When background is stable at attenuation of .01 absorbance units full scale, system is ready for analysis.

7.3 Preparation of Calibration Standards

Either sulfuric acid or sodium sulfate standards may be used. Add 200 ml of 0.1 N $\rm H_2SO_4$ aqueous stock solution to 300 ml 100% IPA in 500 ml volumetric flask. (Note: There is a volume decrease of about 2.7% when these proportions of water and IPA are mixed.) Dilute to the mark with 60% IPA. This is equivalent to 1,920 g $\rm SO_4$ =/ml in 60% IPA. Prepare from this alcoholic stock solution calibration standards in the range of 0.5-25 g $\rm SO_4$ =/ml by dilution of appropriate aliquots with 60% IPA.

- 7.4 Extraction of Soluble Sulfates from Fluoropore Filters Place filter in one oz. polyethylene bottle, add 10 ml 60% IPA and cap tightly. Shake until filter collapses and is completely immersed in liquid. Let stand overnight.
- 7.5 Analysis

Set Instrument in operating mode, remove sampling probe from holder, and dip in 100 ml 60% IPA. Let it run at flow rate of 3 ml/min until stable background is obtained, then remount sampling probe to holder. In the meantime, fill sample cuvettes with sample extract and blank solutions (60% IPA) and place on turntable. Sampling pattern is blank, blank, samplg, blank, blank at the rate of about six minutes per sample or blank. Blanks are used to wash out system between samples and minimize sample overlap. One blank between samples is adequate for dilute samples. (See also 5.2.) A series of standards (see 7.3) is run, preferably before sample runs and calibration curve, area vs. concentration, is plotted. A control standard may also be placed after every ten samples as a quality check on the stability of the system.

8. Calculations

Calculate the concentration of sulfate as μ g SO₄ /ml using the calibration curve. Total soluble sulfates SO₄ = = in filter is then given by:

SO₄= F = (μ g SO₄=/m) x Vo x d where: Vo = total volume of original sample extract d = dilution factor Example: Suppose 10 ml 60% IPA was used to extract the soluble sulfates in the filter and that 2 ml of this was diluted further to 0 ml with 60% IPA to bring detector response within calibration range. Suppose that the concentration of the diluted sample was found to be $5 \mu g/ml$. Then, $SO_4 = \frac{6}{F} = (5 \mu g/ml) \times 10 \text{ ml x}^{\frac{6}{2}} = 150 \mu g$

References

- 1. R. J. Bertolacini and J. E. Barney II, "Colorimetric Determination of Sulfate with Barium Chloranilate," Anal. Chem. 29, 281 (1957).
- 2. Ibid, "Ultraviolet Spectrophomometric Determination of Sulfate, Chloride and Fluoride with Chloranilic Acid," Anal. Chem. 30, 202 (1958).
- 3. H. N. S. Schafer, "An Improved Spectrophotometric Method for The Determination of Sulfate with Barium Chloranilate as Applied to Coal Ash and Related Material s," Anal. Chem. 39, 1719 (1967).
- 4. S. C. Barton and H. G. McAdie, "An Automated Instrument for Monitoring Ambient H₂SO₄ Aerosol" in Proceedings of the Third International Clean Air Congress, Dusseldorf, Federal Republic of Germany, 1973, VD1-Verlag GmbH, 1973, P. C25.
- 5. M. E. Gales, Jr., W. H. Kaylor and J. E. Longbotton, "Determination of Sulfate by Automatic Colorimetric Analysis, "Analyst 93, 97 (1968).

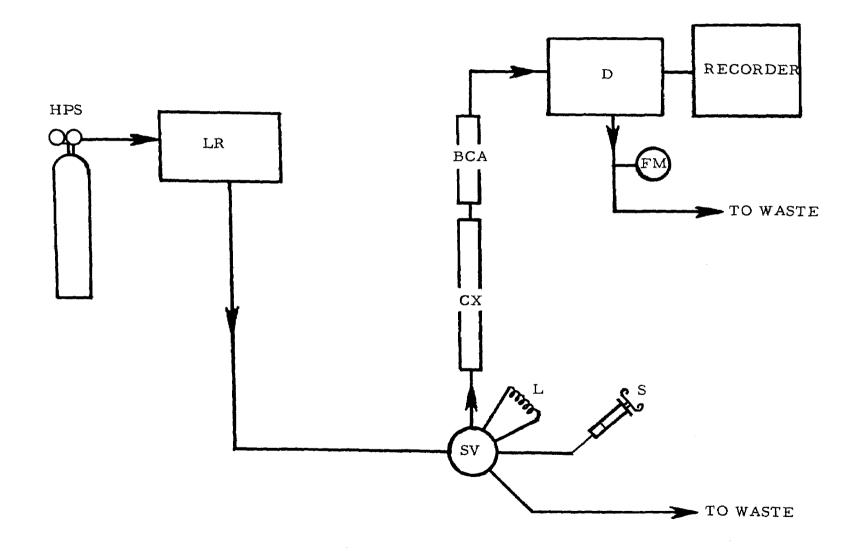


FIGURE B-1. FLOW SCHEMATIC FOR AUTOMATED SULFATE INSTRUMENT

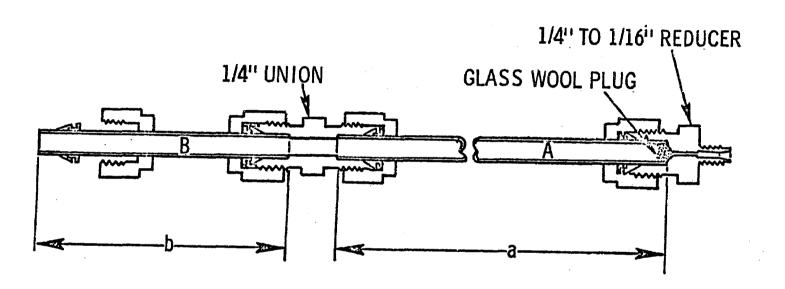


FIGURE B-2. CONFIGURATION FOR LOADING COLUMN

RESULTS OF STUDIES OF INTERFERENCES IN BCA SULFATE PROCEDURE PERFORMED AT SwRI DURING NOVEMBER, 1974

Although a cation exchange column is included as part of the sampling system, concern has been expressed for the analysis of sulfate on engines operating on leaded fuel. The Dowex 50W X-2 cation exchange column has been included to eliminate, or at least reduce, any lead that might be collected on the filters for sulfate analysis. Since the efficiency of the cation exchange column may not remove all of the lead ions it was decided to conduct a series of experiments to determine how much interference from lead might be expected. These experiments were conducted with an ion exchange column, which had been used for about one month on lead free samples.

A working sulfate standard of 23.93 μ g SO₄/ml was used to make comparisons with the various lead blends. Lead nitrate blends were prepared in 60 percent IPA in concentrations of 25.0, 12.5, and 5.0 μ g Pb⁺⁺/ml. These solutions were analyzed in the same manner as an extracted sample and the corresponding peak was calculated as response as μ g SO₄/ml with Pb⁺⁺ concentrations ranging from 25 to 5 μ g Pb⁺⁺/ml. It was apparent that not all of the lead is being removed by the ion exchange column.

Since lead is generally added to the fuel in the form of a motor mix containing ethylene dichloride and ethylene dibromide as scavengers, it was decided to determine if these will produce erroneous results. The first experiment involved the preparation of three concentrations of chloride in 60 percent IPA. Sodium chloride was used in the preparation of the 24.3, 12.1 and 4.8 μ g Cl⁻/ml. Again, these blends were analyzed just as a normal sulfate sample and the corresponding peak calculated as response as μ g/SO $_4^-$ /ml. These results are found in Table 1 and μ g Cl/ml as a function of response as μ g SO $_4^-$ /ml is shown in Figure 1. The response as μ g SO $_4^-$ /ml varied from 7.1 to 2.1 with a range in μ g Cl $_4^-$ /ml of 24.3 to 5.0. In comparison with the experiment in lead interference, it was found that the chloride ions produced some 4 - 6 time greater interference than the lead ions alone.

A similar experiment involving the interference of bromide ions was conducted. Sodium bromide was added to 60 percent IPA in concentrations 31.1,15.5 and 6.2~g Br $^-/ml$. These blends were also analyzed according to the standard barium chloranilate procedure. The range of response as $\mu g SO_4^-/ml$ was from 5.1 to 1.9 for the concentrations of Br $^-$ tested.

Of the three interference species evaluated, it appears that with the normal barium chloranilate procedure, lead has the least interference and chloride the greatest. A nominal 15 μ g Pb⁺⁺/ml concentration produced a response as one μ g SO $_4^-$ /ml. A bromide concentration of 3-6 μ g Br $^-$ /ml provide an equivalent response to one μ g SO $_4^-$ /ml. The chloride ion concentration required to give a response as μ g SO $_4^-$ /ml ranged from 2-3 g Cl $^-$ /ml.

TABLE B-1. EFFECT OF LEAD CHLORIDE AND BROMIDE IONS ON SULFATE RESULTS USING THE BARIUM CHLORANILATE LIQUID CHROMATOGRAPH PROCEDURE

	Sample Description	Response as $\mu g SO_4^-/ml$	Response Ratio µg Pb ⁺⁺ /ml: µg SO ₄ +/ml
	23.93 µg SO ₄ ⁼ /ml	23.93	
	25.0 µg Pb ⁺⁺ /ml	1.71	14.6
	12.5 $\mu g Pb^{++}/ml$	0.66	18.9
	5.0 µg Pb ⁺⁺ /ml	0.33	15.1
	24.3 µg C1 ⁻ /ml	7.06	3.4
*	12.1 µg C1 ⁻ /ml	4. 23	2.9
	4.8 µg C1 ⁻ /ml	2.12	2.3
	31.1 µg Br ⁻ /ml	5.07	6.1
*	15.5 µg Br /ml	4.04	3.8
	6.2 µg Br ⁻ /ml	1. 92	3.2

^{*} These are reasonable levels of Cl and Br that might be expected from leaded fuel tests.

FIGURE B-3. THE EFFECT OF LEAD, CHLORIDE AND BROMIDE INTERFERENCES IN THE BARIUM CHLORANILATE PROCEDURE

APPENDIX C

SUMMARY OF PULSED FLUORESCENCE ANALYZER INTERFERENCE CHECKS AND EXHAUST RECOVERY TESTS The use of the TECO-Model 40 pulsed fluorescent SO₂ analyzer in the presence of other exhaust gas components could cause potential interference problems. The intended use of this instrument will be in sampling CVS exhaust on a continuous basis. Since the exhaust will be essentially an air-based sample, the experiments described are orientated toward this particular application.

CO and CO₂ Interferences

Initial CO and CO2 interference checks were conducted using a single bottle cart containing eight golden standards named by EPA Ann Arbor. This group of bottles contained multi-component blends as well as single component mixtures. All eight bottles contained nitrogen as a balance gas. The first set of data was obtained using standard regulators with neophrene diaphragms and teflon tubing. The results of these tests are found in Table C-1. Response as SO2 ranged

TABLE C-1. MULTICOMPONENT BLENDS OF CO AND CO₂/N₂ RESPONSE AS SO₂ IN MODEL 40 PULSED FLUORESCENT ANALYZER (NORMAL NEOPHRENE DIAPHRAGM REGULATOR)

	Concent:	Response a	
Test	СО	CO2	ppm SO ₂
1	9.58	5.70	15.5
2	-	14.16	10.3
3	-	12.36	16.0
4	_	11.22	16.5
5	5.39	10.46	17.5
6	2.79	13.18	17.0
. 7	1.39	-	16.5
8	0.48	15.23	17.5

*balance gas N2

from 10.3 to 17.5 ppm with no apparent correlation for response as ppm SO2 and interference concentration. The CO concentrations varied from 0.48 to 9.58 percent, while the CO2 values ranged from 5.7 to 15.23 percent.

Since it was obvious that something other than a straightforward single compound interference was involved, additional experiments to determine the extent of other variables that might lead to apparent interferences were conducted. The first such variable checked was the effect

of regulator diaphragm type on the response as ppm SO_2 . Since other data was previously run and substantial data available for neophrene regulator diaphragms, it was decided to investigate the response of several of the previously tested bottles using metal diaphragm regulators like those used for hydrocarbon span gases. The results of this experiment are found in Table C-2. Although it is difficult to make any definite conclusions, it was observed that the response as ppm SO_2 for these same three CO/CO_2 bottles was 2.5 to 3.0 ppm less for the metal diaphragm.

TABLE C-2. MULTICOMPONENT BLENDS OF CO AND CO₂/N₂ RESPONSE AS SO₂ IN MODEL 40 PULSED FLUORESCENT ANALYZER (METAL DIAPHRAGM REGULATOR)

	Concent	ration, %*	Response as
Test	co	CO2	ppm SO2
1	9.58	5.70	13.0
2	5.39	10 .4 6	14.5
3	0.48	15.23	15.0

*balance gas N2

The next item checked was CO2 in balance zero air. A clean Tedlar bag was prepared with a double end shut off quick connect and filled with zero air. The bag sample was then analyzed in the Model 40 SO2 instrument and no response was observed. The bag was then doped with some pure CO2 to give a CO2 concentration of about 13 percent. The bag was then run in the SO2 instrument and still no response was observed. As a result of this experiment, it was obvious that CO2 alone could not be considered to be an interference compound; however, in conjunction with other species could present interference problems. At this point, two facts were apparent; first, CO2/N blends gave 10-16 ppm SO2 response and secondly, CO2/Air blends gave no response.

To determine the extent of the CO₂/N₂ interference, additional experiments were conducted. The availability of a range of O₂/N₂ blends was used to narrow down this problem. The bottles were N₂ zero gas, 5 percent O₂/95 percent N₂, 10 percent O₂/90 percent N₂, 15 percent O₂/85 percent N₂, and 20 percent O₂/N₂. Several fresh bags were prepared and each blend was analyzed for response as ppm SO₂. Then each bag was doped with pure CO₂ to a level of about 10 percent. These bags were then run and the results of these tests are found in Table C-3.

It was apparent that by running the oxygen-nitrogen blends without any CO₂, certain effects could be observed. As the amount of oxygen in the sample decreased (and the nitrogen concentration increased), a

positive response as ppm SO₂ was observed, even though no other compounds were known to be present. When the blends of about 12 percent CO₂ in various O₂/N₂ ratios were analyzed, it was found that the CO₂ and O₂ acted much the same in that the sum of the CO₂ and O₂ concentrations had the same quenching effect as the O₂ concentrations alone.

TABLE C-3. MULTICOMPONENT BLENDS OF CO₂/O₂/N₂ RESPONSE AS SO₂ IN MODEL 40 PULSED FLUORESCENT ANALYZER

	Conc	entration	, %*	Response as
Test	CO2	02	N ₂	ppm SO ₂
1	_	0	100	10+
2	-	5	95	0.5
3	-	10	90	0.2
4	-	15	85	0.1
5	-	20	80	0.0
6	10 %	0	90	10+
7	10 %	4.5	85.5	0.5
8	10 %	9.0	80.0	0.2
9	10 %	13.5	76.5	0.1
10	10 %	18	72	0.0
11	100%	~	·	2.0

Initial conclusions regarding CO and CO2 interferences indicate that these two exhaust species do not interfere as positive SO2 response provided there is a sufficient quenching effect provided by oxygen in the sample. Problems could be present if direct exhaust samples are obtained and oxygen levels are low. Preliminary experiments indicate that oxygen levels above 5 percent have less than 0.5 ppm response as SO2. In cases where a CVS air diluted sample is obtained, no interferences due to CO or CO2 were observed.

$NO_{\mathbf{x}}$ Interferences

Five bottles of NO_x/N2 were used to conduct initial NO_x interference experiments. These were also golden standards named by EPA Ann Arbor. Although these bottles were named as NO_x, they were actually NO in N₂ cylinders as verified by chemiluminescent analysis. The concentrations were selected to be typical ranges that might be expected in 1975 FTP testing. The results of this test are found in Table C-4. NO_x concentrations ranged from 42 to 220 ppm and the apparent interferences as ppm SO₂ varied from 17.0-36.0. This was the only gas tested which appeared to produce an increased response with increasing component concentration. It should be noted that N₂ zero gas produced some 10+ppm response as SO₂.

TABLE C-4. MULTICOMPONENT BLENDS OF NO_x/O₂/N₂ RESPONSE AS SO₂ IN MODEL 40 PULSED FLUORESCENT ANALYZER

	Response as			
Test	NO _x , ppm	O2, %	N2, %	ppm SO ₂
1	42	-	100	17.0
2	78	-	100	24.3
3	95.5	-	100	27.0
4	133.5	-	100	32.0
5	220	~	100	36.0
6	140	21	79	0.1
7	400	21	79	0
8	550	20	80	0.25
9	710	22	78	0.
10	1125	20	80	negative
11	1400	19	81	negative
12	1750	20	80	negative

There was a definite trend observed regarding NO_x concentration as a function of response as ppm SO₂, as shown in Figure C-1. Previous experiments involving CO and CO₂ interference checks indicated that the presence of nitrogen and the lack of oxygen could lead to apparent interferences. With this in mind, several blends of NO/N₂ were diluted with oxygen to obtain a nominal 20% O₂. The conversion of NO to NO₂ was immediately apparent due to the color change of the NO→NO₂ reaction. Although the previous NO_x check involved NO/N₂ blends, this experiment actually was NO₂/Air and comparison is somewhat difficult. The concentration of NO_x ranged from 140-1400 in the bag samples analyzed. The O₂ and N₂ concentrations were relatively the same for purposes of this experiment. At any rate, the low concentrations (140-700) of NO₂/Air produced only slight response as ppm SO₂. At higher concentrations of NO₂, a negative response was observed for several gases.

It is difficult to make any absolute conclusions based on the data presented in Table C-4. Although NO/N₂ blends do give a positive response as ppm SO₂, it is impossible to determine the extent of NO/Air interferences due to the NO-NO₂ oxidation in air. Bag samples obtained from a CVS are significantly air rich and have O₂ concentrations above 15 percent under most conditions. Since the CVS bag samples contain relatively low concentrations of NO_x diluted in air, it is not felt that any significant NO_x interferences will be experienced.

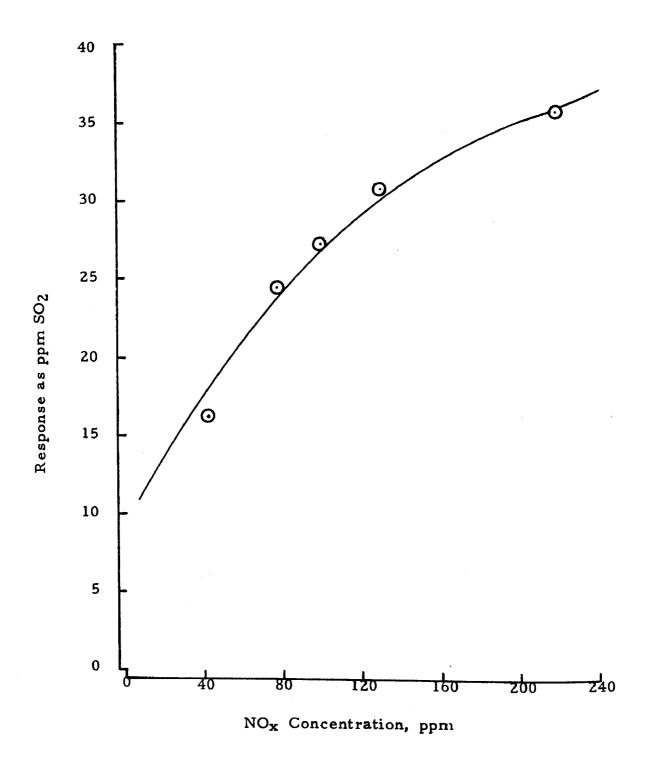


Figure C-1. The Effect of NO_x Concentration (balance N2) on Response as ppm SO_2

HC Interferences to Model 40 Pulsed Fluorescent SO2 Analyzer

Several experiments were conducted using typical hydrocarbon blends in N₂ and air. The initial tests were conducted using propane in N₂ and propane in air. The results of these tests are found in Table C-5. The golden standard span gases were originally thought to be air

TABLE C-5. PROPANE SPAN GAS RESPONSE AS SO₂ IN TECO MODEL 40 PULSED FLUORESCENT ANALYZER

	Concentration,	Balance	Response as
Test	ppmC	Gas	ppm SO ₂
1	25	Air	0.0
2	34	N_2	14.0
3	168	Air	0.0
4	301	Air	0.0
5	102 4	Air	0.0

based gases, but during the tests it was found that the 34 ppm C bottle was actually a balance N2 gas. This accounted for the fact that all of the other propane in air gases gave no response, whereas the 34 ppmC / N2 gas gave an apparent response of 14 ppm SO2. Hydrocarbon concentrations, varying from 25 to 1024 ppm C balance air, were found to produce no response as ppm SO2.

It is suspected that the balance N₂ was responsible for the apparent interference in the 34 ppm C bottle. Once it was verified that typical air based HC span gases produced no interferences, it was decided to check the Model 40 pulsed fluorescent SO2 instrument response to aromatic hydrocarbons. Two aromatic hydrocarbons typically found in automotive exhaust were selected for this experiment. These were benzene and toluene. The availability of several gases containing various ratios of O₂ and N₂ were selected for these tests. Baseline readings were obtained on each of these gases and these results are presented in Table C-6. A bag sample of each of these gases was obtained and a predetermined amount of benzene and toluene were added to each bag. Nominal benzene concentration was 120 ppm C and toluene concentration was about 140 ppm C.

The results of these experiments are illustrated in Figure C-2. In comparing the response as ppm SO_2 to the base O_2/N_2 blends to those same blends with added benzene and toluene it is apparent that some sort of interference due to aromatic compounds is present. It almost appears that the interference found in this test is an exponential function. Initial conclusions from this interference check indicate that samples containing less than 5 percent O_2 can have significant interference. These evaluations were conducted on the 0-10 ppm scale and the maximum interference that might be expected during CVS operation would be 0.2 ppm or 2 percent of full scale.



Figure C-2. The Effect of Benzene and Toluene in Various O2/N2 Blends as ppm SO2 in Model 40 Pulsed Fluorescent Analyzer

TABLE C-6. MULTICOMPONENT BLENDS OF BENZENE, TOLUENE/O₂, N₂ RESPONSE AS SO₂ IN MODEL 40 PULSED FLUORESCENT ANALYZER

Concentration, ppm C		Concentration, %		Response as	
Test	Benzene	Toluene	02	N2	ppm SO ₂
1	_	_	0	100	10+
2	-	-	5	95	0.5
3	_	-	10	90	0.2
4		-	15	85	0.1
5	-	***	20	80	0.0
6	140	160	0	100	10+
7	140	160	5	95	0.8
8	140	160	10	90	0.4
9	140	160	15	85	0.2
10	140	160	20	80	0.15

General Comments of Model 40 Pulsed Fluorescent SO₂ Analyzer

Upon completion of the aforementioned experiments, several contacts were made with other individuals who had working experience with the instrument or was involved with Thermo Electron Corporation. The first contact was Glenn Reschke at General Motors. He had conducted numerous experiments with this model instrument, many of the same nature of the SwRI evaluations. Although his particular application was for use in undiluted automotive exhaust sampling, his conclusions regarding the various component interferences were essentially identical to those presented herein.

Further verification of individual component interferences conclusions was obtained from Dennis Helms of Teco. He re-iterated the items presented in this report and those indicated by Glenn Reschke. Recommendations for specific application to CVS type exhaust sampling have been previously incorporated into the exhaust sampling system.

It may be considered a concensus of opinion that sampling from any air-rich CVS system and using air balance SO₂ span gases and air zero gases minimize on potential interferences. Should direct exhaust sampling with relatively low oxygen concentrations (less than 5 percent), additional interference checks might be warranted.

The SO₂ levels from the tests using the PF analyzer are shown in Tables C-7, C-8 and C-9 for 30 mph; 60 mph, and the '75 CVS test respectively. As can be seen from these tables, the PF analyzer greatly overstates the amount of SO2 in the exhaust. It was felt that some effort had to be expended to try and determine the cause of this problem. Since tests run with the PF analyzer on another project using the same fuel, but with a 0.1 percent sulfur level (twice as high as the sulfur level on this project) had shown sulfur recovery of approximately 115 percent, it was reasoned that perhaps sulfur level had an effect on recovery. Stated in a different manner, there may be a constant positive interference, which of course becomes less significant as the SO2 concentration in the exhaust increases. To check this hypothesis, a series of 30 mph steady state tests were run with 4 different sulfur levels in the same base fuel. The results of these tests are shown in Table C-10 and graphically in Figure C-3. It appears that there is indeed a constant interference that causes the recovery to increase far above 100 percent as the sulfur level in the fuel decreases. As a further check, one test was conducted with straight isooctane as the fuel with thiophene added to give 0.051 percent sulfur. The results of the test run with this fuel at the 30 mph steady state condition are shown below.

Fuel	Pct. S in fuel		Exhaust SO ₂ by PF, grams		Fuel S grams	Recovery
Iso-octane	.051	11/21/74	1.23	0.616	0.752	82%

It appears that recovery is a function of fuel composition also.

During the first week of December, 1974, the PF analyzer manufacturer, Thermo Electron Corporation (TECO), was contacted to solicit any comments and ideas they might have concerning the SO₂ recovery problem. Mr. Arvin Smith of TECO was in San Antonio on December 4, 1974 and visited the Emissions Research Department at SwRI to discuss the problem. It was his feeling that the high SO₂ readings from the analyzer were caused by light scattering from small particulates or aerosols not removed in the filtering system or even from glass fiber particles from the Gelman Spectro-Glass Fiber filters used as the primary filter in the sampling system.

To test this theory, a series of tests were run on December 5 and 6 with various sample filtering schemes. The results of these tests are shown in Table C-11. Two different fuels (iso-octane and regular grade gasoline) were used, each with two sulfur levels (0.02 percent and 0.1 percent). From the table it can be seen that while the 0.5 micron and 10

millimicron filters give an acceptable sulfur recovery with 0.1 percent sulfur in the regular grade gasoline used as the base fuel so far in this project, these filters do not give an acceptable sulfur recovery with 0.02 percent sulfur in the base fuel. Interpolating to the 0.04 percent sulfur level used in this project, it appears that the recovery would not be acceptable. Thus it was concluded that finer filters would not solve the sulfur recovery problem experienced with the PF analyzer at the fuel sulfur levels used in this project.

It was felt that enough time had been spent attempting to obtain an acceptable sulfur balance with the PF analyzer and that an alternate method would have to be used to determine SO₂ levels in the exhaust gases for this project.

TABLE C-7. EXHAUST SO₂ EMISSIONS FROM A 1972 PLYMOUTH AT 30 MILES PER HOUR USING A PULSED FLUORESCENT ANALYZER (.051 Percent Sulfur in Fuel)

Test Date	Run Duration	SO ₂ Emissions grams	SO ₂ grams/km	Sulfur in Exhaust, grams	Fuel Sulfur, grams	P.F. Analyzer, Recovery
10/22/74	90 min	12.59	0. 174	6.12	3.33	183%
11/7/74	90 min	14.80	0.204	7.41	2.89	256%
11/18/74	90 min	13.74	0. 190	7.16	3.29	218%

TABLE C-8. EXHAUST SO₂ EMISSIONS FROM A 1972 PLYMOUTH AT 60 MILES PER HOUR USING A PULSED FLUORESCENT ANALYZER (.051 Percent Sulfur in Fuel)

Pulsed Fluorescent Analyzer						
Test Date	Run Duration	SO ₂ Emissions grams	SO ₂ grams/km	Sulfur in Exhaust, grams	Fuel Sulfur, grams	P.F. Analyzer Recovery
11/8/74	70 min	26.84	0. 238	13.43	5.69	236%
11/8/74	60 min	17.81	0. 184	8.91	4.59	194%
11/18/74	60 min	22.75	0. 236	11.39	5.10	223%
11/21/74	60 min	16.72	0, 173	8.37	5.12	163%

TABLE C-9. EXHAUST SO₂ EMISSIONS FROM A 1972 PLYMOUTH RUN ON THE 1975 CVS PROCEDURE USING A PULSED FLUORESCENT ANALYZER (.051 Percent Sulfur in Fuel)

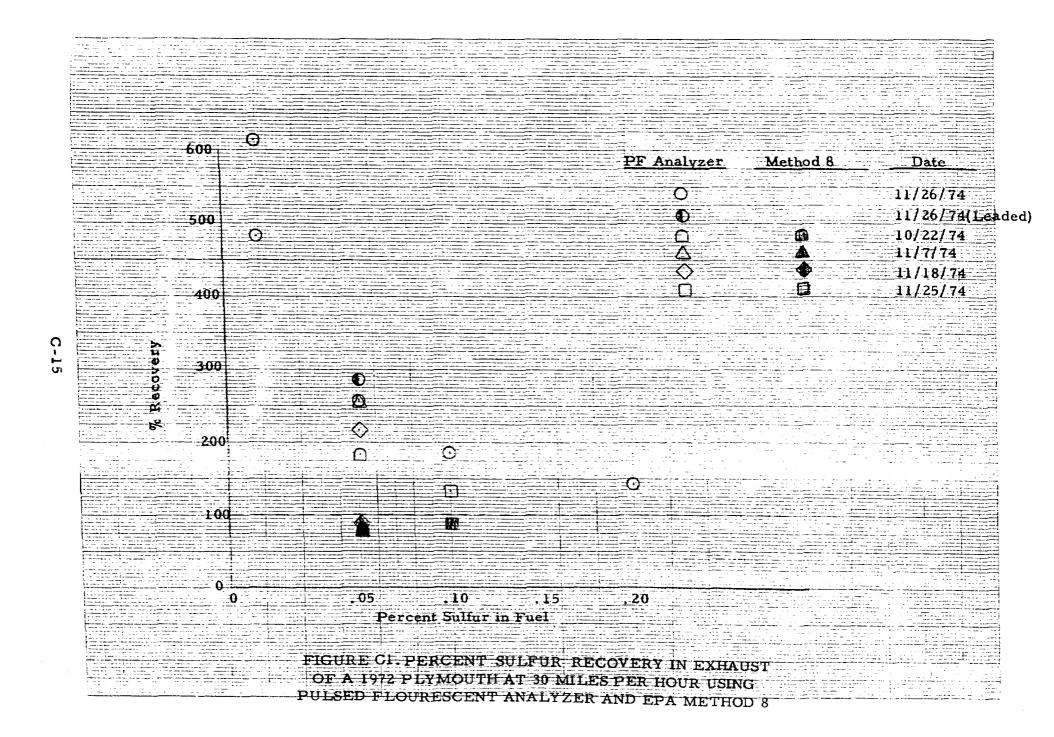
	Pulsed Fluo				
Test Date	SO ₂ Emissions grams	SO ₂ grams/km	Sulfur in Exhaust, grams	Fuel Sulfur, grams	P.F. Analyzer Recovery
10/22/74	4.34	0.25	2.17	1.66	131%
11/7/74	5.59	0.34	2.79	1.59	177%
11/19/74	6.05	0.37	3,03	1.63	186%
11/20/74	4.94	0.30	2.47	1.53	161%

TABLE C-10. SULFUR RECOVERY IN EXHAUST BY PULSED FLUORESCENT ANALYZER FROM 30 MILE PER HOUR STEADY STATE TESTS

Percent Sulfur Percent Sulfur Recovery	
Test Date in Fuel Using PF Analyzer	Fuel Type
11/25/74 0.019 483%	Unleaded
11/25/74 0.019 614%	Unleaded
10/22/74 0.051 183%	Leaded
11/7/74 0.051 256%	Leaded
11/18/74 0.051 218%	Leaded
11/26/74 0.051 259%	Unleaded
11/26/74 0.051 287%	Leaded
11/25/74 0.10 134%	${\tt Unleaded}$
11/26/74 0.10 186%	Unleaded
11/27/74 0.20 143%	Unleaded

TABLE C-11. SULFUR DIOXIDE EMISSIONS FROM 1972 PLYMOUTH USING VARIOUS SAMPLE FILTERS AT 30 mph STEADY STATE CONDITIONS

Fuel	Fuel sulfur level, %	Filter*	P.F.** SO ₂ , g/km	Exhaust sulfur, g	Fuel sulfur, g	Percent recovery
Iso-octane	0.02	Α	0.20	0.16	0.19	84
Iso-octane	0.02	В	0.18	0.14	0.19	74
Iso-octane	0.10	Α	0,84	0,68	0.92	74
Iso-octane	0.10	В	0.77	0.62	0.92	67
Iso-octane	0.10	С	1.14	0.92	0.92	100
Base	0.02	Α	0,62	0.50	0.17	294
Base	0.02	В	0.59	0.48	0.17	282
Base	0.02	С	0.90	0.72	0.17	424
Base	0.10	Α	1.08	0.87	0.89	98
Base	0.10	${f B}$	1.10	0.89	0.89	100
Base	0.10	C	1.91	1.54	0.89	173


^{*} Filter code: A - 0.5 micron Fluoropore

Note: Base fuel is an unleaded regular grade gasoline.

B - 10 millimicron Millipore

C - Gellman Spectro Glass Fiber

^{**}P. F. SO₂ is from dilute continuous sample.

APPENDIX D

Swri so₂-bca procedure and validation tests

THE MEASUREMENT OF SULFUR DIOXIDE USING THE BARIUM CHLORANILATE METHOD (SO₂-BCA)

February 1975

Harry E. Dietzmann Southwest Research Institute San Antonio, Texas

I. BACKGROUND

The measurement of sulfur dioxide (SO₂) in dilute automotive exhaust has been a difficult task. Although there are several continuous recording SO₂ instruments commercially available, they have not demonstrated the degree of accuracy necessary at the SO₂ levels observed in dilute automotive exhaust. A number of other wet chemical procedures are also available but are considered either excessively time consuming or lacking in sensitivity. With this in mind, an idea was conceived by EPA Research Triangle Park to use some basic concepts in the Federal Register and to adapt these concepts for measuring SO₂ in dilute automotive exhaust.

This procedure uses midget impingers with 3 percent hydrogen peroxide to oxidize the SO₂ to sulfate. The samples are then evaporated, treated, extracted and analyzed according to the barium chloranilate method for sulfate analysis. The main advantages of this procedure are the sensitivity and the simplicity of analysis.

II. APPARATUS

This procedure incorporates two midget impingers in series with a 0.5µ filter in the sample line. Other items in the sample train include drierite tube, wet test meter, sample pump and flowmeter. A flow schematic is presented in Figure 1 to illustrate the relative positions of the various individual components. The sample probe is glass and the filter is a 0.5µ SS filter press-fit into the teflon union connecting the glass sample probe and the first bubbler. By use of appropriate valving, a dual system could be assembled if consecutive samples were desired such as in the cold start 505 and the stabilized portion of the 1975 FTP.

- A. Midget impingers capable of handling 25 ml of absorbing reagent.
- B. Sample pump must have sample flow capacity of at least 2 1/m.
- C. Drierite column filled with mixture of indicating and non-indicating drierite.
- D. Wet test meter capable of accurately measuring sample flow rates at least in the range of 2 1/min.
- E. Flow meter capable of monitoring flow rates in the range of 2 1/min.

- F. Sample probe glass should be of minimum length.
- G. Filter 0.5p stainless steel filter disc press-fit into teflon union.
- H. Barium Chloranilate Sulfate Analysis System (1).

III. REAGENTS

- A. 30 percent stabilized hydrogen peroxide (H₂O₂) ACS reagent grade. Store in refrigerator.
- B. 3 percent hydrogen peroxide solution, dilute 30 percent 10:1 to obtain the required 3 percent H₂O₂. Use only distilled water as the dilutent. Prepare the day of use.
- C. Ammonium hydroxide, IM. Use ACS reagent grade diluted to obtain the desired IM solution.
- D. Red litmus paper.
- E. Isopropyl alcohol, spectroquality identical to that used in the sulfate analysis.
- F. 60 percent IPA 40 percent H₂O, same solvent that is used in the barium chloranilate method for sulfate analysis.
- G. Distilled water, used in preparation of absorbing reagent (3 percent H₂O₂) and extraction solvent (60 percent IPA).
- H. Ammonium sulfate, ACS grade, used in the perparation of ammonium sulfate standards.
- I. Miscellaneous analytical and chemical support items, routinely used in the Barium Chloranilate Procedure.
 - IV. PREPARATION OF SULFATE STANDARDS (USING (NH₄)₂SO₄)

A. Comments

Weigh out exactly 2.750 g of ACS reagent grade $(NH_4)_2SO_4$ into a pre-weighed clean dry beaker. Dissolve the $(NH_4)_2SO_4$ in 60 percent IPA and dilute to a total of 1000 ml in a Class A volumetric flask. The resulting

Designates that which is attached.

sulfate concentration is then 2000µg SO_4^2/ml . This solution is called the dilute primary standard and is to be used to prepare working calibration standards.

B. Calculations

2.750 g
$$(NH_4)_2SO_4 = 2.750$$
 g $(NH_4)_2SO_4 \times \frac{96 \text{ awu } SO_4^2}{132 \text{ awu } (NH_4)_2SO_4}$

$$2.750 \text{ g (NH}_4)_2 \text{SO}_4 = 2.000 \text{ g SO}_4 =$$

2.000 g SO₄²/1 = 2.000 g SO₄²/1 x
$$\frac{11}{1000 \text{ ml}}$$
 x $\frac{10^6 \text{µg}}{1 \text{ g}}$

2.000 g SO₄²/1 =
$$\frac{2.000 \times 10^6 \text{µg}}{10^3 \text{ ml}}$$
 = 2000µg/ml

C. Preparation of Working Standards

Sample	Volume of Dilute Primary Standard*	Volumetric Flask, ml**	Sulfate Concentration ug SO ₄ /ml						
1	10	1000	20.0						
2	15	2000	15.0						
3	5	1000	10.0						
4	5	2000	5.0						
5	1	1000	2.0						

^{*} Measured using Class A volumetric pipet.

After each set of standards are prepared, run to establish the validity and linearity of the new working standards.

All glassware should be thoroughly cleaned and no visible glassware spots should be tolerated. Once the working standards are prepared, they should be transferred to clearly marked glass reagent bottles for storage.

V. PROCEDURE

A. Sample Acquisition

The exhaust sample to be analyzed is bubbled through the two midget impingers in series. Prior to sampling, it is important to leak

^{**} Measured using Class A volumetric flask.

check the sampling system to insure no leaks are present. Once the absence of leaks is verified, pipet 25 ml of freshly prepared 3 percent hydrogen peroxide into each of the bubblers. All ground glass fittings should have stopcock grease to insure leak tight connections. Prior to testing, the drierite column is freshly prepared and the wet test meter is read. Once the test has started, the flow is adjusted to 1.5 1/min. Sampling times will vary depending on the concentration of the SO₂ in the exhaust sample; however, the extracted sample can be diluted if necessary.

Tests have shown that sufficient sample can be obtained from 10 minutes at 2 to 3 ppm SO₂ levels, bubbling at a rate of 1.5 1/min. It might be possible to use somewhat higher sample flow rates if necessary, but high recoveries have been observed at 1.5 1/min. Generally, sampling for periods of more than 20 minutes will require dilution at the 2 to 3 ppm SO₂ level. It should be pointed out that this will vary somewhat depending on the range capability of the individual BCA system.

B. Extraction Procedure

- 1. After the bubbling is complete, quantitatively transfer the absorbing reagent to a 100 ml beaker. Rinse the impinger tip and bubbler thoroughly several times with 3 percent H₂O. Add these rinsings to the original absorbing reagent in the 100 ml beaker. This will bring the total volume to about 30 ml. The final volume at this point is not critical since the absorbing reagent will be evaporated to dryness.
- 2. Place the 100 ml beaker on a steam bath and begin evaporating. Once the volume has evaporated to about 10 ml, make the solution slightly basic to litmus with 1M ammonium hydroxide. Use a stirring rod tip to touch the sample to a strip of red litmus paper. Usually 2 to 4 drops will be sufficient. Complete the evaporation to dryness to insure that no ammonium hydroxide remains in the beaker. Several experiments in determining recovery rates have indicated that any ammonium hydroxide remaining will create an interference.
- 3. Once the beaker is thoroughly dry, remove from the steam bath and allow to cool. The entire evaporation procedure requires about 4 to 5 hours per beaker. The ammonium sulfate appears as a white deposit on the bottom and sides of the beaker. Use a rubber policeman on a glass stirring rod with about 2 ml of 60 percent IPA to gently break loose the deposit and put into solution. This step is repeated several times using about 2 ml of 60 percent IPA each time. After each time, add the rinsing to a 10 ml volumetric flask. After a minimum of three extraction-rinsings, dilute to the mark with additional 60 percent IPA. After the sample has been properly prepared, it is then considered ready for analysis in the barium chloranilate system.

C. Analysis

After the sample has been bubbled, evaporated, treated and extracted, it is analyzed using the barium chloranilate procedure. Since these samples are essentially ammonium sulfate in 60 percent IPA, the working standards are also ammonium sulfate in 60 percent IPA. A copy of the barium chloranilate procedure is found in Appendix B. Standards are run before and after each sample and blanks are run between all samples and standards. A typical trace of a standard, blank, sample sequence is shown in Figure 2.

D. Calculations

The equation used to calculate the ppm SO₂ in an exhaust sample using the SO₂-BCA procedure is listed below:

ppm SO₂ sample =
$$\frac{(6.67 \times \text{conc SO}_4 = \text{std}, \text{ug}) \times (\text{area SO}_4 = \text{sample}, \text{in}^2) \times \text{DF}}{(\text{area SO}_4 = \text{std}, \text{in}^2) \times (\text{density}, \mu g/1) \times \text{sample volume}, 1}$$

The derivation of this equation is presented as an attachment and is applicable to this specific procedure.

Although calculations use peak areas, it would be possible to use peak heights under certain conditions:

(Example 1) - Assume an exhaust sample was bubbled through two bubblers in series and a total of 12.75 liters was sampled. The gas entering the dry gas meter was 0°C at a barometric pressure of 29.92" Hg. A SO₄ = standard of 19.2µg/ml gave a response of 1.56 in². When diluted 5:1 for the first bubbler and left at full strength for the second, the unknown sample gave a response of 2.05 in² for the first bubbler and 0.42 in² for the second bubbler.

ppm
$$SO_2 = \frac{6.67 \times 19.2 \times 2.05 \times 5}{1.56 \times 2.927 \times 12.75} = 22.5 ppm$$

ppm
$$SO_2$$
 = $\frac{6.67 \times 19.2 \times 0.42 \times 1}{1.56 \times 2.927 \times 12.75}$ = 0.9 ppm

Total Sample ppm $SO_2 = 22.5 \text{ ppm} + 0.9 \text{ ppm} = 23.4 \text{ ppm}$

(Example 2) - Assume an exhaust sample was bubbled through two bubblers in series and a total of 1.436 ft³ was sampled. The gas entering the dry gas meter was 30°C at a barometric pressure of 29.31" Hg. An SO_{4}^{-} standard of 9.6µg SO_{4}^{-} /ml gave a response of 0.78 in². When diluted 10:1 for the first bubbler and leaving the second at full strength, the unknown sample gave a response of 3.25 in² for the first bubbler and 0.21 in²

for the second bubbler. (Note that there are two differences in the examples, this example has the sample volume in ft³ rather than liters and the sampling conditions are not at STP.) The first calculation will be to obtain the density of SO₂ at 30°C and 29.31" Hg.

density
$$SO_2$$
 at 0°C and 29.92" Hg = $\frac{2.927 \text{ g}}{1.1}$

1 liter at 0°C and 29.92" Hg = 1.133 liters at 30°C and 29.31" Hg

$$1.1 = 1.1 \times \frac{273 + 30^{\circ} \text{K}}{273^{\circ} \text{K}} \times \frac{29.92'' \text{ Hg}}{29.31'' \text{ Hg}} = 1.133 \text{ 1}$$

density SO₂ at 30°C and 29.31" $\text{Tig} = \frac{2.927 \text{ g}}{1.133 \text{ l}} = 2.583 \text{ g/l}$

ppm
$$SO_2$$
 = $\frac{0.2356 \times 9.6 \times 3.25 \times 10 = 25.4}{0.78 \times 2.583 \times 1.436}$ ppm

ppm SO₂ =
$$\frac{0.2356 \times 9.6 \times 1.95 \times 1}{0.78 \times 2.583 \times 1.436}$$
 = 1.5 ppm

Total Sample ppm $SO_2 = 25.4 + 1.5 = 26.9 ppm$

SOUTHWEST RESEARCH INSTITUTE DATA SHEET	SHEET NO. 1 OF 2 SHEETS
SUBJECT DERIVATION OF SIMPLIFIED	DATE 2-13-75
SO2-BCA EQUATION	BY HARRY E. DIETZMANN
STEP I: (FROM DENSITY = WEIGHT/VOLUM	ME)
VOL SO2 SAMPLE, MI = WEIGHT OF SO2	CAMPIE 49
DENSITY SO	2, 3/2
STEP II: (FROM DEFINITION OF PPM)	
	
PPM SO2 SAMPLE, = VOL SO2 SAMPLE,	al
SAMPLE VOL,	2
STEP III: (FROM BCA PROCEDURE)	
CONC. SO4 SAMPLE, Mg/m1 = CONC SO4 ST	D, Mg/m X AREA SO4 SAMPLE, IN
40-	2 00 = 2
TRE!	A SO4 = STD, IN2
WEIGHT SO4 SAMPLE, Mg = CONC SO4, Mg/	me x 10 ml x D.F.
WEIGHT SO4 SAMPLE, My = CONC SO4 STD, MY	MO X AREA SOU SAMPLE IN X 10M
TREA	SO4 = STD, IN2
STEP IV: (66.7% OF SOUT IS SO2)	
MATERIAL SO CAMOS NO TO MATERIAL	
WEIGHT SD2 SAMPLE, M9 = 0.667 X WEIGH	TI SOU SAMPLE, MY
╟╼╂╼╂╼╂╼╂═╂═┼═╎═┼═┼═┼═┼═┼═┼═┼═┼═┼	
	DE DE
NEIGHT SO2 SAMPLE, 13 = 0.667 x CONC SOU STD, 18/ml X	AREA SOU sample, in x 10 mlx
AREA SO4=	
STEP I: (COMBINING STEPS I + II)	
VOL SOZ SAMPLE, MI = 0.667 x CONC SOY STD, Mg/ml x	Acto SO CON DE WAY 10 ml 1
40-0 60 =	2 X DENSITY SOZ, g/L
INCO DUE SID IN	NEWSITY 242 7/2

	Ji	П/	NE.						ET		NS	5 I	111	UI				S	RC	EI JE	N(CT	 	11-	4	015	-00	7] -2	me I
UB	JE(CT_	DE								-1F	E	<u> </u>		_			D	AT	E _		2-	13	-7!	5_			
				50	2 -	₿(CA			E	QU F	ATI	ON					E	3Y	HA	RRY	E	. [ΝE	TZ	MP	HNN	
Ť	7	T	7	T		7	T	T	T	T	7	-	Ī	7=	7	Ī		i	T	T	1	T	1	T	T	T	7==	T
	-	-	-	-	-}		┼-	┼	 			1	 	-	-	 -	┼—		+		-	+-	-	+	-	 -	+-	
	-			-		-	-	┼	╁—	 	╁	-	<u> </u>	 -			-	·		-	-	-	+	┼	-			-
<u>S7</u>	6F	7	T:	(00	m	BIN	ING	<u>ک</u> لو	TE	PS_	I	4	Y	-)_	<u> </u>	<u> </u>	ļ		ļ	-	-	 	 		+	-	-
	-	 		<u> </u>	↓	<u> </u>		↓_		 		-	<u> </u>	 	1	<u> </u>		<u> </u>			 	-	<u> </u>	2	┼	-	-	-
þ	M_	\$0	2	SA	<u>mP</u> I	Ε	= 0	.66	7 X	Co	NC_	SO	<u>, s</u>	TP,	mg/	ml	X f	RE	A_S	04	sa	mp	a, U	и у	10	m	(X)	DF.
	ļ		_	1	_	<u> </u>	A	RE	4 5	50 ₄	<u>: s</u>	TD	IN	Z	D	ENS	TY	ک^	0,	3	12	× -	San	Pl	Vol	un	_ري	٤.
	_	<u> </u>								<u> </u>		-	ļ		 	ļ	_	 	_	<u> </u>	-	-	 	<u> </u>	╀	-	—	
					<u> </u>		<u> </u>					ļ_	ļ		ļ			 	 	<u> </u>	-	 -	-	 	 	-	 	-
ST	ΞP	V	T :		(c	om	BI	N LI	JG.	c	ON	ST	FW.	rs)	<u> </u>			<u> </u>	<u> </u>		<u> </u>	ļ	ļ	<u> </u>	 -	<u> </u>	 	<u> </u>
				}			1				1		1		<u> </u>	ļ		<u> </u>		<u> </u>		ļ	_	1_		<u> </u>	_	_
Pρ	M	SC)2 4	AW	PLE	=		6.6	JX	Co	nc	SC) = S	TD,	Mg	100	X	AR	EA_	SO4	25	amp	ارعا	n²	X I	٥٦		
· ·				1				AR	'EA	S	0,=	STO) <u>/</u> /	N ²	x D	ENS	ity	50	22,	9/-	L X	Sa	mf	4	Vol	um	L,.	L_
FC	R	VOI	um	ES	m	EAS	JRE	D					1							Ĺ				<u> </u>		ļ		
			ERS		Ī											[ļ 									<u> </u>		
			<u> </u>	ナ ナ		Ì			1				1			ĺ	!		Ĺ				ļ	_				
		-	 	 		 		 			 							ļ					ļ 1	<u> </u>				
<u> </u>	-	60	 		0	<u> </u>		12	351.	Tx (04	10	SO.	= 5	TD.	119	X	AR	EA	S	$2\iota^{\Xi}$	sa	mal	ا د	ξ 2 , 40	K D	F	
F- P	INT	30	<u>7 </u>		PLE		T-2	000	-4	90.	<u> ۲۰</u> ۲	70		Z	7	en	sit.	<u> </u>	0,	<u> </u>	12	x s	San	mpl	Vo	lur	ne,	F
F	P	C	MP		-	-		[75).9 			ا ت . ا	10,	<u> </u>				(1	-	0	}		· _					
ne Ne	Δς.	171		LE_	YOU	4) '`````	<u> </u>	T-	†		 	 			1													
	 334	UKE	PII	<u> </u>	E1:	J_		†	-			1		İ														
		 	┪—	 	├				 	_	-		 															
	_	+	-	 	<u> </u>		\vdash		 	 			 	 	1								Π					
VIO	TE	C	•	-	-	-		-	 	 			<u> </u>															
-	15	3	1	 		 	-	 		 			 	 														
_	Usi	 		_		_	1-		6		2	92	7		0	0	0	00		me	l	29.	92	, 1 1	Hg	<u> </u>		
·1	NS	5_	20	22	a	ens	سل	1	7	-	2.	76		8-1	_بيار								-		-0			
	_	-	-	 		-		-	-			1.	 	<u>.</u>		1		11	. /	0	_			-	1	-		
- I	20	اسر	de	VO	lu	ml	0	and	i!	5 <u>0</u>	2	av	nn	w	رد ا ر		ou	ra	/\) /	بح	_0	-		œ				
	Zo	↓	th		sa	ml	! 	ref	ne	nce		po	in	<u> </u>	L, E	-	4	ن ا	Th	بع.	ير	en	P	e a	tu	u		
	of	نير!	he	-	sa	mj	de		zac	اا	az		ZK -	<u>e</u>	_a	M	-9	as		m	u	<u>ر</u> ي	w	azi	U			
	30	· • • •	7	`~		1 4	~	•		an_	m	111			Adl	1	~ ~ ~	57.)	· 1	nus	U.		$\overline{}$: :			
	de	ns	it	1_6	7	5	02	: 	at		lh	يون	<u>t</u>	C	no	W	w	no	_/	n	بين	لما		u	L		ļ	
	u	ميه	10	in	س ا	th	; .	ea	k	M	te	on.	. به				ا. ـــــــ .			-		!				ļ	<u> </u>	
	<u> </u>	-	1			<u> </u>		<u> </u>	 	<u> </u>		 	ļ		ļ								<u> </u>) } ;				-
		ļ		<u> </u>		<u> </u> 		 	<u> </u>		ļ		:											! : - · ·				
				<u> </u>		ļ 			<u> </u>	<u> </u>			ļ 								<u> </u>	ļ		: !				
· ·	! 	Ĺ	ļ		1	ļ						_ D) – 1 :	1	[; 					[!	PC
i	i		ł	1	1	!	!	;		{ · }		:	i	1	ļ i	1									. !		i	

Note: All tubing in sample train up to the impingers is glass or teflon.

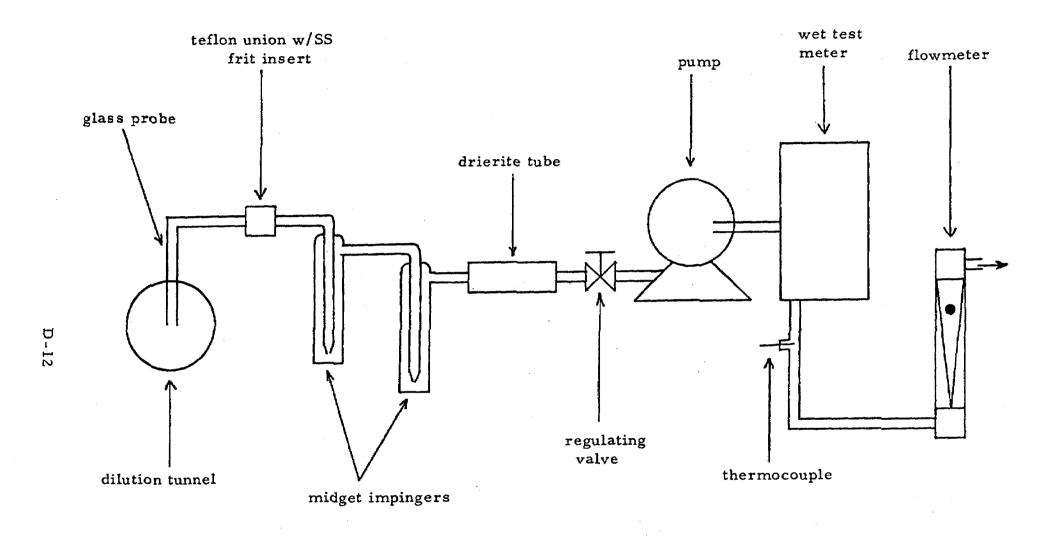
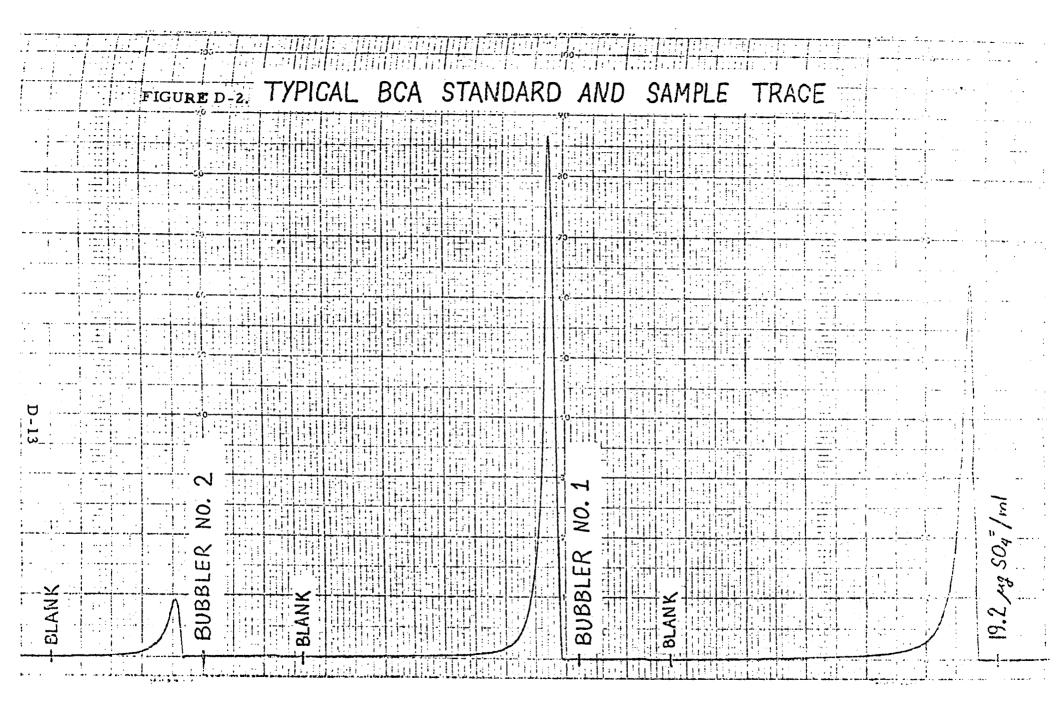



FIGURE D-1. SO2-BCA FLOW SCHEMATIC

RESULTS OF VALIDATION TESTS OF THE SO₂-BCA METHOD RUN AT SwRI

Extensive experiments were conducted to validate the sampling and extraction procedures. The experiments were conducted in both areas of the procedure, the sample acquisition and the sample analysis.

Experiments involving the sample acquisition phase of the procedure proved to be the most troublesome. Items investigated during this phase of experiments involved sampling flow rates, bubbler efficiencies, sample system positioning, reagent selection, and absorbing reagent temperature. The tests were conducted basically with 3g Pb/gal and 0.051 percent sulfur fuel. Through a series of experiments involving the sampling parameters, the recommended sampling procedure in this Appendix was formulated.

Several tests involving sample extraction and analysis were also conducted. Calibration standards were prepared in absorbing reagent, and the extraction procedure parameters were investigated. Between 97 and 100 percent recovery was obtained on known sulfate levels once the extraction procedure variables were determined. Variables investigated included the degree of evaporation (dryness or semi-dry), amount of ammonium hydroxide added, and the removal of the (NH₄)₂SO₄ deposit from the extraction beaker.

Most tests involving sulfur balances on the 1972 Plymouth were conducted using steady state conditions. Comparisons were made between on-line continuous sampling and bag samples analyzed once the test were complete. Several LA-4 tests were also performed (single bag 23-minute sample) where bag samples were also analyzed. A satisfactory recovery level could not be obtained from the bag samples. Several tests on a low level sulfur fuel were conducted and recoveries averaged 96 percent for three 30 mph and two 60 mph steady states.

The development testing resulted in a procedure that gives a satisfactory sulfur balance. Tables D-1, D-2 and D-3 summarize the testing done on 30 and 60 mph steady state and '75 light duty FTP testing respectively.

The average sulfur recovery for the steady state tests is approximately 106 percent with a range of approximately ±20, with most tests within ±10 percentage points of the average. The 1975 LD FTP has a somewhat lower average sulfur recovery of 92 percent, but a range of only 22 percentage points. These sulfur recovery levels are orders of magnitude better than the TECO PF analyzer and an improvement over what others have seen using titration or gravimetric analysis of hydrogen peroxide SO₂ collection systems.

TABLE D-1. SUMMARY OF SO₂ EMISSIONS FROM 30 MPH STEADY STATE TESTS OF A 1972 PLYMOUTH USING THE SwRI SO₂-BCA METHOD Continuous Dilute Sampling With Glass Probe, 30 Min. Sample)

Date	Speed	Run Time, Min	Fuel Type	Fuel Used, grams*	Grams S in Fuel	Exhaust SO ₂ ,	Exhaust S,	Recovery,
1/9/75	30	102	EM-225-F	6641	3.39	7.00	3.50	103
1/9/75	30	102	EM-225-F	6641	3.39	6.71	3.36	99
1/9/75	30	102	EM-225-F	6641	3.39	7.48	3.74	111
1/10/75	30	94	EM-225-F	6056	3.08	7.46	3.73	121
1/10/75	30	94	EM-225-F	6 0 56	3.08	7.46	3.73	121
1/10/75	30	94	EM-225-F	6056	3.08	7.46	3.73	121
1/24/75	30	90	EM-225-F	5922	3.02	6.21	3.11	103
1/24/75	30	90	EM-225-F	5922	3.02	5.16	2.58	85
1/24/75	30	90	EM-225-F	5922	3.02	5.40	2.70	_89
							Avg. Max Min Std.	106 121 85 Dev. 14

^{*} EM-225-F is unleaded regular grade gasoline with .051 percent sulfur 208-FC is leaded regular grade gasoline with .051 percent sulfur

TABLE D-2. SUMMARY OF SO₂ EMISSIONS FROM 60 MPH STEADY STATE TESTS OF A 1972 PLYMOUTH USING THE SwRI SO₂-BCA METHOD Continuous Dilute Sampling With Glass Probe, 30 Min. Sample)

Date	Speed	Run Time, <u>Min</u>	Fuel Type	Fuel Used, grams*	Grams S in Fuel	Exhaust SO ₂ ,	Exhaust S,	Recovery,
1/13/75	60	84	208-FC	10215	5, 21	11.94	5.97	115
1/13/75	60	84	208-FC	10215	5, 21	13.08	6.54	126
1/13/75	60	84	208-FC	10215	5.21	10.79	5.40	104
1/13/75	60	84	208-FC	10215	5.21	11.50	5.75	110
1/21/75	60	60	EM-225-F	7507	3.82	6.80	3.40	89
1/21/75	60	60	EM-225-F	7507	3.82	8.51	4.26	112
1/21/75	60	60	EM-225-F	7507	3.82	8.74	4.37	114
1/23/75	60	60	EM-225-F	7203	3.67	6.86	3,43	93
1/23/75	60	60	EM-225-F	7203	3.67	7. 20	3.60	98
1/23/75	60	60	EM-225-F	7203	3.67	8.26	4, 13	113
* EM 225	P:-			gasoline with	051			. 126

^{*} EM-225-F is unleaded regular grade gasoline with .051 percent sulfur 208-FC is leaded regular grade gasoline with .051 percent sulfur

TABLE D-3. SUMMARY OF 1975 LD FTP TESTS OF A 1972 PLYMOUTH USING THE SwRI SO₂-BCA METHOD Continuous Dilute Sampling With Glass Probe

Date	Type Fuel	Fuel Used, grams*	Fuel S, grams	Exhaust SO2, grams	Exhaust S, grams	Recovery,
1/14/75	208-FD	2703	1.38	2.77	1.39	101
1/21/75	225-F	2717	1.39	2.71	1.36	98
1/23/75	225-F	2853	1.46	2.31	1.16	7 9
1/24/75	225-F	2694	1.37	2.45	1.23	90
					Avg.	92
					Max	101
					Min	79
					Std I	Dev. 10

^{*} EM-225-F is unleaded regular grade gasoline with .051 percent sulfur 208-FD is leaded regular grade gasoline with .051 percent sulfur

APPENDIX E

METHOD-8 DETERMINATION OF SULFURIC ACID MIST AND SULFUR DIOXIDE EMISSIONS FROM STATIONARY SOURCES METHOD 8-DETERMINATION OF SULPURIC ACID MIST AND SULFUR DIOXIDE EMISSIONS FROM

1. Principle and applicability.

STATIONARY SOURCES

1.1 Principle. A gas sample is extracted from a sampling point in the stack and the acid mist including sulfur trioxide is separated from sulfur dioxide. Both fractions are measured separately by the barium-thorin titration method.

1.2 Applicability. This method is applicable to determination of sulfuric acid mist (including sulfur trioxide) and sulfur dioxide from stationary sources only when specified by the test procedures for determining compliance with the New Source Performance Standards.

2. Apparatus.

2.1 Sampling. See Figure 8-1. Many of the design specifications of this sampling train are described in APTD-0581.

2.1.1 Nozzie Stainless steel (316) with sharp, tapered leading edge.
2.1.2 Probe—Pyrex glass with a heating system to prevent visible condensation dur-

ing sampling.

2.1.3 Pitot tube—Type S, or equivalent, attached to probe to monitor stack gas velocity.

2.1.4 Filter holder-Pyrex 1 glass.

2.1.5 Impingers—Four as shown in Figure 8-1. The first and third are of the Greenburg-Smith design with standard tip. The second and fourth are of the Greenburg-Smith desigh, modified by replacing the standard tip with a ½-inch ID glass tube extending to one-half inch from the bottom of the impinger flask. Similar collection systems, which have been approved by the Administrator, may be used.

2.1.6 Metering system—Vacuum gauge, leak-free pump, thermometers capable of measuring temperature to within 5° F., dry gas meter with 2% accuracy, and related equipment, or equivalent, as required to maintain an isokinetic sampling rate and to determine sample volume.

2.1.7 Barometer—To measure atmospheric pressure to ±0.1 inch Hg.

Trade pame

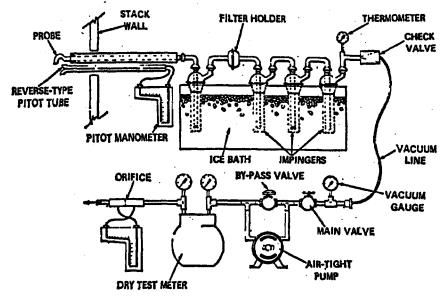


Figure 8-1. Sulfuric acid mist sampling train.

2.2 Sample recovery.

2.2.1 Wash bottles—Two.
2.2.2 Graduated cylinders—250 ml., 500

ml.

2.2.3 2.2,4 Glass sample storage containers. Graduated cylinder—250 ml.

2.3 Analysis.

2.3.1 Pipette—25 ml., 100 ml. Burette—50 ml.

2.3.2

2.3.3 Erlenmeyer flask-250 ml. 2.3.4 Graduated cylinder-100 ml.

Trip balance-300 g. capacity, to 2.3 5 measure to ± 0.05 g. 2.3.6 Dropping bottle—to add indicator

solution.

3. Reagents.

3.1 Sampling.
3.1.1 Filters—Glass fiber, MSA type 1106 BH, or equivalent, of a suitable size to fit in the filter holder.

3.1.2 Silica gel—Indicating type, 6-16 mesh, dried at 175° C. (350° F.) for 2 hours.

3.1.3 Water—Deionized, distilled.
3.1.4 Isopropanol, 80%—Mix 800 ml. of isopropanol with 200 ml. of deionized, distilled water

3.1.5 Hydrogen peroxide, 3%—Dilute 100 ml. of 30% hydrogen peroxide to 1 liter with delonized, distilled water.

3.1.6 Crushed ica.

3.2 Sample recovery.

3.2.1 Water—Deionized, distilled.
3.2.2 Isopropanol, 80%.

3.3 Analysis.
3.3.1 Water—Delonized, distilled.

3.3.2 Isopropanol.
3.3.3 Thorin indicator—1-(o-arsonophenylazo)-2-naphthol-3, 6-disulfonic acid, disodium salt (or equivalent). Dissolve 0.20 g. in 100 ml. distilled water.

3.3.4 Barium perchlorate (0.01N)—Dis-solve 1.95 g. of barium perchlorate [Ba (CO₁), 3 H₂O₁ in 200 ml. distilled water and dilute to 1 liter with isopropanol. Standardize with sulfuric acid.

3.3.5 Sulfuric acid standard (0.01N)-Purchase or standardize to ± 0.0002 N against 0.01 N NaOH which has previously been standardized against primary standard potassium acid phthalate.

4. Procedure. 4.1 Sampling.

4.1.1 After selecting the sampling site and the minimum number of sampling points. determine the stack pressure, temperature, moisture, and range of velocity head.

4.1.2 Preparation of collection train.

Place 100 ml. of 80% isopropanol in the first impinger, 100 ml. of 3% hydrogen peroxide in both the second and third impingers, and about 200 g. of silica gel in the fourth impinger. Retain a portion of the rengents for use as blank solutions. Assemble the train without the probe as shown in Figure 8-1 with the filter between the first and second impingers, Leak check the sampling train at the sampling site by plugging the inlet to the first impinger and pulling a 15-inch Hg vacuum. A leakage rate not in excess of 0.02 c.f.m. at a vacuum of 15 inches Hg is acceptable. Attach the probe and turn on the probe heating system. Adjust the probe heater setting during sampling to prevent any visible condensation. Place crushed ice around the impingers. Add more ice during the run to keep the temperature of the 222c3 leaving the last impinger at 70° F. or less.

4.1.3 Train operation. For each run, record the data required on the example sheet shown in Figure 8-2. Take readings at each sampling point at least every 3 minutes and when significant changes in stack conditions necessitate additional adjustments in flow rate. To begin sampling, position the nozzle at the first traverse point with the tip point. ing directly into the gas stream. Start the pump and immediately adjust the flow to isokinetic conditions, Maintain isokinetic sampling throughout the sampling period. Nomographs are available which aid in the

FEDERAL REGISTER, VOL. 36, NO. 247-THURSDAY, DECEMBER 23, 1971

out other computations, APTD-0576 details the procedure for using these nomographs. At the conclusion of each run, turn off the pump and record the final readings. Remove minutes.

rapid adjustment of the sampling rate with- the probe from the stack and disconnect it from the train, Drain the ice bath and purge the remaining part of the train by drawing clean ambient air through the system for 15

						•		~~~	# EX-1-0-45	
LOCAZION				ſ				BANCHETRIC	PRESSURE	
CPERATOR				l		1		ASSULED MO	METURE, %	
DAIE				i i				SETTING		
				Į.		1		PRODE LENGT	H	
SAMPLE N	OK NO			ĺ		1		NORTH DIA	HETEL, In.	
NATER BOX	I NO			l		l l	PROSE HEATTR SETTING			
METER AH				1		- 1				
				SCHENAT	C OF STACE CHO	SS SECTION				
	SALPLING		STACE	AETOCIAA	PRESENTE DEPENDATAL ACROSS ORTICE LETTE	gas sauns	GAS BANNE?	AS METER	SAMPLE BOX	SUPINGER
THOO! JOHN BANK	fo), min.	Pressure Pylola. He	TEMPERATURE (T _S), *9	HEAD (4 Pg)	la H ₂ O	Morrison Accress	tenter Ten m. lo "F	OUTLET (Ton push, F		TEMPERATURE
	<u> </u>	L		<u> </u>	<u> </u>				1	<u> </u>
		!		1	<u> </u>	<u> </u>	<u> </u>		<u> </u>	
	L	<u> </u>		<u> </u>		!	<u> </u>		<u> </u>	1
	L	<u> </u>		!	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>
	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>		1			l
					<u> </u>			l	<u> </u>	
	<u> </u>	<u> </u>	<u> </u>		<u> </u>		<u> </u>		1	<u> </u>
	<u> </u>	I				<u> </u>			L	
				1		1				
	L	L	1					<u> </u>		
			L				1			
TOTAL.	L				Ŀ	1	Aug.	Aug.		
AVERAGE		1	1	T		1	Avg.			

Figure 8-2. Field date.

4.2 Sample recovery.

4.2.1 Transfer the isopropanol from the first impinger to a 250 ml, graduated cylinder. Rinse the probe, first impinger, and all connecting glassware before the filter with 80% isopropanol. Add the rinse solution to the cylinder, Dilute to 250 ml, with 80% isopropanol. Add the filter to the solution, mix, and transfer to a suitable storage container. Transfer the solution from the second and third impingers to a 500 ml, graduated cylinder. Rinse all glassware between the filter and silica gel impinger with deionized, distilled water and add this rinse water to the cylinder. Dilute to a volume of 500 ml, with deionized, distilled water. Transfer the soiution to a suitable storage container.

4.3 Analysis.

4.3.1 Shake the container holding isopropanol and the filter. If the filter breaks up, allow the fragments to settle for a few minutes before removing a sample. Pipette a 100 ml. aliquot of sample into a 250 ml. Erlenmeyer flask and add 2 to 4 drops of thorin indicator. Titrate the sample with

barium perchlorate to a pink end point, Make sure to record volumes. Repeat the titration with a second aliquot of sample, Shake the container holding the contents of the second and third impingers. Pipette a 25 ml. aliquot of sample into a 250 ml. Erlenmeyer fiask. Add 100 ml. of isopropanol and 2 to 4 drops of thorin indicator. Titrate the sample with barium perchlorate to a pink end point, Repeat the titration with a second aliquot of sample. Titrate the blanks in the same manner as the samples.

5. Calibration.

5.1 Use standard methods and equipment which have been approved by the Administrator to calibrate the orifice meter, pitot tube, dry gas meter, and probe heater.

5.2 Standardize the barium perchlorate with 25 ml, of standard sulfuric acid containing 100 ml. of isopropanol.

6. Calculations.

6.1 Dry gas volume. Correct the sample volume measured by the dry gas meter to standard conditions (70° F., 29.92 inches Hg) by using Equation 8-1.

$$V_{m_{std}} = V_{m} \left(\frac{T_{st}}{T_{m}}\right) \left(\frac{P_{bar} + \frac{\Delta H}{13.6}}{P_{std}}\right) = \left(17.71 \frac{\circ R}{\text{in. Hg}}\right) V_{m} \left(\frac{P_{bar} + \frac{\Delta H}{13.6}}{T_{m}}\right)$$

equation S-1

where:

V= 144 = Volume of gas sample through the dry gas meter (standard conditions), cu. ft.

V -- Volume of gas sample through the dry gas meter (meter conditions), cu. ft.

Tata Absolute temperature at standard conditions, 530° R.

T = Average dry gas meter temperature,

Phas = Barometric pressure at the orifice meter, inches Hg.

AH = Pressure drop across the orifice meter, inches H.O.

13.6-Specific gravity of mercury. P. . . Absolute pressure at standard con-

ditions, 29.92 inches Hg. 6.2 Sulfuric scid concentration.

$$C_{H_18O_4} = \left(1.08 \times 10^{-4} \frac{\text{lb.-l.}}{\text{g.-ml.}}\right) \frac{(V_s - V_{tb}) (\underline{N}) \left(\frac{V_{sols}}{V_s}\right)}{V_{m_{std}}} \qquad \text{equation } 8-2$$

Ca,304 = Concentration of sulfuric acid at standard conditions, dry basis, lb./cu.ft.

1.08 × 10-4 = Conversion factor including the number of grams per gram equivalent of sulfuric acid (49 g./g.-eq.), 453.6 g./ib., and 1,000 ml./i., lb.-l./g.-ml.

V. = Volume of barium perchlorate titrant used for the sample, ml.

V. - Volume of barium perchiorate titrant used for the blank, ml. N - Normality of barium perchlorate titrant, g.-eq./l.

V ... Total solution volume of sulfuric acid (first impinger and filter), ml.

V = Volume of sample aliquot titrated, ml.

Vmata = Volume of gas sample through the dry gas meter (standard conditions), cu. ft., see Equation 8-1.

6.3 Sulfur dioxide concentration.

$$C_{8O_{a}} = \left(7.05 \times 10^{-1} \frac{\text{lb.-l.}}{\text{g.-mi.}}\right) \frac{\left(V_{s} - V_{tb}\right) \left(\underline{N}\right) \left(\underline{V_{solu}}\right)}{V_{m_{std}}}$$
 equation 8-3

Cso, - Concentration of sulfur dioxide at standard conditions, dry basis, 1b./cu. ft.

7.05 × 10-4 = Conversion factor including the number of grams per gram equivalent of sulfur dioxide (92 g./g.-eq.) 453.6 g./lb., and 1,000 ml./l., lb.-l./g.-ml.

V .- Volume of barium perchlorate titrant used for the sample, ml.

V. - Volume of barlum perchlorate titrant used for the blank, ml. N=Normality of barium perchlorate titrant, g.-eq./1.

V.ois - Total solution volume of sulfur dioxide (second and third impingers), mi.

V. - Volume of sample aliquot titrated, ml.

Vmata = Volume of gas sample through the dry gas meter (standard conditions), cu. ft., see Equation 8-1.

7. References.

Atmospheric Emissions from Sulfuric Acid Manufacturing Processes, U.S. DHEW, PHS, Division of Air Pollution, Public Health Service Publication No. 999-AP-13, Cincinnati, Ohio, 1965,

Corbett, D. F., The Determination of SO, and SO, in Flue Gases, Journal of the Institute of Fuel, 24:237-243, 1961.

Martin, Robert M., Construction Details of Isokinetic Source Sampling Equipment, Environmental Protection Agency, Air Pollution Control Office Publication No. APTD-0581.

Patton, W. F., and J. A. Brink, Jr., New Equipment and Techniques for Sampling Chemical Process Gascs, J. Air Pollution Control Assoc. 13, 162 (1963).

APPENDIX F ANALYSIS OF FUELS USED

TABLE F-1. LIST OF FUELS USED

Date in Service*	SwRI Designation	Type Fuel	Base Stock	% Sulfur	SwRI Additives to Base Stock	Project Phase Using Fuel
	EM-205F	unleaded gas	-	0.013	None	base stock
	EM-208FD EM-225F	leaded gas unleaded gas	EM-205F EM-205F	0.051 0.051	motor mix, thiophene thiophene	characterization
	EM-212F	unleaded gas	Gulf Crest	0.042	thiophene	distance accumulation characterization procedure development baseline
	EM-233F	unleaded gas	Gulf Crest	0.033	thiophene	baseline (IV-17)
	EM-236F	unleaded gas	EM-205F	0.031	thiophene	procedure development baseline distance accumulation
9/15/75.	EM-243F	unleaded gas	Gulf Crest	0.042	thiophene	distance accumulation
12/30/75	EM-250F	unleaded gas	Gulf Crest	0.041	thiophene	distance accumulation
2/25/75	EM-254F	unleaded gas	Gulf Crest	0.041	thiophene	distance accumulation
5/7/76	EM-258F	unleaded gas	Gulf Crest	0.041	thiophene	distance accumulation
-	EM-246F	diesel - 2	Gulf 2D	0.25	Ditertiary butyl disulfide	characterization and baseline

^{*}Applies to distance cars only

TABLE F-2. ANALYSIS OF PHILLIPS UNLEADED GASOLINE, EM-205-F

PHILLIPS	PETROLEUM	COMPANY
PHILTEX PLANT		PHILLIPS, TEXAS

DATE OF SHIPMENT
CUSTOMER ORDER NO
INV. OR REON. NO.

INLEADED GASOLINE BLEND

CONTRACT NUMBER: 68-02-1122

LOT T-817

		Specif	<u>ication</u>
	Results	Min.	Max.
Research Octane Number	93.2	91.5	93.5
Motor Octane Number	84.7	82	85
Ron-Mon	8.5	- 8	10
Reid Vapor Fressure, psia	10.2	9.8	10.2
Distillation, ASTM D-86, F		·	
10%	123	-	140
50%	199	-	250
	325	320	350
95%	383	-	380
API Gravity 0 60 F	3 8 3 61.6	-	_
FIA Analysis	02.00		
Amounting of	24.0	24	28
Aromatics %	8.3	7	10
Olefins %	67.7	62	69
Paraffins %	0.57	Nonobserv	•
ASTM Gum, mg/100 ml		24+	-
Stability, hrs	24+	24,	1.00
Sulfur, ppm	127(1)	-	30
Phosphorous, ppm	1		0.01
Lead, g/gallon	0.00004		1
Diene Number, meg/liter	0.0	•	.
Fuel Composition, LV % (2)			
Benzene	0.1	-	4
Toluene	8.1	•	15
	8.0	-	12
n-Butane	8.3	-	12
Isopentane	5.4	-	8
n- pentane	J•4		

Fuel was inhibited with 5 lbs/1000 bbls of Dupont 22 oxidation inhibitor.

(1) Fails Specification, Waiver obtained from customer.

(2) Benzene and Toluene were determined by infrared analysis by direct calibration techniques.

E. J. Horning

Quality Control Superintendent

TABLE F-3. ANALYSIS OF GULF CREST UNLEADED REGULAR GASOLINE, EM-212-F (Prior to Addition of Thiophene)

Property	Test Method	Results
Distillation (Deg. F.)	ASTM D-216	I. B. P. 87°
(curve attached)		5% 109°
		10% 119°
		20% 137°
		50% 215°
		70% 260°
		90% 352°
		95% 387°
		E.P. 420°
		% Recovered 98.00
		% Residue .80
		% Loss 1.20
		•
R.V. P.	ASTM D-323	8.1 Corrected
V/L calculated	ASTM D-439	Temp. F^{\bullet} @ $V/L = 4$ 132
		Temp. F^{\bullet} @ V/L = 10 136
		Temp. F^{\bullet} @ V/L = 20 141
		Temp. F° @ V/L= 30 145
		Temp. F^{\bullet} @ V/L = 45 150
Gravity	ASTM D-287	API 60.6@ 60°C
		Specific 0.7366 corrected
Lead	ASTM D-3237	$\overline{0.005}$ g/gal
Sulfur	ASTM D-1266	0.015 wt. %
F. I. A.	ASTM D-1319	% Aromatics 31.86
		% Olefins 1.18
		% Saturates 66.96
Phosphorus	ASTM D-3231	Temp. 0°C - 0.0008 g/gal
Research Octane	ASTM D-2722	92.0
Motor Octane	ASTM D-2723	83.8
R + M/2		87. 9
-		01. /

TABLE F-4. ANALYSIS OF GULF CREST UNLEADED GASOLINE, EM-250-F

RON	91.6
MON	80.2
RVP	ll. l psi
Sp. Gravity	. 7316
Pb G/gal	0.002
S% wt.	0.041
P g/gal	0.0008
F.I.A. SAT. Oli. Aro.	% 73.4 5.2 21.3
DIST IBP 10% 20% 50% 70% 95% EP	F 85 111 125 205 261 395 427 98.0
Res. % Loss %	0.9

TABLE F-5. ANALYSIS OF GULF 2D DIESEL FUEL, EM-176-F (Used as Base Fuel for EM-246-F)

Property	Results
Gravity, API at 60°F	36.4
Sulfur, % wt.	0.11
Flash Pt., °F	150
Vis. at 100°F	2.60 cs (34.75 SuS)
Cetane No. (Calc)	47.59
FIA Aromatics Olefins Saturates	25.6 71.7 2.7
Distillation:	
IBP, °F 10%, °F 20%, °F 20%, °F 30%, °F 40%, °F 50%, °F 60%, °F 70%, °F 80%, °F 90%, °F 95%, °F End Point, °F	368 424 444 461 479 482 508 525 544 571 598 623

TABLE F-6. X-RAY FLUORESCENCE ANALYSIS FOR SULFUR OF SEVERAL SwRI FUELS

EXON RESEARCH AND ENGINEERING COMPANY

P.O. BOX 51, LINDEN, N.J. 07036

PRODUCTS RESEARCH DIVISION R.R. CECIL Director Fuels Research Laboratory

April 3, 1975

Gasoline Sulfur Analysis for SWRI

Ref. No. 7512 1431

Dr. Melvin Ingalls Southwest Research Institute 8500 Culebra Road Post Office Drawer 28510 San Antonio, Texas 78284

Dear Dr. Ingalls:

The sulfur analysis results on the gasoline samples you sent us are as follows:

SWRI Sample Description	Wt. % Sulfur
EM-212F	0.10*
EM-217F	< 0.01
EM-208F	0.053
Unlabeled	0.094
EM-212F	0.045

The second sample labeled EM-212F was received several weeks after the other samples and had a sulfur content of 0.045 wt. %. The analytical method used was x-ray fluorescence.

If I can be of further assistance to you, please contact me.

Yours truly,

Morton Belte-

M. BELTZER

MB:pc

^{*}Typographical error, should be 0.01 per telecon with M. Beltzer

TABLE F-7. X-RAY FLUORESCENCE ANALYSIS FOR SULFUR OF SwRI FUEL EM-236-F

EXON RESEARCH AND ENGINEERING COMPANY

P.O. BOX 51, LINDEN, N.J. 07036

PRODUCTS RESEARCH DIVISION

R.R. CECIL Director Fuels Research Laboratory June 25, 1975

Sulfur Analysis of SWRI Fuels

Ref. No. 7512 1524

Mr. Melvin Ingalls Southwest Research Institute 8500 Culebra Road Post Office Drawer 28510 San Antonio, Texas 78284

Dear Mel:

The results of the sulfur analyses of the fuel samples you sent are as follows:

Sample Designation	Fuel Sulfur, Wt. %
EM 1	0.030
EM 2	0.030
EM 3	0.027
EM 4	0.030
EM 5	
EM 6	0.031
EM 7	0.029
	0.031
EM 8	0.030
EM 9	0.027
EM 10	0.032
EM 11	0.031
EM 12	0.031
EM 13	0.025
EM 14	0.031
EM 15	0.027
EM 16	0.030
EM 17	0.030
EM 18	0.025
EM 19	0.032
EM 20	0.030
	3.030

Please let me know if we can be of further help to you.

Yours truly,

M. BELTZER

TABLE F-8. COMPARISON OF EXXON X-RAY AND ARMY F&L LAB LAMP SULFUR

Fue	1	Exxon X-Ray	Army F&L Lab Lamp Sulfur
EM-2081	?	0.053	0.0528
EM-2121	F (w/o thiophene)	0.010	
EM-212	(w/ thiophene)	0.045	0.0440
EM-236	Barrel l	0.030	0.030
11	Barrel 2	0.030	0.030
11	Barrel 3	0.027	0.031
11	Barrel 4	0.030	0.032
f1	Barrel 5	0.031	0.032
11	Barrel 6	0.029	0.031
11	Barrel 7	0.031	0.033
††	Barrel 8	0.030	0.032
11	Barrel 9	0.027	0.029
11	Barrel 10	0.032	0.031

TABLE F-9. ANALYSIS OF SULFUR IN TEST FUELS BY U. S. ARMY F&L LABORATORY

F&L Lab Report No.	Fuel Designation	Number of Times Analyzed	Average Percent Sulfur
3730	EM-208-F(B)	3	0.0528
3818	EM-212-F	3	0.0440
3926	EM-236-F (1) (2) (3) (4) (5) (6) (7) (8)	2 2 1 1 1 1	0.030 0.030 0.031 0.032 0.032 0.031
	'' (9) '' (10)	1 1 1	0.032 0.029 0.031
4111	EM-243-F	3	0.042
4236	EM-246-F	1	0.246
4257	EM-25 0- F	2	0.041
4303	EM-254-F	2	0.041
4378 (5/12/76)	EM-258-F	2	0.041

APPENDIX G

RESULTS FROM INDIVIDUAL TESTS OF SULFATE CHARACTERIZATION CARS

TABLE G-1. EXHAUST EMISSIONS FROM A 1972 PLYMOUTH FURY WITH A 360 CID ENGINE (NO CATALYST)
(LEADED FUEL, 0.051 PERCENT SULFUR)

			Exh	aust Emis	sions,	j/km	mg/km	Percent	Percent	
Test	Test	Test				BCA	BCA	Fuel S	Fuel S	Total
Date	Type	Duration	HC_	CO	NO^{X}	_SO ₂	H2SO4	as SO ₂	as H ₂ SO ₄	Recovery
10/22/74	'75 FTP		2.91	54.42	3.68					
11/7/74	'75 FTP		3.04	54.37	3.19					
11/19/74	'75 FTP		3.20	60.45	3.07					
11/20/74	'75 FTP		2.42	50.91	2.80					
1/14/74	'75 FTP					0.14		94.2		
2/18/74	'75 FTP					0.14		84.7		
Average	'75 FTP		2.89	55.04	3.19	0.14		89.5		
			S=.34	3.96	.37					
			Cv=12%	7%	12%					
10/22/74	48 kph	90 min.	1.59	25.5						
11/7/74	48 kph	90 min.	1.35	23.5	0.35					
11/18/74	48 kph	90 min.	1.59	37.8	0.20					
11/19/74	48 kph	90 min.	1.80	27.3	0.51					
2/17/75	48 kph	90 min.	1.52	32.6	0.66	0.09		97.6		
2/18/75	48 kph	90 min.	1.24	28.2	0.50	0.08		86.2		
Average	48 kph	90 min.	1.51	29.15	0.44	0.08		91.9		
-		_	S=,20	5,22	0.17					
			Cv=13%	18%	39,4%					
11 (0 (54		60	. 07	2 1	2.62					
11/8/74	96 kph	60 min.	1.07	7.1	2.62					
11/8/74	96 kph	60 min.	0.99	5.4	3.14					
11/18/74	96 kph	60 min.	1.33	9.8	4.60					
11/21/74	96 kph	60 min.	0.92	4.7	4.15			100.0		
1/13/75	96 kph	84 min.		*	~	0.08		100.3		
1/13/75	96 kph	84 min.				0.09		107.0		
Average	96 kph		1.08	6.75	3.63	0.08		103.7		
			S=.18	2.27	.91					
			Cv=17%	34%	25%					

TABLE G-2. EXHAUST EMISSIONS FROM A 1972 PLYMOUTH FURY WITH A 360 CID ENGINE (NO CATALYST) (UNLEADED FUEL, 0.51 PERCENT SULFUR)

		Exh	aust Emis	sions, g	/km	mg/km	Percent	Percent	
Test Type	Test Duration	НС	со	NO.	BCA SO ₂	BCA H2SO4	Fuel S as SO ₂	Fuel S as H ₂ SO⊿	Total Recovery
 -									
'75 FTP		2.73	52.59	3.76	1.71	2.30	97.1	0.8	97.8
'75 FTP		2.52	50.00	3.14	1.46	1.86	102.5	0.9	103.5
'75 FTP		2.63	51.30	3.45	1.59	2.08	99.8	0.9	100.8
48 kph	90 min.	0.96	33.7	0.38	0.08	0.11	87.1	0.1	87.3
48 kph	90 min.	<u>1.4</u> 5	30.3	0.38	0.08	0.13	90.9	0.1	91.0
48 kph	90 min.	1.21	32.0	0.38	0.08	0.12	89.0	0.1	89.1
96 kph	60 min.	0.89	6.3	3.64	0.08	2.70	88.7	2.1	90.8
96 kph	60 min.	1.07	8.4	3.67	0.08	1.00	87.3	0.7	88.0
96 kph	60 min.	0.98	7.4	3.66	0.08	1.85	88.0	1.4	89.4
	Type '75 FTP '75 FTP '75 FTP 48 kph 48 kph 48 kph 96 kph	Type Duration '75 FTP '75 FTP '75 FTP 48 kph 90 min. 48 kph 90 min. 48 kph 90 min. 96 kph 60 min. 96 kph 60 min.	Test Test Type Duration HC '75 FTP 2.73 '75 FTP 2.52 '75 FTP 2.63 48 kph 90 min. 0.96 48 kph 90 min. 1.45 48 kph 90 min. 1.21 96 kph 60 min. 0.89 96 kph 60 min. 1.07	Test Test Type Duration HC CO '75 FTP 2.52 50.00 '75 FTP 2.63 51.30 48 kph 90 min. 0.96 33.7 48 kph 90 min. 1.45 30.3 48 kph 90 min. 1.21 32.0 96 kph 60 min. 0.89 6.3 96 kph 60 min. 1.07 8.4	Test Type Duration HC CO NO _x '75 FTP 2.52 50.00 3.14 '75 FTP 2.63 51.30 3.45 48 kph 90 min. 0.96 33.7 0.38 48 kph 90 min. 1.45 30.3 0.38 48 kph 90 min. 1.21 32.0 0.38 96 kph 60 min. 0.89 6.3 3.64 96 kph 60 min. 1.07 8.4 3.67	Type Duration HC CO NO _x SO ₂ '75 FTP 2.73 52.59 3.76 1.71 '75 FTP 2.52 50.00 3.14 1.46 '75 FTP 2.63 51.30 3.45 1.59 48 kph 90 min. 0.96 33.7 0.38 0.08 48 kph 90 min. 1.45 30.3 0.38 0.08 48 kph 90 min. 1.21 32.0 0.38 0.08 96 kph 60 min. 0.89 6.3 3.64 0.08 96 kph 60 min. 1.07 8.4 3.67 0.08	Test Test BCA BCA BCA Type Duration HC CO NO _x SO ₂ H ₂ SO ₄ '75 FTP 2.73 52.59 3.76 1.71 2.30 '75 FTP 2.52 50.00 3.14 1.46 1.86 '75 FTP 2.63 51.30 3.45 1.59 2.08 48 kph 90 min. 0.96 33.7 0.38 0.08 0.11 48 kph 90 min. 1.45 30.3 0.38 0.08 0.13 48 kph 90 min. 1.21 32.0 0.38 0.08 0.12 96 kph 60 min. 0.89 6.3 3.64 0.08 2.70 96 kph 60 min. 1.07 8.4 3.67 0.08 1.00	Test Test BCA BCA Fuel S Type Duration HC CO NO _x SO ₂ H ₂ SO ₄ as SO ₂ '75 FTP 2.73 52.59 3.76 1.71 2.30 97.1 '75 FTP 2.52 50.00 3.14 1.46 1.86 102.5 '75 FTP 2.63 51.30 3.45 1.59 2.08 99.8 48 kph 90 min. 0.96 33.7 0.38 0.08 0.11 87.1 48 kph 90 min. 1.45 30.3 0.38 0.08 0.13 90.9 48 kph 90 min. 1.21 32.0 0.38 0.08 0.13 90.9 48 kph 90 min. 1.21 32.0 0.38 0.08 0.12 89.0 96 kph 60 min. 0.89 6.3 3.64 0.08 2.70 88.7 96 kph 60 min. 1.07 8.4 3.67 0.08 1.00 <td< td=""><td>Test Test BCA BCA Fuel S Fuel S Type Duration HC CO NO_x SO₂ H₂SO₄ as SO₂ as H₂SO₄ '75 FTP 2.73 52.59 3.76 1.71 2.30 97.1 0.8 '75 FTP 2.52 50.00 3.14 1.46 1.86 102.5 0.9 '75 FTP 2.63 51.30 3.45 1.59 2.08 99.8 0.9 48 kph 90 min. 0.96 33.7 0.38 0.08 0.11 87.1 0.1 48 kph 90 min. 1.45 30.3 0.38 0.08 0.13 90.9 0.1 48 kph 90 min. 1.21 32.0 0.38 0.08 0.12 89.0 0.1 96 kph 60 min. 0.89 6.3 3.64 0.08 2.70 88.7 2.1 96 kph 60 min. 1.07 8.4 3.67 0.08 1.00 <t< td=""></t<></td></td<>	Test Test BCA BCA Fuel S Fuel S Type Duration HC CO NO _x SO ₂ H ₂ SO ₄ as SO ₂ as H ₂ SO ₄ '75 FTP 2.73 52.59 3.76 1.71 2.30 97.1 0.8 '75 FTP 2.52 50.00 3.14 1.46 1.86 102.5 0.9 '75 FTP 2.63 51.30 3.45 1.59 2.08 99.8 0.9 48 kph 90 min. 0.96 33.7 0.38 0.08 0.11 87.1 0.1 48 kph 90 min. 1.45 30.3 0.38 0.08 0.13 90.9 0.1 48 kph 90 min. 1.21 32.0 0.38 0.08 0.12 89.0 0.1 96 kph 60 min. 0.89 6.3 3.64 0.08 2.70 88.7 2.1 96 kph 60 min. 1.07 8.4 3.67 0.08 1.00 <t< td=""></t<>

TABLE G-3. EXHAUST EMISSIONS FROM A 1974 HONDA CVCC CIVIC WITH A 1500cc ENGINE

(Unleaded Fuel, 0.041 Percent Sulfur)

	Run	Ex	haust E	missions s	g/km	mg/km	Percent	Percent	Percent
Test	Test Duration				BCA	BCA	Fuel S	Fuel S	Fuel S
Date	Type (Min.)	HC	CO	$\frac{NO_X}{}$	so_2	H ₂ SO ₄	as SO ₂	$\frac{\text{as H}_2\text{SO}_4}{}$	Recovered
2/11/75	'75 FTP	0.83	2.41	0.60	0.05	0.5	77.7	0.6	78.3
2/12/75	'75 FTP	0.59	2.45	<u>0.50</u>	0.05	$\frac{0.3}{0.4}$	$\frac{85.7}{81.7}$	$\frac{0.4}{0.5}$	$\frac{86.1}{82.2}$
	Avg. '75 FTP	0.71	2.43	0.55	0.05	0.4	81.7	0.5	82.2
2/10/75	48 kph 90	0.09	1.07	0.44	0.03	0.2	92.3	0.5	92.8
2/19/75	48 kph 90	0.05	1.08	0.29	0.04	0.2	133.6	0, 5	134.1
	Avg. 48 kph	0.07	1.08	0.37	0.04	$\frac{0.2}{0.2}$	113.0	0.5 0.5	$\frac{134.1}{113.5}$
2/10/75	96 kph 60	0.04	0.89	1.45	0.05	0.6	127.2	1.0	128.2
3/12/75	96 kph 30	0.00	0.23	1.34	0.04	1.1	83.5	1.7	85.2
	Avg. 96 kph	0.02	0.56	1.40	0.04	0.9	105.4	1.3	$\frac{85.2}{106.7}$

TABLE G-4. EXHAUST EMISSIONS FROM A 1975 FORD GRANADA WITH A 351 CID ENGINE (NO CATALYST)

(Unleaded Fuel, 0.041 Percent Sulfur)

			Run		Exhaust	Emissio	ns, g/km	_ mg/km	Percent	Percent	Percent
Test Date		Test I	Duration (Min.)	НС	СО	NOx	BCA SO ₂	BCA H ₂ SO ₄	Fuel S as SO ₂	Fuel S as H ₂ SO ₄	Fuel S Recovered
	3/7/75	'75 FTP '75 FTP		1.05	5.68 5.86	2.02	0.10	0.5	91.0 89.0	0.3 0.2	91.3 89.2
	3/10/75	Average '75	FTP	$\frac{0.97}{1.01}$	5.77	$\frac{2.11}{2.07}$	$\frac{0.11}{0.10}$	$\frac{0.4}{0.5}$	90.0	$\frac{0.2}{0.3}$	90.3
ဂူ	3/6/75	48 kph	30	0.26	1.21	0.54	0.05	0.2	83.6	0.1	83.7
տ	3/7/75	48 kph Average 48	30 kp h	$\frac{0.19}{0.22}$	1.09 1.15	$\frac{0.44}{0.49}$	$\frac{0.06}{0.06}$	$\frac{0.1}{0.1}$	81.5	$\frac{0.1}{0.1}$	81.6
	3/6/75	96 kph	30	0.16	1.75	1.85	0.06	0.3	89.4	0.3	89.7
	3/7/75	96 kph Average 96	30 kph	$\frac{0.18}{0.17}$	$\frac{1.83}{1.79}$	$\frac{1.38}{1.62}$	$\frac{0.06}{0.06}$	$\frac{0.2}{0.2}$	$\frac{108.2}{98.8}$	$\frac{0.2}{0.2}$	$\frac{108.4}{99.0}$

NOTE:

For Characterization Tests of:

1975 Federal Plymouth Gran Fury

1975 Federal Chevrolet Impala

1975 California Plymouth Gran Fury

1975 California Chevrolet Impala

See the 3200 km tests of cars EM-1, 2, 3 and 4 in Appendix H.

TABLE G-5. EXHAUST EMISSIONS FROM A 1975 MERCEDES 240D (Diesel fuel, 0.23% Sulfur)

ъ.				g	/km		mg/km	H ₂ SO ₄ as % of	SO ₂ as % of	Total
Date	Test Type	Duration	HC	co	NOx	so ₂	H ₂ SO ₄	Fuel S	Fuel S	Recovery
11/18/75	FTP		0.23	0.43	0.78	0.392	9.35	1.78	113.91	115.68
11/19/75	FTP		0.05	0.49	0.77		12.77	2.32	78.72	81.04
11/20/75	FTP		0.00	0.48		0.332	8.27	1.55	95.49	97.05
Average			0.09	0.47	0.78	0.336	10.13	1.88	96.04	97.92
11/18/75	SET-7	23 min	0.10	0.36	0.74	0.363	9.75	2. 17	123.57	125.74
11/19/75	SET-7	23 min	0.04	0.38	0.90	0.324	11.48	2.50	108.35	110.86
11/20/75 Average	SET-7	23 min	0.02	0.27	0.74	0.290	8.31	2.06	110.28	112.35
			0.05	0.34	0.79	0.326	9.85	2. 24	114.07	116.32
11/18/75 11/19/75	SET-7	23 min	0.05	0.34	0.71	0.213	10.05	2.29	74.22	76.51
11/20/75	SET-7	23 min	0.02	0.37	0.83	0.277	11.02	2.37	90.91	93.28
Average	SET-7	23 min	0.02	0.30	$\frac{0.77}{0.77}$	0.279	9.91	2.28	98.46	100.74
			0.03	0.34	0.77	0.256	10.33	2.31	87.86	90.18
11/18/75	FET	12 min	0.04	0.31	0.71	0.356	9.39	2.33	134.95	137.28
11/19/75	FET	12 min	0.05	0.31	0.82	0.296	9.61	2.24	105.63	107.87
11/20/75	FET	12 min	0.05	0.24	0.68	0.245	10.21	2.86	105.31	108.18
Average			0.05	0.29	0.74	0.299	9.74	2.48	115.30	117.78
11/18/75	SET-7	23 min	0.08	0.38	0.71	0.315	10.22	2.32	10 9. 52	111.84
11/19/75	SET-7	23 min	0.06	0.33	0.82	0.310	11.03	2.44	104.72	107.16
11/20/75	SET-7	23 min	0.03	0.31	0.78	0.344	9.67	2.20	119.90	122.11
A_{verage}			0.06	0.34	0.77	0.323	10.31	2.32	111.38	113.70
11/18/75	SET-7	23 min	0.05	0.33	0.78	0.342	11.42	2.56	117.56	120.12
11/19/75	SET-7	23 min	0.01	0.36	0.81	0.277	11.70	2.58	93.59	96.17
11/20/75	SET-7	23 min	0.03	0.33	0.79	0.229	9.89	2.25	79.93	82.18
Average			0.03	0.34	0.79	0.283	11.00	2.46	97.03	99.49
11/19/75	8 Accel	20 min	0.04	0.14	0.52	0.367	3.23	1.07	185.72	186.79
	8 Accel	20 min	0.02	0.04	0.44	0.248	2.12	0.87	155.40	156.27
Werage			0.03	0.09	0.48	0.308	2.68	0.97	170.56	171.53
$\frac{11}{19}$ /75 4	8 kph S/S	20 min	0.02	0.20	0.56	0.176	3.69	1.26	91.99	93.25
	8 kph S/S	20 min	0.02		0.49	0.124	3.00	1.04	65.93	66.97
age	, ,,,		0.02	$\frac{0.09}{0.15}$	$\frac{0.49}{0.53}$	0.150	3.35	1. 15	78. 96	80.11
11/19/75	6 Accel	10 min	0.01	0.38	1.00	0.313	21.85	4.53	99.21	103.75
~*/40/75 (6 Accel	10 min	0.03	0.36		0.236	22.63	4.74	75. 68	80.42
werage		- 	0.02	0.37	$\frac{0.90}{0.95}$	0.275	22, 24	4.64	87.45	92.09
11/19/75	96 kph e/e	10 min	0.00	0.40	1.16	0.375	13.56	2.95	124.62	127.56
11/20/75 d	6 kph 5/5		0.02	0.31	0.99	0.361	12.96	2.94	125.25	128.19
Average	. 3,5		0.01	0.36	1.08	0.368	13.26	2.94	124.94	127.88

ç

TABLE G-6. EXHAUST SULFUR RECOVERY USING METHOD 8
FOR A 1972 PLYMOUTH WITH 360 CID ENGINE
(Leaded Fuel, 0.051% Sulfur)

Test Date	Test Type	Run Duration	Exhaust SO2	Emissions g/km H ₂ SO ₄	Percent Fuel S as SO ₂	Percent Fuel as H ₂ SO ₄	Percent Fuel Recovered
10/22/74 11/07/74 11/18/74 2/17/75 2/18/75 Average	48 kph 48 kph 48 kph 48 kph 48 kph 48 kph	90 min. 90 min. 90 min. 90 min. 90 min.	0.07 0.06 0.08 0.05 0.07	none detected	80 77 88 53 <u>74</u> 74	- - - -	80 77 88 53 <u>74</u> 74
11/08/74 11/08/74 11/18/74 11/21/74 Average	96 kph 96 kph 96 kph 96 kph 96 kph	60 min. 60 min. 60 min. 60 min.	0.07 0.08 0.08 0.08 0.08	none detected none detected none detected none detected none detected	70 84 78 <u>72</u> 76	- - -	70 84 78 72 76

TABLE G-7. EXHAUST SULFUR RECOVERY USING METHOD 8
FOR A 1972 PLYMOUTH WITH 360 CID ENGINE
(Unleaded Fuel, 0.051% Sulfur)

Test Date	Test Type	Run Duration	Exhaust 1	Emissions g/km H ₂ SO ₄	Percent Fuel S as SO ₂	Percent Fuel as <u>H₂SO₄</u>	Percent Fuel Recovered
1/27/75 1/28/75 Average	30 mph 30 mph 30 mph	90 min. 90 min.	0.06 0.06 0.06	0.0055 0.0043 0.0049	70 <u>75</u> 72	3.9 3.2 3.6	74 78 76
1/29/75 1/29/75 Average	60 mph 60 mph 60 mph	60 min. 60 min.	0.07 0.07 0.07	0.0037 0.0033 0.0035	85 <u>75</u> 80	2.8 2.3 2.6	88 77 83

TABLE G-8. EXHAUST SULFUR RECOVERY USING METHOD 8 FOR A 1974 HONDA CIVIC WITH A 1500cc CVCC ENGINE (Unleaded Fuel, 0.041 Percent Sulfur)

Test Date	Test Type	Test Duration Min.	SO ₂ by Method 8	H ₂ SO ₄ by Method 8	Percent Fuel S as SO ₂	Percent Fuel S as H ₂ SO ₄	Percent Fuel S Recovered
2/10/75	30 mph	90	0.03	0.0017	81. 5	3.3	84.8
2/19/75	30 mph	90	0.03	0.0015	84.3	$\frac{3.2}{3.2}$	87.5
Average	30 mph		0.03	0.0016	83.0	3. 2	86.2
2/06/75	60 mph	6 0	0.04	0.0050	83.7	8.5	92.2
2/10/75	60 mph	6 0	0.04	0.0032	90.4	<u>5.2</u>	<u>95.6</u>
Average	60 mph		0.04	0.0041	87.0	6.8	93.9

APPENDIX H

SUPPORTING INFORMATION FOR DISTANCE ACCUMULATION CARS

MSAPC ADVISORY CIRCULAR

ILS ENVIRONMENTAL PROTECTION AGENCY

OFFICE OF AIR AND WATER PROGRAMS • OFFICE OF MOBILE SOURCE AIR POLLUTION CONTROL

A/C NO._37_

December 20, 1973

PAGE 1 OF 3 PAGES

SUBJECT:

Alternate Mileage Accumulation Procedure

A. Purpose

The purpose of this Advisory Circular is to provide an alternate mileage accumulation driving schedule for use on public roads where the Durability Driving Schedule as specified in Appendix IV of 40 CFR Part 85 exceeds the legal maximum speed limit.

B. Background

40 CFR 85.074-7, 85.075-7, 85.175-7, and 85.275-7 provide for a modified Durability Driving Schedule if "approved in advance by the Administrator." The reduction in maximum speed limits on public roads to meet the current and anticipated fuel shortages establishes a need for an Alternative Durability Driving Schedule operating within the lowered speed limits.

C. Applicability

This circular is effective immediately and is applicable to gasoline-fueled and Diesel light duty vehicles and light trucks.

D. Procedure

- 1. Appendix IV of 40 CFR Part 85 describes the basic driving schedule consisting of 11 laps of a 3.7 mile closed course and prescribes the driving mode and speed for each lap.
- 2. To accommodate highway speed limits, an alternate driving schedule has been devised. In this alternate driving schedule the first nine laps will be driven in the manner described in Appendix IV of 40 CFR Part 85. The 10th lap is to be driven at a constant speed of 50 or 55 miles per hour (mph) (depending on which speed limit is in effect) after a normal acceleration from the stop following lap number 9 and proceeding to a normal deceleration to a stop before lap 11. The 11th lap is begun a wide-open-throttle acceleration to 50 or 55 mph, as applicable, a fast deceleration to a stop, and three subsequent wide-open-throttle accelerations and fast decelerations at evenly spaced intervals in the 3.7 mile lap.

E. Discussion

- 1. A comparison of the present 70 mph maximum speed durability driving schedule and the alternate 50 or 55 mph schedules is shown in Enclosure 1. It also serves as a guide to those manufacturers who elect to use the alternate 50 or 55 mph maximum speed schedules in laying out a public road route.
- 2. The comparison is based on an assumed uniform acceleration rate of 3 mph per second (4.4 ft/sec²) and a uniform wide-open-throttle acceleration rate of 5 mph per second (7.3 ft/sec²). The rates of deceleration are also assumed to be uniform with normal deceleration being 6 mph per second (8.8 ft/sec²) and a fast rate of deceleration being 10 mph per second (14.7 ft/sec²).
- 3. The actual average speed may be somewhat less than the calculated average speed since no allowance is made for driver reaction time.

F. Approval of Mileage Accumulation Procedure.

- 1. Each application for certification must include a description of the mileage accumulation procedure. The regulations require that the procedure be approved or disapproved, in writing, by EPA. EPA will approve an alternate procedure as generally described in this Advisory Circular for manufacturers who accumulate mileage on public roads. Mileage accumulated on dynamometers or test tracks will continue to be required to be consistent with the driving schedule specified in Appendix IV of 40 CFR Part 85.
- 2. As in the past, EPA will also approve procedures which have substantially the same average speed, distribution of speeds, number of stops per mile, and number of accelerations per mile to the various speeds.

Eric O. Stork

Deputy Assistant Administrator for Mobile Source Air Pollution Control

Enclosure

ENCLOSURE 1

		Events per mile	
	70 mph	55 mph	50 mph
Driving Mode	•Top Speed	Top Speed	Top Speed
Stops	0.96	1.01	1.01
Normal acceleration from stop	0.91	0.91	0.91
Normal acceleration from 20 mph Wide-open-throttle acceleration	1.11	1.11	1.11
and fast deceleration	0.05	0.10	0.10
Idle time	13.64 sec	13.64 sec	13.64 sec
Speed-mph	Perce	ent of Total Miles	
30	16.4	16.4	16.4
35	23.4	23.4	23.4
40	21.9	21.9	21.9
4 5	6.8	6.8	6.8
50		•.0	16.7
55	8.6	16.5	2000
70	8.1	20.5	
Variable (acceleration and			
deceleration)	14.8	<u>15.0</u>	14.8
TOTAL	100.0	100.0	100.0
Average speed, total distance traveled divided by total			
time (including idle time)	30.21 mph	29.70 mph	29.56 mph
Hours to complete 50,000 miles	1655	1683	1691

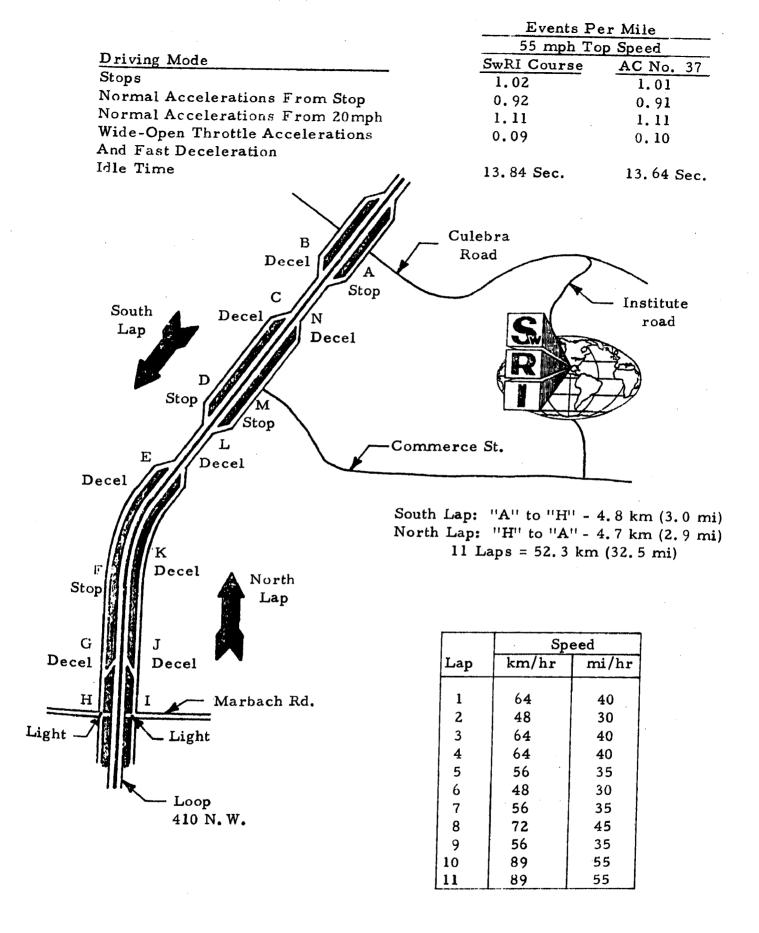


FIGURE H-1.MODIFIED (AUTOMOBILE) DURABILITY DRIVING SCHEDULE FOR MILEAGE ACCUMULATION ON PUBLIC ROADS

SOUTHWEST RESEARCH INSTITUTE

8500 CULEBRA ROAD . POST OFFICE DRAWER 28510 . SAN ANTONIO, TEXAS 78284

January 13, 1975

MODIFIED DURABILITY DRIVING SCHEDULE FOR

MILEAGE ACCUMULATION ON PUBLIC ROADS

- 1. Leave Institute Fleet Laboratory
- Proceed to CULEBRA ROAD via INSTITUTE ROAD, 20 & 40 m.p.h.
- 3. Stop at CULEBRA
- Left turn onto CULEBRA and proceed to "A", 410, at 40 m.p.h.
 (Distance from Fleet Laboratory to "A" is 2.3 miles)
- 5. Stop at "A", idle 15 sec.
- 6. Start lap prompter at 1.
- 7. Accelerate from stop, turn left on access road
- 8. After left turn, accelerate to lap speed and then decelerate at "B" to 20 m.p.h., as traffic permits.
- 9. Accelerate to lap speed as you turn onto 410. Continue on 410 to next exit and then decelerate at "C" to 20 m.p.h., as traffic permits then accelerate to lap speed.
- 11. Continue on FRONTAGE ROAD until a full stop can be safely made at area of point "D". Idle for 15 secs.
- 12. Accelerate from stop to lap speed and pull onto 410 at next ramp.

 Continue on 410 to exit ramp.
- 13. Take exit, then decelerate to 20 m.p.h., at "E".
- 14. Accelerate to lap speed.
- 15. Stop at "F" and idle 15 secs.
- 16. Accelerate to lap speed and continue to "G". Decelerate to 20 m.p.h., at "G" then accelerate to lap speed.

H-6

- 17. Stop at traffic light if red, "H" (this can be as long as 33 secs.) If the light is green, proceed and make an additional stop along the North lap as traffic permits.
- 18. As you pass "H" stop light, push the "lap" prompter and observe the "lap speed".
- 19. Left turn on MARBACH under 410. Stop at light "I". If light is green, proceed on North lap and make additional stop as traffic permits.
- 20. Left turn to 410 access at "I".
- 21. Proceed up 410 to "J" at lap speed.
- 22. Decelerate at "J" to 20 m.p.h., and then accelerate to lap speed.
- 23. Continue to "K" at lap speed.
- 24. Decelerate at "K" to 20 m.p.h., and then accelerate to lap speed.
- 25. Take ramp to 410 and proceed up 410 to exit ramp at "L".
- 26. Decelerate at "L" to 20 m.p.h., then accelerate to lap speed.
- 27. Proceed to "M", then stop and idle 15 secs.
- 28. Accelerate to lap speed then decelerate at "N" to 20 m.p.h., and then accelerate to lap speed.
- 29. Take ramp to 410 and continue on 410 to CULEBRA exit ramp.
- 30. Take CULEBRA exit to stop at "A". Idle 15 secs.
- 31. Push "lap" prompter for next lap and lap speed.
- 32. This begins the 3rd lap.
- 33. Continue with South lap North lap sequence until lap number 9 is complete.
- 34. Lap number 10 is run at a steady 55 m.p.h., on 410. Get on 410 at first entrance ramp following the stop at the end of lap number 9 and stay on 410.
- 35. Lap 10 is completed when you stop at "A" or "H" after pulling off onto the ramp nearest the stop.
- 36. After stop at "A" or "H" Lap Number 10 is complete.

- 37. Punch lap button for Lap 11.
- 38. Accelerate then stop at "B".
- 39. W.O.T. accelerate to lap speed then fast deceleration to stop at "D".
- 40. W.O.T. accelerate to lap speed then fast deceleration to stop at "F".
- 41. W.O.T. accelerate to lap speed then normal deceleration to stop at "H".
- 42. This completes one cycle of the mileage accumulation.
- 43. The next cycle of the schedule begins at "H".
- Complete as many steps per shift as time will allow, then return to Fleet Laboratory.

REQUIRED MAINTENANCE SERVICES FOR EMISSION CONTROL AND PROPER VEHICLE PERFORMANCE

	MILEAGE INTERVALS MILEAGE IN TH	OUSANDS	5	10	15	20	25	30	35 4	0 4	15
ENGINE IDLE SPEED & FAST IDLE SPEED	CHECK & RESET AS NECESSARY AT INITIAL 5.										
ENGINE OIL	CHANGE EVERY SIX MONTHS	OF	•	N.				2			9
NGINE OIL FILTER	REPLACE AT INITIAL OIL CHANGE AND EVERY	2ND OIL C	AAH	GE	THER	EAFT	ER				
MISSION HOSES	INSPECT EVERY SIX MONTHS	OR									
ARBURETOR CHOKE SHAFT	APPLY SOLVENT		E	VER	/ SIX	MON	ITHS				
AST IDLE CAM & PIVOT PIN	APPLY SOLVENT	APPLY SOLVENT EVERY SIX MONTHS									
COLING SYSTEM	CHECK AND SERVICE AS REQUIRED		Ε	VERY	/ SIX	MON	ITHS			,	
RANKCASE INLET AIR CLEANER	CLEAN EVERY 12 MONTHS OR	ΑΥ						•		1	의
ANIFOLD HEAT CONTROL VALVE	APPLY SOLVENT	AT			•		7	•	1	يلا	의
IR PUMP BELT (IF SO EQUIPPED)	CHECK CONDITION AND TENSION	AT		Û	•			•		11	ᆜ
GNITION, TIMING, IDLE SPEED, IDLE MIXTURE	CHECK AND ADJUST AS REQUIRED	AT	3	Y	•			•		1	븨
ARBURETOR AIR FILTER	CLEAN	AT	3,		•		`.			9) (<u> </u>
ARBURETOR AIR FILTER	REPLACE	AT	->					•	3		
OSITIVE CRANKCASE VENT VALVE	CHECK OPERATION	AT	1					_		49	싀
OSITIVE CRANKCASE VENT VALVE	REPLACE	AT		1	L			•		_	
APOR STORAGE CANISTER FILTER ELEMENT	REPLACE	TA	1	3	10			•			븨
XHAUST GAS RECIRCULATION SYSTEM	CHECK OPERATION	AT						•			
PARK PLUGS (LEADED GAS)	REPLACE	*AT	• •		•			• ,	. 1		2
PARK PLUGS (WITH CAT. UNLEADED GAS)	REPLACE	**AT	<u> </u>		1_			•	.	<u>'</u>	4
GNITION CABLES, DIST. CAP & ROTOR	CHECK AND REPLACE AS REQUIRED	AT	4		•			•	1	1	ᆜ
RIFICE SPARK ADVANCE CONTROL VALVE	CHECK OPERATION	AT	_		•			•	<u> </u>	_ •	ᆚ
UTOMATIC CHOKE	CHECK AND ADJUST AS REQUIRED	AT		14	•			• [\vdash	1	늬
ALVE LASH (6 CYLINDER ENGINES)	CHECK AND ADJUST AS REQUIRED	AT	-				-	•	_		ᆜ
ATALYST OVER TEMP, PROTECTION SYSTEM	CHECK AND REPLACE AS REQUIRED	AT		1				• [-1-	4	<u>'</u>
VEL FILTER	REPLACE	AT		بئا	•			<u>• </u>		1	_

Inspection and service should also be performed anytime a malfunction is observed or suspected. Retain receipts for all vehicle emission services to protect your emissions warranty. *Long Life Plugs—30,000 miles when used with leaded gas and not equipped with catalyst emission control systems. **Long Life Plugs—50,000 miles when used with unleaded gas.

RECOMMENDED MAINTENANCE SE The following Certified Car Care maintenance service who designed your car to provide the maximum opera	ERVICES is are recommended by the engineers ating efficiency and enjoyment.	NORMAL	ADDITIONAL SERVICES REQUIRED WITH TRAILER TOW
FOWER STEERING	CHECK FLAID LEVEL	EVERY OIL CHANGE	
EXHAUST SYSTEM	INSPECT CHECK FOR LEAKS, MISSING OR DAMAGED PARTS	EVERY 6 MONTHS OF 5,000 MILES EVERY 6 MONTHS	
BRAKE MASTER CYLINDER	INSPEOT FLUID LEVEL	JEVERY 6 MONTHS	
MISSION AND DEAD AVIE (ALL)	INSPECT FLUID LEVEL	EVERY 6 MONTHS	
AN AXLE	CHANGE LUBRICANT		EVERY 35,000 MILES
TRANSMISSION (MANUAL) (1)	CHANGE OIL		EVERY 35,000 MILES
AND CONTRACTOR (AUTOMATIC)	CHANGE FLUID, FILTER		EVERY 25,000 MILES
BRAKE AND POWER STEERING HOSES	CHECK FOR DETERIORATION OR	EVERY 6 MONTHS	
BRAKE HOSES	CHECK FOR DETERIORATION OR	EVERY 6 MONTHS	NOT TO EXCEED 5,000 MILES
AIR CONDITIONED CARS	CHECK BELTS, SIGHT GLASS AND OPERATION OF CONTROLS	EVERY 6 MONTHS	
BALL JOINTS AND STEERING LINKAGE	INSPECT SEALS	EVERY & MONTHS	
THERSAL JOINTS	INSPECT SEALS	EVERY 6 MONTHS	NOT TO EXCEED 5,000 MILES
DRIVE BELTS	CHECK CONDITION AND TENSION	EVERY OIL CHANGE	
PPER AND LOWER CONTROL APM BUSHINGS	INSPECT	EVERY OIL CHANGE	
	ROTATE,	EVERY 10,000 MILES	
COOLING SYSTEM	CHÈCK COOLANT LEVEL DRAIN, FLUSH AND REFILL	EVERY MONTH EVERY 12 MONTHS	
ADIATOR HOSE CLAMPS (2 WIRE/SCREW)	TIGHTEN	SETTIM DOOR THE OF HEAD WILES	
LININGS	INSPECT)	EVERY 10,000 MILES	
RONT WHEEL BEARINGS	INSPECT (2) LUBRICATE (3)	(Inspect Only) EVERY 25,000 MILES	
BALL JOINTS AND TIE ROD ENDS	LUBRICATE	EVERY 3 YEARS OR 35 000 MILES	

⁽¹⁾ Towing Trailers with Manual Transmission equipped vehicles is not recommended. (2) Whenever drums or refers are removed to inspect a service brake system (3) Whenever the brake drums or disc brake rotors are resurfaced.

NOTE: Local driving conditions or special equipment such as high performance or heavy duly options may require special service recommendations.

TABLE H-2. MAINTENANCE SCHEDULE FOR 1975 CHEVROLET IMPALA

COMPLETE VEHICLE MAINTENANCE SCHEDULE

Color Code: 🔲 Lubrication and General Maintenance	Safety	Emission Control
---	--------	------------------

Item	Services	OWNER'S SERVICE LOG (Miles) Insert Mouth, Day, And Mileage (i.e. May/5/8612) In Column Closest To Mileage When Service Is Performed							
When To Perform Services Item (Months or Miles, Whichever Occurs First) No.		7,500	15,000	22,500	30,000	37,500	45,000		
	Lubrication and Gen	eral Maintenan	ce						
1	*Chassis Lubrication								
2			 						
3									
4									
5			 						
6	· 						,		
7			Annual		Annual		Annual		
							- Tunidai		
8						~			
9			 		1				
10	*Auto, Trans, Fluid & Filter Change								
11			† 						
12									
	<u> </u>	tenance			<u> </u>				
	Owner Safety Checks		T		1				
			!						
15									
16									
	Suspersion and Steering Check		,						
	Brake and Power Steering Check								
19	Drum Brake and Parking Brake Check								
20	Throttle Linkage Check								
21	Underbody Flush & Check								
22	Bumper Check								
	Emission Control	Maintenance	· · · · · · · · · · · · · · · · · · ·						
23	Thermo. Controlled Air Cleaner Check				T		-		
	Carburetor Choke Check								
25	Engine Idle Speed Adjustment								
26	EFE Valve Check								
27	Carburetor Mounting Torque				1				
28	Fuel Filter Replacement				++				
29									
20	PCV System Check				+				
30					++				
31									
32					 				
33					+				
					+				
			 	· · · · · · · · · · · · · · · · · · ·					
					+				
					+				
38	Air Cleaner Element Replacement								
	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	Lubrication and Gen 1	Chassis Lubrication	Chassis Lubrication Lubrication and General Maintenance	Tempor T	Tensor T	Item No. Services		

^{*}Also A Safety Service *Also An Emission Control Service

TABLE H-3. 1975 49-STATE PLYMOUTH GRAN FURY (SwRI CAR EM-1)

Monolithic Catalyst, 0.0415% Sulfur Fuel

Emissions Summary - 0 Kilometres

	Date	Test type/	HC	СО	g/km NO _x	so ₂	<u>н</u> .so	% Fuel S as S	% Fuel S as S	Total
	4/24/75 4/25/75 Avg.	'75 FTP	0.36 0.43 0.39	10.58 8.87 9.73	1.07 1.08 1.08	0.063 0.075 0.069	0.00114 0.00081 0.00098	in SO ₂ 42.5 50.9 46.7	0.53 0.36 0.45	43.0 51.3 47.2
	4/24/75 4/25/75 Avg.	Accel to 30	0.16 0.11 0.14	0.38 0.38	0.85 0.72 0.78	0.017 0.033 0.026	0.00055 0.00054 0.00054	26.4 49.5 37.8	0.55 0.53 0.54	26.95 50.0 38.5
H-11	4/24/75 4/25/75 Avg.	S/S 30 S/S 30	0.03 0.03 0.03	0.01 0.00 0.01	0.78 0.59 0.68	0.009 0.006 0.008	0.00034 0.00029 0.00032	15.30 10.48 12.89	$ \begin{array}{r} 0.35 \\ 0.30 \\ \hline 0.32 \end{array} $	15.65 10.78 13.22
	4/24/75 4/25/75 Avg.	Accel to 60	0.07 0.05 0.06	0.83 0.46 0.64	1.33 1.36 1.34	0.237 - 0.237	0.01310	323.67 - 323.67	11.68	335.35 - 335.35
	4/24/75 4/25/75 Avg.	S/S 60 S/S 60	0.04 0.03 0.04	3.09 2.02 2.56	0.50 0.38 0.44	0.059 0.093 0.076	0.00015 0.00021 0.00018	86.05 133.60 109.83	0.14 0.19 0.16	86. 19 133. 79 109. 99

TABLE H-4. 1975 49-STATE CHEVROLET IMPALA (SwRI CAR EM-2)
Pelleted Catalyst, 0.0415% Sulfur Fuel
Emissions Summary - 0 Kilometres

	Test type/			g/k	ım		% Fuel S as S	% Fuel S as S	Total
Date	direction	HC	CO	$NO_{\mathbf{X}}$	SO ₂ *	H ₂ SO ₄	in SO2*	in H ₂ SO ₄	Recovery *
5/30/75 6/2/75 Avg.	'75 FTP '75 FTP	0.60 0.37 0.49	15.94 10.89 13.42	0.93		0.00090 0.00025 0.00058		$ \begin{array}{r} 0.41 \\ \underline{0.13} \\ 0.27 \end{array} $	
5/30/75 6/2/75 Avg.	Accel to 30	0.04 0.07 0.06	0.52 1.06 0.79	0.32 0.24 0.28		0.00066 0.00021 0.00044		0.46 0.16 0.31	
5/30/75 6/2/75 Avg.	S/S 30 S/S 30	0.04 0.11 0.08	1.37 5.71 3.54	<u>0.11</u>		0.00019 0.00000 0.00009		0.13 0.00 0.07	
5/30/75 6/2/75 Avg.	Accel to 60	0.09 0.09 0.09	0.73 0.81 0.77	1.02 1.03 1.03		0.00739 0.00506 0.00623		5.42 3.81 4.62	
5/30/75 6/2/75 Avg.	S/S 60 S/S 60	0.01 0.01 0.01	0.17 1.21 0.69	0.72 0.59 0.66		0.00159 0.00477 0.00316		1.31 3.73 2.52	

^{*} SO₂ not taken

TABLE H-5. 1975 CALIFORNIA PLYMOUTH GRAN FURY (SwRI CAR EM-3)

Monolithic Catalyst, 0.0415% Sulfur Fuel)

Emissions Summary - 0 Kilometres

	Test type/			g/k	ım		% Fuel S as S	% Fuel S as S	Total
Date	direction	HC	CO	$NO_{\mathbf{x}}$	SO2	H ₂ SO ₄	in SO ₂	in H ₂ SO ₄	Recovery
6/25/75 6/26/75 Avg.	'75 FTP '75 FTP	0.44 0.67 0.56	6.58 7.77 7.18	0.65 0.72 0.68	0.132 0.162 0.147	0.00113 0.00210 0.00161	83.86 103.66 93.76	$ \begin{array}{r} 0.49 \\ \underline{0.91} \\ 0.70 \end{array} $	84.07 104.57 94.32
6/25/75 6/26/75 Avg.	Accel to 30	0.04 0.04 0.04	0.24 0.17 0.20	0.72 0.70 0.71	0.024 0.010 0.017	$\begin{array}{c} 0.00013 \\ \underline{0.00034} \\ \hline 0.00023 \end{array}$	35.44 14.76 25.10	0.12 0.33 0.22	35.56 15.09 25.33
6/25/75 6/26/75 Avg.	S/S 30 S/S 30	0.03 0.03 0.03	0.03 0.06 0.04	0.80 1.15 0.98	0.014 0.011 0.013	0.00612 0.01074 0.00843	23.37 17.13 20.25	6.64 10.88 8.76	30.01 28.00 29.00
6/25/75 6/26/75 Avg.	Accel to 60	0.04 0.02 0.03	1.56 0.05 0.81	0.45 0.57 0.51	0.149 0.119 0.134	0.02875 0.02739 0.02807	175.82 158.65 167.24	22. 22 23. 85 23. 04	198.04 182.50 190.27
6/25/75 6/26/75 Avg.	S/S 60 S/S 60	0.03 0.02 0.02	1.04 0.09 0.56	0.42 0.50 0.46	0.021 0.026 0.024	0.01350 0.02670 0.02010	27.36 32.90 30.13	11. 23 22. 30 16. 77	38.59 55.20 46.90

TABLE H-6. 1975 CALIFORNIA CHEVROLET IMPALA (SwRI CAR EM-4)
Pelleted Catalyst, 0.0415% Sulfur Fuel)
Emissions Summary - 0 Kilometres

	Test type/			g/	km		% Fuel S as S	% Fuel S as S	Total
Da te	direction	HC	СО	NO_x	so ₂	H ₂ SO ₄	in SO ₂	in H ₂ SO ₄	Recovery
5/27/75	'75 FTP	0.29	8.67	0.86	-	0.00142	-	0.59	<u>-</u>
5/29/75	'75 FTP	0.41	10.01	0.86	-	0.00116	-	0.46	-
6/19/75	175	0.41	<u>9.40</u>	<u>0.84</u>	0.120	0.00242	75.45	1.01	76.46
Avg.		0.37	9.36	0.85	0.120	0.00167	75.45	0.68	76.46
5/27/75	Accel to	0.13	0.30	0.25	÷	0.00327	. <u>-</u>	2.11	-
5/29/75	30	0.09	0.30	0.26	-	-	-	=	-
6/19/75		0.13	$\frac{0.47}{0.36}$	0.23	0.022	0.00616	22.08	<u>4.08</u>	<u> 26.16</u>
Avg.		0.12	0.36	0.25	0.022	0.00472	22,08	3.10	26.16
5/27/75	S/S 30	0.04	0.00	0.21	_	0.04202	-	26.22	-
5/29/75	S/S 30	0.03	0.06	0.23	-	0.02418	-	14.42	-
6/19/75	S/S 30	0.05	0.00	0.19	0.020	0.03555	20.82	24.21	<u>45.03</u>
Avg.		0.04	0.02	0.21	0.020	0.03555	20.82	24.21	45.03
5/27/75	Accel to	0.06	2.43	0.64	- ·	0.01517		10.84	-
5/29/75	60	0.06	2.57	0.65	-	0.00869	-	6.14	-
6/19/75		0.13	1.22	<u>0.78</u>	<u>0.060</u>	0.02724	$\frac{62.25}{62.25}$	18.38	80.63
Avg.		0.08	2.07	0.69	0.060	0.01703	62.25	11.79	80.63
5/27/75	S/S 60	0.02	0.02	0.64	-	0.01484	- .	10.83	-
5/29/75	S/S 60	0.02	0.01	0.61	-	0.01516	-	12.05	-
6/19/75	S/S 60	0.04	0.00	0.60	0.063	0.01710	71.71	12.65	84.37
Avg.		0.03	0.01	0.62	0.063	0.01570	71.71	11,84	84.37

TABLE H-7. 1975 49-STATE PLYMOUTH GRAN FURY (SwRI CAR EM-1)

Monolithic Catalyst, 0.0415% Sulfur Fuel)

Emissions Summary - 3200 Kilometres

		Test type/			g/k	m		% Fuel S as S	% Fuel S as S	Total
	Date	direction	HC	CO	$NO_{\mathbf{x}}$	SO2	H ₂ SO ₄	in SO2	in H2SO4	Recovery
	6/4/75	'75 FTP	0.32	7.00	1.33	0.105	0.00032	73.00	0.16	73.20
	6/6/75	'75 FTP	0.32	7.54	1.49	0.052	0.00021	44.63	0.12	44.75
	Avg.		0.32	7.27	1.41	0.086	0.00027	58.82	0.14	58.98
	6/4/75	Accel to	0.13	0.54	0.94	0.026	0.00010	40.39	0.10	40.49
	6/6/75	30	0.09	1.07	1.17	0.028	0.00014	43.11	0.14	
	Avg.		0.11	0.81	1.06	0.027	0.00012	41.75	0.12	$\frac{43.25}{41.87}$
11	6/4/75	S/S 30	0.03	0.03	0.82	0.018	0.00276	28.41	2.91	31.32
-	6/6/75	S/S 30	0.03	0.04	0.84	0.004	0.00203	6.13	2.20	8.33
π	Avg.		0.03	0.04	0.83	0.011	0.00240	17.27	2.56	19.83
	6/4/75	Accel to	0.08	1.61	1.33	0.186	0.00297	248.74	2.59	251.33
	6/6/75	60				<u> </u>	-	-	•	-
	Avg.		0.08	1.61	1.33	0.186	0.00297	248.74	2,59	251.33
	6/4/75	S/S 60	0.02	1.62	0.57	0.122	0.00029	174.23	0.27	174.51
	6/6/75	S/S 60							· 	<u> </u>
	Avg.		0.02	1.62	0.57	0.122	0.00029	174.23	0.27	174.51

TABLE H-8. 1975 49-STATE CHEVROLET IMPALA (SwRI CAR EM-2)
Pelleted Catalyst, 0.0415% Sulfur Fuel
Emissions Summary - 3200 Kilometres

	Test type/			g/	km		% Fuel S	% Fuel S as S	Tota1
Date	direction	HC	co	$NO_{\mathbf{x}}$	SO ₂	H ₂ SO ₄	in SO ₂	in H ₂ SO ₄	Recovery
7/8/75 7/18/75 Avg.	'75 FTP '75 FTP	0.46 0.34 0.40	7.20 11.98 9.59	1.28 1.22 1.25	0.056 0.056	$\begin{array}{c} 0.00011 \\ \underline{0.00010} \\ 0.00011 \end{array}$	45.84 45.84	0.06 0.05 0.06	45.88 45.88
7/8/75 7/18/75 Avg.	Accel to 30	0.09 0.05 0.07	0.23 1.08 0.66	0.30 0.25 0.28	0.073 0.016 0.045	0.00076 0.00011 0.00044	99.62 21.61 60.62	0.62 0.10 0.36	100.39 21.77 61.08
7/8/75 7/18/75 Avg.	S/S 30 S/S 30	0.03 0.03	0.06 0.06	0.25 0.25	0.010 0.010	0.00 829 0.00829	13.75 13.75	7.32 7.32	21.05 21.05
7/8/75 7/18/75 Avg.	Accel to	0.04 0.02 0.03	0.87 0.12 0.50	1.16 0.98 1.07	0.105 0.132 0.119	0.00504 0.00861 0.00428	147.61 173.03 160.32	4.06 7.39 5.73	151.67 180.39 166.03
7/8/75 7/18/75 Avg.	S/S 60 S/S 60	0.01 0.01 0.01	1.11 0.58 0.85	0.74 0.76 0.75	0.119 0.177 0.148	0.00182 - 0.00182	157.36 157.36	$\frac{1.44}{-1.44}$	158.80 - 158.80

TABLE H-9. 1975 CALIFORNIA PLYMOUTH GRAN FURY (SwRI CAR EM-3)

Monolithic Catalyst, 0.0415% Sulfur Fuel)

Emissions Summary - 3200 Kilometres

	Test type/			g/k	ım		% Fuel S as S	% Fuel S as S	Total
Date	direction	HC	CO	NO_{x}	SO ₂	H ₂ SO ₄	in SO ₂	in H ₂ SO ₄	Recovery
7/15/75	'75 FTP	0.20	2.90	0.71	-				
7/17/75	'75 FTP	0.32	3.56	0.78	0.173	0.00616	120.92	2.89	123.80
Avg.		0.26	3.23	0.75	0.173	0.00616	120.92	2.89	123.80
7/15/75	Accel to	0.04	0.08	0.67	0.042	0.00019	64.15	0.20	64.35
7/17/75	30	-	-	-	0.029	0.00000	49.62	0.00	<u>49.62</u> 56.99
Avg.		0.04	0.08	0.67	0.036	0.00010	56.89	0.00	56.99
7/15/75	S/S 30	0.02	0.00	0.67	0.019	0.00424	31.33	4.46	35.79
7/17/75	S/S 30	0.03	0.11	0.56	0.018	0.00460	30.04	5.09	35.13
Avg.		0.03	0.06	0.62	0.019	0.00442	30.69	4.78	35.46
7/15/75	Accel to	0.04	0.44	0.44	0.156	0.01756	213.42	15.87	229.30
7/17/75	60	0.05	0.75	0.42	0.146	0.02975	187.19	25.00	212.19
Avg.		0.05	0.60	0.43	0.151	0.02366	200.31	20.44	220.75
7/15/75	S/S 60	0.02	0.02	0.39	0.023	0:04250	34.30	41.96	76.26
7/17/75	S/S 60	0.03	0.07	0.36	0.033	0.04475	47.81	41.95	89.76
Avg.		0.03	0.05	0.38	0.028	0.04365	41.06	41.96	83,02

TABLE H-10. 1975 CALIFORNIA CHEVROLET IMPALA (SwRI CAR EM-4)
Pelleted Catalyst, 0.0415% Sulfur Fuel)
Emissions Summary - 3200 Kilometres

							% Fuel S	% Fuel S	
			g/	km		mg/km	as S	as S	Total
Date	Test type	HC	CO	$\overline{NO_{\mathbf{x}}}$	SO ₂	H_2SO_4	in SO ₂	in H ₂ SO ₄	Recovery
7/29/75	'75 FTP	0.39	6.69	1.07	0.068	11.82	50.56	5.68	56.24
7/31/75	'75 FTP	0.49	9.09	0.94	0.050	5.96	37.72	$\frac{2.79}{4.24}$	40.50
Avg.		0.44	7.89	1.01	0.059	8.89	44.14	4.24	48.37
7/29/75	Accel to	0.13	0.23	0.20	0.022	16.60	26.12	12.68	38.79
7/31/75	30	0.19	0.18	0.22	0.018	10.00	20.75	7.68	28.43
Avg.		0.16	0.21	0.21	0.020	13.30	23.44	10.18	33.61
7/29/75	S/S 30	0.04	0.00	0.17	0.011	30.36	13.19	24.42	37.61
7/31/75	S/S 30	0.10	0.07	0.20	0.011	34.10	13.71	26.77	40.48
Avg.		0.07	0.04	0.19	0.011	32.23	13.45	25,60	39.05
7/29/75	Accel to	0.16	1.31	0.75	0.067	27.90	78.46	21.40	99.86
7/31/75	60	0.12	1.85	0.68	0.044	27.64	54.07	22.02	76.08
Avg.		0.14	1.58	0.72	0.056	27.77	66.27	21.71	87.97
7/27/75	S/S 60	0.03	0.00	0.69	0.025	16.11	31.49	13.02	34.09
7/31/75	S/S 60	0.01	0.04	0.54	0.018	19.62	25.93	18.96	44.89
Avg.		0.02	0.02	0.62	0.022	17.87	28.71	15.99	39.49

TABLE H-11. 1975 49-STATE PLYMOUTH GRAN FURY (SwRI CAR EM-1)
Monolithic Catalyst, 0.0415% Sulfur Fuel
Emissions Summary - 8050 Kilometres

	Test type/			g/ka	m		% Fuel S as S	% Fuel S as S	Total
Date	direction	HC	CO	$NO_{\mathbf{x}}$	so ₂	H ₂ SO ₄	in SO ₂	in H ₂ SO ₄	Recovery
6/26/75 7/1/75 Avg.	'75 FTP '75 FTP	0.28 0.31 0.30	8.06 8.26 8.16	1.44 1.36 1.40	0.100 0.078 0.089	0.00076 0.00096 0.00086	80.54 60.86 70.70	0.39 0.47 0.43	80.94 61.34 71.14
6/26/75 7/1/75 Avg.	SET-7 SET-7	0.08 0.10 0.09	3.99 6.76 5.38	1, 26 1, 21 1, 24	0.130 0.103 0.117	0.00043 0.00025 0.00034	152.99 110.42 131.71	0.33 0.17 0.25	153.32 110.59 131.96
6/26/75 7/1/75 Avg.	SET-7 SET-7	0.18 0.12 0.15	$ \begin{array}{r} 11.34 \\ \hline 7.67 \\ \hline 9.51 \end{array} $	1.00	0.086 0.084 0.085	0.00039 0.00023 0.00031	96.43 92.67 94.55	0.29 0.16 0.23	96.71 92.84 94.78
6/26/75 7/1/75 Avg.	FET FET	0.08 0.10 0.09	4.23 5.68 4.96	1.24 1.22 1.23	0.049 0.082 0. 0 66	0.00038 0.00031 0.00035	68.51 106.79 87.65	0.35 0.26 0.31	68.85 107.05 87.95
6/26/75 7/1/75 Avg.	FET FET	0.09 0.08 0.09	4.27 4.25 4.26	1.20 1.20 1.20	0.054 0.071 0.063	0.00010 0.00020 0.00015	74.71 96.71 85.71	0.09 0.18 0.14	74, 80 96, 89 85, 85
6/26/75 7/1/75 Awg.	Accel to 30	0.05 0.13 0.09	0.59 1.53 1.06	0.72 0.85 0.79	0.024 0.009 0.017	0.00017 0.00035 0.00026	40.05 14.31 27.18	$\begin{array}{c} 0.18 \\ \underline{0.04} \\ 0.11 \end{array}$	40.23 14.35 27.29
6/26/75 7/1/75 Avg.	S/S 30 S/S 30	0.02 0.02 0.02	0.06 0.02 0.04	0.61 1.08 0.85	0.002 0.013 0.008	0.00022 0.00046 0.00034	22.34	0.26 0.52 0.39	22.86 22.86
6/26/75 7/1/75 Avg.	Accel to 60	0.04 0.08 0.06	0.28 1.55 0.92	1.63 2.34 1.96		0.00264 0.00264		2.45 2.45	145. 98 145. 98
6/26/75 7/1/75 Avg.	S/S 60 S/S 60	0.02 0.03 0.03	0.14 1.96 1.05	0.76	0.069	0.00031 0.00031		0.29 0.29	96.76 96.76

TABLE H-12. 1975 49-STATE CHEVROLET IMPALA (SwRI CAR EM-2)
Pelleted Catalyst, 0.0415% Sulfur Fuel
Emissions Summary - 8050 Kilometres

Date	Test Type	Duration	HC	g/ _CO	km NO _X	SO ₂	mg/km H ₂ SO ₄	SO ₂ as % Fuel S	H ₂ SO ₄ as % Fuel S	Total Recovery
8/27/75 8/29/75 Avg.	FTP FTP		0.48 0.36 0.42	$\frac{11.89}{8.43}$ $\frac{8.43}{10.16}$	1.29 1.29 1.29	$\begin{array}{c} 0.083 \\ \underline{0.119} \\ 0.101 \end{array}$	0.09 0.18 0.13	65.77 94.61 80.19	0.11 0.09 0.10	65.87 -94.70 80.29
8/27/75 8/29/75 Avg.	SET-7 SET-7	20 min 20 min	0.08 0.07 0.08	3.70 2.43 3.07	1.26 1.16 1.21	a 0.117 0.117	0.44	a 132.02 132.02	0.30	
8/27/75 8/29/75 Avg.	SET-7 SET-7	28 min 28 min	0.07 0.05 0.06	3.91 2.23 3.07	1.23 1.12 1.18	0.140 0.093 0.117	0.39 0.36 0.37	152.11 106.24 129.18	0.28 0.27 0.28	152.38 106.51 129.45
8/27/75 8/29/75 Avg.	FET FET	12 min 12 min	0.04 0.03 0.04	1.38 0.88 1.13	1.15 1.09 1.12	$0.126 \\ 0.097 \\ \hline 0.112$	1.21 1.28 1.25	151.73 124.03 137.88	0.96 1.07 1.02	152,69 125,10 138,90
8/27/75 8/29/75 Avg.	FET FET	12 min 12 min	0.04 0.03 0.04	1.42 0.41 0.92	1.09 1.05 1.07	0.123 0.092 0.108	2,41 1,15 1,78	148.70 123.88 136.29	1.91 1.01 1.46	150.61 124.89 137.75
8/27/75 8/29/75 Avg.	accel 30 accel 30	20 min 20 min	0.14 0.07 0.11	1.29 0.19 0.74	0.23 0.46 0.35	0.028	0.09	40.40	0.08	40.45
8/27/75 8/29/75 Avg.	S/S 30 S/S 30	60 min 60 min	0.03 0.02 0.03	0.36 0.04 0.20	0.29 0.61 0.45	0.018	2.93	12.05	2.97	15.02
8/27/75 8/29/75 Avg.	accel 60 accel 60	20 min 20 min	0.03 0.04 0.04	0.22 0.45 0.34	1.09 1.06 1.08	0.118 0.162 0.140	6.53 4.47 5.50	132.60 223.26 177.93	5.24 4.02 4.63	137.85 227.28 182.57
8/27/75 8/29/75 Avg.	S/S 60 S/S 60	20 min 20 min	0.04 0.02 0.03	0.26 1.37 0.82	1.23 0.66 0.95	0.130 0.146 0.138	6.72 2.11 4.41	158.74 194.89 176.82	5.37 1.83 3.60	164.11 196.72 180.42

a sample bubbler broken

Table H-13. 1975 CALIFORNIA PLYMOUTH GRAN FURY (SwRI CAR EM-3)

Monolithic Catalyst With Air Pump, 0.0415% Sulfur Fuel

Emissions Summary - 8050 Kilometres

_				g/l			mg/km	SO ₂ as	H_2SO_4 as	Total
Date	Test Type	Duration	HC	CO	NO_{x}	SOZ	H ₂ SO ₄	% Fuel S	% Fuel S	Recovery
9/2/75 9/4/75 Avg.	FTP FTP		0.35 0.60 0.48	3. 42 5. 81 4. 62	0.65 0.67 0.66	0.100 0.125 0.113	5.71 3.14 4.43	85.25 90.90 88.08	3.62 1.55 2.59	88.87 92.45 90.66
9/2/75 9/4/75 Avg.	SET-7 SET-7	23 min 23 min	0.05 0.03 0.04	0.67 0.55 0.61	0.60 0.41 0.51	0.060 0.074 0.067	35.44 12.28 23.86	63.86 83.32 73.59	24.50 9.05 16.78	88.35 92.37 90.36
9/2/75 9/4/75 Avg.	SET-7 SET-7	23 min 23 min	0.03 0.03 0.03	0.31 0.37 0.34	0.57 0.60 0.59	0.068 0.083 0.076	51.44 17.18 34.31	71.49 88.74 80.12	35.39 11.94 23.67	106.88 100.68 103.78
9/2/75 9/4/75 Avg.	FET FET	12 min 12 min	0.03 0.03 0.03	0.07 0.03 0.05	0.49 0.50 0.50	$\begin{array}{c} 0.047 \\ \underline{0.054} \\ 0.051 \end{array}$	52.48 38.29 45.39	62.16 67.67 64.92	45.52 31.54 38.53	107.68 99.21 103.45
9/2/75 9/4/75 Avg.	FET FET	12 min 12 min	0.03 0.03 0.03	0.08 0.07 0.08	$0.43 \\ 0.52 \\ \hline 0.48$	0.064 0.076 0.070	58.39 29.19 43.79	88.13 94.31 91.22	52.66 23.52 38.09	140.79 117.83 129.31
9/2/75 9/4/75 Avg.	accel 30 accel 30	20 min 20 min	0.06 0.07 0.07	0.29 0.11 0.20	0.67 0.70 0.69	0.022 0.024 0.023	0.37	33.94 39.85 36.90	0.41	40.25
9/2/75 9/4/75 Avg.	S/S 30 S/S 30	60 min 60 min	0.04 0.05 0.05	0.05 0.00 0.03	0.73 0.60 0.67	0.017 0.017 0.017	4.19 2.65 3.42	29.19 29.19 29.19	4.76 2.95 3.86	33.96 32.14 33.05
9/2/75 9/4/75 Avg.	accel 60 accel 60	20 min 20 min	0.04 0.03 0.04	0.16 0.05 0.11	$0.47 \\ 0.54 \\ \hline 0.51$	0.106	61.74	150.87	57.29	208.16
9/2/75 9/4/75 Avg.	S/S 60 S/S 60	20 min 20 min	0.02 0.03 0.03	0.10 0.01 0.06	0,49 0,50 0,50	0.028	36.48	39.66	$\frac{18.41}{34.11}$ $\frac{34.11}{26.26}$	45.95 73.77 59.86

TABLE H-14. 1975 CALIFORNIA CHEVROLET IMPALA (SwRI CAR EM-4)
Pelleted Catalyst, 0.0415% Sulfur Fuel)
Emissions Summary - 8050 Kilometres

Test	Car				HC Emission					
Туре	Number	0 km	3200 km	8050 km	16100 km	24100 km	32200 km	48300 km	64400 km	80500 km***
					. 0 22	0.25	0.31	B/A 0.49/0.44	- 10	- ///
FTP	EM-1	0.39	0.32	0,30	0.32		0.31		0.63	0.66/0.59
	EM-2	0.49	0.40	0.42	0.34	0.35	0.39	0.36/0.24	0.39	0.80/3.47
	EM-3	0.56	0.26	0.48	0.49	0.44		0.64/0.41	0.57	0.68
	EM-4	0.37	0.44	1.12*	1.68*	0.42	0.27	0.43/0.47	0.61	0.60
SET-7	EM-I			0.12	0.11	0.09	0.13	0.28/0.39	0.51	0.31/0.52
	EM-2			0.07	0.11	0.12	0.12	0.11/0.06	0.27	0.34/1.51
	EM-3			0.04	0.03	0.03	0.06**	0.17/0.06	0.15	0.13
	EM-4			0.95*	1.18*	0.09	0.06	0.12/0,14	0.18	0.17
FET	EM-1			0.09	0.06	0.06	0.07	0.26/0.31	0.41	0.19/0.38
rei	EM-2			0.04	0.05	0.06	0.05	0.07/0.03	0.20	0.13/1.35
	EM-3			0.03	0.03	0.03	0.04**	0.19/0.07	0.20	0.12
	EM-4			0.35*	0.39*	0.06	0.04	0.07/0.10	0.13	0.08
		0.14	0.11	0.09	0.09	0.03	0.03	0.12/0.11	0.11	0.09/0.17
Accel to 48 kph	EM-1		0.07	-	0.04	0.02	0.03	0.03/0.02		
	EM-2	0.06		0.11	0.04	0.02	0.09**	0.18/0.10	0.43	0.05/0.21
	EM-3	0.04	0.04	0.07	0.21*		0.11		0.42	0.53/0.09
	EM-4	0.12	0.16	0.21*	0.21~	0.08	0.11	0.16/0.40	0.08	0.26
48 kph	EM-1	0.03	0.03	0.02	0.03	0.04	0.03	0.05/0.04	0.05	0.06/0.06
-	EM-2	0.08	0.03	0.03	0.04	0.03	0.03	0.03/0.02	0.24	0.05/0.04
	EM-3	0.03	0.03	0.05	0.04	0.05	0.09	0.24/0.10	0.22	0.34/0.10
	EM-4	0.04	0.07	0.10*	0.07*	0.07	0.04**	0.05/0.21	0.05	0.24
Accel to 96 kph	EM-I	0.06	0.08	0.06	0.05	0.05	0.03	0.09/0.12	0.19	0.08/0.31
Acces to 70 kps	EM-2	0.09	0.03	0.04	0.02	0.04	0.05	0.05/0.05	0.08	0.00/0.45
	EM-3	0.03	0.05	0.04	0.04	0.04	0.04**	0.20/0.11	0.15	0.16
	EM-4	0.08	0.14	0.15*	0.02*	0.06	0.04	0.10/0.15	0.08	0.05
06 11	EM I	0.04	0. 02	0.03	0.02	0. 02	0.03	0.15/0.04	0.68	0.09/0.81
96 kph	EM-1	0.01	0.01	0.03	0.02	0.02		0.15/0.02	0.19	0.06/0.02
	EM-2		0.01	0.03	0.02	0.03		0.12/0.09	0.19	
	EM-3	0.02			0.02	0.07		0.06/0.18		0.08 0.06
	EM-4	0.03	0.02	0.01*	0.00	0.01	0,00	0.50/0.10	0.09	0.00

^{*} air injection system leak
**EGR system inoperative

See explanation page 55.

B = Before Maintenance

A = After Maintenance

FTP Standards: '75 Federal = 0.9 g/km

'75 California = 0.6 g/km

^{***}Duplicate Tests on Cars EM-1 and 2 not averaged.

TABLE H-15. 1975 49-STATE PLYMOUTH GRAN FURY (SwRI CAR EM-1)
Monolithic Catalyst, 0.0415% Sulfur Fuel
Emissions Summary - 16100 Kilometres

Date	Test type	HC	g/kn CO	n NO _x	SO2	mg/km H2SO4	% Fuel S as S in SO2	% Fuel S as S in H ₂ SO ₄	Total Recovery
8/11/75 8/13/75 Avg,	'75 FTP '75 FTP	0.40 0.24 0.32	7.33	1.69 1.61 1.65	0.130 0.124 0.127	0.61 1.02 0.82	0.29 0.53 0.41	98.86 97.77 98.32	99. 14 98. 29 98. 72
8/11/75 8/13/75 Avg.	SET-7 SET-7	0.10 0.10 0.10	4.31 3.97 4.14	1.42 1.38 1.40	0.136 0.094 0.115	0.25 0.38 0.32	0.18 0.29 0.24	153, 22 108, 26 130, 74	153.40 108.54 130.97
8/11/75 8/13/75 Avg.	SET-7 SET-7	0.13 0.09 0.11	4.97 4.03 4.50	1.37 1.48 1.43	0.064 0.086 0.075	0.08 0.41 0.25	0.06 0.31 0.19	72.62 99.96 86.29	72.67 100.27 86.47
8/11/75 8/13/75 Avg.	FET FET	0.04 0.06 0.05	1.22 1.74 1.48	2.47 1.57 2.02	0.103 0.100 0.102	0.07 1.12 0.60	0.06 1.06 0.56	141.15 144.22 142.69	141.21 145.27 143.24
8/11/75 8/13/75 Avg.	FET FET	0.05 0.07 0.06	1.44 2.66 2.05	1.84 1.76 1.80	0.085 0.083 0.084	0.18 0.65 0.42	0.17 0.60 0.39	121.56 116.59 119.08	121.74 117.19 119.46
8/11/75 8/13/75 Avg.	Accel to 30	0.08 0.10 0.09	0.83 0.52 0.68	0.84 1.05 0.95	0.018 0.027 0.023	0.20 1.50 0.85	0.22 1.72 0.97	30.24 48.12 39.18	30.46 49.84 40.15
8/11/75 8/13/75 • Avg.	S/S 30 S/S 30	0.03 0.02 0.03	0.00 0.11 0.06	0.73 0.87 0.80	0.012 0.011 0.012	0.50 1.15 0.83	0.59 1.39 0.99	21.38 19.50 20.44	21. 97 20. 89 21. 43
8/11/75 8/13/75 Avg.	Accel to	0.04 0.05 0.05	0.31 1.08 0.70	1.91 2.43 2.17	0.147 0.166 0.157	18.95 8.06 13.51	18.64 9.99 14.32	221. 15 314. 40 267. 78	239. 80 324. 39 282. 10
8/11/75 8/13/75 Avg.	S/S 60 S/S 60	0.02 0.02 0.02	0.77 1.89 1.33	1.55 0.93 1.24	0.066 0.053 0.060	1.58 1.18 1.38	1.62 1.50 1.56	103.54 103.25 103.40	105. 16 104. 75 104. 96

TABLE H-16. 1975 49-STATE CHEVROLET IMPALA (SwRI CAR EM-2)
Pelleted Catalyst Without Air, 0.0415% Sulfur Fuel
Emissions Summary - 16100 Kilometres

							45	% Fuel S	% Fuel S	m . t
Test	Date	Test Type	HC	CO	g/km NO _x	SO ₂	mg/km H ₂ SO ₄	as S in H2SO4	as S in SO ₂	Total Recovery
1 & 2 1 & 2	9/17/75 9/19/75	FTP FTP	0.35 0.34 0.34	9. 92 9. 69 9. 81	1. 25 1. 38 1. 32	0.097 0.074 0.086	1.50 0.49 1.00	0.74 0.26 0.50	75.84 56.77 66.31	76.58 57.03 66.81
3	9/17/75 9/19/75	SET-7 SET-7	0.11 0.10 0.10	4.37 3.35 3.86	1.03 1.28 1.16	0.090 0.089 0.090	0.37 0.56 0.46	0.27 0.39 0.33	100.10 95.12 97.61	100.38 95.51 97.95
4	9/17/75 9/19/75	SET-7 SET-7	0.15 0.08 0.12	7.08 3.39 5.24	0.99 1.16 1.08	0.093 0.095 0.094	0.01 0.26 0.13	0.01 0.19 0.10	102, 41 103, 79 103, 10	102.41 103.98 103.20
5 5	9/17/75 9/19/75	FET FET	0.05 0.04 0.04	1.78 0.96 1.37	0.91 $\frac{1.10}{1.10}$	0.056	0.36 1.33 0.84	0.30 1.08 0.69	69.46	70.53
6 6	9/17/75 9/19/75	FET FET	0.08 0.03 0.06	3.42 0.89 2.16	0.82 1.08 0.95	0.097 0.077 0.087	0.03 1.35 0.68	0.02 1.12 0.57	130.05 97.83 113.94	130.07 98.95 114.51
7 7	9/17/75 9/19/75	30 mph accel	0.04 0.04 0.04	0.14 0.21 0.18	0.47 0.45 0.46	0.021 0.022 0.022	0.01 0.06 0.04	0.01 0.06 0.04	30.39 31.42 30.91	$\frac{30.41}{31.47}$ 30.95
8 8	9/17/75 9 /19/75	30 mph SS	0.04 0.03 0.04	0.66 0.01 0.34	0.31 0.42 0.36	0.035 - 0.035	3.55 3.55	3.42 3.42	51. 92 - 51. 92	- - 55.34
9 9	9/17/75 9/19/75	60 mph accel	0.02 0.02 0.02	0.11 0.04 0.08	1.35 0.43 0.89	0.106 0.125 0.116	8.01 - 8.01	6.59 - 6.59	133. 10 151. 63 142. 37	139.69 - 139.69
10 10	9/17/75 9/19/75	60 mph SS	0.02 0.01 0.02	0.62 0.08 0.35	1, 20 1, 25 1, 22	0.115	2.59 4.59 4.59	$\frac{2.20}{3.75}$ $\frac{3.75}{3.75}$	149.69	151.89

TABLE H-17. 1975 CALIFORNIA PLYMOUTH GRAN FURY (SwRI CAR EM-3)

Monolithic Catalyst With Air Pump, 0.0415% Sulfur Fuel

Emissions Summary - 16100 Kilometres

		T4		_	/1			% Fuel S	% Fuel S	
Test	Date	Test	HC	CO	/km	80-	mg/km	as S	as S	Total
1681	Date	Type	IC		NOx	so ₂	H ₂ SO ₄	in H ₂ SO ₄	in SO ₂	Recovery
1	9/30/75	FTP	0.65	5.54	0.97	0.118	6.24	2.70	78, 40	81.10
1	10/2/75	FTP	0.39	6.46	1.01	0.096	6.44	2.86	65.14	68.00
1	10/3/75	FTP	0.47	5.06	1.08	0.079	4.55	_1.93	51.51	53.44
		Avg.	0.49	5.69	1.02	0.098	5.74	2.50	65.02	67.52
2	9/30/75	SET-7	0.04	0.55	0.71	0.060	10.05	6.72	61. 32	68.04
2	10/2/75	SET-7	0.04	0.42	0.74	0.049	37.41	24.59	49.06	73.64
2	10/3/75	SET-7	0.03	0.49	0.94	0.064	14.76	9.52	63. 57	73.09
		Avg.	0.04	0.49	0.80	0.058	20.74	13.61	57.98	71.59
3	9/30/75	SET-7	0.03	0.29	0.74	0.079	19.25	12.96	81.07	94.03
3	10/2/75	SET-7	0.03	0.65	0.78	0.081	35.24	23.67	83.03	106.71
3	10/3/75	SET-7	0.03	0.27	0.78	0.083	23.65	15.65	83.66	99.30
		Avg.	0.03	0.40	0.77	0.081	26.05	17.43	82.59	100.01
4	9/30/75	FET	0.03	0.05	0.60	0.038	38.64	30.79	46.00	76.79
4	10/2/75	FET	0.03	0.16	0.58	0.036	59.99	46.88	43.39	90.27
4	10/3/75	FET	0.03	<u>0.07</u>	0.64	0.087	57.13	44.79	104,30	149.09
		Avg.	0.03	0.09	0.61	0.054	51.92	40.82	64.56	105.38
5	9/30/75	SET-7	0.03	0.22	0.69	0.059	23.86	16.19	60.79	76.97
5	10/2/75	SET-7	0.03	0.31	0.71	0.065	50.20	34.50	68.02	102.52
5	10/3/75	SET-7	0.03	0.29	0.70	0.044			48.40	
•		Avg.	0.03	0.27	0.70	0.056	37.03	25,35	59.07	89.75
6	9/30/75	SET-7	0.03	0.74	0.73	0.072	13.37	8. 91	73.74	82.65
6	10/2/75	SET-7	0.03	0.36	0.76	0.072	47.26	32.23	75.63	107.87
6	10/3/75	SET-7	$\frac{0.03}{0.03}$	0.85	$\frac{0.91}{0.80}$	$\frac{0.090}{0.078}$	18.34 26.32	10.95 17.36	82.18 77.18	93.13 94.55
7	0/20/75	20 b								
'	9/30/75	30 mph accel	0.04	0.16	0.55	0.013	0.07	0.07	22.01	22. 08
8	9/30/75	30 mph S/S	0.04	0.22	0.53	0.010	1,75	1.94	16.88	18.82
9	9/30/75	60 mph accel	0.04	0.24	0.59	0. 065	62.98	54, 82	86.85	1 41. 67
10	9/30/75	60 mph S/S	0.02	0.13	0.54	0.022	46. 11	43.70	32, 44	76, 15

TABLE H-18. 1975 CALIFORNIA CHEVROLET IMPALA (SwRI CAR EM-4)
Pelleted Catalyst With Air Pumps, 0.0415% Sulfur Fuel
Emissions Summary - 16100 Kilometres

								% Fuel S	% Fuel S	
		Test			/km		mg/km	as S	as S	Total
Test	Date	Type	HC	CO	иох	SOZ	H ₂ SO ₄	in H2SO4	in SO ₂	Recovery
1	9/24/75	FTP	2. 13	17.60	1.19	0.140	0.74	0.34	97.02	97.36
1	9/26/75	FTP	1,42	9.86	0.97		0.86	0.43	· '	
1	9/27/75	FTP	1.50	11.73	1.17	0.139	0.69	0.31	94.83	95.13
		Avg.	1.68	11,40	1, 11	0.140	0.72	0.32	95. 93	96.25
Z	9/24/75	SET-7	1.29	6.09	0.90	0.084	2.25	1,61	92.06	93.67
2	9/26/75	SET-7	0.77	3. 16	0.76	0.057	1.44	1.00	60.53	6 1.53
2	9/27/75	SET-7	1.15	5.94	0.86	0.066	1.70	1, 15	<u>68.61</u>	<u>69.76</u>
		Avg.	1.07	5.06	0.84	0.069	1.80	1, 25	73.73	74.98
3	9/24/75	SET-7	1.38	7.38	0.78	0.082	1.86	1.31	88.35	89.66
3	9/26/75	SET-7	1.04	4.81	0.76	0.082	1.59	1.09	86.73	87 .82
3	9/27/75	SET-7	1.00	5.26	0.81	0.075	1.60	1.08	78.07	<u>79. 15</u>
		Avg.	1.14	5.82	0.78	0.080	1.68	1.16	84.38	85.54
4	9/24/75	FET	0.30	1,25	0.88	0.054	4.20	3.29	64.02	67.31
4	9/26/75	FET	0.39	1,18	0.66	0.054	4.69	3.74	66.19	69.92
4	9/27/75	FET	0.49	1,70	0.80	0.050	4.56	3.49	58.87	62.36
		Avg.	0.39	1,38	0.78	0.053	4.48	3, 51	63.03	66.54
5	9/24/75	SET-7	1.09	5,52	0.64	0.089	2.76	1.88	92.57	94.45
5	9/26/75	SET-7	1.10	4,53	0.72	0.091	3.57	2,52	98.19	100.71
5	9/27/75	SET- 7	1.18	6.40	0.80	0.078	2. 28	1.55	81.00	82.55
		Avg.	1, 12	5.48	0.72	0.086	2.87	1. 98	90.59	92.57
6	9/24/75	SET-7	1.68	7.02	0.81	0.074	3.25	2.04	71.32	73.36
6	9/26/75	SET-7	1.16	5.54	0.73	0.079	2.91	1. 98	81.91	83.89
6	9/27/75	SET-7	1.29	7.26	0.81		2.74	1.83		
		Avg.	1.38	6.61	D. 78	0.077	2. 97	1.95	76,62	78.63
7	9/24/75	30 <i>m</i> ph								
		accel	0.21	0.35	0.15	0.013	1.87	1.52	16.09	17.60
8	9/24/75	30 mph								
		s/s	0.07	0.18	0.13	0.009	7.81	8.03	13.97	22.00
9	9/24/75	60 mph								
		accel	0.02	0.14	0.30	0.060	8.35	7.04	77.76	84.80
10	9/24/75	60 mph								
		accel	0.00	0.04	0.30	0.053	13.79	12.20	72.90	85.09

TABLE H-19. 1975 49-STATE PLYMOUTH GRAN FURY (SwRI CAR EM-1)
Monolithic Catalyst, 0.0415% Sulfur Fuel
Emissions Summary - 24100 Kilometres

Date	Test Type	Duration	НC	g/) _CO	NO _x	SO ₂	mg/km H2SO4	H ₂ SO ₄ as % of fuel S	SO ₂ as % of fuel S	Total Recovery
10/15/75 10/17/75 Average	FTP FTP		0, 24 0, 26 0, 25	6.22 7.58 6.90	1.97 1.63 1.80	0.090 0.136 0.113	3.29 1.07 2.18	1.83 0.62 1.23	76.91 120.29 98.50	78.74 120.91 99.83
10/15/75 10/17/75 Average	SET-7 SET-7	23 min 23 min	0.09 0.09 0.09	2.77 2.84 2.81	2.06 1.74 1.90	0.116 0.087 0.102	0.58 0.47 0.53	$\begin{array}{c} 0.36 \\ \underline{0.37} \\ 0.37 \end{array}$	111.14 105.75 108.45	$\frac{111.50}{106.12}$ $\overline{108.81}$
10/15/75 10/17/75 Average	SET-7 SET-7	23 min 23 min	0.07 0.08 0.08	2.42 2.65 2.54	1.70 1.48 1.59	0.093 0.065 0.079	0.44 0.45 0.45	0.33 0.36 0.35	108.35 80.18 94.27	108.69 80.54 94.62
10/15/75 10/17/75 Average	FET FET	12 min 12 min	0.05 0.06 0.06	1.01 1.59 1.30	1.76 1.78 1.77	0.092 0.084 0.088	0.54	0.53 0.53	137.43 123.76 130.60	137.96 131.13
10/15/75 10/17/75 Average	SET-7 SET-7	23 min 23 min	0.09 0.10 0.10	2.93 3.55 3.24	1.58 1.44 1.51	0.095 0.068 0.082	0.30 0.26 0.28	0.24 0.21 0.23	114.84 86.12 100.48	115.07 86.33 100.70
10/15/75 10/17/75 Average	SET-7 SET-7	23 min 23 min	0.09 0.08 0.09	3.30 2.84 3.07	2.46 1.39 1.93	0.093 0.066 0.080	0.32 0.47 0.40	0.25 0.39 0.32	$ \begin{array}{r} 110.82 \\ \underline{83.79} \\ \hline 97.31 \end{array} $	111.07 84.18 97.63
10/15/75 10/17/75 Average	30 mph accel 30 mph accel	20 min 20 min	0.02 0.04 0.03	0.20 0.14 0.17	0.92 0.88 0.90	0.022 0.029 0.026	0.30 0.43 0.37	0.33 0.53 0.43	37.55 54.53 46.04	37.88 55.06 46.47
10/15/75 10/17/75 Average	30 mph S/S 30 mph S/S	60 min 60 min	0.03 0.04 0.04	0.04 0.02 0.03	0.62 0.67 0.65	$0.008 \\ 0.013 \\ \hline 0.011$	1.24 1.54 1.39	1.51 1.96 1.74	15.49 24.56 20.03	17.00 26.53 21.77
10/15/75 10/17/75 Average	60 mph accel 60 mph accel	20 min 20 min	0.03 0.06 0.05	$\begin{array}{r} 0.13 \\ 0.15 \\ \hline 0.14 \end{array}$	1.63 2.25 1.94	0.116 0.064 0.090	58.66 67.02 62.84	64.26 63.96 64.11	194.77 92.83 143.80	259.04 156.79 207.92
10/15/75 10/17/75 Average	60 mph S/S 60 mph S/S	20 min 20 min	0.02 0.02 0.02	0.02 0.17 0.09	1.63 2.89 2.26	0.066 0.075 0.071	22.41 15.08 18.75	22.59 15.83 19.21	101.34 121.23 111.29	123.93 137.06 130.50

TABLE H-20. 1975 49-STATE CITTICLET IMPALA (SwRI CAR EM-2)
Pelleted Catalyst, 0.0415% Sulfur Fuel
Emissions Summary - 24100 Kilometres

Date	_Test Type	Duration	HC	CO g	/km NO _x	SO ₂	mg/km H2SO4	H ₂ SO ₄ as % of fuel S	SO ₂ as % of tiel S	Total Recovery
10/30/75 10/31/75 Average	FTP FTP		0.32 0.37 0.35	10.69 12.88 11.79	1.48 1.49 1.49	0.091 0.118 0.105	1.30 1.21 1.26	0.66 0.63 0.65	70.78 94.64 8:46	70.93 95.27 83.10
10/30/75 10/31/75 Average	SET-7 SET-7	23 min 23 min	0.12 0.08 0.10	6.30 2.45 4.38	1.52 1.16 1.34	0.094 0.087 0.091	$\begin{array}{r} 1.15 \\ 0.48 \\ \hline 0.82 \end{array}$	0.78 0.37 0.58	97.32 104.24 100.78	$\begin{array}{r} 98.10 \\ \underline{104.61} \\ 101.36 \end{array}$
10/30/75 10/31/75 Average	SET-7 SET-7	23 min 23 min	0.12 0.17 0.15	6.18 7.93 7.06	$\frac{1.37}{1.41}$	0.089 0.097 0.093	0.78 1.10 0.94	0.55 0.80 0.68	95.86 107.46 101.66	96.41 108.26 102.34
10/30/75 10/31/75 Average	FET FET	12 min 12 min	0.05 0.06 0.06	1.78 2.35 2.07	$\frac{1.50}{1.14} \\ \frac{1.32}{1.32}$	0.099 0.093 0.096	1.96 0.71 1,34	1.48 0.58 1.03	114.31 116.56 115.44	115.79 117.15 116.47
10/30/75 10/31/75 Average	SET-7 SET-7	23 min 23 min	$\begin{array}{c} 0.11 \\ \underline{0.15} \\ 0.13 \end{array}$	5.32 8.39 6.86	$\frac{1.38}{1.19}$	0.086 0.083 0.085	0.71 0.55 0.63	0.51 0.40 0.46	93.80 93.08 93.44	94.31 93.48 93.90
10/30/75 10/31/75 Average	SET-7 SET-7	23 min 23 min	0.08 0.15 0.12	4.26 6.96 5.61	1.32 1.33 1.33	0.079 0.081 0.080	0.90 0.49 0.70	0.69 0.35 0.52	91.27 88.70 89.99	91.96 89.06 90.51
10/30/75 10/31/75 Average	30 mph accel 30 mph accel	20 min 20 min	0.03 0.01 0.02	0.21 0.26 0.24	0.53 0.27 0.40	0.018 0.055 0.037	$\begin{array}{c} 0.17 \\ 0.11 \\ \hline 0.14 \end{array}$	$\begin{array}{c} 0.16 \\ 0.11 \\ \hline 0.14 \end{array}$	26.12 82.59 54.36	26.29 82.70 54.50
10/30/75 10/31/75 Average	30 mph S/S 30 mph S/S	60 min 60 min	0.03 0.03 0.03	0.00 0.00 0.00	0.52 0.63 0.58	0.013 0.007 0.010	3, 25 1, 52 2, 39	3.30 1.58 2.44	19.81 11.53 15.67	23.11 13.11 18.11
10/30/75 10/31/75 Average	60 mph accel 60 mph accel	20 min 20 min	0.03 0.04 0.04	0.86 1.41 1.14	$\frac{1.32}{1.34}$	0.075 0.155 0.115	35.61 32.98 34.30	27.41 28.14 27.78	88.05 202.14 145.10	115, 46 230, 28 172, 87
10/30/75 10/31/75 Average	60 mph S/S 60 mph S/S	20 min 20 min	0.01 0.03 0.02	0.02 2.90 1.46	$\frac{1.23}{1.11}$ $\frac{1.17}{1.17}$	0.073 0.073	7.26 3.68 5.47	5.59 2.67 4.13	85.55 85.55	91.14 89.68

TABLE H-21. 1975 CALIFORNIA PLYMOUTH GRAN FURY (SwRI CAR EM-3)

Monolithic Catalyst With Air Pump, 0.0415% Sulfur Fuel

Emissions Summary - 24100 Kilometres

				g/k	m		mg/km	H_2SO_4 as %	SO ₂ as %	Total
Date	Test Type	Duration	HC	CO	NOx	SO ₂	H ₂ SO ₄	of fuel S	of fuel S	Recovery
			0.22	4.4/	1 00	0.157	6,72	2.93	104.62	107.54
11/3/75	FTP		0.32	4.46	1.00	0.157		1.94	138.61	140.56
11/5/75	FTP		$\frac{0.55}{0.44}$	$\frac{10.76}{7.61}$	$\frac{1.19}{1.10}$	$\frac{0.215}{0.186}$	4.62 5.67	2,44	121.62	124.05
Average			0.44	7.01	1.10	0.100	3.01	6, 11	121.02	104.05
11/3/75	SET-7	23 min	0.03	0.74	0.79	0,064	9.50	6.19	63.54	69.73
11/5/75	SET-7	23 min	0.04	1.10	0.92	0.083	5.78	3.69	80.79	$\frac{84.48}{77.11}$
Average			0.04	0.92	0.86	0.074	7.64	4.94	72.17	77.11
11/3/75	SET-7	23 min	0.03	0.47	0.87	0.071	18.00	11.81	71.33	83.13
11/5/75	SET-7	23 min	0.03	1.06	0.88	0.084	5.39	3.69	87 .79	
Average	021		0.03	0.77	0.88	0.078	11.70	7.75	79.56	91.48 87.31
11/3/75	FET	12 min	0.03	0.05	0.68	0.041	51.92	40.95	49.49	90.44
11/5/75	FET	12 min	0.02	0.09	0.81	0.051	24.09	17.96	57.70	75.67
Average	1151	10 111111	$\frac{0.02}{0.03}$	0.07	0.75	0.046	38.01	29.46	53.60	83.06
			0.00	0.44	0.83	0.060	50.84	31.93	58.08	90.01
11/3/75	SET-7	23 min	0.03	0.44		0.115	8.07	5.05	110.58	115.63
11/5/75	SET-7	23 min	$\frac{0.04}{0.04}$	$\frac{1.68}{1.06}$	$\frac{0.91}{0.87}$	$\frac{0.113}{0.088}$	29.46	$\frac{3.63}{18.49}$	84.33	102.82
Average			0,04	1.00	0.01	0,000	27. 10	10.17	0.,00	
11/3/75	SET-7	23 min	0.03	0.53	0.80	0.082	17.48	12.11	87.26	99.38
11/5/75	SET-7	23 min	0.03	0.78	0.88	0.087	7,09	4.79	90.01	94.80
Average			0,03	0.66	0.84	0.085	12.29	8.45	88.64	97.09
11/3/75	30 mph accel	20 min	0.04	0.00	0.78	0.009	0.08	0.09	15.55	15.64
11/5/75	30 mph accel	20 min	0.05	0.08	0.97	0.018	0,25	$\frac{0.25}{0.17}$	27.36	27.61
Average			0.05	0.04	0.88	0.014	0.17	0.17	21.46	21.63
11/3/75	30 mph S/S	60 min	0.04	0.00	0.75	0.013	2.85	3.33	23.44	26.77
11/5/75	30 mph S/S	60 min	0.05	0.08	0.84	0.017	2.40		27.08	29.86
Average			0.05	0.04	0.80	0.015	2.63	2.58	25.36	28.32
11/3/75	60 mph accel	20 min	0.04	0.93	0.77	0.127	23,58	18.77	154.63	173.40
11/5/75	60 mph accel	20 min	0.03	0.51	1.03	0.092	28.43	21.03	125.60	146.63
Average			0.04	0.72	0.90	0.110	26.01	19.90	140.12	160.02
11/3/75	60 mph S/S	20 min	0.03	0.04	0.72	0.025	26.40	21.71	31.34	53,05
11/5/75	60 mph S/S	20 min	0.03	0.02	1.17	0.026	23, 25	19.64	33.38	53.02
Average	oo mpn a/a	20 mm	$\frac{0.02}{0.03}$	0.03	$\frac{2.21}{0.95}$	$\frac{0.026}{0.026}$	$\frac{23.23}{24.83}$	20.68	32.36	53.03
WACTURE			0.00					-		

TABLE H-22. 1975 CALIFORNIA CHEVROLET IMPALA (SwRI CAR EM-4)
Pelleted Catalyst, 0.0415% Sulfur Fuel
Emissions Summary - 24100 Kilometres

					/km		mg/km	H_2SO_4 as %	SO ₂ as %	Total
Date	Test Type	Duration	HC	<u>co</u>	NOx	so ₂	H_2SO_4	of fuel S	of tael S	Recovery
11/4/75	FTP		0.48	12.22	1.10	0.101	3.46	1.54	69.06	70.60
11/6/75	FTP		0.37	10.83	1.19	0.136	1.49	0.66	91.43	92.09
11/7/75	FTP		0.40	10,28	1.14	0.082	4.74	2.16	56.71	58.86
Average			0.42	11.11	1.14	0.106	3, 23	1.45	72.40	73.65
11/4/75	SET-7	23 min	0.09	3.00	1.04	0,062	7.40	4.84	62.11	66.95
11/6/75	SET-7	23 min	0.09	2.82	1.09	0.068	8.39	5.26	65.51	70, 7 7
11/7/75	SET-7	23 min	0.10	3.41	0.88	0.064	6.77	4.60	66.81	71.41
Average			0.10	3.08	1.00	0.065	7.52	4. 90	64.81	69.71
11/4/75	SET-7	23 min	0.08	3,43	1.02	0,083	7, 76	5,10	83,24	88,34
11/6/75	SET-7	23 min	0.10	4.31	1.05	0.110	8.01	5.10	106.87	111.97
11/7/75	SET-7	23 min	0.09	3.20	<u>0.99</u>	0.076	10.03	6.88	80.14	87.02
Average			0.09	3.65	1.02	0.090	8.60	5.69	90.08	95.78
11/4/75	FET	12 min	0.05	0.86	0,89	0.066	9.08	7.01	77.89	84.90
11/6/75	FET	12 min	0.07	1.47	0.94	0.064	7.23	4.99	67.55	72.54
11/7/75	FET	12 min	0.05	0.73	0.84	0.051	12.94	9.36	56.47	65.83
Average			0.06	1.02	0.89	0.060	9. 75	7.12	67.30	74,42
11/4/75	SET-7	23 min	0.08	2.40	0.91	0.054	13.88	9.45	56, 26	65.71
11/6/75	SET-7	23 min	0.11	4.62	1.04	0.085	7.33	4.44	79.09	83.54
11/7/75	SET-7	23 min	0.09	3.28	0.94	0.091	10.35	<u>7.01</u>	94.47	101.48
Average			0.09	3.43	0.96	0.077	10.52	6.97	76.61	83.58
11/4/75	SET-7	23 min	0.09	3,08	0.98	0.082	11.05	7.55	85.83	93.38
11/6/75	SET-7	23 min	0.09	2.84	1.01	0.075	9. 79	6.41	75.14	81.56
11/7/75	SET-7	23 min	0.09	2,20	<u>0.99</u>	0.068	14.75	9.52	67.28	76.80
Average			0.09	2, 71	0.99	0.075	11.86	7.83	76.08	83.91
11/4/75	30 mph accel	20 min	0.08	0.11	0.20	0.011	6,69	5.27	12.69	17.96
11/4/75	30 mph S/S	60 min	0.07	0.05	0.17	0.014	30.78	26.01	18.57	44.58
11/4/75	60 mph accel	20 min	0.06	1.14	1.49	0.071	35.63	24.86	75.95	100.80
11/4/75	60 mph S/S	20 min	0.07	0.07	1.17	0.046	24.28	18.23	52.93	71.16

TABLE H-23. 1975 49-STATE PLYMOUTH GRAN FURY (SwRI CAR EM-1)
Monolith Catalyst, 0.0415% Sulfur Fuel
Emissions Summary - 32200 Kilomètres

					g/k		·	mg/km	H ₂ SO ₄ as	SO ₂ as %	Total
	<u>Date</u>	Test Type	Duration	HC	<u>CO</u>	$\overline{NO^{X}}$	SO ₂	H ₂ SO ₄	% of fuel S	of fuel S	Recovery
	12/23/75	FTP		0.31	10.89	2.69	0.137	0.69	0.36	105.36	105.70
	12/23/75	SET-7	23 min	0.13	5.92	2.40	0.198	2.72	1.94	216.46	218.41
	12/23/75	SET-7	23 min	0.11	4.91	2.47	0.107	0.23	0.17	121.41	121.58
	12/23/75	FET	12 min	0.07	2.39	3.21	0.123	0.99	0.81	152.95	153.76
Ľ,	12/23/75	SET-7	23 min	0.15	7.67	1.99	0.107	0.18	0.12	113.87	113.99
~	12/23/75	SET-7	23 min	0.11	4.47	1.87	0.088	0.05	0.04	99.62	99.65
	12/23/75	30 mph accel	20 min	0.03	0.06	1. 19	0.007	0.00	0.00	11.15	11.15
	12/23/75	30 mph S/S	30 min	0.03	0.01	.1. 19	0.014	1.07	1.22	24.07	25. 29
	12/23/75	60 mph accel	20 min	0.03	0.76	2.58	0.151	6.68	5.36	185.03	190.39
	12/23/75	60 mph S/S	20 min	0.03	1.59	1.91	0.107	0.68	0.55	133.06 -	133.61

H-3

压-32

TABLE H-24. 1975 49-STATE CHEVROLET IMPALA (SwRI CAR EM-2)
Pelleted Catalyst, 0.0415% Sulfur Fuel
Emissions Summary - 32200 Kilometres

				g	/km		mg/km	${ m H_2SO_4}$ as	SO ₂ as %	Total
Date	Test Type	Duration	HC	CO	NO_{x}	so ₂	H ₂ SO ₄	% of fuel S	of fuel S	Recovery
12/22/75	FTP		0.39	10.04	2.62	0.123	2.39	1.21	95.42	96.63
12/22/75	SET-7	23 min	0.12	6.49	2.08	0.102	0.79	0.53	105.19	105.72
12/22/75	SET-7	23 min	0.12	5.76	2.14	0.101	0.65	0,46	108.87	109.32
12/22/75	FET	12 min	0.05	1.42	1.99	0.130	1.91	1,63	170.00	171.63
12/22/75	SET-7	23 min	0.12	5.72	2.08	0.093	2.53	1.71	96.48	98.19
12/22/75	SET-7	23 min	0.13	5.70	1.97	0.093	0.75	0.53	100.43	100.96
12/22/75	30 mph accel	20 min	0.03	0.20	0.70	0.028	0.54	0.51	39.96	40.47
12/22/75	30 mph S/S	30 min	0.03	0.04	0.68	0.016	1.46	1.18	19.46	20.63
12/22/75	60 mph accel	20 min	0.05	2.38	2.49	0.169	12.07	8.72	186.39	195.11
12/22/75	60 mph S/S	20 min	0.02	0.54	1.98	0.137	3.51	2,88	172.65	175.53

					g/km	1	÷	mg/km	H ₂ SO ₄ as	SO2 as %	Total
	Date	Test Type	Duration	HC	СО	NO^{x}	so ₂	H_2SO_4	% of fuel S	of fuel S	Recovery
	12/19/75	FTP	·	0.46	3.55	3.26*	0.224	11.35	5.91	178.76	184.67
	12/19/75	SET-7	23 min	0.07	0.36	3.09*	0.099	38.06	28.38	112.72	141.10
	12/19/75	SET-7	23 min	0.06	0.08	3.18*	0.086	49.66	37.49	99.00	136.49
	12/19/75	FET	12 min	0.04	0.08	3.38*	0.075	45.08	39.33	99.88	139.21
ロ ₋ 22	12/19/75	SET-7	23 min	0.07	0.17	2.94*	0.073	56.65	41.36	81.11	122, 47
	12/19/75	SET-7	23 min	0.06	0.25	2.79*	0.081	33.98	24.82	90.68	115.50
	12/19/75	30 mph accel	20 min	0.09	0.17	0.92*	0.007	0.64	0.68	11.82	12.50
	12/19/75	30 mph S/S	30 min	0.09	0.02	0.98*	0.024	8.02	8.38	38, 69	47.07
	12/19/75	60 mph accel	20 min	0.04	0.08	4.22*	0.069	77.11	68.69	94.43	163.11
	12/19/75	60 mph S/S	20 min	0.03	0.03	3.72*	0.025	32.53	29.28	33.97	63.24

^{*}Failed Vacuum Amplifier in EGR System

H-34

TABLE H-26. 1975 CALIFORNIA CHEVROLET IMPALA (SwRI CAR EM-4)
Pelleted Catalyst, 0.0415% Sulfur Fuel
Emissions Summary - 32200 Kilometres

				g/kn	n		mg/km	H ₂ SO ₄ as % of	SO ₂ as % of	Total
Date	Test Type	Duration	HC	CO	$NO_{\mathbf{x}}$	SO ₂	H ₂ SO ₄	Fuel S	Fuel S	Recovery
12/18/75	FTP		0.27	7.97	1.25	0.056	16.15	7.87	41.50	49.37
12/18/75	SET-7	23 min	0.06	1.08	1.54	0.072	19.11	13.21	76.67	89.88
12/18/75	SET-7	23 min	0.06	1.33	1.28	0.040	24.26	16.99	43.20	60.19
12/18/75	FET	12 min	0.04	0.11	1.16	0.064	16.41	13.39	79.75	93.15
12/18/75	SET-7	23 min	0.06	0.71	1.23	0.060	31.42	22.43	6 5, 44	87.87
12/18/75	SET-7	23 min	0.07	0.37	1.07	0.058	32.86	23.07	62.70	85.78
12/18/75	30 mph Accel	20 min	0.11	0.23	0.15	0.031	8.26	7. 22	41.36	48,58
12/18/75	30 mph S/S	30 min	0.04	0.02	0.18	0.029	26.63	23.48	38.61	62.08
12/18/75	60 mph Accel	20 min	0.04	0.11	1.38	0.050	66.98	49.05	55.57	104.63
12/18/75	60 mph S/S	20 min	0.03	0.01	1.15	0.017	27.20	22.55	21.73	44.28

TABLE H-27. 1975 49 STATE PLYMOUTH GRAN FURY (SwRI CAR EM-1)
Monolithic Catalyst, 0.0405% Sulfur Fuel
Emissions Summary - 48300 Kilometres

					αl	km		mg/km	% Fuel S as	% Fuel Sas	Total
	Date	Test Type	Duration	HC	CO	NOx	so ₂	H ₂ SO ₄	H ₂ SO ₄	SO ₂	Recovery
	2/10/76	FTP		0.49	12.57	1.79	0.169	1.47	0.71	125.43	126.14
	2/12/76	FTP		0.44	11.03	2.02	0.110	1.80	0.86	79.96	80.82
	2/10/76	SET-7		0.26	10.34	1.44	0.116	0.93	0.64	121.72	122.36
	2/12/76	SET-7		0.21	07.17	2.03	0.067	0.95	0.67	71.19	71.86
	2/10/76	SET-7		0.30	11.88	1.37	0.061	0.31	0.22	64.93	65.14
	2/12/76	SET-7		0.32	12.23	1.52	0.056	0.46	0.32	59.17	59.49
	2/10/76	HWFET		0.26	11.56	1.72	0.059	0.23	0.19	75.99	76.18
:	2/12/76	HWFET		0.31	12.26	1.73	0.028	0.20	0.17	35.73	35.90
י ר	2/10/76	SET-7		0.27	11.40	1.44	0.058	0.44	0.30	60.38	60.68
	2/12/76	SET-7	•	0.50	18.69	1.44	0.060	0.27	0.18	63.21	63.40
	2/10/76	SET-7		0.27	10.80	1.55	0.064	0.26	0.18	68.78	68.97
	2/12/76	SET-7		0.51	20.18	1.45	0.055	0.67	0.46	58.05	58.50
	2/10/76	30 mph accel	20 min	0.12	0.60	0.94	0.016	0.56	0.65	27.96	28.60
	2/12/76	30 mph accel	20 min	0.11	0.91	0.82	0.019	0.46	0.51	32.15	32.66
	2/10/76	30 mph	30 min	0.05	0.00	0.98	0.011	1.20	1.39	19.57	20.97
	2/12/76	30 mph	30 min	0.04	0.00	0.75	0.021	1.20	1.38	36.69	38.07
	2/10/76	60 mph accel	20 min	0.09	3.17	1.75	0.132	1.77	1.52	173.85	175.37
	2/12/76	60 mph accel	20 min	0.12	3.45	1.63	0.116	1.39	1.21	155.19	156.40
	2/10/76	60 mph	20 min	0.15	9.45	1.22	0.067	0.24	0.22	91.88	92.20
	2/12/76	60 mph	20 min	0.04	1.72	1.55	0.040	0.21	0.19	54.61	54.80

I-35

TABLE H-28. 1975 49-STATE CHEVROLET IMPALA (SwRI CAR EM-2)
Pelleted Catalyst, 0.0405% Sulfur Fuel
Emissions Summary - 48300 Kilometres

								% fuel S	% fuel S	
					km		mg/km	as S	as S	Total
Date	Test Type	Duration	HC	CO	NOx	SO ₂	H ₂ SO ₄	in H ₂ SO ₄	in SO ₂	Recovery
1/28/76*	LA-4		0.36	9.61	1.91	0.107	1.31	0.65	80.93	81.58
1/30/76**	LA-4		0.24	5.22	1.60	0.078	0.78	0.42	63.45	63.87
1/28/76	SET-7		0.11	4.43	1.79	0.137	3.17	2,11	139.45	141.56
1/30/76	SET-7		0.06	1.31	1.63	0.132	2.94	2.12	145.65	147.77
1/28/76	SET-7		0.10	4.23	1.69	0.126	1.08	0.75	132.66	133.41
1/30/76	SET-7		0.07	2.05	1.56	0.107	1.47	1.09	122.61	123.71
1/28/76	HWFET		0.07	3.08	1.53	0.137	3.03	2.15	148.67	150.82
1/30/76	HWFET		0.03	0.67	1.41	0.100	2.70	2.28	128.80	131.08
1/28/76	SET-7	•	0.11	4.67	1.46	0.099	0.48	0.34	106.00	106.34
1/30/76	SET-7	•	0.07	2.63	1.67	0.113	1. 2 2	0.87	122.67	123.54
1/28/76	SET-7		0.11	5,39	1.56	0.099	0.59	0.40	102.52	102.91
1/30/76	SET-7		0.05	0.76	1.55	0.068	1.87	1.40	77.60	79.00
1/28/76	Accel to 30		0.03	0.11	0.56	0.018	0,20	0,20	27,20	27,40
1/30/76	Accel to 30		0.02	0.04	0.61	0.015	0.01	0.01	23.12	23.13
1/28/76	S/S 30		0.03	2.17	0.72	0.006	2.29	2.16	8.49	10,65
1/30/76	S/S 30		0.02	0.00	0.56	0.010	0.87	0.93	16.50	17.43
1/28/76	Accel to 60		0.05	2.28	1.65	0.177	16.01	12.37	208.81	221.18
1/30/76	Accel to 60		0.05	1.22	1.57	0.145	23.05	19.26	186.02	205.28
1/28/76	s/s 60		0.15	16.07	1.78	0.113	1.*07	0.80	130.14	130.95
1/30/76	S/S 60		0.02	1.10	1.04	0.123	3.01	2.67	166.80	169.46

^{*}Tests on 1/28/76 were done before 30,000 mile maintenance

^{**}Tests on 1/30/76 were done after 30,000 mile maintenance

TABLE H-29. 1975 CALIFORNIA PLYMOUTH GRAN FURY (SwRI CAR EM-3)

Monolithic Catalyst with air injection, 0.0405% Sulfur Fuel

Emissions Summary - 48300 Kilometres

				g/	km		mg/km	% Fuel Sas	% Fuel Sas	Total	
Date	Test Type D	uration	HC	CO	$NO_{\mathbf{x}}$	SO ₂	H2SO4	H ₂ SO ₄	soz	Recovery	
2/9/76 2/19/76	FTP FTP		0.64 0.41	6.72 5.07	1.07 0.93	0.116 0.169	2.84 4.12	1.33 1.94	83.31 122.10	84.65 124.04	
2/19/70	r I.		0.41	5.01	0. 73	0.109	4.12	1. 7 4	122.10	124.04	
2/6/76	SET-7		0.19	0.93	0.87	0.093	4.23	2.80	94.04	96.83	
2/18/76	SET-7		0.08	0.68	0.81	0.091	6.81	4.34	89.20	93.53	
2/6/76	SET-7		0.17	0.53	0.79	0.093	11.19	7.63	97.57	105.20	
2/19/76	SET-7		0.06	0.70	0.77	0.097	7.38	4.67	94.53	99.21	
2/6/76	HWFET		0.19	0.69	0.87	0.059	12.93	10.11	70.75	80.87	
2/19/76	HWFET		0.07	0.14	0.85	0.045	14.55	11.42	54.25	65.67	
2/6/76	SET-7		0.16	0.59	0.82	0.111	5.11	3.51	116.71	120.22	
2/19/76	SET-7		0.05	0.59	0.76	0.113	6.96	4.68	116.37	121.06	
2/6/76	SET-7		0.15	0.64	0.77	0.089	5.95	4.25	96.92	101.17	
2/19/76	SET-7		0.06	0.92	0.85	0.103			100.96		
2/6/76	30 mph accel	20 min	0.18	0.27	0.79	0.013	0.40	0.46	22.43	22.89	
2/19/76	30 mph accel	20 min	0.10	0.21	0.87	0.019	0.37	0.42	33.35	33.77	
2/6/76	30 mph	30 min	0.24	0.04	0.64	0.016	0.91	1.04	27.71	28,75	
2/19/76	30 mph	30 min	0.10	0.03	0.74	0.022	0.66	0.77	39.56	40.33	
2/6/76	60 mph accel	20 min	0.20	1.76	1.15	0.082	24.80	22.00	111.41	133.41	
2/19/76	60 mph accel	20 min	0.11	1.62	1.04	0.088	7.25	6.43	118.92	125.35	
2/6/76	60 mph	20 min	0.12	0.05	1.17	0.030	21.22	29.14	43.86	64.00	
2/19/76	60 mph	20 min	0.09	0.04	0.96	0.030	19.66	17.08	39.68	56.76	

TABLE H-30. 1975 CALIFORNIA CHEVROLET IMPALA (SwRI CAR EM-4) Pelleted Catalyst 0.0405% Sulfur Fuel Emissions Summary - 48300 Kilometres

								% Fuel	% Fuel	
	•			g	/km		mg/km	S as	S as	Total
Date	Test Type	Duration	<u>HC</u>	CO	NO_X	SO_2	H2SO4	H2SO4	SO ₂	Recovery
2/2/5/			0 40	0.00				· 40	75 50	00.04
2/3/76	FTP		0.43	9.03	1.81	0.103	11.08	5.48	77.78	83.26
2/5/76	FTP		0.47	10.37	0.99	0.072	7.58	3.64	53.06	56.70
2/3/76	SET-7		0.11	2.38	0.92	0.069	24.74	16.74	71.07	87.81
2/5/76	SET-7	•	0.14	4.24	0.91	0.061	11.02	7.26	61.40	68.65
							•			
2/3/76	SET-7		0.12	2.78	1.07	0.073	15.04	10.05	74.44	84.49
2/5/76	SET-7		0.14	3.15	0.82	0.062	11.56	7.57	62.14	69.72
2/3/76	HWFET		0.07	0.78	0.86	0.062	13.83	10.65	73,52	84.17
2/5/76	HWFET		0.10	1.50	0.70	0.058	14.81	11.23	67.72	78.95
2/5/10	UAALET		0.10	1. 50	0.70	0.050	14.01	11.23	07.12	10. 75
2/3/76	SET-7		0.13	3.05	0.95	0.061	16.56	11.05	62.43	73.47
2/5/76	SET-7		0.13	3.42	0.80	0.062	11.16	7.38	63.64	71.02
2/2/2/	CDM 7		0 12	2 02	0.03	0 077	11 24	7 47	70 21	94 07
2/3/76	SET-7		0.13	3.83	0.92	0.077	11.36	7.67	79.31	86.97
2/5/76	SET-7		0.50	5.32	0.83	0.080	9.76	6.36	79.97	86.33
2/3/76	30 mph accel	20 min	0.16	1.00	0.48	0.026			39.47	
2/5/76	30 mph accel		0.40	0.65	0.26	0.019	7.41	6.82	26.44	33.27
	•									
2/3/76	30 mph S/S	30 min	0.05	0.01	0.34	0.016	3.72	3.72	25.01	28.74
2/5/76	30 mph S/S	30 min	0.21	0.06	0.32	0.016	9.70	9.40	23.59	32.99
2/3/76	40 mmh a a 1	20 min	0.10	1.75	0.96	0.103	45.90	36.18	124. 13	160.31
•	60 mph accel									
2/5/76	60 mph accel	au min	0.15	2.63	0.91	0.072	17. 92	13.94	85.80	99.74
2/3/76	60 mph S/S	20 min	0.06	0.08	0.72	0.070	17.85	14.50	86.57	101.06
2/5/76	60 mph S/S	20 min	0.18	0.05	0.86	0.062	18.70	15.02	75.64	90.66

TABLE H-31.1975 49 STATE PLYMOUTH GRAN FURY (SwRI CAR EM-1)
Monolithic Catalyst without Air Injection, 0.0410% Sulfur Fuel
Emissions Summary - 64400 Kilometres

				g/kı	נעל		mg/km	% Fuel S as	% Fuel S as	Total
Date	Test Type	Duration	HC	CO	NOx	so ₂	_	H_2SO_4	SO ₂	Recovery
3-25-76	FTP		0.63	15.58	1.70	0.159	2.77	1.37	120.93	122.30
3-25-76	SET-7		0.45	16.12	1.61	0.083	0.47	0.31	82.58	82.88
3-25-76	SET-7		0.51	19.51	1.61	0.069	0.26	0.17	68.51	68.67
3-25-76	HFET		0.41	16.17	1.79	0.063	0.86	0.65	73.52	74.29
3-25-76	SET-7		0.55	20.45	1.74	0.066	0.92	0.59	64.96	65.55
3-25-76	SET-7		0.53	19.63	1.52	0.075	0.88	0.57	74.30	74.87
3-25-76	Accel to 30	20 min.	0.11	1.08	1.09	0.018	0.48	0.51	29.25	29.76
3-25-76	30 mph S/S	20 min.	0.05	0.02	0.87	0.014	0.75	0.84	24,51	25.35
3-25-76	Accel to 60	20 min.	0.19	7.87	2.09	0.106	2.14	1.75	132.19	133.94
3-25-76	60 mph	20 min.	0.68	22.31	2.08	0.076	0.12	0.09	95.16	95.25

								% Fuel	% Fuel	
					/km		mg/km	S as	S as	Total
Date	Test Type	Duration	HC	CO	$NO_{\mathbf{x}}$	so ₂	H_2SO_4	H_2SO_4	so_2	Recovery
3-10-76	FTP		0.39	11.91	1.99	0.115	0.90	0.46	88.86	89.31
3-10-76	SET-7		0.21	8.30	1.71	0.141	0.84	0.55	140.44	140.99
3-10-76	SET-7		0.24	11.10	1.64	0.128	0.70	0.47	131.11	131.58
3-10-76	HFET		0.20	10.45	1.45	0.143	0.83	0.60	158.10	158.70
3-10-76	SET-7		0.34	16.11	1.41	0.110	0.12	0.08	112.36	112.44
3-10-76	SET-7		0.29	13.49	1.22	0.081	0.28	0.28	87.97	88.26
3-10-76	Accel to 30	20 min.	0.43	11.27	0.63	0.057	0.98	0.89	80.35	81.24
3-10-76	30 mph	20 min.	0.24	8.40	0.79	0.057	0.10	0.10	83.53	83.63
3-10-76	Accel to 60	20 min	0.08	5.40	1.93	0.209	2.22	1.74	249.52	251.25
3-10-76	60 mph	20 min	0.19	17.88	1.45	0.105	0.26	0.20	127.02	127.23

TABLE H-33. 1975 CALIFORNIA PLYMOUTH GRAN FURY (SwRI CAR EM-3)

Monolithic Catalyst with Air Injection 0.0410% Sulfur Fuel

Emissions Summary - 64400 Kilometres

				~ / l	km		.% mg/km	Fuel S as	% Fuel S as	Total
_	Date	Test Type Duration	HC	CO	NO _x	so ₂	H ₂ SO ₄	H ₂ SO ₄		Recovery
	3-26-76	FTP	0.57	5.52	1.98	0.100	4.37	2.08	72.75	74.83
	3-26-76	SET-7	0.13	1.04	1.73	0.157	6.87	4.91	171.30	176.21
٠	3-26-76	SET-7	0.14	0.88	1.83	0.119	7.78	5.06	118.87	123.93
	3-26-76	HFET	0.20	0.21	1.11	0.067	11.41	8.14	72.64	80.79
; ·	3-26-76	SET-7	0.16	0.78	1.20	0.185	8.95	5.65	178.73	184.37
H-41	3-26-76	SET-7	0.17	0.76	1.31	0.150	6.27	3.87	141.58	145.45
	3-26-76	30 mph accel	0.42	0.09	1.07	0.033	3.18	2.55	40.33	42.89
	3-26-76	30 mph	0.22	0.04	0.89	0.029	35.44	29.68	36.92	66.60
	3-26-76	60 mph accel	0.15	0.06	1.33	0.053	49.32	39.72	64.85	104.58
	3-26-76	60 mph	0.12	0.04	1.93	0.042	19.76	16.62	53.60	70.22

TABLE H-34. 1975 CALIFORNIA CHEVROLET IMPALA (SwRI CAR EM-4)
Pelleted Catalyst with Air Injection 0.0410% Sulfur Fuel
Emissions Summary - 64400 Kilometres

			g/k	· ma		mg/km	% Fuel S as	% Fuel S as	Total
Date	Test Type Duration	НС	CO	NOx	SO ₂		H ₂ SO ₄	SO ₂	Recovery
3-16-76	FTP	0.61	12.92	1.30	0.137	6.27	2,73	91.43	94.15
3-16-76	SET-7	0.14	4.14	1.19	0.077	11.13	6.60	69.94	76.55
3-16-76	SET-7	0.16	5.60	1.04	0.078	6.97	4.19	72.22	76.41
3-16-76	HFET	0.13	0.37	1.10	0.090	12.87	8.56	91.91	100.48
3-16-76	SET-7	0.21	10.12	0.88	0.135	8.36	5.02	123.69	128.71
3-16-76	SET-7	0.20	7.77	0.88	0.097	6.91	4.13	89.01	93.14
3-16-76	30 mph accel.	0.08	0.54	0.65	0.023			34.20	
3-16-76	30 mph	0.05	0.02	0.28	0.012	2.92	2.75	17.05	19.80
3-16-76	60 mph accel	0.08	0.27	1.43	0.078	24.02	18.01	89.15	107.16
3-16-76	60 mph	0.09	0.23	1.30	0.065	8.74	6,63	75.05	81.68

TABLE H-35. 1975 49 STATE PLYMOUTH GRAN FURY (SwRI CAR EM-1) Monolithic Catalyst Without Air Injection 0.0410% Sulfur Fuel Emissions Summary - 80500 Kilometres

							o,	% Fuel %	Fuel	
				g/kı	m		mg/km	Sas	Sas	Total
Date	Test Type D	uration	HC	CO	NOx	SO ₂	H ₂ SO ₄	H ₂ SO ₄	so ₂	Recovery
5/7/76	FTP		0.66	11.77	2.27	0.167	1.80	0.89	126.33	127.22
5/11/76	FTP		0.59	15.25	1.97	0.088	1.22	0.58	64.63	65.22
5/7/76	SET-7		0.26	8.21	1.98	0.118	0.81	0.54	119.61	120.14
5/11/76	SET-7		0.33	11.43	2.03	0.069	0.61	0.39	68.19	68.58
5/7/76	SET-7		0.29	9.54	2.23	0.097	0.44	0.29	97.14	
5/11/76	SET-7		0.53	18.30	1.86	0.042	0.42	0.28	42.81	43.09
5/7/76	FET		0.19	6.47	2.44	0.062	0.31	0.25	74.94	
5/11/76	FET		0.38	13.80	2.01	0.028	0.19	0.15	32. 15	32.30
5/7/76	SET-7		0.32	11.55	1.87	0.084	0.22	0.15	87.20	
5/11/76	SET-7	•	0.55	19.45	1.80	0.047	0.21	0.14	46.16	46.30
5/7/76	SET-7		0.35	12.73	1.88	0.068	0.15	0.10	69.82	
5/11/76	SET-7		0.68	24.45	1.66	0.058	0.40	0.26	57.24	57.50
5/7/76	Accel to 30	20 min.	0.09	0.79	0.99	0.021	0.15		35.66	
5/11/76	Accel to 30	20 min.	0.17	0.89	1.23	0.019	0.14	0.16	32.70	32.86
5/7/76	30 mph	30 min.	0.06	0.01	0.86	0.009				
5/11/76	30 mph	30 min.	0.06	0.00	0.94	0.009	0.51	0.59	15.62	2 16.20
5/7/76	Accel to 60	20 min.	0.08	2.70	2.29	0.111				
5/11/76	Accel to 60	20 min.	0.31	10.97	2.12	0.083	0.76	0.61	102.3	102.92
5/7/76	60 mph	20 min.	0.09	20.86	2.20	0.043				
5/11/76	60 mph	20 min.	0.81	23.70	2.22	0.042	0.08	0.07	53.0	1 53.08

TABLE H-36.1975 49 STATE CHEVROLET IMPALA (SwRI CAR EM-2) Pelleted Catalyst Without Air Injection 0.0410% Sulfur.Fuel Emissions Summary - 80500 Kilometres

								% Fuel '	% Fuel	
				g/k	m		mg/km	S as	S as	Total
Date	Test Type	Duration	HC	CO	NOx	SO ₂	H ₂ SO ₄	H_2SO_4	SO ₂	Recovery
4/19/76	FT P		0.80	14.74	2.04	0.120	1.13	0.55	89.94	90.49
5/19/76	FTP		3.47	24.43	1.76	0.170	1.56	0.73	122.61	123.34
4/19/76	SET-7		0.36	8.81	2.35	0.111			109.65	
5/19/76	SET-7		1.28	7.92	1.71	0.102	0.98	0.67	106.07	106.73
4/19/76	SET-7		0.38	10.59	2.16	0.112			112.74	
5/19/76	SET-7		1.35	8.85	1.66	0.147	0.96	0.63	148. 18	148.82
4/19/76	HFET		0.13	3.56	2.21	0.111	1.03	0.77	126.58	127.35
5/19/76	HFET		0.64	3.00	1.82	0.087	1.64	1.22	98.94	100.16
4/19/76	SET-7		0.30	8.27	2.06	0.090	1.68	1.11	90.58	91.69
5/19/76	SET-7		1.96	11.83	1.59	0.144	1.40	0.94	147.67	148.60
4/19/76	SET-7		0.30	8.89	2.50	0.093	2.10	1.37	9 2 . 26	93.63
5/19/76	SET-7		1.46	9. 15	1.69	0.112	1.00	0.66	113.10	113.76
4/19/76	Accel to 30	20 min.	0.05	0.07	0.62	0.028	0.36	0.33	38.83	39.16
5/19/76	Accel to 30	20 min.	0.21	0.57	0.53	0.027	0.38	0.37	41.24	41.61
4/19/76	30 mph	30 min.	0.05	0.00	0.80	0.013	0.96	0.99	19.58	2 0.56
5/19/76	30 mph	30 min.	0.04	0.02	0.60	0.017	0.28	0.28	26.04	26.32
4/19/76	Accel to 60	20 min.	0.00	0.50	2.26	0.130	13.36	10.25	152.19	162.44
5/19/76	Accel to 60	20 min.	0.45	1.88	1.64	0.077	12.31	10.63	101.86	112.49
4/19/76	60 mph	20 min.	0.06	3.73	1.74	0.028	1.53	1.19	33.35	34.55
5/19/76	60 mp h	20 min.	0.02	0.08	1.49	0.065	5.58	4.62	81.94	86.56

TABLE H-37. 1975 CALIFORNIA PLYMOUTH GRAN FURY (SwRI CAR EM-3)

Monolithic Catalyst With Air Injection, 0.0410% Sulfur Fuel

Emissions Summary - 80500 Kilometres

					•			% Fuel	% Fuel	
				g/k			mg/km	Sas	Sas	Total
Date	Test Type	Duration	HC	CO	NOx	<u>SO2</u>	H ₂ SO ₄	H₂ SO₄	<u>SO 2</u>	Recovery
5/12/76	FTP		0.67	8.11	1.77	0.099	7.98	3.41	64.78	68, 19
5/14/76	FTP		0.68	<u>8.75</u>	2,23	0.182	<u>5.85</u>	2.49	118.73	121.22
	Average		0.68	8.43	2.00	0.140	6.92	2.95	91.76	94.71
5/12/76	SET-7		0,21	1.22	2.05	0 007	/ 0 /	4.05		
5/14/76	SET-7				1.77	0.097 <u>0.089</u>	6.86	4.05	87.23	91.28
0,00,00	Average		$\frac{0.15}{0.18}$	1.24	$\frac{1.77}{1.91}$	0.089	<u>5.15</u> 6.00	3.14 3.60	82.62 84.93	<u>85. 76</u>
			0.10		1. 71	0.073	0,00	3.00	04.73	88. 52
5/12/76	SET-7		0.16	1.22	2.01	0.091	6.13	3.86	87.12	90.98
5/14/76	SET-7		0.9	1.40	1,72	0.085	4.58	2.94	83.48	86.42
	Average		0.12	1.31	1.86	0.088	5.36	3.40	85.30	88.70
5/12/76	FET		0.18	0.17	2.61	0.07/		2 22	00.01	
5/14/76	FET		0.18	0.17		0.076	11.37	8.08	82.36	90.43
3, 22, 10	Average		$\frac{0.07}{0.12}$	$\frac{0.10}{0.14}$	$\frac{2.03}{2.32}$	0.068	$\frac{9.32}{10.34}$		79.56 80.96	<u>86, 68</u>
			0.12	V. 14	2. 32	0.072	10, 34	7.60	80.96	88. 56
5/12/76	SET-7		0.11	0.80	2.09	0.114	7.00	4, 15	103.25	107.39
5/14/76	SET-7		0.09	1.38	1.80	0.105	5.73	3.69	103.29	106.98
	Average		0.10	1.09	1.95	0.110	6.37	3.92	103.27	107.18
5/12/76	SET-7		0.11	1.15	2.13	0.114	6.16	3.89	109.74	113.63
5/14/76	SET-7		0.09	0.97	1.77	0.111	3.72	2.45	111.58	113.03
• • • •	Average		$\frac{0.10}{0.10}$	$\frac{3.06}{1.06}$	1. 95	$\frac{0.111}{0.112}$	4.94	$\frac{2.43}{3.17}$	110.66	113.83
	J		-		-,,-		-, , -	J. 1.	110.00	143.03
5/12/76	Accel to 30	20 min.	0.53	0.10	2.14	0.027	4.90	3.87	32.4 6	36.33
5/14/76	Accel to 30	20 min.	0.09	0.08	1.37	0.018	0.25	0.27	30.74	31.01
5/12/76	30 mph	30 min.	0.34	0.03	2. 21	0.033	26.62	22. 29	42. 92	65, 20
5/14/76	30 mph	30 min.	0.10	0.03	1.37	0.033	1.17			37.69
-,,		30	00	0.02	2.51	0.022	1.11	1.47	30. 41	31.09
5/12/76	Accel to 60	20 min.	0.23	1.59	2.95	0.101	20.30	15.78	120.12	135.90
5/14/76	Accel to 60	20 min.	0.09	1.02	2.59	0.077	16.57		95.62	109.14
	Average		0.16	1.30	2.77	0.089	18.44	14.65	107.87	122.52
5/12/76	60 mph	20 min.	0.12	0.03	3.11	0.037	11.05	9. 10	46.97	56,07
5/14/76	60 mph	20 min.	0.05	0.03	2.46	0.032	18.61			58.89
	Average		0.08	0.03	2.79	0.034	14.83	12.59		57.48

TABLE H-38. 1975 CALIFORNIA CHEVROLET IMPALA (SwRI CAR EM-4)
Pelleted Catalyst 0.0405% Sulfur Fuel
Emissions Summary - 80500 Kilometres

				~ /	km		mg/km	% Fuel Sas	% Fue1 Sas	Total
Date	Test Type	Duration	HC	CO g/	NOx	SO ₂	H ₂ SO ₄	H ₂ SO ₄	SO ₂	Recovery
			_							
4/27/76	FTP		0.66	12.28	1.11	0.144	2.54	1.13	97. 92	99. 05
4/29/76	FTP		0.54	10.58	0.94	0.087	3.07	1.42	$\frac{61.73}{22}$	63.16
	Average		0.60	11.43	1.03	0.116	2.80	1.28	79.82	81.10
4/27/76	SET-7		0.16	4.19	0.88	0.078	8.44	5.04	71.11	76.15
4/29/76	SET-7		0.19	3.49	0.85	0.074	<u>7.73</u>	$\frac{4.94}{4.99}$	72.07	77.00
	Average		0.18	3.84	0.86	0.076	8.08	4.99	71.59	76.58
4/27/76	SET-7		0.18	5.48	0.95	0.086	7. 13	4.39	81.05	85.44
4/29/76	SET-7		0.17	5.35	0.85	0.071	4.87	3.15	69.93	73.08
	Average		0.18	5.42	0.90	0.078	6.00	3.77	75.49	79.26
4/27/76	HFET		0.09	1,38	0.93	0.054			55.82	
4/29/76	HFET		0.08	1.35	0.83	0.041	2.79 2.79	2.03	45.65	47.69
	Average		0.08	1.36	0.88	0.048	2.79	2.03	50.74	47.69
4/27/76	SET-7					0.072	5.21			
4/29/76	SET-7		$\frac{0.19}{0.19}$	3.89	0.80	0.076	<u>5.88</u>	3.78 3.78	74.45	<u>78.23</u>
	Average		0.19	3.89	0.86	0.074	5.54	3.78	74.45	78.23
4/27/76	SET-7		0.16	4.38	0.92	0.070	7.27	4.09	69.55	74, 24
4/29/76	SET-7		0.16	3.88	0.82	0.074	<u>7.84</u>	5.13	74.34	79.47
	Average		0.16	4.13	0.87	0.072	7.56	4.91	71.95	76.86
4/27/76	Accel to 30	20 min.	0.22	0.20	0.29	0.031	3.82	3.23	39.85	43.09
4/29/76	Accel to 30	20 min.	0.30	0.26	0.21	0.024	$\frac{4.54}{}$	3.92	31.20	35.12
	Average		0.26	0.23	0.25	0.028	4.23	3.58	35.53	39.11
4/27/76	30 mph	30 min.	0.26	0.04	0.21	0.018	10.81	9.21	23.55	3 2. 76
4/29/76	30 mph	30 min.	0.23	0.04	0.17	0.019	10.60	9.15	<u> 25.40</u>	34.55
	Average		0.24	0.04	0.19	0.018	10.70	9.18	24.48	33.66
4/27/76	Accel to 60	20 min.	0.06	0.24	1.02	0.047	19.17	14.58	55.27	69.85
4/29/76	Accel to 60	20 min.	0.04	0.12	0.84	0.025	29.78	23.64	<u>30.71</u>	<u>54. 35</u>
	Average		0.05	0.18	0.93	0.036	24.48	19.11	42.99	ó2 10
4/27/76	60 mph	20 min.	0.09	0.26	1.10	0.049	6.77	5.16	57.48	5 2. 64
4/29/76	60 mph	20 min.	0.04	0.09	0.82	0.030	11.42	9.55 7.36	38.59	48.14
	Average		0.06	0.18	0.96	0.040	9.10	7.36	48.04	55.39

APPENDIX I

SUPPORTING INFORMATION FOR PROCEDURAL DEVELOPMENT STUDY

SOUTHWEST RESEARCH INSTITUTE

8500 CULEBRA ROAD • POST OFFICE DRAWER 28510 • SAN ANIONIO, TEXAS 78284

May 15, 1975

SWRI SULFATE PRECONDITIONING ROUTE Important: NO WOT Accels - Accels to be PT and uniform, 3 mph/sec

	Cumulative
	Distance Miles
60 sec idle before leaving Emissions Lab	. 0
Emissions Lab N to Culebra Rd maingate @ 20-30 mph	1.030
Right turn on Culebra Rd to Callaghan Rd @ 35 mph	
Left turn on Callaghan to Millbank	
Left turn 1st street and then quick right on street parallel	
to Callaghan	
Left High Field to Millbank	
Right turn on Millbank to Moortown	
Right turn on Moortown to Topcraft	
Right turn on Topcraft to Callaghan	
Right turn on Callaghan, S to Culebra Rd	2.720
South on Callaghan to Commerce at 35 mph	3.790
Right turn on Commerce, West on Commerce to	
Military Dr at 40 mph	5.739
Right turn on Military Dr to Loop 410 access Rd	
at 40 mph	6.248
North on Loop 410 to Culebra Rd	7.127
Left turn on Culebra Rd and Left turn back on	
Loop 410 S to Marbach Rd at 55 mph	10.022
Left turn on Marbach and go East to Military Dr at 30 mph	11.179
Idle for three minutes	
Right turn on Military Dr to IH 10 at 35 mph	12.070
Left turn on IH 10 East to Gen. McMullen Dr at 55 mph	16.635
Left turn on Gen. McMullen North to Woodlawn Ave	
at 35 mph	20.236
Left turn on Woodlawn to Bandera Rd at 30 mph	20.471
Right turn on Bandera Rd NW to Loop 410 at 40 mph avg	23.786
Left turn on Loop 410 S to Ingram Rd Exit at 55 mph	25.554
Loop 410 S access Rd to Culebra Rd at 40 mph	26.55 4
Left on Culebra Rd to main gate SwRI at 40 mph Right at main gate to Emissions Lab	27.546
60 sec Idle at Emissions Lab	28.935

28.935 vs 28.8 miles of AA precondition

Initial run made in 58 min 45 sec (58.75 min)

28.935 miles (60) = 29.55 mph vs 29.8 mph of AA preconditioning 58.75 min

SAN ANTONIO, HOUSTON, CORPUS CHRISTI, TEXAS, AND WASHINGTON, D.C.

```
Last High Speed (55 mph) = 1.768

Last Mod Speed (40 mph) = 1.992

Last Low Speed (25 and 30 mph) = 1.389 = 3.381 miles
```

Total High Speed = 2.895 miles
4.565 miles
1.768 miles
9.228 miles total

TABLE I-1. DATA SUMMARY PART I, SEQUENCE A, 1975 AMC HORNET (SwRI CAR NO. EM-5) PELLETED CATALYST WITH AIRPUMP, 0.030 PERCENT SULFUR FUEL

Test			g/km			mg/km	% Fuel S	% Fuel S	Total	
Type	Date	Run	HC	CO	NO_{x}	so_2	H_2SO_4	as H_2SO_4	as SO ₂	Recovery
								2.4	0 0	. 05 43
Set 7-1	5/20/75	1	0.07	0.31	1.11	0.061	7.97	8.34	97.07	105.41
Set 7-2	5/20/75	2	0.07	0,17	1.28		16.63	17.10		
Set 7-3	5/20/75	3	0.08	0.15	1.21		47.20	50.75		
Set 7-4	5/20/75	4	0.07	0.10	1.22		61.00	65,23		
Set 7-1	5/21/75	4	0.08	0.13	1.27		18.10	19.34		
Set 7-2	5/21/75	5	0.08	0.10	1.31		21.59	23.16		
Set 7-3	5/21/75	6	0.08	0.20	1.25		27.70	29.83		
Set 7-4	5/21/75	7	0.08	0.16	1.34		35.16	38.02		
Set 7-1	5/22/75	4	0.06	0.12	1.23	0.036	33.46	36.46	61.27	97.94
	5/22/75	. 5	0.05	0.06	1.30	-	37.87	42,25	57.94	-
Set 7-2	5/22/75	6	0.05	0.11	1.23	0.048	36.28	39.37	79.90	119.27
Set 7-3		7	0.06	0.11	1.23	0.045	45.47	50.10	76.55	126.65
Set 7-4	5/22/75	1	0.00	0.03	1,20	0.043	47.41	30.10	10.33	120.03
Cold LA-4	5/21/75	1	0.43	5.60	1.20	0.035	1.61	1.24	41.22	42.46
Hot LA-4	5/21/75	2	0.15	0.64	1.18	0.035	5.02	4.20	45.21	49.41
FTP			0.27	2.78	1.19	0.035	3.55			
Cold LA-4	5/22/75	1	0,43	4.81	1.05	0,034	10.35	8.25	41.77	50.02
Hot LA-4	5/22/75	2	0.16	0,45	1.07	0.027	16.20	13.90	36.12	50.02
FTP	377 10	_	0.28	2.33	1.06	0.030	13.69			
	- 100/	_	0.4/	4 01			7.0/	(00		
Cold LA-4	5/23/75	1	0.46	4.81	1.10		7.96	6.08		
Hot LA-4	5/23/75	2	0.13	0.36	1.17		20.58	17.34		
FTP			0.27	2.28	1.14		13,25			
FET	5/21/75	3	0.09	0.25	1.13	0.024	42.06	61.17	53,15	114.33
FET	5/22/75	3	0.05	0.00	1.24	0.035	64.00	75.26	63.10	138.36
FET	5/23/75	3	0,05	0.03	1.60	0.044	77.36	86.48	74.79	161.28

TABLE I-2. DATA SUMMARY PART I, SEQUENCE A, 1975 AMC HORNET (SwRI CAR NO. EM-6) PELLETED CATALYST WITH AIRPUMP, 0.030 PERCENT SULFUR FUEL

Test	Б. 1	Date Run		g/km HC CO NO,			mg/km	% Fuel S	% Fuel S	Total
Type	Date	Run	HC		$NO_{\mathbf{x}}$	SO_2	H_2SO_4	as H_2SO_4	$as SO_2$	Recovery
Set 7-1	5/20/75	1	0.08	0.50	1.38	0.062	13.05	13.85	100.59	114.43
Set 7-2	5/20/75	2	0.08	0.44	1.41	0.034	14.94	15.83	55.72	71.55
Set 7-3	5/20/75	3	0.08	0.14	1.45	0.034	23.19	24.45	54.79	79.24
Set 7-4	5 /20/75	4	0.08	0,23	1.43	0.035	56.23	59.89	57.02	116.91
Set 7-1	5/21/75	4	0.07	0.13	1.54	0.018	39.95	43.60	30.21	73,80
Set 7-2	5/21/75	5	0.07	0.44	1.43	0.037	40.51	43.78	61.13	104.91
Set 7-3	5/21/75	6	0.07	0.18	1.45	0.040	41.91	45.50	65.89	111.40
Set 7-4	5/21/75	7	0.07	0.33	1.42	0.041	40,15	43.13	67.56	110.69
Set 7-1	5/22/75	4	0.06	0.13	1.12	0.034	26.35	28.95	57.56	123.27
Set 7-2	5/22/75	5	0.06	0.04	1.22	0.026	35.79	40.51	45.65	106.32
Set 7-3	5/22/75	6	0.06	0.02	1.30	0.033	43.10	47.79	56.64	112.07
Set 7-4	5/22 /7 5	7	0.06	0.05	1.40		51,13	56.70		
Cold LA-4	5/21/75	1	0.35	4.14	1.28	0.034	3.04	2.30	39.30	41.61
Hot LA-4	5/21/75	2	0.15	0.63	1.30	0.035	9.58	7.83	44.10	51.93
FTP			0.24	2.14	1.29	0.035	6.77			49.80
Cold LA-4	5/22/75	1	0.45	4.32	1.21	0.025	10.11	7.59	29.05	36.64
Hot LA-4	5/22 / 75	2	0.14	0.43	1.25		19.64	16.59		
FTP			0.27	2.11	1.23		15.55			
Cold LA-4	5/23/75	1	0.44	3.54	1.29	0.041	10,63	8.00	47.48	55.48
Hot LA-4	5/23/75	2	0.14	0.34	1.31		21.40	17.17		
FTP			0.27	1.71	1.30		16.77			
FET	5/21/75	3	0.08	0.01	1.70	0.028	52.89	59.44	48.46	107.90
FET	5/22/75		0.06	0.01	1,25	0.010	88.00	102.26	17.80	120.06
FET	5/23/75	3	0.05	0.04	1.48		75.12	84.06		

TABLE I-3. DATA SUMMARY PART I, SEQUENCE B, 1975 AMC HORNET (SwRI CAR NO. EM-5) PELLETED CATALYST WITH AIRPUMP, 0.030 PERCENT SULFUR FUEL

Test				g/km					mg/km	% Fuel S	% Fuel S	
Туре	Date	Run	HC	CO	NO_{x}	so ₂	H ₂ SO ₄	as H_2SO_4	as SO ₂	Recovery		
FTP	6/3/75	1	0.43	4.62	2.04		6.99*	7.11				
FTP	6/4/75	1	0.40	4.51	1.65		4.50*	4,86				
FTP	6/5/75	1	0.42	4.62	1.88		3.22*	3.41				
Set	6/3/75	2	0.06	0.04	1.47		15.27	16.61				
Set	6/3/75	3	0.06	0.06	1.35		14.42	15.55				
Set	6/4/75	2	0.11	0.14	2.05		27.28	29.91				
Set	6/4/75	3	0.06	0.05	2.23		20.70	22.29				
Set	6/5/75	2	0.06	0.06	1.43		18.94	21.25				
Set	6/5/75	3	0.06	0.09	1.46		18.06	19.72				
FET	6/3/75	4	0.06	0.03	1.45		23.96	28.04				
FET	6/4/75	4	0.06	0.07	1.61		26.08	31.48				
FET	6/5/75	4	0.06	0.06	1.81		30.00	34.90				

^{*} Non-weighted based on 11.09 actual miles run

TABLE I-4. DATA SUMMARY PART I, SEQUENCE B, 1975 AMC HORNET (SwRI CAR NO. EM-6) PELLETED CATALYST WITH AIRPUMP, 0.030 PERCENT SULFUR FUEL

Test	_		g/km		mg/km	% Fuel S	% Fuel S	Total		
Туре	<u>Date</u>	Run	HC	CO	$\overline{NO^{X}}$	SO ₂	H ₂ SO ₄	as H ₂ SO ₄	as SO ₂	Recovery
FTP	6/3/75	,1,	0.36	3.42	1.97		9.38*	9.80		
FTP	6/4/75	1	0.43	3,92	2.19		13,67*	16.99		
FTP	6/5/75	1	0.43	3.18	2.16		16.24*	14.13		
Set	6/3/75	2	0.06	0.03	1.36		29.12	31.48		
Set	6/3/75	3	0.06	0.05	1.38		27.04	29.32		
Set	6/4/75	2	0.06	0.01	1.48		32,83	34.16		
Set	6/4/75	. 3	0,06	0.01	1.36		34,65	37,27		
Set	6/5/75	2	0.06	0.02	1.59		42.59	44.95		
Set	6/5/75	3	0.07	0.09	1.51		26.54	29.84		••
FET	6/3/75	4	0.05	0.01	1.45		40.82	48.14		
FET	6/4/75	4	0.06	0.03	1.08		37.24	52.93		
FET	6/5/ 7 5	4	0.05	0.01	1.58		42.01	50.79		

^{*} Non-weighted based on 11.09 actual miles run

TABLE I-5. DATA SUMMARY PART I, SEQUENCE C, 1975 AMC HORNET (SwRI CAR NO. EM-5) PELLETED CATALYST WITH AIR PUMP, 0.030 PERCENT SULFUR FUEL

Test				g/l	km		mg/km	% Fuel S	% Fuel S	
Туре	Date	Run	HC	CO	$NO_{\mathbf{x}}$	so ₂	H ₂ SO ₄	as H ₂ SO ₄	as SO ₂	Recovery
FTP	6/10/75		0.47	4.43	1.98	0.028	4.61	4.89	33.60	38.49
FTP	6/11/75		0.46	4.42	2.06	0.023	6.66	7, 01	37.64	44.65
FTP	6/12/75		0.37	4.13	2.09	0.023	3.46	3,58	35.76	39.34
FET	6/10/75	. 2	0.05	0.07	1.26	0.027	33,24	40.13	50.13	90.26
FET	6/11/75	2	0.04	0.03	1.56	0.026	36.13	45.53	49.57	95.10
FET	6/12/75		0.05	0.10	1.50	0.021	24.16	29.50	39.61	69.11
Set Set	6/10/75 6/10/75	3 4	0.07	0.05 0.23	1.38 1.27	0.045 0.051	12.92 20.54	15.10 22.34	72.93 67.11	88.04 89.45
Set Set	6/11/75 6/11/75	3 4	0.07 0.05	0.19 0.03	1.50 1.46	0.041 0.040	12.60 25.48	14.18 28.46	69.94 65.53	84.12 96.98
Set Set	6/12/75 6/12/75	3 4	0.07 0.05	0.08 0.02	1.43 1.60	0.041 0.032	17.88 25.41	19.78 26.69	69.52 50.95	89.30 77.64

TABLE I-6. DATA SUMMARY PART I, SEQUENCE C, 1975 AMC HORNET (SwRI CAR NO. EM-6) PELLETED CATALYST WITH AIRPUMP, 0.030 PERCENT SULFUR FUEL

Test									mg/km	% Fuel S	% Fuel S	Total
Type	<u>Date</u>	Run	HC	CO	NO_x	SO_2	H_2SO_4	as H_2SO_4	$as SO_2$	Recovery		
FTP	6/10/75		0.44	3.38	2.02	0.030	8.44	8.89	41.27	50.16		
FTP	6/11/75	•	0.48	3.38	2.08	0.027	7.97	8.52	43.77	52.29		
FTP	6/12/75		0.39	3.25	2.17		12.56	12.72				
FET	6/10/75	2	0.04	0.00	1.29	0.036	44.30	57.04	71.50	128.54		
FET	6/11/75	2	0.05	0.07	1.56	0.037	38.03	46.29	68.64	114.93		
FET	6/12/75	2	0.04	0.00	2.74	0.036	46.62	58,63	69.62	128.25		
Set	6/10/75	3	0.06	0.03	1.60	0.038	22.33	23.31	60.28	83.59		
Set	6/10/75	4	0.06	0.03	1.35	0.034	33.67	38.27	59.95	98.22		
Set	6/11/75	3	0.04	0.03	1.04	0.030	12.85	25.12	90.47	115.59		
Set	6/11/75	4	0.09	0.04	1.85	0.040	32.83	35.83	66.71	102.54		
Set	6/12/75	3	0.05	0.02	1.59	0.033	31.33	33.51	53.97	87.49		
Set	6/12/75	4	0.05	0.00	1.54	0.031	43.82	48.83	53.65	102.48		

TABLE I-7. DATA SUMMARY PART I, SEQUENCE D, 1975 AMC HORNET (SWRI CAR NO. EM-5) PELLETED CATALYST WITH AIRPUMP, 0.030 PERCENT SULFUR FUEL

Test			<u> </u>	g/1	km		mg/km	% Fuel S	% Fuel S	Total
Туре	Date	Run	HC	CO	NO_X	so_2	H_2SO_4	as H_2SO_4	as SO ₂	Recovery
Set	6/17/75	1	0.35*	3.92*	1.26	0.022	9.25	9.15	33,94	43.09
Set	6/17/75	2	0.06	0.13	1.40	0.028	25.14	26.99	46.33	73.32
Set	6/17/75	3	0.05	0.13	1.91	0.023	36.02	39.80	38.97	78.77
Set	6/17/75	4	0.05	0.14	1.22	0.038	38.43	44.29	66.54	110.83
Set	6/17/75	5	0.06	0.05	1.39	0.035	37.95	42.04	58.63	100.67
Set	6/17/75	6	0.06	0.02	1.42	0.031	46.41	51.21	51.69	102.90
Set	6/17/75	7	0.05	0.07	1.42	0.032	41.99	46.84	55.12	101.96
Set	6/17/75	8	0.05	0.09	1.34	0.044	36.63	40.79	74.67	115.46
Set	6/17/75	9	0.06	0.03	1.48	0.025	43.53	47.42	41.58	89.01
Set	6/17/75	10	0.06	0.06	1.57	0.035	41.22	45.51	59.14	104.64
Set	6/17/75	11	0.06	0,14	1.31	0.041	41.73	46.26	69.08	115.34
Set	6/17/75	12	0.06	0.07	1.35	0.028	36.11	39.85	47.87	87.72
Set	6/17/75	13	0.06	0.08	1.48	0.048	46.67	50.65	80.43	131.07
Set	6/17/75	14	0.06	0.14	1.28	0.055	25.46	28.33	93.66	121.99
Set	6/17/75	15	0.06	0.07	1.36	0.035	44.55	49.27	59.62	108.90
Set	6/17/75	16	0.07	0.45	1.23	0.060	25.01	28.07	102.53	130.60
Set	6/17/75	17	0.06	0.04	1.30	0.027	37.15	41.40	45.50	86.90
Set	6/17/75	18	0.06	0.14	1.38	0.042	25.61	28.78	72.91	101.69
Set	6/17/75	19	0.06	0.02	1.31	0.032	43.72	49.23	54.61	103.83
Set	6/17/75	20	0.06	0.08	1.21	0.044	31.39	34.35	73.07	107.42
*Deleted	from average									
	Avg.	1-20	0.06	0.10	1.50	0.036	35.70	39.51	61.30	100.81
	Std. Dev.	1-20	0.005	0.09	0.54	0.010	9.46	10.66	17. 97	20,42
Coef.	of Var (%)	1-20	8.3	88.9	36.4	28.5	26.6	27.0	29.3	20.3
	Avg.	4-20	0.06	0.10	1.36	0.038	37.86	42.02	65.10	107.11
	Std. Dev.	4-20	<0.01	0.10	0.10	0.010	7.17	7,80	16,62	13.10
Coef.	of Var (%)	4-20	8.2	100.0	7.3	25.3	18.9	18.6	25.5	12.2

TABLE I-8. DATA SUMMARY PART I, SEQUENCE D, 1975 AMC HORNET (SwRI CAR NO. EM-6) PELLETED CATALYST WITH AIRPUMP, 0.030 PERCENT SULFUR FUEL

Tes	t			g/k	m		mg/km	% Fuel S	% Fuel S	Total
Тур	e Date	Run	HC	CO	NO_{x}	SO ₂	H ₂ SO ₄	as H_2SO_4	as SO2	Recovery
										-
Set	6/18/75	1	0.30*	3.31*	1.20	0.067	8.16	8.17	103.48	111.65
Set	6/18/75	2	0.06	0.12	1.34	0.046	21.13	22.90	76.32	99.22
Set	6/18/75	3	0.06	0.17	1.32	0.038	23.90	26.82	66.11	92.93
Set	6/18/75	4	0.06	0.03	1.26	0.034	32.60	35.74	57.13	92.87
Set	6/18/75	5	0.06	0.07	1.37	0.037	33.55	36.04	60.79	96.83
Set	6/18/75	6	0.06	0.05	1.27	0.034	41.89	45.66	55.78	101.43
Set	6/18/75	7	0.06	0.11	1.27	0.037	40.97	45.78	62.46	108.24
Set	6/18/75	8	0.06	0.03	1.48	0.042	53,24	56 .4 6	67.62	124.08
Set	6/18/75	9	0.06	0.20	1.41	0.049	28.56	31.18	82.03	113.21
Set	6/18/75	10	0.06	0.06	1.23	0.031	30.68	33.61	51.82	85.43
Set	6/18/75	11	0.05	0.06	1.33	**	42.62	47.03	*	*
Set	6/18/75	12	0.06	0.19	1.36	0.050	32.92	36.26	84.58	120.84
Set	6/18/75	13	0.07	0.23	1.32	0.084	24.94	27.50	141.22	168.72
Set	6/18/75	14	0.06	0.06	1.44	0.028	43.78	49.48	48.17	97.66
Set	6/18/75	15	0.06	0.04	1.42	0.035	43.67	48.76	59.68	108.44
Set	6/18/75	16	0.06	0.29	1.33	0.040	31.58	35.79	70.21	106.00
Set	6/18/75	17	0.07	0.52	1.42	0.065	24.33	26.85	110.38	137.23
Set	6/18/75	18	0.06	0.04	1.33	0.037	35.23	39.41	62.68	102.10
Set	6/18/75	19	0.07	0.22	1.27	0.035	33.80	37.63	59.55	97.18
Set	6/18/75	20	0.06	0.09	1.38	0.030	37.21	42,52	51.61	94.14
*Delete	ed from average				-					
** Sam	ple Vial Broken									
	Avg.	1-20	0.06	0.14	1.34	0.043	33.45	36.68	72.19	108.33
	Std. Dev.	1-20	< 0.01	0.13	0.07	0.015	10.28	11.09	23.66	19.25
	Coef. of Var. (%)	1-20	6.2	90.4	5.5	33.7	30.7	30.2	32.8	17.8
	Avg.	4-20	0.06	0.13	1.35	0.042	35.97	39.75	70.36	109.65
	Std. Dev.	4-20	< 0.01	0.13	0.07	0.015	7.56		24.48	20.51
C	Coef. of Var. (%)	4-20	7.9	95.9	5.4	34.8	21.0	20.6	34.8	18.7

TABLE I-9. DATA SUMMARY PART I, SEQUENCE E, 1975 AMC HORNET (SwRI CAR NO. EM-5) PELLETED CATALYST WITH AIR PUMP, 0.030 PERCENT SULFUR FUEL

			Fuel	Gaseous Emissions, g/km			/km	mg/km % Fuel		% Fuel S	Total
Test Type		Run	Canister	HC	co	NO_X	SO ₂	H_2SO_4	as H_2SO_4	as 30 ₂	Recovery
Set-7	6/23/75	1	connected	0.22	2.40	1.90	0.050	21.75	21,50	75.97	97.47
Set-7	6/23/75	2	connected	0.06	0.07	1.60	0.042	35,80	39.56	70.91	110.46
Set-7	6/23/75	3	connected	0.06	0.03	1.83	0.041	38.18	39.70	65.66	105.36
Set-7	6/23/75	4	connected	0.06	0.04	1.92	0.036	49.83	51.89	57.37	109.26
Set-7	6/23/75	5	connected	0.06	0.08	1.83	0.063	36.97	37.93	99.12	137.05
Set-7	6/23/75	6	connected	0.07	0.06	1.88	0.059			92.11	
Set-7	6/23/75	7	disconnected	0.07	0.00	1.62	0.026	44.08	46.94	42.02	88.96
Set-7	6/23/75	8	disconnected	0.07	0.08	1.78	0.022	48.72	48.37	33.70	82.07
Set-7	6/23/75	9	disconnected	0.06	0.04	1.31	0.027	32.63	38.83	50.01	88.84
Set-7	6/23/75	10	disconnected	0.06	0.07	1.55	0.035	39.82	43.49	59.10	102.59
Set-7	6/23/75	11	disconnected	0.06	0.10	1.54	0.037	45.04	51.62	65.35	116.97
Set-7	6/23/75	12	disconnected	0.06	0.10	1.96	0.028	43.95	51.32	40.21	100.53

Average, all tests 41.5 Standard Deviation 5.7 Coefficient of Var. 13.7% Average, tests 2-5 40.2 Standard Deviation 6.47 Coefficient of Var. 16.1% Average, tests 7-12 42,37 Standard Deviation 5,55 Coefficient of Var. 13.1%

TABLE I-10. SUMMARY OF EMISSION RESULTS, PART II, SEQUENCE A (SET-7 TESTS) 1975 AMC Hornet, EM-5

Pelleted Catalyst With Air, 0.03 Percent Fuel Sulfur Test Date 7/23/75, All Tests With One Driver

								Avg. Cat.			
	\mathtt{Test}	Gase	ous Emis	sions, g/m	i	so_2 ,	H_2SO_4 ,	Temp.	% of Fu	el "S" as	Total
	No.	HC	CO	CO2	NO_{x}	mg/mi	mg/mi	°F	so ₂	H_2SO_4	Recovery
	1	0.10	0.06	489.0	2.30	65.71	37.87	914	68.68	25.87	94.55
	2	0.10	0.03	1 89.0	2.15	50.85	38.42	914	53.17	26.25	79.43
	3	0.10	0.08	483.0	2.08	68.32	52,31	907	72.38	36.21	108.58
	4	0.11	0.08	491.0	1.95	53.10	58.93	916	55.26	40.06	95.32
	5	0.09	0.11	491.0	2.09	69.51	64.89	913	72,38	44.15	116.53
	6	0.10	0.00	482.0	2.19	61.94	57.62	910	65.71	39.94	105.64
	7	0.11	0.07	497.0	2.29	81.16	61.64	910	83.54	41.46	124.99
	8	0.05	0.05	479.0	2,32	52.10	62.13	908	55.59	43.31	98.90
1	9	0.09	0.07	488.0	2.29	53.65	62.63	915	56.24	42.90	99.14
,	10	0.09	0.06	480.0	2.16	66.07	59.76	912	70.43	41.62	112.05
	11	0.10	0.06	496.0	2.23	53.15	64.38	912	54.77	43.34	98.11
	12	0.10	0.00	487.0	2.16	45.85	60.13	908	48.14	41.25	89.40
	All Tests										
•	Average	0.10	0.06	488	2.18	60.12	56.73	912	63.02	38.86	101.89
	Std. Dev.	0.02	0.03	5.8	0.11	10.29	9.29	2.97	10.61	6.34	12,43
	Coef. of Var		53.9%	1.2%	5.1%	17.1%	16.4%	0.3%	16.8%	16.3%	12.2%
	Tests 4-12										
	Average	0.09	0.06	488	2.19	59.61	61.35	912	62.45	42,00	104.45
	Std. Dev.	0.02	0.04	6.6	0.12	11.04	2.45	2.83	11.28	1.50	11.38
	Coef. of Var		64.3%	1.3%	5.3%	18.5%	4.0%	0.3%	18.1%	3.6%	10.9%

TABLE I-11. SUMMARY OF EMISSION RESULTS, PART II SEQUENCE B 1975 AMC HORNET, EM-5

Pelleted Catalyst with air, 0.03 percent sulfur fuel Test date 7/24/7

								Cat.			
Test	Test			issions, g/		so_2 .	H_2SO_4	Temp.		el "S" as	Total
No.	Type	HC	CO	CO ₂	NO_X	mg/mi	mg/mi	°F	so_2	H_2SO_4	Recovery
1	35 mph	0.00	0.06	360.0	2.42	25.00	14.32	757	35.57	13.32	48.89
2	35 mph	0.08	0.02	375.0	2.32	29. 25	28, 23	736	39.89	25.15	65.05
3	35 mph	0.05	0.00	354.0	2,28	44.19	30.28	753	63.85	28.58	92.43
4	35 mph	0.08	0.08	358.0	2.35	38.83	32.00	755	57 .4 6	29.85	87.31
5	35 mph	0,08	0.02	346.0	2.47	46.29	37,58	753	68.42	36.29	104.71
6	Set 7	0.08	0.01	495.0	2.80	121.83	156.56	921	125.81	105.63	231.45
7	Set 7	0.08	0.07	481.0	2.75	170.78	89.30	922	181.48	62.00	243.47
Avg. 1-5		0.06	0.04	358.6	2. 37	36.71	28.48	751	53.04	26.64	79.68
Std. Dev.	1 - 5	0.03	0.03	10.6	0.08	9.29	8.65	8.4	14.6	8.47	22.41
Coef. of	Var. 1-5	5 58. 2 ^σ c	82.2%	3.0%	3.2%	25.3%	30.36	1.1%	27.5%	31.79	28.13
Avg. 2-5		0.07	0.03	358.3	2.36	39.64	32.02	7 4 9	57.41	29.97	87.38
Std. Dev.	2-5	0.02	0.03	12.2	0.08	7.61	4.01	8.8	12.51	4. 66	16.58
Coef. of	Var. 2-5	5 28.6%	100.0%	3,4	3.5%	19.2%	12.5%	1.2%	21.8%	15.5%	19.0%

TABLE I-12. SUMMARY OF EMISSION RESULTS, PART II, SEQUENCE C 1975 AMC Hornet, EM-5

Pelleted Catalyst With Air, 0.03 Percent Sulfur Fuel Test Date 7/25/75

Test	Test	Gas	eous Emi	ssions, g/	mi	so ₂	H ₂ SO ₄	Cat. Temp.	∞ of Fue	el "S" as	Total
No.	$\underline{\text{Type}}$	HC	co	CO ₂	70 ⁷	mg/mi	mg/mi	°F	SO ₂	H ₂ SO ₄	Recovery
1	50 mph	0.06	0.06	426.0	1.87	33.60	58.63	970	40.30	45.94	86.24
2	5 ⁻ 0 mph	0.07	0.00	426.0	2.13	30.67	66.45	968	36.81	52,12	88.93
3	50 mph	0.06	0.03	429.0	1.96	27.79	63.39	971	33.16	49.41	82.57
4	50 mph	0.05	0.00	426.0	2.10	39.30	60.75	963	47.17	47.63	94.80
5	50 mph	0.04	0.03	394.0	1.78	35.79	61.06	958	46.43	51.`76	98.19
6	Set 7	0.12	0.15	484.0	2.49	59.92	71.96	907	63.32	1 9.69	113.00
. 7	Set 7	0.10	0.04	491.0	2,58	71.43	73.45	904	74.42	50.00	124.43
Avg. 1 Std. D Coef.		0.06 0.01 16.7%	0.02 0.03 104.6%	420.2 14.7 3.5	1.97 0.15 7.6%	33.43 4.46 13.3%	62.06 2.98 4.8%	966 5.4 0.6%	40.77 6.06 14.9%	49.37 2.65 5.4%	90.15 6.33 7.0%
Avg. 2 Std. D Coef.		0.06 0.01 23.5%	0.02 0.02 115.5%	418.8 16.6 4.0	1.99 0.16 8.0%	33.39 5.15 15.4%	62.91 2.64 4.2%	965 5.7 0.6%	40.89 6.99 17.1%	50.23 2.11 4.2%	91.12 6.87 7.5%

TABLE 1-13. SUMMARY OF EMISSION RESULTS, PART II SEQUENCE D (SET-9 TESTS) 1975 AMC Hornet EM-5

Pelleted Catalysts with air, 0.03 percent sulfur fuel Test date 7/30/75

	Test	_Gas	Gaseous Emissions, g/mi			so_2	H_2SO_4	4 Avg. Cat. % of Fuel S			s Total		
	No.	HC	CO	co ₂	$NO_{\mathbf{x}}$	mg/mi	mg/mi	Temp. °F	SO ₂	H ₂ SO ₄	Recovery	%O2	
	1	0,27	0.43	504.0	2.10	9,95	51.40	0.21	10.07	22.00	44.0/	r 20	
	2		0.05					921	10.07	33.99	44.06	5.38	
		0.11		488.0	2.38	52.25	71.17	913	54.78	48.75	103.54	5.39	
	3	0.10	0.03	473.0	2.27	40.97	58.51	908	44.28	41.32	85.60	5.74	
	4	0.09	0.06	471.0	2.29	50.69	70.50	909	55.08	50.06	105.13	5.71	
	5	0.09	0.07	469.0	2.29	50.05	70.50	902	54.57	50.23	104.80	5.77	
	6	0.08	0.13	463.0	2.21	54.02	75.03	904	59.70	54.18	113.88	5.61	
	7	0.09	0.00	477.0	2.33	50.81	69.93	904	54.52	49.02	103.53	5.77	
	8	0.09	0.09	459.0	2.21	47.55	72.53	905	53.00	52.81	105.82	5.55	
H	9	0.15	0.03	482.0	2.36	63.05	62.74	904	66.90	43.49	110.39	5.63	
-16	10	0.11	0.04	474.0	2.36	41.01	76.28	903	44.20	53.71	97.91	5.50	
O1	11	0.09	0.07	476.0	2.30	52.19	70.15	908	56.05	49.22	105.27	5.33	
	12	0.10	0.13	497.0	2.48	48.58	70.72	908	49.97	47.52	97.49	5.30	
Avg.	1-12	0.11	0.09	477.8	2.30	46.76	68.29	907	50.2 6	47.86	98.12	5.56	
Std.	Div. 1-12	0.05	0.11	.13.2	0.10	12.95	7.19	5.3	14.06	5.78	18.44	0.17	
Coef.	of Var. 1-12	45.8%	119.7%	2.8%	4.2%	27.8%	10.5%	0.6%	28.0%	12.1%	18.8%	3.1%	
Avg.	4-12	0.10	0.07	474.2	2.31	50.88	70.93	905	54.89	50.02	104.91	5.57	
Std.	Div. 4-12	0.02	0.04	11.1	0.08	5.85	3.82	2.49	6.24	3.34	5.21	0.17	
Coef.	of Var. 4-12	21.1%	63.0%	2.3%	3.6%	11.5%	5 . 4	0.3%	11.4%	6.7%	5.0%	0.03%	

TABLE I-14. SUMMARY OF EMISSION RESULTS, PART II, SEQUENCE E
1975 California Plymouth, EM-3, SET 7
Monolithic Catalyst, 0.0415 Percent Sulfur Fuel
Test Dates 8/1/75, 8/5/75

Test		Gase	eous Emis	sions g/n		SO_2	H ₂ SO ₄
No.	Date	HC	CO	CO_2	$NO_{\mathbf{X}}$	mg/mi	mg/mi
1	8-1-75	0.05	0.47	607.0	0.76	175.67	35.72
2	0-1-13	0.03	0.68	647.0	0.85	197.14	32.12
3	ı	0.04	0.51	615.0	0.82	153.48	27.33
4		0.05	0.66	613.0	0.81	161.06	24.57
5	!	0.05	0.75	639.0	0.84	178.31	23.37
6	i	0.05	0.72	630.0	0.82	160.84	23.72
7	;	0.12	0.83	629.0	0.83	179.91	14.08
8	1	0.12	0.71	620.0	0.81	171.31	15.55
9		0.10	0.45	629.0	0.84	152.24	26.03
10	i i	0.05	1.01	636.0	0.80	173.91	
11	:	0.06	1.15	599.0	0.83	178.18	18.45
12	ĺ	0.04	0.76	614.0	0.84	167.35	22.97
13	; I	0.04	0.78	618.0	0.84	152.00	21.63
14		0.05	1.50	649.0	0.91	211.85	18.73
15	4	0.04	0.79	616.0	0.83	163.10	17.28
13							
1	8-5-75	0.06	0.51	682.0	0.92	172.12	40.08
2		0.04	0.60	664.0	0.97	200.86	45.50
3		0.04	0.65	6 58.0	0.95	168.07	40.39
4		0.04	0.48	658.0	0.91	164.43	48.55
5		0.04	0.55	659.0	0.92	158.63	38.19
6		0.04	0.55	639.0	0.91	139.74	43.17
7		0.04	0.71	648.0	0.91	163.93	34.52
8		0.04	0.84	636.0	0.88	160.23	34.94
9	•	0.04	0.47	658.0	0.90	149.93	36.14
10	Ì	0.04	1.04	645.0	0.91	170.57	27.31
11	į	0.04	0.72	623.0	0.86	190.26	27.44
		0.04	0.53	632.0	0.86	140.64	29.62
12	!	0.04	0.68	625.0	0.87	123.08	26.08
13	1	0.04	1.27	634.0	0.91	179.66	18.84
14 15	\rightarrow	0.03	0.54	620.0	0.88	194.46	22.06

Average of tests 4 to 15	
on 8/1 and 8/5	26.66
Std. Dev. of tests 4 to 15	
on 8/1 and 8/5	8, 95
Coef. of var. of tests 4 to 15	
on 8/1 and 8/5	33.6%

TABLE I-14 (Cont'd.) SUMMARY OF EMISSION RESULTS, PART II, SEQUENCE E

1975 California Plymouth, EM-3, SET 7 Monolithic Catalyst, 0.0415 Percent Sulfur Fuel Test Dates 8/1/75, 8/5/75

Avg.							
Catalyst	% Fuel '	'S'' as	Total		Fuel Wt.		Test
Temp. °F	so_2	H ₂ SO ₄	Recovery	%O2	grams	Driver	No.
963	110.50	14.68	125.19	4.36	2663	В	1
965	116.24	12.37	128.61	4.79	2821	В	2
959	95.23	11.08	106.31	4.81	2679	В	3
960	100.27	9.99	110.27	4.74	2669	С	4
963	106.45	9.12	115.57	4.71	2794	\mathbf{A}_{c}	5
958	97.37	9.38	106.75	4.73	2758	C	6
955	109.08	5.58	114.65	4.73	2743	Α	. 7
951	105.38	6.25	111.63	4.76	2671	A	8
954	92.29	10.31	102.60	4.73	2738	C	9
954	104.20			4.61	2772	В	10
968	113.32	7.67	120.99	4.59	2625	В	11
958	103.89	9.32	113.20	4.69	2695	C	12
962	93.82	8.72	102.55	4.64	2717	Α	13
950	124.22	7.18	131.40	4.73	2821	В	14
951	101.01	6.99	108.01	4.73	2688	Α	15
940	96.38	14.66	111.04	4.48	3101	С	1
943	115.42	17.08	132.50	4.81	3010	В	2
945	97.47	15.30	112.78	4.80	2988	В	3
937	95.36	18.40	113.76	4.83	2946	C	4
931	91.82	14.44	106.27	4.87	29 5 0	A	5
927	83.50	16.85	100.27	4.78	2854	Ĉ	6
926	96.46	13.27	100.33	4.83	2907	A	7
922	96.05	13.68	109.74	4.86	2849	A	8
923	86.92	13.69	100.61	4.79	2935	Ĉ	9
	100.75	10.54	111.29	4.79	2884	В	10
919		10.54	127.50	4.68	2783	В	
924	116.52						11
934	84.97	11.69	96.66 95.47	4.83	2804	C	12
927	75.08	10.39	85.47	4.81	2773	A	13
927	107.94	7.40	115.34	4.63	2849	В	14
928	119.78	8.88	128.66	4.78	2780	Α	15

Average of tests
4 to 15 on 8/1 & 8/5 10.47

Std. Dev. of tests 4 to 15 on 8/1 & 8/5 3.31

Coef. of Var. tests 4 to 15 on 8/1 & 8/5 31.6

APPENDIX J SUPPORTING INFORMATION FOR BASELINE STUDIES

TABLE J-1. BASELINE EMISSIONS TEST RESULTS 1975 FORD GRANADA, BASELINE CAR I-3 NO CATALYST, 0.030 PERCENT SULFUR FUEL

				g/	km		mg/km	H_2SO_4 as %	30 ₂ as %	Total
Date	Test Type	Duration	HC	CO	NOx	SO ₂	H ₂ SO ₄	of fuel S	of fuel S	Recovery
10/23/75	FTP		1.01	26.63	1.65	0.063	0.78	0.64	79. 9 8	80.62
11/6/75 Average	FTP		$\frac{0.94}{0.98}$	$\frac{24.00}{25.32}$	$\frac{1.60}{1.63}$	0.069 0.066	$\frac{0.97}{0.88}$	$\frac{0.76}{0.70}$	83.08 81.53	83.84 82.23
10/23/75	SET-7	23 min	0.39	9.52	1.72	0.051	0.86	1.03	94.36	95.40
11/6/75 Average	SET-7	23 min	$\frac{0.52}{0.46}$	$\frac{9.42}{9.47}$	$\frac{1.92}{1.82}$	0.060	$\frac{0.56}{0.71}$	$\frac{0.62}{0.83}$	$\frac{102,47}{98,42}$	$\frac{103.09}{99.25}$
10/00/==		20								a. .
10/23/75	SET-7	23 min	0.38	10.70	1.62	0.052	0.24	0.28	91.51	91.79
11/6/75 Average	SET-7	23 min	$\frac{0.39}{0.39}$	9.20	$\frac{1.85}{1.74}$	$\frac{0.043}{0.048}$	$\frac{0.24}{0.24}$	$\frac{0.26}{0.27}$	$\frac{71.62}{81.57}$	$\frac{71.89}{81.84}$
10/23/75	FET	12 min	0.25	7.84	1.52	0.055	0.43	0.56	110.42	110.99
11/6/75	FET	12 min	0.30	5.25	1.78	0.074	0.47	0.55	130.68	131.22
Average			0.28	6.55	1.65	0.065	0.45	0.56	120.55	121.11
10/23/75	SET-7	23 min	0.41	10.87	1.57	0.057	0.36	0.40	98.76	99.16
11/6/75	SET-7	23 min	0.38	9.55	$\frac{1.71}{1.71}$	0.063	$\frac{0.17}{0.27}$	0.19	105.09	105.28
Average			0.40	10,21	1.64	0.060	0.27	0.30	101.93	102, 22
10/23/75	SET-7	23 min	0.37	10,54	1.49	0.054	0.15	0.17	93.39	93.56
11/6/75	SET-7	23 min	<u>0.39</u>	10.69	2.68	0.062	0.25	0.26	101.47	101.74
Average			0.38	10.62	2.09	0.058	0.20	0.22	97.43	97.65

TABLE J-2. BASELINE EMISSIONS TEST RESULTS 1975 DODGE CORONET, BASELINE CAR I-4 NO CATALYST, 0.030 PERCENT SULFUR FUEL

				g/:	km		mg/km	H_2SO_4 as $\%$	SO_2 as $\%$	Total
<u>Date</u>	Test Type	Duration	HC	_CO_	NOx	SO ₂	H_2SO_4	of fuel S	of fuel S	Recovery
10/28/75 10/29/75	FTP		0.85	9.03	1.18	0.071	0.85	0.58	74.01	74.59
Average	FTP		$\frac{0.77}{0.81}$	$\frac{10.15}{9.59}$	$\frac{1.25}{1.22}$	$\frac{0.074}{0.073}$	$\frac{1.25}{1.05}$	$\frac{0.87}{0.73}$	$\frac{78.19}{76.10}$	$\frac{79.06}{76.83}$
10/28/75	SET-7	23 min	0.51	6.02	1.19	0.052	1.95	1.87	75.81	77.68
10/29/75 Avera ge	SET-7	23 min	$\frac{0.41}{0.46}$	5.15 5.59	$\frac{1.30}{1.25}$	$\frac{0.053}{0.053}$	$\frac{1.18}{1.57}$	$\frac{1.15}{1.51}$	79.58 77.70	$\frac{80.73}{79.21}$
10/28/75	SET-7	23 min	0.41	3.53	1.16	0.054	1.52	1.51	82,34	83, 86
10/29/75 Average	SET-7	23 min	$\frac{0.39}{0.40}$	4.82	$\frac{1.24}{1.20}$	$\frac{0.050}{0.052}$	$\frac{1.93}{1.73}$	$\frac{1.86}{1.69}$	$\frac{73.90}{78.12}$	75.76 79.81
10/28/75	FET	12 min	0.44	2.04	1,24	0.052	1.63	1.90	93.18	95.08
10/29/75 Average	FET	12 min	$\frac{0.37}{0.41}$	2.53	$\frac{1.23}{1.24}$	$\frac{0.048}{0.050}$	$\frac{2.71}{2.17}$	$\frac{3.03}{2.47}$	81.92 87.55	84.25 90.02
10/28/75	SET-7	23 min	0.45	5.04	1.35	0.058	1.52	1.42	82.41	83.84
10/29/75 Average	SET-7	23 min	$\frac{0.34}{0.40}$	3.74 4.39	$\frac{1.39}{1.37}$	$\frac{0.053}{0.056}$	$\frac{1.90}{1.71}$	$\frac{1.92}{1.67}$	$\frac{81.97}{82.19}$	$\frac{83.89}{83.87}$
10/28/75	SET - 7	23 min	0.44	3.01	1.13	0.059	1.56	1.50	87.87	89.37
10/29/75 Average	SET-7	23 min	$\frac{0.34}{0.39}$	$\frac{3.80}{3.41}$	$\frac{1.44}{1.29}$	$\frac{0.057}{0.056}$	$\frac{1.88}{1.72}$	$\frac{1.83}{1.67}$	$\frac{77.02}{82.45}$	$\frac{78.85}{84.11}$

TABLE J-3. BASELINE EMISSION TEST RESULTS
1975 HORNET SPORTABOUT, BASELINE CAR IIA-1
PELLETED CATALYST WITH AIR PUMP
(0.030% SULFUR FUEL)

			Test			g/km		mg/km	% Fuel S as S	% Fuel S as S	Total
T	est	Date	Type	HC	СО	NO_x	SO ₂	H_2SO_4	in H ₂ SO ₄	in SO ₂	Recovery
	1	10/7/75	FTP	0.33	2.28	1.43	0.030	9.93	9.49	44. 43	53.91
	1	10/8/75	\mathtt{FTP}	0.35	3.06	$\frac{1.38}{1.41}$	0.047	$\frac{7.41}{8.67}$	7.27	71.19	<u>78.46</u>
			Avg.	0.34	2.67	1.41	0.038	8.67	8.38	57.81	66.19
	2	10/7/75	SET-7	0.10	0.18	1.64	0.055	9.71	13.48	116.79	130.27
	2	10/8/75	SET-7	0.11	$\frac{0.25}{0.22}$	$\frac{1.79}{1.72}$	0.036	20.94	27.03	70.63	97.66
			Avg.	0.10	0.22	1.72	0.046	15.32	20, 26	93.71	113.96
	3	10/7/75	SET-7	0.08	0.11	1.74	0.036	13.92	18.84	75.31	94.15
<u>د</u>	3	10/8/75	SET-7	0.08	0.11	$\frac{1.75}{1.74}$		27.48	37.81		
J-4			Avg.	0.08	0.11	1.74	0.036	20.70	28.32	75.31	94.15
	4	10/7/75	FET	0.07	0.05	1.81	0.032	31.47	42.13	66.45	108.58
	4	10/8/75	FET	0.06	0.01	1.55	0.041	44.55	69.56	97.11	166.67
			Avg.	0.06	0.03	$\frac{1.55}{1.68}$	0.036	38.01	55.84	81.78	137.62
	5	10/7/75	SET-7	0.12	0.33	2. 28	0.082	13.48	13.81	128.48	142.29
	5	10/8/75	SET-7	0.09	0.40	1.75	0.037	16.46	23.35	80.99	104.34
			Avg.	0.10	0.36	2.02	0.060	14.97	18.58	104.74	123.32
	6	10/7/75	SET-7	0.12	0.11	1.59	0.041	9.77	12.74	82.11	94.86
	6	10/8/75	SET-7	<u>0.11</u>		1.65	0.060	18.14	<u>23.95</u>	121.71	145.66
		•	Avg.	0.12	0.11	1.62	0.050	13.96	18.34	101.91	120.26
		Avg. of 8	SET-7's	0.10	0.21	1.77	0.050	16.24	21.38	96.57	115.60

J - 4

TABLE J-4. BASELINE EMISSION TEST RESULTS 1975 CALIFORNIA CHEVROLET IMPALA, BASELINE CAR IIB-1 PELLETED CATALYST WITH AIR PUMP, 0.0415 PERCENT SULFUR FUEL

				g/	km		mg/km	${ m H_2SO_4}$ as $\%$	SO ₂ as %	Total
<u>Date</u>	Test Type	Duration	HC	CO	NOx	SO ₂	H ₂ SO ₄	of fuel S	of fuel S	Recovery
11/6/75 11/7/75 Average	FTP FTP		0.37 0.40 0.39	10.83 10.28 10.56	$\frac{1.19}{1.14}$	0.136 0.082 0.109	1.49 4.74 3.12	$0.66 \\ \frac{2.16}{1.41}$	91.43 56.71 74.07	92.09 58.86 75.48
11/6/75 11/7/75 Average	SET-7 SET-7	23 min 23 min	0.09 0.10 0.10	2.82 3.41 3.12	1.09 0.88 0.99	0.068 0.064 0.066	8.39 6.77 7.58	5.26 4.60 4.93	65.51 66.81 66.16	70.77 71.41 71.09
11/6/75 11/7/75 Average	SET-7 SET-7	23 min 23 min	0.10 0.09 0.10	4.31 3.20 3.76	1.05 0.99 1.02	$0.110 \\ 0.076 \\ \hline 0.093$	8.01 10.03 9.02	5.10 6.88 5.99	$ \begin{array}{r} 106.87 \\ \hline 80.14 \\ \hline 93.51 \end{array} $	111.97 87.02 99.50
11/6/75 11/7/75 Average	FET FET	12 min 12 min	0.07 0.05 0.06	1.47 0.73 1.10	0.94 0.84 0.89	0.064 0.051 0.058	7.23 12.94 10.09	4.99 9.36 7.18	67.55 56.47 62.01	72.54 65.83 69.19
11/6/75 11/7/75 Average	SET-7 SET-7	23 min 23 min	0.11 0.09 0.10	4.62 3.28 3.95	1.04 0.94 0.99	0.085 0.091 0.088	7.33 10.35 8.84	4.44 7.01 5.73	79.09 94.47 86.78	83.54 101.48 92.51
11/6/75 11/7/75 Average	SET-7 SET-7	23 min 23 min	0.09 0.09 0.09	2.84 2.20 2.52	1.01 0.99 1.00	0.075 0.068 0.072	9.79 14.75 12.27	6.41 <u>9.52</u> 7.97	75.14 67.28 71.21	81.56 76.80 79.18

TABLE J-5. BASELINE EMISSIONS TEST RESULTS
1975 CALIFORNIA PLYMOUTH GRAN FURY, BASELINE CAR IIB-6
MONOLITHIC CATALYST WITH AIR PUMP (0.0415% SULFUR FUEL)

					41		12	% Fuel S	% Fuel S	
	_	Test			g/km		mg/km	as S	as S	Total
Test	Date	Туре	HC	CO	$\overline{\text{NO}_{\mathbf{x}}}$	so ₂	$\frac{\text{H}_2\text{SO}_4}{}$	in H ₂ SO ₄	in SO ₂	Recovery
1.	10/2/75	FTP	0.39	6.46	1.01	0.096	6.44	2.86	65.14	68.00
1	10/3/75	FTP	0.42	5.06	1.08	0.079	<u>4.55</u>	1.93	51.51	53.44
		Avg	0.40	5.76	1.04	0.088	5. 50	2.40	58.33	60.73
2	10/2/75	SET-7	0.04	0.42	0.74	0.049	37.41	24.59	49.06	73.64
2	10/3/75	SET-7	0.03	0.49	0.94	0.064	14.76	9.52	63.57	73.09
		Avg.	0.04	0.46	$\frac{0.94}{0.84}$	0.057	26.09	17.06	56.28	73.37
3	10/2/75	SET-7	0.03	0.65	0.78	0.081	35.24	23,67	83.03	106.71
3	10/3/75	SET-7	0.03	0.27	0.78	0.083	23.65	15.65	83.66	99.30
		Avg.	$\frac{0.03}{0.03}$	$\frac{0.27}{0.46}$	$\frac{0.78}{0.78}$	0.082	29.45	19.66	83.34	103.00
4	10/2/75	FET	0.03	0.16	0.58	0.036	59.99	46.88	43.39	90.27
4	10/3/75	FET	0.03	0.07	0.64	0.087	57.13	44.79	104.30	149.09
		Avg.	0.03	0.12	$\frac{0.64}{0.61}$	0.062	58.56	45.84	73.85	119.68
5	10/2/75	SET-7	0.03	0.31	0.71	0.065	50.20	34.50	68.02	102.52
5	10/3/75	SET-7	0.03	0.28	0.70	0.044			48.40	
		Avg.	0.03	0.30	0.70	0.054	50.20	34.50	58, 21	102, 52
6	10/2/75	SET-7	0.03	0.36	0.76	0.072	47.26	32.23	75.63	107.87
6	10/3/75	SET-7	0.03	0.85	0.91	0.090	18.34	10.95	82.18	93.13
		Avg.	0.03	0.60	0.84	0.081	32.80	21.59	78.91	100.50
	Avg. of 8	SET-7's	0.03	0.45	0.79	0.068	32.41	21.59	69.19	93.75

TABLE J-6. BASELINE EMISSIONS TEST RESULTS
197X FORD PINTO, BASELINE CAR IV-4
DEGUSSA 3-WAY CATALYST PLUS OXIDATION CATALYST WITH AIR
(0.030% FUEL SULFUR)

Test	/km			% Fuel S	
B	·	mg/km	as S	as S	Total
Test Date Type HC CO	NO _x SO ₂	H ₂ SO ₄	in H2SO4	in SO2	Recovery
1 10/6/75 FTP 0.09 1.05	0.43 0.048	35.08	38.99	82,21	121.20
1 $10/7/75$ FTP <u>0.11</u> <u>0.97</u>	$0.37 \qquad 0.021$	13.84	<u> 16.99</u>	40.30	57.29
Avg. $0.10 1.01$	0.40 0.034	24.46	27.99	61, 26	89.25
2 10/6/75 SET-7 0.01 0.09	0.61 0.047	63.87	96.08	107.94	204.02
2 10/7/75 SET-7 <u>0.01</u> <u>0.10</u>	0.59 0.039	61.64	<u>97.96</u>	93.98	191.94
Avg. 0.01 0.10	0.60 0.043	62.63	97.02	100.96	197.98
3 10/6/75 SET-7 0.01 0.01	0.53 0.032	58.64	87.40	73.65	161.05
3 10/7/75 SET-7 <u>0.01</u> <u>0.09</u>	$0.54 \qquad 0.040$	46.56	72.22	95.30	167.51
Avg. 0.01 0.05	0.54 0.036	52.60	79.81	84.48	164.28
4 10/6/75 FET 0.01 0.00	0.66 0.037	43.58	70.79	91.07	161.86
4 10/7/75 FET <u>0.01</u> <u>0.02</u>	0.84 0.033	59.90	98.83	83.05	181.89
Avg. 0.01 0.02	0.75 0.035	51.74	84.81	87.06	171.87
5 10/6/75 SET-7 0.01 0.09	0.69 0.032	39.55	59.46	74.72	134.18
5 10/7/75 SET-7 <u>0.00</u> <u>0.03</u>	0.57	<u>57.64</u>	91.76		
Avg. $< 0.01 0.06$	$\frac{0.57}{0.63}$ ${0.032}$	48.60	75.61	74.72	134.18
6 10/6/75 SET-7 0.01 0.01	0.57 0.021	37.20	58. 98	51.71	110.68
6 10/7/75 SET-7 <u>0.00</u> <u>0.11</u>	0.48 0.025	42.51	65.49	58.94	124.44
Avg. $\langle 0.01 \rangle 0.06$	$\overline{0.52} \qquad \overline{0.023}$	39.86	62, 24	55.33	117.56
Avg. of 8 SET-7's 0.01 0.07	0.57 0.034	50.95	78.67	79.46	156.26

TABLE J-7. BASELINE EMISSION TEST RESULTS
197X PINTO, BASELINE CAR IV-17
TWC-9 3-WAY CATALYST, NO AIR INJECTION, 0.030 PERCENT SULFUR FUEL

				g	/km		mg/km	H ₂ SO ₄ as %	SO ₂ as %	Total
Date	Test Type	Duration	HC	CO	$NO_{\mathbf{x}}$	SO ₂	H ₂ SO ₄	of fuel S	of fuel S	Recovery
10/28/75	FTP		0.30	4.63	0.71	0.051	0.53	0.58	86.74	87.33
10/29/75	FTP		0.26	5.01	0.72	0.055		<u></u>	94.90	
Average			0.28	4.82	0.72	0.053	0.53	0.58	90.82	91.40
10/28/75	SET-7	23 min	0.09	1.79	0.18	0.049	0.06	0.09	113.35	113,44
10/29/75	SET-7	23 min	0.08	$\frac{1.46}{1.63}$	0.66	0.053	$\frac{0.15}{0.11}$	$\frac{0.22}{0.16}$	123.40	123.62
Average			0.09	1,63	0.42	0.051	0.11	0.16	118.38	118.53
10/28/75	SET-7	23 min	0.08	1.53	0.68	0.048	0.14	0.20	110.39	110.60
10/29/75	SET-7	23 min	0.08	$\frac{1.45}{1.49}$	0.67	0.051	0.04	0.06	119.96	120.02
Average			0.08	1.49	0.68	0.050	0.09	0.13	115.18	115.31
10/28/75	FET	12 min	0.06	0.73	0.73	0.043	0.14	0.23	106.98	107.21
10/29/75	FET	12 min	0.04	0.49	0.68	0.056	0.16	0.27	152.02	152.29
Average			0.05	0.61	0.71	0.050	0.15	0.25	129.50	129.75
10/28/75	SET-7	23 min	0.09	1.64	0.74	0.049	0.03	0.05	114.99	115.03
10/29/75	SET-7	23 min	0.08	1.36	0.74	0.057	$\frac{0.21}{0.12}$	0.33	136.88	137, 21
Average			0.09	1.50	0.74	0.053	0.12	0.19	125.94	126,12
10/28/75	SET-7	23 min	0.08	1.31	0.69	0.053	0.11	0.18	128.16	128.34
10/29/75	SET-7	23 min	0.08	1.23	0.72	0.050	0.08	0.12	125,27	125.39
Average			0.08	1.27	0.71	0.052	0.10	0.15	126.69	126.87

TABLE J-8. BASELINE EMISSION TEST RESULTS 1975 MERCEDES 240D, BASELINE CAR III-7 DIESEL POWERED, NO CATALYST, 0.23 PERCENT SULFUR FUEL

Date	Test Type	Duration	НС	g/ CO	km NO _x	SO ₂	mg/km H ₂ SO ₄	H ₂ SO ₄ as % of Fuel S	SO ₂ as % of Fuel S	Total Recovery
11/18/75 11/19/75 Average	FTP FTP		0.23 0.05 0.14	0.43 0.49 0.46	0.78 0.77 0.78	0.392 0.283 0.338	9.35 12.77 11.06	1.78 2.32 2.05	113.91 78.72 96.32	115.68 81.04 98.36
11/18/75 11/19/75 Average	SET-7 SET-7	23 min 23 min	0.10 0.04 0.07	0.36 0.38 0.37	0.74 0.90 0.82	0.363 0.324 0.344	9.75 11.48 10.62	2.17 2.50 2.34	123.70 108.35 116.03	125.86 110.86 118.36
11/18/75 11/19/75 Average	SET-7 SET-7	23 min 23 min	0.05 0.02 0.04	0.34 0.37 0.36	0.71 0.83 0.77	0.213 0.277 0.245	10.05 11.02 10.54	2.29 2.37 2.33	74. 23 90. 88 82. 56	76.53 93.24 84.89
11/18/75 11/19/75 Average	FET FET	12 min 12 min	0.04 0.05 0.05	0.31 0.31 0.31	0.71 0.82 0.77	0.356 0.296 0.326	9.39 9.61 9.50	2.33 2.24 2.29	134.97 105.65 120.31	137.30 107.89 122.60
11/18/75 11/19/75 Average	SET-7 SET-7	23 min 23 min	0.08 0.06 0.07	0.38 0.33 0.36	0.71 0.82 0.77	0.315 0.310 0.313	10.22 11.03 10.63	2.32 2.44 2.38	109.57 104.74 107.16	111.89 107.18 109.54
11/18/75 11/19/75 Average	SET-7 SET-7	23 min 23 min	0.05 0.01 0.03	0.33 0.36 0.35	0.78 0.81 0.80	0.342 0.277 0.310	11.42 11.70 11.56	2.56 2.58 2.57	117.56 93.54 105.55	120.13 96.12 108.13

TECHNICAL REPORT DATA (Please read Instructions on the reverse before completing)					
1. REPORT NO. 2. EPA-460/3-76-015	3. RECIPIENT'S ACCESSION NO.				
4. TITLE AND SUBTITLE	5. REPORT DATE June 1976 (date of preparation 6. PERFORMING ORGANIZATION CODE				
"Measurement of Sulfate and Sulfur Dioxide in Automotive Exhaust"	11-4015				
7. AUTHOR(S) Melvin N. Ingalls and Karl J. Springer	8. PERFORMING ORGANIZATION REPORT NO. AR-1124				
9. PERFORMING ORG ANIZATION NAME AND ADDRESS Southwest Research Institute	10. PROGRAM ELEMENT NO.				
8500 Culebra Road San Antonio, TExas 78284	11. CONTRACT/GRANT NO. 68-03-2118				
12. SPONSORING AGENCY NAME AND ADDRESS Environmental Protection Agency Mobile Source Air Pollution Control 2565 Plymouth Road Ann Arbor, Michigan 48105	13. TYPE OF REPORT AND PERIOD COVERED Final 6-28-74 thru 8-31-76 14. SPONSORING AGENCY CODE				

15. SUPPLEMENTARY NOTES

16. ABSTRACT

This report describes the testing of four groups of cars for sulfate and sulfur dioxide exhaust emissions. The collection and analytical techniques used for sulfate and sulfur dioxide are described. Emissions rates in grams per kilometre are presented for a variety of test cycles. In addition to sulfates and sulfur dioxide, gaseous emissions of hydrocarbons (HC), carbon monoxide (CO) and oxides of nitrogen (NO $_{\rm X}$) are reported in grams per kilometre. Total particulate weight on the sulfate filter was determined on two of the groups of cars. For these same two groups of cars, the sampling tunnel residue from each test car was examined by X-ray fluorescent techniques.

The first of the car groups was tested to characterize sulfate emissions from eight automobiles. Four of these were gasoline powered catalyst cars, three were gasoline powered noncatalyst cars, and one was diesel powered. The second group, four catalyst cars, was operated for 80,500 km (50,000 miles) to determine the effect of distance accumulation on sulfate emissions. The third group, two 1975 production catalyst cars, was part of the EPA sulfate procedural development testing. The last group, eight cars, was part of the EPA sulfate baseline. Of these cars, six were production 1975 models (including one diesel), and two were experimental cars with three-way catalysts.

17.	. KEY WORDS AND DOCUMENT ANALYSIS					
a.	DESCRIPTORS	b.IDENTIFIERS/OPEN ENDED TERMS C. COSATI Field/Group				
Air Pollution Exhaust Emissions Catalytic Converters Sulfuric Acid Sulfur Dioxide Sulfates		Federal Test Procedure Sulfate Emission Test Highway Fuel Economy Test				
18. DISTRIBUTION STATEMENT		19. SECURITY CLASS (This Report) 21. NO. OF PAGES 315				
	Release Unlimited	20. SECURITY CLASS (This page) 22. PRICE				

INSTRUCTIONS

REPORT NUMBER

Insert the EPA report number as it appears on the cover of the publication.

2 I. FAVE BLANK

3 RECIPIENTS ACCESSION NUMBER

Reserved for use by each report recipient.

TITLE AND SUBTITLE

Title should indicate clearly and briefly the subject coverage of the report, and be displayed prominently. Set subtitle, if used, in smaller type or otherwise subordinate it to main title. When a report is prepared in more than one volume, repeat the primary title, add volume number and include subtitle for the specific title.

REPORT DATE

Each report shall carry a date indicating at least month and year. Indicate the basis on which it was selected (e.g., date of issue, date of approvel, date of preparation, etc.).

PERFORMING ORGANIZATION CODE 6.

Leave blank.

7. **AUTHOR(S)**

Give name(s) in conventional order (John R. Doe, J. Robert Doe, etc.). List author's affiliation if it differs from the performing organi-

PERFORMING ORGANIZATION REPORT NUMBER

Insert if performing organization wishes to assign this number.

PERFORMING ORGANIZATION NAME AND ADDRESS

Give name, street, city, state, and ZIP code. List no more than two levels of an organizational hirearchy.

10. PROGRAM ELEMENT NUMBER

Use the program element number under which the report was prepared. Subordinate numbers may be included in parentheses.

11. CONTRACT/GRANT NUMBER

Insert contract or grant number under which report was prepared.

12. SPONSORING AGENCY NAME AND ADDRESS

Include ZIP code.

13. TYPE OF REPORT AND PERIOD COVERED Indicate interim final, etc., and if applicable, dates covered.

14. SPONSORING AGENCY CODE

Leave blank.

15. SUPPLEMENTARY NOTES

Enter information not included elsewhere but useful, such as: Prepared in cooperation with, Translation of, Presented at conference of, To be published in, Supersedes, Supplements, etc.

16. ABSTRACT

include a brief (200 words or less) factual summary of the most significant information contained in the report. If the report contains a significant bibliography or literature survey, mention it here.

17. KEY WORDS AND DOCUMENT ANALYSIS

(a) DESCRIPTORS - Select from the Thesaurus of Engineering and Scientific Terms the proper authorized terms that identify the major concept of the research and are sufficiently specific and precise to be used as index entries for cataloging.

(b) IDENTIFIERS AND OPEN-ENDED TERMS - Use identifiers for project names, code names, equipment designators, etc. Use openended terms written in descriptor form for those subjects for which no descriptor exists.

(c) COSATI FIELD GROUP - Field and group assignments are to be taken from the 1965 COSATI Subject Category List. Since the majority of documents are multidisciplinary in nature, the Primary Field/Group assignment(s) will be specific discipline, area of human endeavor, or type of physical object. The application(s) will be cross-referenced with secondary Field/Group assignments that will follow the primary posting(s).

18. DISTRIBUTION STATEMENT

Denote releasability to the public or limitation for reasons other than security for example "Release Unlimited." Cite any availability to the public, with address and price.

19. & 20. SECURITY CLASSIFICATION

DO NOT submit classified reports to the National Technical Information service.

21. NUMBER OF PAGES

Insert the total number of pages, including this one and unnumbered pages, but exclude distribution list, if any,

Insert the price set by the National Technical Information Service or the Government Printing Office, if known.