PERFORMANCE EVALUATION OF EXISTING LAGOONS PETERBOROUGH, NEW HAMPSHIRE

Municipal Environmental Research Laboratory
Office of Research and Development
U.S. Environmental Protection Agency
Cincinnati, Ohio 45268

RESEARCH REPORTING SERIES

Research reports of the Office of Research and Development, U.S. Environmental Protection Agency, have been grouped into nine series. These nine broad categories were established to facilitate further development and application of environmental technology. Elimination of traditional grouping was consciously planned to foster technology transfer and a maximum interface in related fields. The nine series are:

- 1. Environmental Health Effects Research
- 2. Environmental Protection Technology
- 3. Ecological Research
- 4. Environmental Monitoring
- 5. Socioeconomic Environmental Studies
- 6. Scientific and Technical Assessment Reports (STAR)
- 7. Interagency Energy-Environment Research and Development
- 8. "Special" Reports
- 9. Miscellaneous Reports

This report has been assigned to the ENVIRONMENTAL PROTECTION TECH-NOLOGY series. This series describes research performed to develop and demonstrate instrumentation, equipment, and methodology to repair or prevent environmental degradation from point and non-point sources of pollution. This work provides the new or improved technology required for the control and treatment of pollution sources to meet environmental quality standards.

This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161.

PERFORMANCE EVALUATION OF EXISTING LAGOONS, PETERBOROUGH, NEW HAMPSHIRE

bу

Stuart P. Bowen

JBF Scientific Corporation Wilmington, Massachusetts 01887

Contract No. 68-03-2062

Project Officer

Ronald F. Lewis
Wastewater Research Division
Municipal Environmental Research Laboratory
Cincinnati, Ohio 45268

MUNICIPAL ENVIRONMENTAL RESEARCH LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
CINCINNATI, OHIO 45268

DISCLAIMER

This report has been reviewed by the Municipal Environmental Research Laboratory, U.S. Environmental Protection Agency, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the U.S. Environmental Protection Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

FOREWORD

The Environmental Protection Agency was created because of increasing public and government concern about the dangers of pollution to the health and welfare of the American people. Noxious air, foul water, and spoiled land are tragic testimony to the deterioration of our natural environment. The complexity of that environment and the interplay between its components require a concentrated and integrated attack on the problem.

Research and development is that necessary first step in problem solution and it involves defining the problem, measuring its impact, and searching for solutions. The Municipal Environmental Research Laboratory develops new and improved technology and systems for the prevention, treatment, and management of wastewater and solid and hazardous waste pollutant discharges from municipal and community sources, for the preservation and treatment of public drinking water supplies, and to minimize the adverse economic, social, health, and aesthetic effects of pollution. This publication is one of the products of that research; a most vital communications link between the researcher and the user community.

As part of these activities, this case history report was prepared to make available to the sanitary engineering community a full year of operating and measured performance data for a three-cell facultative wastewater treatment lagoon system.

Francis T. Mayo, Director Municipal Environmental Research Laboratory

ABSTRACT

Wastewater treatment lagoons have found extensive use particularly in smaller forms. However, little operational data is currently available to form a basis for evaluating the performance capabilities of lagoons. This report presents data gathered during a one year period of monitoring the lagoon system at Peterborough, New Hampshire, and compares treatment plant performance to design loading rates and the Federal Secondary Treatment Standards. The treatment system was found to perform very well. Removal of suspended solids and fecal coliform were always excellent. Biochemical oxygen demand removal was excellent except for four months during the winter when anaerobic conditions occurred under the ice cover and soluble BOD levels rose substantially. During the winter, the pH of the effluent also was low due to large dosing of chlorine to maintain a residual. In addition to these parameters, many others were monitored and are presented both in summary form and in complete listings of all data gathered during the study. As a result of the study it was recommended that inducedair aeration be installed in one of the ponds to decrease the concentration of soluble BOD and thus meet the Federal Standards.

This report was submitted in fulfillment of Contract No. 68-03-2062, by JBF Scientific Corporation, under the sponsorship of the U.S. Environmental Protection Agency.

CONTENTS

		Page
Forewor	d	iii
Abstrac	t	iv
Figures		vi
Tables		vi
Section	<u>s</u>	
1	Introduction	1
2	Conclusions	2
3	Recommendations	4
4	Description of Peterborough Treatment System	5
5	Sampling and Analysis Procedures	10
6	Evaluation of the Peterborough, New Hampshire Wastewater Treatment Lagoon System	16
7	Appendices	31

FIGURES

Number		Page
1	Site Map - Location of Peterborough, New Hampshire	6
2	Peterborough, New Hampshire Wastewater Treatment Lagoons	7
3	Photographs of Peterborough Wastewater Treatment Lagoons	8
4	Location of Sampling Points	11
5	Effluent Sampling Station	12
6	Average Monthly Effluent Oxygen Demand	29

TABLES

Number		Page
1	Peterborough Loading Rates	17
2	Intensive Sampling Periods	20
3	Monthly Average Biochemical Oxygen Demand	23
4	Monthly Range Performance Data	24
5	Peterborough Effluent Quality	26
6	Flow Measurement Summary	27

INTRODUCTION

Waste treatment lagoons have been used in this country since the turn of the century. In general, observations have shown that lagoons are an effective and relatively inexpensive process having best application to small towns in which the large area requirements can be met. It has only been within the last 25 years that attempts have been made to provide a rational basis for pond design. In the last two decades the virtues of oxidation lagoons have increasingly been recognized so that today the U.S. has approximately 4000 lagoons treating domestic wastewater.

The Federal Water Pollution Control Act Amendments of 1972 have established the minimum performance requirements for public owned wastewater treatment works. By July 1977 publicly owned treatment works must meet effluent limitations based on secondary treatment. In attempts to determine the performance capabilities of oxidation lagoons it has been found that very little useful operational data exists to form a basis for evaluating the performance capabilities of lagoons.

It was the aim of this program to document and evaluate the performance of a well designed and operated lagoon system in Peterborough, New Hampshire. This work was undertaken by JBF Scientific Corporation for the U.S. Environmental Protection Agency. Dr. Stuart P. Bowen was the project director. The success of this project was made possible through the cooperation of John Isham, Town Manager of Peterborough, and by the conscientious effort of Tom Weeks, the Peterborough wastewater treatment plant operator who assisted in the conduct of the work.

CONCLUSIONS

Wastewater treatment lagoons offer a promising treatment method for small towns and industries because the process is relatively inexpensive to construct, easy to operate, and generally provides a high level of treatment. This report presents data on the operation of a lagoon system at Peterborough, New Hampshire, and compares pollutant removal with Secondary Treatment Standards set by the U.S. Environmental Protection Agency as authorized by the Federal Water Pollution Control Amendments of 1972.

The principal conclusions resulting from this study are the following:

- 1. In general, the Peterborough wastewater treatment plant performed very well during this 12-month study. Removal of suspended solids and fecal coliform were always excellent. BOD removal was excellent except during the winter when anaerobic conditions existed under the ice cover on the ponds.
- 2. The Peterborough plant, when compared to its design loading rates, is underloaded both hydraulicly and in BOD loading. This may at least in part, account for the high level of treatment observed.
- 3. The Federal Secondary Treatment Standards for removal of suspended solids and fecal coliform were consistently met. The standard for BOD removal was exceeded during the winter for approximately 11 weeks. During that time the total BOD concentration in the effluent averaged about 52 mg/l and the soluble BOD averaged about 45 mg/l. Percent removal of total BOD fell to about 60 percent, while the soluble BOD concentration in the effluent exceeded that in the influent by about 10 percent. Anaerobic conditions in the ponds caused by the ice cover were responsible for the drop in treatment efficiency. Also during this time the effluent pH fell below 6.0 because of the very high chlorine dose required to meet the requirement of maintaining a chlorine residual in the effluent.
- 4. Measurement of plant influent and effluent flow rates showed that about 27 percent water loss occurred presumably due to seepage into the ground.
- 5. The dissolved oxygen concentration in the effluent was generally below 2 mg/l, and during the winter was essentially zero.

- 6. Chemical oxygen demand removal closely paralled BOD removal in that good removal was accomplished during most of the year, but during the winter both soluble and total COD values rose substantially.
- 7. Nitrogen species and phosphorus were measured. TKN and ammonia nitrogen values in the effluent rose during the winter and nitrate nitrogen decreased. Nitrite nitrogen was generally below the detection limit of 0.1 mg/l. Removal of total phosphorus was approximately 10 percent for the year.
- 8. Effluent alkalinity values prior to chlorination showed a distinct seasonal trend with the lowest values occurring during the summer and concentrations twice as high during the winter.
- 9. Algae measurement was very difficult and generally unsuccessful. It is not believed that any useful algae data were collected.
- 10. A chlorine residual of 2.0 mg/l was maintained except when equipment malfunctions occurred. However, during the winter the chlorine demand rose to 40 to 50 mg/l which caused a low pH in the effluent.

RECOMMENDATIONS

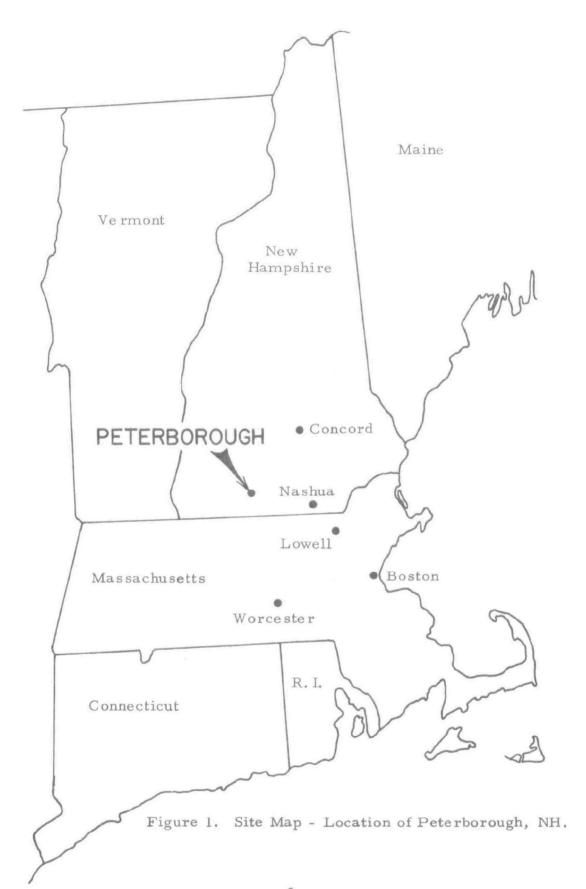
Intensive monitoring of the Peterborough, New Hampshire, wastewater treatment plant showed that in general the plant was highly efficient. However, some aspects of the plant's performance should be improved. With the aim of upgrading the treatment plant, the following recommendation is made:

BOD removal during the winter must be improved. The consistently high level of performance occurring during other parts of the year indicates that the only problem is one of insufficient oxygen in the ponds when the ice cover has formed. This problem could be alleviated in a number of ways, but probably the solution which best combines efficiency and economy would be an induced-air aeration system which would both supply necessary oxygen and probably could prevent ice formation on at least a portion of the pond surface. The quick recovery of the treatment system after melting the ice suggests that the soluble BOD is readily oxidizable, and therefore perhaps only one pond would need to be aerated and then only for a few months each year. If kept aerobic the Peterborough system should be readily able to meet the Standards.

It is therefore recommended that a study be undertaken to:

- 1. Select the optimum aeration equipment for the Peterborough, New Hampshire, wastewater treatment system.
- 2. Install that equipment.
- 3. Monitor the treatment system through a winter to demonstrate that the seasonally aerated pond system can meet the Secondary Treatment Standards.

Demonstration of this system would provide guidance for others faced with the problem of designing a pond system to operate efficiently when ice will cover the pond for several months of the year.

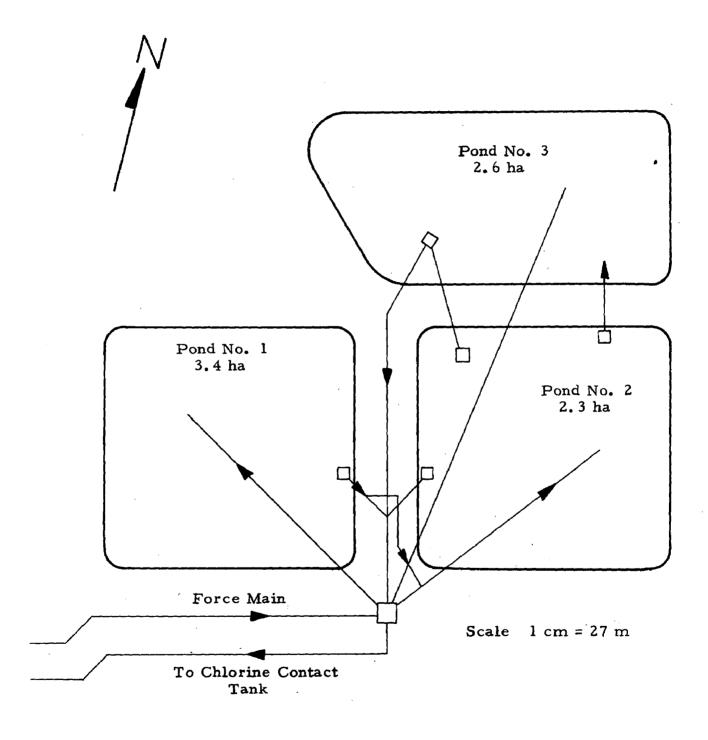

DESCRIPTION OF PETERBOROUGH TREATMENT SYSTEM

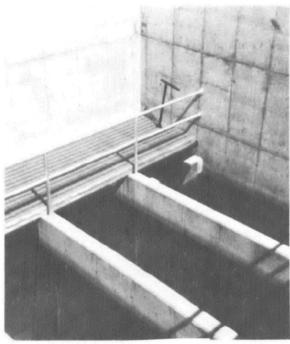
The site selected for this study was the Peterborough, New Hampshire, wastewater treatment lagoon system. Peterborough is located in southern New Hampshire, approximately 16 kilometers (10 miles) north of the Massachusetts border, 40 kilometers (25 miles) west of Nashua, New Hampshire, and 100 kilometers (60 miles) from the Atlantic Ocean, as shown in Figure 1. The temperature has a wide range both daily and annually. Normal summer daytime readings are approximately 20-27°C (68-81°F). Summer nighttime minimums are about 10°C (50°F). Winters are moderately cold with an average January daily maximum of 1°C (33°F) and a minimum of -10°C (13°F). Precipitation is spread evenly throughout the year with an annual average of 104 cm (41 inches).

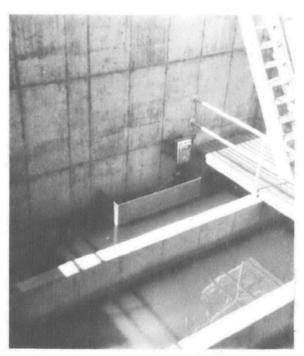
The Peterborough wastewater treatment system consists of three ponds having a total surface area of 8.3 hectares (21 acres). A site and piping layout sketch is shown as Figure 2. Photographs of the lagoon system are shown as Figure 3. The treatment system was designed in early 1968 by Camp, Dresser, and McKee of Boston, Massachusetts, and constructed shortly thereafter.

Wastewater is pumped a few hundred yards from the pumping station to a distribution structure. Although the piping arrangement will allow other flow patterns, the ponds have generally been run in series with the flow passing from Pond No. 1, to Pond No. 2, and then to Pond No. 3. The effluent from Pond No. 3 is collected in an effluent structure and transported by gravity sewer back to the pumping station where it is chlorinated and discharged to the Contoocook River. Since a feedback chlorination control system was not provided, the chlorination dose is determined by setting the effluent wier to provide a constant flow and chlorinating at a constant dose. The dosage criteria is to obtain a chlorine residual leaving the chlorination chamber of 2.0 mg/1.

The design rationale was an areal loading basis of 19.6 kg BOD/ha/day (17.5 lb BOD/acre/day) in 1968 to be increased as population increased to a loading of 39.2 kg BOD/ha/day (35 lb BOD/acre/day) in the year 2000. The total initial BOD load was designed to be 227 kg/day (500 lb/day). The initial flow was considered to average 1.9 mil 1/day (0.5 mgd) with a maximum of 8.1 mil 1/day (2.14 mgd). At the design 1.2 meter (4 foot) water depth the detention time would be 57 days. In the year 2000 the detention time was estimated to be 35 days. The ponds are not aerated. The population served is 2200 persons.




Figure 2. Peterborough, NH, wastewater treatment lagoons.


Pond No. 2 Effluent Structure

Pond No. 3 Effluent Structure

Oniorine Contact Tank Showing Effluent Weir

Chlorine Contact Tank Showing Flow Measuring Device

Figure 3. Photographs of Peterborough wastewater treatment lagoons.

Since the New Hampshire Water Supply and Water Pollution Control Commission has not required performance data for the Peterborough lagoon system, little operational data is available. Reports are filed but the only data given are water color, area covered by floating scum or algal mats, pond water depth, general weather conditions, flow rate, chlorination dosage in pounds, chlorine residual, and occasional values of pond dissolved oxygen, BOD, and ice cover.

SAMPLING AND ANALYSIS PROCEDURES

Treatment plant wastewater flow at Peterborough is measured and continuously recorded at the pumping station by a magnetic flow meter to determine the lagoon influent flow rate. The effluent flow rate is measured in the chlorine contact chamber where water level is controlled by a V-notch weir. A float-type water level indicator in a stilling well generates the electrical signal for the recorder. In addition, to determining the hydraulic loading of the treatment plant, these flow recorders provided the information to determine the lagoon system long-term water balance.

An influent flow-proportional sample was obtained by using the existing magnetic flow meter to actuate the sampler pump at a rate proportional to flow. The sampler, Brailsford and Company Model EVS-2, delivered one sample for each closure of the flow meter switch. Sample size was adjusted to assure a 3.81 (one gallon) total sample during each 24-hour test period. The location of the sample tube was at the head of a flume where the wastewater flow first enters the pump building. Since the pump station wetwell is small, the pumping rate is proportional to influent flow rate and thus the magnetic flow meter provided a good measure of hydraulic loading.

Other sampling locations are shown in Figure 4. These locations are the effluent from Pond No. 1, the effluent from Pond No. 2, the effluent from Pond No. 3, and the effluent from the chlorine contact chamber.

Each of these samplers was a Brailsford Model EVS-1 (battery powered), but the effluent sampler was converted to line voltage. To prevent freezing the effluent sampler was enclosed in an insulated box and heated by three light bulbs actuated by a temperature controller. The sample line was enclosed in a plastic pipe, insulated, and wrapped with a heating tape which was actuated by a separate temperature controller. The effluent sampling station is shown in Figure 5.

To minimize sample deterioration during warm periods, each sample jug was enclosed in an insulated box containing an icewater bath. During the winter months, samples from stations 2, 3 and 4 (effluents from each pond) were obtained by grab sampling because electrical power was not available at these locations to power heaters to prevent freezing of the sample line. This is not considered to lead to significant differences compared to composited samples because changes in water characteristics were very slow due to long detention times and the thick ice cover.

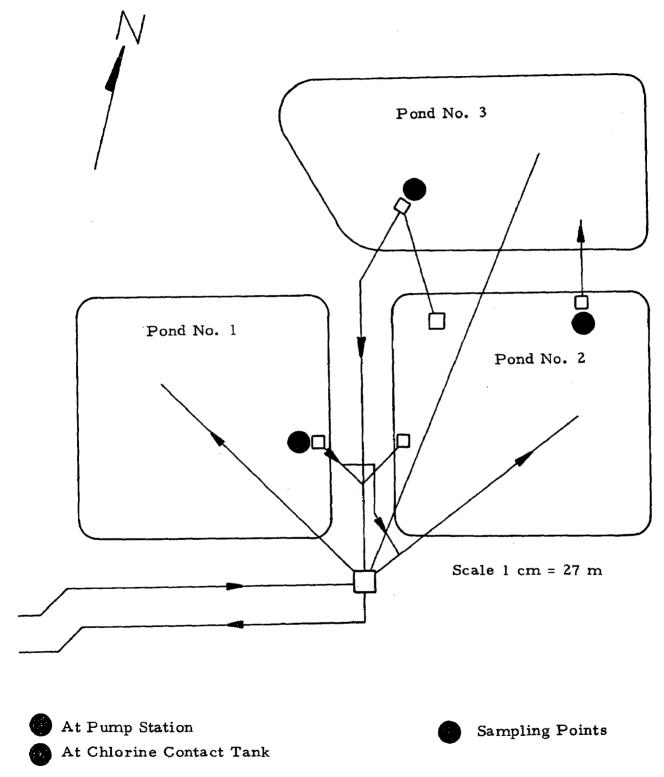


Figure 4. Location of sampling points.

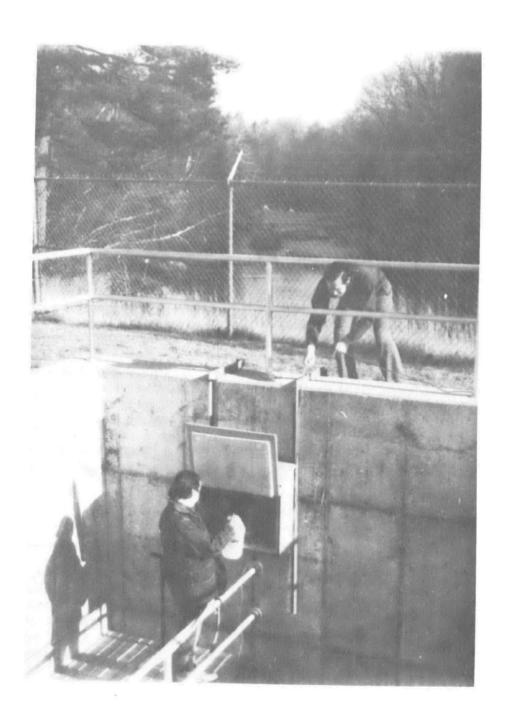


Figure 5. Effluent sampling station.

The needs of the program were met by a combination of sampling programs. Evaluation of some parameters was accomplished by collection of samples over a 24-hour period with the automatic sampling devices described above. A second group of parameters cannot be preserved over the 24 hours of sample collection and the additional hours for completion of the tests. These parameters were measured on grab samples and analyzed in the field on a spot basis, or fixed and brought to the lab for analysis.

The wastewater samples required to perform the total BOD, soluble BOD, suspended solids, and algal count, in addition to the samples to be sent to EPA Advanced Waste Treatment Research Laboratory in Cincinnati, were obtained with 24-hour automatic samplers. Several of the parameters to be measured cannot be determined by composite sampling since no method is available for sample preservation. These were measured on grab samples obtained at the time of collection of the composite sample, or were measured in situ. Dissolved oxygen (DO) was measured with a polarographic probe. Similarly pH was measured with a pH probe and temperature was determined by titration of a grab sample since it is not possible to preserve a sample for this analysis. Samples for fecal coliform analysis likewise cannot be composited and stored for more than six hours. Therefore, a grab sample was filtered onto delayed incubation preservative medium and returned to the JBF laboratory for colony development.

A summary presentation of the method of sampling for each parameter is as follows:

24-	Hour	Comp	osite

Total BOD
Soluble BOD
Suspended Solids
Algal Count
Sample for EPA Lab

Grab Sample

Temperature
Dissolved Oxygen
pH
Alkalinity
Fecal Coliform

These sampling procedures were followed at each of the sample points within the treatment system.

The following are the laboratory analytical procedures followed during this study:

pH measured in situ, method 144A, p. 276

Standard Methods

Dissolved Oxygen measured in situ, method 218F, p. 484

Standard Methods

^{*} Standard Methods for the Examination of Water and Wastewater, American Public Health Assoc., New York, N.Y. (1971).

Temperature measured in situ, method 162, p. 348

Standard Methods

Alkalinity method 102, p. 52 Standard Methods

Total BOD method 219, p. 489 Standard Methods.

Nitrification inhibited by addition of 0.5 mg allythiourea per liter of dilution

water

Soluble BOD same as Total BOD but following filtra-

tion through an 0.45 u glass fiber filter.

Suspended Solids method 224, p. 537 Standard Methods.

Fecal Coliform method 408B, p. 684 Standard Methods.

Samples preserved at treatment plant by method 408C, p. 685 Standard Methods. To aid in validating the membrane technique the fecal coliform MPN procedure, method 407C, p. 669 Standard Methods, was run on a number of samples during

the early weeks of this study.

Algal Cell Count method 601D, p. 734 Standard Methods.

The following sample preservation techniques were used for samples sent to the EPA Cincinnati laboratory:

- a. One liter was preserved by method 200B, p. 368 Standard Methods for Total COD, Total P, and TKN analyses.
- One liter was preserved by addition of 1 ml per liter of chloroform to the sample for NH₃ - N, NO₂ - N, and NO₃ - N analyses.
- c. 0.25 liter was filtered through an 0.45 μ glass fiber filter and preserved by method 200B, p. 368 Standard Methods for soluble COD analysis.

Analyses performed in the field (alkalinity, filtering of fecal coliform, preservation of algal cells) were performed in the laboratory at the Peterborough wastewater treatment plant. All other analyses and preparation and packaging of samples for shipment to EPA were carried out at the JBF Scientific Corporation Laboratory which at that time was located in Burlington, Massachusetts. This laboratory is certified by the Department of Public Health of the Commonwealth of Massachusetts to perform water chemistry analyses. Transportation of samples from Peterborough to Burlington was accomplished by car, and more often by United Parcel Service delivery. Samples were contained in plastic bottles and placed in an ice bath inside sealed plastic boxes. Delivery was generally accomplished

within 24 hours. On the one occasion when delivery was delayed for three days over a holiday the sample was discarded.

EVALUATION OF THE PETERBOROUGH, NEW HAMPSHIRE, WASTEWATER TREATMENT LAGOON SYSTEM

The objectives of this project were to generate reliable year-round performance data at the Peterborough, New Hampshire, wastewater lagoon treatment plant and to utilize that data to evaluate the effectiveness of the lagoons tested to: a) perform in accordance with their design criteria, and b) to meet Secondary Treatment Standards as established by the Federal Water Pollution Control Amendments of 1972.

Treatment Plant Loading

The treatment system was designed in early 1968 by Camp, Dresser and McKee of Boston, Massachusetts, and constructed shortly thereafter. The design rationale was an areal loading basis of 19.6 kg BOD/ha/day (17.5 lb BOD/acre/day) in 1968 to be increased as population increased to a loading of 39.2 kg BOD/ha/day (35 lb BOD/acre/day) in the year 2000. The total initial BOD load was designed to be 227 kg/day (500 lb/day). The initial flow was considered to average 1.9 mil 1/day (0.5 mgd) with a maximum of 8.1 mil 1/day (2.14 mgd). At the design 1.2 m (4 foot) water depth the detention time would be 57 days. In the year 2000 the detention time was estimated to be 35 days. The ponds are not aerated. The population served is 2200 persons.

A summary comparing the design loading and the actual loading is shown in Table 1. The actual flow rate is seen to average only slightly more than half the design rate. The total BOD loading is also considerably lower than the design value and the areal BOD loading is approximately 20 percent less than the design value. The data for monthly average values show that in no month did the average flow rate exceed 65 percent of the design value. The total BOD loading was likewise less than the design value for all months, and the areal loading exceeded the design value for only two months, and then by only a small amount. It is apparent that during the period of this study the Peterborough treatment system was underloaded compared to its initial design loading.

Comparison with Secondary Treatment Standards

The Federal Secondary Treatment Standards were published in the Federal Register on August 17, 1973. The portions of those regulations to which the performance of the Peterborough wastewater treatment system is to be compared are the following:

TABLE 1. PETERBOROUGH LOADING RATES

	Influent Flow, MGD*		BOD, lb/day*	BOD, lb/acre/day*
	Ave.	Max.		
Design Loading Rates (1968)	0.50	2.14	500	17.5
Actual Loading, 12 month average	e 0.267	0.714	306	13.9
Month				
October	0.241		396	18.0
November	0.230		326	14.8
December	0.230		276	12.6
January	0.242		248	11.3
February	0.256		280	12.7
March	0.309		330	15.0
April	0.326		275	12.5
May	0.278		387	17.6
June	0.262		291	13.2
July	0.272		256	11.7
August	0.271		278	12.6
September	0.283		323	14.7

^{*1} MGD = 0.044 m³/sec *1 lb BOD/day = 0.454 kg BOD/day *1 lb BOD/acre/day = 1.12 kg BOD/ha/day

The following paragraphs describe the minimum level of effluent quality attainable by secondary treatment in terms of the parameters biochemical oxygen demand, suspended solids, fecal coliform bacteria and pH. All requirements for each parameter shall be achieved except as provided for in § 133.103.

(a) Biochemical oxygen demand (five-day).

- (1) The arithmetic mean of the values for effluent samples collected in a period of 30 consecutive days shall not exceed 30 milligrams per liter.
- (2) The arithmetic mean of the values for effluent samples collected in a period of seven consecutive days shall not exceed 45 milligrams per liter.
- (3) The arithmetic mean of the values for effluent samples collected in a period of 30 consecutive days shall not exceed 15 percent of the arithmetic mean of the values for influent samples collected at approximately the same times during the same period (85 percent removal).

(b) Suspended solids

- (1) The arithmetic mean of the values for effluent samples collected in a period of 30 consecutive days shall not exceed 30 milligrams per liter.
- (2) The arithmetic mean of the values for effluent samples collected in a period of seven consecutive days shall not exceed 45 milligrams per liter.
- (3) The arithmetic mean of the values for effluent samples collected in a period of 30 consecutive days shall not exceed 15 percent of the arithmetic mean of the values for influent samples collected at approximately the same times during the same period (85 percent removal).

(c) Fecal coliform bacteria.

- (1) The geometric mean of the value for effluent samples collected in a period of 30 consecutive days shall not exceed 200 per 100 milliliters.
- (2) The geometric mean of the values for effluent samples collected in a period of seven consecutive days shall not exceed 400 per 100 milliliters.

(d) pH.

The effluent values for pH shall remain within the limits of 6.0 to 9.0.

The following paragraphs present the data collected during the year-long sampling and analysis program. For each of the four parameters comprising the Secondary Treatment Standards the data on treatment plant performance are summarized and compared to the Standards.

An important measure of comparison between the data gathered and the Standards is the performance of the treatment system during four intensive sampling periods which were conducted during the year-long study. The dates of intensive sampling periods were selected to provide representative portions of each season of the year. These periods were:

November 21	to	December 20
March 17	to	April 25
June 25	to	July 11
September 2	to	September 30

A second method of comparing the data to the Standards is to use monthly data to determine compliance. When intensive daily sampling was not in progress, sampling days were selected to provide approximately equal coverage for all days of the week. This randomness of selection of sampling day, and the fact that there are no significant industrial discharges into the system, means that monthly data, although much of it was not collected on successive days, provide an accurate picture of the performance of the treatment plant throughout the year.

Performance of the Peterborough wastewater treatment system during each of the intensive sampling periods is shown in Table 2. The following paragraphs discuss each parameter considered in the Section 133 requirements.

a. Biochemical Oxygen Demand

During the first intensive sampling period (11/21 to 12/20) the treatment system met all of the requirements set forth in the Standards. The arithmetic mean value of BOD concentration in the effluent was 7.3 mg/1, thus meeting the requirement of < 30 mg/1. The greatest seven day arithmetic mean was 9.0 meeting the requirement of < 45 mg/1. The average influent BOD was 149.3 mg/1 and the average effluent BOD was 7.3 mg/1 for a removal efficiency of 95.1 percent meeting the requirement of 85 percent removal.

During the second intensive sampling period the treatment system was unable to meet the requirement of the Standards concerning BOD removal. The mean value of all effluent BOD samples was 42.9 mg/l compared to the requirement of a maximum of 30 mg/l. The worse case seven day mean effluent BOD value was 56.7 mg/l which exceeds the limit of 45 mg/l, and the average percent removal during this period was 61 percent compared to the required treatment efficiency of 85 percent. The cause of the problem apparently was the ice cover on the ponds which caused anaerobic conditions to occur. Under anaerobic conditions treatment was less effective in terms of BOD removal.

TABLE 2. INTENSIVE SAMPLING PERIODS

	Section 133 Requirement	Period 1 11/21 to 12/20	Period 2 3/17 to 4/25	Period 3 6/25 to 7/11	Period 4 9/2 to 9/30
No. of Sampling Days BOD	- , - -	29	39	16	28
Eff. conc., mg/l 30-day ave. 7-day ave.	30 45	7.3 9.0	42.9 56.7	10.1 13.6	5.8 6.0
Percent removal Suspended Solids	85	95.1	61.4	91,2	95.8
Eff. conc., mg/l 30-day ave. 7-day ave. Percent removal	30 45 85	11.1 14.0 92.2	11.9 18.7 87.7	6.5 10.0 95.3	8.1 13.6 94.8
Fecal Coliform					
Eff. conc., no./100 ml 30-day mean 7-day mean	200 400	0	3.0 19.2	0 0	1.9 9.1
<u>pH</u>					
Eff. value	6.0 to 9.0	6.7 to 6.8	5.6 to 6.4 21 days below 6.0	6.5 to 6.7	6.4 to 6.7

By the time of the third intensive sampling period (June 25 to July 11) the ice cover had melted and the treatment system had returned to good operating conditions. The average BOD concentration for all samples during this period was 10.1 mg/1 and the worst case seven day average was 13.6 mg/1, each easily meeting the requirements of the Standards. The average percent removal was 91.2 percent.

The fourth intensive sampling period showed excellent performance. The average BOD concentration for all days was 5.8 mg/l and the worst case seven day value was 6.0 mg/l. The efficiency of removal was 95.8 percent.

b. Suspended Solids

During all four intensive sampling periods the concentration of suspended solids both for entire period and for the worst case seven day period were well within the limits imposed by the Standards. The percent removal in each case exceeded the 85 percent removal requirements.

c. Fecal Coliform

Fecal coliform concentrations in the effluent were low during each of the intensive sampling periods. During the first and third periods no coliform were observed in any of the samples. Although coliform were occasionally found in the second and fourth periods the concentrations were often zero and the geometric means were well below the values set by the Standards.

d. pH

During three of the four intensive sampling periods pH values stayed within the range of 6.0 to 9.0 percent required by the Standards. In the second period the pH was below 6.0 for many days. The lowest value observed was 5.6. The cause of the low pH was the massive amount of chlorine added to the effluent to meet the State of New Hampshire requirement of a chlorine residual of 2.0 mg/l. Under the anaerobic conditions existing in the ponds during this period, the chlorine demand of the effluent was high. The acidic effect of large amounts of chlorine often lowered the pH to levels which did not meet the Standards.

Monthly Averages of Treatment Plant Performance

The data gathered during this study may also be evaluated on the basis of monthly averages. These averages include both the data from the intensive sampling periods and also the data from other times when samples were obtained approximately twice a week. Since the sampling days were chosen essentially at random, the less frequent sampling also provides a good representation of treatment plant performance.

Table 3 shows monthly average BOD data including both total and soluble BOD. The concentration of both total and soluble BOD in the treatment plant influent were reasonably uniform throughout the year with random variation from month to month. The effluent BOD, however, shows a large increase during the months of January, February, March, and April. During all months except for this period total BOD removal was greater than 90 percent and soluble BOD removal was greater than 80 percent. During the winter months total BOD removal fell to about 60 percent with effluent BOD concentrations greater than 50 mg/l compared to the rest of the year when the total BOD concentration in the effluent was generally less than 10 mg/l. Soluble BOD removal during the four winter months decreased to the extent that effluent concentrations exceeded the influent concentration during the months of February and March. Since influent soluble BOD concentrations were lower during this period than for any other period of the year, it appears that under anaerobic conditions existing in the ponds beneath the ice cover, soluble BOD was being released from particulate matter by anaerobic decomposition. In the absence of aerobic organisms the soluble BOD was not being degraded which results in the observed increase in soluble BOD. When the ice cover left the ponds, rapid re-establishment of aerobic organisms quickly restored the treatment plant effluent to its usual condition of a low soluble BOD concentration. It is interesting to note that the concentration of effluent insoluble BOD was essentially unchanged throughout the year and ranged from 1.5 to 8.3 mg/1 on a monthly average basis.

Figure 6 graphically presents the total and soluble BOD and COD data. Total oxygen demand is seen in both cases to depend on the soluble oxygen demand values since the distance between the lines (insoluble oxygen demand) was essentially constant throughout the year. COD values also exhibited the same type of seasonal variation as BOD values with a large peak during the winter months.

In addition to BOD, the Standards include restrictions on suspended solids, fecal coliform, and pH. The monthly average values of these parameters are shown in Table 4. Percent removal of suspended solids was quite consistent throughout the year with the exception of April during which the influent suspended solids concentration was by far the lowest of the year, and the effluent concentration was the second highest. No reason is known for this unusual behavior during April.

The April percent removal of suspended solids was the only month during which the 85 percent removal requirement was not met. Most months were considerably above that limit with the 12 month average percent removal of suspended solids at 91.6 percent. In contrast to the BOD removal previously discussed, suspended solids removal was apparently unaffected by the anaerobic state caused by ice cover during the winter. January, February, and March show no important differences from other months, and April's low percent removal was due more to low influent values than poor treatment.

Fecal coliform monthly values were all very low with a maximum geometric mean value of 5.4/100 ml compared to the 30-day statutory limit

TABLE 3. MONTHLY AVERAGE BIOCHEMICAL OXYGEN DEMAND

Month	Influent, Total	mg/l Soluble	Effluent Total	t, mg/l Soluble	Percent Total	Removal Soluble
October	197.3	70.2	14.3	12.8	92.8	81.8
November	169.9	49.5	8.8	7.3	94.8	85.3
December	143.5	48.7	8.5	6.2	94.1	87.3
January	123.0	39.7	30.9	25.5	74.9	35.8
February	131.1	36.5	49.0	43.0	62.6	(17.8)
March	128.0	43.4	54.9	46.6	57.1	(7.4)
April	101.4	31.3	33.8	28.1	66.7	10.2
May	166.8	72.8	11.8	7.6	92.9	89.6
June	132.5	55.8	9.8	6.8	92.6	87.8
July	112.7	48.8	9.9	6.1	91.2	87.5
August	122.6	56.1	6.4	4.1	94.8	92.7
September	136.8	49.6	5.8	3.7	95.8	92.5
12-Month Average	138.8	47.3	20.3	16.4	85.4	65.3

TABLE 4. MONTHLY RANGE PERFORMANCE DATA

Month	No. of S Samples		d Solid Eff.	s, mg/l <u>% Rem</u> .	Fecal Coliform/100 r	nl [*] pH Range
October	9	156.4	17.0	89.1	0	6.5-7.0
November	16	151.1	11.7	92.3	0	6.5-8.4
December	23	135.7	12.0	91.2	0	6.7-6.8
January	11	126.4	14.2	88.8	0	6.2-6.6
February	10	148.2	10.3	93.0	1.7	6.0-6.3
March	17	134.2	7.8	94.2	0	5.7-6.1
April	26	75.8	14.3	81.2	5.4	5.7-6.4
May	6	139.0	13.8	90.1	2.3	6.4-7.0
June	12	135.7	12.8	90.6	1.4	6.5-7.2
July	15	144.6	9.5	93.5	0	6.5-6.7
August	8	130.1	5.2	96.0	2.3	6.4-6.6
September	28	155.4	8.1	94.8	1.9	6.4-6.7
12-Month Average		133	11.2	91.6	1.6	5.7-8.4

^{*}Geometric mean of all samples during period. For calculation purposes, when non-zero values occurred during a month, a value of 1 was substituted for each zero in that month.

of 200/100 ml. On most days no coliform were observed. When coliform were observed, the field log generally noted a chlorinator failure for that day.

Except for several days in March and April, pH values were within the range of 6.0 to 9.0 required by the Standards. Low pH values were caused by large doses of chlorine added to the plant effluent during the winter months to meet the 2.0 mg/l residual chlorine requirement.

Additional Tests and Measurements

In addition to the treatment parameters previously discussed and required to be measured to determine compliance with the Standards, many other measurements and tests were conducted during this study. The Appendix contains a complete listing of all data gathered during this study. Table 5 presents a summary of treatment plant effluent quality. The following paragraphs discuss these and other results and their implications. Emphasis is placed on effluent quality.

a. Flow Measurement

Both influent and effluent flow measurements were recorded for each sampling day during the year. A summary of the data is shown in Table 6. Influent flow averages show that the maximum flow occurred in the spring during March and April but these values were only about 20 percent greater than the average for the entire year. The magnitude of the effluent flow was a function of both the influent flow rate and the setting of the elevation of the effluent wier, and therefore short-term variations are not very meaningful. However, over the course of a year influent and effluent values should match fairly well. At Peterborough the average effluent flow rate was found to be about 27 percent lower than the influent flow rate. At this location evaporation and rainfall are approximately equal, so the loss can be presumed to be predominantly due to infiltration into the ground. At the flow rates found during this study, the total infiltration would be about 26 million gallons per year.

b. Temperature

The treatment plant effluent temperature behaved as expected with a peak monthly average of 24°C in July and a minimum monthly average of 2°C in both February and March. Since the ponds have large surface area, shallow depth, and long detention time, it should be expected that the effluent temperature would vary with long seasonal air temperature.

c. Dissolved Oxygen

The concentration of dissolved oxygen in the effluent is presented in Table 5. Monthly averages are shown together with maximum and minimum values for each month. For most months the

TABLE 5. PETERBOROUGH EFFLUENT QUALITY

		Disso	olved (Oxygen	To	tal C	Œ	So	1. co	D	Ni	itroge	n Spec	ies	Total			C	hlorir	ie
	Temp		mg/l			mg/1		:	mg/l			m	g/l		P	Alkalinity	Algae	Resid	dual,	mg/l
Month	°c	Max	Min	Ave	Max	Min	Ave	Max	Min	Ave	TKN	NH ₃	NO ₃	NO ₂	mg/l	mg/l	× 10 ³	Мах	Min	Ave
Oct	10	8.4	2.8	5.4	137	114	126	118	82	97	14.5	4.3	0.4	4 < 0.1	6.6	71	67	4.0	1.5	2.4
Nov	7	4.6	0.6	2.1	186	101	115	135	68	78	11.9	5.9	0.	2 < 0.1	6.3	82	189	4.0	1.0	2. 2
Dec	3	1.9	0.3	0.5	121	74	96	83	62	70	14.5	9.4	. 0.	1 < 0.1	6.4	95	533	3.0	1.5	2. 0
Jan	3	0.3	0.15	0.2	131	87	114	94	79	88	23.8	16.9	0.	1 < 0.1	7. 1	106	548	2. 5	0.5	1.6
Feb	2	0.3	0.2	0.2	203	118	154	114	87	103	27.8	20.8	< 0.	1 < 0.1	7.3	96	371	10.0	0.5	3. 2
March	2	0.3	0.2	0.2	190	136	151	118	97	107	26.1	21.7	′ <0.	1 < 0.1	6.6	86	238	4.0	0.5	2. 1
April	5	3.8	0.1	0.7	143	53	106	98	44	74	21.0	16.8	3 < 0.	1 < 0.1	4.6	84	95	7.5	0.0	3, 5
May	18	5.9	0. z	1.8	81	64	71	60	48	55	18.5	14. 8	<0.	1 < 0.1	4.6	100	222	2.0	1.5	1. 9
June	22	13.4	0.3	3. 3	109	75	87	78	57	68	14.6	9. 7	0.	2 0.1	5.3	81	2.6	3.0	1.0	2. 1
July	24	3.3	0.3	1.6	112	90	103	106	74	88	13. 2	7.6	0.	2 0.2	5.8	79	6.3	3.0	1.5	2. 0
Aug	23	3.6	0.3	2.0	106	88	100	96	83	91	8.8	4. 2	0.	4 < 0.1	5.7	66	1.9	3.0	2.0	2. 1
Sept	17	2.8	0.2	1.0	118	84	95	101	73	84	7.0	3.8	B 0.	3 0.1	5.6	71	1.6	5.0	1.5	2.7

TABLE 6. FLOW MEASUREMENT SUMMARY

Month	No. o	f Obs. Eff.	Dai <u>In</u>	ly Ave	, mg * <u>Eff.</u>		onthly I	Fotal, mg* <u>Eff.</u>
October	9	9	0.2	241 0	.141	2	. 166	1.270
November	16	16	0.2	230 0	.118	3	.678	1.895
December	23	23	0.2	30 0	.186	5	.300	4.283
January	11	11	0.2	242 0	.202	2	.665	2.221
February	10	10	0.2	256 0	.256	2	.558	2.555
March	17	17	0.3	309 0	.180	5	.248	3.052
April	26	22	0.3	326 0	.231	8	.481	5.073
May	6	6	0.2	278 0	.412	1	.668	2.472
June	12	12	0.2	262 0	.210	3	3.147	2.520
July	15	15	0.2	272 0	. 118	4	1.075	1.775
August	8	8	0.2	271 0	. 137	2	2.166	1.096
September	29	29	0.2	283 0	.249	8	3.215	7.218

weighted 12-month 0.271 0.199 average

water loss =
$$\frac{0.271-0.199}{0.271}$$
 (100) = 26.6 percent

 $[*]_{1 \text{ mg}} = 3785 \text{ m}^{3}$

average value was quite low with only three months averaging 2.0 mg/l or greater. During the months from December to April the DO was generally below 2.0 mg/l at all times and was often essentially zero under the ice cover.

d. Chemical Oxygen Demand

Monthly values of both total and soluble COD in the effluent are shown in Table 5. A graph of these values together with comparable BOD values has been presented in Figure 6. The maximum values are seen to occur during the months of February and March when anaerobic conditions in the ponds limited biological activity.

e. Nitrogen Species

During the test period, four nitrogen species were measured: total kjeldahl nitrogen (TKN), ammonia nitrogen, nitrate and nitrite nitrogen. During the winter months when the ice cover was established TKN values rose to approximately twice the average for the other months of the year. Ammonia nitrogen values also rose to several times the value observed during other parts of the year. Although all the values were low for both nitrate and nitrite nitrogen it appears that nitrate nitrogen values decreased during the winter. The nitrite concentration was generally undetectable.

f. Total Phosphorus

Removal of total phosphorus by the treatment system averaged less than 10 percent. The plant influent averaged 6.4 mg/l and the effluent 5.9 mg/l. This result would be expected since biological treatment plants are not efficient processes for removal of phosphorus.

g. Alkalinity

Effluent alkalinity values remained essentially unchanged during the study. However, effluent values did not accurately reflect seasonal changes in alkalinity because the effluent was highly chlorinated during the winter months. The chemical reactions occurring during chlorination release hydrochloric acid and in effect reduce the alkalinity of the water. A better measure of seasonal changes is the effluent from Fond No. 3 prior to chlorination. This exhibits a marked trend as shown in the following table:

October	83 mg/l	April	114 mg/1
November	93 mg/l	May	107 mg/l
December	108 mg/1	June	94 mg/1
January	135 mg/1	July	92 mg/l
February	164 mg/1	August	80 mg/l
March	147 mg/1	September	82 mg/1

During the summer months when algal biological activity was

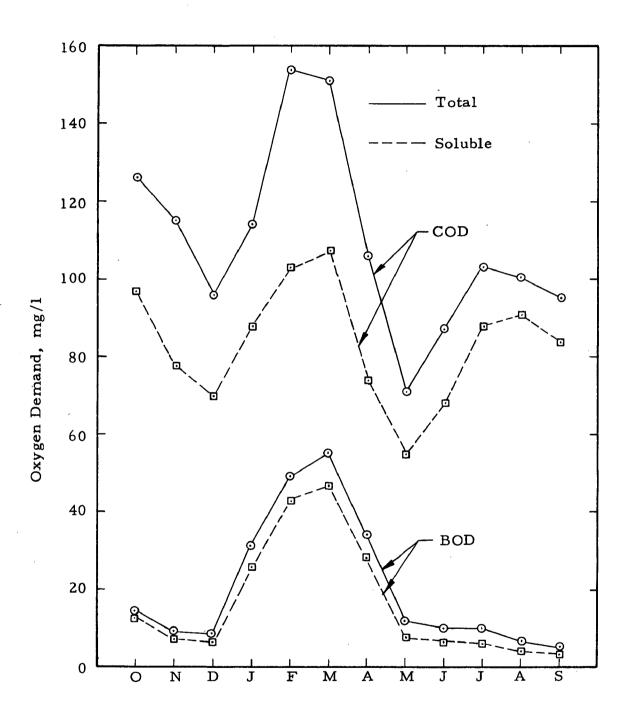


Figure 6. Average monthly effluent oxygen demand.

greatest, the concentration of inorganic carbon (bicarbonates) was low. As biological activity slowed down during the winter, the concentration of bicarbonates increased. During the winter the anaerobic organisms under the ice cover produced carbon dioxide as a decomposition product and thus increased alkalinity.

h. Algae

One of the tests performed during this study was algae counting by microscopic examination of samples preserved in formaldehyde. This effort was largely unproductive. Several reasons can be cited including large concentrations of detrital matter (particularly during the winter months) which interfered with counting, large variations in species which caused difficulty in identification of which particulate matter were actually algae, and the sporadic presence of rotifers in the samples which consumed the algae before being killed by the preservative. For these reasons the algae count data contained in this report is of questionable value and great care should be taken in utilizing this data.

i. Chlorine Residual

The Peterborough treatment plant uses chlorine for disinfection of the effluent immediately before discharge to the Contoocook River. The criteria used to determine the proper dose is that a chlorine residual of 2.0 mg/l is to be maintained. When the ponds are aerobic the chlorine dose required to maintain the residual is about 10 mg/l. As the ice cover formed and the ponds became anaerobic and the chlorine demand (chlorine dose minus chlorine residual) rapidly increased to more than 40 mg/l. When the ice went out in April the chlorine demand rapidly returned to its summer time condition. The following Table shows the chlorine demand during the year of study.

Octobe r	9.9 mg/1	April	20.8 mg/l
November	9.5 mg/l	May	5.9 mg/l
December	8.0 mg/l	June	9.0 mg/l
January	23.3 mg/1	July	8.7 mg/l
February	41.7 mg/l	August	9.9 mg/l
March	42.0 mg/l	September	7.3 mg/l

This dramatically shows the change of behavior of the pond system through the seasons.

SECTION 7

APPENDICES

		Page
APPENDIX A -	DATA SHEETS	32
APPENDIX B -	REMARKS AND OBSERVATIONS	93

DATE		10	 1 7	4		i	10/4	174			·	10/8	171		
AIR TEMP C MAY				<u>,</u>								- 1			
WEATHER	Par	+14	C.1	ouel	H	Co	ld,	Sun	n 4						
INF FLOW, MG		0.2					٥,20					0,20			
EFF FLOW, MG		0.1	30				0,12	q			. (0.13	 5		
CL2 DOSE-MG/L		13.	.0				14.2					13.	3		
CLZ RESIDUAL MG/L		1.	5				2.0)				4,0	>		
	INF	1	2	3	EFF	INF	Ī	2	3	EFF	INF	1	2	3	EFF
TEMP °C	15	14	14	14	14	15	10	11	//	u	15	11	ij	11	11
DO, MG/L	4.0	10.4	715	715	2.8	4.6	715	4.2	9.4	4,2	2.0	715	>15	3.6	5.6
рН	7.1	7.4	7.2	7,5	6.6	7,2	7.6	7,7	7.5	6.6	7.1	7.9	8,2	7.7	6.7
ALKALINITY-MG/L	ાહ્ય	101	<i>9</i> 2	81	72	173	105	105	86	73	154	110	105	84	73
SUSP. SOLIDS-MG/L	175	100	46	39	24	154	91	40	27	11	174	80	49	19	16
BOD TOTAL MG/L	178	40	32	27	11	208	42	29	25	9	219	38	34	37	12
BOD, SOL MG/L	48	14	15	6	6	75	9	11	9	11	95	12	7	12	12
ALGAE /ML x 103		147	81	125	123	_	246	107	165	92	_	205	107	145	109
FECAL COLI/IDOMLXIO															
MPN/100 ML×106															
NH3-N, MG/L	28.4	10,9	9:7	5.1	5.3	30.0	i0.2	9.3	5.3	5.3	26.1	9.7	8.0	4.8	4.5
NO3-N, MG/L	40.1	40,i	ره.۱	(0.1	<c.1< td=""><td>۲٥.۱</td><td>۷٥.۱</td><td>0.1</td><td>LO.1</td><td><0.i</td><td>40.1</td><td>(0.1</td><td><0.1</td><td>۱. ٥٧</td><td>0,2</td></c.1<>	۲٥.۱	۷٥.۱	0.1	LO.1	<0.i	40.1	(0.1	<0.1	۱. ٥٧	0,2
NOz-N, MG/L	۲0.i	رo.i	١.٥٧	<0.i	<0.i	0.05	0.05	0.05	0.05	0.05	40.1	۷٥.۱	o, i	0.2	40.1
COD TOTAL MG/L	231	219	145	116	118	361	201	165	118	114	378	199	171	138	124
COD SOL. MG/L	175	133	95	86	83	133	105	78	77	82	118	113	101	92	90
TKN MG/L	33.6	22.4	12.4	10.3	10.0	42.8	23.2	19.6	11.5	9.6	44.0	21.6	17.9	11.4	10.0
TOTAL P MG/L	8.3	7.6	7.2	6.6	6.5	8,4	7.5	7,3	6.7	6.6	9.8	8.0	7,8	6.8	6:7

DATE		10/1	2/74	<u> </u>			10/10	6/70	,			10h	2/74	·	
AIR TEMP C MAX							<u> </u>								
WEATHER	(Clou	dy				Rais	n	*********		•	Sans	'អូ		
INF FLOW, MG		0.4	71				0.2	10				0.21			
EFF FLOW, MG		O. i3	>£				0.1	38			(0.15	2		
CL2 DOSE-MG/L		/3.	.0				12	./				12,	2.		
CLZ RESIDUAL MG/L		3.	Ö				/.	5				2,	0		
	Inf	1	2	3	EFF	INF	1	2	3	EFF	INF	1	2	3	EFF
TEMP °C	15	"	11	i i	11	15	"	11	10.5	/2	13	હ	8	٤	2.5
DO, MG/L	3.5	7.0	14.2	11.4	3. 8	4,2	10.7	10.5	715	5.9	3.5	4.0	7.9	12.8	3,2
рН	7.2	7.6	8.5	7,9	6.7	2.1	7.1	2.1	7.6	6.6	7.5	7,0	7.9	7,7	6.5
ALKALINITY-MG/L	166	113	48	27	73	178	120	100	25	66	178	1/3	96	82	71
SUSP. SOLIDS-MG/L	164	72	58	28	16	163	60	52	30	14	150	57	49	24	15
BOD TOTAL MG/L	207	35	25	29	12	199	42	32	26	13	217	39	33	21	12
BOD, SOL MG/L	67	&	6	9	10	75	11	10	12	14	81	7	5	5	10
ALGAE ML × 103	ļ	197	176	92	54	1	117	167	85	73)	60	126	75	61
FECAL COLI/100MLx10						40	0.37	0,04	0.11	0	4.8	0,43	0,07	0,015	o
MPN/100 MLx106						1.6	<u>0</u> .003	0,016							
NH3-N, MG/L	25.1	10.2	7.1	4,7	4,2	25,2	10.7	6.9	4.3	4.1	28.6	11.9	7.4	4.4	4,3
NO3-N, MG/L	ö.1	0.1	0.1	40.1	0.3	40.1	۱،۵۶	0.1	<0.1	0.3	40.1	<0.1	<0.1	<0.1	0.2
NOz-N, MG/L	<0.1	40,1	o. i	0.4	40.1	40.1	<0.1	0.2	0.4	۲٥،۱	۷٥.۱	<0.1	0.1	0.3	0.1
COD TOTAL MG/L	369	210	196	144	124	356	212	186	140	126	307	165	173	128	137
COD SOL. MG/L				ì	1	153		1		1	ì	1	1	ł	1
TKN MG/L	37,2	21.6	19.6	12.5	10.5	38.8	23.6	17.0	11.6	10.8	42.0	22.4	17.6	11.1	11.4
TOTAL P MG/L	7.2	7.9	7.6	6.8	6.8	7.2	8.1	7.6	6.6	6.6	8.3	7.7	7.5	6.6	6.5

MEATHER Sunny Sunny Clear INF FLOW, MG 0.227 0.223 0.178 EFF FLOW, MG 0.149 0.149 0.160 CL2 DOSE-MG/L 11.9 8.8 11.2 CZRESIDUAL-MG/L 3.0 3.0 FFF INF I 2 3 FFFF INF I 2 3 FFFFF INF I 2 3 FFFFFFFF INF I 2 3 FFFFFFFFFFF INF I 2 3 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	DATE	10/22/24 10/24/24 10/26/24														
WEATHER Sunny SLAMY Clear INF FLOW, MG 0.227 0.223 0.178 EFF FLOW, MG 0.149 0.149 0.150 CL2 DOSE-MG/L 11.9 8.9 11.2 CL2 RESIDUAL-MG/L 3.0 3.0 FFF INF 1 2 3 EFF INF 1 2 3 EFF TEMP °C 13 5 5 5 7 15 645 6.5 8 14 8 8 8 8 9 DO, MG/L 3.0 3.7 11.4 11.6 6.2 44 5.6 12.1 12.2 8.1 1.2 6.5 14.0 14.6 8.4 PH 7.9 7.2 8.3 8.4 6.7 7.2 7.4 8.4 8.4 7.0 7.2 7.3 8.4 8.5 7.0 ALKALINITY-MG/L 143 123 96 80 66 107 125 100 83 71 90 124 100 82 75 SUSP SOLIDS-MG/L 161 47 32 26 18 160 47 44 29 20 107 73 50 37 19 BOD TOTAL MG/L 320 51 84 35 19 183 48 29 34 21 146 57 40 43 20 BOD, SOL MG/L 76 12 9 13 18 65 11 6 10 18 50 13 10 16 16 ALGAE /ML x 103 - 33 44 58 33 - 20 32 7.7 22 - 28 12 45 21 FECAL (OLI/IDNNLXID 6.8 0.28 0.0070.000 0 0.4 0.005.0005.0001 0 0.4 0.002.0001 0 0.4 0.007.N MG/L NO3-N, MG/L 60.1 60.1 60.1 60.1 60.1 60.1 60.1 60.3 60.1 60.1 60.1 60.1 0.2 40.1 60.1 0.3 6.5 125 125 129 COD TOTAL MG/L 378 201 160 135 128 324 199 171 146 136 305 235 125 153 129 COD SOL. MG/L 148 131 127 120 115 140 134 131 124 113 88 143 121 125 110 TKN MG/L 40.4 19.6 17 11 37 109 24.4 176 11.4 20.2 240 123.2 19.3 33 11.2	DATE		10/2	2/7	4		ļ	10/2	4/70	1			10/2	& /7¢	1	
TNF FLOW, MG C. 227 C. 1223 C. 176 EFF FLOW, MG C. 149 C	AIR TEMP C MIN												•			
EFF FLOW, MG CL2 DOSE-MG/L II.9 R.8 II.2 CL2 RESIDUAL-MG/L J.0 INF 1 Z 3 EFF INF 1 Z 3 EFF INF 1 Z 3 EFF TEMP °C	WEATHER		Sun	ny				Sun	ny				Cle	ar		
CL2 DOSE-MG/L CL2 RESIDUAL MG/L INF 1 Z 3 EFF INF 1 Z 3 EFF INF 1 Z 3 EFF TEMP °C 13 5 5 5 7 15 65 6.5 6.5 8 14 8 8 8 9 DO, MG/L PH 79 7.1 8.3 8.4 6.7 7.2 7.4 8.4 8.4 7.0 7.2 7.5 8.4 8.6 7.0 ALKALINITY-MG/L 161 47 32 26 18 160 47 44 29 20 107 73 50 37 19 BOD TOTAL MG/L ALGAE /ML x 103 - 33 44 58 33 - 20 32 7.7 22 - 28 12 45 21 FECAL (OLI/IDDNLYIO 6.6 0.22 0.07 0.005 O 0.4 0.005.0002 0 0.4 0.002.0001 0.00 0 MPN /100 ML x 106 NH3-N, MG/L COD TOTAL MG/L 25.1 12.6 7.2 4.1 3.7 24.6 12.2 7.1 3.7 3.7 17.2 14.2 7.2 4.2 3.7 NO3-N, MG/L COD TOTAL MG/L 40.4 19.6 17 11 37 109 24.4 17.6 11.4 20.1 24.0 29.3 19.2 12.5 10.0 TKN MG/L 40.4 19.6 17 11 37 109 24.4 17.6 11.4 20.1 24.0 29.3 19.2 19.3 11.2	INF FLOW, MG		0.2	27				0.2	23				0.1	78		
CL2 RESIDUAL MG/L INF 1 2 3 EFF TEMP °C 13 5 5 5 7 15 6.5 6.5 8 1.4 8 8 9 9 DO, MG/L 3.0 3.7 11.4 11.6 6.2 4.4 5.6 12.1 12.2 8.1 1.2 6.5 14.0 14.6 8.4 PH 7.9 7.1 8.3 8.4 6.7 7.2 7.4 8.4 8.4 7.0 7.2 7.5 8.4 8.6 7.0 ALKALINITY-MG/L 161 47 32 26 18 160 47 44 29 20 107 73 50 37 19 BOD TOTAL MG/L 20 51 34 35 19 183 48 29 34 21 145 57 40 43 20 BOD, SOL MG/L 76 12 9 13 18 65 11 6 10 18 50 13 10 16 16 ALGAE ML × 103 - 32 44 58 33 - 20 32 7.7 22 - 28 12 45 21 FECAL (OLI/IDNL×106 6.9 0.38 0.07 0.008 0 0.4 0.005 0.005 0.002 0 0.4 0.02 0.001 0.001 0.1 NH3-N, MG/L NO3-N, MG/L COD TOTAL MG/L 40.1 60.1 60.1 60.1 60.1 60.1 60.1 60.1 6	EFF FLOW, MG		0.14	19	-			0.14	19				0.1	50		
INF 1 2 3 EFF TOUT 1 2 2	CLZ DOSE-MG/L		11.	9				8.	8				11.7	2		
TEMP °C 13 5 5 5 7 15 65 6.5 6.5 8 14 8 8 9 9 DO, MG/L 3.0 3.7 11.4 11.6 6.2 44 5.6 12.1 12.2 8.1 1.2 6.5 14.0 14.6 8.4 pH 7.9 7.2 8.3 8.4 6.7 7.2 7.4 8.4 8.4 7.0 7.2 7.5 8.4 8.6 7.8 ALKALINITY-MG/L 143 123 96 80 66 107 125 100 83 71 90 124 100 82 75 SUSP. SOLIDS-MG/L 161 47 32 26 18 160 47 44 29 20 107 73 50 37 19 BOD TOTAL MG/L 220 51 34 35 19 183 48 29 34 21 145 57 40 43 20 BOD, SOL MG/L 76 12 9 13 18 65 11 6 10 18 50 13 10 16 16 16 ALGAE /ML x 103 - 33 44 58 33 - 20 32 7.7 22 - 28 12 45 21 FECAL (OLI/100NLx106 6.8 0.28 0.0070.006 0 0.4 0.005.005.0002 0 0.4 0.002.0001 0 0 0.4 0.002.0001 0 0 0.4 0.002.0001 0 0 0.4 0.002.0001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CL2 RESIDUAL MG/L		3.0	,				3,	0				1. 5	5	••	
DO, MG/L 3.0 3.7 11.4 11.6 6.8 44 5.6 12.1 12.2 8.1 1.2 6.5 14.0 14.6 8.4 PH 7.9 7.2 8.3 8.4 6.7 7.2 7.4 8.4 8.4 7.0 7.2 7.5 8.4 8.6 7.0 ALKALINITY-MG/L 143 123 96 80 66 107 125 100 83 71 90 124 100 82 75 SUSP SOLIDS-MG/L 161 47 32 26 18 160 47 44 29 20 107 73 50 37 19 BOD TOTAL MG/L 220 51 34 35 19 183 48 29 34 21 145 57 40 43 20 BOD, SOL MG/L 76 12 9 13 18 65 11 6 10 18 50 13 10 16 16 ALGAE /ML x 103 — 33 44 58 33 — 20 32 7.7 22 — 28 12 45 21 FECAL (OLI/IDNLx106 6.8 0.28 0.0070.006 0 0.4 0.005.0050.002 0 0.4 0.005.0002 0 0.4 0.00		INF	1	2	3	EFF	INF	-	2	3	EFF	INF	1	2	3	EFF
PH 7.9 7.2 8.3 8.4 6.7 7.2 7.4 8.4 8.4 7.0 7.2 7.5 8.4 8.6 7.0 ALKALINITY-MG/L 143 123 96 80 66 107 125 100 83 71 90 124 100 82 75 SUSP. SOLIDS-MG/L 161 47 32 26 18 160 47 44 29 20 107 73 50 37 19 BOD TOTAL MG/L 220 51 34 35 19 183 48 29 34 21 145 57 40 43 20 BOD, SOL MG/L 76 12 9 13 18 65 11 6 10 18 50 13 10 16 16 ALGAE /ML x 103 - 33 44 58 33 - 20 32 7.7 22 - 28 12 45 21 FECAL (OLI/DONLXIO 6.8 0.18 0.070.000 0 0.4 0.005 0.003 0.002 0 0.4 0.002 0.001	TEMP °C	13	5	5	5	7	15	68	6.5	6.5	8	14	8	8	હ	9
ALKALINITY-MG/L 1/43 1/23 46 80 66 107 1/25 100 83 71 90 1/24 100 82 75 SUSP. SOLIDS-MG/L 1/61 47 32 26 18 1/60 47 44 29 20 107 73 50 37 19 BOD TOTAL MG/L 220 51 34 35 19 183 48 29 34 21 1/45 57 40 43 20 BOD, SOL MG/L 76 1/2 9 1/3 1/8 65 11 6 10 18 50 13 10 16 16 ALGAE /ML x 103 — 33 44 58 33 — 20 32 7.7 22 — 28 1/2 45 21 FECAL (OLI/IDNILXIO 6.8 0.28 0.0070.008 0 0.4 0.005.0003 00000 0 0.4 0.002.0001 0001 0001 MPN / IDO ML x 106	DO, MG/L	3,0	3.7	11.4	11.6	6.8	44	5.6	12.1	12,2	8.1	1.2	6.5	14.0	14.6	8.4
SUSP. SOLIDS-MG/L 161 47 32 26 18 160 47 44 29 20 107 73 50 37 19 BOD TOTAL MG/L 220 51 34 35 19 183 48 29 34 21 146 57 40 43 20 BOD, SOL MG/L 76 12 9 13 18 65 11 6 10 18 50 13 10 16 16 ALGAE /ML x 103 - 33 44 58 33 - 20 32 7.7 22 - 28 12 45 21 FECAL (OLI/IDNILYIO 6.8 0.28 0.0070.008 0 0.4 0.005.0003.0002 0 0.4 0.002.0001 0.001 0 MPN/IDOML x 106 0 0.1 25.1 12.6 7.2 4.1 3.7 24.6 12.2 7.1 3.7 3.7 17.2 14.2 7.2 4.2 3.7 NO3-N, MG/L 25.1 12.6 7.2 4.1 3.7 24.6 12.2 7.1 3.7 3.7 17.2 14.2 7.2 4.2 3.7 NO2-N, MG/L 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1	рН	7.9	7.2	2.3	8.4	6.7	7.2	7.4	8.4	8.4	7.0	7.2	7,3	8.4	8.6	7.0
BOD TOTAL MG/L 220 51 34 35 19 183 48 29 34 21 145 57 40 43 20 BOD, SOL MG/L 76 12 9 13 18 65 11 6 10 18 50 13 10 16 16 ALGAE /ML x 103 - 33 44 58 33 - 20 32 7.7 22 - 28 12 45 21 FECAL (OLI/IDONLXIO 6.8 0.28 0.007 0.008 0 0.4 0.005 0.002 0 0.4 0.005 0.002 0 0.4 0.005 0.002 0 MPN/IOO ML x 106 NH3-N, MG/L 25.1 17.6 7.2 4.1 3.7 24.6 12.2 7.1 3.7 3.7 17.2 14.2 7.2 4.2 3.7 NO3-N, MG/L 40.1 40.1 40.1 0.1 0.1 40.1 40.1 40.1 0.3 0.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1	ALKALINITY-MG/L	143	123	96	80	66	107	125	100	23	71	90	124	100	82	75
BOD, SOL MG/L 76 12 9 13 18 65 11 6 10 18 50 13 10 16 16 ALGAE /ML x 103 - 33 44 58 33 - 20 32 7.7 22 - 28 12 45 21 FECAL (OLI/IDDNLx)06 6.8 0.28 0.0070.008 0 0.4 0.608.0003.0002 0 0.4 .002.0001 .0001 0 MPN/IDOMLx106 NH3-N, MG/L 25.1 12.6 7.2 4.1 3.7 24.6 12.2 7.1 3.7 3.7 17.2 14.2 7.2 4.2 3.7 NO3-N, MG/L (0.1 (0.1 (0.1 (0.1 (0.1 (0.1 (0.1 (0.1	SUSP. SOLIDS-MG/L	161	47	32	26	18	160	47	44	29	20	107	73	50	37	19
ALGAE /ML x 103 - 33 44 58 33 - 20 32 7.7 22 - 28 12 45 21 FECAL (OLI/IDDNLx106 6.8 0.28 0.007 0.008 0 0.4 0.005.0003.0002 0 0.4 .002.0001.0001 0 MPN/IDD ML x 106 NH3-N, MG/L 25.1 12.6 7.2 4.1 3.7 24.5 12.2 7.1 3.7 3.7 17.2 14.2 7.2 4.2 3.7 NO3-N, MG/L (0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <	BOD TOTAL MG/L	220	51	34	35	19	183	48	29	34	2/	145	57	40	43	20
FECAL (OLI/IDDNLXID 6.8 0.28 0.007 0.008 O 0.4 0.003.0003.0002 O 0.4 .002.0001.0001 O MPN/IDDNLXID 0	BOD, SOL MG/L	76	12	9	13	18	65	//	6	10	18	50	13	10	16	16
MPN/100 MLx 106 NH3-N, MG/L 25.1 17.6 7.2 4.1 3.7 24.6 12.2 7.1 3.7 3.7 17.2 14.2 7.2 4.2 3.7 NO3-N, MG/L COL CO.1 CO.1 CO.1 O.2 0.3 CO.1 CO.1 CO.1 O.1 O.3 O.1 CO.1 CO.1 CO.1 O.3 O.5 COD TOTAL MG/L 378 201 160 135 128 324 129 171 146 136 305 235 185 153 129 COD SOL. MG/L 40.4 19.6 17 11 37 10.9 24.4 17.6 11.4 20.2 24.0 28.3 19.2 13.3 11.2	ALGAE ML × 103	1	33	44	3 8	33	1	20	32	7.7	22	-	28	12	45	21
MPN/100 MLx 106 NH3-N, MG/L 25.1 17.6 7.2 4.1 3.7 24.6 12.2 7.1 3.7 3.7 17.2 14.2 7.2 4.2 3.7 NO3-N, MG/L COL CO.1 CO.1 CO.1 O.2 0.3 CO.1 CO.1 CO.1 O.1 O.3 O.1 CO.1 CO.1 CO.1 O.3 O.5 COD TOTAL MG/L 378 201 160 135 128 324 129 171 146 136 305 235 185 153 129 COD SOL. MG/L 40.4 19.6 17 11 37 10.9 24.4 17.6 11.4 20.2 24.0 28.3 19.2 13.3 11.2	FECAL COLI/100NLx106	6.8	0.28	0.007	0.00E	0	0.4	o,c <i>v</i> 5	.0003	.0002	0	0,4	.002	.0001	,0001	0
NO3-N, MG/L (0.1 (0.1 (0.1 (0.1 (0.1 (0.1 (0.1 (0.1	MPN /100 MLx106															
NO2-N, MG/L (0.1 (0.1 0.2 0.3 (0.1 (0.1 0.1 0.3 0.1 (0.1 (0.1 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	NH3-N, MG/L	25.1	12.6	7.2	4.1	3.7	24.5	12.2	7.1	3,7	3.7	17.2	14.2	7.2	412	3.7
COD TOTAL MG/L 378 201 160 135 128 324 199 171 146 136 305 235 185 153 129 COD SOL. MG/L 148 131 127 120 118 140 134 131 124 113 88 143 121 125 110 TKN MG/L 40.4 19.6 17 11 37 10.9 24.4 17.6 11.4 20.2 24.0 28.3 19.2 13.3 11.2	NO3-N, MG/L	١، ٥٧	١،٥٧	<0.1	0.1	0.1	40.1	40.1	<0.1	ره. ۱	0,2	40.1	<0.1	40.1	0.1	2,4
COD SOL. MG/L 148 131 127 120 118 140 134 131 124 113 88 143 121 125 110 TKN MG/L 40.4 19.6 17 11 37 10.9 24.4 17.6 11.4 20.2 24.0 28.3 19.2 13.3 11.2	NOz-N, MG/L	(0.1	(0. 1	0.2	6.0	(0,1	۷٥،۱	۷٥.۱	0. i	0.3	0.1	(۱،۵۷	101	0.1	0.3	0.5
COD SOL. MG/L 148 131 127 120 118 140 134 131 124 113 88 143 121 125 110 TKN MG/L 40.4 19.6 17 11 37 10.9 24.4 17.6 11.4 20.2 24.0 28.3 19.2 13.3 11.2	COD TOTAL MG/L	378	201	160	135	128	324	129	171	146	136	305	235	185	153	129
		i i		1	1											
TOTAL P MG/L 9.3 7.9 7.3 6.8 6.7 8.1 7.8 7.4 6.6 6.7 4.0 8.4 7.2 7.1 6.3	TKN MG/L	40.4	19.6	17	11	37	10.9	24.4	17.6	11.4	20.2	24.0	28.3	19.2	13.3	11.2
	TOTAL P MG/L	9,3	7.9	7.3	6.8	6.7	8.1	7.8	7.4	66	6.7	4.0	8.4	7.2	7.1	6.3

DATE					 T					T				<u> </u>	\neg
DATE		11/5	174		_		11/4	174		_		11/7	/74		_
AIR TEMP C MAXIN					_		<u> </u>		·						_
WEATHER		Sun	6 ′				Rain			\perp		104	dy		
INF FLOW, MG		0,2	2				0.17	7				2,28	5		_
EFF FLOW, MG	,, .	0.1	72				0.15	50				o. io	/		
CL2 DOSE-MG/L		13.	<u>.</u>				12.8	5				12.8			
CLZ RESIDUAL MG/L		3.	6				2.0)				1.0			
	INF	1	2	3	EFF	INF	1	2	3	EFF	INF	1	2	3	EFF
TEMP °C	14	11	"	10	n l	15	12	"	"	12	14,5	"	10.5	10.5	11.5
DO, MG/L	4.0	0.6	152	9.0	4.6	1.9	0.4	10.4	7.4	3.3	2.7	0.7	2,5	3.6	1.7
рН	8.6	7.5	8.6	€.3	8.4	7.1	7.1	8.1	7.5	6.7	7,3	7.1	7.3	7.1	6.8
ALKALINITY-MG/L	170	132	96	82	80	88	130	105	83	66	113	135	96	84	80
SUSP. SOLIDS-MG/L	162	40	129	31	16	197	63	62	25	15	166	52	41	15	14
BOD TOTAL MG/L	229	53	50	33	16	257	49	31	30	14	149	44	24	20	12
BOD, SOL MG/L	75	"	フ	8	12	19	14	10	10	12	43	.11	9	9	12
ALGAE ML × 103	-	29	91	27	13	-	116	97	31	15	-	219	147	15	29
FECAL COLI/IDOMLXIO	5.4	0.81	0.45	0.15	٥	2.0	0.75	0,2	0.4	٥	4.5	0.19	0.08	0.04	٥
MPN/100 MLx106											0.92	0.03	0.02	0.02	2_
NH3-N, MG/L	21.4	12.4	6.6	3.0	3.6	21.6	13.4	6.8	3.3	3.5	19.6	14.4	8.4	4.4	4.6
NO3-N, MG/L	40.1	40.1	0.2	0.3	۷٥،۱	40.1	۲٥،۱	0.2	0.4	0.4	0.1	0.1	0,1	0.2	0.3
NO2-N, MG/L	4011	20.1	40.1	0.1	<0.1	₹0.1	<0.1	ا،ە>	40.1	ا،٥٧	0.1	0.1	0,1	0,2	0.1
COD TOTAL MG/L	399	247	289	142	126	514	213	213	146	125	328	192	160	103	111
COD SOL. MG/L	192	135	134	119	135	81	82	81.	76	83	37	95	79	71	74
TKN MG/L	34.0	27.6	27.2	5.6	10.4	35.2	26.8	20.0	10.6	9.9	22.0	27.6	17.8	9.8	10,0
TOTAL P MG/L	9.3	7.9	8,0	6.2	6.1	9,2	8.0	7.5	6.2	6.2	6.9	7.8	7.2	6.4	6.1

DATE 11/13/74 11/14/74 11/19/74 AIR TEMP C MAXIM 12/-4 WEATHER Raim Cloudy Clear INF FLOW, MG O.216 O.248 O.232 EFF FLOW, MG O.150 O.101 O.111 CL2 DOSE-MG/L 13.6 18.0 12.0 CL2 RESIDUAL MG/L 2.5 4.0 2.0 INF 2 3 EFF INF 2 3 EFF INF 1 2 2 3
WEATHER Rain Cloudy Clear INF FLOW, MG O.216 O.248 O.232 EFF FLOW, MG O.150 O.101 O.111 CL2 DOSE-MG/L INF 1 2 3 EFF
INF FLOW, MG O.216 O.248 O.232 EFF FLOW, MG O.150 O.101 O.111 CL2 DOSE-MG/L INF 1 2 3 EFF I
EFF FLOW, MG CL2 DOSE-MG/L INF 1 2 3 EFF I
CL2 DOSE-MG/L 13.6 18.0 12.0 CL2 RESIDUAL MG/L 2.5 A.0 2.0 INF 1 2 3 EFF INF 1
CL2 RESIDUAL MG/L INF 1 2 3 EFF INF 1 2 3 E
INF 1 2 3 EFF IN
TEMP °C 13 9 8 8 9 14 8 7.5 7 9 14 5 5 5 7 DO, MG/L 2.3 4.2 5.4 0.8 0.7 1.4 7.2 6.3 1.1 0.6 2.7 10.0 5.1 2.9 1.4 PH 7.2 7.1 7.3 6.9 6.5 7.2 7.2 7.3 7.0 6.6 7.3 7.4 7.3 7.1 6.7 ALKALINITY-MG/L 88 128 106 75 69 125 128 111 90 72 106 125 116 100 86 SUSP. SOLIDS-MG/L 133 66 59 17 9 171 74 50 17 10 183 100 58 22 15 BOD TOTAL MG/L 139 40 36 16 7 172 41 31 16 10 230 52 39 16 11 BOD, SOL MG/L 40 9 4 3 6 44 9 5 3 5 59 11 9 7 10 ALGAE /ML × 103 - 396 212 24 17 - 296 189 28 29 - 1370 22 1.4 23 FECAL COLI/IDONL×106 2.5 0.1 0.2 0.012 0 1.2 0.18 0.24 0.22 0 6.4 0.19 0.19 0.18 0
DO, MG/L 2.3 4.2 5.4 0.8 0.7 1.4 7.2 6.3 1.1 0.6 2.7 10.0 5.1 2.9 1.4 PH 7.2 7.1 7.3 6.9 6.6 7.2 7.2 7.3 7.0 6.6 7.3 7.4 7.3 7.1 6.5 ALKALINITY-MG/L 88 128 106 75 69 125 128 111 90 72 106 125 116 100 86 SUSP. SOLIDS-MG/L 133 66 59 17 9 171 74 50 17 10 183 100 58 22 15 BOD TOTAL MG/L 139 40 36 16 7 172 41 31 16 10 230 52 39 16 11 BOD, SOL MG/L 40 9 4 3 6 44 9 5 3 5 59 11 9 7 10 ALGAE /ML × 103 - 396 212 24 17 - 296 189 28 29 - 1370 22 1.4 25 FECAL COLI/IDONLX106 2.5 0.1 0.2 0.012 0 1.2 0.18 0.24 0.22 0 6.4 0.19 0.19 0.18 0
PH 7.2 7.1 7.3 6.9 6.5 7.2 7.2 7.3 7.0 6.6 7.3 7.4 7.3 7.1 6.7 ALKALINITY-MG/L 88 128 106 75 69 125 128 111 90 72 106 125 116 100 86 SUSP. SOLIDS-MG/L 133 66 59 17 9 171 74 50 17 10 183 100 58 22 15 BOD TOTAL MG/L 139 40 36 16 7 172 41 31 16 10 230 52 39 16 11 BOD, SOL MG/L 40 9 4 3 6 44 9 5 3 5 59 11 9 7 10 ALGAE /ML × 103 - 396 212 24 17 - 296 189 28 29 - 1370 22 1.4 23 FECAL (OLI/IDONL×10 2.5 0.1 0.2 0.012 0 1.2 0.18 0.24 0.22 0 6.4 0.19 0.19 0.18 0
ALKALINITY-MG/L 88 128 106 75 69 125 128 111 90 72 106 125 116 100 88 50 50 50 50 50 50 50 50 50 50 50 50 50
SUSP. SOLIDS-MG/L 133 66 59 17 9 171 74 50 17 10 183 100 58 22 15 BOD TOTAL MG/L 139 40 36 16 7 172 41 31 16 10 230 52 39 16 11 BOD, SOL MG/L 40 9 4 3 6 44 9 5 3 5 59 11 9 7 10 ALGAE /ML × 103 - 396 212 24 17 - 296 189 28 29 - 1370 22 1.4 23 FECAL COLI/IDONLY10 2.5 0.1 0.2 0.012 0 1.2 0.18 0.24 0.22 0 6.4 0.19 0.19 0.18 0
BOD TOTAL MG/L 139 40 36 16 7 172 41 31 16 10 230 52 39 16 11 BOD, SOL MG/L 40 9 4 3 6 44 9 5 3 5 59 11 9 7 10 ALGAE /ML × 103 - 396 212 24 17 - 296 189 28 29 - 1370 22 1.4 23 FECAL COLI/IDONLY106 2.5 0.1 0.2 0.012 0 1.2 0.18 0.24 0.22 0 6.4 0.19 0.19 0.18 0
BOD, SOL MG/L 40 9 4 3 6 44 9 5 3 5 59 11 9 7 10 ALGAE /ML × 103 - 396 212 24 17 - 296 189 28 29 - 1370 22 1.4 27 FECAL COLI/IDONLY10 2.5 0.1 0.2 0.012 0 1.2 0.18 0.24 0.22 0 6.4 0.19 0.19 0.18 0
ALGAE /ML × 103 - 396 212 24 17 - 296 189 28 29 - 1370 22 1.4 22 FECAL COLI/100ML × 106 2.5 0.1 0.2 0.012 0 1.2 0.18 0.24 0.22 0 6.4 0.19 0.19 0.18 0
FECAL COLI/100MLx10 2.5 0.1 0.2 0.012 0 1.2 0.18 0.24 0.22 0 6.4 0.19 0.19 0.18 0
*
MPN/100 ML×106 2.4 0.24 2004 204 0 2.4 0.350, 27 0.35 0
NH3-N, MG/L 27.5 15.0 10.4 5.9 4.7 23.6 14.0 10.2 5.9 4.7 25.7 13.9 11.5 6.7 6.
NO3-N, MG/L 0.04 Kacz 0.08 0.15 0.27 Ko.02 Ko.02 0.08 0.14 0.27 0.08 0.01 0.08 0.060.1
NOz-N, MG/L KO.02 0.05 0.06 0.06 0.05 0.04 0.06 0.07 0.07 0.05 0.02 0.08 0.060,050,0
COD TOTAL MG/L 285 216 173 104 104 339 207 169 107 114 342 234 173 110 107
COD SOL. MG/L 103 75 70 70 74 108 86 72 77 75 139 80 66 76 76
TKN MG/L 109 42.4 21.2 11.8 10.2 40.8 27.2 216 11.6 19.5 101 30.4 24.8 12.3 12.
TOTAL P MG/L 7.3 8.0 7.1 6.5 6.4 6.8 7.5 7.1 6.5 6.7 8.3 7.7 7.1 6.5 6.

	r														
DATE		11/2	1/70	4			"/	22/-	4			11/	23/	4	
AIR TEMP C MAXMIN		12/	2				4/	1-5				1/	- 11		
WEATHER		Rai	4				Cle	ar, c	Cold			CI	lear		
INF FLOW, MG		0.3	284				0	. 28	3			0.	25	3	
EFF FLOW, MG		0.1	"				0.	106	,			0.	111		
CL2 DOSE-MG/L		9.	2				10	0,2		·		10	. 9		
CLz RESIDUAL MG/L		2	۰,0				2	.0				2	10		
	Inf	1	2	3	EFF	INF		2	3	EFF	INF	1	2	3	EFF
TEMP °C	13	6	5	5	7	13	4	4	4	6	/2	4	3.5	4	5
DO, MG/L	3,2	7.9	5.5	2.9	1.6	1.8	6.6	5.5	3./	3.8	2.4	5.4	6,2	2.5	1,3
ρΗ	7./	7.3	7,2	7.0	6.7	7.0	7,2	7,2	7.0	6.7	2.1	7.3	7.3	7,0	6.7
ALKALINITY-MG/L	64	120	117	94	81	107	121	116	43	82	101	123	116	93	86
SUSP. SOLIDS-MG/L	220	87	45	13	9	139	86	46	17	10	121	85	60	22	10
BOD TOTAL MG/L	2/2	46	30	Q	4	128	12	32	9	5	160	50	40	15	6
BOD, SOL MG/L	35	7	6	/	4	42	12	6	4	5	53	10	7	4	6
ALGAE ML × 103	-	2200	2300	514	292	1	4200	2300	5.6	2.8	-	2400	2400	224	336
FECAL COLI/IDONLXID	5.4	0.6	0.55	0.6	0	2,2	0.18	0.16	0.17	0	1.9	0.24	0,22	0.15	0
MPN/100 ML×106															
NH3-N, MG/L	19.6	14.4	11.4	7.0	6.4	20,5	14.0	11.3	6.9	6.6	26.8	150	12.0	6,5	6.6
NO3-N, MG/L	0.04	0.07	0.12	0.10	0.14	<0,03	K0,04	K0,07	0,08	0.17	0.02	0.08	0,12	0.09	017
NO2-N, MG/L	0,02	0.05	0.04	004	0.06	0.04	0.08	0.07	0.06	0,04	0104	0.04	0,04	003	0.04
COD TOTAL MG/L	252	223	167	112	104	293	223	154	97	101	326	220	183	121	m
COD SOL. MG/L	87										112				
TKN MG/L	30,4	26.8	19.4	12.7	10.8	300	30,4	21.6	11.8	11.8	36,4	26.8	12.3	1210	11.3
TOTAL P MG/L	5.9	26	69	6.6	6.3	5.6	7.6	6.8	6.4	6.4	74	7.6	7.4	6.4	6.3
*						NIE					DC \		==		1.4.

				<u> </u>											
DATE		11/2	4/7	4			11/	25/	74			11/2	26/7	4	
AIR TEMP C MAY		6/-	5				8/	3				9/-	6		
WEATHER		Clo	udy				Clo	ndy			Cla	ndy	1,3n	ow	
INF FLOW, MG		0.2	09				0.1	88				0.2	50		
EFF FLOW, MG		0.11	4				0.1	96				0.11	11		
CL2 DOSE-MG/L		10.	5				10	.0				12.	0		
CLZ RESIDUAL MG/L		2,	0				2,	0				2,	0		
	INF	1	2	3	EFF	INF	-	2	3	EFF	INF	١	2	3	EFF
TEMP °C	12	5	4	4	5.5	13	6	5	6	6	13	3	3	3	5
DO, MG/L	3.5	4.0	6.9	2.0	1.1	2,2	4.0	6.7	3.5	1.8	2.9	2.8	6.1	3.1	1.8
рН	7.0	7.2	7.4	7.0	6.7	7.0	7,3	7.4	7,0	6.8	712	7,2	7,2	210	6.7
ALKALINITY-MG/L	84	129	110	96	83	88	126	110	99	83	109	132	116	95	85
SUSP. SOLIDS-MG/L	113	62	53	15	10	341	78	51	16	8	125	75	47	17	11
BOD TOTAL MG/L	182	43	38	15	6	243	49	37	19	9			-		
BOD, SOL MG/L	49	9	6	2	4	77	12	/2	8	9					
ALGAE ML × 103	ı	2700	2 <i>30</i> 0	469	467	1	2000	1800	570	357	1	299	953	151	293
FECAL COLI/DOMLXIO	2,2	0.49	0.13	0.26	0		047					0,26			
MPN /100 ML×106															
NH3-N, MG/L	18%	14.4	11.6	7,2	6.8	18.7	14.5	11.5	7.4	6.8	4210	15.5	12.3	210	7.1
NO3-N, MG/L	0,02	005	0.10	0.08	0.17	0.07	0.10	0.13	0.13	0.17	0.04	0.04	0.09	0.06	0.10
NOz-N, MG/L	0:04	0.05	0.06	0 .04	0.05	0.03	0.05	0.04	0.03	0:06	0.02	0.02	0.02	0,02	0.02
COD TOTAL MG/L	297	203	177	111	110	417	224	176	118	106	407	181	162	115	104
COD SOL. MG/L	1/2	77	68				77				189	1		66	72
TKN MG/L	30.8	28,0	20.%	11.4	11.3	30.8	26.6	2110	11.4	1110	37,6	26 A	21,2	12.6	11.9
TOTAL P MG/L															6.2
	FFFI				·			L	<u> </u>	<u> </u>	<u></u>		<u> </u>	<u> </u>	

EFF FLOW, MG CL2 DOSE-MG/L JOSE-MG/L JOSE		TF 11/22/24 11/26/24 11/26/24														
WEATHER C/ear Party Clondy Clondy INF FLOW, MG 0.239 0.237 0.176 EFF FLOW, MG 0.112 0.112 0.116 CL_2 DOSE-MG/L Q-6 INF I 2 3 EFF TEMP °C 3 1.5 1 2 4 12 3 15 2.5 4 11.5 4 2 3 5 FF TEMP °C 3 1.5 1 2 4 12 3 15 2.5 4 11.5 4 2 3 5 FF DO, MG/L 2.6 2.6 7.6 4.2 2.5 4.2 1.6 8.4 4.0 2.7 3.6 0.8 8.4 4.0 2.5 PH 72 7.2 7.3 7.1 6.8 7.9 7.3 7.4 7.1 6.5 7.1 7.1 7.4 7.0 6.7 ALKALINITY-MG/L 172 126 121 94 86 144 137 121 104 89 112 132 117 100 99 SUSP SOLIDS-MG/L 53 70 51 24 11 35 61 49 19 13 165 71 50 11 14 BOD TOTAL MG/L 89 46 35 15 6 72 42 34 18 8 197 51 50 18 9 BOD, SOL MG/L 52 7 5 1 4 36 10 9 5 6 49 11 7 4 6 ALGAE /ML x 103 - 1600 1100 359 305 - 3100 1800 438 591 - 1000 1900 1900 358 604 FECAL (OLI/IDONLXID 46 0.51 0.75 0.04 0 7.5 0.47 0.27 0.01 0 1.2 0.50 0.16 0.02 0.04 MPN/IOOMLXIO 6 16 0.17 0.07 0.11 0.10 600 0.04 0.05 0.05 0.12 0.04 0.04 0.05 0.04 0.06 NO3-N, MG/L 0.14 0.17 0.07 0.11 0.10 600 0.04 0.05 0.05 0.02 0.04 0.04 0.05 0.04 0.05 COD TOTAL MG/L 220 26.8 20.6 137 12.1 20.0 22.0 12.6 13.1 13.6 37.1 24.4 20.5 23.4 13.0 TKN MG/L 220 26.8 20.6 137 12.1 20.0 22.0 12.6 13.1 13.6 37.1 24.4 20.5 23.4 13.0			11/27	h4				11/2	8/70	1			11/2	9/14		
INF FLOW, MG O.239 O.237 O.176 EFF FLOW, MG CL2 DOSE-MG/L QL2 RESIDUAL: MG/L INF I 2 3 EFF INF I 2 3 EFF INF I 2 3 EFF TEMP °C 3 1/5 1/2 4 1/2 3 1/5 2/5 4 1/5 4 2 3 6 DO, MG/L 2.6 7.6 4.2 2/5 0/2 1/6 8.4 4.0 2.7 3.6 0.8 8.4 1.0 2/5 PH 7.2 7.2 7.3 7.1 6.8 7.9 7.3 7.4 7.1 6.8 7.1 7.1 7.4 7.0 6.7 ALKALINITY-MG/L 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	AIR TEMP C MAXIN		-1/	-9				১/-	/2				7.5/	-6		
EFF FLOW, MG CL2 DOSE-MG/L JOSE LNF 1 2 3 EFF INF 1 2 3 EFF INF 1 2 3 EFF INF 1 2 3 EFF TEMP °C 3 1.5 / 2 4 12 3 1.5 2.5 4 11.5 4 2 3 5 EFF DO, MG/L JOSE DO, MG/L JOSE TEMP °C 3 1.5 / 2 4 12 3 1.5 2.5 4 11.5 4 2 3 5 EFF TEMP °C 3 1.5 / 2 4 12 3 1.5 2.5 4 11.5 4 2 3 5 EFF TEMP °C 3 1.5 / 2 4 12 3 1.5 2.5 4 11.5 4 2 3 5 EFF TEMP °C 3 1.5 / 2 4 12 3 1.5 2.5 4 11.5 4 2 3 5 EFF TEMP °C 3 1.5 / 2 4 12 3 1.5 2.5 4 11.5 4 2 3 5 EFF TEMP °C 3 1.5 / 2 4 12 3 1.5 2.5 4 11.5 4 2 3 5 EFF TEMP °C 3 1.5 / 2 4 12 3 1.5 2.5 4 11.5 4 2 3 5 EFF TEMP °C 3 1.5 / 2 4 12 3 1.5 2.5 4 11.5 4 2 3 5 EFF TEMP °C 3 1.5 / 2 4 12 3 1.5 2.5 4 11.5 4 2 3 5 EFF TEMP °C 3 1.5 / 2 4 12 3 1.5 2.5 4 11.5 4 2 3 5 EFF TEMP °C 3 1.5 / 2 4 12 3 1.5 2.5 4 11.5 4 2 1.5 2.1 7.1 7.4 7.0 2.5 5 EFF TEMP °C 3 1.5 / 2 4 12 3 1.5 2.5 4 11.5 4 2 1.5 2 1.7 7 7.4 7.4 7.0 2.5 5 EFF TEMP °C 3 1.5 / 2 4 12 3 1.5 2.5 4 11.5 4 2 1.5 2 11.7 7.0 4 7.0 2.5 5 EFF TEMP °C 3 1.5 / 2 4 12 3 1.5 2.5 4 11.5 4 2 1.5 2 11.7 7.0 4 7.0 2.5 6 EFF TEMP °C 3 1.5 / 2 4 12 3 1.5 2.5 4 11.5 4 2 1.5 2 1.7 7 7 2 4 1.5 5 1.7 7 2 4 1.0 2.5 5 EFF TEMP °C 3 1.5 / 2 4 12 3 1.5 2 1.7 7 7 2 4 1.0 2 3 EFF TEMP °C 3 1.5 / 2 4 12 2.5 6 7.4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	WEATHER		Clea	<u> </u>			Pa	utly	C/.	ndy	-		Clon	dy		
CL-2 DOSE-MG/L CZ RESIDUAL MG/L INF 1 2 3 EFF INF 1 2 3 EFF INF 1 2 3 EFF TEMP °C 3 1/5 1 2 4 1/2 3 1/5 2.5 4 1/5 4 2 3 5 DO, MG/L 2.6 2.6 7.6 4/2 2.5 6/2 1/6 8.4 4.0 2.7 3.6 0.8 8.4 1.0 2.5 PH 72 7.2 7.3 7.1 6.8 7.9 7.3 7.4 7.1 6.6 7.1 7.1 7.4 7.0 6.7 ALKALINITY-MG/L 172 128 121 94 86 144 137 121 104 89 1/2 132 1/7 100 99 SUSP SOLIDS-MG/L 53 70 5/ 24 1/ 35 6/ 49 19 13 1/5 7/ 50 2/ 1/ 60 0 1/ 60 0 1/6 0 1/	INF FLOW, MG	,	0.23	9				0.7	2 37				0.17	6		
INF 1 2 3 EFF INF 1 2 3 2 4 2	EFF FLOW, MG		0.11	2				0.	//2				0.116	,		
INF 1 2 3 EFF TEMP °C 3 1.5 1 2 4 12 3 1.5 2.5 4 11.5 4 2 3 5 DO, MG/L 2.6 2.6 7.6 4.2 2.5 4.2 1.6 8.4 4.0 2.7 3.6 0.6 8.4 4.0 2.5 PH 7.2 7.2 7.3 7.1 6.8 7.9 7.3 7.4 7.1 6.6 7.1 7.1 7.4 7.0 6.7 ALKALINITY-MG/L 1/2 1/26 1/21 96 86 1/44 1/37 1/21 1/04 89 1/12 1/32 1/7 1/00 99 SUSP. SOLIDS-MG/L 53 70 5/ 24 1/ 35 6/ 49 1/9 1/3 1/65 7/ 50 2/ 1/4 BOD TOTAL MG/L 89 46 35 1/5 6 7/2 42 34 1/8 8 1/97 5/ 5/ 5/ 1/8 9 BOD, SOL MG/L 32 7 5 1/ 4 36 1/0 9 5 6 49 1/1 7 4 6 ALGAE /ML x 103 - 1/600 1/00 3/59 3/08 - 3/00 1/200 4/38 5/91 - 2/000 1/200 3/58 6/04 FECAL (OLI/IDDNLXIO 4/6 0/5/ 0/25 0/26 0/7/5 0/47 0/27 0/01 0/1/2 0/30 0/1/6 0/22 0/20 MPN /100 ML x 106	CL2 DOSE-MG/L		9.6					10.8	<u></u>	-			<u>. </u>			
TEMP °C 3 1.5 1 2 4 12 3 1.5 2.5 4 11.5 4 2 3 5 DO, MG/L 2.6 2.6 7.6 4.2 2.5 4.2 1.6 8.4 4.0 2.7 3.6 0.8 8.4 4.0 2.5 PH 7.2 7.2 7.3 7.1 6.8 7.9 7.3 7.4 7.1 6.5 7.1 7.1 7.4 7.0 6.7 ALKALINITY-MG/L 1/2 1/26 1/21 96 86 1/44 1/37 1/21 1/04 89 1/2 1/32 1/7 1/00 99 SUSP. SOLIDS-MG/L 53 70 51 24 1/ 35 61 49 1/9 1/3 1/65 71 50 1/1 4 BOD TOTAL MG/L 84 46 35 1/5 6 72 42 34 1/8 8 1/97 51 50 1/8 9 BOD, SOL MG/L 32 7 5 1 4 36 1/0 9 5 6 4/9 1/1 7 4 6 ALGAE /ML x 103 - 1/600 1/000 3/59 3/08 - 3/100 1/200 4/3/8 5/91 - 1/000 1/900 3/58 6/04 FECAL (OLI/IDNILIIO 4.6 0/51 0/2/8 0/4 0 7.5 0/47 0/2/8 0/01 0 1/2 0/3/0 0/4 0/2 0 MPN /100 ML x 106	CLZ RESIDUAL MG/L	2.0 2.0														
DO, MG/L 2.6 2.6 7.6 4.2 2.5 4.2 1.6 8.4 4.0 2.7 3.6 0.8 8.4 4.0 2.5 PH 7.2 7.2 7.3 7.1 6.8 7.9 7.3 7.4 7.1 6.8 7.1 7.1 7.4 7.0 6.7 ALKALINITY-MG/L 1/2 1/28 1/21 96 86 1/4 1/37 1/21 1/4 89 1/2 1/32 1/7 1/05 99 SUSP SOLIDS-MG/L 80 7.1 3.6 0.8 8.4 4.0 2.5 SUSP SOLIDS-MG/L 80 7.1 3.6 0.8 8.4 4.0 2.5 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2		INF	1	2	3	EFF	INF	1	2	3	EFF .	INF	1	2	3	EFF
PH 7,2 7,2 7,3 7,1 6,8 7,9 7,3 7,4 7,1 6,6 7,1 7,1 7,4 7,0 6,7 ALKALINITY-MG/L 1/2 128 121 96 86 144 137 121 104 89 1/2 132 1/7 100 99 SUSP. SOLIDS-MG/L 53 70 5/ 24 1/ 35 6/ 49 19 13 165 7/ 50 2/ 14 BOD TOTAL MG/L 92 7 5 1/ 4 36 10 9 5 6 49 1// 7 4 6 BOD, SOL MG/L 32 7 5 1/ 4 36 10 9 5 6 49 1// 7 4 6 ALGAE /ML × 103 - 1600 1/00 359 308 - 3/00 1800 438 59/ - 1000 1900 1900 100 100 100 100 100 100	TEMP °C	3	1.5	/	2	4	/2	3	1.5	2,5	4	11.5	4	2	3	5
ALKALINITY-MG/L 1/2 1/26 1/21 96 86 1/4 1/37 1/21 1/4 89 1/2 1/32 1/7 1/50 99 SUSP. SOLIDS-MG/L 53 70 5/ 24 1/ 35 6/ 49 1/9 1/3 1/65 7/ 50 2/ 1/4 BOD TOTAL MG/L 89 46 35 1/5 6 72 42 34 1/8 8 1/47 5/ 5/0 1/8 9 BOD, SOL MG/L 32 7 5 1/ 4 36 1/0 9 5 6 49 1/1 7 4 6 ALGAE /ML x 103 — 1/600 1/00 3/59 3/68 — 3/100 1/800 4/38 5/9/ — 2000 1/900 3/58 6/04 FECAL COLI/IDNLXIV 4/6 0/5/0/28 0/04 0 7/5 0/47 0/27 0/0/ 0 1/2 0/30 0/16 0/02 0 MPN/100 ML x 106	DO, MG/L	2,8	2,6	7.6	4,2	2.5	4,2	1.6	8,4	410	2.7	3.6	0.8	8.4	4.0	2,5
SUSP. SOLIDS-MG/L 53 70 51 24 11 35 61 49 19 13 165 71 50 21 14 BOD TOTAL MG/L 89 46 35 15 6 72 42 34 18 8 197 51 50 18 9 BOD, SOL MG/L 32 7 5 1 4 36 10 9 5 6 49 11 7 4 6 ALGAE /ML x 103 — 1600 1100 359 308 — 3100 1200 438 591 — 2000 1900 358 604 FECAL (OLI/IDNILXIII 4.6 0.51 0.28 0.04 0 7.5 0.47 0.27 0.01 0 1.2 0.30 0.16 0.02 0 MPN/IDO ML x 106	ρΗ	7,2	7,2	7.3	7.1	3,2	7,9	7.3	7.4	7.1	6.8	7.1	7.1	7.4	7,0	6.7
BOD TOTAL MG/L 89 46 35 15 6 72 42 34 18 8 197 51 50 18 9 BOD, SOL MG/L 32 7 5 1 4 36 10 9 5 6 49 11 7 4 6 ALGAE /ML x 103 - 1600 1100 359 308 - 3100 1800 438 591 - 2000 1900 358 604 FECAL (OLI/IDONLXIV 4.6 0.51 0.28 0.04 0 7.5 0.47 0.27 0.01 0 1.2 0.30 0.16 0.02 0 MPN/IOO ML x 106	ALKALINITY-MG/L	//2	128	121	96	86	144	137	/2/	104	89	//2	132	117	100	99
BOD, SOL MG/L 32 7 5 1 4 36 10 9 5 6 49 11 7 4 6 ALGAE /ML × 103 - 1600 1100 359 308 - 3100 1200 438 591 - 2000 1900 358 604 FECAL (OLI/IDDNLXID 4.6 0.51 0.28 0.04 0 7.5 0.47 0.27 0.01 0 1.2 0.30 0.16 0.02 0 MPN/IDO ML × 106 16.2 15.0 11.6 7.8 4.2 21.0 16.2 12.1 7.7 7.4 21.7 15.5 11.9 7.3 7.6 NO3-N, MG/L 0.14 0.17 0.07 0.11 0.10 40.01 0.04 0.06 0.06 0.12 0.04 0.04 0.05 0.04 0.06 NO2-N, MG/L 0.12 0.05 0.6 0.05 0.05 0.05 0.02 0.02 0.02 0.02 0.02	SUSP. SOLIDS-MG/L	53	20	51	24	11	35	61	49	19	13	165	71	50	2/	14
ALGAE /ML x 103 — 1600 1100 359 308 — 3100 1800 438 591 — 2000 1900 356 604 FECAL COLI/IDONLXIO 4.6 0.51 0.728 0.04 0 7.5 0.47 0.27 0.01 0 1.2 0.30 0.16 0.02 0 MPN/IDO ML x 106	BOD TOTAL MG/L	89	46	35	15	6	72	42	34	18	8	197	51	50	18	9
FECAL COLI/IDONLXIO 4.6 0.51 0.78 0.04 0 7.5 0.47 0.27 0.01 0 1.2 0.30 0.16 0.02 0 MPN/IDOMLXIO 16.2 15.0 11.8 7.8 4.2 21.0 16.2 12.1 7.7 7.4 21.7 15.5 11.9 7.3 7.6 NO3-N, MG/L 0.14 0.17 0.07 0.11 0.10 40.01 0.04 0.06 0.08 0.12 0.04 0.04 0.05 0.04 0.06 NO2-N, MG/L 0.12 0.05 0.6 0.05 0.05 0.02 0.02 0.02 0.02 0.02 0.02	BOD, SOL MG/L	32	7	5	1	4	36	10	9	5	6	49	11	7	4	6
MPN/100 ML x 106 NH3-N, MG/L 16.2 15.0 11.8 7.8 4.2 21.0 16.2 12.1 7.7 7.4 21.7 15.5 11.9 7.3 7.6 NO3-N, MG/L 0.14 0.17 0.07 0.11 0.10 60.01 0.04 0.08 0.08 0.12 0.04 0.04 0.05 0.04 0.06 NO2-N, MG/L 0.12 0.05 0.6 0.05 0.05 0.05 0.02 0.02 0.02 0.02 0.02	ALGAE ML × 103	-	1600	1100	359	308	_	3100	1200	438	591	-	2000	1900	356	604
MPN/100 ML x 106 NH3-N, MG/L 16.2 15.0 11.8 7.8 4.2 21.0 16.2 12.1 7.7 7.4 21.7 15.5 11.9 7.3 7.6 NO3-N, MG/L 0.14 0.17 0.07 0.11 0.10 60.01 0.04 0.08 0.08 0.12 0.04 0.04 0.05 0.04 0.06 NO2-N, MG/L 0.12 0.05 0.6 0.05 0.05 0.05 0.02 0.02 0.02 0.02 0.02	FECAL COLI/IDOMLXIO	4.6	0.51	0.28	0.04	0	7.5	047	0,27	0,01	0	/,2	0.30	0.16	0,02	0
NO3-N, MG/L 0.14 0.17 0.07 0.11 0.10 <0.01 0.04 0.06 0.08 0.12 0.04 0.04 0.05 0.04 0.06 NO2-N, MG/L 0.12 0.05 0.6 0.05 0.05 0.05 0.02 0.02 0.02 0.02 0.02	MPN /100 ML×106											1.6	0.18	0,24	0.02	0
NOz-N, MG/L 0.12 0.05 0.6 0.05 0.05 0.02 0.02 0.02 0.02 0.02 0.02	NH3-N, MG/L	16,2	15.0	11.8	7.8	4.2	21.0	16.2	12.1	7.7	7.4	21.7	15.5	11.9	7,3	7.6
COD TOTAL MG/L 178 210 167 119 115 96 139 156 116 106 251 201 170 118 186 COD SOL. MG/L 57 73 64 68 69 55 74 66. 70 72 76 74 64 70 68 TKN MG/L 22.0 26.8 20.6 137 12.2 20.0 28.0 22.8 13.2 13.6 33.2 26.4 20.8 13.4 13.0	NO3-N, MG/L	0.14	0.17	0.07	0.11	0,10	10.0	0.04	0.08	0.08	0.12	0.04	0,04	0.05	0.54	0.06
COD SOL. MG/L 57 73 64 68 69 55 74 66. 70 72 76 74 64 70 68 TKN MG/L 22.0 26.8 20.6 137 12.2 20.0 28.0 22.8 13.2 13.6 33.2 26.4 20.8 13.4 13.0	NOz-N, MG/L	012	0.05	0.6	0.05	0.0	0.02	0.02	0.02	0.02	0.02	0,02	0.02	0.05	0.02	0.06
COD SOL. MG/L 57 73 64 68 69 55 74 66. 70 72 76 74 64 70 68 TKN MG/L 22.0 26.8 20.6 137 12.2 20.0 28.0 22.8 13.2 13.6 33.2 26.4 20.8 13.4 13.0	COD TOTAL MG/	178	210	167	119	115	96	139	156	116	106	251	20/	170	118	186
├────────────────────────────────────				[T		1	1	72	76	74	64	70	68
TOTAL P MG/L 2.9 7.4 7.2 6.8 64 34 7.6 7.1 6.8 6.4 3.1 7.1 6.9 6.4 6.3	TKN MG/L	22.0	26.8	20.6	137	12.2	20.0	28.0	22.8	13.2	13.6	33,2	26.4	20.8	13.4	13.0
	TOTAL P MG/L	2.9	7.4	7.2	6.8	64	3A	7.5	7.1	6.8	6.4	3.1	7.1	6.9	6.4	6.3

	·														
DATE		"/	30/7	4			12,	/1/74	1			12/	12/74	ţ	
AIR TEMP C MAY		3/.	- 14				-5/	-17				1/-	۶.		
WEATHER		cle	ar				Clos	ed y			R	ain a	and '	5400	w
INF FLOW, MG		0.1	99				0,1					0.1	81		
EFF FLOW, MG		0.10	09				0	115				0.1	7/		
CL2 DOSE-MG/L		10.	0				10.	4				12,	0		
CLZ RESIDUAL MG/L		2,0	>				2,	0				3,	0		
	INF	1	2	3	EFF	INF	l	2	3	EFF	INF	1	2	3	EFF
TEMP °C	13	4	2	3	4	11	4.6	2	2,5	9	12	5	2	2	4
DO, MG/L	4.7	0.3	8.7	2,6	1.9	44	0.3	8.7	2.4	1.7	3.6	0.3	7.5	1.5	1.3
рН	7.0	7.1	7.3	7.1	6.7	7.0	7.1	7.5	7.1	6.7	7.3	7.2	7.4	7,0	6.7
ALKALINITY-MG/L	83	143	118	99	87	89	144	/23	102	93	111	136	125	98	90
SUSP. SOLIDS-MG/L	28	64	48	22	12	17	69	46	16	10	168	20	46	20	16
BOD TOTAL MG/L	29	45	34	15	9	81	60	36	19	13	126	34	27	11	5
BOD, SOL MG/L	29	13	12	6	9	46	15	12	٤	10	//	6	11	1	2
ALGAE ML × 103	-	2100	1900	580	546	_	2130	1940	414	238	1	2060	160	327	383
FECAL COLI/100MLx10	2.9	0,23	0.78	0.02	0	3.7	1.8	0,20	0.06	0	4.5	2.5	0.37	0,08	0
MPN/100 ML×106	-														
NH3-N, MG/L	12.6	16.5	12,0	8.0	7.5	12.6	165	11.6	7,1	7.4	17:2	17.3	12,5	8,2	7.6
NO3-N, MG/L	८०,ल	(0:01	0.08	0.05	0112	0.04	0,04	0.05	007	0.18	0,05	0,06	0.08	0.06	0.06
NO2-N, MG/L	0.02	0,02	ô.07.	0.65	6.02	0.02	0,02	0.06	0.05	0.06	0.05	0.05	0.07	0.05	0.08
COD TOTAL MG/L	74	178	159	109	103	71	183	152	107	114	146	170	152	127	107
COD SOL. MG/L	34	72	70	72	69	46	70	60	73	68	43	74	63	68	68
TKN MG/L	17.9	27.2	21.0	13.5	11.8	17.8	26.5	21.2	13.6	12.6	24.8	280	20.4	13.7	12,3
TOTAL P MG/L	2,2	7,2	710	6.7	6.4	2.0	7.2	6.9	6.4	3.0	6.3	7,2	7.1	6.5	6.5
*	E E E 1	\	- -	TEAL		N. I.E.	2014	1.11	~	341 4	DC 1	LIBAC	150	DCD	1 41

															
DATE		12/	3/7	1			12/	4/7	4			12/5	174		
AIR TEMP C MAY		2/-	- 1				//-	5				-2/	- 14		
WEATHER		Clon	dy			P	ently	, C,	ond	j		C/on	dy		
INF FLOW, MG		0.	37				0.2	39				0,2	35		
EFF FLOW, MG		0.1	//				0.1	09				0.11	′/		
CL2 DOSE-MG/L		4.	 3				11.	0			-	10.	8		
CLz RESIDUAL MG/L		2.,	9				2.:	5				2,4	<u> </u>		
	INF	1	S	3	EFF	INF	_	2	3,	EFF	INF	1	2	3	EFF
TEMP °C	13	4	2	2	4	11	4	2	2	4	11	4	3	2	4
DO, MG/L	3.1	0.3	4.9	0.9	0.6	4.4	0.3	4.1	0,9	0.5	4.1	0.3	4,2	0.8	0.4
ρΗ	8.4	7.1	7,3	7.0	6.7	7.7	7.1	7.2	7,0	6.7	7.4	7.1	7,2	7,0	6.7
ALKALINITY-MG/L	161	137	120	97	86	121	144	122	108	88	144	145	/22	104	86
SUSP. SOLIDS-MG/L	149	58	42	20	8	141	60	57	15	"	130	50	40	20	6
BOD TOTAL MG/L	138	45	30	17	5	130	48	34	14	6	183	44	30	13	5
BOD, SOL MG/L	33	8	4	1	2	34	9	6	5	5	56	14	7	4	4
ALGAE ML × 103	_	2210	1920	3/3	524	_	2660	2920	509	711	_	2940	3190	575	627
FECAL COLI/IDOMLXIO	2.3	0.49	0113	0.07	0	1.3	0.33	0.09	0.02	0	3,2	0,54	0.11	0.02	0
MPN/100MLx106															
NH3-N, MG/L	29,2	K.2	13.0	7.8	7.6	23.2	17.5	13.6	8.3	7.6	26.6	17.7	13.4	8.5	7.9
NO3-N, MG/L	0.05	0.01	0.01	0.05	0.13	0.15	0.18	0.21	0.18	0.21	0.12	0.21	0.12	0.16	0,22
NOz-N, MG/L	0.33	0.05	0.06	0.05	0.06	Ko.=5	K0.05	<0.05	ره. د ر	¢o.≎5	40.05	4.06	LO.05	€0,0€	20.05
COD TOTAL MG/L	275	167	148	100	96	165	143	130	95	92	256	161	130	97	95
COD SOL. MG/L	95	71	66	71	71	116	83	69	78	79	147	91	71	88	81
TKN MG/L	404	26.4	20.8	3.2	13.0	32.4	26.8	21.2	13.6	12,2	35.6	26,8	21.7	134	12.2
TOTAL P MG/L	5.8	6.7	7.0	6.3	6.3	7,2	7,2	7.1	6.5	6.3	7.5	7.6	7.2	6.6	6.5
	FECI					<u> </u>	<u> </u>	<u></u>	<u></u>	<u> </u>	DC /				ل ب ب

<u></u>	·										,				
DATE		12/	6/70	4			12/	17/7	4			12	18/7	4	
AIR TEMP C MAX		2/-	13				4/	-13				10/	0		
WEATHER		CK	ar				Ch	ear				Clor	id y		
INF FLOW, MG		0.7	59				0.7	24				0.1	192		
EFF FLOW, MG		0.	110				0.	209	-			0.	223		
CL2 DOSE-MG/L		9.	٤				//.	4				11,	/		
CLz RESIDUAL MG/L		2	,0				2	.0				2.	0		
	INF	1	2	3	EFF	INF	1	2	3	EFF	INF	1	2	3	EFF
TEMP °C	11	4	3	2	4	11	4	3	2	3	11	4	4	2	4
DO, MG/L	4.5	0.3	4.6	0,8	0,5	4.5	0.3	4.5	0.7	0.6	4,5	0.3	3.0	0.6	0.3
ρΗ	7.3			7.0								7.1			6.7
ALKALINITY-MG/L	129	148	128	106	88	126	154	134	109	88	113	155	126	101	97
SUSP. SOLIDS-MG/L	192	57	41	50	٤	103	45	36	9	5	117	43	33	10	6
BOD TOTAL MG/L	167	43	25	28	5	129	52	30	13	5	145	34	29	/2	4
BOD, SOL MG/L	52	/2	4	3	4	53	19	7	4	4	51	16	6	2	3
ALGAE ML × 103	1	2750	2030	449	546	-	1790	1720	418	399	-	1870	1680	452	494
FECAL COLI/100MLx10°	2.5	0.62	0.11	0.03	0	4.8	0.67	0.38	30,0	0	5.4	0.60	043	0.04	0
MPN /100 ML×106	<u> 2</u> 2,4	0.92	0.18	0.05	0							0.92			
NH3-N, MG/L	25.4	14.2	13.7	8.8	8.2	26,3	18.7	14,2	8.9	8.4	23.4	19.6	14.1	8.9	8.4
NO3·N, MG/L	0.07	0.07	0.15	6119	0.17	0.08	0.10	0.13	0.10	0.19	0.12	0.1/	0.12	0.10	0,20
NOz-N, MG/L	K0.05	6.0 <i>6</i>	40.05	6.05	KO 205	0.06	∠o. c5	⟨०.०€	20.05	(0.05	L0.05	Lo.06	₹0.¢6	4.06	رد.د ج
COD TOTAL MG/L	375	187	133	129	95	276	17/	129	104	93	302	170	99	132	92
COD SOL. MG/L	124	98	68	74	28	101	84	60	65	71	119	90	67	54	
TKN MG/L	30,E	28 <i>A</i>	22.0	14.5	12.8	36.8	27.6	22./	14.4	13.5	32. f	27.6	21.7	14.6	13.6
TOTAL P MG/L	7,4	7.4	7,3	6.7	6.4	7./	7.3	712	6.7	6.6	9,4	7.5	7,2	6.7	6.7
* ;	E E E 1														لسب

						<u> </u>									
DATE		12/	19/7	4			/2/	10/7	4			12/	11/74		
AIR TEMP & MAXIN		12/-	- 3				4/-	-6				2/-	4		
WEATHER		Cler	dy			1	Partl	y Ca	loud	<i>‡</i>		Cle	i (
INF FLOW, MG		0,2	11				0.	262				0.2	40		
EFF FLOW MG		0.2	//				0.2	22				0.:	209		
CL2 DOSE-MG/L		9.	/		_		10	. 2				11, 9	<u></u>		
CLZ RESIDUAL-MG/L		2.0	,				2	.0				2.0			
	INF	1	2	3	EFF	IIJF		2	3	EFF	INF	1	2	3	EF F
TEMP "C	//	4	3	2	3	11	4	4	1.5	2.5	12	4	3.5	,	2
DO, MG/L	4.4	0.4	0.4	0.8	0.5	5,9	0.4	0.8	0.4	0.4	5.2	0.4	0.7	0.4	0.4
рН	7.1	7.0	7.1	7.0	6.7	9.2	7.0	7./	7.0	6.7	7.2	7.0	7.1	7.0	6.7
ALKALINITY-MG/L	62	145	128	106	94	294	144	123	105	94	///	132	129	109	89
SUSP SOLIDS-MG/L	204	43	38	17	"	120	49	41	23	13	176	47	34	16	6
BOD TOTAL MG/L	132	31	34	/3	7	154	40	34	26	8	168	23	29	14	7
BOD, SOL MG/L	34	14	12	4	5	53	17	"	6	6	56	18	7	5	5
ALGAE, ML x 103	_	1430	1720	339	402	_	1210	1440	627	682	_	25%	1800	407	400
FECAL COLI/100MLx106	5.8	0.58	0.35	0.10	0	1.12	0.60	0.10	0.06	0	1.1	0.87	0.61	0,05	0
MPN /100 ML×104															
NH3-N, MG/L	12.7	17.5	14.9	9,3	8.6	22,4	18.1	13.9	9.2	8.7	24.0	17.8.	13.9	8.9	9.0
NO3-H, MG/L	0.10	0.12	0.13	0.10	0.19	Lo.06	Lo.05	K0.05	<0.05	0.10	K0.05	<0.05	4005	L0.05	0.10
NOz-N, MG/L	40.05	<i>ره.05</i>	<0.0S	40.05	K0.05	(0.05	<0.05	Koos	(a.05	<0.05	K0,0 S	(o.c5	4 06	€ 0,05	<0.05
COD TOTAL MG/L	258	152	134	100	92	276	152	128	109	92	356	147	132	99	93
COD SOL. MG/L	65	67	60	65	76	76	73	59	68	67	138	68	61	64	62
TKN MG/L	23,4	26.0	23,6	13,6	13.6	34.0	26,8	22.0	16.7	14.6	35.2	28.0	23,2	15.5	14.7
TOTAL P. MG/L	5.8	6.7	7,0	45		L	<u> </u>				6.9 RE N				6.5

DATE		12	112/	14			12/1	3/7	4			1.2/	14/7	4	
AIR TEMP & MAXIN		4/	-4					1-2					·-/		
WEATHER		Clos	ndy		 , _ , , , , , , , , , , , , , , , ,		Cle					50	cw		
INF FLOW, MG		0,2	43				0.	235				0.	240	,	
EFF FLOW MG		0.	2 <i>31</i>				0.	213				0,	218	• , , , ,	
CL2 DOSE-MG/L		12.	6				10). _/				9.	4		
CL2 RESIDUAL MG/L		2.	5				/.	5				/.	5		
	INF	١	2	3	EFF	IIJF	1	2	3	EFF	INF	1	2	3	EFF
TEMP:°C	10.5	4	4	,	Z	10	4.5	4	,	2	11	4	4	2	2
DO, MG/L	5.0	0.3	0,4	0.4	0.4	4.4	0.4	0.3	0.4	0.4	5.2	0.3	0.6	0.6	0.5
рН [7,2	7.0	7./	7,0	6.8	7.1	7,0	7.1	7.0	6.8	7,2	7,0	2.1	7.0	6.7
ALKALINITY-MG/L	120	140	13/	108	92	124	144	126	107	93	128	146	121	108	96
SUSP. SOLIDS-MG/L	13c	46	46	22	15	164	42	37	17	13	160	43	32	13	12
BOD TOTAL MG/L	138	48	26	/2	7	146	43	26	13.	9	150	52	29	/2	2
BOD, SOL MG/L	54	25	6	5	5	59	26	9	4	6	57	24	7	4	5
ALGAE, ML × 103	-	1210	1130	461	620	-	862	1320	510	468	-	1080	670	627	57/
FECAL COLI/100ML × 106	3.0	0.73	0.28	0,07	0	1.1	0,70	0.19	0.10	0	4.2	0.82	0.65	0.20	0
MPN /100 ML×106						0.35	0,28	0.13	0.17	0					
NH3-N, MG/L	24.4	17.9	13.9	8,7	9.1	26.5	19.1	13.8	9,1	9.1	24,0	19.5	14.2	9.3	9.3
NO3-N, MG/L	<0.€5	Kars	(0,05	La 05	0.10	(0.05	6005	10.05	K0.05	(0.05	(0.05	Ko.r5	(0.05	(0.05	(0,05
NOz-N, MG/L	(o.05	6.05	L0.05	৫.০১	<0.05	40.05	10.05	K0.05	605	0,10	1005	(0.05	K010 S	(D.06	(0,05
COD TOTAL MG/L	286	155	126	97	95	316	163	129	94	99	329	160	/22	99	91
COD SOL. MG/L	130	80	58	57	64	131	ક 8	38	60	64	129	85	62	62	70
TKN MG/L	36.4	30.0	22.S	15.7	16.1	38.8	34.8	21.6	16.3	14.5	36.4	29.2	23.2	15.7	14.2
TOTAL P MG/L	4.7	6.8	7.0	6.5	6.4	6.5	6,7	6.9	6.6	6.5	2.1	6.7	6.8	6.6	6.6

	Γ					1									1
DATE		12/	15/-	74			12	1161	74			12,	17/7	4	
AIR TEMP & MAXIN		-1,	1-1	0			-5	/-8				4/-	3		
WEATHER		Cle	ar				Cle	ndy			Part	Hy CI	lendy	, 540	nw
INF FLOW, MG		0.7	2//	- <u>-</u>			0.1	97				0.	246		
EFF FLOW MG		0.2	2/				. 0.	207				0.	201		
CL2 DOSE-MG/L		10	, ک				10	0.4							
CL2 RESIDUAL MG/L		2,	0				z	.,0	·			1.5	5		
	INF	١	S	3	EFF	IIJF	1	2	3	EFF	INF	l	2	3	EFF
TEMP:°C	10	5	3	2	2	11.5	45	4	2	3	"	5	4	2	3
DC, MG/L	4,5	0.3	0.3	0.5	0,4	4.8	0.3	0.4	0.4	0.4	4.5	0.3	0.3	0.3	0.4
ρΗ	7.1	7,0	7,1	7.0	6.7	7.0	7.0	7.0	7.0	6.7	8.1	6.9	7.0	7.0	6.8
ALKALINITY-MG/L	97	45	129	108	99	85	123	144	107	100	161	147	124		
SUSP. SOLIDS-MG/L	143	35	35	16	11	163	28	34	15	9	101	47	32	16	14
BOD TOTAL MG/L	170	41	29	15	8	161	27	30	13	<u> </u>	127	48	27	16	10
BOD, SOL MG/L	50	24	8	5	6	42	6	18	4	5	48	20	9	4	6
ALGAE, ML × 103	-	554	1040	655	679	-	1230	1290	567	583	_	925	1310	452	458
FECAL COLI/IDDMLx106	6.5	0.70	0.65	0.23	0	3,8	0.70	0.52	0./2	0		0,67			0
MPN /100 MLx106	22A	0.54	1.1	0.49	0										
NH3-N, MG/L	19.5	M.0	14.4	9.8	9.5	19.3	14.7	18.8	10.2	9.6	27.2	19.7	14.2	9,7	9.8
NO3-N, MG/L	6.05	(0.05	(O.05	L0.06	0.13	0.10	0.10	0110	0.10	0.10	0.10	010	0.10	0.10	0.10
NOz-N, MG/L	40.05	L0105	(0.05	405	0.10	۲٥.۱	40:1	40.1	(0.1	40.1	40.1	(0,1	<0.1	10.1	(0.1
COD TOTAL MG/L				99							118	127			83
COD SOL. MG/L	112	87	61	58	65	101	62	21	62	65	99	78	60	62	68
TKN MG/L	15.2	240	12.0	15.3	4.2	340	21.5	28,0	156	14.8	310	30.4	2/.6	15.5	14.8
TOTAL P. MG/L				6.6									6.8		

DATE		12/	18/20				12/1	9/7	4			12/2	20/70	1	
AIR TEMP & MAXIN		7/-					3/-					5/-	- 7		
WEATHER	Pa	rtla	Clor	id y			Llo					Clon	ДJ		
INF FLOW, MG		0.2	47				O. 2	40				0.23	6		
EFF FLOW MG		0.2	07				0.7	18				0.22	4		
CL2 DOSE-MG/L		6.	9				z.	3				8.6	5		
CL2 RESIDUAL MG/L		1,5	5				2,	٥				2,0	, ——		
÷	INF	١	2	3	EFF	IIJF	1	2	3	EFF	INF	1	2	3	EFF
TEMP :°C	10	5	3,5	2	3	<i>i1</i>	5	3	2	3	10	5	3.5	2	3
DO, MG/L	5.0	0.3	0.3	0.5	0.4	4%	0.3	0.3	0.3	0.3	4,9	0,2	0,3	0,3	0.3
рН :	7,4	6.9	7,0	7.0	6.7	8.15	6.9	7.0	7.0	6.7	7.2	6.9	2.0	7.0	6.7
ALKALINITY-MG/L	117	144	132	110	101	178	153	125	113	100	137	150	122	///	104
SUSP. SOLIDS-MG/L	117	42	35	2/	16	181	34	32	19	17	183	34	35	24	19
BOD TOTAL MG/L	141	51	32	19	//	186	57	37	21	12	185	53	26	13	દ્વ
BOD, SOL MG/L	52	24	10	7	7	10	36	13	7	7	54	33	10	5	6
ALGAE,/ML × 103	_	404	699	346	294	_	962	979	397	466	_	917	764	601	932
FECAL COLI/100MLx10°	3.0	0.81	0,21	0.04	0	3.5	0.87	0.50	0.17	0	2.3	0.97	0.49	0.14	٥
MPN /100 ML×106															
NH3-N, MG/L	26.0	19.2	150	10.4	10.0	24.8	20.6	15.4	10.9	10.5	26.4	15.9	21.0	11.1	10.7
NO3-N, MG/L	0.10	0.10	0110	0.10	0.10	0.1	0.1	011	0.1	0.1	0.1	0,1	0.1	0.1	0.1
NOz-N, MG/L	(0,1	40.1	(0.1	(0.1	40.1	20.1	<0.1	1011	10.1	(0.1	101	١٠٥٧	(0.1	(0.1	(0.1
COD TOTAL MG/L	205	139	108	81	81	295	136	1/2	83	80	240	143	108	81	23
COD SOL. MG/L	93	8/	63	61	64	115	89	67	60	64	105	96	65	60	64
TKN MG/L	34.4	29,2	23.6	16.3	15.9	38.8	29,2	23,0	162	137	38.4	28.0	23.5	16,9	15.8
TOTAL P. MG/L	6.5	7,0	6.8	6.7	6.6	8.1	7.4	20	6.7	6.8	7.9	7.0	69	6.8	6.8

DATE		12/	27/76				12/	30/7				12/	31/2	4	
AIR TEMP & MAY			-20			<u> </u>		- 15				7/-			
WEATHER			ndy			P	Partly					Clea	47		
INF FLOW, MG		0.	217				<u>-</u>	181	X_			0,2	38	*	
EFF FLOW MG		0.	200				0.,	96				0.3	206		
CL2 DOSE-MG/L		a,	6				9,	2				9.9	ŝ		
CL2 RESIDUAL MG/L		2.	0				2	o				1.5	<u> </u>		
	INF	١	S	3	EFF	IIJF	}	2	3	EFF	INF	١	2	3	EFF
TEMP:°C	10	4.5	3	3	3	10	5	3	3	3	10	4.5	3	3	3
DO, MG/L	4.9	0.25	0.4	0.3	0.3	5,0	0,2	0.3	0.3	0.3	4.5	0.3	0.2	0.4	0.4
рН	7.4	6.8	6.9	7.0	6.7	7.1	6.8	6.95	6.9	6.8	7.3	6.8	6.9	7,0	6.7
ALKALINITY-MG/L	156	146	122	119	104	94	147	135	/2/	98	126	156	i4o	119	10%
SUSP SOLIDS-MG/L	41	2/	22	20	18	25	2/	23	18	15	196	2/	20	19	17
BOD TOTAL MG/L	79	82	35	25	16	41	63	27	18.	14	224	90	47	23	17
BOD, SOL MG/L	46	56	26	"	10	22	43	18	10	11	86	46	27	"	"
ALGAE, ML × 103	_	852	846	629	556	-	468	489	686	726	-	355	995	602	503
FECAL COLI/100MLx106	1.23	0. 6 0	0.53	0.19	0	2,2	0.83	0,63	0,25	0	2.4	0.97	0.63	0,24	0
MPN /100 ML×106															
NH3-N, MG/L	24.5	22.6	16.9	12./	12.6	14.5	22.9	17,2	12.9	13,0	25.6	22.8	17.3	12.4	13.1
NO3-N, MG/L	40.1	(0.1	L0: 1	(0.1	40:1	LO.1	(0.1	10.1	LO.1	40.1	401	10.1	۷٥،۱	(011	(0.1
NO2-N, MG/L	0.1	0.1	(0:1	(0.1	6.1	١.٥٧	(0.1	(0.1	40.1	(0.1	(0.1	(01	(0,1	6.1	(0:1
COD TOTAL MG/L	119	141	126	116	112	73	170	133	112	12/	354	184	136	116	121
COD SOL. MG/L	45	юз	20	68	4	36	108	68	64	68	133	112	69	70	83
TKN MG/L	28,0	29,2	25,2	18.3	16.7	18.4	304	22.8	19.9	18.3	38.8	22.8	22.8	18.9	18.8
TOTAL P. MG/L	2.7	6.8	6,8	6.7	6.6	3,2	7,0	6.7	6.7	6.7	8.9	6.9	6.8	6.7	6.7

DATE		1/4	1/15	•			1/:	5/75	<u>-</u>			1/3	8/75		
AIR TEMP & MAX		0/	-12				61	-17					1-18		
V. LATHER									***************************************			Cle			
INF FLOW, MG		0.2	29	· · · · · · · · · · · · · · · · · · ·			C.2	1/2				0.7	2//		
EFF FLOW MG		0.1	99				0.1	98				0.1	98		
CL2 DOSE-MG/L		14.	4.				1,3	3,4				12	. 6		
CLZ RESIDUAL MG/L		2,	0				1.	5				1.	6		
	INF	1	2	3	EFF	ILUF	1	2	3	EFF	INF	1	2	3	EFF
TEMP :°C	9,5	5	3	3	3	9	5	3	2.5	3	10	5	3	2,5	3
DO, MG/L	5,2	0.3	0.3	0.3	0.3	5.6	0,2	0,3	0.3	0.3	2.7	0,2	0.1	0.3	0.3
рН :	7.3	6.7	6.9	6.9	6.6	7.2	6.8	6.9	6.9	6.6	8.0	6.8	6.8	6.9	6.6
ALKALINITY-MG/L	143	160	137	126	105	100	149	143	129	116	158	159	145	124	110
SUSP SOLIDS-MG/L	163	32	24	2/	16	175	28	24	21	16	187	28	16	18	14
BOD TOTAL MG/L	132	74	30	17	17	161	68	32	16	16	170	62	38	20	22
BOD, SOL IMG/L	48	51	18	5	13	66	52	19	6	13	57	50	23	10	12
ALGAE, ML × 102	_	283	445	564	865	_	320	531	448	601	_	287	570	297	367
FECAL COLI/IDDML+106	3.4	1.8	0,80	0.24	0	1.5	0.68	0.38	0.38	0	1.52	0.83	0.57	0.08	0
MPN /100 ML×106															
NH3-N, MG/L	26,0	24.0	18.6	13.3	13,4	23.0	24.0	18,5	13.5	13.6	29,2	15.6	19,2	14.1	14.2
NO3-N, MG/L	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	40.1	١٠٥٧	(01	(0,1	401
NOz-N, MG/L	40:1	(O.1	(0.1	40.1	40.1	2011	40 1	40.1	(0:1	(0.1	4011	40.1	40.1	401	K0.1
COD TOTAL MG/L	311	374	131	116	131	362	180	136	121	/2/	364	185	141	//2	121
COD SOL. MG/L	107	119	71	65	19	130	122	76	64	84	114	115	84	71	79
TKN MG/L	39.7	32.4	24.0	21,2	20.7	36,8	24,6	24.0	20.5	21.2	43.0	34.0	22.7	140	21.4
TOTAL P. MG/L	8.3	7.5	7.0	7.1	6.9	9,3	7.4	7,2	6.9	7.1	810	7.4	7.0	6.7	6.7

DATE		. //	14/7				, /,	5/75			:				
AIR TEMP & MAXIN	-		-/2	- -								4/-	0/75		
WEATHER			ndy	 1			Cle	-17				4/- C/on			
INF FLOW, MG		0.2		<u></u>			0.2					0,20			
EFF FLOW MG			243					74				0.2			
CL2 DOSE-MG/L		17.	8	-			2/.					21.			
CLZ RESIDUAL MG/L		1.	0				1.					0,5			
	INF	١	2	3	EFF	IIJF	١	2	3	EFF	INF		2	3	EFF
TEMP °C	10	5	3	2	3	9	5	3	2	3	9	5	2	2	3
DO, MG/L	3.3	0.1	0.3	0,2	0,2	5.9	0.2	0.1	0.2	0.2	5.6	0.2	0.1	0.2	0.2
рН	7.7	6.6	6.7	6.75	6.5	7.5							6:75		
ALKALINITY-MG/L	147	150	140	131	109	148	162	153	132	108	97				
SUSP SOLIDS-MG/L	140	23	20	16	11	105	23	24	17	14	78	29	22	19	15
BOD TOTAL MG/L	135	69	36	24	29	/22	59	33	23	25	63	72	44	28	33
BOD, SOL MG/L	35	63	29	18	23	40	51	29	15	25	17	48	27	18	26
ALGAE, ML × 103	_	166	394	435	457	-	158	369	383	494	_	243	348	371	562
FECAL COLI/100MLx106	5.4	1.0	0,61	0.44	٥	2.1	0.82	0.47	0.18	0	4.8	0.97	0.67	040	0
MPN /100 ML×106															
NH3-N, MG/L	z4.8	23.6	21.8	16.4	17.2	24.0	26.0	21.2	16.1	17.0	18.1	236	22.3	17,1	18.0
NO3-N, MG/L	0.1	(0.1	(0.1	(0.1	0.1	0.1	0.1	(0.1	(0,1	0.1	0:1	0.1	0:1	0,1	0,1
NO2-N, MG/L	(0.1	(a)	(0.1	(01)	(01	Ka 1	20,1	101	(0,1	(0.1	0.1	0.1	0.1	0.1	0.1
COD TOTAL MG/L	160	113	100	96	102	191	128	117	103	118	79	133	118	102	103
COD SOL. MG/L	92	113	89	81	88	87	109	82	77	87	51	96	85	81	92
TKN MG/L	34.0	30.4	27,2	21.7	20.3	31.2	31.6	26,0	21.5	22.3	236	30A	26.2	31.6	2410
TOTAL P. MG/I_	6.9	7.1	7.1	6.9	6.9	7.0	7.5	7,1	7,0	2.0	2.9	7.7	7,9	7.9	8,

DATE		1/21	 75				1/2	22/7	.			1/	27/7:	 S	
AIR TEMP & MYMIN	_	10/-					,	-20					-22	 ,	
WEATHER		Cle	ar					ndy				Clor			
INF FLOW, MG		0.2	65				0,2	49				0.2			
EFF FLOW MG		0.2	28				0,7	234				0.2	50		
CL2 DOSE-MG/L		28	۶,				30	,0				26,	7		
CL2 RESIDUAL MG/L		2,	5	·	,		2,	5				0.	5		
	INF	1	2	3	EFF	IIJF	1	2	3	EFF	INF	١	2	3	EFF
TEMP °C	g	5	3	2	3	9	5	2	2	3	8	5	2	2	3
DO, MG/L	6.1	0.2	0.1	0,2	0.2	6.1	0,2	0.15	0.2	0,2	6.7	0.25	0.1	0,2	0.2
¢Н	7,2	6.75	6.7	6.8	6.4	7.2	6.8	6.75	6.8	6.3	7.1	6.6	6.7	6.7	6.4
ALKALINITY-MG/L	114	152	156	138	99	110	148	155	131	104	90	168	159	145	110
SUSP SOLIDS-MG/L	68	30	25	24	18	131	30	27	23	15	95	24	19	16	13
BOD TOTAL MG/L	54	69	38	31	36	135	66	46	29.	37	115	60	44	29	40
BOD, SOL MG/L	24	61	29	20	30	38	<i>55</i>	32	20	30	35	42	32	2/	36
ALGAE, ML × 103	_	336	339	344	612	_	289	531	428	397	_	197	327	366	519
FECAL COLI/100MLx106	3,8	1.0	0.42	041	0	2,0	0.88	0.46	0.32	0	4,4	1.3	0.90	0.36	0
MPN /ICO ML×106															
NH3-N, MG/L	16.8	25,2	21.7	17.3	17.9	26.8	25,2	21.9	17.2	1810	17.2	17,Z	22.4	16.7	17.8
NO3-N, MG/L	4.3	ò.i	0.1	(0.1	(0.1	0.1	0.1	0.1	0.1	0.1	(0.1	(0,1	(0.1	(0,1	(0:1
NOz-N, MG/L	(0.1	0.1	(0.1	(0.1	Ø.1	40.1	(0.1	(0.1	L0.1	(0.1	(0.1	10.1	(0:1	(0.1	(0.1
COD TOTAL MG/L	66	116	12/	94	124	188	128	121	104	124	133	111	117	92	87
COD SOL. MG/L	45	106	93	80	93	100	104	86	27	43	79	98	94	76	94
TKN MG/L	2610	34 A	31.2	24.8	26,0	37.0	31.8	29.0	23.8	23,4	29,2	36.8	32.4	27.2	28.8
TOTAL P MG/L	2./	7.0	6.9	7,0	7.1	6.9	7.2	7.1	6.9	7.0	7,0	7.3	7,2	7,0	7.3

DATE		1/20	8/75				. /-	0/2	·			• /-			
AIR TEMP & MAXIN				· 				29/2	S 		·····		75		
		2/-						-10				2/	-19	 -	
WEATHER		Cle	4r				Clo	udy	·			۷,	lear		
INF FLOW, MG		0.2	68				0.2	55				0.1	88		
EFF FLOW MG		0.1	51				0.1	38				0.3	00		
CL2 DOSE-MG/L		42.	0				47	.0				34	1.4		
CL2 RESIDUAL MG/L		2.0	2				2.	5				3.	 5		
	INF	١	2	ل ا)	EFF	IIJF	1	2	3	EFF	INF	١	2	3	EFF
TEMP :°C	8	5	2.5	2	3	8	3	2	2	3	8	4	2	2	3
DO, MG/L	5.6	0.2	0.1	0.1	0.15	5.8	0.2	0.2	0.2	0.3	5.7	0.2	0,2	0.2	0.3
ρΗ	7. 2	6.8	6.7	6.7	6.3	7,2	6.8	6.7	6.8	6.2	7.0	6.8	6.8	6.8	6.1
ALKALINITY-MG/L	113	165	168	147	96	110					86	160	165	156	86
SUSP SOLIDS-MG/L	127	20	21	17	12	121	26	18	17	12	36	28	19	13	"
BOD TOTAL MG/L	134	59	44	33	40	13z	58	53	30.	45	59	51	42	28	41
BOD, SOL MG/L	37	37	32	23	35	40	46	41	26	38	16	45			35
ALGAE, ML × 103	_	310	281	330	698	_	309	327	432	454	_		482		
FECAL COLI/100MLx106	1.02	0.79	0.37	0.26	0	2.1	0.81	0.60	0.23	0	3.9		065		
MPN /100 ML×106															
NH3-N, MG/L	23,2	24.8	22.0	17.6	19.6	23.6	22.0	22.4	18.0	19.6	13.8	23.1	21.8	17.9	18.5
NO3-H, MG/L	40.1	40.1	40.1	0.1	۷٥.۱	L0.1	40.1	40.1	Lo.1	0.1	4.1	(0.1	40,1	(0.1	012
NOZ-N, MG/L	(0.1	LO. 1	(0.1	0.1	<0.1	40.1	(0.1	(0.1	(0.1	0.1	(0.1	(0.1	20.1	(0.1	CO1
COD TOTAL MG/L	191	128	112	104	113	188	140	113	96	114	31	128	106	9,	141
COD SOL. MG/L	131	94	84	79	90	102	96	86	74	92	32	87	89	68	88
TKN MG/L	35.6	35.2	34.0	28.4	28.0	37.6	32.0	33.6	29.6	256	20.8	32.8	32.4	27.2	25.2
TOTAL P. MG/L			1			,					2.7			7.1	7.0

	Γ							····							
DATE		2/	4/76	<u> </u>			2/	11/75	5			2/12	175		
AIR TEMP & MAXIN		-1,	/-2	4			4/-	-30				-7/	-28		
WEATHER		Cle	41									Llo	udy		
INF FLOW, MG		0.2	256				0,2	41				0.2	23/		
EFF FLOW MG		0.	358				0.7	254				0.7	253		
CL2 DOSE-MG/L		3,	1.5	·			44	1.8		•		46	,9	***	
CLZ RESIDUAL MG/L		o	.5				2	.0				2.0	0		
·	Inf	١	2	3	EFF	IIJF	١	2	3	EFF	INF	1	2	3	EFF
TEMP :°C	8	4	2	2	2	8	2.	2	2	2	8	2	2	2	2
DO, MG/L	6.2	0.2	0.2	0.2	0.2	6.2	0.4	0.2	0.2	0.3	5.9	0,2	0.2	0.2	0.2
рН	7,2	6.8	6.8	6.8	6.3	7,2	6.7	6.7	6.7	6.1	2.5	6.7	4.8	6.7	6.2
ALKALINITY-MG/L	118	177	167	155	108	113	166	172	167	98	156	157	170	167	96
SUSP SOLIDS-MG/L	143	31	23	18	14	154	15	19	/2	9	167	15	13	/2	10
BOD TOTAL MG/L	136	52	37	29	41	131	77	52	52	46	152	71	58	44	61
BOD, SOL MG/L	38	44	34	31	32	31	73	57	49	47	59	68	56	46	45
ALGAE,/ML × 103	J	238	280	360	351	_	104	159	243	260	_	107	226	252	348
FECAL COLI/100MLx106	3.5	0,92	0.90	0.51	0	1.7	0.65	0.68	043	0	3.5	0.90	0.54	0.40	0
MPN /100 ML × 106															
NH3-N, MG/L	23,7	24.7	22,2	19.1	19.3	30.0	24.0	25.2	19.1	20.3	19.3	22,9	22.9	19.2	20.0
NO3-N, MG/L	2011	40.1	lo.1	LO.1	L0.1	(6.1	60.1	(0.1	(0.1	(0.1	(0.1	(0.1	40.1	(0.1	(0.1
NOz-N, MG/L	(0.1	(01	LO.1	(0.1	40.1	(0.1	(0.1	(0:1	<0.1	20.1	40.1	(0.1	40.1	(0.1	LO.1
COD TOTAL MG/L	277	137	104	95	118	200	/26	136	127	152	171	148	134	124	151
COD SOL. MG/L	109	96	80	84	87	80	//2	107	103	106	83	115	105	101	105
TKN MG/L	380	35.2	31.2	26A	24.8	38.8	30.0	32.8	26.8	26.0	31.6	33.6	34.0	29.6	28.8
TOTAL P. MG/L	7.7	7.1	7,4	7.1	7.3	7.8	7.0	7.6	7.4	7.6	4.3	6.9	7.3	7.4	7.5

	Ι														1
DATE		12/1	3/75				2/1	6/15	,			2/1	9/75		
AIR TEMP C MAXIN		-5/	-25				7/-	24				4/-	16		
WEATHER		Cle	4				5n	ow	-			Cle	41		
INF FLOW, MG		0.2	32				0.2	.10				0.2	2 4		
EFF FLOW MG		0.2	55				0.1	.75				0,23	9		
CL2 DOSE-MG/L		46	,5				44	.0				48.			
CLZ RESIDUAL MG/L		Z	.0	 .			2	0				3.0	,		
	INF	1	2	3	EFF	IIJF	١	2	3	EFF	INF	i	2	3	EFF
TEMP:°C	8	2	2	2	2	8	2	2	2	2	8	2	2	2	Z
DO, MG/L	5.9	0.2	0.2	a2	0.2	5.4	0.2	0.1	0,2	0.2	6.2	0.2	0.2	0.2	0.2
ρΗ	7.2										7,2				6.1
ALKALINITY-MG/L	141			170		104		180			114		175		92
SUSP. SOLIDS-MG/L	181	44	13	13	10	195		19	2/	11	63	20	15	24	9
BOD TOTAL MG/L	174	90	60	51	54	122	63	58	32	48	96	86	65	56	54
BOD, SOL MG/L	51	69	57	47	48	22	37	37	27	41	10	63		38	46
ALGAE, ML × 103	_		265	409	293	_	130	184	510	380	_	373	351	731	384
FECAL COLI/100MLx106	2.7	0.97	0.72	0.56	0						2.9	1.1	0.46	0.42	0
MPN /100 ML×106															
NH3-N, MG/L						16.8	27.8	246	21./	22.4	17.2	24.6	23.5	20.1	21.7
NO3-N, MG/L											2011				
NO2-N, MG/L											10.1		 	-	(0.1
COD TOTAL MG/L			·							 -	130		149		155
COD SOL. MG/L						68			88	 				98	
TKN MG/L						28.0	36.8	34.0	33.6	32.8	32.4	34.0	37.6	29.6	24.6
TOTAL P. MG/L											3.3	l			
# 1							<u> </u>	<u> </u>	L	<u> </u>	ا	<u> </u>		<u> </u>	<u> </u>

^{*} EFFLUENT FECAL COLIFORM AND MPN ARE NUMBER PER ML

DATE		2/	20/7				2 /-	5/7				2/2			
AIR TEMP C MY	ļ		'-/	3			12					7/-	7/75 2		
WEATHER		C/e				6	loude		A/H			cles			
INF FLOW, MG			2 5 S], 421				0.3		· · · · · · · · · · · · · · · · · · ·	
EFF FLOW MG			.25					184				0.18			
CL2 DOSE-MG/L			_					7.3				49.			
CL2 RESIDUAL MG/L								2.0				3,5			
	INF	١	2	3	EFF	INF	1	2	3	EFF	INF		2	3	EFF
TEMP "C	8	2	2	2	2	6	4	2.	2	2	8	3	2	2	2
DO, MG/L	7.2	0.2	0.2	0.2	0.2	7.9	0.2	0.0	0.3	0.3	66	0.2	0.2	0.3	0.3
рН	7.7	6.9	6.8	6.8	6.3	6.8	6.8	6.7	6.7	6.0	7.1	6.9	6.8	6.8	6.1
ALKALINITY-MG/L	120	165	179	175	12/	57	133	168	159	77	86	138	159	162	90
SUSP. SOLIDS-MG/L	249	26	14	12	10	199	24	18	12	9	95	26	17	12	10
BOD TOTAL MG/L	190	79	68	51	52	147	59	61	53	52	104	63	62	58	51
BOD, SOL MG/L	58	53	46	39	43	31	40	46	43	46	39	38	48	48	47
ALGAE, ML × 103	_	370	469	494	410	_	321	377	411	418	_	321	369	437	354
FECAL COLI/IDDMLx106	3.3	0.90	0.72	0.46	200	1.36	0.99	0.60	0.38	0	1.3	0.77	0.38	0.16	0
MPN /100 ML×106															
NH3-N, MG/L		,				14,8	20.7	27,2	23.6	22./	21.6	20.8	24.0	21.9	23,0
NO3-N, MG/L	·					2011	(0,1	(0.1	(0.1	10.1	201	(0.1	4011	(0.1	0.1
NOZ-N, MG/L						(0.1	6 .1	20.1	<0.1	(0.1	(0.1	10.1	(0.1	10.1	(0.1
COD TOTAL MG/L						210	91	164	141	203	221	150	139	161	148
COD SOL. MG/L						72	88	100	100	100	84	87	99	101	114
TKN MG/L				,		50.8	28.8	32.8	31.2	27.2	30.0	29.6	115.2	36.0	28,0
TOTAL P. MG/L						5.1	60	7,2	7.4	7,0	6.0	5.9	7.1	7,2	7.5

DATE													•		
AIR TEMP & MAX			5/75	<u> </u>			3/	2/25					175		
		3/-	16				-					14/	- 2		
WEATHER		Cle	41				Clo	udy				Clea	41		
INF FLOW, MG		0,2	61				0.	257				0.19	87		
EFF FLOW MG		0,,	190				0.	177				0.15	59		
CL2 DOSE-MG/L		43	15				5	2./				39.	9		
CLZ RESIDUAL MG/L		2,	5				Z	<i>1</i> 0				0.	5	*	
	INF	١	S	3	EFF	INF	١	2	3	EFF	INF	١	2	3	EFF
TEMP :°C	7	4	2	2	2	7	4	2	2	2	8	4	2	2	2
DO, MG/L	6.2	0.2	0.0	0.3	0,2	6.2	0.2	0.2	0.3	0.2	6.5	0.3	0.2	0.2	0.2
ρН :	7.1	6.7	6.7	6.7	6.0	7,1	6.8	6.7	6.7	6.1	6.8	6.8	6.7	6.7	6.1
ALKALINITY-MG/L	105	132	152	156	97	114	133	146	147	96	76	146	156	157	101
SUSP SOLIDS-MG/L	163	2/	18	"	9	185	20	16	"	10	53	23	16	11	8
BOD TOTAL MG/L	184	82	75	67	66	173	65	57	51.	53	71	79	66	64	60
BOD, SOL IMG/L	61	49	53	754	>54	55	43	41	37	46	2/	51	45	50	51
ALGAE, ML × 103	1	238	ð51	296	290	1	145	198	271	247	_	363	263	251	208
FECAL COLI/100MLx06	0.90	1.1	0.28	0.26	0	0,78	1.0	0.62	0.15	0	2.3			1	
MPN /100 ML×106															
NH3-N, MG/L	232	200	23.2	22,4	240	23,2	21,2	22.5	224	22.4	15,5	22.0	22.4	22.4	22.4
NO3-M, MG/L	0.1	40:1	10.1	10.1	<0.1	0.1	0.1	0.1	0.1	0.1	0.4	0.1	0:1	0,1	0:1
NOz-N, MG/L	(0.1	(0.1	40.1	(0.1	fal	101	101	(0.1	401	(0,1	0.1	0.1	0.1	0.1	0.1
COD TOTAL MG/L	326	152	154	195	163	367	168	148	149	155	132	173	149	142	153
COD SOL. MG/L	118	82	92	102	110	153	///	100	101	113	50	100	100	102	116
TKN MG/L	36.0	28,0	32.4	24.8	30.4	38A	28,8	30.4	28.0	28.4	22.8	30 A	30.4	30 A	28.8
TOTAL P. MG/L	7.0	5.7	6.7	6.9	7,0	7.1	5.9	6.3	6.5	6.6	3,1	6.3	6.4	6.8	6.7

DATE		3/	18/7	<u></u>			2/	19/2	 6			2/-	20/75		
AIR TEMP & MOMIN			-11				12/					10/0			
WEATHER		Clea				F	ant/g		ndy	<u> </u>		Rai			
INF FLOW, MG		0.27						27/				0.3			
EFF FLOW MG		0.19					0.1					0.17			
CL2 DOSE-MG/L		42					42	.6				45.	3		
CLZ RESIDUAL MG/L		2,	0				2.	c				2.0		~	
	INF	١	2	3	EFF	INF	١	2	3	EFF	INF	1	2	3	EFF
TEMP :°C	Ę	4	2	2	2	8	4	2	2	2	8	4	2	2	2
DO, MG/L	6.3	0.3	0,2	0.2	0.2	6.0	0.2	0,2	0.3	0.3	7.2	0.3	0,2	0,2	0.2
рН 🗆	7.0	6.7	6.7	6.7	6.0	7,4	6.7	6.7	6.65	6,0	6.6	6.7	6,7	6,7	6,0
ALKALINITY-MG/L	ક્ય	135	141	158	92	137	136	150	164	89	52	126	145	150	92
SUSP SOLIDS-MG/L	236	22	16	12	9	170	21	16	14	8	151	13	16	"	9
BOD TOTAL MG/L	167	63	<i>55</i>	51	49	141	70	62	55	55	142	56	64	61	58
BOD, SOL MG/L	56	47	41	43	41	54	52	46	38	47	38	38	43	42	48
ALGAE, ML × 103	_	449	40z	336	416	-	346	259	126	187	_	209	203	260	3c6
FECAL COLI/IDDMLXIGE	1.3	0.95	046	0.26	0	0.95	0.76	0.54	0,25	0	1,26	1.1	0.80	0.38	0
MPN /100 ML×106															
NH3-N, MG/L	21.5	241	22./	21.9	22,/	21,3	20.8	22.0	21.7	22.2	165	16.9	20.9	20.5	22.0
NO3-N, MG/L	20.1	10.1	(0.1	<0.1	40.1	0.7	(0.1	(0.1	८०.।	⟨0.1	10.1	(0.1	101	(0.1	(0.1
NO2-N, MG/L	40.1	K0.1	(01	40:1	(0.1	(0.1	40.1	(01	(0:1	101	(0,1	10,1	401	(0.1	(0.1
COD TOTAL MG/L	360	158	144	131	153	315	162	150	140	150	293	136	158	147	154
COD SOL. MG/L	124	101	96	105	110	90	100	93	43	104	91	79	92	91	109
TKN MG/L	33,2	30.0	29, Z	30.8	276	34,4	300	z9.6	29.6	29.6	30.0	25.2	30.0	29.2	28.4
TOTAL P. MG/L	7.4	لـــــــــــــــــــــــــــــــــــــ		6.6 ECAN		6.6		L	٠	<u> </u>	5.2 PE V	<u> </u>		6.5	6,8

										Т			·····		\neg
DATE		3/21	/15				3/2	2/75	<u> </u>			3/2	3/75	, 	
AIR TEMP & MY		8/3	· · · · ·				7/	6				51	<i>'</i> 1		
WEATHER		clea					Clou	dy	. <u> </u>		Po	ently	Clu	ndy	
INF FLOW, MG		0.4	22_				0.3	76				0.3	09		
EFF FLOW MG		0.1	77				0.1	77				0.1	77		
CL2 DOSE-MG/L		<i>5</i> z	۶,۶				39.	9				47.	4		
CLz RESIDUAL MG/L		4.	0				1.0	9				3.0	2		
	INF	١	2	3	EFF	IIJF	١	2	3	EFF	INF	1	2	3	EFF
TEMP :°C	7	3,5	2	2	2	7	3,5	2	2	2	E	4	2	2	2
DO, MG/L	6.8	0.2	0.2	0.3	0.3	7.2	0.2	0.2	0.3	0.3	7.1	0,2	Ø. L	0.3	0.3
рН 🗓	6.6	6.6	6:7	6.6	6.0	6.3	66	46	6.6	60	63	6.6	6.6	6.6	5.9
ALKALINITY-MG/L	73	125	142	149	81	64	123	141	143	88	55	120	138	167	81
SUSP. SOLIDS-MG/L	197	21	5	6	8	135	27	16	15	8	87	24	12	10	9
BOD TOTAL MG/L	138	81	79	74	58	118	68	56	51.	54	110	68	65	63	59
BOD, SOL MG/L	49	62	61	57	46	46	42	41	38	47	45	48	49	48	48
ALGAE, ML × 103	1	290	205	198	145	_	247	180	227	229	_	338	383	296	346
FECAL COLI/100MLx106	1.07	1.06	0.49	0.45	0	2.4	0.98	0.48	263	0	1.85	0.75	0.38	_	0
MPN /100 ML×106															
NH3-N, MG/L	15.6	17.9	21.1	20.2	21.4	16.6	19.2	20.0	21,4	21,5	146	18,2	2/.3	21.8	22.0
NO3-N, MG/L	40.1	(0.1	١،٥٧	(0.1	40.1	401	40,1	<01	<0.1	(0.1	40,1	(0.1	(0.1	(0.1	(0.1
NOz-N, MG/L	40.1	10,1	(0.1	(0.1	(0.1	K0:1	<0.1	(01	<0.1	(0.1	(0.1	(0.1	(0.1	(0.1	(0.1
COD TOTAL MG/L	300	166	161	152	190	256	151	150	144	153	225	155	150	148	162
COD SOL. MG/L	103	///	106	110	108	116	98	101	94	108	88	97	100	104	105
TKN MG/L	27.1	27.2	27.2	27.6	28.8	26.0	26.8	284	28.4	28.4	23,2	26.8	28,4	26.4	26.8
TOTAL P. MG/L	4.6	6.3	6.1	6.5	6.7	5,2	5.4	5.9	6.7	6.6	6.2	6.3	6.1	6.7	6.7

DATE		3/	24/7:	5			3/2	5/7:	 5			3/2	6/75	 S	
AIR TEMP & MAXIN		10/					5/		**************************************				/-/		
WEATHER		Clo	ndy					udy				C/s	ndy		
INF FLOW, MG		0.:	271				0.2	367					358		
EFF FLOW MG		0.	177				0.,	173				0.	172		
CL2 DOSE-MG/L		40.	6				45,	0				44.	6		
CLZ RESIDUAL MG/L		2,,	0				2,0	2		· · · · · ·		2,0	<u> </u>		
	INF	1	2	3	EFF	INF	1	2	3	EFF	INF	1	2	3	EFF
TEMP :°C	7	4.5	2	2	2	2	4.5	2	2	2.5	7	4	2	2	2
DO, MG/L	6.2	0.25	0.1	0.1	0.2	6,4	0.2	0.2	0.2	0.2	6.4	0.2	0.2	0.1	0.2
рН	6.4	6.6	6.6	6,6	6.0	8.0	6.6	6.6	6.6	6.0	6.4	6.6	6.6	6.6	6.0
ALKALINITY-MG/L	68	118	135	146	25	101	123	134	145	82	69	112	133	146	85
SUSP SOLIDS-MG/L	73	16	10	7	4	91	15	7	4	3	69	22	11	"	6
BOD TOTAL MG/L	104	67	63	53	55	//3	74	66	65	58	76	55	52	55	53
BOD, SOL MG/L	36	48	46	42	51	38	51	54	57	49	27	36	38	43	46
ALGAE, ML × 103	1	287	312	241	266	1	242	253	193	121	_	210	220	90	244
FECAL COLI/IDDMLx06	4.3	1.25	1.07	0,40	٥	2.4	1,38	0.78	0.47	0	1.3	0.46	0.38	0.25	0
MPN /100 MLx106															
NH3-N, MG/L	13.3	18.3	21.0	20.8	21.5	16.6	19.0	19.7	21.4	21.6	16.1	17.2	19.5	20.4	2/.3
NO3-N, MG/L	ا،ه>	, (0:1	0.1	0:1	0.1	0.2	0.2	0.1	0:1	0.1	1.3	(0.1	(0.1	40.1	(0.1
NOz-N, MG/L	4011	(0.1	91	(0:1	(0.1	401	LO11	2011	401	(0:1	١، ٥٧	(0.1	<0.1	(0.1	10.1
COD TOTAL MG/L	207	149	143	138	141	239	161	148	149	148	205	138	134	140	144
COD SOL. MG/L	74	24	84	103	118	86	102	104	100	114	65	79	84	105	100
TKN MG/L	21.8	21.6	24.0	25.2	24.8	23.6	22.0	24.4	24.0	22.4	22.0	24.1	236	24.0	24.4
TOTAL P. MG/L	5,4	5.4	6.3	6.6	6.5	5.3	5.5	60	6.7	6.7	4.5	5,2	5.9	6.5	6.7

DATE		3/:	27/2	5			3/2	8/15	•			3/2	9/75		
AIR TEMP & MAXIN		4/.	-/2	-				1-10				7/-8			
WEATHER		Cle						ear	• • • •			:lear			
INF FLOW, MG		0.3	46				0.	326				0.31			
EFF FLOW MG		0.7	72	······································			0.	177				0.19	78	-,	
CL2 DOSE-MG/L		45.	4				45	.4				41.1			
CL2 RESIDUAL MG/L		2,5	5				2,0	>				2.5			
<u>.</u>	Inf	1	2	3	EFF	IIJF	+	2	3	EFF	INF	١	2	3	EFF
TEMP :°C	7	3	2	2	3	8	3	3	2.5	3	8	4	3	2	3
DO, MG/L	6.7	0.2	0.2	0.1	0,2	6.3	0.3	0,2	0.2	0.2	6.1	0.3	0.2	0.2	0.2
рН 🗆	6.6	6.55	6.6	6,6	6.0	6,5	6.5	66	6,6	5.9	6.2	6.5	6.5	6.5	5.8
ALKALINITY-MG/L	64	118	138	145	83	76	119	135	140	27	73	117	129	138	78
SUSP SOLIDS-MG/L	117	18	7	9	00	100	19	12	4	9	105	24	16	14	7
BOD TOTAL MG/L	118	83	65	68	56	94	62	55	56	50	118	63	53	49	50
BOD, SOL MG/L	43	57	48	53	49	3/	44	43	44	44	51	38	33	36	40
ALGAE, ML × 103	_	32 5	239	213	314	_	294	239	224	165	-	189	245	150	135
FECAL COLI/IDDMLx10°	4.6	1.25	0.95	048	0	060	0.56	0.26	0.23	0	3.4	0.98	0.38	0.30	0
MPN /100 ML×106															
NH3-N, MG/L	16.9	18.0	18.9	19.2	20,9	17.7	18.1	18.7	18.9	20,7	16.0	19,2	19,4	20,2	20A
NO3-N, MG/L	(011	(0,1	(01	(0.1	(0.1	40.1	0.1	40.1	(01	(01	L0.1	0.1	(0:1	(0.1	0.1
NO2-N, MG/L	K0:1	(0.1	40,1	(0.1	50.1	(0,1	(0.1	(0.1	(0.1	10.1	Koil	cal	<0.1	(0.1	(0.1
COD TOTAL MG/L	224	154	139	143	141	22/	151	139	140	145	263	132	123	130	138
COD SOL. MG/L	72	100		103	Ì	i	1			[113	1			103
TKN MG/L	22,0	21.2	21.6	23,2	22.8	23,2	2/16	ZAO	22.4	22.0	22.4	21.6	2/,2	22.0	23.6
TOTAL P. MG/L	5,2	5.4	5.8	6.4	6.7	5.1	5.4	60	6.4	6,7	56	5.7	5.6	6.4	6.3

	T	······································				T	······································			····	T				· · · · ·
DATE		3/3	30/19	<u> </u>			3/3	1/75	<u> </u>			4/	1/75		
AIR TEMP & MY		7/0	>				8/	-5				7/4	7		
WEATHER		Rai	n			,	Partle	y cl	mdy			Clu	ndy		
INF FLOW, MG		0,2	74				0.	267					334		
EFF FLOW MG		0.1	91				0.	179				0.	189		
CLZ DOSE-MG/L		39.	5	-			39	9.5				44	1.4		· <u></u>
CLZ RESIDUAL MG/L		2,	0				2,	0				3,	0		
·	INF	1	2	3	EFF	IIJF	1	2	3	EFF	INF	т	2	3	EFF
TEMP :°C	8	4	3	2	3	7	3	3	2	3	7	4	3	3	3
DO, MG/L	6.0	0,3	0,2	0.2	0.2	6.7	0.3	0.2	0.0	0.2	6.5	0.3	0.2	0.0	0,2
рН :	6.2			6.5								6.3		 	
ALKALINITY-MG/L	54	130	126	130	82								128		
SUSP. SOLIDS-MG/L	125	25	15	1/	9	225	25	15	14	8	125	16	15	15	9
BOD TOTAL MG/L	159	61	55	51	52	150	54	48	46	48	121	51	48	40	53
BOD, SOL IMG/L	48	38	34	40	42	39	33	32	3/	43	38	35	29	25	37
ALGAE, ML × 103	_	149	180	191	2//	_	199	225	2/3	156	_	206	240	243	1
FECAL COLI/DOMLXNO	4.58	1.9	0.94	0.53	0										
MPN /100 ML×106															
NH3-N, MG/L	15.4	19.0	19,7	20.0	20,2	18,3	20.8	21.5	21.6	22,4	17.9	19.3	19,7	19.8	20.8
NO3-U, MG/L	0,2	0.1	KO:1	40,1	(0:1	ابەك	(0.1	(0:1	(011	(0.1	4011	1011	10.1	60.1	(0:1
NO2-N, MG/L	LO1	L0:1	(0.1	COIL	(01)	40.1	<0.1	(0:1	(0,1	K0.1	(0.1	20.1	(0.1	20.1	(011
COD TOTAL MG/L	271	136	126	133	136	263	129	119	125	142	263	123	117	109	127
COD SOL. MG/L	93	87	84	94	107	73	70	70	74	97	88	81	76	73	96
TKN MG/L	22.4	23,6	196	21.2	22.0	23.6	2410	24.0	232	24.0	27.6	24.4	22.4	24.8	23.5
TOTAL P. MG/L	6.5	5.4	5.8	6,2	6.4	5,0	5.0	5.4	5,8	6.0	4.2	4.6	4.8	5.2	5.5
	EFFL														

DATE		4/2	175				4/	3/75	5			4/4	1/25	,	
AIR TEMP & MAXIN		9/-	8				10	/1				5/1	<u> </u>		
WEATHER		Clea	r				Rai	n				5no	w		
INF FLOW, MG		0.30	3				0.3	03				0,7	14		
EFF FLOW MG		0.14	90				0.1	89					,	····	
CL2 DOSE-MG/L		38	.5				38	,0							
CL2 RESIDUAL MG/L		2,	0				3,	0				0			
	INF	١	2	3	EFF	IIJF	١	2	3	EFF	INF	١	2	3	EFF
TEMP :°C	E	5	3	3	3	8	5	3	3	3	7	5	3	3	3
DO, MG/L	6.2	0,3	02	92	0,2	6.5	0.3	0,2	0.2	0,2	8.7	0.3	0.2	0,2	0.2
ρΗ	6.6	6.3	6.3	6.3	5,8	6.2	6.4	6.3	6.4	5.8	6.0	6.4	6.3	6.3	6.1
ALKALINITY-MG/L	83	125	/23	138	78	64	117	130	130	74	44	119	124	130	108
SUSP. SOLIDS-MG/L	89				11	116			13		350	20	14	7	14
BOD TOTAL MG/L	100	59	47	49	53	129	64	63	61.	53	146	62	63	63	57
BOD, SOL MG/L	38	39	31	32	41	38	46	44	45	44	22	37	45	50	45
ALGAE, ML x 103	1	234	227	159	153	ı	10.9	33.4	5.2	2./	-	15.6	24	16.7	104
FECAL COLI/100MLx106	1.11	0.29	0.19	0.11	0					_					
MPN /100 ML×106															
NH3-N, MG/L	20.2	19,0	19,2	19.7	19.8	18,8	19.5	19.2	19,7	19.7	10.7	17.5	18.8	19,5	20.3
NO3-N, MG/L	١.٥٧	(0.1	40.1	(2)	(0.1	0.1	(0.1	10.1	(0,1	۷٥.1	(0.1	(0.1	40.1	40.1	20.1
NOz-N, MG/L	(9,1	(0.1	(0.1	(0.1	<0.1	(0.1	40.1	(0.1	(01)	(0.1	(0.1	(0.1	(01	(0.1	20.1
COD TOTAL MG/L	239	139	134	136	140	243	148	136	145	141	460	142	132	143	142
COD SOL. MG/L	87	91	80				94			97	73		86	91	94
TKN MG/L	26.8	23.2	22.8	24.0	23.5	28.8	20.8	22,4	23.1	23.6	24.4	22,0	21,2	22.4	20.8
TOTAL P. MG/L				5.3										5.3	
*	FEEL		<u> </u>	ECY		<u> </u>)PLA	<u> </u>	L	<u> </u>	Ц	L		DER	

^{*} EFFLUENT FECAL COLITORM AND MPN ARE NUMBER PER ML.

DATE		4/5	/15				4/6	/75				41:	1/75		
AIR TEMP & MAXIN		0/-		······			3/-					3/		·	
WEATHER	 	 5no	-, -,	·			Clon		· •			2 lone			
INF FLOW, MG		0.4	41				0.3	W				0.3			
EFF FLOW MG			-					-					-		
CL2 DOSE-MG/L		_	-					-				-	_		
CL2 RESIDUAL MG/L		7,	5				7.	 S				3	.0	•	
	INF	١	2	3	EFF	IIJF	!	2	3	EFF	INF	1	2	3	EFF
TEMP °C	フ	5	3	3	3	2	4	3	3	3	2	4	3	3	3
DO, MG/L	8.7	0,3	0.2	0.2	0.2	7.6	03	0.2	0.1	0,1	6.7	0,2	0,2	0,2	1.1
рН	6.4	6.4	6,3	6.3	5.7	6,1	6.4	6.4	6.4	5.7	6.3	6.4	6.3	6.3	5.9
ALKALINITY-MG/L	63	119	132	124	84	59	117	135	123	81	59	117	117	102	98
SUSP SOLIDS-MG/L	95	23	13	16	"	73	24	12	14	11	63	19	17	16	10
BOD TOTAL MG/L	109	56	49	46	55	105	58	54	64	55	90	45	45	41	48
BOD, SOL MG/L	34	32	34	33	44	29	35	39	37	42	22	28	28	35	37
ALGAE, ML × 102	Į	10.4	15.6	2/.4	8.3	-	8.3	10.4	11.0	2./	_	1.6	2,6	18,8	6,3
FECAL COLI/IDDML+106	1.38	1,27	0.77	0,87	0	4.4	146	1.16	1.37	0	0.92	0,29	0.19	0.26	0
MPN/ICC ML×106															
NH3-N, MG/L	14.4	123	18.7	18,4	18.4	20.1	21.6	22,4	22.0	22.0	11.8	17.1	18.1	19.7	18.4
NO3-N, MG/L	(O.1	١٠٥١	40.1	(0.1	0.2	40.1	(0:1	١،٥٧	0.1	0.1	(0.1	4011	ره،۱	10.1	0.1
NOZ-N, MG/L	Koil	١، ٥٧	८०.।	۷٥.۱	(0.1	(01	201	(011	(0,1	40.1	(0.1	(0.1	(0.1	(0.1	(0.1
COD TOTAL MG/L	232	131	138	127	143	176	138	137	144	141	143	118	103	107	116
COD SOL. MG/L	92	76	88	85	79	66	82	93	90	93	56	69	65	67	88
TKN MG/L	22.7	20.4	22.0	22.0	2/.2	20.1	21.6	22,4	22.0	22.0	19.3	24.8	22,8	23.6	22.4
TOTAL P.MG/L	3.0	4.2	5.2	5.3	4.9	3.9	4,2	5.4	5.1	4.7	4.5	5.0	6.3	5.9	5.3

DATE		4/8	125				4/9	126		T		4/10	he		
AIR TEMP & MAXIN		5/-					<u>-/-</u> 5/-					2/-			\dashv
WEATHER	 Pa	utly		ndy			:/end					lear			\dashv
INF FLOW, MG		a					٥.36					, 32			
EFF FLOW MG		0.2	50				0.29	35				28	2		
CL2 DOSE-MG/L		29;	7				25.	6		j		25.1	<u>'</u>		
CLz RESIDUAL: MG/L		3.0	>				3.0)				3.0			
	Inf	١	2	マン	EFF	IIJF	١	2	3	EFI	INF	١	2	3	EFF
TEMP °C	7	4	3	3	3	7	5	3	3	3	7	5	3	3	3
DO, MG/L	6A	0.2	0.2	0.2	0.7	6.9	0.2	0.2	0.2	0.5	7.1	0.3	0.2	0.3	0.4
рН	6.2	6.4	6.4	6.4	5.8	6.3	6.4	6.4	6.4	5.8	6.4	45	6.4	6.4	5.9
ALKALINITY-MG/L	64	122	118	134	87	68	121	125	129	95	64	120	125	126	87
SUSP SOLIDS-MG/L	173	22	14	13	10	173	23	16	15	10	131	35	32	37	19
BOD TOTAL MG/L	391	50	42	45	48	469	53	44	43	48	213	51	47	45	38
BOD, SOL MG/L	113	26	25	32	33	115	3/	30	34	42	53	31	34	41	40
ALGAE ML × 103	_	7.8	13.0	15.7	15.1	_	16,2	10.4	22.9	13.6	_	3.6	8.9	72.0	11.0
FECAL COLI/DOML+KE	1.04	0.62	0.18	0.08	0	0.69	0.41	0.11	0.05	0	8.8	5.04	2.68	3,02	4 X/0 ³
MPN /ICO ML×104											i				
NH3-N, MG/L	16.0	17,2	17.9	19.0	18.8	14.3	17,3	18,0	12.9	19.0	18.7	18.5	18,4	18.8	18.8
NO3-N, MG/L	40.1	(0.1	(0.1	(0.1	(0.1	(0,1	(011	(0.1	(0.	(0.1	(0.1	(0.1	10.1	(0.1	(0:1
NOz-N, MG/L	(0.1	(0.1	20.1	20.1	(0.1	(0.1	20.1	(0.1	(0.1	40.1	101	10.1	(0.1	(0.1	(0.1
COD TOTAL MG/L	405	125	106	///	116	819	126	97	107	114	289	116	96	116	106
COD SOL. MG/L	_	67	66	77	87	525	75	63	74	85	84	79	72	86	92
TKN MG/L	21.6	22.8	22.4	24.0	24.0	22.4	20.4	21.6	21.2	2/.2	25.2	20.8	21.6	23,2	21.6
TOTAL P'MG/L	4.5	4.6	4.9	5.7	5.2	5.1	4.7	4.9	5.5	5.3	5.4	4.8	4.9	5.4	5.1

DATE		1/1	1/2/				1/10	101	 ,			1/1	 3/75		
AIF TEMP & MONIN			1/75 '-5	· · · · · · · · · · · · · · · · · · ·			4/12 14/					12/			
V. ATHER		c les							······································		7			1.	
							artl		Char	}	Pa		Clo	nay	
INT FLOW, MG		9.33					0.3					0.2	63		
EFF FLOW MG		0.24	19				0.1	92				0.1:	72		
CL2 DOSE-MG/L		26	.9				28	,/				31,	3		
CLz RUSIDUAL: MG/L		4.0	>				2,0	0				3,0	2		
	INF	١	2	3	EFF	IIJF	1	2	3	EFI	INF	1	2	3	EFF
TEMP °C	7	5	3	3	3	7	7	4	4	4	7	8	4	4	4
DO, MG/L	6.7	0.3	0.2	0.2	0.3	6,3	0.3	0.2	0,5	0.4	6,4	0.2	0,2	0.9	0.4
рН	6.0	6.5	6,3	6.3	5.6	6.7	6.5	6.3	6,3	5,&	6.2	6.6	6.4	6.5	5.7
ALKALINITY-MG/L	62	120	116	124	73	94	119	119	129	77	71	119	106	124	76
SUSP SOLIDS-MG/L	100	43	37	48	26	31	23	23	20	18	32	26	17	25	18
BOD TOTAL MG/L	<i>૧</i> ક	59	55	47	53	_	-	68	28	64	73	61	76	50	41
BOD, SOL MG/L	46	36	36	24	36	-	92	56	56	63	20	68	44	43	52
ALGAE ML × 103		4,2	16.2	2,84 x 10 ³	20.9	_	2.6	6,8	193,5	39.6	-	5.2	16.7	185./	95.9
FECAL COLI/DOMLANS	7.76	7,32	3,72	5.48	5 X 10 ³	9.96	7.68	2.5	3,6	0	1.78	0.62	0.21	0.51	0
MPN ICC ML×104					ĺ										
NH3-K, MG/L	17.6	18.3	18.4	17.7	18.7	23.6	18,0	17.7	18.1	186	15.5	17.7	17.0	18,0	18.5
NO3-N, MG/L	2011	(0:1	١، ٥٥	(0,1	(0,1	(0،1	(0:1	(01	(0.1	(0.1	0.4	(0,1	(0,1	(0,1	(0.1
NOz-N, MG/L	<0.1	(0.1	40.1	40.1	(0.1	(0:1	١,٥٧	40.1	401	40.1	40.1	⟨o₁	40.1	(0.1	(0,1
COD TOTAL MG/L	197	132	97	107	109	43	128	99	111	126	6Z	135	103	125	142
COD SOL. MG/L	82	92	75	72	89	51	76	64	64	90	36	74	61	65	84
TKN MG/L	24,4	23.2	20.0	22.8	23. 2	284	21.6	20,8	20,4	236	21,6	25.1	18.4	21.2	23.6
TOTAL P'MG/L	5,2	4.7	4.9	5.3	5.3	4.7	4.4	4.6	5,2	5.3	2.1	4.4	4,2	4.9	4.9

DATE		1/14	/25				4/15	5/2:	5			4/16	175		
AIR TEMP & MAXIN		7/-	5		1		14/-	.7			. ,	4/	- 2		
WEATHER		Clea	_			P	Partle	g Ci	lond (7	C	lono	ey		
INF FLOW, MG		0.2	13				0.	308				0.2	98		
EFF FLOW MG		0.16	54				0.	174				0,2	//		
CL2 DOSE-MG/L		27.	7				28	,2				23,	۷.		
CL2 RESIDUAL MG/L		2.	0				7,	5				2,0	<u> </u>		
	INF	١	2	3	EFF	I:JF	1	٤	3	EFF	INF	1	2	3	EFF
TEMP °C	7	7	4	4	4	7	8	6	4	5	7	9	7	5	6
DO, MG/L	6.4	0.3	0.4	0.6	0.3	6.3	0,2	0.0	1,2	0.4	6.5	0,2	0,2	2.6	0.3
рН	6.3	6.5	6.4	6.4	5.8	6.4	6.5	6,3	63	6.7	6.5	6.5	6.4	6.4	6.0
ALKALINITY-MG/L	59	/22	<i> </i>	125	82	81	/2/	109	122	81	88	118	117	98	82
SUSP SOLIDS-MG/L	20	21	14	20	14	34	24	15	28	19	35	27	20	25	17
BOD TOTAL MG/L	32	47	40	44	51	41	41	25	36	36	79	47	29	16	32
BOD, SOL MG/L	14	37	30	27	42	27	29	18	_	28	10	29	26	"	23
ALGAE /ML × 103	_	2.6	12.0	149.1	79.8	_	4.7	17.2	181.5	184	_	8.9	16.7	107.9	121.5
FECAL COLI/IDAMLXIO	7.22	0.26	0.04	0.04	O	0.42	0.31	0.11	0.09	0	0.28	0.07	0.01	0.01	0
MPN /ICC ML×106				: :							<u> </u>				
NH3-N, MG/L	11.6	17.5	16.7	17.8	18.1	11.7	17.5	16.8	17.2	17,2	19.4	17.6	16.7	14.0	14.9
NC3-N, MG/L	0.5	(0,1	LO11	20.1	CO11	0.4	20.1	(0.	10,	(0,1	0.4	. 401	101	(01	(0.1
NO2-N, MG/L	K0:1	10.	(0.1	(0.1	(0,1	(0.1	(0.1	(0.1	(0.1	(0.1	101	(01	(0,1	(0.1	(0,1
COD TOTAL MG/L	52	129	100	125	129	117	135	102	126	130	74	131	48	84	108
COD SOL. MG/L	27	75	65	66	88	59	75	62	61	83	46	7/	59	46	67
TKN MG/L	15.9	2.4	19.6	22.8	24.8	15.2	23.0	22.4	21.2	- 22,4	24.8	24.0	23.1	20.0	22.0
TOTAL P. MG/L	1.5	4.5	4.2	4.8	4.8	1.8	4.5	4.2	4.9	4.9	2.5	4.6	4.4	4.1	4.3

DATE		4/17	175	•			4/1	و ار ع	•			4/1	9/15	<u> </u>	
AIR TEMP & MAXIN		15/					19/					19/	3		
N. LATHER		Clean					Cle	11			,	Rain			
INF FLOW, MG		0.2	99				0.2	86				0.24	97		
EFF FLOW MG		0,2	.08				0.2	06				0.22	-/		
CL2 DOSE-MG/L		26.	5				20.	3				17.3	3		
CLZ RESIDUAL MG/L		7,	5			-	4.0)			·····	2,	0		
	INF	1	2	3	EFF	IIJF	<u></u>	2	3	EFF	INF	1	2	3	EFF
TEMP °C	8	9	٤	6	6	8	10	9	٤	8	8	//	10	9	8
DO, MG/L	6,2	0.3	0.2	0.7	0.3	62	0.4	0.3	1.6	0.4	5.7	0.4	0.3	0.5	0.4
рН	7.7	6.5	6.4	63	5.9	6.6	6.6	6.5	6,4	6.0	6.5	6.5	6.5	6.4	6.0
ALKALINITY-MG/L	133	118	117	96	69	96	126	117	89	20	73	120	/2/	98	89
SUSP SOLIDS-MG/L	69	21	14	20	16	25	21	16	23	21	26	12	"	16	9
BOD TOTAL MG/L	92	44	29	15	"	53	44	39	16	"	30	41	29	22	20
BOD, SOL MG/L	47	26	20	3	9	39	26	19	3	4	19	31	22_	8	/2
ALGAE,/ML×103	_	9.9	14.6	164.7	169.5	-	9.9	16.7	324.9	134.5	_	8.9	18.8	183.5	118.9
FECAL COLI/ICOMLANG	TOTE	7.6	0.83	1.81	0	0.41	K0.02	0.17	Kooi	0	TUTE	7.3	4,2	3.6	25
MPN/ICC ML×106															
NH3-N, MG/L	36.0	18.5	1710	13.3	12.1	10.8	18.7	17.3	12.9	12.2	16.8	18.8	17.3	14.2	14.1
NO3-N, MG/L	0.5	LO1	۷٥.۱	ا،ه>	Ç01	0,2	40.1	(0.1	(0.1	(0,1	0,2	(0,1	(0.1	401	40:1
NOz-N, MG/L	40:1	(0:1	₹0.1	40.1	601	LO1	(0.1	(0.1	(01	(0.1	(0,1	(0.1	201	(0.1	<0.1
COD TOTAL MG/L	224	છદ	99	81	85	110	43	101	83	80	70	109	84	56	64
COD SOL. MG/L	111	85	65	50	63	68	85	61	49	46	47	78	63	12	59
TKN MG/L	56,4	76 A	25.2	18.4	18,9	17,6	25.6	23.6	18.7	17.6	28,0	30.8	23,2	18.6	19.
TOTAL P'MG/L	5.8	4.9	4.5	3.8	3.8	2./	4.9	4.5	4.1	3.7	2,2	4.8	4.6	4.2	4.2

.

						·			·						1
DATE		4/2	0/7:	5			4/2	1/74	<u> </u>		-	1/22	175	,]
AIR TEMP & MAXIN		17/	6				12/	'-/			•	8/-	6		
WEATHER	Pa	utly	Clo	ndy		Pa	utly	Clo	ndy		(cles			
INF FLOW, MG		0,2	59				0.1	237				0.29	14		
EFF FLOW MG		0.7	04				0.1	98				0,2	00		
CL2 DOSE-MG/L		17.	0				18.	. /				16,	2		
CLZ RESIDUAL MG/L		3,	5				4.0	<u> </u>			-, -, -, - , -, -, -, -, -, -, -, -, -, -, -, -, -,	3,	0		
	INF	١	2	3	EFF	IIJF	١	2	3	EFF	INF	١	2	3	EFF
TEMP °C	9	10	10	9	8	10	9	8	8	8	8	9	8	8	8
DO, MG/L	6,0	0.3	0.3	0.7	0.5	5,5	0.4	0.3	0.7	0.5	6.1	0.4	0.2	2,8	2,2
рН										6.0					
ALKALINITY-MG/L	64	129	118	104	85	70	126	122	101	81	88	129	119	100	86
SUSP SOLIDS-MG/L	10	16	9	14	11	17	25	19	23	13	40	23	17	20	"
BOD TOTAL MG/L	15	47	32	18	14	42	50	38	21.	9	31	38	26	17	14
BOD, SOL MG/L	9	32	18	5	6	8	30	17	8	10	24	27	15	8	8
ALGAE, ML × 103	_	7.3	20.3	223.7	166.9	_	7.3	8.9	353.5	208.6	_	7.8	15.1	352	165.3
FECAL COLI/IDAML+10"		!									 	 	<u> </u>		ļ
MPN /ICO ML×106				;											
NH3-N, MG/L	9,8	18.7	17.2	14.1	13.7	12.6	12.6	17.3	14.6	13.9	22.0	1817	17.4	14.4	13,9
NO3-N, MG/L	0.3	(0.1	(0.1	40:1	40.1	0.3	0.3	40.1	10.1	(0.1	(0:1	(0.1	<0.1	(0.1	(0:1
NO2-N, MG/L					1					(0,1	1	40:1			(01
COD TOTAL MG/L	30	109			66	28		71	62	66	82	115	80	62	71
COD SOL. MG/L	24	83	56	42	57	27	78	62	45	57	52	79	57	40	54
TKN MG/L	13,1	25,6	20A	18.0	18.0	13,8	20.8	17.6	17.1	_	22.8	19,6	18.8	14.0	16.4
TOTAL P. MG/L	2.1	5.0	4.7	4.3	4.2	2,7	2.7	4.5	4.1	4.1	2.5	5.0	44	4.1	4.0
*	E FFI	. 10-5 1	·	FCA		AL 15	ARLI	1	<u> </u>	7 A		111515	250	PFR	1

DATE			1021	- /				. /			<u> </u>		 .		
AIR TEMP & MAXIM			23/			-		4/7	<u> </u>	· · · · · · · · · · · · · · · · · · ·		******	25/7	<u>'5</u>	
			1-6	`			21/					101			
W. EATHER		Cle	a C				Rai	1		·		/m	dy		
INF FLOW, MG		0.24	72				0,2	83				0,29	14		
EFF FLOW MG		0.2	02				0,2	05				0.4	73		;
CL2 DOSE-MG/L		14,	2.				/2,	8				10.	/		
CLZ RESIDUAL MG/L		3,	0	y	·		3,	0				3.0	0		
	INF	١	2	3	EFF	IIJF	1	2	3	EFF	INF	١	2	3	EFF
TEMP °C	ર્શ	10	9	9	ક્ર	8	9	11	10	10	9	//	11	10	10
DC, MG/L	5.9	0.4	0.3	5.8	3.8	5,8	0.4	0.2	5.5	2.8	6,2	0.4	0.0	1.1	1.5
ρΗ	65	6.7	6.7	6.7	6.3	6.3	6.8	6.8	7.0	6,3	6.7	6.8	6.7	6.8	6.4
ALKALINITY-MG/L	95	143	124	105	88	69	133	124	99	87	84	136	131	97	9z
SUSP SOLIDS-MG/L	37	30	19	25	18	25	21	17	29	17	54	24	15	22	16
BOD TOTAL MG/L	2/	42	24	10	14	20	46	27	17.	9	30	53	34	13	13
BOD, SOL MG/L	ક	25.	/2	1	9	6	36	17	5	11	22	36	20	"	4
ALGAE, ML × 103	_	4, z	6.8	673.7	246.6	_	6.3	5.2	360	170.5	_	2.3	9.4	180.9	127,2
FECAL COLI/IDDMIxic*	TNTC	4.9	0,25	0.01	25	7.UTC	TUTC	4.75	TUTE	0	UTC	TUTE	0.74	0.04	o
MPN ICO MLXICO															
NH3-N, MG/L	1/12	18.5	17.0	14.1	13.7	12.3	196	17,4	13.5	13.3	15,5	19.0	17.8	144	13.9
NC3-N, MG/L	0,2	101	46.1	⟨0.1	(a.1	0.4	(0.1	(0.1	K0:1	40.1	0.4	40.1	(0.1	201	(0.1
NOz-N, MG/L	(0.1	(0,1	(0.1	40.1	401	Ko il	LO.1	(0.1	(0.1	١.0	40.1	K0.1	(0.1	60.1	40,1
COD TOTAL MG/L	91	138	103	89	91	52	120	84	73	75	85	129	96	65	67
COD SOL. MG/L	32	73	55	39	53	23	88	59	38	44	51	88	65	38	48
TKK MG/L	16.6	216	188	15.2	18.2	16.9	26,8	23,1	200	19.6	24 <i>A</i>	26 <i>.</i> 8	23,2	20.4	19.0
TOTAL PING/L	1.4	4.7	4,2	3.8	3.8	1.7	46	4.3	3,8	3:7	2.4	4.5	4.3	3.9	3.7

	Γ														 1
DATE		4/.	30/7	5			5/6	175	•			5/	7/75	5	
AIR TEMP & MY		17/	-4				17/	//				22/	7		
WEATHER		Clea	1				Clor	dy			Pe	utly	6ui	"H	
INF FLOW, MG		0, 2	62				0.	254				0.:	268		
EFF FLOW MG		0.4	09				0.0	109				0,	406		
CL2 DOSE-MG/L		11:	7				Q.	q				6.	, ک		
CL2 RESIDUAL MG/L		3,0	>				2,	0				1.:	5		
	Inf	١	2	(۲)	EFF	IIJF	1	2	3	EFF	INF	١	2	3	EFF
TEMP °C	9	10	10	10	10	9	"	"	/2	//	10	/2	13	13	13
DC, MG/L	5.3	0.3	0.3	2.3	0.7	5.5	0.3	0,3	6,2	3.9	610	0.3	210	6.0	5.9
рН	6.3	6.4	6.4	6.5	6,2	6.5	6.5	6.6	7.0	6.6	6.4	6.7	6.8	710	6.8
ALKALINITY-MG/L	108	132	/22	97	86	102	146	121	105	99	75	145	128	106	101
SUSP SOLIDS-MG/L	28	25	16	2/	10	148	18	20	24	18	170	19	22	27	20
BOD TOTAL MG/L	18	41	20	14	10	232	28	8	21.	21	168	39	14	20	16
BOD, SOL MG/L	13	30	13	6	9	105	56	16	6	11	76	43	3	,	7
ALGAE, ML × 103	_	10.4	14.6	39.6	31.8	_	5.7	131.3	328.4	237.7	_	8.3	291.9	1253	528
FECAL COLI/IDAMLXK	1,25	0.45	o,i1	(0.0l	0	2.5	0.90	0.67	K0.01	0	1,72	0.68	0.04	(0,01	0
MPN /ICO ML×106														<u> </u>	
NH3-N, MG/L	143	1817	19.2	150	14.5	26.0	14.6	19.8	15.2	14.8	35.6	22.0	18.3	14.8	14.2
NO3-N, MG/L	0.3	40.1	101	(0.1	lai	0.3	<0.1	(0.1	40.1	⟨0.1	20.1	۷٥،۱	(0.1	(6.1	(0.1
NOz-N, MG/L	40.1	40:1	(a1	<0.1	(0,1	(0.1	(0.1	(0,1	(0.1	(0.1	(0.1	(0.1	(0.1	⟨0.1	(0.1
COD TOTAL MG/L	7/	120	79	52	53	1100	137	84	74	81	466	124	73	65	76
COD SOL. MG/L	44	17	54	36	45	853	9,4	48	39	48	144	87	48	35	50
TKN MG/L	19.0	29.0	24.8	20.4	18.1	40,0	34.2	28.0	22.0	18./	37.2	26,0	21,2	196	18.5
TOTAL PIMG/L	2,4	5.5	4.8	4.3	4.2	7.8	6.0	5.0	4.4	4.2	7.0	5.8	4.8	4,2	4.3
*	E FFI		<u></u>		<u> </u>		TRIA	<u> </u>	<u> </u>	<u> </u>	RE L	111015			

DATE		5/	121/7	·5	:		5/-	22/7	 5			5/2	7/25		
AIR TEMP & MONTH		34/	25				3 <i>5</i>					25	/12	_; , , , ,	
WEATHER	5	unn	y - H	umid	2		Clon	dy			(Clone	·		
INF FLOW, MG		0.z	73				0,2					0,3	29		
EFF FLOW MG		0.4	08				0.4	15				0.4	7		
CL2 DOSE-MG/L		7.	7				7, 5	5				8.0			
CLZ RESIDUAL MG/L		2,	0				2.0	2				2,0			
	INF	١	2	73	EFF	IIJF	1	ع	3	EFF	INF	١	2	3	EFF
TEMP °C	//	19.5	23	22	21	"	20	72	22	21	13	19	20	20	19.5
DO MG/L	5.8	0.0	0.3	0,2	az	4.5	0.3	0.0	0.3	0.3	4.6	0.3	6.0	0.3	0.2
ρΗ	6.7	8,8	6.9	6.9	6.5	6.7	6.8	6.9	2,0	6.6	6.6	6.6	7,2	6.7	6.5
ALKALINITY-MG/L	105	142	132	114	106	92	147	129	108	100	107	137	121	107	98
SUSP SOLIDS-MG/L	104	51	19	4	9	43	34	14	5	4	124	66	48	23	15
BOD TOTAL MG/L	85	39	15	10	9	105	10	8	4	1	156	39	27	17	5
BOD, SOL MG/L	61	23	13	13	7	39	-	-	-	1	86	13	11	14	8
ALGAE ML ×102	_	340	-	-	_		101	-		-	-	284	377	51	102
FECAL COLI/IDAMLXICE	TUTC	TUTC	1.16	092	o	4.8	2,02	0.70	1.68	0	TUTC	6.09	0.51	0.09	130
MPN /ICC ML×106															
NH3-N, MG/L	21.2	27,0	20.0	15.8	15.0	20.8	20,4	18,4	16.9	14.9	25.2	20,4	17.9	16.1	15.1
NO3-N, MG/L	ا، ۲۵	(01	40-1	4011	(01	40.1	ا.ه ک	(0.1	(0.1	(0.1	L0:1	(0.1	(0.1	(0.1	(0,1
NO2-N, MG/L	(0:1	८०।	(۱،۵)	(o.1	ا، م	40.1	(0.1	(0.1	(0.1	(0.1	(0.1	(0.1	(0,1	(0.)	(0,1
COD TOTAL MG/L	189	95	85	62	69	218	92	86	70	68	no	102	94	55	64
COD SOL. MG/L	110	65	73	51	67	136	67	70	55	56	139	7/	62	50	60
TKN MG/L	27.4	29.8	266	19.2	9.1	27.8	27.9	23.9	14.8	19.8	31.1	25.9	22.7	18.3	16.6
TOTAL P.MG/L	6.4	4.8	55	4.8	4.1	6.4	5,1	5,8	5.1	4.8	8.3	0.1	5.5	4.2	5.1

DATE		5/2	8/7	5			6/3,	h5				6/5	175		
AIR TEMP & MAXMIN		291	18				27/					19/			
WEATHER		Cle	97				Rain					Clon			
INF FLOW, MG		0.2	78				0.3	3			·····	0.26			
EFF FLOW MG		0.4	17				0.3	96				0.3	40		
CL2 DOSE-MG/L		7,	દ				8.	5				9.1			
CLZ RESIDUAL MG/L		2.	0				2.0	>				2,5			
	INF	. 1	2	3	EFF	IIJF	1	2	3	EFF	INF	1	2	3	EFF
TEMP °C	12	19	20	20	A.5	13	20	21	21	21	12	17	18	18	18
DO, MG/L	5.0	0.2	3. 5	1.0	0.3	5.0	1.0	6.3	9.8	7.4	5.0	0.3	0.5	4.0	0.6
рН	6.5	6.6	7.0	6.7	6.4	6,2	6,6	7,3	7.8	6.7	6.5	6.5	6.6	7.0	6.5
ALKALINITY-MG/L	88	136	124	104	95	81	134	110	96	88	95	138	109	105	89
SUSP SOLIDS-MG/L	195	45	47	23	17	133	66	38	49	27	108	63	47	37	2/
BOD TOTAL MG/L	193	60	33	18	8	144	37	16	28	7	148	43	18	21	7
BOD, SOL MG/L	71	18	13	9	5	68	17	6	6	1	16	18	6	4	3
ALGAE,/ML × 103	_	272	180	58	22	_	66	18	13	3.5	_	414	21	8.3	9. i
FECAL COLI/100MLx10°	2.68	2,02	0.48	0,02	٥	TUTE	TUTC	1.18	4.90	0	TATE	ture	3,76	2,01	0
MPN /100 ML×104															
NH3-N, MG/L	26.8	20.4	17.4	15.8	14.9	23,2	19.6	16,2	12.9	12.2	22.0	19.5	16.0	12.6	12.0
NO3-N, MG/L	601	(0,1	40.1	(0.1	(0.1	401	(0:1	(0,1	0.1	0.2	20.1	(0.1	(0.1	0.1	0.2
NOz-N, MG/L	(0.1	K0.1	40.1	(0.1	(0.1	(0.1	401	40.1	0.2	0.4	(0,1	(0.1	(01	0.1	0.1
COD TOTAL MG/L	357	///	99	54	66	289	151	98	99	99	233	188	138	131	109
COD SOL. MG/L	119	76	59	48	58	129	81	57	57	62	139	73	57	50	60
TKN MG/L	40.3	30.3	23,9	19.1	19.1	29.1	26.7	19.1	17.4	17.2	29.3	24.5	22.5	19.5	16.1
TOTAL P. MG/L	0.0	5.6	4,2	5.0	4.8	7.3	6.7	5.9	5.5	5.4	6.8	6.9	6.2	5.6	5.5

DATE		6/1	0/75	 \$			6/	11/74	 S			61	119/2	5	
AIR TEMP & MAXIN		181	/,				22/	15				30,	15		
WEATHER		Cle.	a /				Clea					Clea			
INF FLOW, MG		0.2	86				0,2	.77				0.26	,3		
EFF FLOW MG		0.3	40				0.3	40				0.27	8		
CL2 DOSE-MG/L		4,	7				6.0	<u> </u>				12.0)	· · · · · · · · · · · · · · · · · · ·	
CLZ RESIDUAL MG/L		1.0					1,0)				3,0			
	INF	١	2	3	EFF	ILJF		2	3	EFF	INF	1	2	3	EFF
TEMP °C	13	15	15	15	15	13	17	18	17	17	13	24	24	24	22.5
DO, MG/L	5.3	3.8	11.8	10,2	9.4	5.0	140	11.8	13.6	13,4	4.1	2.0	5.9	6,2	4.0
ρΗ	6.2	6.9	7.4	7.1	6.8	6.6	7.8	7.6	8,2	7, 2	6.8	7.0	7.7	7.9	6.6
ALKALINITY-MG/L	23	122	120	97	94	96	108	112	93	81	113	111	97	86	62
SUSP SOLIDS-MG/L	175	80	25	59	2/	156	88	105	26	20	147	22	84	19	16
BOD TOTAL MG/L	146	50	15	17	16	159	45	27	8	9	190	29	22	23	8
BOD, SOL MG/L	64	3	3	2	14	52	14	6	4	5	56	18	8	7	8
ALGAE,/ML×103	_	463	25	16	9.4	-	1170	21	15	4.6	_	941	16	6.9	1.1
FECAL COLI/IDDMLx104	1.52	0.16	(0.01	(0.01	0	1.15	0.90	(0.01	(0,01	0	TUTC	TUTC	1.37	1.07	50
MPN /ICO ML×10.6															
NH3-N, MG/L	21,2	15,9	14.6	11.9	10.8	20.8	14.5	13.6	9.9	9.0	27.0	H.9	11.3	8,2	7,2
NO3-H, MG/L	١,٥١	(0.1	(0.1	0,1	0.Z	(0.1	(01)	0.1	(01	0,2	40.1	4011	Koil	(01	0.5
NOz-N, MG/L	(0.1	(0.1	(0.1	0.1	0.5	<01	(0,1	0.1	0.3	0.5	(0,1	(0.1	(0.1	0.2	(0.1
COD TOTAL MG/L	30S	177	93	124	102	177	157	86	70	75	3.59	161	122	81	91
COD SOL. MG/L	125	72	60	49	59	118	71	59	50	57	127	86	64	55	62
TKN MG/L	32.6	26.5	18.9	18.5	17.2	27.3	26.7	19.7	16.0	15.0	40.1	22.9	20.5	13,3	13.3
TOTAL P.MG/L	7.8	5.8	5.4	5.1	4,9	612	5.9	5.7	4.9	4.9	7.3	5.5	5,2	4.7	4,9

DATE		6/2	0/2:				6/	25/	 25	\neg		6/2	6/75	•	
AIR TEMP & MOXIN		31/						1/12				29/		_	
WEATHER		cle				<i>1</i>	Partl		londy			Clear			
INF FLOW, MG		0.2	82				- · · · · ·	273				0,24	2		
EFF FLOW MG		0.1	18				0.	118				0.11	8		
CL2 DOSE-MG/L		17.	2				14	1,2				/2,2			
CL2 RESIDUAL MG/L		2,	0					3,0				2.0			
	INF	1	2	3	EFF	IIJF	1	2	3	EFF	INF	1	2	3	EFF
TEMP °C	14	23	24	24	23	14	25	26	26	25	14	23	25	25	24
DO, MG/L	5.0	0.5	4,2	2,6	2,3	5.0	0.4	6.6	0.4	0.3	4.7	0.3	4.7	0.4	0.3
рН	6.4	6.9	7,4	7.3	6.5	6.9	6.9	8,2	6.8	6.5	6,8	6.9	8,0	7.1	6.6
ALKALINITY-MG/L	89	110	97	88	66	108	120	83	95	78	102	12/	86	87	84
SUSP SOLIDS-MG/L	19	29	39	-	23	35	28	14	191	141	158	41	30	15	6
BOD TOTAL MG/L	45	26	25	60	17	52	33	18	50	11	130	34	16	6	7
BOD, SOL MG/L	24	25	13	13	10	17	28	11	8	9	76	22	5	3	9
ALGAE, ML × 103	_	628	30	58	0.14	_	1070	17	7,2	0.28	_	215	1.4	1.4	(0.14
FECAL COLI/100MLx10	2.26	0.49	0.01	0.29	0	7.06	5.96	0.51	0,32	0	11.7	6.1	0.34	0.15	0
MPN /ICO ML×106															
NH3-N, MG/L	12.1	15.9	11.8	10.7	6.9	15.1	13.4	6.4	9.5	9.1	18.8	14.5	7.1	9.3	9.7
NO3-N, MG/L	(0.1	(0.1	(0.1	2011	0.4	20.1	(0:1	0.1	(0.	(0,1	401	2011	0.1	lai	0.1
NOZ-N, MG/L	1011	40:1	20.1	(0.1	0.1	40.1	(0.1	0,2	(0.1	(0.1	(0.1	20.1	0.1	(01	(0.1
COD TOTAL MG/L	61	164	91	118	76	60	192	85	24	80	400	156	95	91	83
COD SOL. MG/L	35	94	66	66	61	44	116	69	65	74	166	112	67	72	76
TKN MG/L	14.4	20,	17.0	17.6	12.6	194	24.4	11.6	15.1	11.6	32,8	24.8	13.0	14.7	14.6
TOTAL P.MG/L	1,2	5.5	5.3	6.0	4.7	26	6.5		٠	5.4	┵				

DATE		6/	27/7				6/2	8/75	 5			6/	29/7	5	
AIR TEMP & MAKIN		30	/6				30		******			32	 /17		
WRATHER		Cle					Cla	dy				Clea			
INF FLOW, MG		0.	262					264				0.2	31		
EFF FLOW MG		0.	118				0.	//8				0.12	3	 -	
CL2 DOSE-MG/L		12.	. 2				13	3, ∠				/2.	6		
CL2 RESIDUAL MG/L		2.	0					2.5				7.5	5		
	INF	1	2	3	EFF	INF	1	2	3	EFF	Inf	١	2	3	EFF
TEMP °C	14	21	23	24	23.5	14	22	24	24	23	14	22	24	24	23
DC, MG/L	4.4	0.3	4.2	0.4	0.3	4,2	0.3	3.0	0.4	0,3	4.6	0.3	2.1	0.3	0.3
рН	7.0	6.9	7.6	6.9	6.5	6.8	69	7.6	7.0	6.6	6.9	6.8	7,2	7.0	6.5
ALKALINITY-MG/L	109	131	94	100	87	115	123	85	95	81	110	124	93	92	83
SUSP SOLIDS-MG/L	155	63	75	106	8	229	30	16	89	3	107	29	130	7	2
BOD TOTAL MG/L	162	49	28	36	"	167	36	18	61	6	131	32	98	16	7
BOD, SOL MG/L	71	32	"	"	10	1	13	5	2	</td <td>56</td> <td>25</td> <td>19</td> <td>2</td> <td>5</td>	56	25	19	2	5
ALGAE, ML x 103	1	344	0.56	3.6	0.56	1	/200	0.56	6.4	0.98	_	987	0.70	1.1	0.5%
FECAL COLI/IDDMLxICE	3.06	0.74	(0.0 j	L0,C1	0	11.3	4.2	0.18	0.06	0	TATE	TUTC	_	0.74	-
MPN /ICO ML×104															
NH3-N, MG/L	22.O	15.0	8,3	10.4	9.7	27.6	14.9	7,2	10.2	9.9	19.7	14.7	18.1	9.9	9,9
NO3-N, MG/L	40.1	(0:1	0.1	(0:1	0.1	0.1	0.1	0.1	0.1	0.1	4011	(0.1	(0,1	0.1	0.1
NOZ-N, MG/L	(0:1	८०४	0.1	20.1	401	6011	(01	0.1	(0:1	(011	(011	(0,1	(011	(0.1	(01
COD TOTAL MG/L	243	171	140	137	22	270	188	91	122	81	588	185	289	88	83
COD SOL. MG/L	129	117	71	69	74	121	128	75	69	76	137	123	92	20	77
TKN MG/L	35.1	26:0	18.5	19,2	14.9	37.6	26.8	12.9	16.1	14.3	31.6	24,0	3E Æ	15.9	14.1
TOTAL P.MG/L	7.3	6.7	5.7	<i>5</i> .&	5.5	8.8	6.7	5,2	5.3	5.4	8,6	45	8,7	5,5	5.6

DATE		6/3	c/25	<u> </u>			7/1	/25				7/3	175		
AIR TEMP & MAXIN		32/				,	27/					33/1			
WEATHER		Cle.					C.lea	91	· ··············			Clon	dy		
INF FLOW, MG		0.19	?o	····	·		0.2	50				0.2			
EFF FLOW MG		0.11.	3				0.1	18	***************************************			0.1	18		
CL2 DOSE-MG/L		11.6				:	13	, 2-				10:	2_		
CL2 RESIDUAL MG/L		2.0	,		٠.		3,	0				2.0	>		
	INF	١	2	3	EFF	IIJF	١	2	3	EFF	INF	١	2	3	EFF
TEMP °C	14	22.5	24	24	23,5	14	2/	23	23	23	14	24	24.5	25	24
DO, MG/L	4.8	0.3	1.4	0.1	0.6	4.6	0.5	4,9	1.4	0.4	4.5	0.5	3,1	7,2	2.9
рН	6.6	6.8	7,0	6.9	6.5	6.6	6.6	7.0	6.9	6.5	6.8	7.0	7,0	7.1	6.7
ALKALINITY-MG/L	86	131	96	98	23	93	132	99	100	83	96	/28	104	95	85
SUSP SOLIDS-MG/L	206	36	342	31	6	49	62	57	22	4	130	32	27	204	6
BOD TOTAL MG/L	116	41	108	18	"	66	23	2	4.	3	168	57	/2	69	6
BOD, SOL MG/L	64	33	47	//	8	36	15	5	<1 ⁻	1	35	27	6	3	4
ALGAE, ML × 103	_	538	0.70	1.5	0.42	_	908	2.5	7.4	1.6	-	174	2.1	23	6
FECAL COLI/100ML+106	TNTC	1.34	(0.0 1	0./2	٥	7.4	1.4	0.03	0.08	0	4,2	1,2	0.08	0.08	0
MPN /100 ML×106															
NH3-N, MG/L	19.2	15.6	22,4	10.7	9.9	240	1816	10.4	10,2	10.0	21.6	18.8	10.7	13.1	9.7
NO3-N, MG/L	1001	(0·1	(0.1	(0.1	0.1	401	(0.1	(01	40.1	0:1	2011	60:1	(011	(0,1	0:1
NOz-N, MG/L	(01	(0.1	(0.1	(0.1	0.1	(0.1	(0.1	0.1	(0.1	0.1	201	(0:1	(0.1	(0.1	0.1
COD TOTAL MG/L	306	196	574	114	86	270	212	160	106	93	143	222	7/1	129	93
COD SOL. MG/L	1	135		1		125	118	83	77	81	99	146	76	80	80
TKN MG/L	29,6	26.8	50.8	16.9	14.2	35.2	344	14.5	15.8	4.3	27.4	22.2	16.7	21.4	14.6
TOTAL P. MG/L	8,2	6.7	10.7	5&	5.5	9,2	7.1	6.2	5.8	5.7	6,2	7.7	6.1	6.5	5.9

DATE		7/	4/76				7/	5/75				2/	6/15		
AIR TEMP & MAXIN		31/						2/11			 	33,		· 	•
WEATHER				lond	4		Cle				Pa	+14		lч	
INF FLOW, MG			276		/		0,					0,2		7	·
EFF FLOW MG		0,	118					123				0./2		•	
CL2 DOSE-MG/L		10.	2				11.7					10.7		, ,	
CL2 RESIDUAL MG/L		2,	0				2.0					2.0			
	INF	١	2	3	EFF	IIJF	1	2	3	EFF	INF	1	2	3	EFF
TEMP °C	15	23	23,5	24	23	15	24	24	24	24	15	25	25	25	25
DO, MG/L	5.0	1.9	210	6,2	1.8	3.7	2.3	4,7	4.8	3.0	4,2	1.6	3.4	2.4	2,8
ρΗ	6.9	7.0	7.1	7.1	6.6	6.7	7.0	7,2	7.2	6.7	6.6	6.9	7.1	7.1	6.7
ALKALINITY-MG/L	96	128	108	95	84	82	125	106	95	77	99	129	106	90	74
SUSP SOLIDS-MG/L	142	79	2/	47	12	131	73	22	27	10	130	47	35	57	12
BOD TOTAL MG/L	90	48	21	8	5	191	72	17	8.	7	77	20	2	30	7
BOD, SOL MG/L	45	32	12	11	10	30	42	<1	2	6	44	1	1	2	</td
ALGAE,/ML×103	1	287	1.8	19	7.9	_	111	1.5	25	6.6	_	250	3,8	47	20
FECAL COLI/100MLx106	2,8	0.34	0.01	0.01	0	3.6	1,2	60.0	KOM	0	2,4	0.90	0.03	K0.01	0
MPN /100 ML×106															
NH3-N, MG/L	23.2	20.4	11.4	10.0	8.7	18.9	18,7	11.1	8.4	8,3	21.6	17.4	11.4	8,0	6.6
NO3-M, MG/L	۷٥.١	(0.1	CO: 1	(0.1	0,2	١.٥٧	(0.1	0.1	0.2	40.1	(0.1	(0.1	40.1	40.1	0.4
NOz-N, MG/L	(0.1	(0.1	<0.1	0,1	0,2	۷٥.١	101	0.6	0,2	(0.1	40:1	(0,1	40.1	0.5	0,2
COD TOTAL MG/L	136	208	98	109	104	178	230	110	157	108	231	231	119	183	106
COD SOL. MG/L	102	136	27	81			176				112				100
TKN MG/L	28,2	32.2	16.3	16.3	14.2	29.0	34.6	17.5	2/.8	14.5	30.6	34,2	M.5	18,0	13,2
TOTAL P. MG/L	7.4	8.1	6.3	6.1	5.7	6.9	7.7	6.3	62	5.6	8.5	7.6	6.5	6.2	5.7

DATE			120		П		2/6					2/0	261		
AIR TEMP & MAXIN		7/7. 33/			-			175		\dashv		32/1	0		\dashv
WEATHER		······································			-		32/1								\dashv
		lond			-		Clon	dy_				1 mcl	 		\dashv
INF FLOW, MG		0.18	2				0.25	2_				0,24	18		
EFF FLOW MG		0.10	8				.0.11	18				0.11	દ		
CL2 DOSE-MG/L		11.1					10.	2.				11,2	···		
CLZ RESIDUAL MG/L		2,0)				Zi	>				2.0		····	
	INF	1	2	3	EFF	IIJF	1	2	3	EFF	INF	1	2	3	EFF
TEMP "C	15	25	25	25	25	16	24	25	25	24	15	25	25	25	24
DO, MG/L	4.4	0.6	2,2	8.0	3.3	4.4	0.7	3.0	0.4	0.3	4.9	0.9	3,3	0.8	0,3
ρΗ	6.6	6.9	7,0	7.1	6.7	6.7	6.8	7,0	6.9	6.6	6,8	6.9	7.0	7.0	6.7
ALKALINITY-MG/L	102	130	,,,	88	68	85	133	106	95	81	<i>93</i>	140	109	93	83
SUSP SOLIDS-MG/L	114	60	22	77	14	149	74	17	19	12	96	61	41	4	4
BOD TOTAL MG/L	14	30	16	33	25	138	37	9	15	12	114	48	29	20	17
BOD, SOL MG/L	74	40	25	15	18	50	24	15	6	9	48	28	19	15	9
ALGAE,/ML×103	_	214	a.98	42	12	_	192	4.1	22	6.9	_	199	1.5	6.6	2.1
FECAL COLI/DOML+106	3,2	1.1	0.67	००४	0	4,2	1.8	1.1	(0.0	0	2./	1.6	0.10	0.21	0
MPN /100 ML×106															
NH3-N, MG/L	23,2	19.2	12.5	9.7	6.2	23,2	20.0	12,9	9.6	7.6	23.6	20.4	14,4	9.4	8./
NO3-N, MG/L	(0.1	(0.1	(0.1	(01	0.4	(0.1	(01	(0.1	(0.1	0.2	(0.1	(0.1	(011	(0.1	0.1
NOz-N, MG/L	(0.1	(0.1	(0.1	0,2	0.3	(0.1	(0.1	(0.	0.2	0.1	(0.1	(0.1	(0.1	0.1	0.1
COD TOTAL MG/L	245	225	113	174	109	280	201	103	104	112	226	222	121	106	111
COD SOL. MG/L	101	133	87	98	94	98	119	81	83	90	116	121	90	92	100
TKN MG/L	30.6	27.0	18.0	16.3	12.0	29.8	29,0	16.4	13.0	12.8	33.4	27.4	19.8	13.4	13.5
TOTAL P. MG/L	8.8	7.5	6.7	6.2	5.7	8.6	7.7	6.7	5.9	5.9	8.2	7.7	7.1	5.9	5.9

	1					T					,				
DATE		7/	10/2	5			7/	111/2.	5			7/1	5/75	<u> </u>	
AIR TEMP & MY		37	1/15				31/	18				26,	/18		
WEATHER		Clo	ndy				Cin	ndy			(Clone	ري دي ر	Rain	
INF FLOW, MG			292	-			0.2	72					155		
EFF FLOW MG		0,	118				0.1	18	-	• • • • • • • • • • • • • • • • • • • 		0.	118		
CL2 DOSE-MG/L		10	.2				10	. 2.				//.	2		
CL2 RESIDUAL MG/L		2.	.0				2.	0				2,	0		
	INF	١	2	3	EFF	I!JF	1	2	3	EFF	INF	1	2	3	EFF
TEMP °C	15	24	25	25	24	15	24	25	25	24	14.5	23,5	23	24	22,5
DC, MG/L	3.6	0.4	2.7	0.7	0.3	44	0.4	3.0	0.9	0,3	5,0	5.2	4.3	1.1	0.3
рH	6.9	6,9	6.9	6.9	6.7	7.0	7.0	6.9	6.9	6.6	6.8	6.9	6.9	6.8	6.5
ALKALINITY-MG/L	104	13/	114	97	82	99	129	110	29	87	29	124	99	93	81
SUSP SOLIDS-MG/L	2//	90	28	17	1	196	83	84	106	4	223	74	47	23	9
BOD TOTAL MG/L	100	56	14	13	13	140	48	37	30	14	/23	30	17	"	7
BOD, SOL IMG/L	78	24	12	8	9	47	19	"	9	8	30	13	10	4	3
ALGAE ML × 103	-	57	2,8	4.5	2.5	_	26	3.6	8,4	3.4	-	30	3.8		3,8
FECAL COLI/100MLx10°	4.4	0.70	0.01	0.03	0	5.1					1.8	1.3	0.89	0.60	0
MPN /ICC ML×10C															
NH3-N, MG/L	24.0	22.E	14.0	9.6	8.0	23.6	20,8	13.8	9.9	8.6	13.1	16.6	13.4	9.1	7.9
NO3-N, MG/L	١،٥٧	(0:1	(0.1	0.1	0.1	(0,1	(0,1	0.1	0.1	0.1	⟨0.1	0.1	(01	6.1	0.1
NOz-N, MG/L	(0.1	40.1	(0.1	0.1	Ø.1	۷٥،۱	40.1	(0.1	0.1	(0.1	(0.1	(0.1	(0,1	0.1	(0.1
COD TOTAL MG/L	220	226	12/	106	109	203	245	114	111	108	286	2/2	/32	105	98
COD SOL. MG/L	/52	143	86	90	106	124	140	93	86	92	84	105	25	77	83
TKN MG/L	28,3	<i>33</i> .9	18.2	14.0	13./	25.9	26,7	17.4	14.3	13.3	23,5	24.7	20.3	14.5	13.4
TOTAL P. MG/L							8.2						6.5		
# (FFI			FCAI			BLI) LIF		DE N				

	7/16	h5				7/18	5/75				7/2	9/75	,	
	30/	20				32/	19				30/	2_		
(Clone	ly				Clea	-			Par	#y (Cloud	y	
	0.3	40				0,2	9 2				0.2	79		
	0.1	23				0.1	18				0.11	8		
	10.7	7				//,	2				10.	2		
	2.0	0				2,()				2.0	,		
Inf	١	2	3	EFF	IIJF	1	2	3	EFF	INF	1	2	3	EFF
14	24	24	24	23	16	26	27	26,5	26	16	23	24	24	23.5
3.4	7.7	6.8	2.9	1.2	3.9	5,5	4.7	9,2	2./	4.4	6.9	7.5	6.7	2,3
8.1	7.5	7.1	6.9	۷.5	6.6	7.6	7,2	7.7	6.6	6,5	7.6	7.2	7.4	6.6
133	120	105	90	85	84	102	99	88	78	66	88	99	83	71
120	56	50	17	12	112	2/	134	51	15	155	74	52	20	14
/20	27	23	11	11	116	2/	23	16.	6	109	19	8	19	9
57	19	15	10	7	69	18	7	< <i>i</i>	2	46	13	5	4	6
_	6.9	2.5	4.3	3,2	-	7.6	5.2	15	2	1	5.2	2	8,8	9.3
2.4	0.92	0.70	(0,0	٥	3,2	4,2	0.18	Ko.01	0	7.8	6.1	0,31	0.30	0
16,0	15,3	132	8.5	8.0	19,2	12.8	18.9	9.1	6.9	22,4	6.7	10.5	6.1	5,2
40,1	0.1	0.1	0.1	0.1	40.1	0.1	101	101	0.3	40.1	0.1	10.1	(01	0.3
(0.1	(0,1	(0.1	0.1	0.1	⟨o.i	(0.1	(0.1	0.1	0.2	<0.1	0.1	40.1	0.4	0.4
156	167	127	92	90	254	142	311	98	91	3/2	230	142	108	110
116	95	86	74	74	154	106	91	75	76	121	109	94	85	83
-								1		1	1		1	
20,9	19.2	16.8	13.4	11.5	23.5	17.9	31.1	12.9	10.4	32.8	22.4	18.1	11.8	10,9
	INF 14 3.4 8.1 133 120 120 57 - 2.4 16.0 40.1 40.1	30/ Clma 0.3 0.15 10.7 2.0 INF 1 14 24 3.4 7.7 8.1 7.5 133 120 120 56 120 27 57 19 - 6.9 2.4 0.92 16.0 15,3 40.1 0.1 40.1 40.1 40.1 40.1	14 24 24 3.4 7.7 6.8 8.1 7.5 7.1 133 120 106 120 56 50 120 27 23 57 19 15 - 6.9 2.5 2.4 0.92 0.70 16.0 15.3 132 40.1 40.1 40.1 <	30/20 Clondy 0.340 0.123 10.7 2.0 INF 1 2 3 14 24 24 24 3.4 7.7 6.8 2.9 8.1 7.5 7.1 6.9 133 120 105 90 120 56 50 17 120 27 23 11 57 19 15 10 - 6.9 2.5 4.3 2.4 0.92 0.70 (0.01 16.0 15.3 132 8.5 40.1 0.1 0.1 0.1 40.1 (0.1 (0.1 0.1 40.1 (0.1 (0.1 0.1 40.1 (0.1 (0.1 0.1 40.1 (0.1 (0.1 0.1 40.1 (0.1 (0.1 0.1 40.1 (0.1 (0.1 0.1	30/20 Cloudy 0.340 70.7 2.0 INF 1 2 3 EFF 14 24 24 24 23 3.4 7.7 6.8 2.9 1.2 8.1 7.5 7.1 6.9 6.5 133 120 105 90 85 120 56 50 17 12 120 27 23 11 11 57 19 15 10 7 - 6.9 2.5 4.3 3.2 2.4 0.92 0.70 (0.00 0 16.0 15.3 13.2 8.5 8.0 10.1 (0.1 0.1 0.1 0.1 1.56 167 127 92 90	30/20 Cloudy 0.340 70.7 70.7 70.7 70.7 1NF 1 2 3 EFF IINF 14 24 24 24 23 16 3.4 7.7 6.8 2.9 1.2 3.9 8.1 7.5 7.1 6.9 6.6 6.6 133 120 105 90 85 84 120 56 50 17 12 112 120 27 23 11 11 116 57 19 15 10 7 69 - 6.9 2.5 4.3 3.2 - 2.4 0.92 0.70 (0.01 0 3.2 1601 0.1 0.1 0.1 0.1 0.1 (0.1 40.1 (0.1 (0.1) 0.1 0.1 (0.1 40.1 (0.1) (0.1) 0.1 0.1 (0.1 40.1 (0.1) (0.1) 0.1 0.1 (0.1 40.1 (0.1) (0.1) 0.1 0.1 (0.1 40.1 (0.1) (0.1) 0.1 0.1 (0.1	30/20 32/1 Clmdy Clea 0.340 0.2 0.123 0.1 10.7 11.3 7.0.7 11.3 1.4 24 24 24 23 16 26 3.4 7.7 6.8 2.9 1.2 3.9 5.5 8.1 7.5 7.1 6.9 6.5 6.6 7.6 133 120 105 90 85 84 102 120 56 50 17 12 112 21 120 27 23 11 11 116 21 57 19 15 10 7 69 18 - 6.9 2.5 4.3 3.2 - 7.6 2.4 0.92 0.70 (0.01 0 3.2 4.2 160 15.3 132 8.5 8.0 19.2 12.8 40.1 0.1 0.1 0.1 0.1 (0.1 0.1 (0.1 (0.1 (30/20 C/mdy C/ear 0.340 0.292 0.118 70.7 7/1.2 2.0 INF 1 2 3 EFF IIF 1 2 14 24 24 24 23 16 26 27 3.4 7.7 6.8 2.9 1.2 3.9 5.5 4.7 8.1 7.5 7.1 6.9 6.6 7.6 7.1 133 120 106 90 85 84 102 99 120 56 50 17 12 112 21 134 120 27 23 11 11 116 21 23 57 19 15 10 7 69 18 7 - 6.9 2.5 4.3 3.2 - 7.6 5.2 2.4 0.92 0.70 (0.01 0 3.1 4.2 0.18 160 15.3 132 8.5 8.0 192 12.8 18.9 40.1 0.1 0.1 0.1 0.1 0.1 20.1 0.1 (0.1 4.0) 1.56 167 127 92 90 254 142 311	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30/20 Cloudy Clear Partly Clouds 0.340 0.292 0.178 0.118 10.7 11.2 10.2 2.0 1NF 1 2 3 EFF INF 1 2 3 EFF INF 1 2 14 24 24 24 23 16 26 27 26.5 26 16 23 24 3.4 7.7 6.8 2.9 1.2 3.9 5.5 4.7 9.2 2.1 4.4 6.9 7.5 8.1 7.5 7.1 6.9 6.5 6.6 7.6 7.1 7.7 6.6 6.5 7.6 7.2 133 120 105 90 85 84 102 99 88 78 66 88 99 120 56 50 17 12 112 21 134 51 15 155 74 52 120 27 23 11 11 116 21 23 16. 6 109 19 8 57 19 15 10 7 69 18 7 (1 2 46 13 5 - 6.9 2.5 4.3 3.2 - 7.6 5.2 15 2 - 5.2 2 2.4 0.92 0.70 (0.01 0.3 3.2 4.2 0.18 6.01 0.7 6.1 0.31 1/60 15.3 132 8.5 8.0 192 12.8 18.9 9.1 6.9 12.4 6.7 10.5 40.1 0.1 0.1 0.1 0.1 0.1 0.1 (0.1 0.1 (0.1 0.1 0.1 0.2 (0.1 0.1 0.1 0.1 0.1 0.1 0.1 10.1 0.1 0.1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

										1					
DATE			oh	<u> </u>			8/5	75				8/0	6/75		
AIR TEMP & MAXIN		29,	/11				24/	7			 -	35/	5		
WEATHER		Clear					Clea					Clon	dy		
INF FLOW, MG		0,25	51				0.2	42				0,2	65		
EFF FLOW MG		0.11	8				0.1	36				0.13	6		
CL2 DOSE-MG/L		9.1						•				_			
CLZ RESIDUAL MG/L		1.5	5				-	•				2,0)		
	Inf	١	2	3	EFF	IIJF	١	2	3	EFF	INF	1	2	3	EFF
TEMP °C	17	22	24	23	23	17	24	25	25	24	18	24	26	25	25
DO, MG/L	3.8	3.7	5.8	4.0	2.3	4.0	0.4	2.8	0.3	0.4	3.8	1.4	6.2	0.6	0.3
ρН	7,2	8.0	7,4	7.8	6.7	6.6	6.9	7.0	6.9	6.5	7,0	7,3	7.6	7.0	6.6
ALKALINITY-MG/L	89	86	106	87	71	90	102	105	86	76	109	98	104	85	77
SUSP. SOLIDS-MG/L	///	53	28	13	13	145	56	49	17	0.3	164	56	27	17	8
BOD TOTAL MG/L	64	19	7	<1	7	155	29	15	16	12	164	30	20	12	7
BOD, SOL MG/L	43	10	1	2	<1	66	20	"	9	8	101	2/	10	7	5
ALGAE, ML × 103	-	4.3	2.0	9.8	7.9	_	74	4,2	2.5	2.1	_	33	1.7	4,5	1.7
FECAL COLI/IDDMLXNG	7.6	7.7	0.45	0.08	0	7,2	2,06	0.35	0.15	0	TUTC	5.1	0.16	0.10	0
MPN /100 ML×106															
NH3-N, MG/L	17.3	5.0	9.4	<i>5</i> ,2	5.2	22,0	8.9	9.0	5.6	5.3	19.7	7.5	7.1	4.9	5.2
NO3-N, MG/L	(01	0.1	40.1	0.1	0.3	(01	(0.1	CO.1	(a)	(0.1	(01	(0,1	(0.1	۷٥.1	(0.1
NOZ-N, MG/L	(0.1	0.1	(01	0.4	0.4	KO.1	(0.1	(0.1	0.3	0.1	(0.1	(0.1	(0.1	0.3	60.1
COD TOTAL MG/L	203	225	134	115	100	339	191	167	112	96	400	197	135	102	95
COD SOL. MG/L	124	118	94	88	89	130	108	_	80	87	227	103	97	83	94
TKN MG/L	26.8	8.8	10.2	14.8	16.9	27.6	18.8	16.9	11.0	10.6	32.8	17.0	16.1	10.5	10.5
TOTAL P. MG/L	7.7	6.9	6.5	5.7	5.7	8.6	7.0	6.8		5,9 Ph A		1	. 		6.2

DATE		8/7	<u></u>				9/1	1/75		T		2/1	3/15	•	7
AIR TEMP & MAXIN		23/	·				32/	•				33/	_:		-
WEATHER		Rain					Clean					eleai			\dashv
INF FLOW, MG		0,29					D. 21					0.32			-
EFF FLOW MG		0.1					0,13	······				0.13			
CL2 DOSE-MG/		13,2					11.5					12.3			一
CLZ RESIDUAL MG/L		2,0					2.0					3.0			\dashv
	INF	١	2	3	EFF	IIJF	1	2	3	EFF	INF	1	2	3	EFF
TEMP °C	17	21	23	23	23	17	22	23	22	22	17	22	23	24	23
DO, MG/L	3,&	0.2	1.4	0.3	0.4	3.9	6.2	8,7	6.0	3,0	5.7	3.6	6.1	6.0	2.4
рН	6.6	6.9	7.1	7.1	6.6	6.9	7.5	6.6	7,3	6.5	7.3	7,2	7.5	7,2	6.4
ALKALINITY-MG/L	69	107	100	88	74	85	89	66	82	66	197	87	86	75	59
SUSP. SOLIDS-MG/L	151	56	42	24	4	35	133	78	17	6	16	148	73	13	/
BOD TOTAL MG/L	156	31	16	"	7	10	20	14	8.	3	50	35	27	16	9
BOD, SOL MG/L	78	16	2	4	5	8	5	2	1	1	38	16	10	9	7
ALGAE,/ML × 103		8,6	2.7	3,2	1.5	-	43	0.84	1.4	4.8	_	49	//	6.7	0.98
FECAL COLI/DOML+106	4.6	1.5	0,02	0.01	0	TUTC	4.0	0,04	2071	0	4.0	0.80	0.16	0.16	800
MPN /100 ML×106															
NH3-N, MG/L	21.6	8.6	7.8	62	5.4	120	8,3	2.9	4.7	4.7	11.1	9.5	2.5	3.7	4.3
NO3-N, MG/L	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0,4	0,2	(0.1	(0.1	(0.1	0.4
NOz-N, MG/L	(0,1	(0.1	(0.1	0.2	0.1	0.1	Kal	(0.1	0.3	40.1	1.5	(0.1	(01	0.3	<0.1
COD TOTAL MG/L	331	191	172	118	106	100	247	193	///	104	343	510	194	113	101
COD SOL. MG/L	2/2	102	93	91	96	81	82	100	92	95	84	83	96	90	91
TKN MG/L	27.0	17.7	16.5	11.2	9.6	20.	23.4	19.7	96	8.9	16.9	26.6	19.0	9.8	8,3
TOTAL P. MG/L	8.0	7,2	6.8	6.1	6.0	2.0	2.7	6.7	5.5	5.5	38.4	7,2	6.2	5.2	5.1

DATE		8/1	9/25				ج /ء	1/75	·			8/2	2/75	•	
AIR TEMP & MAXIN		29/	·				25,	-				27/		<u></u>	
WEATHER		Clea			 -		Clea				Pa	Hy		lu	
INF FLOW, MG		0.2	 7を				0.2					0,2		<u> </u>	
EFF FLOW MG		0,1	36				0.1					0.1			
CL2 DOSE-MG/L		11.5	<u> </u>	··			12,	0				/2,	0		
CLZ RESIDUAL MG/L		2.0	>				2,	O				Z.	0		
	INF	١	2	3	EFF	IIJF	1	2	3	EFF	INF	1	2	3	EFF
TEMP "C	17	21	22.5	22	22	18	20	21	21	21	17	21	22	z /	21
DO, MG/L	4.1	0.6	2,3	5.3	3.0	30	0.9	3.0	6.0	3.6	3.0	0.6	2.8	7.5	3,0
ρΗ	66	6.8	7.1	7,0	6.5	7.6	6.9	7.1	7,2	6.5	7.1	7,0	7.1	7,2	6.5
ALKALINITY-MG/L	80	101	98	74	59	130	105	95	77	61	/2/	95	93	72	59
SUSP. SOLIDS-MG/L	136	63	48	5	6	222	60	53	8	9	172	38	2	4	7
BOD TOTAL MG/L	136	51	3 0	15	6	144	22	18	< 1.	3	166	18	<1	8	4
BOD, SOL MG/L	43	15	6	3	_	51	4	<1	< ۱	2	64	<1	<1	<1	,
ALGAE, ML × 103	_	51	5.5	3.E	0,84		25	2.7	1.5	1.7	_	9.5	0.70	0.84	1.5
FECAL COLI/100MLx06	TNTC	2.6	0.08	(0,01	٥	שזעד	2,/	0.15	0.11	0	5.0	5,1	0.10	012	0
MPN /100 ML×106															
NH3-N, MG/L	2/,2	9,1	8.0	3.5	3,7	23.6	8.6	7.4	2.6	2.4	23,2	9.9	6.4	2.4	2,3
NO3-H, MG/L	(Oil	(01	(0.1	0.1	0.5	L0:1	Kon	L0:1	0,2	8.0	40.1	(0.1	(0.1	0.3	0.9
NO2-N, MG/L	0.1	0.1	0.1	0.5	0,2	(0.1	(0.1	(0,1	0.4	۷٥،۱	(0.1	(0.1	(01)	0.4	(0.1
COD TOTAL MG/L	317	166	166	84	88	428	198	154	87	103	365	139	97	95	104
COD SOL. MG/L	122	90	87	76	83	127	115	94	89	88	156	98	100	84	93
TKN MG/L	34.4	16.9	16,2	8.0	7.5	38&	18.9	13.8	8.1	7.5	32.0	14,4	11.6	7,5	7.3
TOTAL P. MG/L	8.8	7.2	6.6	6.5	5.5	9.1	7.3	6.9	5.6	5.6	8.7	2.3	6.0	5.4	5.6

DATE	- 	9/2/	75				9/3	/75				9/4	1/75		
AIR TEMP & MY	·····						24/	0				22/6	,		
WEATHER	Pa	ritly	Cla	dy			Clond	' #			c	lear			
INF FLOW, MG		0.21	/				0,28	9			(0,28	36		
EFF FLOW MG		0.1	4				0./	32				0.12	9		
CL2 DOSE-MG/L							/2,	3							
CL2 RESIDUAL MG/L		-	-			 ,	3.	0			•				
	INF	1	2	3	EFF	IIJF	1	2	3	EFF	INF	1	2	3	EFF
TEMP °C	17	18	19	19	19	17	18	19	186	19	17	17	18	18	19
DO, MG/L	4.0	5.8	817	2,&	0.7	4.1	5.6	7.1	6.2	2.4	4.3	3,2	7.9	5.8	2.0
ρΗ	7.9	6.8	2.5	6.8	6.4	6.8	7.1	7.2	7.0	6.5	6.9	7.1	7.5	7, 2	6.5
ALKALINITY-MG/L	177	102	88	80	65	///	105	90	73	59	114	<i> </i>	94	74	61
SUSP SOLIDS-MG/L	119	81	50	23	17	194	51	12	30	2.	159	67	18	15	9
BOD TOTAL MG/L	104	27	23	17	9	136	28	13	2.	2	170	29	18	10	6
BOD, SOL MG/L	26	15	//	9	7	51	12	6	4	1	59	16	8	4	3
ALGAE, ML × 103	_	18	7.9	1.2	0,9	_	15	1.9	2,8	0.5	_	19	1.9	1.6	0.9
FECAL COLI/100MLx106	9.0	5.0	0.83	0.17	0	8,0	4.5	0.12	0.42	700	>8	1.02	043	0.13	0
MPN /ICO ML×104															·
NH3-K, MG/L	25.6	11.3	7.3	3.5	3.4	24.0	9.3	5,2	2.0	2.4	23.6	11.4	5.8	2.4	2.3
NO3-N, MG/L	0.1	0.1	0.1	0.2	0.2	0.1	0.1	0.1	0.2	0.7	(0.1	(011	(0,1	0,1	0.6
NOZ-N, MG/L	(0.1	(0.1	0,2	0.2	(0.1	40.1	0.3	0.4	0.4	20.1	20.1	(0.1	0.3	0.2	10.1
COD TOTAL MG/L	301	233	183	116	118	375	183	115	96	93	305	148	107	97	91
COD SOL. MG/L	84	103	108	92	101	125	94	91	81	87	189	99	87	83	84
TKN MG/L	33.5	20.3	14.0	7.6	7.3	32,8	18.2	15.4	4.9	4.8	25.6	13.8	2.9	5.7	5.5
TOTAL PMG/L	6.7	6.9	6.4	5.8	5.4	8.5	6.7	41	5.1	5.3	7.4	6.8	62	5,2	5.3

DATE		9/5	175				91	16/25	 S			91	7/7	 S	
A'R TEMP & MAXIN		27/	-				27	•				27/			
WEATHER		Clea		 			Rai					Clea			
INF FLOW, MG		0.2						267				0,2		·	
EFF FLOW MG			136					139				0.13		-	
CL2 DOSE-MG/L			_				/2	٠٤				_		* • •	
CLZ RESIDUALE MG/L		•					3,								
	INF	١	2	3	EFF	IIJF	١	2	3	EFF	INF	١	2	3	EFF
TEMP °C	17	18	19	19	19	16.5	19	20	19	19	17	18	19	18	19
DO, MG/L	4,4	7,9	9.1	4.9	2,5	3.9	6,7	9.2	5.6	2,4	4.4	1.9	6.2	5.0	2.8
ρΗ	7.1	7,8	8.0	7.1	6.6	7.1	8.0	8.1	7.1	6.5	710	710	7.5	7,0	6.5
ALKALINITY-MG/L	106	111	88	73	63	114	107	94	72	56	96	110	94	75	7/
SUSP SOLIDS-MG/L	152	25	18	7	20	161	48	12	14	13	2//	53	37	49	18
BOD TOTAL MG/L	147	41	15	9	7	162	2/	3	5.	5	145	17	8	2	5
BOD, SOL MG/L	71	13	6	3	3	58	10	1	2	4	45	4	,	<1	4
ALGAE ML × 103	1	31	2,3	1.9	2.1	_	26	4.4	1.2	0.9	-	12	5.4	0.7	1,2
FECAL COLI/100MLx106	2,5	0.2	0.01	0 . 03	O	TUTL	TUTC	0.98	0.32	50	77072	0.88	0.03	1.72	0
MPN /100 ML×104															
NH3-N, MG/L	24.8	uit	5.4	1.8	2,0	24.8	8.5	4.5	1,2	1.7	16.7	7.9	3.9	2,3	1.8
NC3-N, MG/L	(6.1	lai	0.1	0.4	0.7	20.1	0.1	(0,1	0.4	0.8	۷٥.۱	0,2	0.6	0.4	0.2
NCz-N, MG/L	(0.1	(0·1	0.4	0.2	का	(0.1	0.3	0.6	0.5	(al	۷٥.۱	0,2	0.6	0.4	0,2
COD TOTAL MG/L	253	147	106	92	ક્ષ્ટ	303	208	109	90	105	260	174	113	111	96
COE SOL. MG/L				82					78			87		81	85
TKN MG/L	28.8	11.9	6.8	3.6	4,2	31.1	14.6	7.4	4.5	5.2	23.9	13.4	7.4	5.6	5.2
TOTAL PIMG/L	6.9	7.0	6.1	5.3	5.6	7,4	6.6	6,2	5.4	5.5	7.6	65	6.2	5,7	5.6

D/10		- 1								<u>1</u>					
DATE		9/8	/75				9,	19/7	<u> </u>			9/10	175		
AIR TEMP & MXIN		27/	6				21/	lio				19/	1		
WEATHER		Clou	dy				Cles	4/				Clean			
INF FLOW, MG	(0.19	97				0,20	65				0,26	.2		
EFF FLOW MG		0.1.	39				0,/	39				0.13	39		
CLZ DOSE-MG/L			-				17.	2				-			
CL2 RESIDUAL: MG/L		_	-				5.0	2							
	Inf	١	2	3	EFF	IIJF	١	ع	3	EFF	INF	1	2	3	EFF
TEMP °C	17	18	19	19	19	17	19	19	19	19	17	77	18	17.5	18
DO, MG/L	4.3	2,3	6.1	4.5	116	5.0	5,6	7.5	<i>5</i> , 2	1.9	44	3.5	4.6	4.5	1.5
рН	6.7	7.0	7.3	2.0	6.6	7,0	7.7	7,8	7.1	6.4	7.1	7,4	7,2	7.0	6,5
ALKALINITY-MG/L	84	110	93	74	66	105	109	98	74	51	117	110	93	78	56
SUSP. SOLIDS-MG/L	124	40	18	/2	8	177	40	9	6	6	160	38	/	46	2/
BOD TOTAL MG/L	129	23	9	10	7	185	27	12	7.	4	163	26	13	10	10
BOD, SOL MG/L	40	6	4	<1	,	80	14	6	,	4	66	11	6	3	7
ALGAE ML × 103	_	7.9	3,7	0.7	0.7	_	6,5	0.7	0.5	0.7	-	7.9	0.7	4.7	21/
FECAL COLI/IDAMLXIO	8,0	08.0	0.03	0.09	0	780	1.85	80.0	0./2	150	3.0	0,07	(0.01	Ko,d	0
MPN /ICO ML×106															
NH3-N, MG/L	18.7	9,6	4.9	1.9	2./	24,5	9,2	4.9	1.9	2,/	25.2	9,9	5.5	2,0	2,2
NO3-N, MG/L	2011	(0.1	(0.1	0,2	0.4	(0.1	0:1	0,1	(0.1	0.5	(0.1	10.1	(0,1	(a)	0.5
NOz-N, MG/L	40.1	0.3	0.7	0.4	0.3	(0,1	0.4	0.7	0.4	10.1	(0.1	0,3	0.6	0.4	(0,1
COD TOTAL MG/L	302	183	112	101	95	276	166	99	90	94	3 <i>G</i> A	169	100	142	108
COD SOL. MG/L	88	86	83	78	77	174	94	87	78	82	162	89	82	77	85
TKN MG/L	26.2	15.0	8.8	5.1	5.0	26.8	17.3	9.1	6.5	5.0	34.4	18.1	9.0	9.2	7.4
TOTAL PING/L	7.6	6.4	6.0	5.2	5.4	7.1	6.4	6.0	5.3	5.4	7.9	6.6	6.1	5.3	5.5

DATE		9/1	1/25				9/1	2/75	•			9/13	3/75		
AIR TEMP & MAXIN		22/	2_				24/	 'フ	 			22/			
WEATHER		Clea					Rai					Clea	<u> </u>		
INF FLOW, MG		0.21	'/				0.2	46				0,2	70		
EFF FLOW MG		0.18	39				0,2	43				0.3	00		
CL2 DOSE-MG/L		_	•				/2,	8				10,	4	,	
CL2 RESIDUAL MG/L							2.0	0				3,	0		
	INF	١	2	3		IIJF	}	ح	3	EFF	INF	-	2	3	EFF
TEMP °C	17	17	18	18	18	17	19	19	19	12.5	17	17	18	17.5	18
DO, MG/L	4.0	6.0	2.4	4.1	1.7	4,3	610	0.8	4.8	2.1	4,2	1.3	0.5	2.1	0.9
рН	7,1	7.4	7,2	7,0	6.5	2.1	7.5	7.0	7.0	6.6	7,0	2.1	6.9	6.8	6.4
ALKALINITY-MG/L	/2/	110	93	77	46	117	113	96	78	63	106	108	99	82	63
SUSP SOLIDS-MG/L	141	60	7	/2	6	114	46	6	6	3	138	37	6	9	5
BOD TOTAL MG/L	148	28	5	7	6	118	26	23	5	5	130	22	10	4	3
BOD, SOL MG/L	66	13	3	2	3	58	9	5	3	2	36	2	,	,	2
ALGAE, ML × 103	-	32	0.7	0.5	0.7	-	4.9	0.7	0.9	1.2	-	22	1.2	0.9	0.7
FECAL COLI/100MLx106	78.0	2.7	0.12	0.35	0	3,2	040	0.01	03.0	0	TUTE	6.0	0.06	0.90	0
MPN /100 ML×106															
NH3-N, MG/L	26.4	9.8	5.8	2.0	2.0	25.6	10.2	6.2	2.0	2.6	27,2	10,2	6.5	2.3	2.8
NO3-N, MG/L	(0.1	0,2	0.2	0.1	0.5	101	(0.1	0.3	0.1	0.6	20.1	(0.1	0.1	(0.1	0.4
NOZ-N, MG/L	401	(0.1	0.4	0,4	0,2	10.1	(0,1	0.4	0.3	40.1	(0,1	0.3	0.3	0.2	LO: 1
COD TOTAL MG/L	355	184	102	94	88	280	163	100	89	89	331	152	97	94	93
COD SOL. MG/L	163	88	88	80	83	157	91	89	88	83	131	88	87	80	84
TKN MG/L	31.6	17.4	9.3	5.6	5.6	31.6	16.0	9.7	5.5	5.6	340	17.0	10.5	5.6	5.7
TOTAL PING/L	7,8	6.7	6.2	5.5	5.5	7,2	6.9	6.3	5.4	5.5	7.7	6.6	6.4	5.6	5,6

DATE		9/19	1/75				9/15	175				9/16	115	, -	
AIR TEMP C MAXIN		20/					12/					17/3			\exists
WEATHER	Pai	+/4	Clond	ત્યુ			C lea	<u></u>			Pai	+4	Clox	_N y	
INF FLOW, MG		0,21	9			**	0.19	77				0,1			
EFF FLOW MG		0.31	9				0,28	4				0.3	300		
CL2 DOSE-MG/L	·	10,3						. ,				9,	2.		
CLZ RESIDUAL MG/L	ļ ,	3,0		·			_	•				2,	0		
	INF	1	2	3	EFF	I:JF	1	2	3	EFF	INF	١	2	3	EFF
TEMP °C	17.5	16	17	17	17	16	14	15	15	16	17	15	15	15	16
DO, MG/L	4.2	3,4	0.7	1.3	0.4	4,2	3,8	0,6	0.6	0,2	4.0	6.7	0.9	0.5	0.3
рН	7.0	7.1	7,0	6.8	6.5	7.1	7,2	7.1	6,8	6.5	7.3	7.7	7.0	710	6.6
ALKALINITY-MG/L	92	114	101	81	72	109	116	100	81	76	124	116	104	83	78
SUSP SOLIDS-MG/L	161	62	/2	"	6	130	33	15	5	3	232	37	6	/	1
BOD TOTAL MG/L	166	19	۷1	۲۱	2	136	24	"	4.	5	2/7	13	/2	6	6
BOD, SOL MG/L	62	۲/	<1	۷1	<1	39	7	3	2.	5	59	10	8	5	7
ALGAE,/ML × 103	_	17	4.9	0.7	0.5	_	15	1,2	0.9	0.9	-	24	14	0,2	0.5
FECAL COLI/IDDML+10°	780	0.10	40.0 1	0.02	0	780	0.20	0.01	0.02	0	6.0	0.20	0.02	0.10	0
MPN /ICC ML×106															
NH3-N, MG/L	21.6	10.9	6.7	2.8	3.2	19.7	11.1	7.7	3.5	3.5	28.4	10.9	7.3	3,3	3.9
NO3-N, MG/L	2011	(0.1	0.1	(0.1	0.2	(0.1	0.2	(0.1	0.3	1.6	(0.1	(0.1	0,2	0,1	(0.1
NOz-N, MG/L	(0.1	0.4	0.3	OZ	(0.1	0.3	0.2	0.3	(0.1	0.2	0.1	0.5	0.3	0.1	(0.1
COD TOTAL MG/L	372	191	103	93	90	420	290	102	95	95	432	153	110	91	90
COD SOL. MG/L	159	87	88	79	85	94	90	90	83	88	120	89	93	84	88
TKN MG/L	28.4	18.9	106	6.7	6.4	32.0	16.4	12.0	6.5	6.8	39.6	17.7	11.6	6.7	6.6
TOTAL PIMG/L	9.8	7.6	6.6	5.9	6.3	8,1	6.7	6.7	6.2	6.2	9.4	6.6	6.3	6.5	5.7

DATE		9/1	7/76				9/18	175				9/1	9/75	,	
AIR TEMP & MAXIN		12/	15				18/	 7							
WEATHER	C	lond		ain			/md		 P a			Clor	dy		
INF FLOW, MG		0.2	<u> </u>				0,2					0,2			· · · · ·
EFF FLOW MG		0,3	.c.€				0,3	08				0.3	38		
CL2 DOSE-MG/L		ę,	2				7,	દ	····			٤,	1		
CLZ RESIDUAL MG/L		2	,0				1.	5				2,	0		
	INF	١	2	3	EFF	IIJF	١	٦	3	EFF	INF	1	2	3	EFF
TEMP °C	16	15	15	15	16	16	15	15	15	15.5	16.5	16	16	16	16
DO, MG/L	3.2	7.3	0.8	0.4	0,2	4.3	5.2	0.6	0.7	0,3	4.0	8,2	הס	0.5	0.3
рН	7,2	7,7	2.1	7.1	6.6	7,3	7,6	7.2	7.0	6.7	7.3	7.8	7.1	6,7	6.6
ALKALINITY-MG/L	133	117	107	84	78	109	120	106	88	83	110	118	109	89	78
SUSP SOLIDS-MG/L	131	44	4	1	2	169	38	11	<1	2	150	41	53	1	8
BOD TOTAL MG/L	139	16	5	6	4	154	22	10	.6	7	139	2/	"	6	9
BOD, SOL MG/L	51	4	2	1	3	54	7	3	4	5	52	9	5	3	6
ALGAE,/ML × 103	1	13	0.5	0.2	0.2	_	17	0.9	0.2	0.5	-	17	0.9	1.2	14
FECAL COLI/ICOMLXIO	79.0	0.10	(0.01	0,27	0	78.0	1.8	20.01	0,04	0	78.0	2.4	0.14	0.18	0
MPN /ICO ML×106															
NH3-N, MG/L	24.6	li.j	7.1	3.5	4.1	28.0	11.6	7.3	4.0	4.5	24,4	11.8	7.9	4,2	3,2
NO3-U, MG/L	40.1	(0.1	0.1	401	(0.1	40.1	0.3	0.2	101	(0:1	١.٥٧	0.4	40.1	(0:1	10,1
NOz-N, MG/L	10.1	0.3	0.3	0.2	(0.1	40.1	0,2	0.3	(0.1	(0.1	1011	10.1	0,5	(0.1	(0.1
COD TOTAL MG/L	324	157	100	94	91	345	149	97	92	96	276	140	99	93	97
COD SOL. MG/L	137	25	91	78	84	141	83	84	82	88	125	87	87	85	23
TKN MG/L	30.0	18.6	10.7	7,2	7.0	34.8	22.0	11.5	7.3	7,4	31.6	17.2	11.3	2.1	6.5
TOTAL ,P. MG/L	7.5	7,0	6.7	5.9	6.1	8,8	7.2	6.7	5.9	5.9	7.0	6.8	6.6	5.9	5.6

DATE		9/	20/		·	T	o la	. /							
AIR TEMP & MAKIN	9/20/15				_	9/21/75				9/22/75					
WEATHER	 	Cla	rd so			P	35 utly		udu		25/7				
INF FLOW, MG	-		276					198			-	0.2	Clar	æy T	
EFF FLOW MG		0.	25/		··			308				0.3			
CL2 DOSE-MG/L		8	ر.					,2	<u></u>			9.		·····	
CL2 RESIDUAL MG/L		2	.0					0			 	4.0			
	INF	ı	2	3	EFF	IIJF		2	3	EFF	INF	1	2	3	EFF
TEMP "C	17	18	17	16	16	17	19	18		16.5	 	 	17	17	17
DO, MG/L	4.0	12.0	0.7	0.2	0.3	2.8	14.6	0.9	0.2	0.3	1.8	4.9	0.8	0.4	0.4
рН	7.2	1	7.0	į.			2,4					_	7.1		6.4
ALKALINITY-MG/L	140	114	105	93	78	149	117	105	92	77	125	119	107	88	76
SUSP SOLIDS-MG/L	247	82	8	6	5	53	57	18	4	7	150	61	4	9	8
BOD TOTAL MG/L	126	2/	4	3	4	17	15	3	5.	4	96	41	9	6	7
BOD, SOL MG/L	53	<1	<1	<1	2	7	J	<1	<1	<1	15	8	4	4	4
ALGAE, ML x 103		23		2.6		_	28	2.1	3.7	2.1	-	34	2.8	2,3	2.1
FECAL COLI/ICOMLXICE	78.0	2.8	0.32	0,20	0	90	2.6	0,26	0.18	0	780	0.59	0.02	0.90	0
MPN /100 ML×106															
NH3-N, MG/L	32,4	135	8.2	5.i	5,2	30.0	11.8	9.9	5.1	5.1	23,0	11.8	7.6	4.5	4.8
NO3-N, MG/L	401	(0:1	0.9	(Oil	(0.1	1011	(0:1	(0.1	101	(0.1	<0.1	(D.1	5.2	(0:1	(01)
NOz-N, MG/L	1		•	(0:1											0.1
COD TOTAL MG/L													97	97	99
CAR CAL LIGHT	149	- 1		78							47	89	90	٤٤	82
TKN MG/L	40.8	23,2	11.4	8.0	8,9	31.6	20,1	13.0	7.9	8,2	32.0	20.4	11.5	8.0	7.8
TOTAL PMG/L															

DATE	9/23/15						9/2	4/7	5		9/25/75				
AIR TEMP & MAX			110				161	'11			12/9				
WEATHER		Rai	и				Rai	и			Rain				
INF FLOW, MG		0.7	68				0,2					0.37	8		
EFF FLOW MG		0.	326				0,3	21	•			0.3	04		
CL2 DOSE-MG/L		9.	5				9,2					9.9)		
CLZ RESIDUAL MG/L		3,	0				3,	p .				2.5	·		
	INF	١	S	3	E:F	IIJF		2	3	EFF	IHF	-	2	3	EFF
TEMP °C	16	18	18	17	n	16	17	17	17	17	17	15	16	15	16
DO, MG/L	1,8	711	1,2	0.4	0.4	4.3	3 <i>A</i>	0.5	0.4	0,3	3,3	1.9	0.9	0.4	0.4
рН	7,2	7.6	6.9	6.8	6.4	7.1	7.2	6.9	6.8	6.5	7,2	7.1	7,0	6.9	6.6
ALKALINITY-MG/L	134	120	104	25	72	113	119	106	90	80	125	118	"	85	78
SUSP. SOLIDS-MG/L	204	52	3	7	10	145	48	6	94	5	200	35	5	"	7
BOD TOTAL MG/L	175	28	9	6	7	139	27	10	20	6	165	28	12	"	6
BOD, SOL MG/L	53	"	4	4	4	72	13	5	3	3	52	13	4	5	6
ALGAE, ML × 103	_	52	1.4	0.9	1.4	_	22	0.9	0.9	0.9	_	28	1,2	1.6	1.4
FECAL COLI/100MLx106	77.0	0.34	0.04	0,26	0	7.5	1.04	0.2/	040	0	>7,0	>&¢	(0.01	0.39	0
MPN /ICO ML×ICG															
NH3-N, MG/L	24.8	11,2	7,7	4.5	5.2	22./	11.7	7.9	5.2	5,2	20.4	12.8	8,1	5,2	5.9
NO3-N, MG/L	Kai	(011	0.7	(0,1	LOI	2011	(0:1	0.8	(0.1	(0.1	101	0.5	0.9	(011	(0:1
NC2-N, MG/L	0.1	0.8	0.5	0.1	0.1	0.1	0.7	0:3	0,1	011	0.1	40.1	0,2	(0,1	(0.1
COD TOTAL MG/L	428	147	106	97	96	299	132	94	157	96	373	114	98	100	101
COD SOL. MG/L	181	89	82	79	89	157	87	82	81	88	168	88	83	79	82
TKN MG/L	360	19.1	11.5	8.1	8.3	31.2	18.4	11.7	11.0	8.0	26.8	17.9	12.3	9.0	9.4
TOTAL PING/L	10.1	7.1	6.7	6.1	6.3	10.1	7.1	6.7	5.2	5.7	5,6	6,3	6.2	5.6	5.7

DATE	9/26/15					9/:	27/2	5		9/28/75					
AIR TEMP & MAXIN		12/					16,				20/7				
WEATHER							Clos	dy	3 - 1		Par	+/4	Clm	dy	
INF FLOW, MG	***************************************	0.3	75				0,5					0.5			
EFF FLOW MG		0.3	»17				0.2	301			· · · · · ·	0.3	46		
CL2 DOSE-MG/L		9.6	5				_				-	8,0			
CL2 RESIDUAL MG/L		2,0	,				_					2,0)		
	INF	١	2	3	EFF	IIJF	١	2	3	EFF	INF	1	2	3	EFF
TEMP °C	16	14	15	15	15	16	15	15	15	-	16	15	15	15	15
DO MG/L	4.3	0.9	1,0	0.4	0.4	6.7	3,0	1.8	0.5	_	5.4	810	2,3	0,2	0.2
ρΗ	710	7.1	7,2	6.9	6.7	6,2	7.1	6,8	6.8	-	6.7	7.5	6.9	6.9	6.5
ALKALINITY-MG/L	95	117	108	86	84	41	102	105	88	-	62	105	107	77	75
SUSP SOLIDS-MG/L	158	36	5	12	7	383	39	5	9	_	140	59	7	8	9
BOD TOTAL MG/L	115	2/	10	ي	5	147	20	ક	8.	-	87	30	13	10	6
BOD, SOL MG/L	41	10	3	5.	4	48	11	6	6	-	22	8	5	3	4
ALGAE;/ML×103	_	14	2,3	1.6	1.6	_	15	1,2	1.6	-	-	37	1.2	2,6	1,2
FECAL COLI/100ML x106	78.0	1.0	(0.0)	0.02	0	77.0	6.2	0.57	1.4	-	5.4	2./	0.03	1.7	10
MPN /100 ML×106															
NH3-N, MG/L	19.6	11.6	8,6	5,4	5.9	18.0	10.8	8,2	5.5	-	7.8	8.5	8.2	5.9	5,9
NO3-N, MG/L	10.1	0.2	1,2	401	(01	101	10.1	1.3	10.1	-	(0.1	0.3	1.1	(0.1	(0.1
NOz-N, MG/L	401	0.5	(01	(0.1	40,1	0.1	0,1	0.2	0.1	-	0.1	1.1	0,2	0.1	0.2
COD TOTAL MG/L	257	118	94	94	95	589	118	87	92	-	149	/22	90	93	89
COD SOL. MG/L	83	89	86	79	82	94	80	80	78	_	61	75	80	80	82
TKN MG/L	23.6	17.9	12,2	9.2	9.3	49.2	17.3	12,2	9,2	_	8.2	16.4	11.4	9.3	9.1
TOTAL P. MG/L	5,0	5.8	6,0	5.4	5.4	5.3	5.6	5.6	4.7	-	3.8	5,2	4.6	5.1	4.0

DATE		9/2	9/5	•			9/	30/	 'S						
AIR TEMP & MAKIN		21/9	ŝ		·			/3							
WEATHER		Clea	1			Pa	atly	Clo	ndy					•	
INF FLOW, MG		0.3	310					360							
EFF FLOW MG		0.3	520				0.	334							
CL2 DOSE-MG/L		9,	0				9,	0							
CL2 RESIDUAL MG/L		3,	0				2,	0							
	INF	1	2	3	EFF	INF	1	2	3	EFF	INF	1	2	3	EFF
TEMP °C	16	14	15	15	15	16	15	15	15	15					
DO, MG/L	5.1	5.9	1,2	0.5	0.4	4.3	6.7	1.8	0.4	0.4					
рН	6.6	7.2	6.9	6.8	6.5	6.7	7,2	7.0	6.9	6.5					,
ALKALINITY-MG/L	82	109	102	84	80	89	108	105	82	77					
SUSP. SOLIDS-MG/L	113	25	14	13	12	119	30	4	4	٤					
BOD TOTAL MG/L	106	25	//	"	7	116	16	10	7.	7					
BOD, SOL MG/L	51	15	9	હ	6	51	7	5	4	3					
ALGAE,/ML × 103	-	"	0.9	0.9	0.5	-	17	0.5	1.6	1.6					
FECAL COLI/100MLx06	7.2	0.40	0.05	0.01	0	7,2	36	(0.01	(0.01	0					
MPN /IGO ML×106															
NH3-N, MG/L	13.6	9,2	7.6	5%	6.9	19.5	8.8	2.0	6.2	7.2					
NO3-N; MG/L	(0.1	0.2	110	(01	(0.1	40.1	0,2	1.0	(0:1	(0.1					
NO2-N, MG/L	(0,1	0.8	Oız	<i>(</i> 0.1	(0.1	40.1	[.]	0.3	(01	(0.1					
COD TOTAL MG/L	188	89	90	87	84	226	85	86	86	94					
COD SOL. MG/L	59	83	78	72	78	118	78	74	71	73					
TKN MG/L	20,4	11.4	11.8	9.3	9.6	24.0	15.0	11.9	9.3	11.1					
TOTAL P. MG/L	5.6	5.1	5.8	5,2	5.6	6.8	5,3	56	5.3	5.6					

APPENDIX B

REMARKS AND OBSERVATIONS

11/3	Accumulated solids in the chlorine contact chamber pumped to pond no. 1. DO in the pond dropped requiring that the influent flow be diverted to pond no. 2 until pond no. 1 could recover.
11/21	Normal pond sequence resumed.
11/22	Sample lines freezing at night.
11/23	Approximately 2 cm (3/4 in) of ice on all ponds at 9:00 A.M. Impossible to use samplers at ponds due to sample lines freezing. For remainder of winter stations 2, 3, and 4 will be grab samples. Stations 1 and 5 (influent and effluent) will continue to be composited.
11/29	Chlorinator failed for 4 hours (2:30 - 6:30 A.M.)
12/17	Chlorinator shut off for approximately 2 hours.
2/20	Chlorinator failure.
2/27	River backed up into chlorination chamber.
3/12	Effluent flow rate recorder recalibrated.
3/20- 3/25	River backed up into chlorination chamber.
3/30	No longer any ice on pond no. 1.
4/4	Due to high river stage it was not possible to accurately measure the plant effluent flow rate. Overnight the chlorinator was set at 60 lb/day which was increased to 100 lb/day by the operator at 7:30 A.M. to maintain a residual of 2.0 mg/l. Pond no. 3 was bypassed so that flow was discharged from pond no. 2. This resulted from operational problems due to the very heavy rain.
4/7	Pond flow pattern returned to normal.

4/8 An accidental oil spill in town caused a discharge of 2700 gallons of No. 2 fuel oil to the sewer system. The oil was trapped in pond no. 1 where it covered approximately 30 percent of the pond surface. 4/10 Oil spill cleanup company removed oil from pond no. 1. 4/13 No longer any ice on pond no. 2. 4/16 No longer any ice on pond no. 3. Pond no. 1 bypassed due to low DO to allow recovery. 7/17/15 Flow pattern returned to normal. 8/5 Chlorinator failure. 8/6 Chlorinator failure. 9/2 Chlorinator failure. 9/4 Chlorinator failure. 9/7 Chlorinator failure. 9/8 Chlorinator failure. 9/11 Chlorinator failure.

River stage too high to sample plant effluent.

9/27

(P	TECHNICAL REPORT DATA lease read Instructions on the reverse before comp	eleting)
1. REPORT NO. EPA-600/2-77-085	2.	3. RECIPIENT'S ACCESSIONNO.
4.TITLE AND SUBTITLE "Performance Evaluation of	•	5. REPORT DATE August 1977 (Issuing Date)
Peterborough, New Hampshir	e"	6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)		8. PERFORMING ORGANIZATION REPORT NO.
Stuart P. Bowen		·
9. PERFORMING ORG \NIZATION NAME A	ND ADDRESS	10. PROGRAM ELEMENT NO.
JBF Scientific Corporation		1BC611
2 Jewel Drive		11. CONTRACT/GRANT NO.
Wilmington, Massachusetts	01887	68-03-2062
12. SPONSORING AGENCY NAME AND ADM Municipal Environmental Re	search LaboratoryCin.,OH	13. TYPE OF REPORT AND PERIOD COVERED Final - 1974-1976
Office of Research & Devel		14. SPONSORING AGENCY CODE
U. S. Environmental Protec Cincinnati, Ohio 45268	tion Agency	EPA/600/14

15. SUPPLEMENTARY NOTES

Project Officer - Ronald F. Lewis (513) 684-7644

16. ABSTRACT

Although wastewater treatment lagoons are used extensively, little operational data is currently available for evaluating the performance capabilities of lagoons. This report presents data gathered during a one-year period of monitoring the lagoon system at Peterborough, New Hampshire, and compares the treatment plant performance to design loading rates and the Federal Secondary Treatment Effluent Standards.

The lagoon system performed very well with excellent removals of suspended solids and fecal coliform bacteria. BOD_5 removal was excellent except for four months during the winter when anaerobic conditions occurred under the ice cover and soluble BOD_5 levels rose substantially. As a result of this study, it was recommended that induced-air aeration be installed in one of the ponds to decrease the concentration of soluble BOD_5 and thus meet the Federal Standards. Other chemical and physical parameters were monitored in the sampling program and the data is presented in the report.

i7. KEY W	WORDS AND DOCUMENT ANALYSIS								
DESCRIPTORS	b.IDENTIFIERS/OPEN ENDED TERMS	c. COSATI Field/Group							
*Lagoons (ponds) *Performance evaluation *Design criteria Waste treatment Chemical analysis Physical tests		13B							
Release to public	19. SECURITY CLASS (This Report) Unclassified 20. SECURITY CLASS (This page) Unclassified	21. NO. OF PAGES 101 22. PRICE							