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ABSTRACT

When EPA initiated the Wet Scrubber Systems Study in 1970
the state-of-the-art was largely empirical. Each application
was considered to be a special case which could only be dealt
with on the basis of long and specific experience. Engineering
design was based on a primitive, cut-and-try approach and often
resulted in an expensive overdesign to cover the wide range of
uncertainty. There was also very little scrubber performance
information available.

In the Wet Scrubber Systems Study all available information
concerning wet scrubber theory and practice was reviewed and
evaluated. The best available engineering design methods were
evaluated and where necessary new or revised methods were developed
to provide as sound a basis as possible for predicting performance.
The result of this study was the publication in 1972 of the
"Scrubber Handbook."

This capsule report summarizes the best available design
models for wet scrubbers. Details of the models are reported
in the Scrubber Handbook and other EPA publications listed in
the bibliography.
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LIST OF ABBREVATIONS AND SYMBOLS

cyclone inlet area, m?

dimensionless constant in equation (6)

cross-sectional area of the collector normzl! to gas flow

direction, m

deposition aroa, m?

projected ares of baffles, m?
cross-sectional area of duct, m?
dimensionless constant in equation (6)
cyclone geometry parameter, dimensionless

particle concentration, g/m’

Cunningham slip correction factor, dimensionless

drag coefficient, dimensionless

particle concentration at the scrubber inlet, g/m?
particle concentration at the scrubber outlet, g/m’?

cyclone diameter, m

particle diffusivity, m?/s
molecular diffusivity, m*/s
collector diameter, m

drop diameter, m

cyclone exit diameter, m

fiber diameter, m

sieve plate perforation diameter, m
particle diameter, m or um
aerodynamic particle diameter, umA
mass median diameter, m or umA
required cut diameter, UmA
collection efficiency, fraction
charging electric field strength, v/m

effective precipitating electric field strength, v/m

foam density, dimensionless

empirical constant = 0.5

drag coefficient, dimensionless

fraction of hole area, fraction

frequency distribution of particles
acceleration of gravity, m/s?

magnetic field strength, A/m

distance of drops traveled, n

inertial impaction parameter, dimensionless
inertial parameter at the throat, dimensionless
gas thermal conductivity, J/m-s-°K
particle thermal conductivity, J/m-s-°kK
thickness of fibrous packing, m

moleculsr weight of gas, g/g-mol
molecular weight of vapor, g/g-mol

Peclet number, dimensionless

Reynolds number, dimensianless

absolute pressure, Pa

overall particle penetration

penetration for particles with diameter d
radius, =

p’ fraction
gas volumetric flow rate, m'/s

liquid volumetric flow rate, m’/s
collector charge, C

particle charge, C

gas partial pressure, Pa

gas temperature, °K

gas velocity passing thes collector, m/s
gas velocity, n/s

gas velocity at the throat, m/s

gas velocity through perforation, m/s
particle deposition velocity, m/s
terminal settling velocity, m/s

mass of particles, g

weir length, m

depth of packing, m

fiber fraction, fraction

dielectric constant, dimensionless

porosity, fraction

permitivity constant (B8.854 x 107" coulomb?/nt-n?)

overall collection efficiency of a unit mechanism, dimensionless
single cylinder collection efficiency, fraction

particle collection due to diffusion, fraction

single drop collection efficiency, fraction

particle collection due to electric precipitation, fraction
particle collection due to gravity, fraction

particle collection efficiency due to impaction, fraction
potential flow drop collection efficiency, fraction

viscous flow drop collection efficiency, fraction

angle of attack, degree

penetration time, s

. geometric standard deviation, dimensionless

gas absolute viscosity, kg/m-s
particle density, kg/a’
density of water, kg/m’
pressure drop, cm W.C.

dry pressure drop, cm W.C.



PERFORMANCE AND DESIGN MODELS FOR SCRUBBERS

INTRODUCTION

Scrubbers are devices which utilize a liquid in the separa-
tion of particulate or gaseous contaminants from a gas stream.
The liquid may be used to contact the gas and particles directly,
or may be used to clean solid surfaces on which the particles
or gases have been collected.

Scrubbers are used extensively for the control of air pollu-
tion emissions. There are so many different scrubber systems
offered by manufacturers that it is often difficult to choose
the right scrubber for a particular job.

The optimum scrubber system for a particular job will not
depend only on the system costs. The major consideration should
be whether the scrubber is capable of removing the pollutants
to the degree required. An inexpensive, simple scrubber which
does not meet the efficiency requirements is not only useless,
but a waste of money and time. It is, therefore, of primary im-
portance to provide as sound a basis as possible for predicting
performance.

Design models based on fundamental engineering concepts
provide the best approach for evaluating the performance and
cost of scrubber systems. This report summarizes the best available
engineering models for particulate scrubbers.

COLLECTION MECHANISMS

Currenfly available scrubbers can be grouped into a number of
categories: plate, massive packing, fibrous packing, preformed
spray, gas-atomized spray, centrifugal, baffle, impingement and
entrainment, mechanically aided, moving bed, and various combina-
tions (Calvert, et al. 1972 and Calvert, 1977). No matter what



type of scrubber is being evaluated, it is convenient to consider
dust particles to be separated from the gas by one or more unit
mechanisms, the basic particle collection elements which

account for the scrubber performance. For example, in a venturi
scrubber, particle collection is achieved by contacting the par-
ticles with the atomized liquid drops. Thus, collection by drops
is a unit mechanism. Other unit mechanisms for particle collec-
tion include collection by cylinders, sheets, bubbles, and jet
impingement. Table 1 summarizes the scrubber groups and the impor-
tant unit mechanisms for each group.

For each of the unit mechanisms, the particles are separated
from the gas by one or more of the following particle collection
mechanisms: gravitational sedimentation, centrifugal deposition,
inertial impaction, interception, Brownian diffusion, thermophore-
sis, diffusiophoresis and electrostatic precipitation. Particle
' collection also may be enhanced by increasing the particle size
through agglomeration, condensation, or other particle growth
mechanisms.

DESIGN EQUATIONS

There are two basic approaches for developing design equations
for scrubbers. One approach is to consider the collection effi-
ciency of individual unit.mechanisms, such as collection by single
drops, and derive a relationship for the overall collection
efficiency based on the unit mechanisms. The second approach
is to determine the deposition velocity of a particle experiencing
a specific deposition force, such as electrical attraction.

These two approaches are discussed below.

Unit Mechanism Approach

The general design equation which describes particle collec-

tion by any control device in which the gas and dust are well
mixed is:

c QG dA. | 1)



"' is the overall collection efficiency of a unit mechanism.
Inertial impaction is the collection of moving particles by

impingement on some target. The relative effect of inertial

impaction for different particles and flow conditions is charac-

terized by the inertial impaction parameter, K , defined as:

p’

"C' p_ d* u
— G

P 9 Ug d

K

C

Figure 1 shows the theoretical and experimental target effi-
ciencies for a single sphere and a single cylinder as related
to tie inertial impaction parameter.

Equation (1) has been solved for various scrubber systems
which involve collection by inertial impaction. The results are
tabulated in Table 2.

Equation (1) also may be applied to other collection mechan-
isms if an expression for '"n" is known. Table 3 presents expres -
sions for the single drop and single cylinder collection efficien-
cies resulting from various collection mechanisms.

Deposition Velocity Approach

The particle deposition velocity is the component of its
velocity in the direction towards the collecting surface. If the
particle deposition velocity is constant and the gas and par-
ticles are well mixed everywhere in the scrubber, the particle
collection can be predicted from the following equation:

c u A
Ptd = ]1-EF = _.9. = exp - _M (3)
5 QG |

"upD" is the net particle deposition velocity caused by the col-
lection mechanism(s). The deposition velocity for any collection
mechanism depends on the force balance between the driving force
(deposition force) and the resistance force of the gas. Table 4



is a list of theoretical equations predicting the deposition
velocity for each collection mechanism. The scrubber collection
efficiency can be calculated by using equation (3) coupled with

the appropriate deposition velocity and the total deposition:
area of the scrubber.

Pressure Drop

Along with particle collection efficiency, the scrubber
power requirement is also an important consideration in designing
the optimum pollution control system. The power requirement for
particle scrubbing is mainly a function of the gas pressure drop.
Preformed sprays and mechanically aided scrubbers have signifi-
cant power inputs to pumps and other devices. Equations for

predicting the gas phase pressure drop for various types of
scrubbers are summarized in Table 5.

PERFORMANCE PREDICTION AND SCRUBBER DESIGN

Air pollution control regulations generally specify a maxi-
mum mass rate of emissions and often set a concentration limit
as well. By knowing the particulate concentration and mass rate
at the scrubber inlet, one can specify the minimum collection
efficiency or the maximum allowable penetration through the
scrubber being designed or selected.

When a range of particle sizes is involved, as generally is

the case, the overall particle penetration will depend on the size

distribution and on the penetration for each size. The overall

penetration, Pt, of any device collecting a dust with any size
distribution will be:

e W Pty dwW j‘”
t = —_ = Pt, f(d
f W J d ( p)ddp (4)

o)

The right-hand side of the above equation is the integral

of the product of each weight fraction of dust times the penetra-
tion of that fraction.



In designing a scrubber, the maximum allowable penetration,
Pt, and size distribution, f(d_), in the process stream must be
known. The only variable in equation (4) is "Pty" which is a
function of scrubber geometry and scrubber operating conditions.
One must first choose the scrubber geometry and operation condi-
tion, then evaluate "Ptd'by means of the design equations presen-
ted in Table 2 and integrate equation (4) to obtain the overall
penetration, Pt. If the calculated "Pt" is greater than the
allowable maximum, new scrubber geometry and operating conditions
are chosen and the calculations are repeated.

These trial and error procedures are continued until one
arrives at a scrubber design which gives an overall penetration
smaller than or equal to the maximum allowable "Pt." Generally,
more than one scrubber geometry and set of operating conditions
give satisfactory performance. The final selection will be based
on cost, experience and other factors.

Choosing a scrubber is simpler than designing one. The
scrubber manufacturer's proposed geometry and operating condi-
tion may be used to calculate "Ptd" from the appropriate design
equations. Then "Pt" may be calculated from equation (4) to
check whether it is acceptable.

This design method is precise but time-consuming. A much
simpler method, called the '"cut diameter' method, has been
developed to provide quick designs when precision is not required.
The '"'cut diameter" method has been described in the "Scrubber
Handbook'" and other publications.

CUT DIAMETER METHOD FOR PERFORMANCE PREDICTION AND SCRUBBER DESIGN

Cut Diameter

A very convenient parameter for describing the capability
of a particle scrubber is the diameter of the particle for which
the scrubber is 50% efficient. This diameter is referred to as
the cut diameter, generally given in aerodynamic units. Thus,
a scrubber with a cut diameter of 1.0 umA would collect particles

of 1 umA size at 50% efficiency.




The great utility of cut diameter stems from the fact that a
curve of collection efficiency versus particle diameter for col-
lection by inertial impaction is fairly steep. Several important
types of scrubbers have performance characteristics such that a
particle whose aerodynamic diameter is half the cut diameter would
be collected at about 10% efficiency, whereas a particle with an
aerodynamic diameter twice the cut diameter would be collected
at about 90% efficiency.

Because the cut is fairly sharp, one can use as a rough
approximation the concept that the scrubber collects everything
larger than the cut diameter and passes everything smaller.

Integrated Penetration

Most scrubbers that collect particles by inertial impaction
perform in accordance with the following relationship:

B o
Pty = exp |-A dpa = E; (5)

"B" is an empirical constant. Packed-bed and plate type
scrubber performance are described by a value of "B = 2.0"
whereas for centrifugal scrubbers of the cyclone type, B = 0.7.
Gas-atomizing scrubber performance fits a value of "B = 2.0"
over a large portion of the usual operating range. Therefore, we
use a value of "B = 2.0" as representative of most scrubbers
operating in the inertial impaction regime. Figure 2 plots
collection efficiency against the ratio of aerodynamic particle
diameter to performance cut-diameter, showing one line based on
equation (5) and another for a venturi scrubber under typical
operating conditions.

Most industrial particulates have approximately a log-normal
size distribution. Hence, the two basic parameters of the log-
normal distribution adequately describe the size distributions
of particulate matter. These parameters are the mass median
diameter, dpg’ and the geometric standard deviation, og. If the
size distribution is log-normal, a plot of the percent of particles



less or greater than a stated diameter versus the diameter, on
logarithmic probability graph paper, will yield a straight line.
The 50% value of "dpa” equals "dpg” and the ratio of the particle
diameter at about 84.1% undersize to ”dpg” is equal to "o _."

One can integrate equation (4) with ”Ptd" given by equation
(5) and ”f(dp)" by log-normal distribution. The results are
presented in graphical form in Figure 3. The overall penetration
(Pt) for the entire size distribution is plotted against the
ratio of required cut diameter to mass median diameter, with geo-
metric standard deviation as the parameter.

Figure 3 can be used to determine what "dpc, "' the required
cut diameter, must be in order to get a specific "Pt" for a given
size distribution. For example, suppose the size distribution has
”dpg = 10 umA" and ”og = 3.0," and one needs 99% collection
efficiency. The penetration is 100% minus the percent collection
efficiency, or 1%, which corresponds to "Pt = 0.01" in fractional
units.

The diameter ratio corresponding to "Pt = 0.01" and "g =
3.0" is ”dRC/dpg = 0.063." Since ”dpg = 10 umA, dRC = 0.63 ymA."
This means that one will need a scrubber with a cut diameter of
0.63 ymA or less to achieve 99% collection of the particles in

question.

Cut/Power Relation

Mathematical models for scrubber performance and the cut-
diameter approach developed in the "Scrubber Handbook" led to the
concept that performance cut diameter could be related to gas-
phase pressure drop, or power input to the scrubber. The results
of subsequent performance tests on a variety of scrubbers in
industrial installations, combined With'matﬁematical modeling,
enabled the refinement of the cut/poWerﬁrelationship shown in
Figure 4. The curves give the cut diameter (umA) as a function
of either power input (W/m®/min) or gas-phase pressure drop (cm
W.C.) for a number of typical installations such as sieve-plate
column, packed column, fibrous packed bed, gas-atomized spray,
and mobile fluidized bed.



The A.P.T. cut/power relationship has been devised and
tested on the basis of all the published data available. It appears
to be an accurate and reliable criterion for scrubber selection.

One can see from Figure 4 that the only "unaided" scrubbers
capable of giving a 0.6 umA cut diameter are the gas-atomized
and fibrous-packed-bed types. A gas-phase pressure drop of
about 33 cm W.C. would be required for the gas-atomized scrubber.
The fibrous packing would need 56 cm W.C. for 100 um fiber diameter
and about 15 cm W.C. for 50 um fibers.

”It would take about 75 um fiber diameter to achieve a "dRC =
0.6 ymA" at slightly less pressure drop than for the gas-atomized
scrubber. This is quite fine fiber or wire, and serious questions
would arise regarding its structural stability, and susceptibiiity
to corrosion and plugging. The safe approach would be to choose
the gas-atomized scrubber unless extensive pilot tests could be
done with fine fiber beds.

Other types of scrubbers could achieve the required per-
formance if augmented by F/C effects or by electrostatic charging.
Each system would have to be examined to determine whether it
would be economically attractive.

Power and Cost

The equivalent power axis plotted on the top of the cut/
power plot is based on 50% efficiency for a fan and motor combination.

The theoretical power requirement is approximately 1.63 W/m®/min
for each centimeter of water pressure drop. Power costs can be
approximated as twice the theoretical power required for 50%
efficiency. ’ |

Equipment costs are best estimated from vendor's quotations.
As usual, one must be sufe that all prices for competing units
are on the same basis, Materials, ducting, electrical work,
foundations, supporting structure, etc., must be specified as
included or not.



TABLE 1.

SCRUBBER CLASSIFICATIONS

Geometric Type

Unit Mechanism for Particle
Collection

Plate
Massive packing

Fibrous packing

Pre-formed spray
Gas-atomized spray
Centrifugal

Baffle and secondary flow
Impingement and entrainment

Mechanically aided
Moving bed
Combinations

Jet impingement, bubbles

Sheets (curved or plane),
jet impingement

Cylinders

Drops

Drops, cylinders, sheets
Sheets |

Sheets

Sheets, drops; cylinders,
jets

Drops, cylinders, sheets
Bubbles, sheets




TABLE 2. DESIGN EQUATIONS FFOR VARIOUS SCRUBBLR TYPES

SCRUBBER TYPE

DESIGN EQUATIONS

Sieve Plate

*u

d
- z = n h
Pr, = exp [-40 F % 1, X P22

. 0.38 < F < 0.65
9“6 h

Massive Packing

Pt = exp [-

L

z
__‘
d P]

[

Fibrous Packing

Pt, = ex LA a
d P 4 ncyl inder
f

Venturi and
Gas-Atomized Spray

ncylinder = f(Kp). from Figure 2
2Q u., o, d
Ptd . exp[—l"m—-l'—m-g F (X ¢ f)]
55 Qg v P

K f e 0.7
FiK g0 £) = N ERP (L‘ ). 0.49

K .27
pt 0 P

- (K, £+ 0.7)

Pt

Preformed Spray

3 QL u z
Pty =exp|- “drop , vertical
2 Qc d d ‘“z‘“c’ countercurrent

flow

[ 3 Qb
Pt =exp|- —— n cross-flow
d L)
2 QG dd drop]

n drop - f(KP). from Figure 2
Z(APd) dd
Impingement and Ptd = exp | ——— F (K e f)
Entrainment 5S ug Yg P
K, .f+ 0.7
FiKp, ) = —— [1.4 ln( L ). 0.49
KP: 0.7 0.7 « Kpg'f'
- “pt'f + 0.7)]
[ 1/(2n+2
Centrifugal pe, = exp |-2c !/ )]
(cyclone) L
p_ 42 u,
w - _P_L_ (|| * l)
18 L b
- 94 D )!.u "
(0.003! -
n=1}-l1- ___‘____](L)
L 2.5 283
3Q, (R-R)
Centrifugal Pty = exp [-z cpl/m?_ _= s m]
(cyclone with 2q,4, P
spray)
"drop - f(Kp), from Figure 2
¢ and n same as that for the cyclone
n
Baffle Type Pt, = [1 - n_+n )]
Collector ¢ s drop

ol

"drop - f(KP), from Figure 2
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TABLE 3.

SINGLE DROP AND SINGLE CYLINDER COLLECTION EFFICIENCY DUE TQ VARIQUS COLLECTION PHENOMENA

COLLECTION DROP CYLINDER
PHENOMENA
d_\2 d
. - :A N c C, N d
Interception 1 Sl — n, = 0.0518 (2R} P | 1aninar flow
d d +d I
c c P 2 df
d d
=1+ EE - H_hifH_ , turbulant flow
f P £
4D 0.5 fVG\1/3 { Cp Npeg\™* -0.6
Diffusion Ny = —8 B (—) n. = 0.75 N
D luG-udl dd [2+0.552 NRed Dp D 2 Pe
N _
. Red 2
Grav1Fy ) N,is * npot (—Eﬁ—) _ u, _ c' dp 9 g
Settling g = N e =5 = —T§—~"%%——
| 4 _Red G He Y6
60
4 C' q q. 0,5
Electrostatic Ng = P , charged particle (e-l) 2y
. . . —=) q- C
Precipitation STTuG d_u_e€_ charged drop _ e+1/ p
p o o on Ng = 1.5]) - 5 "
voa2 2 ) 12 7°e_d_“u. d_u
[307 e1 €% % Harood £6p o
"\ 24 €2 py.u_d_ e /)’ uncharge
G o ¢ o/ particle

charged drop




TABLE 4. PARTICLE DEPOSITION VELOCITY

Collection Phenomena Particle Deposition Velocity
2
Gravitational u _ 1 ¢’ dp (Dp'pG)g
Sedimentation PD 18 '
Mg
2 2
Centrifugal = C' dp (DP-OG) U
D iti PD ~ T
eposition 18 ug R
0.5
Brownian - 1.13 ER
Diffusion Upp = *- 0
Thermophoresis - 5 C"ug kG
Upp = - VT
2 Pa T 2 kG+kp
M_0® PD
Diffusiophoresis Upp = - v VG Vp
M 954 M .05 v
Py ¥y *Pg Yg Pg
Electrical U = _E C' ey Ec By dp
Migration PD c+2 4 T gG
'
Magnetic Uor. = C' u, H 9p Mg
Precipitation PD 3
T Ug dp
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TABLE 5. PRESSURE DROP

Scrubber Type Pressure Drop
Sieve Plate AP = hw + how + hdp + hr
hw = weir height 25 cm
U
hOW = 0.157 {v—p"
2 Pg Uy
hdp = 1.14 [0.4 (1.25-fh)+(1—fh) ] pL .
p
h., = 0.13 %
L
Massive Generalized pressure drop correlation for packed
Packing bed (Perry, 1973).
i L(1-¢) P, C, u.?
Fibrous _ - G D "G
f
Venturi and Gas - -4 2 (AL
Atomized Spray AP = 8.24 x 10 ug, (QE)
Centrifugal e 27.5 A . .
(cyclone) AP = 0.000513 PG —X- —gz) with inlet vanes
e -
\ .
= 0.000513 p (%)(16 :\), without inlet vanes
G de
us? A
Baffle _ -3 £ p. ————

13



AERODYNAMIC PARTICLE DIAMETER, umA
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PARTICLE DIAMETER, um
Figure 1. Relation between physical and aerodynamic particle

diameter.
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COLLECTION EFFICIENCY, n
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Experimental and calculated collection efficiencies for
sphere and cylinder.
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Figure 3. Predicted particle diameter, penetration relationship for
inertial impaction (Calvert, 1974).
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CUT DIAMETER,

SCRUBBER POWER, W/ .m®/min

20 50 100 200 500
3 2 1 1 ] .2 3 Il 1 1 ] L. 2
| T | L ' 1] ] ] ' I 1 | L l
2 5
B la
1b
1.0 =
- 3a
0.5 P 3¢ ~ 3b
0.2 . 1 ¢ 1 1 [ 1 1 | L 1 1 3 | A
5 10 50 100 200

1a.

1b.
. Packed column with 1-in. rings or saddles. Packing depth does not affect the

3a.

3b.
3c.

. Gas-atomized spray. (Experimental data from large venturis, orifices, and rod-

GAS PFASE PRESSURE DROP, cm W.C.

Figure 5. A.P.T. cut/power plot.

Sieve-plate colum with foam density of 0.4 g/cm® and 0.5 mm hole dia. The
number of plates does not affect the relationship much (Experimental data and
mathematical model.)

Same as la except 3.2 mm hole dia.

relationship much. (Experimental data and mathematical model.)

Fibrous packed bed with 0.3 mm dia. fiber, any depth. (Experimental data and
mathematical model.)

Same as 3a except 0.1 mm dia. fibers.
Same as 3a except 0.05 mm dia. fibers.

type units, plus mathemtical model.)

. Mobile bed with 1 to 3 stages of fluidized hollow plastic spheres. (Experimental

data from pilot plant and large-scale power plant scrubbers.)
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