**Environmental Protection Technology Series** 

# Laboratory Study of Self-Sealing Limestone Plugs For Mine Openings



Office of Research and Development

U.S. Environmental Protection Agency

Washington, D.C. 20460

### RESEARCH REPORTING SERIES

Research reports of the Office of Research Monitoring, Environmental Protection Agency, have been grouped into five series. These five broad categories were established to facilitate further development and application αf environmental Elimination of traditional grouping technology. consciously planned to foster technology transfer and a maximum interface in related fields. The five series are:

- 1. Environmental Health Effects Research
- 2. Environmental Protection Technology
- 3. Ecological Research
- 4. Environmental Monitoring
- 5. Socioeconomic Environmental Studies

This report has been assigned to the ENVIRONMENTAL PROTECTION TECHNOLOGY series. This series describes research performed to develop and demonstrate instrumentation, equipment methodology to repair or prevent environmental degradation from point and non-point sources pollution. This work provides the new or improved technology required for the control and treatment of pollution sources to meet environmental quality standards.

### LABORATORY STUDY OF SELF-SEALING LIMESTONE PLUGS FOR MINE OPENINGS

Ву

RAY G. PENROSE, JR. IGOR HOLUBEC

Project No. 14010 HKN Contract No. 68-01-0135 Program Element 1BB040

PROJECT OFFICER

JAMES M. SHAKELFORD
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
WASHINGTON, D. C. 20460

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 - Price \$2.25

### EPA REVIEW NOTICE

This report has been reviewed by the Environmental Protection Agency and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Environmental Protection Agency, nor does mention of tradenames or commercial products constitute endorsement or recommendations for use.

#### ABSTRACT

Laboratory studies of self-sealing limestone plugs for mine openings were conducted to determine the optimum limestone material for such a treatment and sealant technique.

Conducting a thorough study of the performance of such plugs required pilot plant operations utilizing synthetic solutions representative of anticipated acid mine waters, aggregate additives to improve plug performance, and several basic types of limestone which were varied in terms of size gradation and placement density. The types of limestone used were selected from results of a previous neutralization study; synthetic mine waters were prepared to EPA formulations for ferric, ferrous, and ferric/ferrous solutions; and percentage admixture of bentonite, flyash and air-cooled blast furnace slag additives were used with the aggregate.

Experimental results indicated that permeability, compressibility and strength of a limestone plug are primarily a function of the particle size distribution and density. Plug performance was most effective with high limestone placement density and smaller gradation of stone. Ferric waters were controlled most effectively. Additive effects were less significant throughout the tests.

Further tests were conducted on the effects of particle size distribution variations and placement density and other additives to cement particles into an effective plug.

This report was submitted in fulfillment of Project No. 14010 HKN, Contract No. 68-01-0135 under the sponsorship of the Environmental Protection Agency.

### CONTENTS

| SECTION |                             | PAGE     |
|---------|-----------------------------|----------|
| I       | CONCLUSIONS                 | 1        |
| II      | RECOMMENDATIONS             | 3        |
| III     | INTRODUCTION                | 5        |
| IV      | APPARATUS                   | 9        |
| V       | PROCEDURE                   | 19       |
| VI      | DISCUSSION                  | 21       |
|         | Lab Cycle I<br>Lab Cycle II | 21<br>72 |
| VII     | ACKNOWLEDGEMENTS            | 87       |
| VIII    | REFERENCES                  | . 89     |
| ΙX      | APPENDICES                  | 91       |

### **FIGURES**

| NO. |                                                                    | PAGE |
|-----|--------------------------------------------------------------------|------|
| 1   | Typical Limestone Mine Seal                                        | 6    |
| 2   | Test Water Preparation System                                      | 12   |
| 3   | Metering Pumps                                                     | 13   |
| 4   | Manifold Assembly                                                  | 15   |
| 5   | Assembled Test Vessel (Effluent End)                               | 17   |
| 6   | Initial Grain Size Curves - 1/8 x 0 stones                         | 26   |
| 7   | Initial Grain Size Curves - 1/4 x 0 stones                         | 27   |
| 8   | Initial Grain Size Curves - 1/2 x 0 stones                         | 28   |
| 9   | Initial Grain Size Curves - 1/2 x 50M stones                       | 29   |
| 10  | Initial Grain Size Curves - 1 x 0 stones                           | 30   |
| 11  | Initial Grain Size Curves - 1 x 50M stones                         | 31   |
| 12  | Initial Grain Size Curves - 1/2 x 0 stone containing additives     | 32   |
| 13  | Initial Grain Size Curves - 1 x 0 stones containing additives      | 33   |
| 14  | Lab Cycle I Testing                                                | 34   |
| 15  | Lab Cycle I Limestone Specimens -<br>Initial Flow vs Fines Content | 36   |
| 16  | Ferric Water - Specimen Flow Histories                             | 41   |
| 17  | Ferric/Ferrous Water - Specimen Flow Histories                     | 42   |
| 18  | Ferrous Water - Specimen Flow Histories                            | 43   |

## FIGURES (Cont'd)

| NO. |                                                                                                  | PAGE |
|-----|--------------------------------------------------------------------------------------------------|------|
| 19  | Limestone Specimens after Testing                                                                | 46   |
| 20  | Limestone Volume Loss                                                                            | 47   |
| 21  | Particle Structures at Minimum and Maximum Densities                                             | 51   |
| 22  | Particle Size Distributions Before and After Mine Water Percolation Stone No. 1809, 1/2 x 0 size | 58   |
| 23  | Permeability vs Dry Density                                                                      | 59   |
| 24  | Triaxial Cell                                                                                    | 50   |
| 25  | Constant Diameter Compression Test                                                               | 61   |
| 26  | Consolidated Drained Triaxial Test                                                               | 62   |
| 27  | Stress-strain Curves from Constant<br>Diameter Compression Tests                                 | 64   |
| 28  | Compressibility vs Density                                                                       | 66   |
| 29  | Stress-strain Curves from Consolidated Drained Triaxial Tests                                    | 68   |
| 30  | Typical Triaxial Test Strength Diagram                                                           | 69   |
| 31  | Shear Strength vs Density                                                                        | 71   |
| 32  | Lab Cycle II - Specimen Flow Histories                                                           | 74   |
| 33  | Lab Cycle II Specimens - Initial Flow vs Fines Content                                           | 80   |
| 34  | Lab Cycle II Specimens - Initial Flow vs Density                                                 | 81   |
| 35  | Lab Cycle II Specimens - Compressibility vs Density                                              | 83   |
| 36  | Lab Cycle II Specimens - Shear Strength vs Density                                               | 85   |

## FIGURES (Cont'd)

| NO.         |                                            | PAGE |
|-------------|--------------------------------------------|------|
| Al          | Process Flow Diagram                       | 191  |
| A2          | Test Vessel Detail                         | 192  |
| A3          | Test Vessel Details                        | 193  |
| A4          | One Dimensional Compression Test Results   | 194  |
| A5          | One Dimensional Compression Test Results   | 195  |
| A6          | One Dimensional Compression Test Results   | 196  |
| A7          | One Dimensional Compression Test Results   | 197  |
| A8          | One Dimensional Compression Test Results   | 198  |
| A9          | One Dimensional Compression Test Results   | 199  |
| Al0         | Consolidated Drained Triaxial Test Results | 200  |
| A11         | Consolidated Drained Triaxial Test Results | 201  |
| A12         | Consolidated Drained Triaxial Test Results | 202  |
| A13         | Consolidated Drained Triaxial Test Results | 203  |
| Al4         | Consolidated Drained Triaxial Test Results | 204  |
| <b>A1</b> 5 | Consolidated Drained Triaxial Test Results | 205  |
| A16         | Consolidated Drained Triaxial Test Results | 206  |
| A17         | One Dimensional Compression Test Results   | 207  |
| A18         | One Dimensional Compression Test Results   | 208  |
| A19         | One Dimensional Compression Test Results   | 209  |
| A20         | One Dimensional Compression Test Results   | 210  |
| A21         | One Dimensional Compression Test Results   | 211  |
| A22         | Consolidated Drained Triaxial Test Results | 212  |

## FIGURES (Cont'd)

| NO. |                |         |          |      |         | PAGE |
|-----|----------------|---------|----------|------|---------|------|
| A23 | Consolidated I | Drained | Triaxial | Test | Results | 213  |
| A24 | Consolidated I | Drained | Triaxial | Test | Results | 214  |
| A25 | Consolidated I | Drained | Triaxial | Test | Results | 215  |
| A26 | Consolidated I | Drained | Triaxial | Test | Results | 216  |
| A27 | Consolidated I | Drained | Triaxial | Test | Results | 217  |

### TABLES

| NO. |                                                                                                                                                  | PAGE |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1   | Tank Sizes                                                                                                                                       | 10   |
| 2   | Limestone Grades Used in Lab Cycle I                                                                                                             | 22   |
| 3   | Analysis of Limestones Tested in Lab Cycle I                                                                                                     | 24   |
| 4   | Comparison of Independent Limestone<br>Analyses                                                                                                  | 25   |
| 5   | Specimens Discontinued After 20 Days                                                                                                             | 38   |
| 6   | Synthetic Acid Mine Waters - Average Composition                                                                                                 | 39   |
| 7   | Stone Volume Losses                                                                                                                              | 48   |
| 8   | Analyses of Limestones Tested in Lab<br>Cycle I Before and After Testing                                                                         | 49   |
| 9   | Minimum and Maximum Dry Densities                                                                                                                | 53   |
| 10  | Volume Loss, Dry Density, and Porosity of Trimmed Specimens (After 50 Days of Mine Water Percolation, Lab Cycle I)                               | 54   |
| 11  | Volume Loss, Dry Density, and Porosity of Trimmed Specimens (After 100 Days of Mine Water Percolation, Lab Cycle I)                              | 55   |
| 12  | Increase of Fines Due to Mine Water Percolation                                                                                                  | 57   |
| 13  | Summary of Compression Test Results,<br>Lab Cycle I                                                                                              | 65   |
| 14  | Strength Parameters and Shear Strength for a 2.0 TSF Overburden Pressure                                                                         | 70   |
| 15  | Volume Loss, Dry Density and Porosity of Trimmed Specimens (After 50 Days of Ferric/Ferrous Mine Water Percolation, 3/8 x 0 Stone, Lab Cycle II) | 76   |

| NO. |                                                                                                                          | PAGE |
|-----|--------------------------------------------------------------------------------------------------------------------------|------|
| 16  | Minimum and Maximum Dry Densities                                                                                        | 77   |
| 17  | Increase of Fines Due to Mine Water Percolation                                                                          | 78   |
| 18  | Summary of Compression Test Results,<br>Lab Cycle II, Strength Parameters and<br>Shear Strength for a 2.0 TSF Overburden | 82   |
| 19  | Pressure, 3/8 x 0 Stone, Lab Cycle II                                                                                    | 84   |
| Al  | Specimens Tested on Ferric Water                                                                                         | 93   |
| A2  | Specimens Tested on Ferric/Ferrous Water                                                                                 | 94   |
| A3  | Specimens Tested on Ferrous Water                                                                                        | 95   |
| A4  | Initial Particle Size Distributions<br>Stone No. 1809<br>(Percent of Material Smaller by Weight)                         | 96   |
| A5  | Initial Particle Size Distributions<br>Stone No. 1355<br>(Percent of Material Smaller by Weight)                         | 97   |
| A6  | Initial Particle Size Distributions<br>Stone No. 1337<br>(Percent of Material Smaller by Weight)                         | 98   |
| A7  | Flow and Effluent Composition Data For Test Vessel No. 1 (Stone No. 1809, 1/2 x 0 Size Containing 10% Slag)              | 99   |
| A8  | Flow and Effluent Composition Data For Test Vessel No. 2 (Stone No. 1809, 1 x 0 Size Containing 10% Slag)                | 100  |
| A9  | Flow and Effluent Composition Data For Test Vessel No. 3 (Stone No. 1809, 1/2 x 0 Size Containing                        | 101  |

| NO. |                                                                                                                        | PAGE |
|-----|------------------------------------------------------------------------------------------------------------------------|------|
| Al0 | Flow and Effluent Composition Data<br>For Test Vessel No. 4<br>(Stone No. 1809, 1 x 0 Size Containing<br>5% Bentonite) | 102  |
| All | Flow and Effluent Composition Data For Test Vessel No. 5 (Stone No. 1809, 1/2 x 0 Size Containing 10% Flyash)          | 103  |
| A12 | Flow and Effluent Composition Data<br>For Test Vessel No. 6<br>(Stone No. 1809, 1 x 0 Size Containing<br>10% Flyash)   | 104  |
| A13 | Flow and Effluent Composition Data<br>For Test Vessel No. 7<br>(Stone No. 1809, 1/8 x 0 Size)                          | 105  |
| A14 | Flow and Effluent Composition Data<br>For Test Vessel No. 8<br>(Stone No. 1809, 1/4 x 0 Size)                          | 106  |
| A15 | Flow and Effluent Composition Data<br>For Test Vessel No. 9<br>(Stone No. 1809, 1/2 x 50M Size)                        | 107  |
| Al6 | Flow and Effluent Composition Data<br>For Test Vessel No. 10<br>(Stone No. 1809, 1/2 x 0 Size)                         | 108  |
| A17 | Flow and Effluent Composition Data<br>For Test Vessel No. 11<br>(Stone No. 1809, 1 x 50M Size)                         | 109  |
| A18 | Flow and Effluent Composition Data<br>For Test Vessel No. 12<br>(Stone No. 1809, 1 x 0 Size)                           | 110  |
| A19 | Flow and Effluent Composition Data<br>For Test Vessel No. 13<br>(Stone No. 1355, 1/8 x 0 Size)                         | 111  |

| NO. |                                                                                                  | PAGE |
|-----|--------------------------------------------------------------------------------------------------|------|
| A20 | Flow and Effluent Composition Data<br>For Test Vessel No. 14<br>(Stone No. 1355, 1/4 x 0 Size)   | 112  |
| A21 | Flow and Effluent Composition Data<br>For Test Vessel No. 15<br>(Stone No. 1355, 1/2 x 50M Size) | 113  |
| A22 | Flow and Effluent Composition Data<br>For Test Vessel No. 16<br>(Stone No. 1355, 1/2 x 0 Size)   | 114  |
| A23 | Flow and Effluent Composition Data<br>For Test Vessel No. 17<br>(Stone No. 1355, 1 x 50M Size)   | 115  |
| A24 | Flow and Effluent Composition Data<br>For Test Vessel No. 18<br>(Stone No. 1355, 1 x 0 size)     | 116  |
| A25 | Flow and Effluent Composition Data<br>For Test Vessel No. 19<br>(Stone No. 1337, 1/8 x 0 Size)   | 117  |
| A26 | Flow and Effluent Composition Data<br>For Test Vessel No. 20<br>(Stone No. 1337, 1/4 x 0 Size)   | 118  |
| A27 | Flow and Effluent Composition Data<br>For Test Vessel No. 21<br>(Stone No. 1337, 1/2 x 0 Size)   | 119  |
| A28 | Flow and Effluent Composition Data<br>For Test Vessel No. 22<br>(Stone No. 1337, 1/2 x 50M Size) | 120  |
| A29 | Flow and Effluent Composition Data<br>For Test Vessel No. 23<br>(Stone No. 1337, 1 x 50M Size)   | 121  |
| A30 | Flow and Effluent Composition Data For Test Vessel No. 24 (Stone No. 1337, 1 x 0 Size)           | 122  |

| NO. |                                                                                                                  | PAGE |
|-----|------------------------------------------------------------------------------------------------------------------|------|
| A31 | Flow and Effluent Composition Data For Test Vessel No. 25 (Stone No. 1809, 1/2 x 0 Size Containing 10% Slag)     | 123  |
| A32 | Flow and Effluent Composition Data For Test Vessel No. 26 (Stone No. 1809, 1 x 0 Size Containing 10% Slag)       | 124  |
| A33 | Flow and Effluent Composition Data For Test Vessel No. 27 (Stone No. 1809, 1/2 x 0 Size Containing 5% Bentonite) | 125  |
| A34 | Flow and Effluent Composition Data For Test Vessel No. 28 (Stone No. 1809, 1 x 0 Size Containing 5% Bentonite)   | 126  |
| A35 | Flow and Effluent Composition Data For Test Vessel No. 29 (Stone No. 1809, 1/2 x 0 Size Containing 10% Flyash)   | 127  |
| A36 | Flow and Effluent Composition Data For Test Vessel No. 30 (Stone No. 1809, 1 x 0 Size Containing 10% Flyash)     | 128  |
| A37 | Flow and Effluent Composition Data For Test Vessel No. 31 (Stone No. 1809, 1/8 x 0 Size)                         | 129  |
| A38 | Flow and Effluent Composition Data For Test Vessel No. 32 (Stone No. 1809, 1/4 x 0 Size)                         | 130  |
| A39 | Flow and Effluent Composition Data<br>For Test Vessel No. 33<br>(Stone No. 1809, 1/2 x 50M Size)                 | 131  |

| NO. |                                                                                                  | PAGE |
|-----|--------------------------------------------------------------------------------------------------|------|
| A40 | Flow and Effluent Composition Data For Test Vessel No. 34 (Stone No. 1809, 1/2 x 0 Size)         | 132  |
| A41 | Flow and Effluent Composition Data<br>For Test Vessel No. 35<br>(Stone No. 1809, 1 x 50 Size)    | 133  |
| A42 | Flow and Effluent Composition Data For Test Vessel No. 36 (Stone No. 1809, 1 x 0 Size)           | 134  |
| A43 | Flow and Effluent Composition Data<br>For Test Vessel No. 37<br>(Stone No. 1355, 1/8 x 0 Size)   | 135  |
| A44 | Flow and Effluent Composition Data For Test Vessel No. 38 (Stone No. 1355, 1/4 x 0 Size)         | 137  |
| A45 | Flow and Effluent Composition Data For Test Vessel No. 39 (Stone No. 1355, 1/2 x 0 Size)         | 139  |
| A46 | Flow and Effluent Composition Data<br>For Test Vessel No. 40<br>(Stone No. 1355, 1/2 x 50M Size) | 140  |
| A47 | Flow and Effluent Composition Data<br>For Test Vessel No. 41<br>(Stone No. 1355, 1 x 50M Size)   | 141  |
| A48 | Flow and Effluent Composition Data<br>For Test Vessel No. 42<br>(Stone No. 1355, 1 x 0 Size)     | 142  |
| A49 | Flow and Effluent Composition Data For Test Vessel No. 43 (Stone No. 1337, 1/8 x 0 Size)         | 144  |
| A50 | Flow and Effluent Composition Data<br>For Test Vessel No. 44<br>(Stone No. 1337, 1/4 x 0 Size)   | 145  |

| NO. |                                                                                                                         | PAGE |
|-----|-------------------------------------------------------------------------------------------------------------------------|------|
| A51 | Flow and Effluent Composition Data For Test Vessel No. 45 (Stone No. 1337, 1/2 x 50M Size)                              | 146  |
| A52 | Flow and Effluent Composition Data<br>For Test Vessel No. 46<br>(Stone No. 1337, 1/2 x 0 Size)                          | 147  |
| A53 | Flow and Effluent Composition Data<br>For Test Vessel No. 47<br>(Stone No. 1337, 1 x 50M Size)                          | 148  |
| A54 | Flow and Effluent Composition Data<br>For Test Vessel No. 48<br>(Stone No. 1337, 1 x 0 Size)                            | 149  |
| A55 | Flow and Effluent Composition Data For Test Vessel No. 49 (Stone No. 1809, 1/2 x 0 Size Containing 10% Slag)            | 150  |
| A56 | Flow and Effluent Composition Data For Test Vessel No. 50 (Stone No. 1809, 1 x 0 Size Containing 10% Slag)              | 151  |
| A57 | Flow and Effluent Composition Data For Test Vessel No. 51 (Stone No. 1809, 1/2 x 0 Size Containing 5% Bentonite)        | 152  |
| A58 | Flow and Effluent Composition Data For Test Vessel No. 52 (Stone No. 1809, 1 x 0 Size Containing 5% Bentonite)          | 153  |
| A59 | Flow and Effluent Composition Data<br>For Test Vessel No. 53<br>(Stone No. 1809, 1/2 x 0 Size Containing<br>10% Flyash) | 154  |

| NO. |                                                                                                              | PAGE |
|-----|--------------------------------------------------------------------------------------------------------------|------|
| A60 | Flow and Effluent Composition Data For Test Vessel No. 54 (Stone No. 1809, 1 x 0 Size Containing 10% Flyash) | 155  |
| A61 | Flow and Effluent Composition Data<br>For Test Vessel No. 55<br>(Stone No. 1809, 1/8 x 0 Size)               | 156  |
| A62 | Flow and Effluent Composition Data For Test Vessel No. 56 (Stone No. 1809, 1/4 x 0 Size)                     | 157  |
| A63 | Flow and Effluent Composition Data For Test Vessel No. 57 (Stone No. 1809, 1/2 x 50M Size)                   | 158  |
| A64 | Flow and Effluent Composition Data For Test Vessel No. 58 (Stone No. 1809, 1/2 x 0 Size)                     | 159  |
| A65 | Flow and Effluent Composition Data<br>For Test Vessel No. 59<br>(Stone No. 1809, 1 x 50M Size)               | 160  |
| A66 | Flow and Effluent Composition Data<br>For Test Vessel No. 60<br>(Stone No. 1809, 1 x 0 Size)                 | 161  |
| A67 | Flow and Effluent Composition Data For Test Vessel No. 61 (Stone No. 1355, 1/8 x 0 Size)                     | 162  |
| A68 | Flow and Effluent Composition Data<br>For Test Vessel No. 62<br>(Stone No. 1355, 1/4 x 0 Size)               | 163  |
| A69 | Flow and Effluent Composition Data<br>For Test Vessel No. 63<br>(Stone No. 1355, 1/2 x 50M Size)             | 164  |

| NO. |                                                                                                                        | PAGE |
|-----|------------------------------------------------------------------------------------------------------------------------|------|
| A70 | Flow and Effluent Composition Data For Test Vessel No. 64 (Stone No. 1355, 1/2 x 0 Size)                               | 165  |
| A71 | Flow and Effluent Composition Data<br>For Test Vessel No. 65<br>(Stone No. 1355, 1 x 50M Size)                         | 166  |
| A72 | Flow and Effluent Composition Data<br>For Test Vessel No. 66<br>(Stone No. 1355, 1 x 0 Size)                           | 167  |
| A73 | Flow and Effluent Composition Data<br>For Test Vessel No. 67<br>(Stone No. 1337, 1/8 x 0 Size)                         | 168  |
| A74 | Flow and Effluent Composition Data For Test Vessel No. 68 (Stone No. 1337, 1/4 x 0 Size)                               | 169  |
| A75 | Flow and Effluent Composition Data<br>For Test Vessel No. 69<br>(Stone No. 1337, 1/2 x 50M Size)                       | 170  |
| A76 | Flow and Effluent Composition Data<br>For Test Vessel No. 70<br>(Stone No. 1337, 1/2 x 0 Size)                         | 171  |
| A77 | Flow and Effluent Composition Data<br>For Test Vessel No. 71<br>(Stone No. 1337, 1 x 50M Size)                         | 172  |
| A78 | Flow and Effluent Composition Data<br>For Test Vessel No. 72<br>(Stone No. 1337, 1 x 0 Size)                           | 173  |
| A79 | Comparison of Particle Size Distributions<br>Before and After 50 Days of Mine Water<br>Percolation - Material No. 1809 | 174  |
| A80 | Comparison of Particle Size Distributions Before and After 100 days of Mine Water Percolation - Material No. 1355      | 175  |

| NO. |                                                                                                          | PAGE |
|-----|----------------------------------------------------------------------------------------------------------|------|
| A81 | Specimens Tested in Lab Cycle II                                                                         | 176  |
| A82 | Flow and Effluent Composition Data For Test Vessel No. 73 (5% Portland Cement, 30% DR)                   | 177  |
| A83 | Flow and Effluent Composition Data<br>For Test Vessel No. 74<br>(5% Calcium Sulfate Hemihydrate, 30% DR) | 178  |
| A84 | Flow and Effluent Composition Data<br>For Test Vessel No. 75<br>(5% Sodium Silicate, 30% DR)             | 179  |
| A85 | Flow and Effluent Composition Data<br>For Test Vessel No. 76<br>(2X Original Fines, 30% DR)              | 180  |
| A86 | Flow and Effluent Composition Data<br>For Test Vessel No. 77<br>(2X Original Fines, 60% DR)              | 181  |
| A87 | Flow and Effluent Composition Data<br>For Test Vessel No. 78<br>(3X Original Fines, 30% DR)              | 182  |
| A88 | Flow and Effluent Composition Data<br>For Test Vessel No. 79<br>(3X Original Fines, 60% DR)              | 183  |
| A89 | Flow and Effluent Composition Data<br>For Test Vessel No. 80<br>("Zoned" Plug, 30% DR)                   | 184  |
| A90 | Flow and Effluent Composition Data<br>For Test Vessel No. 81<br>(3/8 x 0 Stone, 30% DR)                  | 185  |
| A91 | Flow and Effluent Composition Data<br>For Test Vessel No. 82<br>(3/8 x 0 Stone, 60% DR)                  | 186  |

| NO.   |                                                                                                                                                                                                   | PAGE |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| A92   | Flow and Effluent Composition Data For Test Vessel No. 83 (3/8 x 0 Stone, 0% DR)                                                                                                                  | 187  |
| A93 , | Flow and Effluent Composition Data For Test Vessel No. 84 (3/8 x 0 Stone, 30% DR)                                                                                                                 | 188  |
| A94   | Comparison of Particle Size Distributions<br>Before and After 50 Days of Ferric-Ferrous<br>Mine Water Percolation, Varying Quantities<br>of Fines and Densities in Test Vessels<br>Stone No. 1809 | 189  |
| A95   | Comparison of Particle Size Distributions<br>Before and After 50 Days of Ferric-Ferrous<br>Mine Water Percolation - Stone No. 1809<br>with Additives                                              | 190  |

#### SECTION I

#### CONCLUSIONS

This laboratory investigation of various limestone aggregate plugs has led to the following conclusions:

- The results of this study indicate that limestone aggregate plugs are a feasible means of sealing underground mines which discharge water containing ferric iron.
- 2. The 3/8" to dust size of limestone No. 1809 placed at 60% relative density was the most satisfactory natural material tested.
- 3. High placement densities are essential for satisfactory plug performance.
- 4. Significant stone volume losses can occur when limestone plugs are exposed to acid mine water flow due to settling of the stone upon being wetted, erosion, and chemical consumption of the stone.
- 5. Limestone plugs will perform best on ferric mine waters and poorest on ferrous mine waters.
- 6. The Type A limestone (found in previous tests to neutralize acid mine waters better than Types B and C limestones) had the best overall performance, while the Type C limestone had the poorest performance.
- 7. The 3/8" to dust grade of stone was the most satisfactory size tested.
- 8. Bentonite and flyash additives improve water flow and treatment properties of permeable plugs.
- 9. Bentonite and slag additives decrease stone volume losses.
- 10. Increasing the fines content of commercially available stone to twice the original amount (as determined by the fraction of material which passes a No. 200 sieve) results in improved performance.

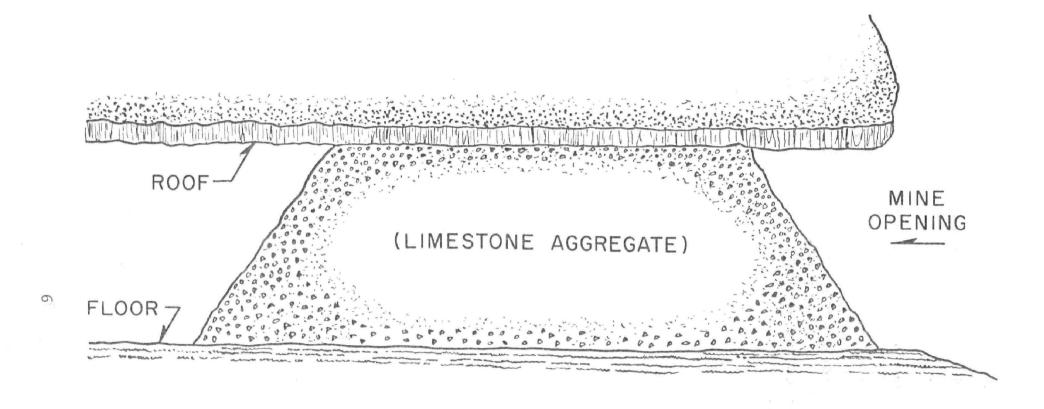
#### SECTION II

#### RECOMMENDATIONS

This study has shown that limestone permeable plugs must be constructed of well-graded limestone and must be placed in a dense to very dense state. On the basis of this finding, the following recommendations are made:

- 1. Further research should be conducted to determine the minimum acceptable placement density.
- 2. Investigations are needed to establish placement densities which can be achieved in the field with presently available equipment.
- 3. Future prototype limestone seals should be designed and constructed using earth and rock dam technology.

#### SECTION III


#### INTRODUCTION

Recent laboratory investigation and field trials have indicated that crushed limestone can be used to seal mine openings which are discharging acid mine drainage. <sup>1</sup> This is accomplished by filling a section of the mine opening with limestone aggregate. An example of this design is shown in Figure 1. Because the aggregate is porous, mine water initially seeps through. But as the water passes through this permeable plug, it is neutralized and filtered. Thus mine water is treated as it passes through the plug. This process gradually seals the plug and eventually eliminates or greatly reduces mine water flow.

Many different types of limestone aggregate could conceivably be used to construct permeable plugs. Research in limestone neutralization of acid mine drainage has shown that limestones can be classified into three groups according to their neutralization behavior. <sup>2</sup> These three groups were called Type A, Type B, and Type C limestones. Beside differing in stone type, limestone aggregates could also have different particle size ranges and different particle size distributions or gradations within a given range. Additives could also be blended with the aggregate to alter its performance as a mine seal.

This study was conducted to investigate the behaviors of various types of limestone aggregate when subjected to mine water percolation. It was intended to determine which type(s) would be most suitable for use in permeable plugs. All three stone types (A, B, and C) were used in the study. Several size ranges of each stone type were tested. The fines content of one size range was varied to determine the effect of particle size distribution. Several additives were also investigated. Since performance might be dependent on the type of mine water, three different synthetic mine waters were used in percolation tests.

All testing was done on a pilot scale in the laboratory. Aggregate samples were placed in square, horizontal tubes to simulate full-scale installations. The resulting model plugs were six inches square and six feet long. Synthetic mine water was supplied to one end of the test vessels and allowed



### TYPICAL LIMESTONE MINE SEAL

to percolate through the stone. The other end was open and essentially unobstructed, allowing water to discharge freely. Water percolation was allowed to continue without interruption for up to 100 days.

To evaluate the performance of these model plugs, several physical and chemical parameters were observed. Anlyses were made to determine the chemical compositon and particle size distribution of the stone prior to testing. During the test run, flow data and effluent water composition data were recorded. After the test run was concluded, selected plugs were subjected to chemical analysis, grain size analysis, and strength analysis.

#### SECTION IV

#### **APPARATUS**

Equipment was developed to study the effects of mine water percolation on a variety of crushed limestone mine opening plugs on a pilot scale. The equipment simultaneously produced three (3) synthetic mine waters differing only in ferric iron/ferrous iron ratios and supplied each type of water to a battery of up to 24 test vessels at a maximum rate of one (1) GPM per vessel. To insure an adequate supply of test water, the system was sized to continuously produce 25 GPM of each type of water. With this design, a total of 72 tests could be run at one time. A detailed flow diagram of the equipment is presented in Figure Al in the Appendix.

Tap water and the following technical grade chemicals were used to produce the three (3) test waters:

Manganese sulfate
Magnesium sulfate (epsom salts)
Aluminum sulfate (alum)
Calcium hydroxide (hydrated lime)
Ferric sulfate (ferri-floc)
Ferrous sulfate (copperas)
66° Be sulfuric acid

All the chemicals except sulfuric acid were obtained in 50 or 100 pound bags and stored on pallets. Sulfuric acid was purchased in bulk quantities and stored in a 1500 gallon steel tank.

The dry chemicals were not used directly as received. The sulfate salts were dissolved in tap water to form concentrated solutions and the hydrated lime was suspended in tap water to form a lime slurry.

A tank farm was installed for preparation and storage of these concentrates. Two (2) polyethylene tanks, a main tank and an auxiliary tank, were provided for each of the chemicals. Table 1 lists the tank sizes. All the main tanks were equipped with mixers so that concentrates could be prepared in these tanks. The auxiliary tanks provided additional storage for the chemical concentrates.

Concentrate preparation involved mixing measured volumes of tap water and known weights of dry chemicals in the main tanks. The following recipes were used:

#### TABLE 1

#### TANK SIZES

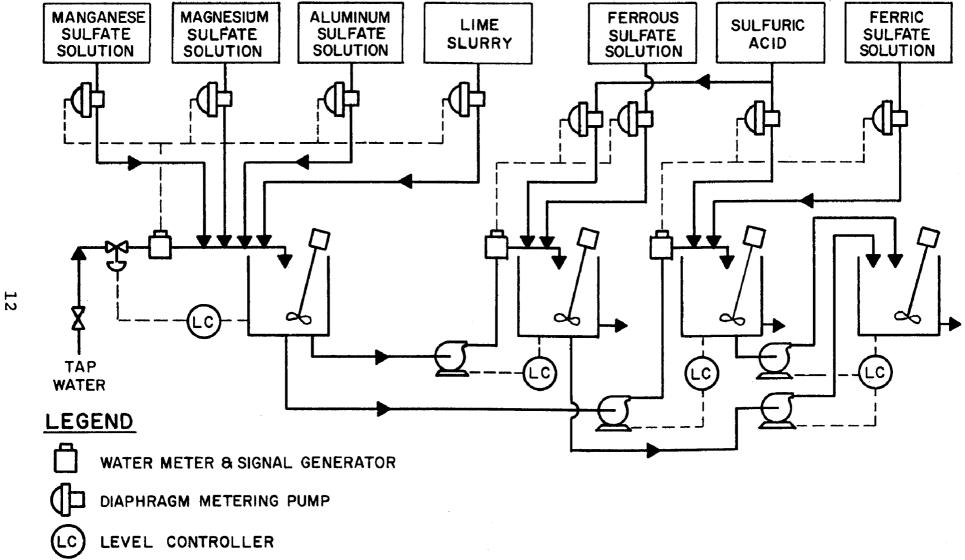
| Reagent                    | Main Tank | Secondary Tank |
|----------------------------|-----------|----------------|
| Manganese Sulfate Solution | 55 gal.   | 55 gal.        |
| Magnesium Sulfate Solution | 360 gal.  | 55 gal.        |
| Aluminum Sulfate Solution  | 275 gal.  | 275 gal.       |
| Lime Slurry                | 500 gal.  | 55 gal.        |
| Ferrous Sulfate Solution   | 500 gal.  | 55 gal.        |
| Ferric Sulfate Solution    | 500 gal.  | 55 gal.        |

10 lbs. manganese sulfate/37 gal. H2O 1400 lbs. magnesium sulfate/228 gal. H2O 800 lbs. aluminum sulfate/189 gal. H2O 400 lbs. hydrated lime/480 gal. H2O 1200 lbs. ferric sulfate/396 gal. H2O 1200 lbs. ferrous sulfate/386 gal. H2O

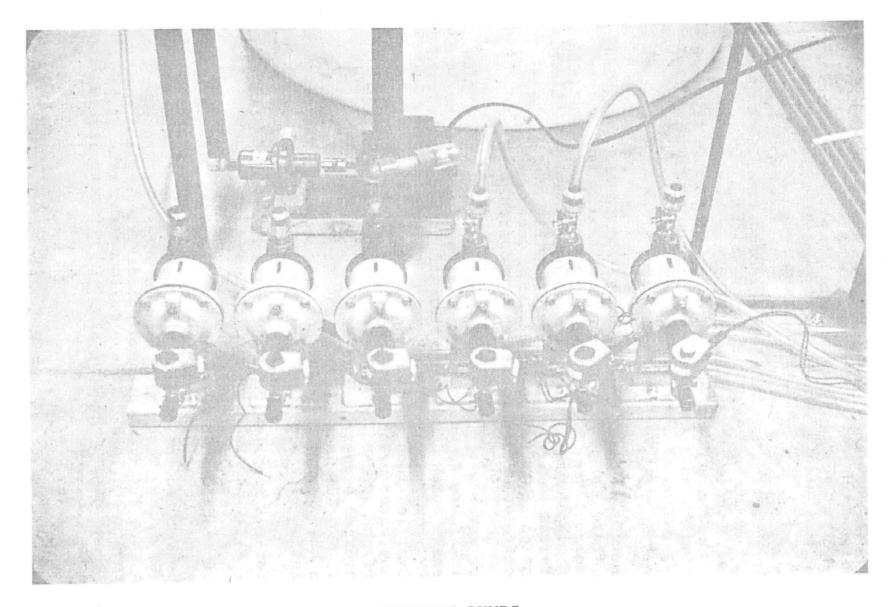
The water volumes were measured to the nearest 0.1 gallon with a small water meter on the fill line. Since the chemicals were supplied in bags of 50 or 100 pounds, the appropriate number of bags were added. Due to the small amount of manganese sulfate required, it was weighed on a small scale.

Magnesium sulfate, ferric sulfate, and ferrous sulfate solutions were usually fed from the main tank. However, when the main tank was being refilled, solution was fed from the smaller 55 gallon auxiliary tank. The desired tank was selected with a three-way ball valve. This approach prevented an interruption of synthetic mine water production while new concentrate was being made. After the main tank was refilled, normal operation was restored. The auxiliary tank was then refilled with solution from the main tank by a portable 25 GPM transfer pump.

Aluminum sulfate and manganese sulfate solutions were fed from only the auxiliary tank. Because aluminum sulfate dissolved slowly, its auxiliary tank was required to be as large as the main tank. The manganese sulfate tanks were both 55 gallon tanks since this was the smallest practical size. To simplify piping, these solutions were prepared in the main tanks and transferred to the auxiliary tanks for use.


A blending system, shown in Figure 2, was used to produce the three (3) synthetic waters from tap water and the chemical concentrates. Operation was automatic except for refilling the concentrate tanks as required. When operating continuously, the system could produce 25 GPM of each test water.

Tap water and four concentrates (manganese sulfate, magnesium sulfate, aluminum sulfate, and lime) were first blended in a 200 gallon polyethylene mixing tank, forming an iron free base stock. The concentrates were added in proportion to the amount of water added. Separate addition of these concentrates allowed individual adjustment of manganese, magnesium, aluminum, and calcium concentrations in the synthetic waters. The common base stock assured uniformity in all three (3) test waters.


The rate of reagent addition was placed by a water meter and signal generator. A model FV Niagara Industrial Meter equipped with a model CM impulse transmitter was used. This device generated a short electrical impulse for each two (2) gallons of water passing through the meter. This signal controlled four (4) diaphragm metering pumps which injected the concentrates.

Model 1261 air-driven BIF Chem-O-Feeder metering pumps, shown in Figure 3, were used. The electrical signal opened a three-way solenoid valve, admitting compressed air to the back of the pump's impulse diaphragm. This caused a discharge stroke of the pump. The length of the stroke could be manually adjusted to vary the volume of the discharge. When the electrical signal terminated, the solenoid valve vented the air in the pump's impulse chamber, resetting the pump. With this system, a pre-set volume of concentrate was injected for every two (2) gallons of tap water.

A hi-lo level control was used on the 200 gallon primary tank containing the base stock. When the liquid level dropped below a pre-determined height, the control system opened a control valve on the tap water line. Water flowed into the tank at about 76 GPM, refilling the tank with base stock. After the tank was refilled to a pre-determined height, the control system closed the control valve. Thus the liquid level in the tank was always within pre-set limits. This type of on-off control was used rather than porportional control so that the flow rate of tap water would always be within the range of the water meter.

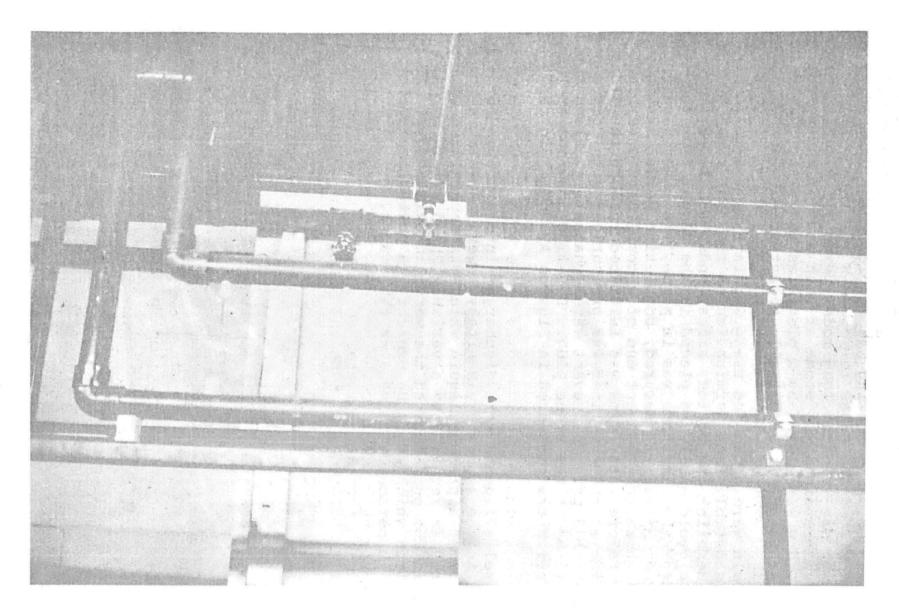


### TEST WATER PREPARATION SYSTEM



METERING PUMPS

FIGURE 3

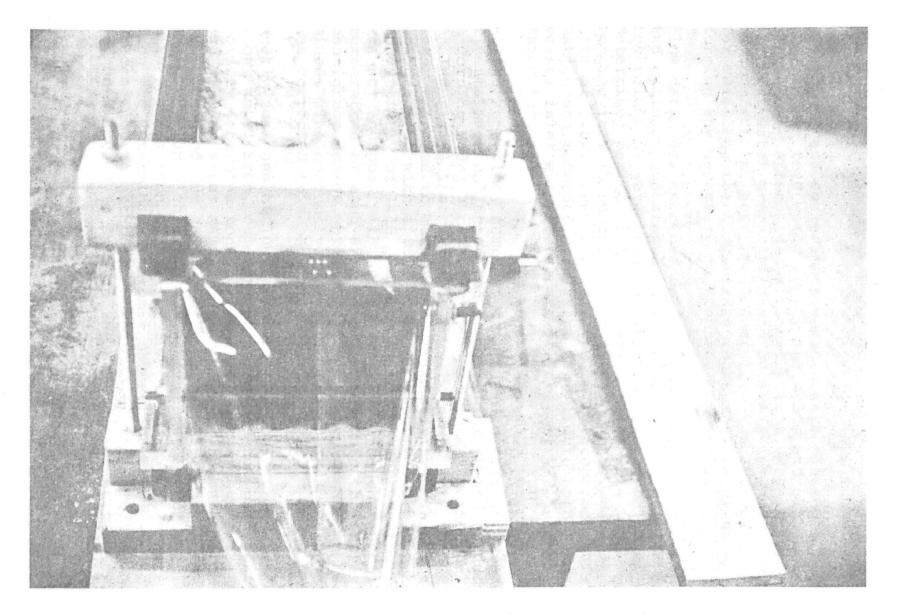

The common base stock was then pumped to each of two (2) 100 gallon polyethylene mixing tanks at the rate of about 38 GPM. Sulfuric acid from the 1500 gallons storage tank was injected into each line. Ferrous sulfate solution was injected into one (1) to form a ferrous test water, while ferric sulfate solution was injected into the other to form a ferric test water. These two (2) waters were identical except for the iron oxidation state.

As before, combination water meters and signal generators were used to control metering pumps which injected the reagents. Due to the smaller flow rates, Model DV Niagara Industrial Meters equipped with Model CM Impulse Transmitters were used. The transmiters generated an impulse for every gallon of water passing through the meters. Again, hi-lo level controls were used.

Equal amounts of ferric and ferrous test waters were blended in a third 100 gallon polyethylene mixing tank to form ferric/ferrous test water. Two (2) Model P25-P2-15N Jabsco positive displacement pumps mounted on a common shaft pumped the ferric and ferrous waters into this third tank at the identical rates of about 13 GPM. Once again, hi-lo level control was used for automatic operation.

Each test water was pumped to a manifold assembly, illustrated in Figure 4, which supplied a battery of up to 24 test vessels below it. Test water was pumped at the rate of 25 GPM from its mixing tank into the upper supply manifold. Overflow tees at each end of the manifold maintained a constant water pressure of about 15" in the manifold. The overflows were connected to the lower return manifold which returned excess feed water to the mixing tank by gravity. Two (2) inch PVC pipe and fittings were used to minimize head loss. Each 25 foot long assembly was mounted on a unistrut rack above the test vesses1.

Test water was supplied from this assembly to a 3/4" diameter by six foot high standpipe attached to the inlet end of each test vessel. A constant one (1) GPM flow was delivered to each standpipe through a calibrated length of polyethylene tubing. An overflow tee at the top of each standpipe limited the head on the test vessel to a maximum of six (6) feet. Test water flow in excess of what was required at a six (6) foot head was diverted by the tee to the return manifold. Thus a maximum feed rate of one (1) GPM and a maximum head of six (6) feet were independently provided.




MANIFOLD ASSEMBLY
FIGURE 4

The test vessels containing the crushed limestone were assembled square plexiglas tubes lined with a PVC film sleeve. Use of these clear materials allowed the stone to be observed while testing was in progress. Crushed limestone filled the tubes to form six (6) inch by six (6) inch by six (6) feet long model permeable plugs. PVC screens retained the stone at both ends of the vessel. The inlet end was closed by a plexiglas end plate, while the effluent end was essentially unobstructed.

The vessels were assembled using separate pieces to facilitate disassembly upon termination of the test run. By first assembling the bottom, sides, ends, and liner, limestone could easily be placed in the vessel from the top. After the limestone was in place, the liner was sealed and the top was secured, completing vessel assembly. Figure 5 shows the effluent end of a completely assembled vessel. Before water flow was initiated through the stone, the outside of the PVC liner was pressurized with compressed air at about 5 psig to prevent water channelling along the top and sides of the stone plug. Detailed drawings of the vessel design are presented in Figures A2 and A3 in the Appendix.

Test vessel effluents were discharged into a trench for disposal to the laboratory sanitary sewer. A weir in the trench formed a pond of liquid which was neutralized with lime slurry as required by a variable speed pump. An air sparger in the pond aerated the water to oxidize any ferrous iron which might be present. A portable pH meter was used to periodically monitor this water.



ASSEMBLED TEST VESSEL (EFFLUENT END)

FIGURE 5

#### SECTION V

#### **PROCEDURE**

The filled and sealed test vessels were placed on a test rack beneath the feed water supply manifolds and all piping was connected. After pressurizing the test vessels with air, the test water preparation and delivery systems were turned on to start the test run. Operation was automatic except for refilling the concentrate tanks when required and performing any necessary maintenance or repair.

Flow data were recorded daily during the test run. A graduated cylinder and stopwatch were used to collect and measure the volume of water passing through each vessel over a predetermined period of time. Various time intervals were used, ranging from 15 seconds to five (5) minutes, depending on the rate of flow. The flow rate was calculated from this information and recorded as ml/min. The liquid head at each vessel inlet was measured to the nearest 1/2 inch with a manometer.

At the same time, samples of the feed waters and vessel effluents were collected and analyzed for pH and conductivity. A Corning Model 7 pH Meter was used to determine the pH. An Industrial Instruments, Inc., Model RC 16B2 conductivity meter was used to measure the conductivity. This meter was standardized with a 0.01 M KCl solution which has a known conductivity of 1413 MHO/cm at 25°C. Because the meter was not equipped with automatic temperance compensation, the temperature of each sample was measured to the nearest centigrade degree while the conductivity was being determined. The conductivity measured at the sample temperature was corrected to an equivalent value at 25°C.

Weekly feed and effluent samples were collected for ferrous iron, total iron, calcium, sulfate, and hot phenolphthalein acidity determinations. Ferrous iron was determined within one (1) day after sampling using the o-Phenanthroline colorimetric method for samples with less than 10 mg/l iron and the potassium dichromate titrametric method for samples with ferrous iron concentrations of 10 mg/l or more. Total iron was determined by atomic absorption or by one of the preceeding two methods. Either AA or the EDTA titrametric method was used to analyze the samples for calcium. Sulfate

concentrations were determined gravimetrically. Hot pht. acidity was determined by titrating with a standard sodium hydroxide solution and reported in mg/l as calcium carbonate. One (1) set of samples was also analyzed for manganese using the ammonium persulfate colorimetric method.

After terminating the test, the vessels were opened by removing the plexiglas top and any volume decrease of each limestone plug was determined. A wood block was placed across the vessel perpendicular to the direction of flow. The distance between the bottom of the block and the stone surface was measured to the nearest 1/8" with a ruler and subtracted from 6" (the height of the vessel sides) to give the stone height. This was done at distances of 0'6", 1'6", 2'6", 3'6", 4'6", and 5'6" from the inlet end. In addition, the average width of the stone plug was estimated. This data was used to calculate the stone volume loss as a percentage of the initial 1.5 ft. 3 volume.

#### SECTION VI

#### DISCUSSION

This study was conducted in two sequential laboratory cycles, Lab Cycle I and Lab Cycle II. In Lab Cycle I, a total of 72 limestone specimens were tested. Six size ranges of each of three different limestones were tested on ferric, ferrous and ferric/ferrous synthetic mine waters. In addition, three additives were investigated. The results of these tests were used to select promising materials to be tested in Lab Cycle II.

#### Lab Cycle I

Selection of the three limestones used in Lab Cycle I was based on a previous limestone neutralization study <sup>2</sup> which showed that limestones could be classified into three groups, called Types A, B, and C limestones. Type A limestones were the most effective in neutralizing acid mine drainage, while Type C limestones were the least effective. One limestone from each group was selected for this study. Limestone No. 1809 (Type A), limestone No. 1355 (Type B) and limestone No. 1337 (Type C) were used. These stones were obtained from Winfield Lime and Stone Company, Elkins Limestone Company, and Mineral Pigments and Metals Company, respectively.

The following six size fractions of each stone type were tested on each of the three waters:

```
1" to dust (called 1 x 0)
1" to 50 mesh (called 1 x 50M)
1/2" to dust (called 1/2 x 0)
1/2" to 50 mesh (called 1/2 x 50M)
1/4" to dust (called 1/4 x 0)
1/8" to dust (called 1/8 x 0)
```

All six size fractions were prepared by screening a blend of equal weights of three commercially available grades of crushed limestone. A blend was used rather than one standard grade because no single grade contained the entire range of one inch particles to dust. The commercial grades used to produce the blends of each stone type are listed in Table 2.

TABLE 2
LIMESTONE GRADES USED IN LAB CYCLE I

| STONE<br>TYPE | ASSIGNED NUMBER | SUPPLIER                                                             | GRADES USED                                                                                                                        |
|---------------|-----------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| A             | 1809            | Winfield Lime and Stone<br>Company, Inc.<br>West Winfield, Pa.       | Pa. No. 1, 1B, 2*                                                                                                                  |
| 5. <b>B</b>   | 1355.           | Elkins Limestone<br>Company<br>Elkins, West Virginia                 | AASHO No. 10,<br>8, 67**                                                                                                           |
| С             | 133,7           | Mineral Pigments and<br>Metals<br>Charles Pfizer<br>Gibsonburg, Ohio | <ol> <li>Primary screening (3/8" to dust)</li> <li>Road stone (3/4" to 3/8")</li> <li>Rotary kiln feed (1-1/2" by 1/2")</li> </ol> |

<sup>\*</sup> Pa. - Pennsylvania Department of Highways Designation

<sup>\*\*</sup> AASHO - American Association of State Highway Officials Designation

In addition to these 18 specimens (6 sizes of 3 stone types), three different additives were investigated. Limestone mixtures containing 5% bentonite, 10% flyash, and 10% air-cooled blast furnace slag were tested on all three synthetic waters. These additives were blended with both 1 x 0 and 1/2 x 0 size fractions of limestone No. 1809 (Type A stone). Thus a total of six specimens containing additives were tested on each water.

Chemical compositions of the  $1/4 \times 0$  sizes of all three stone types were determined before testing. The results of these determinations are listed in Table 3. Due to an oversight,  $Al_2O_3$ ,  $Fe_2O_3$ , and S analyses were not performed on limestones No. 1355 and No. 1337. However, analyses had been performed on limestone samples from the same two sources in a previous study.  $^2$   $Al_2O_3$  and  $Fe_2O_3$  values from that study were included in Table 3 for completeness.

Reported values from these two independent analyses are compared in Table 4. This comparison shows that the two analyses were in reasonable agreement. Furthermore, the agreement is closer for limestones No. 1355 and No. 1337 than for limestone No. 1809. It is expected that Al<sub>2</sub>O<sub>3</sub> and Fe<sub>2</sub>O<sub>3</sub> values would have followed the same pattern of agreement.

Complete particle size analyses were performed on representative samples of all 24 different stone specimens before testing. These data are given in Tables A4 through A6 in the Appendix. Grain size distributions are presented in Figures 6 through 13. These curves show a considerable particle size variation in the  $1/8 \times 0$  and  $1/4 \times 0$  size fractions of all three limestones. They also show that limestone No. 1337 consistently contained considerably more fines than the other two stone types. Both the  $1/2 \times 50M$  and  $1 \times 50M$  sizes of the three stone types had similar particle size distributions.

Three test vessels were loosely filled with each of the 24 different limestone aggregate specimens for a total of 72 test vessels. The three sets of 24 specimens were tested on ferric, ferric/ferrous, and ferrous synthetic mine waters. For identification purposes, the test vessels were assigned test vessel numbers as listed in Tables Al, A2, and A3 in the Appendix.

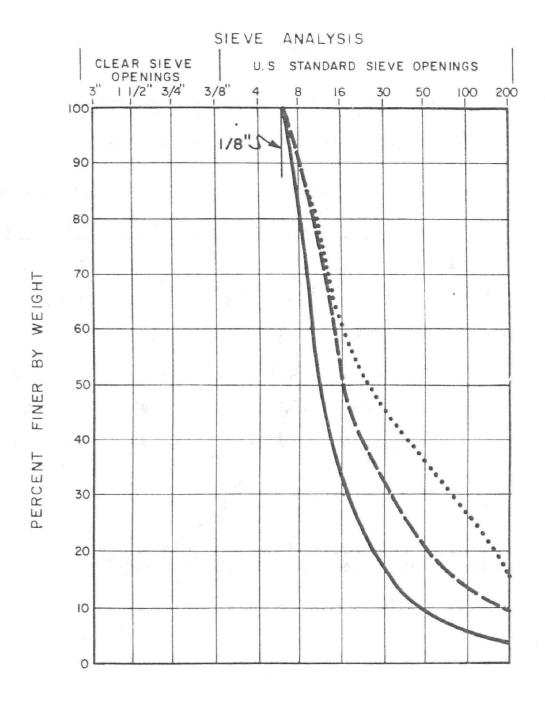
TABLE 3

ANALYSIS OF LIMESTONES TESTED IN LAB CYCLE I

(REPORTED AS WEIGHT % OF IGNITED SAMPLE)

|                                | STONE #1809 | STONE #1355 | STONE #1337 |
|--------------------------------|-------------|-------------|-------------|
| Loss on ignition               | 36.93       | 33.8        | 46.00       |
| $sio_2$                        | 15.4        | 23.9        | 1.82        |
| Al <sub>2</sub> 0 <sub>3</sub> | 3.9         | 5.75*       | 0.15*       |
| CaO                            | 71.9        | 62.3        | 54.3        |
| MgO                            | 0.59        | 1.65        | 39.1        |
| Fe <sub>2</sub> 0 <sub>3</sub> | 2.86        | 2.48*       | 0.25*       |
| S                              | 0.29        |             |             |

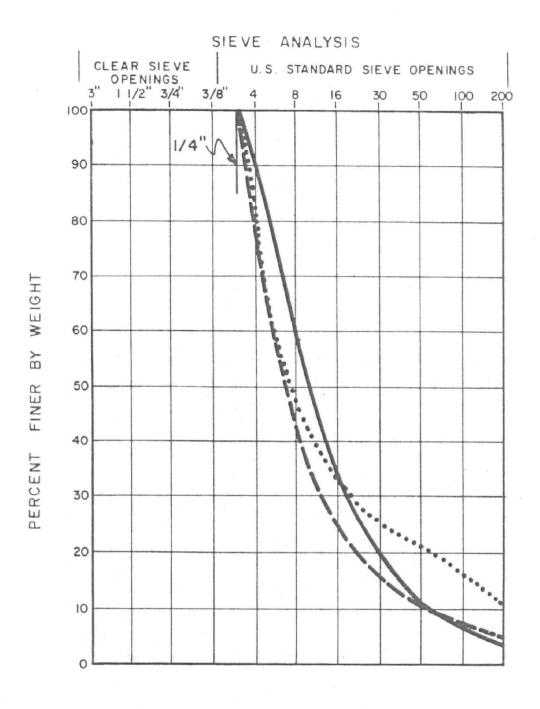
<sup>\*</sup> Data taken from previous study


TABLE 4

COMPARISON OF INDEPENDENT LIMESTONE ANALYSES

(REPORTED AS WEIGHT % OF IGNITED SAMPLE)

|                                | STONE    | #1809    | STONE | #1355 | STONE | #1337    |
|--------------------------------|----------|----------|-------|-------|-------|----------|
|                                | <u>A</u> | <u>B</u> | A     | B     | A     | <u>B</u> |
| Loss on ignition               | 36.93    | 41.5     | 33.8  | 33.3  | 46.00 | 47.5     |
| SiO <sub>2</sub>               | 15.4     | 5.90     | 23.9  | 27.5  | 1.82  | 0.78     |
| Al <sub>2</sub> 0 <sub>3</sub> | 3.9      | 1.99     |       | 5.75  |       | 0.15     |
| CaO                            | 71.9     | 88.0     | 62.3  | 60.0  | 54.3  | 53.0     |
| MgO                            | 0.59     | 1.34     | 1.65  | 1.85  | 39.1  | 45.0     |
| Fe <sub>2</sub> O <sub>3</sub> | 2.86     | 1.50     |       | 2.48  |       | 0.25     |


NOTE: Analysis "A" performed during this study Analysis "B" taken from previous study<sup>2</sup>



| COBBLES  | GRAVEL       |                                          |                                               | SAND                                                  |                                                                                          |                                                                                                               |
|----------|--------------|------------------------------------------|-----------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
|          | COAR         | SE                                       | FINE                                          | COARSE                                                | MEDIUM                                                                                   | 'FINE                                                                                                         |
|          |              | 1                                        | IMESTONE                                      | DESCR                                                 | IPTION                                                                                   |                                                                                                               |
| MATERIAL | STONE        | SIZE                                     | PERCENT                                       | PASSING                                               | NO. 200 SIEVE.                                                                           |                                                                                                               |
| 1809     |              |                                          |                                               | 3.9                                                   |                                                                                          |                                                                                                               |
| 1355     | 1/8)         | (0)                                      |                                               | 8.5                                                   |                                                                                          |                                                                                                               |
| 1337     | 1/8 >        | (0)                                      |                                               | 16,1                                                  |                                                                                          |                                                                                                               |
|          | 1809<br>1355 | MATERIAL STONE<br>1809 1/83<br>1355 1/83 | MATERIAL STONE SIZE 1809 1/8 X 0 1355 1/8 X 0 | MATERIAL STONE SIZE PERCENT 1809 1/8 X 0 1355 1/8 X 0 | LIMESTONE DESCR  MATERIAL STONE SIZE PERCENT PASSING I 1809 1/8 X 0 3.9 1355 1/8 X 0 8.5 | LIMESTONE DESCRIPTION  MATERIAL STONE SIZE PERCENT PASSING NO. 200 SIEVE.  1809 1/8 x 0 3.9  1355 1/8 x 0 8.5 |

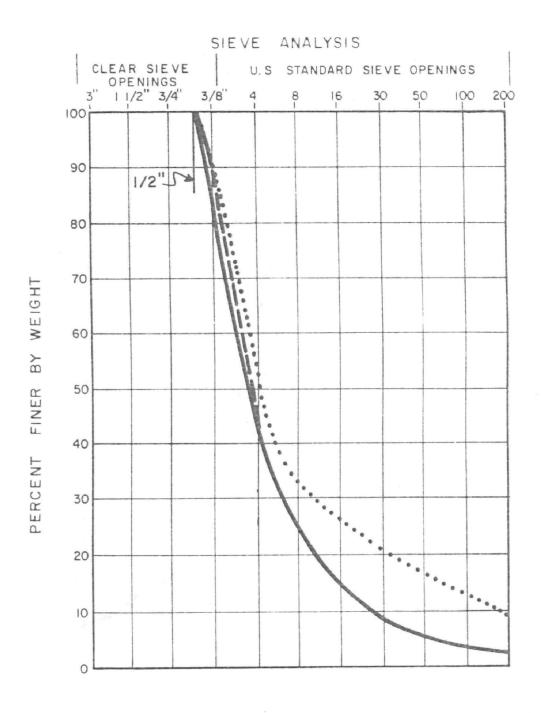
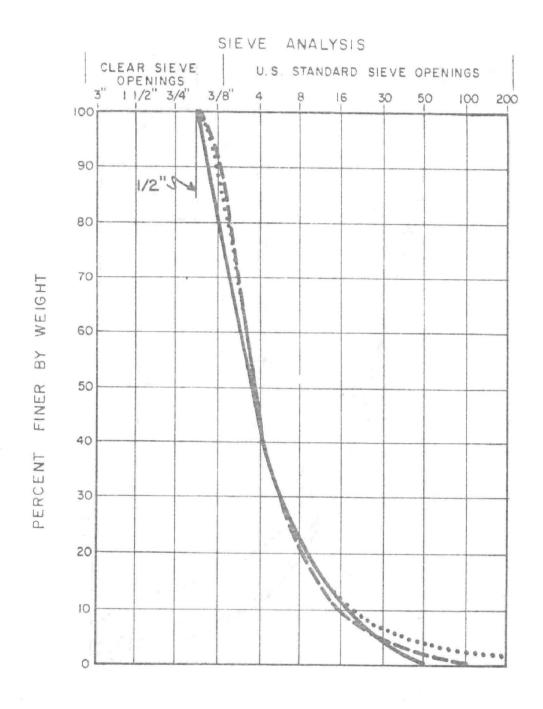

INITIAL GRAIN SIZE CURVES
1/8 x O STONES

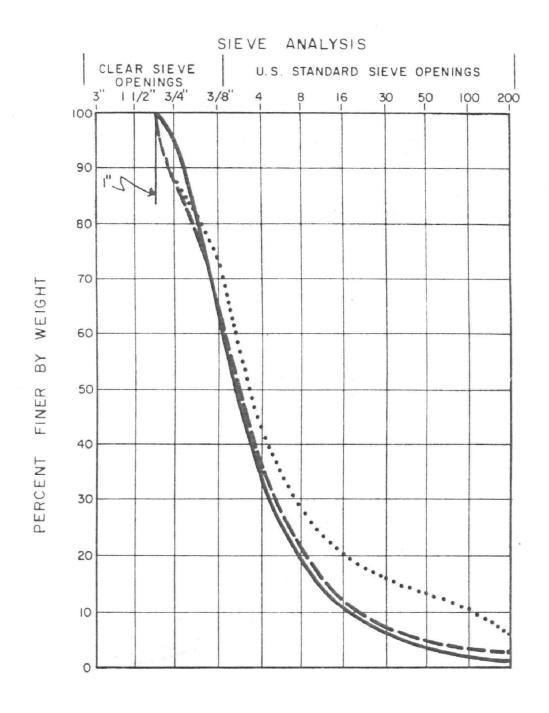
FIGURE 6




| COBBLES  |            | EL       | EL SAND   |                |      |
|----------|------------|----------|-----------|----------------|------|
| CODUCES  | COARSE     | FINE     | COARSE    | MEDIUM         | FINE |
|          | 1          | IMESTONE | DESCR     | IPTION         |      |
| MATERIAL | STONE SIZE | PERCENT  | PASSING I | NO. 200 SIEVE. |      |
| 1809     | 1/4 X O    |          | 3.9       |                |      |
| 1355     | 1/4 X O    |          | 5.6       |                |      |
| 1377     | 1/4 X O    |          | 10.8      |                |      |
| 1        |            |          |           |                |      |

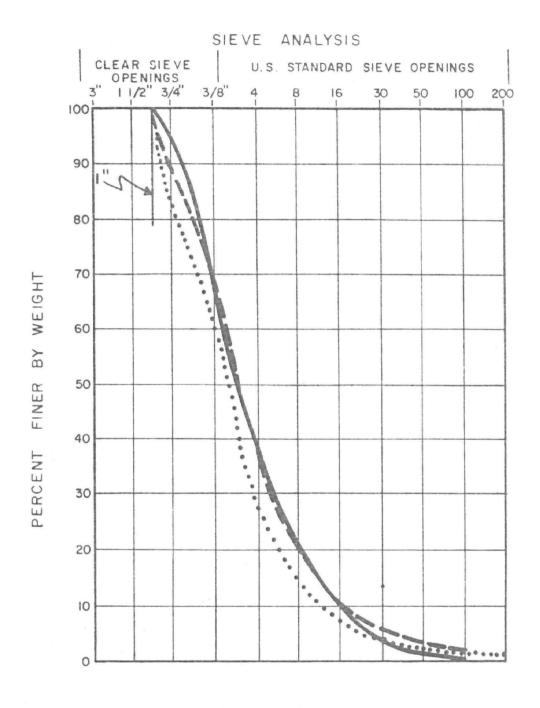
INITIAL GRAIN SIZE CURVES
1/8 X O STONES
FIGURE 7




| CORRIEC GR |            | /EL      |         | SAND           |      |  |
|------------|------------|----------|---------|----------------|------|--|
| COBBLES    | COARSE     | FINE     | COARSE  | MEDIUM         | FINE |  |
|            | 1          | IMESTONE | DESCR   | IPTION         |      |  |
|            |            | 1        |         |                |      |  |
| MATERIAL   | STONE SIZE | PERCENT  | PASSING | NO. 200 SIEVE. |      |  |
| 1809       | 1/2 X O    |          | 1.9     |                |      |  |
| 1355       | 1/2 X O    |          | 2.1     |                |      |  |
| 1337       | 1/2 X O    |          | 8.8     |                |      |  |
|            |            |          |         |                |      |  |

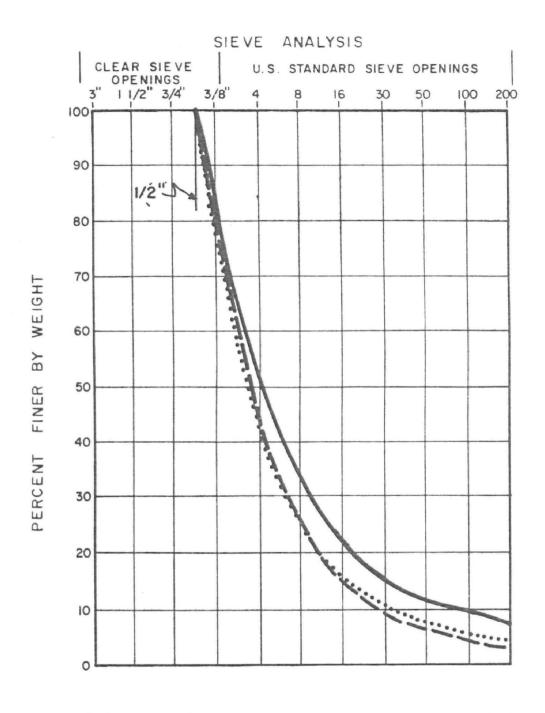
INITIAL GRAIN SIZE CURVES 1/2 X O STONES FIGURE 8




| COBBLES  | GRAV       | /EL      | SAND   |        |      |
|----------|------------|----------|--------|--------|------|
|          | COARSE     | FINE     | COARSE | MEDIUM | FINE |
|          | L          | IMESTONE | DESCR  | PTION  |      |
| MATERIAL | STONE SIZE |          |        |        |      |
| 1809     | 1/2 X 50   |          | 0.1    |        |      |
| 1355     | 1/2 x 50   |          | 0.4    |        |      |
| 1337     | 1/2 X 50   |          | 2.6    |        |      |
|          |            |          |        | -      |      |

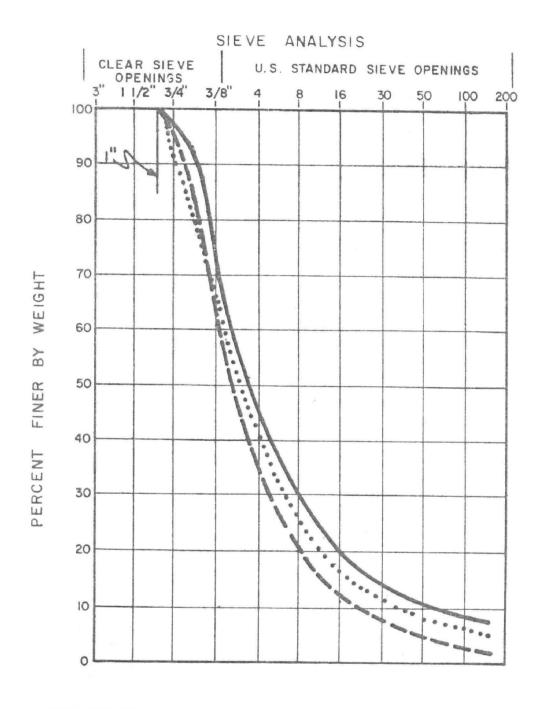
### INITIAL GRAIN SIZE CURVES 1/2 X 50 STONES FIGURE 9




| COBBLES  | GRAV       | EL       | SAND    |               |      |
|----------|------------|----------|---------|---------------|------|
| CODDELLS | COARSE     | FINE     | COARSE  | MEDIUM        | FINE |
|          |            | MESTONE  | 55005   |               |      |
|          |            | IMESTONE | DESCR   | IPTION        |      |
| MATERIAL | STONE SIZE | PERCENT  | PASSING | NO 200 SIEVE. |      |
| 1809     | IXO        |          | 1.2 .   |               |      |
| 1355     | IXO        |          | 1.9     |               |      |
| 1337     | IXO        |          | 6.9     |               |      |
|          |            |          |         |               |      |

INITIAL GRAIN SIZE CURVES
I X O STONES
FIGURE 10




|                     | COBBLES  | GRAV       | EL        | ŞAND        |                |      |  |
|---------------------|----------|------------|-----------|-------------|----------------|------|--|
|                     | COBBLES  | COARSE     | FINE      | COARSE      | MEDIUM         | FINE |  |
|                     |          |            | INTERTONE | 05000       | LDTION         |      |  |
| }                   |          | L          | IMESTONE  | DESCRIPTION |                |      |  |
|                     | MATERIAL | STONE SIZE | PERCENT   | PASSING I   | NO. 200 SIEVE. |      |  |
|                     | 1809     | 1 X 50     | .,        | 0.1         |                |      |  |
| me essa esso care [ | 1355     | 1 X 50     |           | 1,3         |                |      |  |
|                     | 1337     | 1 X 50     |           | 1.2         |                |      |  |

INITIAL GRAIN SIZE CURVES
I X 50 STONES
FIGURE II



| COBBLES  | GRAV    | EL       | SAND   |                |             |  |
|----------|---------|----------|--------|----------------|-------------|--|
| COBBLES  | COARSE  | FINE     | COARSE | MEDIUM         | FINE        |  |
|          |         | IMESTONE | DESCE  | RIPTION        |             |  |
| MATERIAL |         |          |        | NO. 200 SIEVE. | ADDITIVE    |  |
| 1809     | 1/2 X O |          | 7.4    |                | 10% FLYASH  |  |
| 1809     | 1/2 X O |          | 2.3    |                | 10 % SLAG   |  |
| 1809     | 1/2 X O |          | 4.0    |                | 5%BENTONITE |  |

## INITIAL GRAIN SIZE CURVES 1/2 X O STONES CONTAINING ADDITIVES FIGURE 12



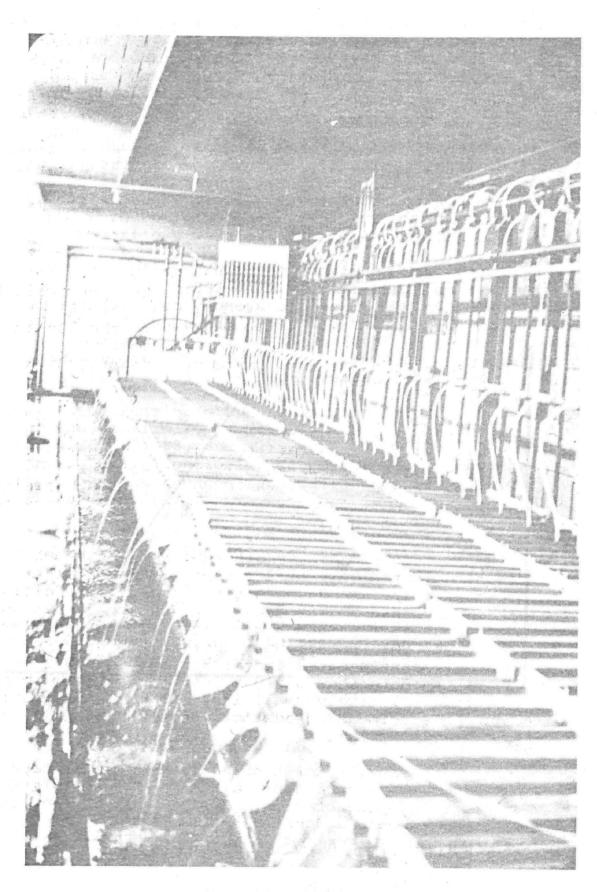
| COBBLES  | GRAV       | EL       | SAND    |                |            |  |
|----------|------------|----------|---------|----------------|------------|--|
|          | COARSE     | FINE     | COARSE  | MEDIUM         | FINE       |  |
|          | L          | IMESTONE | DESCR   | IPTION         |            |  |
| MATERIAL | STONE SIZE | PERCENT  | PASSING | NO. 200 SIEVE. | ADDITIVE   |  |
| 1809     | IXO        |          | 7.5     |                | 10% FLYASH |  |
| 1809     | IXO        |          | 1.4     |                | 10% SLAG   |  |
| 1809     |            |          | 5.2     |                |            |  |

INITIAL GRAIN SIZE CURVES
1×0 STONES CONTAINING ADDITIVES

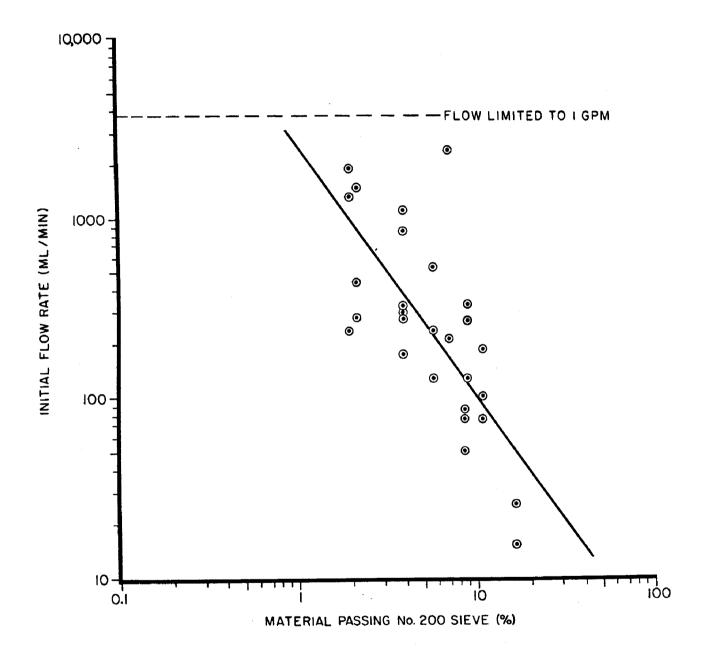
FIGURE 13

Start-up for the ferrous, ferric, and ferric/ferrous batteries were staggered over three days. The inlet heads on all the 1/8 x 0 and 1/4 x 0 sizes quickly rose to the maximum six feet. Initial heads on the coarser stones were as low as six inches. Flow data was recorded daily beginning 24 hours after start-up. The flow rates after one day of testing, referred to as initial flow rates, ranged from 15 ml/min to the maximum 1 GPM (3785 ml/min). A view of testing in progress is presented in Figure 14.

The flow rate of water through a permeable material is given by the relation:


Q = k(hA/L)

In this equation, Q is the flow rate, k is the permeability coefficient, h is the head loss through the material, A is the cross sectional area of flow, and L is the length of the flow path. The permeability coefficient, k, is a function of the particle shape, grain size distribution, and density of the material.


In well-graded materials with no particle sizes missing, the fraction of the material passing a No. 200 sieve has a great influence on the permeability. Small increases of fines greatly decrease the permeability of well-graded gravels. Granular materials with 10 to 20 percent passing the No. 200 sieve and placed at a medium density or greater are relatively impermeable.

Measured initial flows exhibited this effect, as shown in Figure 15 where initial flow rates were plotted against fines content for specimens which did not contain additives. Test vessels which had not attained a 6 foot head were not plotted, since their flow rates were artifically restricted to the maximum 1 GPM. Logarithmic coordinates were used so that a least means squares linear regression could be performed. These data show a significant decrease in permeability with a relatively small increase of fines, indicating that the specimens' gradations were responsible for initial flow behaviors.

Gas pockets formed in the inlet chambers of several test vessels during the first 24 hours of testing, possibly due to air leakage or CO2 generation. Sharp edges of the plexiglas vessels could possible have torn the PVC liners,



LAB CYCLE I TESTING
FIGURE 14
35



## LAB CYCLE I LIMESTONE SPECIMENS INITIAL FLOW VS. FINES CONTENT

FIGURE 15

allowing the pressurizing air to leak into the vessels. However, the 9 mil liners were relatively tough and care was exercised during vessel assembly. A more likely explanation is that CO<sub>2</sub> was accumulated as limestone, which is mainly calcium carbonate, neutralized the acid test water.

During the first 3 weeks of testing, the flow rate of test water delivered to each vessel standpipe decreased from the design 1 GPM to about 1/2 GPM. This was due to feed pump impeller wear. Test vessels which maintained a six foot head were not affected by this condition, since the standpipe overflows were diverting excess flow.

After 20 days of testing, the specimens with flows in excess of 0.5 GPM (1892 ml/min) at a six foot head were discontinued. Twenty-one specimens fell into this category and are listed in Table 5. All of these specimens had a 1/2" or 1" upper size limit and most of them had a 50 mesh lower size limit. The remaining specimens were continued for an additional 33 days for a total of 53 days of testing.

Three of the remaining specimens, the 1/8 x 0, 1/4 x 0, and 1 x 0 sizes of limestone No. 1355 on ferric/ferrous water (Vessels No. 37, 38, and 42), were tested for a total of 101 days. Daily monitoring was continued during the last 48 days, but was reduced from seven days per week to five, Monday through Friday.

Throughout the test run, the synthetic mine water compositions were checked and adjusted as required to maintain consistent values. The average compositions are presented in Table 6.

Flow and effluent composition data for all 72 test vessels are presented in Tables A7 through A78 in the Appendix. This data includes the following parameters:

```
Inlet head (in.)
Flow rate (ml/min)
pH
Specific conductance ( mho)
Ferrous iron (mg/l)
Total iron (mg/l)
Calcium (mg/l)
Sulfate (mg/l)
Hot pht. acidity (mg/l as CaCO3)
```

#### TABLE 5

#### SPECIMENS DISCONTINUED AFTER 20 DAYS

#### FERRIC TEST WATER

Vessel No. 9 - Stone #1809, 1/2 x 50 m Vessel No. 11 - Stone #1809, 1 x 50 m Vessel No. 12 - Stone #1809, 1 x 0 Vessel No. 15 - Stone #1355, 1/2 x 50 m Vessel No. 17 - Stone #1355, 1 x 50 m Vessel No. 22 - Stone #1337, 1/2 x 50 m Vessel No. 23 - Stone #1337, 1 x 50 m

#### FERRIC/FERROUS TEST WATER

Vessel No. 36 - Stone #1809, 1 x 0 
Vessel No. 40 - Stone #1355, 1/2 x 50 m 
Vessel No. 41 - Stone #1355, 1 x 50 m 
Vessel No. 45 - Stone #1337, 1/2 x 50 m 
Vessel No. 47 - Stone #1337, 1 x 50 m

#### FERROUS TEST WATER

Vessel No. 50 - Stone #1809, 1 x 0 (10% slag)
Vessel No. 52 - Stone #1809, 1 x 0 (10% bentonite)
Vessel No. 57 - Stone #1809, 1/2 x 50 m
Vessel No. 60 - Stone #1809, 1 x 0
Vessel No. 65 - Stone #1355, 1 x 50 m
Vessel No. 69 - Stone #1337, 1/2 x 50 m
Vessel No. 70 - Stone #1337, 1/2 x 0
Vessel No. 71 - Stone #1337, 1 x 50 m
Vessel No. 72 - Stone #1337, 1 x 50 m

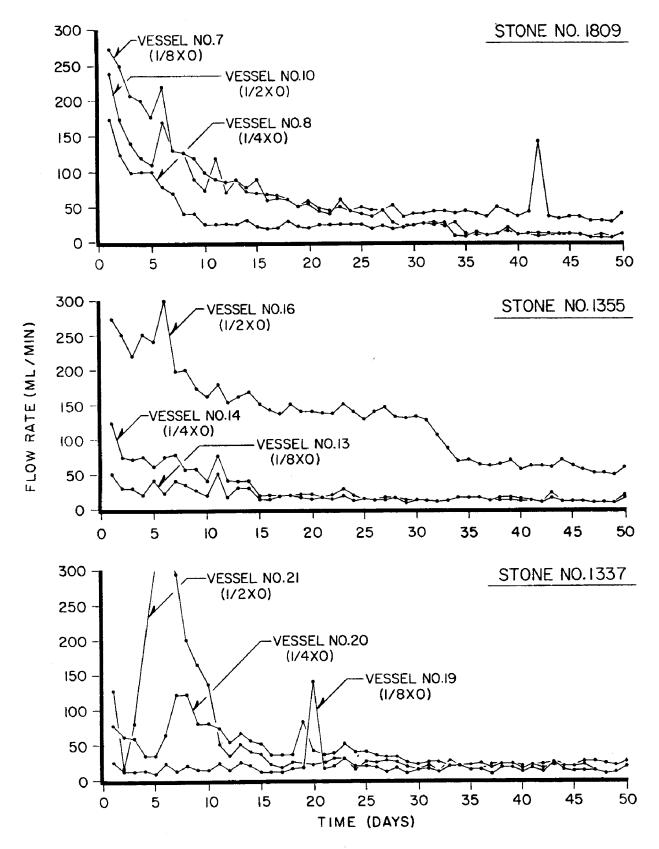
TABLE 6
SYNTHETIC ACID MINE WATERS
AVERAGE COMPOSITION

|                 | FERRIC<br>WATER | FERRIC/FERROUS WATER | FERROUS<br>WATER |
|-----------------|-----------------|----------------------|------------------|
| рН              | 2.5             | 2.6                  | 2.5              |
| Sp. conductance | 2700            | 2700                 | 2850             |
| Hot pht acidity | 743             | 894                  | 874              |
| Calcium         | 81              | 78                   | 75               |
| Magnesium       | 28              | 22                   | 23               |
| Manganese       | 5.3             | 5.8                  | 5.0              |
| Aluminum        | 16              | 16                   | 18               |
| Total iron      | 205             | 209                  | 198              |
| Ferrous iron    | 10              | 106                  | 197              |
| Ferric iron     | 195             | 103                  | 1                |
| Sulfate         | 1055            | 1030                 | 1122             |

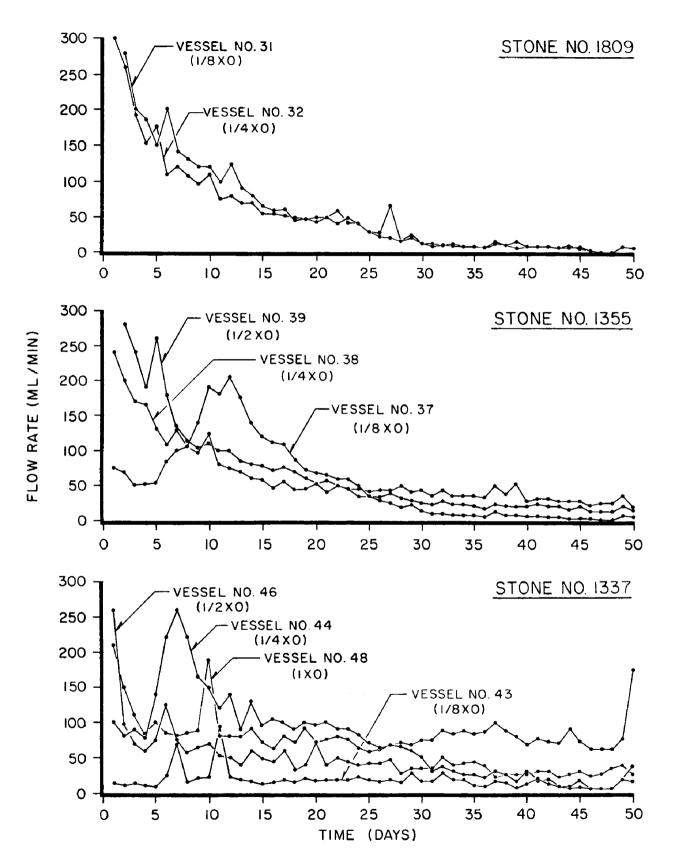
The inlet head and flow rate through the stone are directly proportional according to:

$$Q = \frac{kA}{L} h$$

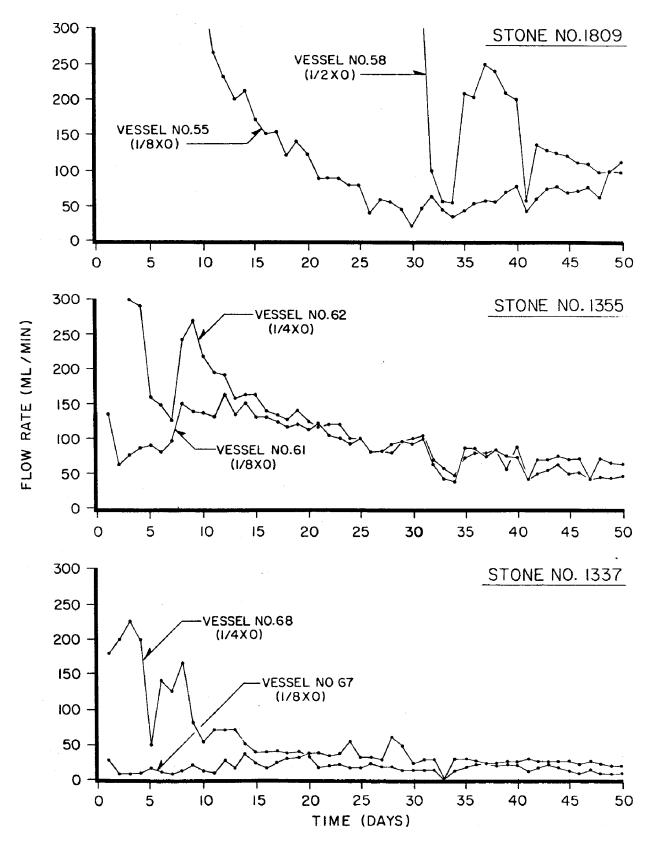
For a material with a given permeability (k), cross-sectional area (A), and length (L), the ratio of flow rate to head is a constant (kA/L). This principle can be used to adjust measured flow rates at measured heads to equivalent flow rates at a six foot head. When this is done, it can be seen that most of the specimens reduced the equivalent flow rate of water over the test period.


Flow histories of the limestone specimens with flow rates of 300 ml/min or less are presented in Figures 16, 17, and 18. Flow rate adjustment was not necessary, since the inlet heads on these vessels were six feet. These plots shows the measured flow rates vs time.

Test water type had a significant effect on flow behavior. Although all flow histories showed a considerable fluctuation, this fluctuation was least severe for specimens on ferric water and most severe for specimens on ferrous water. Ferric water specimens generally had the lowest flow rates, while ferrous water specimens had the highest.


Flow behavior was also shown to be dependent on stone type. Initial flow rates were highest for stone No. 1809 (Type A) and lowest for stone No. 1337 (Type C). As previously discussed, this was due to the initial fines content of the aggregate. For example, the 1/8 x 0 size of stone No. 1337 contained over four times as much fines as the same size of limestone No. 1809.

During the test run, however, stone No. 1809 exhibited the greatest reduction of flow, while stone No. 1337 exhibited the smallest reduction. As a result, flow rates after 50 days of testing for stone No. 1809 specimens tested on ferric or ferric/ferrous water were generally lower than for corresponding stone No. 1337 specimens.


The lowest recorded flows occurred with the  $1/8 \times 0$  and  $1/4 \times 0$  sizes, while the highest recorded flows occurred with the  $1/2 \times 50M$  and  $1 \times 50M$  sizes. All the  $1/8 \times 0$  sizes and all but one (Vessel No. 56) of the  $1/4 \times 0$  sizes maintained flows less than 300 ml/min. Flow histories for these two sizes were similar, although the  $1/8 \times 0$ 



FERRIC WATER-SPECIMEN FLOW HISTORIES
FIGURE 16



FERRIC/FERROUS WATER-SPECIMEN FLOW HISTORIES
FIGURE 17



FERROUS WATER-SPECIMEN FLOW HISTORIES
FIGURE 18

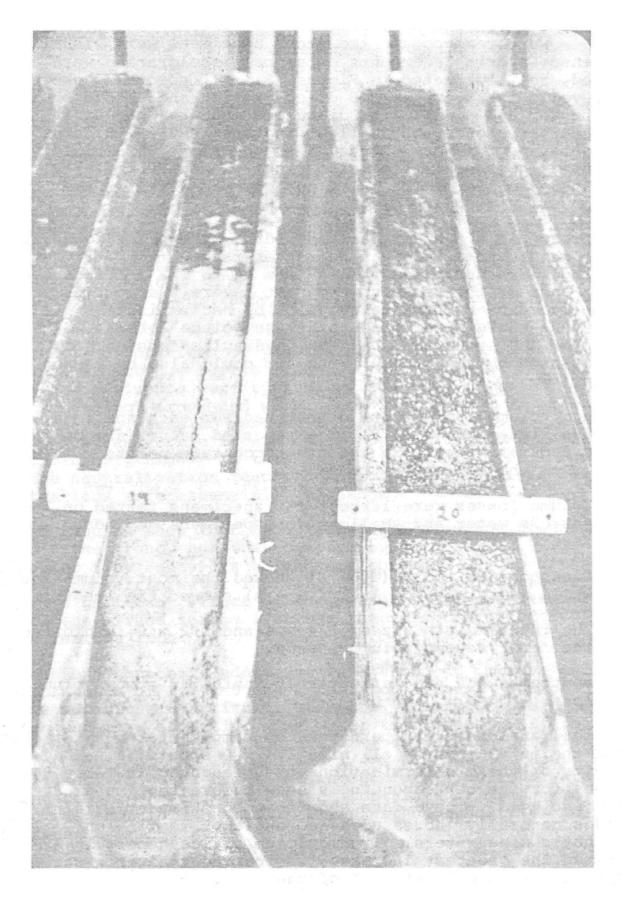
size generally exhibited lower initial flow rates. Flow histories for the  $1/2 \times 0$  sizes tested on ferric or ferric/ferrous water were slightly greater than those for the  $1/8 \times 0$  and  $1/4 \times 0$  sizes. As previously discussed, most of the  $1/2 \times 50M$  and  $1 \times 50M$  sizes were discontinued after 20 days of testing due to their high flow rates.

Specimens which had lower flow rates neutralized mine water through the stone more effectively than those with high flow rates. Also, the pH of the effluents from the specimens tended to increase slightly throughout the tests as the observed flow rates decreased. These results were expected, since the neutralization reaction is relatively slow when limestone is used, and slower flow rates provided increased detention time. The effluents typically had pH values of 6 or 7 for those specimens having flows less than 300 ml/min.

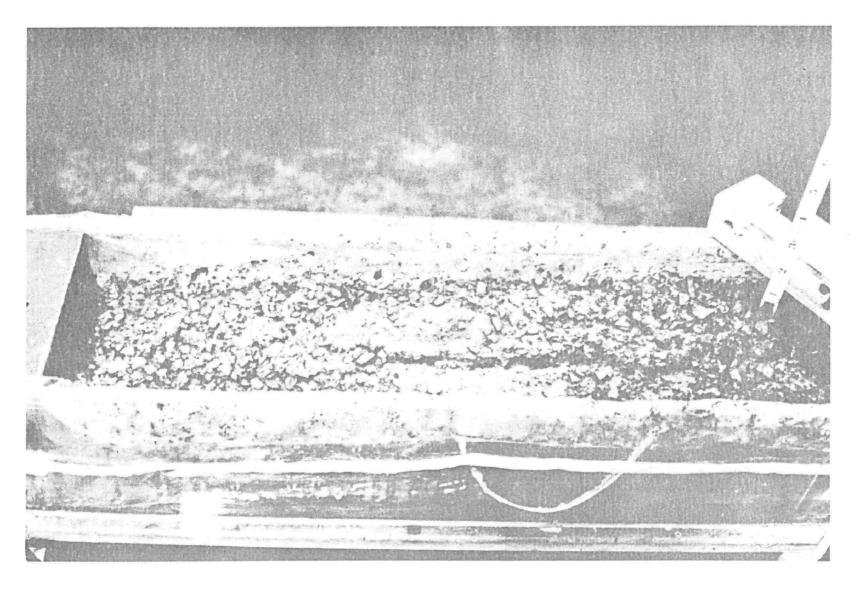
Chemical compositions of the effluents were also pretty much as expected. Ferric iron concentrations in the neutralized effluents were typically less than 20 mg/l (a 90% removal of iron) and were often less than 0.03 mg/l. Ferrous iron was also removed in many cases, but not as completely as ferric iron. Calcium concentrations were significantly higher in this neutralized effluents. Due to the neutralization reaction and erosion. Sulfate concentrations were essentially unchanged.

These results show that iron is precipitated and trapped within the stone, but that calcium sulfate is not. The superior flow behaviors which were observed for specimens tested on ferric water indicate that the precipitated iron had a significant effect on the permeabilities of the specimens, since ferric iron was removed more effectively than ferrous iron.

Flyash and bentonite additives were shown to improve the performances of  $1/2 \times 0$  and  $1 \times 0$  stone sizes. Use of these additives, particularly flyash, provided lower flow rates and more effective mine water treatment. Performance of specimens containing these additives were comparable to performances of the  $1/8 \times 0$  and  $1/4 \times 0$  sizes (without additives) in tests using ferric and ferric/ferrous waters. Both the  $1/2 \times 0$  and  $1 \times 0$  sizes containing flyash were more successful than smaller sizes without additives in ferrous water tests.


After the test runs were completed, the tops of the test vessels were removed and the stone specimens were visually examined. Variable amounts of stone discoloration were observed, as illustrated in Figure 19. All specimens showed some yellowish-brown or red discoloration and a thin crust on the top and sides. The discoloration was largest in the coarser stones and smallest in the stones with large percentages of fines. Although no specimens were rigidly cemented, some small blocks of lightly cemented material within 6" to 12" of the inlet end were observed in the more heavily discolored specimens.

A decrease in stone heights and widths, shown in Figure 20 was also observed. Height decreases ranged from 1/8" to 1", and width decreased ranged from 0" to 1/2". Since the inlet ends of the vessels were most severely affected, it is believed that stone consumption by neutralization reactions was a major cause of these volume losses. Settling of the stone upon wetting, hydraulic erosion, and compression by the pressurizing air could also be responsible.


Average volume losses were determined for each specimen and are listed in Table 7. The reported values are believed to be accurate to within about 3 percentage points. These data show the following trends:

- 1. Volume losses were largest for specimens tested on ferrous water and smallest for specimens tested on ferric water.
- Limestone No. 1337 (Type C) showed the most volume loss, while limestone No. 1809 (Type A) showed the least.
- 3. The intermediate sizes,  $1/4 \times 0$  and  $1/2 \times 0$ , exhibited the least severe volume losses.
- 4. Bentonite and slag effectively inhibited stone volume loss.

Chemical analyses were performed on samples taken six inches from the inlet ends of all nine 1/4 x 0 specimens. The results of these determinations are presented in Table 8. Values for the corresponding stones before testing are also included. These data show that constituent/calcium ratios generally increased as a result of testing on synthetic mine waters. Iron/calcium ratios generally exhibited the greatest increase, indicating that iron was deposited in the first foot of the plug.



LIMESTONE SPECIMENS AFTER TESTING
FIGURE 19
46



LIMESTONE VOLUME LOSS
FIGURE 20

TABLE 7

STONE VOLUME LOSSES

EXPRESSED AS % OF INITIAL VOLUME

| STONE                                  | SAMPLES ON<br>FERRIC<br>WATER | SAMPLES ON<br>FERRIC/FERROUS<br>WATER |     |
|----------------------------------------|-------------------------------|---------------------------------------|-----|
| 1809, 1/8 x 0                          | 5                             | 7                                     | 12  |
| $1809, 1/4 \times 0$                   | 4                             | 7                                     | 10  |
| $1809, 1/2 \times 0$                   | 9                             | 11                                    | 38  |
| 1809, 1 x 0                            | 6*                            | 9*                                    | 18* |
| 1809, 1/2 x 50 m                       | 5*                            | 13                                    | 21* |
| 1809, 1 x 50 m                         | 2*                            | 7                                     | 36  |
|                                        |                               |                                       |     |
| 1809, 1/2 x 0, 10% slag                | 5                             | 6                                     | 6   |
| 1809, 1 x 0, 10% slag                  | 6                             | 9                                     | 13  |
| 1809, $1/2 \times 0$ , 5% benton       |                               | 3<br>7                                | 8   |
| 1809, 1 x 0, 5% bentonit               |                               | 7                                     | 14  |
| $1809$ , $1/2 \times 0$ , $10\%$ flyas |                               | 16                                    | 11  |
| 1809, 1 x 0, $10$ % flyash             | 14                            | 20                                    | 12  |
| 1255 1/0 0                             | 17                            | 2144                                  | 20  |
| 1355, 1/8 x 0<br>1355, 1/4 x 0         | 17                            | 24**                                  | 20  |
| · · · · · · · · · · · · · · · · · · ·  | 6                             | 13**                                  | 3   |
| 1355, 1/2 x 0                          | 8<br>7                        | 15<br>17**                            | 15  |
| 1355, 1 x 0                            | /<br>5*                       | <del>- '</del>                        | 20  |
| 1355, 1/2 x 50 m                       |                               | 6*                                    | 23  |
| 1355, 1 x 50m                          | 6                             | 8*                                    | 13* |
| 1337, $1/8 \times 0$                   | 30                            | 28                                    | 19  |
| 1337, 1/4 x 0                          | 18                            | 16                                    | 11  |
| 1337, 1/2 x 0                          | 14                            | 18                                    |     |
| 1337, 1 x 0                            | . 9                           | 9                                     | 20* |
| 1337, 1/2 x 50 m                       | 3*                            | 13*                                   | 39* |
| 1337, 1 x 50 m                         | 6*                            | 10*                                   | 33* |

NOTE: \* Specimen discontinued after 20 days of testing
\*\* Specimen discontinued after 101 days of testing
Others discontinued after 53 days of testing

TABLE 8

ANALYSIS OF LIMESTONES TESTED IN LAB CYCLE I

BEFORE AND AFTER TESTING

(REPORTED AS WEIGHT % OF IGNITED SAMPLE)

| VESSEL<br>NO. | STONE<br>NO. | TEST<br>WATER                      | LOSS ON<br>IGNITION | SiO2 | A1203 | <u>Ca0</u> | <u>MgO</u> | <u>Fe<sub>2</sub>O</u> 3 | S    |
|---------------|--------------|------------------------------------|---------------------|------|-------|------------|------------|--------------------------|------|
| None          | 1809         | None                               | 36.93               | 15.4 | 3.9   | 71.9       | 0.59       | 2.86                     | 0.29 |
| 8 1           | 1809         | Fe <sup>+3</sup>                   | 35.8                | 15.3 | 4.2   | 67.8       | 1.20       | 6.90                     | 0.59 |
| 32            | 1809         | Fe <sup>+3</sup> /Fe <sup>+2</sup> | 5.7                 | 11.1 | 2.0   | 45.1       | 4.03       | 11.52                    | 0.27 |
| 56            | 1809         | Fe <sup>+2</sup>                   | 29.5                | 25.0 | 20.0  | 49.1       | 1.23       | 9.33                     | 0.57 |
|               |              |                                    |                     |      |       |            |            |                          |      |
| None          | 1355         | None                               | 33.8                | 23.9 | 5.75* | 62.3       | 1.65       | 2.48*                    |      |
| 14            | 1355         | Fe <sup>+3</sup>                   | 32.2                | 23.6 | 6.05  | 59.4       | 1.77       | 4.43                     | 0.60 |
| 38            | 1355         | Fe <sup>+3</sup> /Fe <sup>+2</sup> | 9.3                 | 22.7 | 3.86  | 33.6       | 0.78       | 17.3                     | 0.86 |
| 62            | 1355         | Fe <sup>+2</sup>                   | 32.0                | 24.6 | 5.29  | 58.1       | 0.49       | 4.42                     | 0.59 |
|               |              |                                    |                     |      |       |            |            |                          |      |
| None          | 1337         | None                               | 46.0                | 1.82 | 0.15* | 54.3       | 39.1       | 0.25*                    |      |
| 20            | 1337         | Fe <sup>+3</sup>                   | 44.8                | 1.78 | 1.45  | 53.6       | 38.4       | 4.14                     | 0.33 |
| 44            | 1337         | $Fe^{+3}/Fe^{+2}$                  | 44.2                | 5.56 | 1.61  | 52.0       | 40.9       | 5.12                     | 0.34 |
| 68            | 1337         | Fe <sup>+2</sup>                   | 45.1                | 1.42 | 0.73  | 55.7       | 40.6       | 2.06                     | 0.18 |

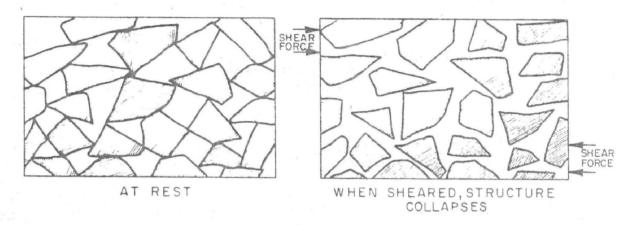
<sup>\*</sup> Data taken from previous study  $^{2}$ 

In-place density, particle size distribution, compressibility, and strength parameters were evaluated for eleven of the stone plugs. Densities, compressibilities, and shear strengths were measured on 4" diameter, 6" high cylindrical specimens trimmed from the inlet ends of the stone plugs where the effects of mine water percolation were greatest. A summary of the data is presented in Tables 9 through 14 and Figures 21 through 31 in the text and detailed data are given in the Appendix.

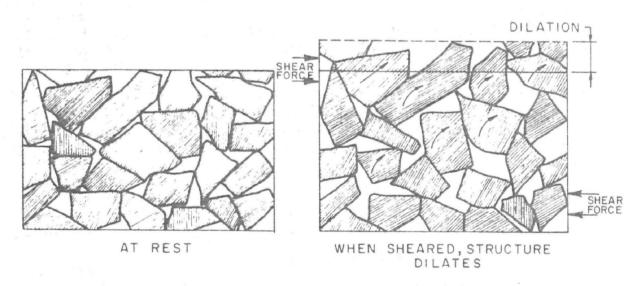
The density of uncemented granular materials has a great influence on the compressibility, permeability, and strength of the stones. The density of granular materials is determined by the specific gravity of the particles, particle shapes, particle size distribution and the particle structure. In a loose state, particle contacts are edge to plane and edge to edge producing a structure which collapses on disturbance. In a dense state, the particle contacts are primarily plane to plane producing a strong and stable structure since the material must expand to be sheared. Loose and dense structures are illustrated in Figure 21.

These states are defined by minimum and maximum densities determined by laboratory tests, and the in-place density of a granular material is related to these limiting densities by a relative density parameter. The relative density is expressed in percent and is obtained from the following equation:

DR = 
$$\frac{\gamma d_{\text{max}} (\gamma d - \gamma d_{\text{min}})}{\gamma d (\gamma d_{\text{max}} - \gamma d_{\text{min}})} \times 100\%$$


DR = relative density, %

Yd = dry density


 $Yd_{max}$  = maximum dry density

 $Yd_{min} = minimum dry density$ 

The significance of relative density values may be shown as follows:



VERY LOOSE , Dr =0 %



VERY DENSE, Dr = 100%

NOTE DENSITY

# PARTICAL STRUCTURES AT MINIMUM AND MAXIMUM DENSITIES FIGURE 21

| Relative Density<br>(Percent)  | Material<br>Description             | Type of Structure                        |  |
|--------------------------------|-------------------------------------|------------------------------------------|--|
| 0 - 15<br>15 - 35<br>36 - 65   | Very Loose<br>Loose<br>Medium Dense | Collapsing<br>Collapsing<br>Intermediate |  |
| 65 <del>-</del> 85<br>85 - 100 | Dense                               | Dilating<br>Dilating                     |  |
| 92 <b>-</b> TOO                | Very Dense                          | DITACING                                 |  |

The dry densities of the limestones in the test vessels were evaluated by relative density calculated from minimum and maximum densities shown in Table 9.

It should be noted that since the density affects the physical properties of the stones, the minimum and maximum densities provide a criterion for evaluating of stones with various particle size distributions. The stones with higher densities should have better properties. Assuming the stones were placed with the same compaction effort or at the same relative density, stone No. 1355, 1/8 x 0 size, should have the best permeability, compressibility and strength properties.

The in-place densities of trimmed cylindrical specimens of the limestones subjected to mine water percolation were measured. These densities, relative density, and porosity are presented in Tables 10 and 11. The volume decrease is also shown for completeness of the density discussion. The densities were calculated from the measurements taken on trimmed cylindrical specimens from the test vessels. In the case of Test Vessel 58, undisturbed samples could not be obtained because of the large collapse and irregularity of the stone surface in the test vessel. The three specimens of each material are listed in order of sampling from the influent end with the center of the first specimen located about six inches from the influent, and the centers of the second and third specimens approximately 12 and 18 inches, respectively.

The relative densities of all trimmed specimens show the limestones at the influent end of the vessels to be loose to very loose. In six of the eleven vessels, the final densities are less than the minimum densities obtained by very loose placement of dry material resulting in negative relative densities. These negative densities indicate a large loss of material produced by the erosion of unprotected particle surfaces leaving a particle structure considerably looser and more fragile than can be obtained by physical placement. Therefore, these limestones are very loose, compressible and susceptible to structural collapse.

TABLE 9
MINIMUM AND MAXIMUM
DRY DENSITIES

| Material<br>BCR No. | Stone<br>Size  | Minimum Dry <sup>a</sup><br>Density, PCF | Maximum Dryb<br>Density, PCF |
|---------------------|----------------|------------------------------------------|------------------------------|
| 1809                | 1/8 x 0        | 91.8                                     | 130.0                        |
| 1809                | $1/4 \times 0$ | 94.8                                     | 130.7                        |
| 1809                | $1/2 \times 0$ | 83.2                                     | 134.8                        |
|                     |                | ,                                        |                              |
| 1355                | 1/8 x 0        | 97.5                                     | 140.0                        |
| 1355                | $1/4 \times 0$ | 88.4                                     | 136.0                        |
| 1355                | $1/2 \times 0$ | 78.0                                     | 130.0                        |
|                     |                |                                          |                              |

aMinimum by ASTM Method, D-2049

bMaximum by Modified Proctor Test, ASTM Method, D-1557

TABLE 10

VOLUME LOSS, DRY DENSITY AND POROSITY OF TRIMMED SPECIMENS (AFTER 50 DAYS OF MINE WATER PERCOLATION, LAB CYCLE I)

|           | 7                  | 7olume                                | Dry          | / Densit                              | v            | <del></del>  |
|-----------|--------------------|---------------------------------------|--------------|---------------------------------------|--------------|--------------|
| Stone No. | Stone              | Loss,                                 |              | 79. Y a ,                             | DRa          | Porosity     |
| & TV No.  | Size               | 8                                     | PČF          | PCF                                   | - 8          | n, %         |
|           | Ferrous Mine Water |                                       |              |                                       |              |              |
|           | -022000.           |                                       | <del></del>  |                                       |              |              |
| 1809      | $1/2 \times 0$     | 38                                    |              |                                       |              |              |
| 58        |                    |                                       | 86.8         | 86.8                                  | 11           | 47.5         |
|           | Ferric Mi          | ne Wate                               | er           |                                       |              |              |
|           |                    |                                       | 84.0         |                                       | 4            | 49.2         |
| 1809      | $1/2 \times 0$     | 9                                     | 94.3         | 91.7                                  | 30           | 43.0         |
| 10        | 1,2 X 0            |                                       | 96.8         | , ,                                   | 37           | 41.4         |
|           |                    |                                       |              |                                       |              | <del> </del> |
|           | Ferric-Fe          | rrous M                               | line Wat     | er                                    |              |              |
|           |                    |                                       | 87.5         |                                       | -17          | 47.1         |
| 1809      | $1/8 \times 0$     | 7                                     | 99.4         | 95.1                                  | -25          | 40.0         |
| 31        |                    |                                       | 98.5         |                                       | -23          | 40.4         |
|           | <del></del>        |                                       | 04 5         |                                       |              | 42.0         |
| 1809      | 1/4 x 0            | 7                                     | 94.5<br>91.6 | 94.2                                  | -1<br>-13    | 42.8<br>44.5 |
| 32        | 1/4 X U            | •                                     | 96.6         |                                       | - <u>1</u> 3 | 41.5         |
|           |                    |                                       |              | <i>,</i>                              |              |              |
|           |                    |                                       | 77.2         |                                       | -20          | 53.3         |
| 1809      | $1/2 \times 0$     | 11                                    | 77.8         | 79.8                                  | -18          | 53.0         |
| 34        |                    |                                       | 84.3         |                                       | 3            | 49.0         |
|           |                    |                                       | 72.2         |                                       |              | 56 A         |
| 1355      | 1/2 x 0            | 15                                    | 72.2<br>81.8 | 79.5                                  | -40*<br>-4   | 56.4<br>50.6 |
| 39        | 1/2 A U            | 10                                    | 84.6         | 13.3                                  | 4            | 48.8         |
|           |                    |                                       |              | <del> </del>                          | _            | <del></del>  |
|           |                    |                                       | 92.0         |                                       | 25*          | 44.4         |
| 1337      | $1/2 \times 0$     | 18                                    | 88.4         | 90.5                                  | 15           | 46.5         |
| 46        | •                  |                                       | 91.0         |                                       | 23           | 45.0         |
|           |                    | · · · · · · · · · · · · · · · · · · · | 00 0         | · · · · · · · · · · · · · · · · · · · | 204          | AE 4         |
| 1809      | 1/2 x 50           | 13                                    | 90.0<br>83.2 | 84.8                                  | 20*<br>0     | 45.4<br>49.8 |
| 1809      | 1/2 X 30           | тэ                                    | 81.2         | 0 4 4 0                               | -6           | 50.9         |
|           |                    |                                       |              |                                       | <u> </u>     |              |

TABLE 11

VOLUME LOSS, DRY DENSITY AND POROSITY OF TRIMMED SPECIMENS (AFTER 100 DAYS OF MINE WATER PERCOLATION, LAB CYCLE I)

|            | Volume Dry Density        |      |              |          |                 |          |  |  |
|------------|---------------------------|------|--------------|----------|-----------------|----------|--|--|
| Stone No.  | Stone                     | Loss | Ya,          | Avg Y d, | $^{D}_{DR}^{a}$ | Porosity |  |  |
| & TV No.   | Size                      | 88   | PČF          | PCF      | 용               | n, %     |  |  |
|            | Ferric-Ferrous Mine Water |      |              |          |                 |          |  |  |
|            |                           |      | 106.8        |          | 28.7            | 35.5     |  |  |
| 1355       | $1/8 \times 0$            | 24   | 107.8        | 107.7    |                 |          |  |  |
| 37         | _,                        |      | 108.6        |          | 33.7            |          |  |  |
|            |                           |      |              |          |                 |          |  |  |
|            |                           |      |              |          |                 |          |  |  |
|            |                           |      | 100.0        |          | 33.1            | 39.7     |  |  |
| 1355       | $1/4 \times 0$            | 13   | 96.0         | 99.1     |                 |          |  |  |
| 38         |                           |      | 101.2        |          | 36.0            | 38.8     |  |  |
|            |                           |      | <del> </del> |          | <del></del>     |          |  |  |
|            |                           |      | 70 7         |          | -21 A           | E 6 2    |  |  |
| 1255       | 1 0                       | 3.7  | 72.7<br>74.8 |          | -21.9<br>-12.9  |          |  |  |
| 1355<br>42 | 1 x 0                     | 17   | 76.5         |          | -12.9<br>-5.9   | 53.8     |  |  |
| 42         |                           |      | 70.3         |          | -3.9            | JJ.0     |  |  |
| L          |                           |      |              |          |                 |          |  |  |

Finally, the settlement of the stone surfaces without corresponding increase of relative density from the loose placement density to medium density indicates stone erosion in the vessels.

Particle size analyses of the stones subjected to mine water percolation all showed an increase of fines. This is shown in Table 12 where the percentage of fines passing the No. 200 sieve before and after percolation are given and in Figure 22 where the effect of type of mine water on No. 1809, 1/2 x 0, stone is illustrated. The increase of fines is due to the dissolving of larger limestone particles and the accumulation of precipitates. This increase of fines would plug the voids in the stones and decrease correspondingly the flow of water.

The effect of density on permeability is illustrated in Figure 23 where permeability test results on 3/8 x 0 stone specimens prepared at different densities are presented. These data indicate a significant decrease of permeability with an increase of dry density. Thus, increasing the placement density considerably reduces the flow of water through the stone.

Triaxial tests were conducted on trimmed cylindrical specimens of the limestones to determine their compressibility and strength after mine water percolation. In the triaxial test a cylindrical specimen is enclosed by a rubber membrane, confined by a lateral pressure and sheared by an axial load applied through a piston. The triaxial test apparatus is illustrated in Figure 24.

Two types of tests were conducted in this apparatus. The first was a constant-diameter compression test in which the diameter was kept constant by continually increasing the lateral confining pressure during axial loading of the specimen as illustrated schematically in Figure 25. The need to increase the confining pressure was sensed by a lateral gage mounted at mid-height of the cylinder. During the compression test the axial deformation, axial load and confining pressure were recorded and the axial strain, axial and confining stress and the ratio between the vertical and horizontal pressures calculated.

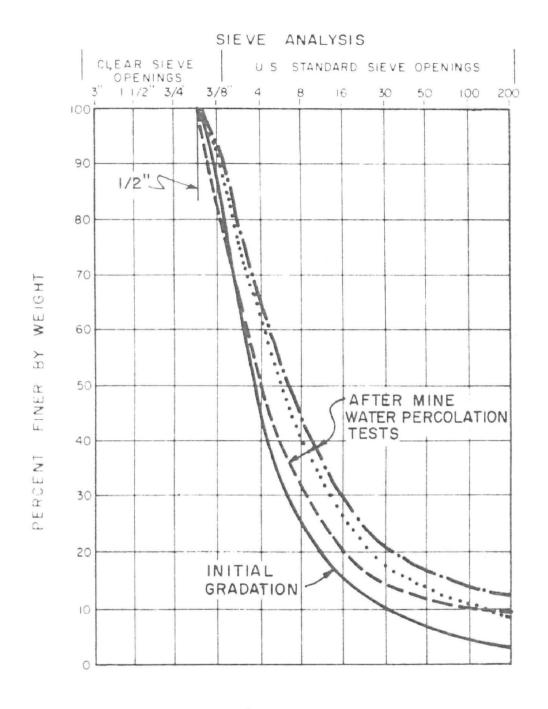
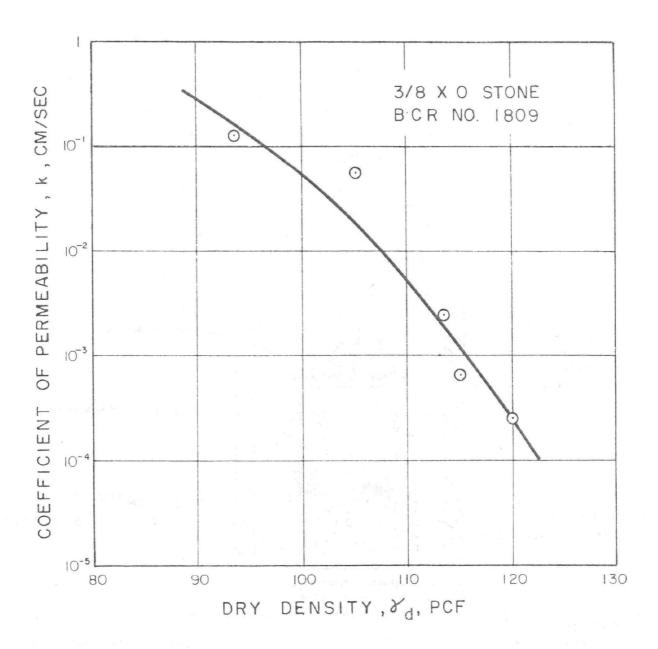

The second type of test was a shear strength test conducted at a constant confining pressure, illustrated in Figure 26. This type of test was necessary because the limestones after being subjected to the mine water percolation were found to

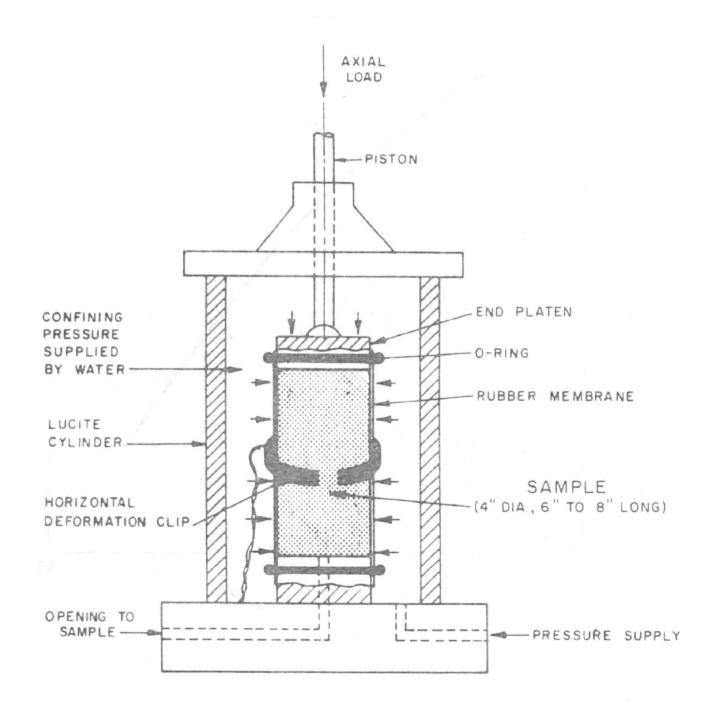
TABLE 12

INCREASE OF FINES DUE TO MINE WATER PERCOLATION

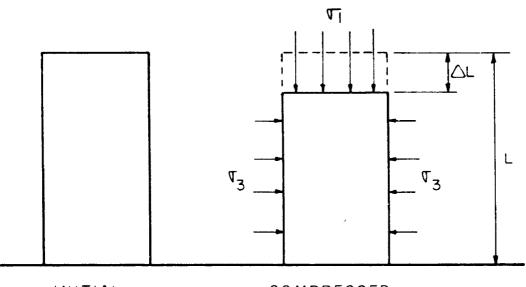
|         |                                                    |         | Sample<br>Description | Percent of Passing No. Before | 200 Sieve |  |  |  |
|---------|----------------------------------------------------|---------|-----------------------|-------------------------------|-----------|--|--|--|
| Lab Cy  | Lab Cycle I - 50 Days Percolation - Stone No. 1809 |         |                       |                               |           |  |  |  |
| 31      | 1/8 x 0                                            | F/F     |                       | 3.9                           | 5.8       |  |  |  |
| 32      | 1/4 x 0                                            | F/F     | Placed                | 3.9                           | 4.5       |  |  |  |
| 34      | $1/2 \times 0$                                     | F/F     | In                    | 1.9                           | 8.5       |  |  |  |
| 10      | 1/2 x 0 H                                          | erric   | Loose                 | 1.9                           | 10.7      |  |  |  |
| 38      | 1/2 x 0 E                                          | errous  | State                 | 1.9                           | 7.9       |  |  |  |
| Lab Cyc | cle I - 10                                         | 00 Days | Percolation           | - Stone No.                   | 1335      |  |  |  |
| 37      | 1/8 x 0                                            | F/F     | Placed                | 8.5                           | 13.7      |  |  |  |
| 38      | $1/4 \times 0$                                     | F/F     | In Loose              | 5.6                           | 7.1       |  |  |  |
| 42      | 1 x 0                                              | F/F     | State                 | 1.9                           | 9.4       |  |  |  |


F/F = Ferric-Ferrous




| COBBLES | GRAVEL |      | SAND   |        |      |  |
|---------|--------|------|--------|--------|------|--|
|         | COARSE | FINE | COARSE | MEDIUM | FINE |  |

| 1     | LIMESTONE DE-SCRIPTION |            |                               |                |  |  |
|-------|------------------------|------------|-------------------------------|----------------|--|--|
|       | MATERIAL               | STONE SIZE | PERCENT PASSING NO 200 SIEVE. | TYPE OF WATER  |  |  |
| *     | 1809                   | 1/2 X O    | 1.9                           | NONE           |  |  |
|       | 1809                   | 1/2 X O    | 8.5                           | FERRIC/FERROUS |  |  |
| ***** | 1809                   | 1/2 X O    | 7.9                           | FERROUS        |  |  |
|       | 1809                   | 1/2 X O    | 10.7                          | FERRIC         |  |  |

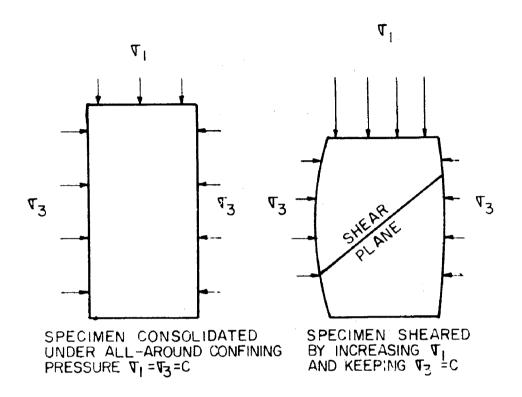

GRAIN SIZE DISTRIBUTIONS BEFORE AND AFTER MINE WATER PERCOLATION STONE NO. 1809, 1/2 X O SIZE FIGURE 22



PERMEABILITY VS. DRY DENSITY FIGURE 23



TRIAXIAL CELL FIGURE 24




INITIAL SPECIMEN COMPRESSED SPECIMEN

AXIAL COMPRESSION,  $\epsilon_{\parallel} = \frac{\triangle L}{L} \times 100 \%$ 

CONSTANT DIAMETER STRESS RATIO,  $\kappa_{o}$ =  $\tau_{3}$  /  $\tau_{1}$ 

# CONSTANT DIAMETER COMPRESSION TEST CONSTANT DIAMETER FIGURE 25



CONSOLIDATED DRAINED TRIAXIAL TEST CONSTANT  $\mathbf{V}_3$  FIGURE 26

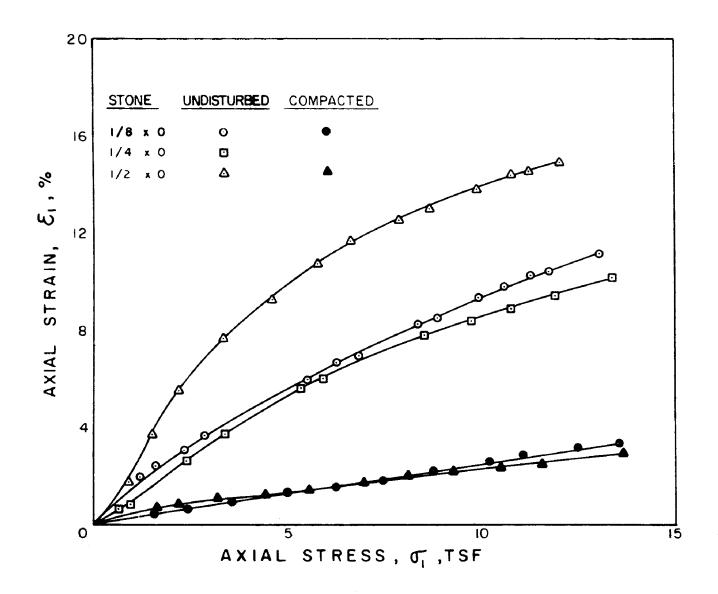
be uncemented and, therefore, behaved as granular materials. Granular materials derive their strength from particle stresses on the failure plane. The shear strength is derived from cohesion and friction components and may be expressed as:

 $S = C + N \tan \phi$ 

where S = Shear strength

C = Cohesion

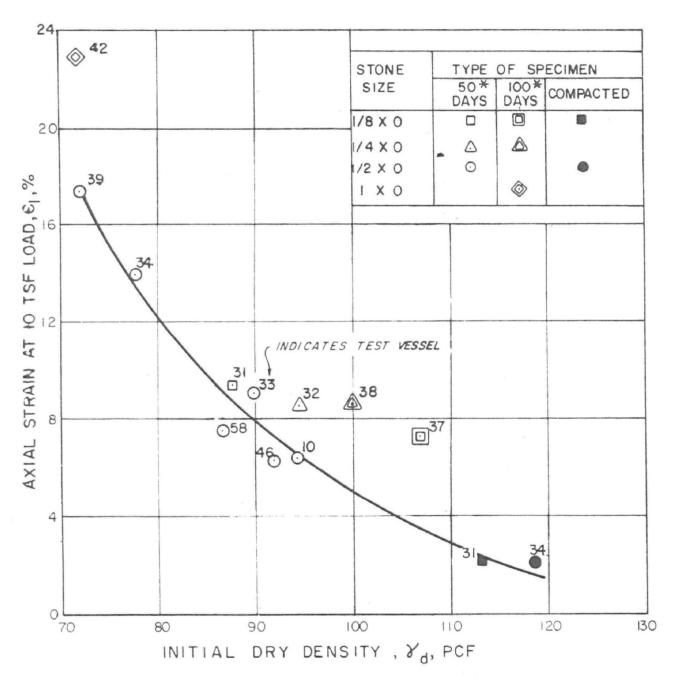
N = Normal stress on failure plane


 $\phi$  = Angle of internal friction

The cohesion and angle of internal friction are the strength parameters and are normally evaluated in the triaxial shear test.

A mine seal can develop a normal stress, and hence, shear strength from two mechanisms: (1) the hydrostatic pressure on the seal tending to push the seal out of the opening will tend to expand the seal and increase the confining pressure; (2) settlement of the roof will transfer part of the overburden load to the limestone seal.

Compression tests were conducted on trimmed undisturbed specimens from ten vessels and on remolded specimens from one vessel. In the latter case, a remolded specimen had to be used because it was impossible to trim a specimen from the collapsed material in Vessel 58. Since the compression data showed the limestones to be very compressible, two additional tests were conducted on remolded and compacted material prepared at a greater density than measured in the test vessels to determine the effect of density on the stiffness of the limestones. Typical axial stress-strain curves for three different stone sizes are shown in Figure 27 and all compression test data are summarized in Table 13.


The stress-strain compression data show the in-place limestones subjected to mine water percolation to be very compressible. The low stiffness of the limestones is the result of the loose placement of the stone and subsequent erosion of the limestone by mine water percolation. The effect of density variation can be seen from the stressstrain curves in Figure 27 and from the compression versus density plot in Figure 28.



STRESS-STRAIN CURVES FROM CONSTANT DIAMETER COMPRESSION TESTS FIGURE 27

TABLE 13
SUMMARY OF COMPRESSION TEST RESULTS, LAB CYCLE I

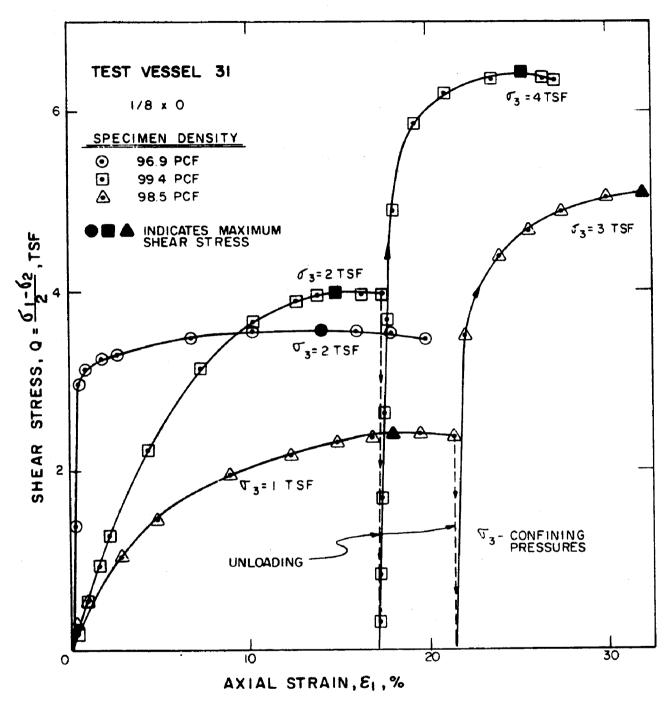
| Test<br>Vessel<br>No. | Stone Type of<br>Size Specimen | Dry Density<br>Initial | γ,Υ <sub>d</sub> , PCF<br>Final | Axial<br>Strain<br>at 10<br>TSF Load | d k = |
|-----------------------|--------------------------------|------------------------|---------------------------------|--------------------------------------|-------|
|                       | Ferric Water                   |                        |                                 |                                      |       |
| 10                    | $1/2 \times 0$ Remolded        | 94.3                   | 101.7                           | 6.4                                  | .43   |
|                       | Ferrous Water                  |                        |                                 |                                      |       |
| 58                    | $1/2 \times 0$ Remolded        | 86.8                   | 92.0                            | 7.5                                  | .45   |
|                       | Ferric-Ferrous Water           | <u>r</u>               |                                 |                                      | ·     |
| 31                    | 1/8 x 0 Undisturbed            | 87.5                   | 96.9                            | 9.4                                  | .43   |
| 31                    | 1/8 x 0 Compacted              | 113.0                  | 117.8                           | 2.5                                  | .34   |
| 32                    | 1/4 x 0 Undisturbed            | 94.5                   | 105.8                           | 8.6                                  | .44   |
| 34                    | $1/2 \times 0$ Undisturbed     | 77.2                   | 90.5                            | 14.0                                 | .46   |
| 34                    | 1/2 x 0 Compacted              | 118.8                  | 120.9                           | 2.3                                  | .36   |
| 39                    | 1/2 x 0 Undisturbed            | 72.2                   | 92.3                            | 17.4                                 | .43   |
| 46                    | 1/2 x 0 Undisturbed            | 92.0                   | 99.3                            | 6.2                                  | .43   |
| 33                    | 1/2 x50 Undisturbed            | 90.0                   | 102.8                           | 9.1                                  | .38   |
| 37                    | 1/8 x 0 Undisturbed            | 106.8                  | 117.2                           | 7.0                                  | .45   |
| 38                    | 1/4 x 0 Undisturbed            | 100.0                  | 111.9                           | 8.5                                  | .41   |
| 42                    | 1 x 0 Undisturbed              | 72.7                   | 96.9                            | 22.5                                 | .53   |



\* UNDISTURBED SPECIMENS AT IN-PLACE DENSITIES SUBJECTED TO 50 AND IOO DAYS MINE WATER PERCOLATION.

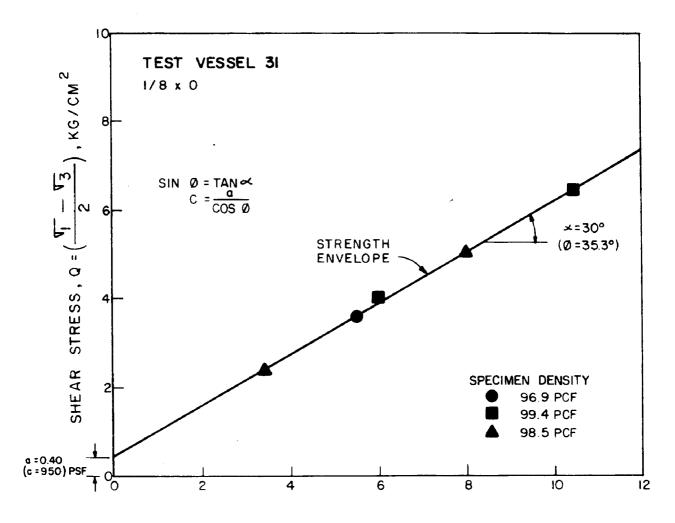
COMPRESSIBILITY VS. DENSITY
FIGURE 28

The stress-strain curves of the three undisturbed samples in Figure 27 do not show the expected decrease of compressibility with an increase of particle size. It was anticipated that the  $1/2 \times 0$  stone would be the least compressible and the compressibility would increase with the decrease of particle size as represented by the  $1/4 \times 0$  and  $1/8 \times 0$  stone, respectively. The deviation from the expected behavior is believed to be due to the low and variable densities, with the variations in density overshadowing the gradation effect.


Finally, the specimens trimmed from the limestones subjected to 100 days mine water percolation specimens. This can be observed in Figure 28 where compressibility is related to dry density.

Triaxial tests were conducted on two or three specimens from each vessel to determine the shear strength parameters of the limestones following the mine water percolation tests.

The strength parameters were obtained from strength envelopes based on stress-strain curves from four to six tests at different confining pressures as illustrated in Figure 29. For some specimens more than one strength point was obtained by shearing the specimen at two different confining pressures. The shear strength parameters were obtained from a strength envelope established from the maximum shear stresses of the triaxial test in Figure 30.


The results of all the tests are summarized in Table 14, where the average dry density, average axial strain at failure, cohesion, angle of internal friction and shear strength at a confining pressure of 2.0 TSF are given. Shear strengths developed by the stones at a given confining pressure are presented to permit a comparison of the shear strengths. These shear strengths are plotted against dry density in Figure 31.

The triaxial shear test data shows the limestones subjected to mine water percolation behave as granular materials whose shear strength is a function of the confining pressure and in-place density. For a typical confining pressure of 2.0 TSF, the shear strengths were mainly a function of the density, of the stone. Some decrease of strength was observed for the materials subjected to 100 days of percolation, however, the decrease is small.



STRESS-STRAIN CURVES FROM CONSOLIDATED DRAINED TRIAXIAL TESTS

FIGURE 29



MEAN NORMAL STRESS, 
$$P = \left(\frac{\sqrt{1} + \sqrt{3}}{2}\right)$$
, KG/CM<sup>2</sup>

STRAIN RATE = 0.06 IN./MIN CONSOLIDATION TIME = 1/2 HOUR

SAMPLE DIMENSIONS
DIAMETER ~ 4 0 IN.
LENGTH ~ 6.0 IN.

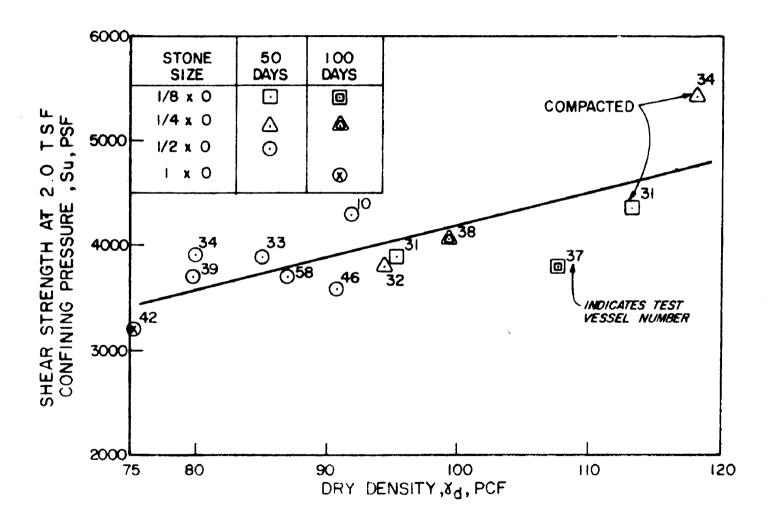

# TYPICAL TRIAXIAL TEST STRENGTH DIAGRAM

FIGURE 30

TABLE 14

STRENGTH PARAMETERS AND SHEAR STRENGTH
FOR A 2.0 TSF OVERPURDEN PRESSURE

|                |               |                     | Average<br>Dry | Average<br>Axial<br>Strain<br>at | Param              | ength<br>meters        | Shear <sup>a</sup>  |
|----------------|---------------|---------------------|----------------|----------------------------------|--------------------|------------------------|---------------------|
| Test<br>Vessel | Stone<br>Size | Type of<br>Specimen | Density Y DCF  | Failure                          | Cohesion<br>C, PCF | Friction Angle, $\phi$ | Strength<br>Su, PSF |
| 10             | 1/2 x 0       | Undisturbed         | 9.17           | 15                               | 1,600              | 35.5                   | 4,300               |
| 58             | 1/2 x 0       | Remolded            | 86.8           | 12                               | 640                | 36.4                   | 3,700               |
| 31             | 1/8 x 0       | Undisturbed         | 95.1           | 18                               | 950                | 35.3                   | 3,900               |
| 31 .           | 1/8 x 0       | Compacted           | 113.2          | 10                               | 1,100              | 37.0                   | 4,400               |
| 32             | 1/4 x 0       | Undisturbed         | 94.2           | 19                               | 700                | 35.3                   | 3,800               |
| 34             | 1/2 x 0       | Undisturbed.        | 79.8           | 24                               | 350                | 39.5                   | 3,900               |
| 34             | 1/2 x 0       | Compacted           | 118.0          | 6                                | 2,700              | 37.0                   | 5,400               |
| 39             | 1/2 x 0       | Undisturbed         | 79.5           | 22                               | 0                  | 42.4                   | 3,700               |
| 46             | 1/2 x 0       | Undisturbed         | 90.5           | 23                               | 0                  | 41.5                   | 3,600               |
| 33             | 1/2 x 50      | Undisturbed         | 84.8           | 23                               | 400                | 37.3                   | 3,900               |
| 37             | 1/8 x 0       | Undisturbed         | 107.7          | 18                               | 0 .                | 43.8                   | 3,800               |
| 38             | 1/4 x 0       | Undisturbed         | 99.1           | 22                               | 670                | 40.5                   | 4,100               |
| 42*            | 1 x 0;        | Undisturbed         | 74.7           | 20                               | 0                  | 38.7                   | 3,200               |



SHEAR STRENGTH VS. DENSITY FIGURE 31

The investigation of the physical properties of limestones placed at low densities showed that they are not suitable for mine sealing. The low density produces a permeable limestone which is eroded by the mine water. Since the chemical reaction between the stone and mine water did not result in any cementation, the erosion left a very collapsible stone structure. The limestones subjected to mine water percolation were very compressible and had small shear strength.

## Lab Cycle II

Lab Cycle I clearly indicated that the physical properties determining the suitability of a limestone as a mine plug, permeability, compressibility, and strength are a function of particle size distribution and density. Hence, Lab Cycle II was conducted to further investigate the effects of varying particle size distribution and placement density. In addition, additives which might aid in cementing the stone particles were investigated.

A total of twelve (12) specimens were tested in Lab Cycle II. Ten of these were subjected to ferric/ferrous test water, and two of these were tested with South Pittsburgh city water. Commercially available 3/8 to dust (called 3/8 x 0 size) grade of limestone No. 1809 was used to prepare all specimens.

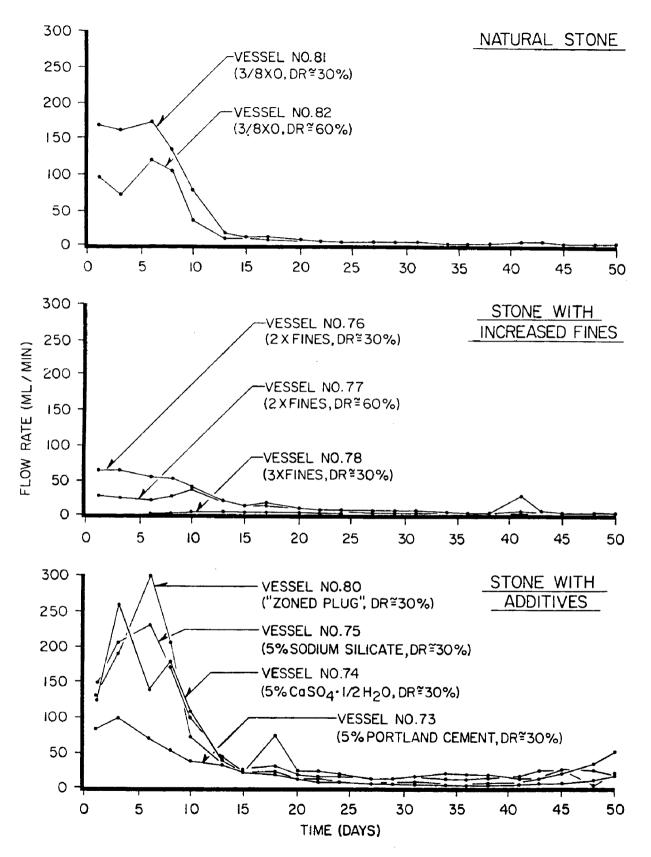
Three additives were investigated. Portland cement, calcium sulfate hemihydrate (plaster of paris), and sodium silicate were blended with 3/8 x 0 stone in 5% concentrations. These three specimens were placed in test vessels at about 30% relative density. All three were tested on ferric/ferrous water.

Four specimens containing increased quantities of limestone fines were tested on ferric/ferrous water. Minus 50 mesh fines were obtained by screening 3/8" to dust stone. These fines were added to 3/8 x 0 stone in sufficient quantity to increase the fraction of material passing a No. 200 sieve by factors of 2 and 3. Each of these two materials was placed at both 30% and 60% relative density for a total of four specimens.

A "zoned" plug was also tested on ferric/ferrous water. The first foot of stone contained 5% ferric sulfate and 15% sodium silicate. This section was intended to be a water "pretreatment" area and was not considered to be

part of the actual limestone plug. The remaining five feet of the specimen was  $3/8 \times 0$  stone. The entire six foot long specimen was placed at about 30% relative density.

Four "blanks", 3/8 x 0 stone as received from the quarry, were tested. Two of these specimens were placed at about 30% and 60% relative density and tested on ferric/ferrous water. The other two were placed at about 0% and 30% relative density and tested on South Pittsburgh city water.


As in Lab Cycle I, the test vessels were assigned vessel numbers for identification purposes. A list of vessel numbers and specimen descriptions is presented in Table A81 in the Appendix.

Testing was performed in a manner similar to Lab Cycle I. Heads and flow rates were measured after 30 minutes, 3 hours, and 8 hours during the first day of testing. Effluent pH values were also recorded after 8 hours of testing. Beginning on the second day of testing (1 day after start-up) head, flow, pH, and specific conductance were recorded for each specimen on a Monday-Wednesday-Friday schedule. All specimens were tested for 50 days. Vessel effluent samples were collected after 1, 24 and 50 days of testing.

Flow and effluent composition data for the 12 specimens tested in Lab Cycle II are presented in Tables A82 through A93. These data show that all specimens tested on synthetic mine water effectively obstructed the flow of water and treated water which passed thorugh the stone. Flow and neutralization behaviors were generally more satisfactory than those observed in Lab Cycle I.

Flow histories for specimens tested on synthetic mine water are presented in Figure 32. Flow rates for Vessel No. 79 were always less than 0.5 ml/min, so this vessel's flow history was not included. The flow histories show that both increasing the placement density and increasing the fines content of the stone resulted in significantly lower flow rates. Increasing the fines content proved to be the most effective means of obstructing water flow.

Flow data for the two specimens tested on tap water also showed decreasing flow rates over the test period, indicating that physical effects are at least partly responsible for observed flow decreases. The flow magnitudes, however,



LAB CYCLE II-SPECIMEN FLOW HISTORIES
FIGURE 32

were much larger than for specimens tested on synthetic mine water. These data show a discontinuity at 10 days after start-up due to an air pressure failure. Although the two vessels operated without air pressure for only a few minutes, it is believed that the stones' grain structure was permanently affected.

Physical examinations, described in Lab Cycle I, were conducted on the ten test vessels from Lab Cycle II which were tested on ferric/ferrous water. A summary of the data is presented in Tables 15 to 23 and Figure 33 to 36 in the text, and details of particle size, compressibility and shear strength test data are given in the Appendix.

Discoloration of the limestones was observed for the entire length of the specimens containing additives, and the length of discoloration of the remaining stones was directly related to the quantity of fines and degree of compaction. The natural stone at DR = 30% (Vessel No. 81) showed the greatest discoloration while the stone with 3 x fines and placed at DR = 60% was discolored for only the first six inches from the influent end.

The surface measurement of the test specimens indicated some volume decrease in all test vessels. This data is included in Table 15. The following trends were observed:

- 1. Volume losses were largest for specimens with the highest fines content and smallest for specimens with the smallest fines content.
- 2. Higher placement densities resulted in lower volume losses.
- 3. Volume losses for specimens containing additives were comparable to losses for the corresponding natural stone.

These data indicate that stones must be placed at higher densities than DR = 60% to prevent excessive stone settlement. Furthermore, the degree of compaction must be increased with the percent of fines in the stone to compensate for the greater compressibility of fines.

The in-place densities, relative densities and porosities of trimmed cylindrical specimens from the test vessels are listed in Table 15. Evaluating the in-place densities

TABLE 15

VOLUME LOSS, DRY DENSITY AND POROSITY OF TRIMMED SPECIMENS
(AFTER 50 DAYS OF FERRIC-FERROUS MINE WATER PERCOLATION, 3/8 X 0 STONE,
LAB CYCLE II)

| Test   | Material                 | Volume | D                       | ry Densit                  | y                      | Porosity |
|--------|--------------------------|--------|-------------------------|----------------------------|------------------------|----------|
| Vessel | Description              | Loss,Z | Y <sub>d</sub> ,<br>pcf | Avg <sup>Y</sup> d,<br>pcf | Dr <sup>a</sup> ,<br>% | n, %     |
|        |                          |        | 95.2                    |                            | 6                      | 42.4     |
| 81     | Natural                  | 7      | 97.7                    | 95.2                       | 13                     | 41.0     |
|        | DR = 30                  |        | 92.8                    |                            | -2                     | 43.9     |
|        |                          |        | 96.2                    |                            | 9                      | 41.8     |
| 82     | Natural                  | 2      | 100.1                   | 100.8                      | 20                     | 39.5     |
| }      | DR = 60                  |        | 106.1                   |                            | 37                     | 35.8     |
|        |                          |        | 110.8                   |                            | 40                     | 32.9     |
| 76     | 2 x Fines                | 16     | 115.0                   | 113.9                      | 50                     | 30.6     |
|        | DR = 30                  |        | 115.8                   | 1                          | 52                     | 30.0     |
|        |                          |        | 118.0                   |                            | 57                     | 28.7     |
| 77     | 2 x Fines                | 8      | 118.6                   | 118.2                      | 59                     | 28.2     |
|        | DR = 60                  | !      | 117.9                   |                            | 57                     | 28.7     |
|        |                          |        | 121.2                   |                            | 76                     | 26.7     |
| 78     | 3 x Fines                | 20     | 116.3                   | 116.5                      | 67                     | 29.7     |
|        | DR = 30                  |        | 112.1                   |                            | 58                     | 32.2     |
|        |                          |        | 117.6                   |                            | 69                     | 28.9     |
| 79     | 3 x Fines                | 8      | 111.7                   | 115.3                      | 57                     | 32,5     |
|        | DR = 60                  |        | 116.5                   |                            | 62                     | 29.5     |
|        |                          |        | 99.0                    |                            | 17                     | 40.1     |
| 73     | 5% Cement                | 3      | 86.5                    | 94.2                       | -25                    | 47.7     |
|        | DR = 30                  |        | 97.0                    |                            | 11                     | 41.4     |
|        | 5% Calcium               |        | 88.2                    |                            | -19                    | 46.7     |
| 74     | Sulfate Hemi-<br>hydrate | 7      | 103.7                   | 99.3                       | -30                    | 37.3     |
|        | ,                        |        | 106.0                   |                            | 37                     | 35.8     |
|        | 5% Sodium                |        | 77.8                    |                            | -63                    | 52.9     |
| 75     | Silicate                 | 6      | 86.8                    | 85.6                       | -24                    | 47.5     |
|        | DR = 30                  |        | 92.3                    |                            | -5                     | 44.3     |
|        |                          |        | 90.4                    |                            | -11                    | 45.3     |
| 80     | Zoned                    | 8      | 95.7                    | 97.7                       | 7                      | 42.1     |
| ,      | DR = 30                  |        | 100.8                   |                            | 22                     | 39.1     |

using relative density based on minimum and maximum densities (given in Table 16), the following observations can be made:

- 1. Relative densities smaller than the placement densities were measured in the natural stones in Vessels No. 81 and 82. A possible explanation for the low density could be the washing out of fines in the area of sampling.
- 2. Specimens from Vessel No. 77 and Vessel No. 78, where the stones were placed at DR = 30%, had average relative densities of 47 and 67 percent, respectively. This densification could have been caused by wetting of the stone combined with the confining pressure. This is supported by the large volume losses.
- 3. The negative relative densities in the stone with 5% sodium silicate indicate adverse chemical reaction leading to stone erosion.

TABLE 16
MINIMUM AND MAXIMUM DRY DENSITIES

| Stone No. | Stone<br>Size  | Description | Minimum Dry <sup>a</sup><br>Density, PCF | Maximum Dryb<br>Density, PCF |
|-----------|----------------|-------------|------------------------------------------|------------------------------|
| 1809      | $3/8 \times 0$ | Natural     | 94.6                                     | 139.0                        |
| 1809      | $3/8 \times 0$ | 2 x Fines   | 98.6                                     | 141.6                        |
| 1809      | $3/8 \times 0$ | 3 x Fines   | 90.7                                     | 138.0                        |

aMinimum by ASTM Method, D-2049

Finally, the comparison of the minimum and maximum densities of the three stones indicates the stone with 2 x fines can be placed at higher densities than the other two stones, resulting in better physical properties.

The comparison of the particle size distribution of the stones before and after percolation testing indicates an increase of fines in all materials (Table 17). The increase of fines is probably the result of precipitate

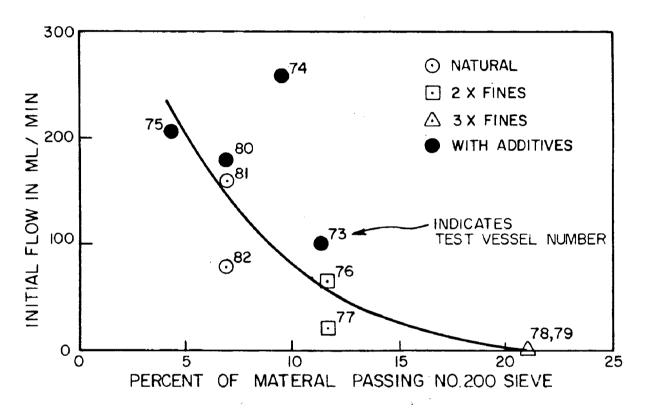
bMaximum by Modified Proctor Test, ASTM Method, D-1577

TABLE 17

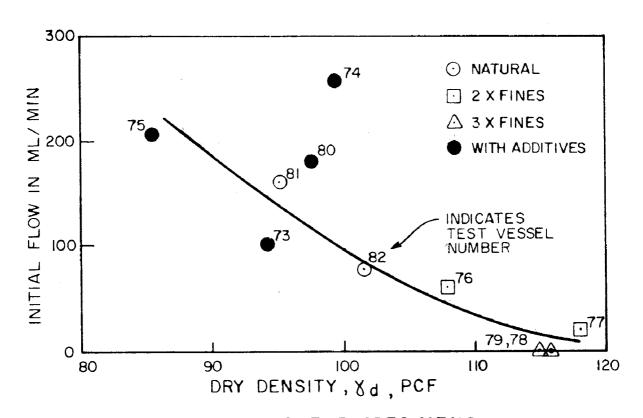
INCREASE IN FINES DUE TO MINE WATER PERCOLATION

| Test   | Stone       | Type of      | Sample            | Percent of Material<br>Passing No. 200 Sieve |       |  |
|--------|-------------|--------------|-------------------|----------------------------------------------|-------|--|
| Vessel | Size        | Water        | Description       | Before                                       | After |  |
| L      | ab Cycle II | - 50 Days Pe | rcolation - Stone | No. 1809                                     |       |  |
| 81     | 3/8 x 0     | F/F          | Natural DR = 30   | 6.9                                          | 8.7   |  |
| 82     | 3/8 x 0     | F/F          | DR ≈ 60           | 6.9                                          | 8.6   |  |
| 76     | 3/8 x 0     | F/F          | 2xFines DR = 30   | 11.6                                         | 14.1  |  |
| 77     | 3/8 x 0     | F/F          | DR = 60           | 11.6                                         | 16.5  |  |
| 78     | 3/8 x 0     | F/F          | 3xFines DR = 30   | 21.1                                         | 24.9  |  |
| 79     | 3/8 x 0     | F/F          | DR = 60           | 21.1                                         | 25.6  |  |

F/F = Ferric - Ferrous


DR = Relative Density in Percent

accumulation. It can be concluded that the decrease of flow experienced in all vessels was at least partially due to precipitates plugging the stone voids.


The initial flow of the synthetic mine water through the vessels was found to be related to the percent of fines and density of the stones. To illustrate this, the initial flow after three days of percolation has been plotted against percent of material passing the No. 200 sieve in Figure 33 and density in Figure 34.

Triaxial tests were conducted on trimmed cylindrical specimens on all test vessel materials. The compression test results are shown in Table 18 and Figure 35, and shear strength in Table 19 and Figure 36.

These results illustrate that the compressibility and shear strength are independent of the particle size distribution in the mixes tested and are directly related in the material density. The good agreement of the behavior of the specimens from materials with additives with the natural stones indicates that the additives did not increase the stiffness of the material nor increase its shear strength.



LAB CYCLE I SPECIMENS INITIAL FLOW VS. FINES CONTENT FIGURE 33



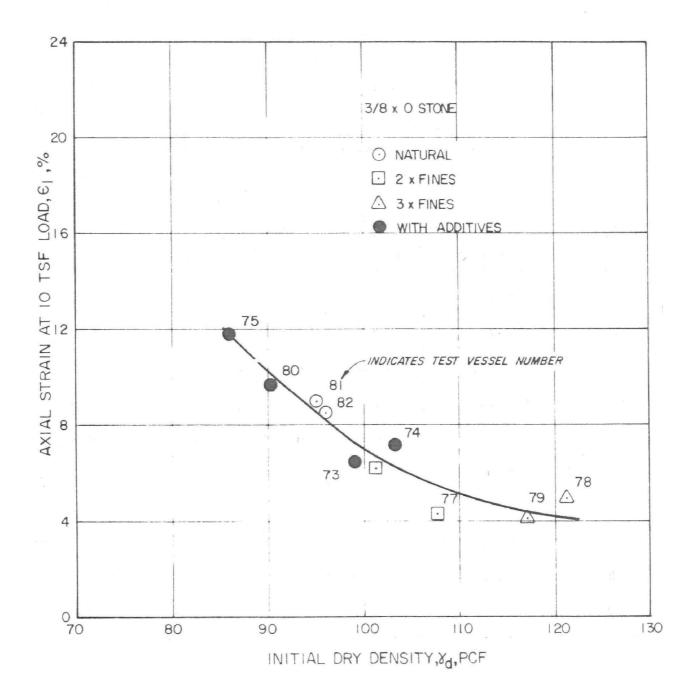

LAB CYCLE II SPECIMENS INITIAL FLOW VS. DENSITY FIGURE 34

TABLE 18

SUMMARY OF COMPRESSION TEST RESULTS, LAB CYCLE II

(3/8 x 0 Stone, Trimmed Undisturbed Specimens)

| Test   | Material              | Dry Densi | ity, <sup>Y</sup> d, pcf | Axial Strain<br>@ 10 tsf | σ3 σ                              |
|--------|-----------------------|-----------|--------------------------|--------------------------|-----------------------------------|
| Vessel | Description           | Initial   | Final                    | Load, $\varepsilon_1$ ,% | $k_0 = \frac{\sigma_3}{\sigma_1}$ |
| 81     | Natural               | 95.2      | 106.5                    | 9.0                      | 0.43                              |
| 82     | Natural               | 96.2      | 107.7                    | 8.6                      | 0.43                              |
| 76     | 2 x Fines             | 110.8     | 119.8                    | 6.2                      | 0.43                              |
| 77     | 2 x Fines             | 118.0     | 124.5                    | 4.3                      | 0.35                              |
| 78     | 3 x Fines             | 121.2     | 128.7                    | 4.9                      | 0.42                              |
| 79     | 3 x Fines             | 117.6     | 123.6                    | 4.1                      | 0.42                              |
| 73     | 5% Cement             | 99.0      | 108.4                    | 6.5                      | 0.41                              |
| 74     | 5% CaSO <sub>4</sub>  | 103.7     | 114.6                    | 7.2                      | 0.37                              |
| 75     | 5% NaSiO <sub>2</sub> | 86.8      | 100.6                    | 11.8                     | 0.45                              |
| 80     | Zoned                 | 90.4      | 102.2                    | 9.6                      | 0.40                              |



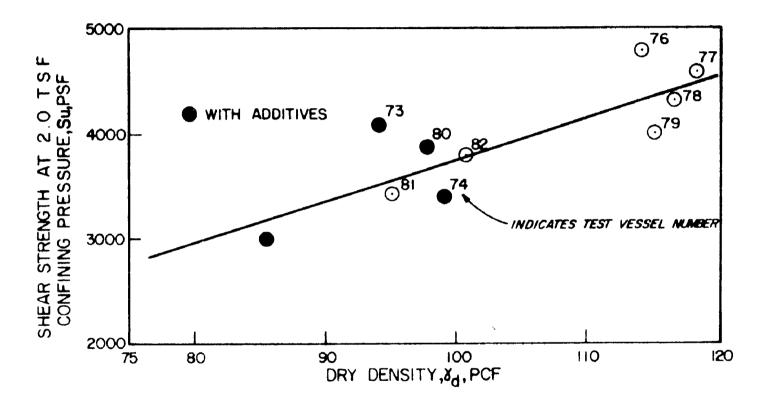

LAB CYCLE II SPECIMENS COMPRESSIBILITY VS. DENSITY

FIGURE 35

STRENGTH PARAMETERS AND SHEAR STRENGTH FOR A 2.0 TSF OVERBURDEN PRESSURE, 3/8 x 0 STONE, LAB CYCLE II

| Test   | Test Material Vessel Description |                                 | Average<br>Axial | Stre<br>Param      | Shear <sup>a</sup>  |                     |
|--------|----------------------------------|---------------------------------|------------------|--------------------|---------------------|---------------------|
| Vesser | Description                      | Density<br>Y <sub>d</sub> , pcf |                  | Cohesion<br>C, pcf | Friction<br>Angle,¢ | Strength<br>Su, psf |
| 81     | Natural                          | 95.2                            | 16               | 750                | 34.6                | 3,400               |
| 82     | Natural                          | 100.8                           | 15               | 750                | 37.8                | 3,800               |
| 76     | 2 x Fines                        | 113.9                           | 12               | 1,500              | 39.6                | 4,800               |
| 77     | 2 x Fines                        | 118.2                           | 11               | 1,000              | 42.4                | 4,600               |
| 78     | 3 x Fines                        | 116.5                           | 16               | 560                | 43.4                | 4,300               |
| 79     | 3 x Fines                        | 115.3                           | 8                | 600                | 40.5                | 4,000               |
| 73     | 5% Cement                        | 94.2                            |                  | 900                | 38.8                | 4,100               |
| 74     | 5% Ca                            | 99.3                            | 13               | 0                  | 40.5                | 3,400               |
| 75     | 5% NaSO <sub>2</sub>             | 85.6                            | 18               | 360                | 33.2                | 3,000               |
| 80.    | Zoned                            | 97.7                            | 15               | 650                | 38.3                | 3,800               |

<sup>&</sup>lt;sup>a</sup> Shear strength at a confining pressure of 2.0 tsf.



LAB CYCLE II SPECIMENS SHEAR STRENGTH VS. DENSITY FIGURE 36

## SECTION VII

### **ACKNOWLEDGEMENTS**

The support of the project by the Office of Research and Monitoring of the Environmental Protection Agency and the help provided by Dr. James M. Shackelford, the Project Officer, and Mr. Ernst P. Hall, Chief of the Pollution Control Analysis Branch, is acknowledged with sincere thanks.

Messrs. Martin Wielesky and Ed Wielesky of the Winfield Lime and Stone Company, Mr. Hutchinson of the Elkins Limestone Company, and Mr. Garn of the Mineral Pigments and Metals Company provided valuable technical support during the investigative portion of this study.

The principal investigators of this study were Mr. R. G. Penrose, Jr., of the Cyrus Wm. Rice Division - NUS Corporation and Mr. I. Holubec of E. D'Appolonia Consulting Engineers, Inc.

## REFERENCES

- 1. Halliburton Company, "New Mine Sealing Techniques for Water Pollution Abatement", FWPCA Publication No. 14010 DMO.
- Bituminous Coal Research, Inc., "Studies in Limestone Treatment of Acid Mine Drainage", FWQA Publication No. 14010 EIZ 01/70.

APPENDIX A

TABLE Al

## SPECIMENS TESTED ON FERRIC WATER

#### VESSEL NO. DESCRIPTION 1 Stone #1809, 1/2 x 0 size containing 10% slag Stone #1809, 1 x 0 size containing 10% slag 2 3 Stone #1809, 1/2 x 0 size containing 5% bentonite 4 Stone #1809, 1 x 0 size containing 5% bentonite 5 Stone #1809, 1/2 x 0 size containing 10% flyash 6 Stone #1809, 1 x 0 size containing 10% flyash 7 Stone #1809, $1/8 \times 0$ size 8 Stone #1809, $1/4 \times 0$ size 9 Stone #1809, $1/2 \times 50$ m size 10 Stone #1809, $1/2 \times 0$ size Stone #1809, 1 $\times$ 50 m size 11 12 Stone #1809, 1 x 0 size 13 Stone #1355, $1/8 \times 0$ size 14 Stone #1355, $1/4 \times 0$ size 15 Stone #1355, $1/2 \times 50 \text{ m size}$ 16 Stone #1355, $1/2 \times 0$ size 17 Stone #1355, $1 \times 50$ m size 18 Stone #1355, $1 \times 0$ size 19 Stone #1337, $1/8 \times 0$ size 20 Stone #1337, $1/4 \times 0$ size Stone #1337, $1/2 \times 0$ size 21 22 Stone #1337, $1/2 \times 50 \text{ m size}$ Stone #1337, 1 x 50 m size 23 Stone #1337, 1 x 0 size 24

## TABLE A2

# SPECIMENS TESTED ON FERRIC/FERROUS WATER

# VESSEL NO.

## DESCRIPTION

```
Stone #1809, 1/2 x 0 size containing 10% slag
25
       Stone #1809, 1 x 0 size containing 10% slag
26
        Stone #1809, 1/2 x 0 size containing 5% bentonite
27
        Stone #1809, 1 x 0 size containing 5% bentonite
28
        Stone #1809, 1/2 x 0 size containing 10% flyash
29
        Stone #1809, 1 x 0 size containing 10% flyash
30
        Stone #1809, 1/8 x 0 size
31
        Stone #1809, 1/4 \times 0 size
32
        Stone #1809, 1/2 \times 50 \text{ m size}
33
        Stone #1809, 1/2 \times 0 size
34
        Stone #1809, 1 \times 50 m size
35
        Stone #1809, 1 \times 0 size
36
        Stone #1355, 1/8 \times 0 size
37
        Stone #1355, 1/4 \times 0 size
38
        Stone \#1355, 1/2 \times 0 size
39
        Stone #1355, 1/2 \times 50 \text{ m size}
40
        Stone \#1355, 1 x 50 m size
41
        Stone #1355, 1 x 0 size
42
        Stone #1337, 1/8 \times 0 size
43
        Stone #1337, 1/4 x 0 size
44
        Stone #1337, 1/2 \times 50 \text{ m size}
45
        Stone \#1337, 1/2 \times 0 size
46
        Stone #1337, 1 x 50 m size
47
        Stone #1337, 1 \times 0 size
48
```

# TABLE A3

# SPECIMENS TESTED ON FERROUS WATER

TABLE A4
INITIAL PARTICLE SIZE DISTRIBUTIONS
MATERIAL NO. 1809
(Percent of Material Smaller by Weight)

| Sieve |       |        | Sto     | ne Size  |         |         |
|-------|-------|--------|---------|----------|---------|---------|
| Size  | 1 x 0 | 1 x 50 | 1/2 x 0 | 1/2 x 50 | 1/4 x 0 | 1/8 x 0 |
| 1 1/2 | 100.0 | 100.0  |         |          |         |         |
| 3/4   | 94.0  | 96.2   | 100.0   | 100.0    |         |         |
| 3/8   | 61.7  | 67.5   | 84.0    | 79.8     | 100.0   |         |
| 4     | 33.9  | 39.2   | 42.5    | 40.1     | 88.3    | 100.0   |
| 8     | 19.6  | 21.5   | 24.9    | 22.0     | 58.1    | 65.9    |
| 16    | 10.4  | 9.7    | 14.2    | 10.1     | 34.2    | 33.3    |
| 30    | 5.5   | 3.5    | 8.1     | 3.6      | 19.5    | 16.6    |
| 50    | 3.1   | 0.5    | 4.8     | 0.4      | 10.9    | 9.0     |
| 100   | 1.8   | 0.2    | 2.9     | 0.1      | 6.1     | 5.5     |
| 200 - | 1.2   | 0.1    | 1.9     | 0.1      | 3.9     | 3.9     |

| Sieve<br>Size |                | Stone Size |               |         |                    |         |  |  |  |  |  |  |
|---------------|----------------|------------|---------------|---------|--------------------|---------|--|--|--|--|--|--|
| 5126          | Flyas<br>Added | h          | Slag<br>Added |         | Bentonite<br>Added |         |  |  |  |  |  |  |
|               | 1 x 0          | 1/2 x 0    | 1 x 0         | 1/2 x 0 | 1 x 0              | 1/2 x 0 |  |  |  |  |  |  |
| 1 1/2         | 100.0          |            | 100.0         |         | 100.0              |         |  |  |  |  |  |  |
| 3/4           | 97.1           | 100.0      | -95.8         | 100.0   | 93.0               | 100.0   |  |  |  |  |  |  |
| 3/8           | 69.5           | 83.3       | 60.8          | 78.4    | 65.3               | 82.6    |  |  |  |  |  |  |
| 4             | 44.6           | 51.3       | 35.0          | 40.3    | 40.5               | 43.9    |  |  |  |  |  |  |
| 8             | 30.3           | 33.8       | 21.5          | 25.3    | 26.3               | 25.7    |  |  |  |  |  |  |
| 16            | 20.4           | 21.8       | 12.5          | 15.2    | 16.6               | 15.0    |  |  |  |  |  |  |
| 30            | 14.2           | 14.7       | 7.0           | 9.1     | 11.4               | 9.6     |  |  |  |  |  |  |
| 50            | 10.8           | 10.9       | 3.9           | 5.6     | 8.7                | 6.9     |  |  |  |  |  |  |
| 100           | 8.9            | 8.9        | 2.3           | 3.5     | 6.9                | 5.2     |  |  |  |  |  |  |
| 200           | 7.5            | 7.4        | 1.4           | 2.3     | 5.2                | 4.0     |  |  |  |  |  |  |

TABLE A5

INITIAL PARTICLE SIZE DISTRIBUTIONS
MATERIAL NO. 1355

(Percent of Material Smaller by Weight)

| Sieve |       |        | Sto     | ne Size  | <del> </del> |             |
|-------|-------|--------|---------|----------|--------------|-------------|
| Size  | 1 x 0 | 1 x 50 | 1/2 x 0 | 1/2 x 50 | 1/4 x 0      | 1/8 x 0     |
| 1 1/2 | 100.0 | 100.0  |         |          |              |             |
| 3/4   | 87.6  | 88.6   | 100.0   | 100.0    |              | <del></del> |
| 3/8   | 65.6  | 67.3   | 90.0    | 91.6     | 100.0        |             |
| 4.    | 35.5  | 35.5   | 47.8    | 43.5     | 77.6         | 100.0       |
| 8     | 20.4  | 18.8   | 25.5    | 21.5     | 42.0         | 84.5        |
| 16    | 11.8  | 10.0   | 13.8    | 9.7      | 23.8         | 51.6        |
| 30    | 6.6   | 5.2    | 7.5     | 4.0      | 15.4         | 32.6        |
| 50    | 4.0   | 2.2    | 4.5     | 0.9      | 10.6         | 20.5        |
| 100   | 2.7   | 1.6    | 3.0     | 0.5      | 7.7          | 13.1        |
| 200   | 1.9   | 1.3    | 2.1     | 0.4      | 5.6          | 8.5         |

TABLE A6

INITIAL PARTICLE SIZE DISTRIBUTIONS

MATERIAL NO. 1377

(Percent of Material Smaller by Weight)

| Sieve |       |        | Sto     | ne Size  |         |         |
|-------|-------|--------|---------|----------|---------|---------|
| Size  | 1 x 0 | 1 x 50 | 1/2 x 0 | 1/2 x 50 | 1/4 x 0 | 1/8 x 0 |
| 1 1/2 | 100.0 | 100.0  |         |          |         |         |
| 3/4   | 87.9  | 82.4   | 100.0   | 100.0    |         |         |
| 3/8   | 73.2  | 60.7   | 91.5    | 90.4     | 100.0   |         |
| 4     | 43.8  | 28.1   | 53.1    | 42.5     | 79.8    | 100.0   |
| 8     | 27.6  | 13.7   | 34.5    | 21.0     | 46.2    | 85.1    |
| 16    | 19.9  | 6.9    | 25.5    | 11.8     | 32.6    | 58.8    |
| 30    | 16.1  | 3.9    | 20.9    | 7.2      | 25.7    | 45.6    |
| 50    | 13.6  | 2.0    | 17.5    | 4.1      | 21.3    | 36.4    |
| 100   | 10.7  | 1.5    | 13.7    | 3.1      | 16.7    | 26.9    |
| 200   | 6.9   | 1.2    | 8.8     | 2.6      | 10.8    | 16.1    |

TABLE A7

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 1
(STONE \$1809, 1/2 x 0 SIZE CONTAINING 10% SLAG)

| DAYS<br>AFTER<br>START-UP* | HEAD<br>(in) | FLOW (ml/min) | pH<br>—    | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/1) | TOTAL<br>IRON<br>(mg/1) | CALCIUM (mg/1) | SULFATE (mg/1) | HOT PHT. ACIDITY (mg/1) |
|----------------------------|--------------|---------------|------------|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 72.0         | 875.          | 3.2        | 1800                   | 7.6                       | 126.                    | 265.           | 1002.          | 234.                    |
| 2                          | 72.0         | 68C.          | 3.5        | 1750                   | . • •                     | .20.                    | 203.           |                | 25                      |
| 3                          | 72.0         | 610.          | 3.2        | 1900                   |                           |                         |                |                |                         |
| 4                          | 72.0         | 600.          | 3.1        | 1750                   |                           |                         |                |                |                         |
| 5                          | 72.0         | 570.          | 3.0        | 1600                   |                           |                         |                |                |                         |
| 6                          | 72.0         | 500.          | 3.4        | 1900                   |                           |                         |                |                |                         |
| 7                          | 72.5         | 315.          | 3.2        | 1700                   | 5.6                       | 74.4                    | 230.           | 978.           | 605.                    |
| 8                          | 72.0         | 240.          | 3.2        | 1650                   |                           |                         |                |                |                         |
| 9                          | 72.0         | 220.          | 3.0        | 1800                   |                           |                         |                |                |                         |
| 10                         | 72.0         | 214.          | 3.1        | 1650                   |                           |                         |                |                |                         |
| 11                         | 72.0         | 200.          | 3.2        | 1850                   |                           |                         |                |                |                         |
| 12                         | 72.0         | 200.          | 3.1        | 1750                   |                           |                         |                |                |                         |
| 13                         | 72.0         | 230.          | 3.1        | 1350                   | 0.0                       | 125                     | 205            | 1057           |                         |
| 14<br>15                   | 72.9<br>72.0 | 200.          | 3,1        | 1900                   | 9.0                       | 125.                    | 205.           | 1057.          | 400.                    |
| 16                         | 72.0         | 130.<br>176.  | 2.9<br>3.1 | 1650<br>1800           |                           |                         |                |                |                         |
| 17                         | 72.0         | 177.          | 3.0        | 1750                   |                           | ,                       |                |                |                         |
| 18                         | 72.0         | 180.          | 3.0        | 1550                   |                           |                         |                |                |                         |
| 19                         | 72.)         | 190.          | 2.8        | 1950                   |                           |                         |                |                |                         |
| 20                         | 72.          | 180.          | 3.0        | 2250                   |                           |                         |                |                |                         |
| 21                         | 72.0         | 180.          | 3.0        | 1900                   | 6.8                       | 146.                    | 213.           | 1128.          | 485.                    |
| 22                         | 72.0         | 190.          | 3.1        | 1900                   |                           |                         |                |                |                         |
| 23                         | 72.0         | 190.          | 3.2        | 2000                   | :                         |                         |                |                |                         |
| 24                         | 72.0         | 180.          | 3.0        | 2000                   |                           |                         |                |                |                         |
| 25                         | 72.0         | 155.          | 3.2        | 1850                   |                           |                         |                |                |                         |
| 26                         | 72.0         | 186.          | 2.7        | 2150                   |                           |                         |                |                |                         |
| 27                         | 72.0         | 176.          | 3.1        | 1850                   |                           |                         |                |                |                         |
| 28                         | 72.0         | 180.          | 3.1        | 135¢                   | 8.5                       | 146.                    | 183.           | 1062.          | 479.                    |
| 29                         | 72.0         | 175.          | 3.0        | 1850                   |                           |                         |                |                | 4,,,                    |
| 30                         | 72.0         | 172.          | 2.7        | 2350                   |                           |                         |                |                |                         |
| 31                         | 72.0         | 164.          | 2.6        | 2600                   |                           |                         |                |                |                         |
| 32<br>33                   | 72.3         | 164.          | 3.3        | 1750                   |                           |                         |                |                |                         |
| 34                         | 72.0<br>72.0 | 144.          | 2.9        | 1750                   |                           |                         |                |                |                         |
| 35                         | 72.0         | 132.          | 2.9        | 2000                   |                           |                         |                |                |                         |
| 36                         | 72.0         | 112.<br>150.  | 3.0<br>2.8 | 2100                   | 11.0                      | 139.                    | 270.           | 1220.          | 495.                    |
| 37                         | 72.0         | 114.          | 3.0        | 2150<br>2100           |                           |                         |                |                |                         |
| 38                         | 72.0         | 100.          | 3.0        | 2050                   |                           |                         |                |                |                         |
| 39                         | 72.0         | 120.          | 2.9        | 2000                   |                           |                         |                |                |                         |
| 40                         | 72.0         | 90.           | 3.1        | 2100                   |                           |                         | ,              |                |                         |
| 41                         | 72.0         | 92.           | 3.1        | 2050                   |                           |                         |                |                |                         |
| 42                         | 72.0         | 84.           | 3.0        | 2100                   | 7.0                       | 118.                    | 265.           | 1234.          | 460.                    |
| 4.3                        | 72.0         | 38.           | 3.1        | 2050                   | • • •                     | ••••                    | 20 ,           | 1234.          | 460.                    |
| 44                         | 72.0         | 90.           | 3.4        | 1800                   |                           |                         |                |                |                         |
| 45                         | 72.0         | 30.           | 3.5        | 1950                   |                           |                         |                |                |                         |
| 46                         | 72.0         | 84.           | 2.9        | 2100                   |                           |                         |                |                |                         |
| 47.                        | 72.0.        | 80.           | 2.9        | 1900                   |                           |                         |                |                |                         |
| 48                         | 72.0         | 84.           | 2.8        | 1950                   |                           |                         |                |                |                         |
| 49<br>50                   | 72.0         | 76.           | 2.5        | 2150                   | 9.C                       | 122.                    | 223.           | 1236.          | 541.                    |
| 51                         | 72.0<br>72.0 | 80.           | 2.4        | 2100                   |                           |                         |                |                |                         |
| 52                         | 72.0         | 60.           | 2.6        | 2300                   |                           |                         |                |                |                         |
| 53                         | 72.0         | 70.<br>54.    | 2.7<br>3.2 | 2250<br>2400           |                           |                         |                |                |                         |
|                            |              | .34 .         | 3.2        | 2400                   |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/16/72.

TABLE A8

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 2
(STONE #1809, 1 x 0 SIZE CONTAINING 10% SLAG)

| DAYS AFTER START-UP* | HEAD<br>(in) | FLOW (ml/min)  | pH<br>—    | SP.<br>COND.<br>(µmho) | FERROUS IRON (mg/1) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/l) | SULFATE (mg/1) | HOT PHT. ACIDITY (mg/1) |
|----------------------|--------------|----------------|------------|------------------------|---------------------|-------------------------|----------------|----------------|-------------------------|
| 1                    | 72.0         | 240.           | 3.0        | . 1800                 | <b>8.</b> 0         | 146.                    | 177.           | 989.           | 511.                    |
| 2                    | 72.0         | 2220.          | 3.0        | 1600                   |                     |                         |                |                |                         |
| 3                    | 72.0         | 2080.          | 2.8        | 1850                   |                     |                         |                |                |                         |
| 4                    | 72.0         | 1920.          | 2.9        | 1750                   |                     | •                       |                |                |                         |
| 5                    | 72.0         | 1900.          | 2.7        | 175C                   |                     |                         |                |                |                         |
| 6                    | 72.1         | 1640.          | 3.2        | 1550                   |                     |                         |                |                |                         |
| 7                    | 72.9         | 1560.          | 3.1        | 1650                   | 8.0                 | 158.                    | 117.           | 978.           | 547.                    |
| ρ                    | 72.^         | 1343.          | 3.0        | 1700                   |                     |                         |                |                |                         |
| 9                    | 72.0         | 1300.          | 2.9        | 1650                   |                     |                         |                |                |                         |
| 11                   | 72.0         | 1300.          | 2.8        | 1700                   |                     |                         |                |                |                         |
| 11                   | 72.0         | 1250.          | 2.9        | 1800                   |                     |                         |                |                |                         |
| 12                   | 72.9         | 1240.          | 2.7        | 2050<br>1850           |                     |                         |                |                |                         |
| 13<br>14             | 72.0<br>72.0 | 1320.<br>1260. | 2.8        | 2050                   | 10.0                | 185.                    | 103.           | 1093.          | 710.                    |
| 15                   | 72.0         | 1260.          | 2.9        | 1800                   | 10.0                | 10.74                   | 103.           | 10 75.         | , 10.                   |
| 16                   | 72.0         | 1267.          | 2.9        | 1800                   |                     |                         |                |                |                         |
| 17                   | 72.3         | 1230.          | 2.7        | 195C                   |                     |                         |                |                |                         |
| 18                   | 72.0         | 1230.          | 2.5        | 1750                   |                     |                         |                |                |                         |
| 19                   | 72.0         | 1230.          | 2.9        | 2550                   |                     |                         |                |                |                         |
| 20                   | 72.0         | 1260.          | 3.9        | 2650                   |                     |                         |                |                |                         |
| 21                   | 72.0         | 1280.          | 2.8        | 1900                   | 9.6                 | 167.                    | 105.           | 1117.          | 760.                    |
| 22                   | 72.)         | 1230.          | 2.8        | 2200                   |                     |                         |                |                |                         |
| 23                   | 72.0         | 1230.          | 2.9        | 2150                   |                     |                         |                |                |                         |
| 24                   | 72.0         | 1200.          | 2.7        | 2300                   |                     |                         |                |                |                         |
| 25                   | 72.3         | 1190.          | 3.0        | 1900                   |                     |                         |                |                |                         |
| 26                   | 72.0         | 1200.          | 2.4        | 26 ° C                 |                     |                         |                |                |                         |
| 2 <b>7</b>           | 72.1         | 1100.          | 3.2        | 1750                   |                     |                         |                |                |                         |
| 28                   | 72.0         | 1120.          | 2.9        | 2130                   | 11.5                | 189.                    | 98.            | 1092.          | 772.                    |
| 29                   | 72.0         | 1096.          | 2.7        | 2200                   |                     |                         |                |                |                         |
| 30                   | 72.0         | 1080.          | 2.2        | 2600                   |                     |                         |                |                |                         |
| 31<br>32             | 72.0<br>72.0 | 1080.<br>920.  | 2.5<br>3.1 | 2950<br>1750           |                     |                         |                |                |                         |
| 33                   | 72.7         | 552.           | 2.7        | 1750                   |                     |                         |                |                |                         |
| 34                   | 72.0         | 450.           | 6.7        | 2100                   |                     |                         |                |                |                         |
| 35                   | 72.0         | 450.           | 2.6        | 255C                   | 8.0                 | 179.                    | 145.           | 1253.          | 764.                    |
| 36                   | 72.)         | 400.           | 2.5        | 2500                   |                     | .,,,,                   |                |                |                         |
| 37                   | 72.0         | 40C.           | 2.6        | 2400                   |                     |                         |                |                |                         |
| 38                   | 72.0         | 380.           | 2.5        | 245 C                  |                     |                         |                |                |                         |
| 39                   | 72.0         | 190.           | 2.5        | 2300                   |                     |                         |                |                |                         |
| пC                   | 72.0         | 370.           | 2.7        | 2250                   |                     |                         |                |                |                         |
| 41                   | 72.0         | 360.           | 2.8        | 2250                   |                     |                         |                |                |                         |
| 42                   | 72.0         | 352.           | 2.7        | 2300                   | 10.0                | 182.                    | 135.           | 1229.          | 820.                    |
| 43                   | 72.0         | 340.           | 2.5        | 2650                   |                     |                         |                |                |                         |
| 44                   | 72.0         | 330.           | 2.9        | 2250                   |                     |                         |                |                |                         |
| 45                   | 72.0         | 330.           | 3.0        | 2450                   |                     |                         |                |                |                         |
| 46<br>47             | 72.0<br>72.0 | 344.<br>328.   | 2.5        | 255C<br>2250           |                     |                         |                |                |                         |
| 43                   | 72.0         | 328.           | 2.6        | 2250<br>2550           |                     |                         |                |                |                         |
| 49                   | 72.0         | 320.           | 2.2        | 2800                   | 9.0                 | 170.                    | 107.           | 1241.          | 791.                    |
| 50                   | 72.0         | 320.           | 2.1        | 2050                   | 7.0                 | 4754                    |                | 1271           | ,,,,                    |
| 51                   | 72.0         | 320.           | 2.2        | 2900                   |                     |                         |                |                |                         |
| 52                   | 72.0         | 320.           | 2.3        | 2800                   |                     |                         |                |                |                         |
| 53                   | 72.0         | 348.           | 2.6        | 3250                   |                     |                         |                |                |                         |
|                      |              |                |            |                        |                     |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/16/72.

TABLE A9

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 3
(STONE #1809, 1/2 x 0 SIZE CONTAINING 5% BENTONITE)

| DAYS<br>AFTER<br>START-UP* | HEAD<br>(in) | FLOW (ml/min) | pH<br>—    | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/1) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/l) | SULFATE (mg/1) | HOT PHT. ACIDITY (mg/l) |
|----------------------------|--------------|---------------|------------|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 72.0         | 25.           | 5.7        | 2000                   | < 1.0                     | 33.9                    | 335.           | 1078.          | 10.8                    |
| 2                          | 72.0         | 25.           | 5.7        | 1800                   |                           |                         |                |                |                         |
| 3                          | 72.0         | 13.           | 5.7        | 2100                   |                           |                         |                |                |                         |
| 4                          | 72.0         | 10.           | 5.5        | 2000                   |                           |                         |                |                |                         |
| 5                          | 72.7         | 20.           | 5.2        | 1900                   |                           |                         |                |                |                         |
| 6                          | 72.0         | 25.           | 5.2        | 175C                   |                           |                         |                |                |                         |
| 7                          | 72.7         | 20.           | 5.3        | 1850                   | < 1.0                     | 34.9                    | 346.           | 990            | 18.0                    |
| 8                          | 72.0         | 20.           | 5.7        | 1950                   |                           |                         |                |                |                         |
| 9                          | 72.0         | 18.           | 5.8        | 1350                   |                           |                         |                |                |                         |
| 10                         | 72.0         | 12.           | 5.5        | 1650                   |                           |                         |                |                |                         |
| 11                         | 72.0         | 25.           | 6.4        | 1900                   |                           |                         |                |                |                         |
| 12                         | 72.0         | 10.           | 6.2        | 2000                   |                           |                         |                |                |                         |
| 13                         | 72.0         | 25.           | 6.3        | 1950                   |                           |                         |                |                |                         |
| 14                         | 72.0         | . 25.         | 5.9        | 2050                   | < 1.0                     | 0.84                    | 426.           | 1075.          | 69.0                    |
| 15                         | 72.          | 9.            | 6.7        | 2000                   |                           |                         |                |                |                         |
| 16                         | 72.0         | 5.            | 6.7        | 2100                   |                           | 2                       |                |                |                         |
| 17                         | 72.0         | 7.            | 6.3        | 1950                   |                           |                         |                |                |                         |
| 18                         | 72.0         | 10.           | 6.2        | 1800                   |                           |                         |                |                |                         |
| 19<br>20                   | 72.0<br>72.0 | 12.<br>12.    | 6.2<br>6.9 | 2100<br>2200           | •                         |                         |                |                |                         |
| 21                         | 72.0         | 12.           | 6.7        | 2000                   | < 1.0                     | 1.2                     | 463.           | 1070.          | 83.0                    |
| 22                         | 72.0         | 15.           | 6.4        | 2100                   | V 1.0                     | 1.2                     | 40).           | 1070.          | 03.0                    |
| 23                         | 72.0         | 10.           | 6.5        | 2150                   |                           |                         |                |                |                         |
| 24                         | 72.0         | 10.           | 6.5        | 2050                   |                           |                         |                |                |                         |
| 25                         | 72.0         | 15.           | 6.3        | 2050                   |                           |                         |                |                |                         |
| 26                         | 72.1         | 10.           | 6.7        | 2150                   |                           |                         |                |                |                         |
| 27                         | 72.1         | 10.           | 0.7        | 2350                   |                           |                         |                |                |                         |
| 29                         | 72.1         | 10.           | 7.0        | 2000                   | < 1.0                     | 0.84                    | 446.           | 964.           | < 4.0                   |
| 29                         | 72.          | 8.            | 6.7        | 2050                   |                           |                         |                |                |                         |
| 30                         | 72.0         | 10.           | 6.3        | 2150                   |                           |                         |                |                |                         |
| 31                         | 72.          | 10.           | 6.3        | 2100                   |                           |                         |                |                |                         |
| 32                         | 72.          | 10.           | 5.7        | 2030                   |                           |                         |                |                |                         |
| 33                         | 72.3         | 10.           | 6.2        | 1850                   |                           |                         |                |                |                         |
| 34                         | 72.0         | 10.           | 6.4        | 1950                   |                           |                         |                |                |                         |
| 35                         | 72.0         | 10.           | 6.0        | 2100                   | < 1.0                     | 0.57                    | 495.           | 1167.          | < 4.0                   |
| 36                         | 72.^         | 10.           | 6.6        | 2230                   |                           |                         |                |                |                         |
| 37                         | <b>7</b> 2.) | 8.            | 0.1        | 2270                   |                           |                         |                |                |                         |
| 39                         | 72.5         | 12.           | h . 6      | 2100                   |                           |                         |                |                |                         |
| 30                         | 72.0         | 10.           | 0.6        | 2100                   |                           |                         |                |                |                         |
| 40                         | 72.0         | 5.            | 6.0        | 2200                   |                           |                         |                |                |                         |
| 4 1<br>4 2                 | 72.7<br>72.7 | 8.            | 6.5        | 2200                   | <b>.</b> 1 3              | 2 22                    | 600            | 1197.          | / 11 A                  |
| 43                         | 72.^         | 8.<br>7.      | 7.3<br>6.4 | 1600<br>2200           | < 1.0                     | 0.23                    | 598.           | 1197.          | < 4.0                   |
| # # 2                      | 72.0         | 6.            | 6.1        | 2200                   |                           |                         |                |                |                         |
| 45                         | 72.0         | 7.            | 6.5        | 2100                   |                           |                         |                |                |                         |
| 46                         | 72.3         | 8.            | 6.6        | 2150                   |                           |                         |                |                |                         |
| 47                         | 72.7         | 4.            | 5.9        | 2050                   |                           |                         |                |                |                         |
| 48                         | 72.0         | 3.            | 6.4        | 2350                   |                           |                         |                |                |                         |
| 49                         | 72.1         | 3.            | 7.2        | 2150                   | < 1.0                     | 0.14                    | 466.           | 1155.          | 23.0                    |
| 50                         | 72.1         | 1ó.           | 0.9        | 2150                   | • -                       | -                       | -              | -              |                         |
| 51                         | 72.0         | 6.            | 6.1        |                        |                           |                         |                |                |                         |
| 52                         | 72.7         | 7.            | 6.3        | 215C                   |                           |                         |                |                |                         |
| 53                         | 72.7         | 4.            | 6.6        | 2150                   |                           |                         |                |                |                         |
|                            |              |               |            |                        |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/16/72.

TABLE A10

FLOW AND EFFLUENT COMPOSITION DATA

FOR TEST VESSEL NO. 4

(STONE #1809, 1 x 0 SIZE CONTAINING 5% BENTONITE)

| DAYS<br>AFTER<br>START-UP* | HEAD         | FLOW (ml/min) | pH _       | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/1) | CALCIUM<br>_(mg/1) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/1) |
|----------------------------|--------------|---------------|------------|------------------------|---------------------------|-------------------------|--------------------|----------------|-------------------------|
| 1                          | 72.0         | 150.          | 3.3        | 1750                   | 7.2                       | 93.3                    | 245.               | 1028.          | 10.8                    |
| 2                          | 72.0         | 75.           | 3.6        | 1700                   |                           |                         |                    |                |                         |
| 3                          | 72.0         | 46.           | 3.7        | 1750                   |                           |                         |                    |                |                         |
| 4                          | 72.0         | 15.           | 6.1        | 2000                   |                           | -                       |                    |                |                         |
| 5                          | 72.0         | 10.           | 5.7        | 1900                   |                           |                         |                    |                |                         |
| 5                          | 72.0         | 14.           | 5.8        | 2100                   |                           | 05 1                    | 300                | 1020.          | 7.2                     |
| 7                          | 72.0         | 13.           | 5.8        | 1700                   | 1.3                       | 25.4                    | 300.               | 10 20 -        | 1.2                     |
| 8                          | 72.3         | 15.           | υ.2        | 1700                   |                           |                         |                    |                |                         |
| 9 ,                        | 72.0         | 10.           | 6.2        | 1850                   |                           |                         |                    |                |                         |
| 10                         | 72.0         | 18.           | 5.9        | 1650                   |                           |                         |                    |                |                         |
| 11                         | 72.^         | 20.           | 5.1<br>5.2 | 1700<br>1800           |                           |                         |                    |                |                         |
| 12                         | 72.0         | 7.<br>20.     | 3.7        | 1750                   |                           |                         |                    |                | *                       |
| 13<br>14                   | 72.0<br>72.0 | 20.           | 5.0        | 1850                   | 3.0                       | 54.4                    | 298.               | 1117.          | 65.0                    |
| 15                         | 72.0         | 3.            | 6.6        | 1750                   | 3.0                       | * • • •                 |                    |                |                         |
| 16                         | 72.0         | ύ <b>5</b> .  | 6.6        | 1850                   |                           |                         |                    |                |                         |
| 17                         | 72.0         | 8.            | 6.4        | 1750                   |                           |                         |                    |                |                         |
| 18                         | 72.0         | 20.           | 6.7        | 1750                   |                           |                         |                    | •              |                         |
| 19                         | 72.0         | 14.           | 6.6        | 1900                   |                           |                         |                    |                |                         |
| 20                         | 72.0         | 6.            | 6.6        | 2150                   |                           |                         |                    |                |                         |
| 21                         | 72.0         | 14.           | 7.1        | 1900                   | < 1.0                     | 25.5                    | 400.               | 1100.          | 22.0                    |
| 22                         | 72.1         | 20.           | 7.0        | 1950                   |                           |                         |                    |                |                         |
| 23                         | 72.7         | 10.           | 0.4        | 1850                   |                           |                         |                    |                |                         |
| 24                         | 72.0         | 20.           | 6.8        | 1850                   |                           |                         |                    |                |                         |
| 25                         | 72.0         | 20.           | 6.7        | 1800                   |                           |                         |                    |                |                         |
| 26                         | 72.0         | 14.           | 0.2        | 1850                   |                           |                         |                    |                |                         |
| 27                         | 72.0         | 12.           | 6.2        | 1850<br>1750           | 2.0                       | 48.4                    | 354.               | 1033.          | < 4.0                   |
| 2.8                        | 72.7         | 10.<br>10.    | 6.6<br>5.7 | 1750                   | 2.0                       | 40.4                    | 33                 |                | 7, 7                    |
| 29                         | 72.1<br>72.0 | 10.           | 4.4        | 1850                   |                           |                         |                    | ,              |                         |
| 30                         | 72.7         | 10.           | 3.9        | 1900                   |                           |                         |                    |                |                         |
| 32                         | 72.3         | 10.           | 6.6        | 1750                   |                           |                         |                    |                |                         |
| 33                         | 72.^         | 16.           | 6.2        | 155C                   |                           |                         |                    |                |                         |
| 34                         | 72.0         | 16.           | o.5        | 1750                   |                           |                         |                    |                |                         |
| 35                         | 72.0         | 12.           | 5.7        | 1900                   | 2.0 ,                     | 47.4                    | 420.               | 1231.          | 31.9                    |
| 3 <i>6</i> .               | 72.0         | 10.           | 5.9        | 1950                   |                           |                         |                    |                |                         |
| 37                         | 72.)         | 7.            | 6.0        | 1900                   |                           |                         |                    |                |                         |
| 38                         | 72.0         | 19.           | 4.9        | 1800                   |                           |                         |                    |                |                         |
| 39                         | 72.1         | 13.           | 5.8        | 1750                   |                           |                         |                    |                |                         |
| # Ú                        | 72.3         | 8.            | 5.8        | 1800                   |                           |                         |                    |                |                         |
| 4 1                        | 72.0         | 12.           | 6.4        | 1900<br>1900           | 1.7                       | 47.9                    | 400.               | 1168.          | 26.0                    |
| 42                         | 72.7         | 12.           | 6.3<br>6.3 | 1900                   | 1. /                      | 47.0                    | 4001               |                |                         |
| 43                         | 72.0         | 12.<br>11.    | 6.6        |                        |                           |                         |                    |                |                         |
| 44<br>45                   | 72.0<br>72.0 | .10.          | 7.0        |                        |                           | •                       |                    |                |                         |
| 46                         | 72.0         | 8.            | 3.3        |                        |                           |                         |                    |                |                         |
| 47                         | 72.0         | 4.            | 3.1        |                        |                           |                         |                    |                |                         |
| 48                         | 72.0         | 3.            | 3.0        |                        |                           |                         |                    |                |                         |
| 49                         | 72.3         | 3.            | 2.7        |                        | 1.0                       | 91.4                    | 293.               | 1309.          | 300.                    |
| 50                         | 72.          | ຸ 8 ₌         | 2.7        |                        |                           |                         |                    |                |                         |
| 51                         | 72.0         | 5.            | 3.0        |                        |                           |                         |                    |                |                         |
| 52                         | 72.0         | 4.            | 3.0        |                        |                           |                         |                    |                |                         |
| 53                         | 72.0         | 4.            | 3.7        | 2150                   |                           |                         |                    |                |                         |
|                            |              |               |            |                        |                           |                         |                    |                |                         |

<sup>\*</sup>Start-up date was 3/16/72.

TABLE All

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 5
(STONE #1809, 1/2 x 0 SIZE CONTAINING 10% FLYASH)

| DAYS<br>AFTER<br>START-UP*             | HEAD<br>(in)                                         | FLOW (ml/min)                                 | р <b>н</b><br>—                               | SP.<br>COND.<br>(µmho)                                       | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/1) | CALCIUM<br>(mg/1) | SULFATE (mg/1) | HOT PHT. ACIDITY (mg/1) |
|----------------------------------------|------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|---------------------------|-------------------------|-------------------|----------------|-------------------------|
| 1<br>2<br>3<br>4<br>5                  | 72.0<br>72.0<br>72.0<br>72.0<br>72.0                 | 125.<br>75.<br>69.<br>50.                     | 6.5<br>6.8<br>5.8<br>6.3<br>5.4               | 1800<br>1850<br>2000<br>1950<br>1850                         | 10.0                      | 0.16                    | 492.              | 982.           | <4.0                    |
| 6<br>7<br>8<br>9<br>10<br>11           | 72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0 | 65.<br>88.<br>50.<br>56.<br>40.               | 6.3<br>6.0<br>6.2<br>6.3<br>6.6<br>6.8        | 215 C<br>180 0<br>190 0<br>185 0<br>190 0<br>195 C           | < 1.0                     | 1.4                     | 415.              | 919.           | 104.                    |
| 13<br>14<br>15<br>16<br>17             | 72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0         | 28.<br>40.<br>45.<br>31.<br>28.<br>29.        | 6.2<br>6.5<br>6.2<br>6.8<br>6.7<br>6.7        | 2050<br>1950<br>2050<br>2050<br>2000<br>2000<br>1800         | < 1.0                     | 0.06                    | 480.              | 1055.          | 69.0                    |
| 19<br>20<br>21<br>22<br>23<br>24<br>25 | 72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0 | 30.<br>28.<br>30.<br>30.<br>30.<br>30.        | 6.8<br>7.0<br>7.0<br>6.9<br>6.9               | 2150<br>2300<br>2050<br>2100<br>2100<br>2050<br>2100         | < 1.0                     | 0.06                    | 505.              | 1101.          | 85.0                    |
| 26<br>27<br>28<br>29<br>30<br>31<br>32 | 72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0 | 24.<br>28.<br>20.<br>17.<br>20.<br>20.        | 6.8<br>7.1<br>7.2<br>7.1<br>6.4<br>6.6<br>7.1 | 2100<br>2000<br>2110<br>2050<br>2210<br>2200<br>2150         | < 1.0                     | <0.03                   | 476.              | 1042.          | 19.2                    |
| 33<br>34<br>35<br>36<br>37<br>38<br>39 | 72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0 | 20.<br>20.<br>16.<br>50.<br>14.<br>28.        | 6.7<br>7.0<br>6.6<br>6.7<br>6.6<br>6.7<br>6.8 | 1850<br>2000<br>2200<br>2200<br>2200<br>2200<br>2150<br>2100 | < 1.0                     | <0.03                   | 538.              | 1186.          | 217.                    |
| 40<br>41<br>42<br>43<br>44<br>45<br>46 | 72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0 | 15.<br>20.<br>20.<br>24.<br>21.<br>22.<br>24. | 6.2<br>6.8<br>7.0<br>6.8<br>6.7<br>6.8        | 2150<br>2100<br>2150<br>2150<br>2050<br>2100<br>2150         | < 1.0                     | 0.05                    | 612.              | 1133.          | < 4.0                   |
| 47<br>48<br>49<br>50<br>51<br>52<br>53 | 72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0 | 17.<br>16.<br>16.<br>20.<br>45.<br>14.        | 5.6<br>6.2<br>6.1<br>6.4<br>5.9<br>6.2<br>6.5 | 2050<br>2100<br>2100<br>2150<br>2300<br>2150<br>2250         | < 1.0                     | o.c3                    | 506.              | 1155.          | 15.4                    |

<sup>\*</sup>Start-up date was 3/16/72.

TABLE A12

FLOW AND EFFLUENT COMPOSITION DATA

FOR TEST VESSEL NO. 6

(STONE #1809, 1 x 0 SIZE CONTAINING 10% FLYASH)

| DAYS AFTER START-UP* | HEAD         | FLOW<br>(ml/min) | рн         | SP. COND. (#mho) | FERROUS<br>IRON<br>(mg/1) | TOTAL<br>IRON<br>(mg/1) | CALCIUM<br>(mg/1) | SULFATE (mg/l) | HOT PHT.<br>ACIDITY<br>(mg/1)           |
|----------------------|--------------|------------------|------------|------------------|---------------------------|-------------------------|-------------------|----------------|-----------------------------------------|
| 1                    | 72.0         | 75.              | 6.8        | 2050             | < 1.0                     | <0.03                   | 480.              | 1072.          | < 4.0                                   |
| 2                    | 72.0         | 60.              | 6.5        | 1900             | `                         |                         |                   |                | • • • • • • • • • • • • • • • • • • • • |
| 3                    | 72.0         | 35.              | 6.3        | 2000             |                           |                         |                   |                |                                         |
| 4                    | 72.0         | 25.              | 6.5        | 1900             |                           |                         |                   |                |                                         |
| 5                    | 72.0         | 30.              | 6.3        | 1850             |                           |                         |                   |                |                                         |
| 6                    | 72.0         | 47.              | 6.5        | 2050             |                           |                         |                   |                |                                         |
| . 7                  | 72.0         | 162.             | 6.3        | 1650             | < 1.0                     | 19.0                    | 395.              | 918.           | 7.2                                     |
| 8                    | 72.0         | 95.              | 6.6        | 1750             |                           |                         |                   |                |                                         |
| 9                    | 72.0         | 60.              | 6.7        | 1800             |                           |                         |                   |                |                                         |
| 10                   | 72.0         | 56.              | 6.7        | 1800             |                           |                         |                   |                |                                         |
| 11                   | 72.0         | 60.              | 6.8        | 1800<br>2000     |                           |                         |                   |                |                                         |
| 12                   | 72.0<br>72.0 | 42.<br>50.       | 6.7<br>6.7 | 1900             |                           |                         |                   |                |                                         |
| 13<br>14             | 72.0         | 50.              | 6.4        | 2100             | < 1.0                     | 0.75                    | 467.              | 1100.          | 16.0                                    |
| 15                   | 72.0         | 27.              | 6.7        | 2000             | <b>\</b> 1.0              | 0.75                    | , o , •           | • • • • •      | 1000                                    |
| 16                   | 72.0         | 26.              | 6.6        | 2050             |                           |                         |                   |                |                                         |
| 17                   | 72.0         | 30.              | 6.9        | 1900             |                           |                         |                   |                |                                         |
| 18                   | 72.0         | 30.              | 7.0        | 1750             |                           |                         |                   |                |                                         |
| 19                   | 72.0         | 24.              | 7.2        | 2200             |                           |                         |                   |                |                                         |
| 20                   | 72.0         | 20.              | 7.1        | 1850             |                           |                         |                   |                |                                         |
| 21                   | 72.0         | 24.              | 7.2        | 2 10 0           | < 1.0                     | <0.03                   | 500.              | 1147.          | 36.0                                    |
| 22                   | 72.0         | 25.              | 7.2        | 2100             |                           |                         |                   |                |                                         |
| 23                   | 72.0         | 30.              | 7.3        | 2100             |                           |                         |                   |                |                                         |
| 24                   | 72.0         | 20.              | 7.3        | 2050             |                           |                         |                   |                |                                         |
| 25                   | 72.0         | 45.              | 6.9        | 2100             |                           |                         |                   |                |                                         |
| 26<br>27             | 72.0         | 28.<br>24.       | 7.1<br>7.1 | 2050<br>2000     |                           |                         |                   |                |                                         |
| 2 <b>7</b><br>28     | 72.0<br>72.0 | 18.              | 7.2        | 2100             | < 1.0                     | 0.05                    | 532.              | 1069.          | 27.0                                    |
| 29                   | 72.0         | 13.              | 6.8        | 2100             | \ 1.··                    | 0.03                    | 332.              |                | 2,,,,                                   |
| 30                   | 72.0         | 16.              | 6.9        | 2250             |                           |                         |                   |                |                                         |
| 31                   | 72.0         | 15.              | 7.1        | 2300             |                           |                         |                   |                |                                         |
| 32                   | 72.0         | 16.              | 7.3        | 2250             |                           |                         |                   |                |                                         |
| 33                   | 72.0         | 18.              | 7.1        | 1950             |                           |                         |                   |                |                                         |
| 34                   | 72.0         | 20.              | 7.2        | 2000             |                           |                         |                   |                |                                         |
| 35                   | 72.0         | 14.              | 6.9        | 2150             | < 1.0                     | <0.03                   | 538.              | 1166.          | 81.4                                    |
| 36                   | 72.0         | 15.              | 7.0        | 2200             |                           |                         |                   |                |                                         |
| 37                   | 72.0         | 12.              | 7.0        | 2250             |                           |                         |                   |                |                                         |
| 38                   | 72.0         | 18.              | 7.0<br>7.0 | 2150<br>2150     |                           |                         |                   |                |                                         |
| 39<br>40             | 72.0<br>72.0 | 18.<br>12.       | 6.7        | 2250             |                           |                         |                   |                |                                         |
| 41                   | 72.0         | 14.              | 7.0        | 2150             |                           |                         |                   |                |                                         |
| . 42                 | 72.0         | 16.              | 7.0        | 2150             | < 1.0                     | 0.05                    | 606.              | 1174.          | < 4.0                                   |
| 43                   | 72.0         | 16.              | 7.0        | 220C             |                           |                         |                   |                |                                         |
| 44                   | 72.0         | 16.              | 7.1        |                  |                           |                         |                   |                |                                         |
| 45                   | 72.0         | 16.              | 7.3        | 2100             |                           |                         |                   |                |                                         |
| .46                  | 72.0         | 16.              | 6.7        |                  |                           |                         |                   |                |                                         |
| 47                   | 72.0         | 12.              | 6.0        |                  |                           |                         |                   |                |                                         |
| 4.8                  | 72.0         | 12.              | 6.6        | 2100             | . 4 0                     | .a aa                   | ,, 00             | 1162.          | 76.8                                    |
| 49                   | 72.0         | 10.              | 6.4        |                  | < 1.0                     | <0.03                   | 499.              | 1102.          | 10.0                                    |
| ` 5^<br>51           | 72.0<br>72.0 | 16.<br>13.       | 6.5<br>6.7 |                  |                           |                         |                   |                |                                         |
| 52                   | 72.0         | 15.              | 6.6        |                  |                           |                         |                   |                |                                         |
| 53                   | 72.0         | 10.              | 6.8        |                  |                           |                         |                   |                |                                         |
|                      |              | ·                |            |                  |                           |                         |                   |                |                                         |

<sup>\*</sup>Start-up date was 3/16/72.

TABLE A13

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 7
(STONE #1809, 1/8 x 0 SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD<br>(in) | FLOW (ml/min)      | рн<br>—    | SP. COND. (µmho) | FERROUS<br>IRON<br>(mg/1) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/1) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/l) |
|----------------------------|--------------|--------------------|------------|------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 72.0         | 175.               | 6.2        | 1700             | < 1.0                     | 0.03                    | 479.           | 10 13.         | < 4.0                   |
| 2                          | 72.0         | 125.               | 6.4        | 1900             |                           |                         |                |                |                         |
| 3                          | 72.0         | 98.                | 6.5        | 2000             |                           |                         |                |                |                         |
| 4                          | 72.0         | 100.               | 6.5        | 1850             |                           |                         |                |                |                         |
| 5<br>6                     | 72.0         | 100.               | 6.7        | 1800             |                           |                         |                |                |                         |
| 7                          | 72.0<br>72.0 | 79.<br><b>7</b> 0. | 6.6<br>6.4 | 2250<br>1750     | < 1 O                     | 0.03                    |                |                | 4                       |
| 8                          | 72.0         | 40.                | 6.6        | 1850             | < 1.0                     | 0.03                    | 412.           | 939.           | < 4.0                   |
| 9                          | 72.0         | 42.                | 6.8        | 1850             |                           |                         |                |                |                         |
| 10                         | 72.0         | 25.                | 7.0        | 1850             |                           |                         |                |                |                         |
| 11                         | 72.0         | 25.                | 7.0        | 1950             |                           |                         |                |                |                         |
| 12                         | 72.0         | 26.                | 6.9        | 2000             |                           |                         |                |                |                         |
| 13                         | 72.0         | 25.                | 6.9        | 1950             |                           |                         |                |                |                         |
| 14                         | 72.0         | 35.                | 6.7        | 2100             | < 1.0                     | 0.03                    | 471.           | 1056.          | 47.0                    |
| 15                         | 72.0         | 21.                | 6.6        | 2000             |                           |                         |                |                |                         |
| 16                         | 72.0         | 19.                | 6.3        | 205C             |                           |                         |                |                |                         |
| 17<br>18                   | 72.0<br>72.0 | 18.                | 7.0        | 1900             |                           | •                       |                |                |                         |
| 19                         | 72.0         | 30.<br>22.         | 7.1        | 1800             |                           |                         |                |                |                         |
| 20                         | 72.0         | 20.                | 7.2        | 2150<br>1650     |                           |                         |                |                |                         |
| 21                         | 72.0         | 26.                | 7.4        | 2250             | < 1.0                     | <0.03                   | 510.           | 1151.          | 255.                    |
| 22                         | 72.0         | 25.                | 7.3        | 2200             | < 1.0                     | <0.U3                   | 310.           | 1151.          | 200.                    |
| 23                         | 72.0         | 25.                | 7.9        | 2150             |                           |                         |                |                |                         |
| 24                         | 72.0         | 25.                | 7.3        | 2100             |                           |                         |                |                |                         |
| 25                         | 72.0         | 25.                | 7.0        | 2100             |                           |                         |                |                |                         |
| 26                         | 72.0         | 20.                | 7.1        | 2150             |                           |                         |                |                |                         |
| 27                         | 72.0         | 22.                | 7.2        | 2100             |                           |                         |                |                |                         |
| 23                         | 72.0         | 18.                | 7.0        | 2100             | < 1.0                     | 0.87                    | 516.           | 1029.          | 34.6                    |
| 29                         | 72.0         | 19.                | 7.2        | 2100             |                           |                         |                |                |                         |
| 30<br>31                   | 72.0<br>72.0 | 22.<br>24.         | 6.8<br>7.0 | 2300<br>2300     |                           |                         |                |                |                         |
| 32                         | 72.0         | 18.                | 7.2        | 2150             |                           |                         |                |                |                         |
| 33                         | 72.0         | 24.                | 7.2        | 1900             |                           |                         |                |                |                         |
| 34                         | 72.0         | 8.                 | 7.3        | 1900             |                           |                         |                |                |                         |
| 35                         | 72.0         | 8.                 | 7.2        | 2050             | < 1.0                     | 0.23                    | 478.           | 1105.          | 15.4                    |
| 36                         | 72.0         | 14.                | 7.2        | 2150             |                           |                         |                |                |                         |
| 37                         | 72.0         | 9.                 | 7.2        | 2250             |                           |                         |                |                |                         |
| 38                         | 72.0         | 10.                | 6.9        | 2100             |                           |                         |                |                |                         |
| 39                         | 72.0         | 28.                | 6.9        | 2100             |                           |                         |                |                |                         |
| 40                         | 72.0         | 11.                | 6.6        | 2150             |                           |                         |                |                |                         |
| 41                         | 72.0         | 12.                | 6.9        | 2100             |                           | 22.0                    | F 0.4          | 4404           |                         |
| 42<br>43                   | 72.0<br>72.0 | 12.<br>12.         | 6.2        | 2050             | < 1.0                     | 20.0                    | 581.           | 1186.          | < 4.0                   |
| 44                         | 72.0         | 10.                | 7.1        | 2150<br>2050     |                           |                         |                |                |                         |
| 45                         | 72.0         | 11.                | 7.3        | 2050             |                           |                         |                |                |                         |
| 46                         | 72.0         | 10.                | 6.7        | 2100             |                           |                         |                |                |                         |
| 47                         | 72.0         | 6.                 | 6.1        | 2000             |                           |                         |                |                |                         |
| 48                         | 72.0         | 6.                 | 6.5        | 2100             |                           |                         |                |                |                         |
| 49                         | 72.0         | 6.                 | 6.2        | 2000             | < 1.0                     | 23.0                    | 456.           | 1181.          | 30.7                    |
| 50                         | 72.0         | 12.                | 6.4        | 2100             |                           |                         |                |                |                         |
| 51                         | 72.0         | 10.                | 6.9        | 2150             |                           |                         |                |                |                         |
| 5.2                        | 72.0         | 12.                | 6.8        | 2100             |                           |                         |                |                |                         |
| 53                         | 72.0         | 6.                 | 6.8        | 2150             |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/16/72.

TABLE A14

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 8
(STONE #1809, 1/4 x 0 SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD         | FLOW (ml/min) | рн          | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/l) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/l) |
|----------------------------|--------------|---------------|-------------|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 72.0         | 275.          | 5.7         | 1750                   | < 1.0                     | 37.0                    | 390.           | 977.           | 202.                    |
| 2                          | 72.0         | 250.          | 5.3         | 160C                   | •                         |                         |                |                |                         |
| 3                          | 72.0         | 210.          | 6.6         | 1700                   |                           |                         |                |                |                         |
| 4                          | 72.0         | 200.          | 6.5         | 1600                   |                           |                         |                |                |                         |
| 5                          | 72.0         | 175.          | 6.0         | 1500                   |                           |                         |                |                |                         |
| 6                          | 72.0         | 222.          | 6.7         | 1900                   |                           |                         |                |                |                         |
| 7                          | 72.0         | 132.          | 6.5         | 1600                   | 1.3                       | 31.0                    | 346.           | 960.           | < 4.0                   |
| 8                          | 72.0         | 130.          | 6.6         | 1750                   |                           |                         |                |                |                         |
| 9                          | 72.0         | 120.          | 6.7         | 1750                   |                           |                         |                |                |                         |
| 10                         | 72.0         | 100.          | 6.6         | 1700                   |                           |                         |                |                |                         |
| 11                         | 72.0         | 90.           | 6.6         | 175C                   |                           |                         |                |                |                         |
| 12                         | 72.0         | 86.           | 6.9         | 1900                   |                           |                         |                |                |                         |
| 13                         | 72.0         | 90.           | 6.7         | 1850                   |                           |                         |                |                |                         |
| 14                         | 72.0         | 80.           | 6.7         | 2000                   | 1.0                       | 22.0                    | 417.           | 1064.          | 59.1                    |
| - 15                       | 72.0         | 90.           | 5 <b>.7</b> | 1750                   |                           |                         |                |                |                         |
| 16                         | 72.0         | 59.           | 5.7         | 185C                   |                           |                         |                |                |                         |
| 17                         | 72.0         | 61.           | 6.5         | 1800                   |                           |                         |                |                |                         |
| 18                         | 72.0         | 60.           | 6.9         | 1750                   |                           |                         |                |                |                         |
| 19                         | 72.0         | 50.           | 7.0         | 2050                   |                           |                         |                |                |                         |
| 50                         | 72.0         | 52.           | 7.0         | 1700                   |                           | 2.5                     | 470            | 1170           | 70.0                    |
| 21                         | 72.0         | 44.           | 6.4         | 2050                   | < 1.0                     | 24.5                    | 478.           | 1170.          | 79.0                    |
| 22                         | 72.0         | 40.           | 7.3         | 2100                   |                           |                         |                |                |                         |
| 23                         | 72.0         | 60.           | 7.8         | 2050                   |                           |                         |                |                |                         |
| 24                         | 72.0         | 45.           | 7.0         | 1850<br>2000           |                           |                         |                | er e           |                         |
| 25<br>26                   | 72.0         | 40.<br>36.    | 7.3<br>6.7  | 1950                   |                           |                         |                |                |                         |
| 26<br>27                   | 72.0<br>72.0 | 46.           | 6.3         | 1900                   |                           |                         |                |                |                         |
| 28                         | 72.0         | 22.           | 6.7         | 1850                   | < 1.0                     | 41.4                    | 427.           | 1076.          | 15.4                    |
| 29                         | 72.0         | 29.           | 6.7         | 1900                   | · 1.0                     | 71.4                    | 421.           | 10,0.          | 13.4                    |
| 30                         | 72.0         | 28.           | 6.5         | 2000                   |                           |                         |                |                |                         |
| 31                         | 72.0         | 32.           | 6.3         | 200C                   |                           |                         |                |                |                         |
| 32                         | 72.0         | 28.           | 6.9         | 1850                   |                           |                         |                |                |                         |
| 33                         | 72.0         | 24.           | 6.8         | 1800                   |                           |                         |                |                |                         |
| 34                         | 72.0         | 28.           | 7.0         | 1850                   |                           |                         |                |                |                         |
| 35                         | 72.9         | 14.           | 7.0         | 2150                   | < 1.0                     | 11.5                    | 538.           | 1197.          | < 4.0                   |
| 36                         | 72.0         | 14.           | 7.3         | 2300                   |                           |                         |                |                |                         |
| 37                         | 72.0         | 12.           | 7.2         | 2350                   |                           |                         |                |                |                         |
| 38                         | 72.0         | 16.           | 7.1         | 2250                   |                           |                         |                |                |                         |
| 39                         | 72.0         | 16.           | 7.1         | 2200                   |                           |                         |                |                |                         |
| 40                         | 72.0         | 13.           | 6.7         | 2300                   |                           |                         |                |                |                         |
| 41                         | 72.0         | 16.           | 7.2         | 2250                   |                           |                         |                |                |                         |
| 42                         | 72.0         | 12.           | 6.9         | 220 C                  | < 1.0                     | 0.17                    | 628,           | 1216.          | < 4.0                   |
| 43                         | 72.0         | 12.           | 7.1         | 2250                   |                           |                         |                |                |                         |
| 44                         | 72.0         | 12.           | 7.2         | 2250                   |                           |                         |                |                |                         |
| 45                         | 72.0         | 10.           | 7.4         | 2150                   |                           |                         |                |                |                         |
| 46                         | 72.0         | 12.           | 7.1         | 2250                   |                           |                         |                |                |                         |
| 47                         | 72.0         | 6.            | 6.3         | 2200<br>2150           |                           |                         |                |                |                         |
| 48<br>49                   | 72.0<br>72.0 | 10.<br>8.     | 6.9<br>6.7  | 2150                   | < 1.0                     | 0.34                    | 519.           | 1184.          | 19.2                    |
| 50                         | 72.0         | 14.           | 6.9         | 2200                   | < 1.0                     | V+34                    | 317.           | € 1 CP % •     | 17.2                    |
| 50<br>51                   | 72.0         | 10.           | 6.9         | 2250                   |                           |                         |                |                |                         |
| 52                         | 72.0         | 8.            | 7.1         | 2250                   |                           |                         |                |                |                         |
| 53                         | 72.0         | 6.            | 7.0         | 2100                   |                           |                         |                |                |                         |
|                            |              | ••            | • •         |                        |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/16/72.

TABLE A15

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 9
(STONE #1809, 1/2 x 50M SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD<br>(in) | FLOW (ml/min) | рн  | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/1) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/1) |
|----------------------------|--------------|---------------|-----|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 43.5         | 3420.         | 3.0 | 1700                   | < 1.0                     | 153.                    | 146.           | 975.           | < 4.0                   |
| 2 3                        | 47.0         | 3190.         | 3.1 | 1650                   |                           |                         |                |                |                         |
| 3                          | 49.0         | 3470.         | 3.0 | 1950                   |                           |                         |                |                |                         |
| <b>4</b><br>5              | 48.5         | 3300.         | 3.2 | 1700                   |                           |                         |                |                |                         |
| 5                          | 49.0         | 3240.         | 2.9 | 1700                   |                           |                         |                |                |                         |
| 6<br>7                     | 59.5         | 3340.         | 3.3 | 150C                   |                           |                         |                |                |                         |
| 7                          | 60.5         | 3060.         | 3.0 | 1650                   | 10.0                      | 161.                    | 101.           | 1000.          | 598.                    |
| 8                          | 59.0         | 2780.         | 3.0 | 1650                   |                           |                         |                |                |                         |
| 9                          | 59.0         | 2780.         | 3.0 | 1700                   |                           |                         |                |                |                         |
| 10                         | 59.0         | 3200.         | 2.8 | 1650                   |                           |                         |                |                |                         |
| 11                         | 60.5         | 2830.         | 2.9 | 1800                   |                           |                         |                |                |                         |
| 12                         | 59.5         | 2720.         | 2.7 | 2100                   |                           |                         |                |                |                         |
| 13                         | 61.0         | 2420.         | 2.8 | 1950                   |                           |                         |                |                |                         |
| 14                         | 61.5         | 2380.         | 2.8 | 2050                   | 10.0                      | 193.                    | 90.            | 1092.          | 598.                    |
| 15                         | 61.0         | 2460.         | 2.6 | 1900                   |                           |                         |                |                |                         |
| 16                         | 62.0         | 2510.         | 2.7 | 200C                   |                           |                         |                |                |                         |
| 17                         | 60.0         | 2450.         | 2.8 | 1850                   |                           |                         |                |                |                         |
| 18                         | 60.0         | 2420.         | 2.8 | 155C                   |                           |                         |                |                |                         |
| 19                         | 61.0         | 2500.         | 3.1 | 2350                   |                           |                         |                |                |                         |
| 20                         | 59.0         | 2340.         | 2.8 | 2150                   |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/16/72.

TABLE A16

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 10
(STONE #1809, 1/2 x 0 SIZE)

| DAYS<br>AFTER<br>START-UP*                                           | HEAD<br>(in)                                                 | r'LOW<br>(ml/min)                                                  | Hq<br>—                                                                   | SP.<br>COND.<br>(µmho)                                                     | FERROUS<br>IRON<br>(mg/1) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/1) | SULFATE (mg/l) | HOT PHT.<br>ACIDITY<br>(mg/1) |
|----------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------------|
| 1                                                                    | <b>72.</b> U                                                 | 240.                                                               | 7.1                                                                       | 1800                                                                       | 4.5                       | 35.0                    | 377.           | 1011.          | 637.                          |
| 2                                                                    | 72.0                                                         | 175.                                                               | 5.2                                                                       | 1650                                                                       | •                         |                         |                |                |                               |
| 3                                                                    | 72.0                                                         | 140.                                                               | 5.3                                                                       | 1750                                                                       |                           |                         |                |                |                               |
| 4                                                                    | 72.0                                                         | 120.                                                               | 5.5                                                                       | 1700                                                                       |                           |                         |                |                |                               |
| 5<br>6                                                               | 72.0                                                         | 110.                                                               | 6.6<br>5.7                                                                | 1800<br>1950                                                               |                           |                         |                |                |                               |
| 7                                                                    | 72.0                                                         | 170.<br>130.                                                       | 5.5                                                                       | 1700                                                                       | < 1.0                     | 0.58                    | 412.           | 935.           | ν n Δ                         |
| 8                                                                    | 72.0                                                         | 90.                                                                | 5.8                                                                       | 1800                                                                       | \ 1.0                     | 0.50                    | 412.           | 933.           | <4.0                          |
| ğ                                                                    | 72.0                                                         | 90.                                                                | 5.6                                                                       | 1830                                                                       |                           |                         |                |                |                               |
| 10                                                                   | 72.0                                                         | 84.                                                                | 6.3                                                                       | 1800                                                                       |                           |                         |                |                |                               |
| 11                                                                   | 72.0                                                         | 120.                                                               | 6.3                                                                       | 1850                                                                       |                           |                         |                |                |                               |
| 12                                                                   | 72.0                                                         | 74.                                                                | 6.0                                                                       | 1950                                                                       |                           |                         |                |                |                               |
| 13                                                                   | 72.0                                                         | 90.                                                                | 6.2                                                                       | 1990                                                                       |                           |                         |                |                |                               |
| 14                                                                   | 72.0                                                         | 75.                                                                | 6.0                                                                       | 1950                                                                       | < 1.0                     | 0.09                    | 441.           | 999.           | 101.                          |
| 15                                                                   | 72.1                                                         | 70.                                                                | 6.2                                                                       | 1750                                                                       |                           |                         |                |                |                               |
| 16                                                                   | 72.0                                                         | 68.                                                                | 6.1                                                                       | 1900                                                                       |                           |                         |                |                |                               |
| 17<br>18                                                             | 72.0                                                         | 62.<br>61.                                                         | 6.2                                                                       | 1900                                                                       |                           |                         |                |                |                               |
| 19                                                                   | 72.0<br>72.0                                                 | 58.                                                                | 5.9<br>6.5                                                                | 1850<br>2100                                                               |                           |                         |                |                |                               |
| 20                                                                   | 72.0                                                         | 60.                                                                | 6.2                                                                       | 1400                                                                       |                           |                         |                |                |                               |
| 21                                                                   | 72.0                                                         | 48.                                                                | 6.8                                                                       | 2200                                                                       | < 1.0                     | 0.18                    | 505.           | 1165.          | 137.                          |
| 22                                                                   | 72.0                                                         | 45.                                                                | 7.3                                                                       | 2100                                                                       |                           |                         | 303.           | 11031          | 1374                          |
| 23                                                                   | 72.0                                                         | 50.                                                                | 7.3                                                                       | 2100                                                                       |                           |                         |                |                |                               |
| 24                                                                   | 72.0                                                         | 44.                                                                | 7.1                                                                       | 1900                                                                       |                           |                         |                |                |                               |
| 25                                                                   | 72.0                                                         | 50.                                                                | 7.0                                                                       | 205C                                                                       |                           |                         |                |                |                               |
| 26                                                                   | 72.9                                                         | 46.                                                                | 6.8                                                                       | 2100                                                                       |                           |                         |                |                |                               |
| 27                                                                   | 72.0                                                         | 48.                                                                | 7.0                                                                       | 2000                                                                       |                           |                         |                |                |                               |
| 28                                                                   | 72.0                                                         | 52.                                                                | 7.0                                                                       | 2100                                                                       | < 1.0                     | 0.05                    | 502.           | 1020.          | 38.4                          |
| 29                                                                   | 72.0                                                         | 36.                                                                | 6.6                                                                       | 2050<br>2300                                                               |                           |                         |                |                |                               |
| 30<br>31                                                             | 72.0                                                         | 40.                                                                | 6.6                                                                       |                                                                            |                           |                         |                |                |                               |
|                                                                      |                                                              |                                                                    |                                                                           |                                                                            |                           |                         |                |                |                               |
|                                                                      |                                                              |                                                                    |                                                                           |                                                                            |                           |                         |                |                |                               |
|                                                                      |                                                              |                                                                    |                                                                           | 2050                                                                       |                           |                         |                |                |                               |
| 35                                                                   | 72.0                                                         | 44.                                                                | 6.9                                                                       | 2250                                                                       | < 1.0                     | <0.03                   | 550.           | 1193.          | < 4.0                         |
| 36                                                                   | 72.0                                                         | 40.                                                                | 6.8                                                                       | 2150                                                                       |                           |                         |                |                |                               |
|                                                                      | 72.0                                                         | 35.                                                                | 7.0                                                                       | 2200                                                                       |                           |                         |                |                |                               |
|                                                                      | 72.0                                                         |                                                                    |                                                                           |                                                                            |                           |                         |                |                |                               |
|                                                                      |                                                              |                                                                    |                                                                           |                                                                            |                           |                         |                |                |                               |
|                                                                      |                                                              |                                                                    |                                                                           |                                                                            |                           |                         |                |                |                               |
|                                                                      |                                                              |                                                                    |                                                                           |                                                                            | < 1.0                     | 0.15                    | 606            | 1162           | < 4.0                         |
|                                                                      |                                                              |                                                                    |                                                                           |                                                                            | · 1.0                     | 0.15                    | 300.           | 1102.          | 74.0                          |
|                                                                      |                                                              |                                                                    |                                                                           |                                                                            |                           |                         |                |                |                               |
| 45                                                                   |                                                              |                                                                    |                                                                           | 2150                                                                       |                           |                         |                |                |                               |
| 46                                                                   | 72.0                                                         | 36.                                                                | 6.9                                                                       | 2200                                                                       |                           |                         |                |                |                               |
| 47                                                                   | 72.0                                                         | 30.                                                                | 6.3                                                                       | 2100                                                                       |                           |                         |                |                |                               |
| 48                                                                   | 72.0                                                         | 30.                                                                | 6.6                                                                       | 2200                                                                       |                           |                         |                |                |                               |
| 49                                                                   | 72.0                                                         | 28.                                                                | 6.5                                                                       | 220 C                                                                      | < 1.0                     | 0.04                    | 519.           | 1193.          | 19.2                          |
|                                                                      |                                                              |                                                                    |                                                                           |                                                                            |                           |                         |                |                |                               |
|                                                                      |                                                              |                                                                    |                                                                           |                                                                            |                           |                         |                |                |                               |
|                                                                      |                                                              |                                                                    |                                                                           |                                                                            |                           |                         |                |                |                               |
| 36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47 | 72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0 | 40.<br>35.<br>50.<br>44.<br>35.<br>44.<br>36.<br>33.<br>36.<br>30. | 6.8<br>7.0<br>6.9<br>6.9<br>5.8<br>6.9<br>6.1<br>6.9<br>7.1<br>7.3<br>6.9 | 2250<br>2150<br>2200<br>2150<br>2100<br>2200<br>2100<br>2200<br>2100<br>21 | < 1.0                     | <0.03<br>0.15           | 550.<br>606.   | 1193.<br>1162. | < 4.0<br>< 4.0                |

<sup>\*</sup>Start-up date was 3/16/72.

TABLE A17

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 11
(STONE \$1809, 1 x 50 M SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD | FLOW (ml/min) | рн   | SP.<br>COND.<br>(µmho) | FERRO<br>IRC<br>(mg/ | N   | TOTAL<br>IRON<br>(mg/l) | CALCIUM<br>(mg/l) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/l) |
|----------------------------|------|---------------|------|------------------------|----------------------|-----|-------------------------|-------------------|----------------|-------------------------|
| 1                          | 2 3  | .5 348        | c. 2 | 2.8 1                  | 800                  | 9.0 | 154.                    | 141.              | 978.           | 637.                    |
| 2                          | 26   | .0 378        | 5. 3 | 3.C 1                  | 65C ·                |     |                         |                   |                |                         |
| 3                          | 26   | .0 346        | C. 2 | 2.7 2                  | 10 C                 |     |                         |                   |                |                         |
| 4                          | 27   | .0 333        | 0. 3 | 3.0 1                  | 65C                  |     |                         |                   |                |                         |
| 5                          | 2.7  | .0 323        | 0. 2 | 8.8 1                  | 810                  |     |                         |                   |                |                         |
| 6                          | 20   | .1 284        | Ç. 3 | 1.1                    | 500                  |     |                         |                   |                |                         |
| 7                          | 25   | .0 277        | 0. 2 | 2.9 1                  | 600                  | 6.3 | 160.                    | 95.               | 967.           | 590.                    |
| 8                          | 25   | .0 275        | 0. 3 | 1.0                    | 650                  |     |                         |                   |                |                         |
| 9                          | 25   | . 1 246       | 0. 2 | 2.8 1                  | 800                  |     |                         |                   |                |                         |
| 10                         | 25   | .5 240        | 0. 2 | 2.8 <b>1</b>           | 60C                  |     |                         |                   |                |                         |
| 11                         | 27   | .0 242        | Ç. 2 | 2.8 1                  | 900                  |     |                         |                   |                |                         |
| 12                         | 28   | .0 234        | 0. 2 | 2.4 2                  | 050                  |     |                         |                   |                |                         |
| 13                         | 29   | .0 232        | 0. 2 | 2.8 2                  | 000                  |     |                         |                   |                |                         |
| 14                         | 29   | .5 233        | 0. 2 | 2.8 2                  | 050                  | 9.0 | 189.                    | 90.               | 1071.          | 685.                    |
| 15                         | 30   | .0 227        | 0. 2 | 2.6 1                  | 850                  |     |                         |                   |                |                         |
| 16                         | 30   | .5 222        | 0. 2 | 2.7 2                  | 050                  |     |                         |                   |                |                         |
| 17                         | 29   | .5 217        | 0. 2 | 2.6 1                  | 950                  |     |                         |                   |                |                         |
| 18                         | 3.7  | .0 220        | 0. 2 | 2.6 1                  | 700                  | ,   | •                       |                   |                |                         |
| 19                         | 32   | .0 216        | C. 3 | 3.0 2                  | 400                  |     |                         |                   |                |                         |
| 20                         | 3 1  | .0 212        | C. 2 | 2.7 1                  | 30C                  |     |                         |                   |                |                         |

<sup>\*</sup>Start-up date was 3/16/72.

TABLE A18

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 12
(STONE #1809, 1 x 0 SIZE)

| ** | HEAD | FLOW (ml/min) | рн  | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/1) | TOTAL<br>IRON<br>(mg/1) | CALCIUM<br>(mg/l) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/1) |
|----|------|---------------|-----|------------------------|---------------------------|-------------------------|-------------------|----------------|-------------------------|
|    | 29.0 | 3890.         | 2.8 | 175C                   | 8.8                       | 160.                    | 125.              | 1025.          | 652.                    |
| •  | 30.0 | 3795.         | 3.1 | 1650                   |                           | _                       |                   |                |                         |
|    | 32.1 | 3820.         | 2.7 | 2200                   |                           |                         |                   |                |                         |
|    | 32.5 | 3630.         | 2.9 | 1700                   |                           |                         |                   |                |                         |
|    | 34.0 | 3530.         | 2.6 | 2000                   |                           |                         |                   |                |                         |
|    | 23.5 | 3200.         | 3.0 | 1500                   |                           | 7                       |                   |                |                         |
|    | 31.5 | 3110.         | 2.8 | 1650                   | 8.9                       | 163.                    | 90.               | 973.           | 648.                    |
|    | 31.5 | 2850.         | 2.9 | 17CC                   |                           |                         |                   |                |                         |
|    | 32.5 | 2740.         | 2.8 | 1800                   |                           |                         |                   |                |                         |
|    | 33.5 | 2700.         | ?.8 | 1750                   |                           |                         |                   |                |                         |
|    | 34.1 | 1720.         | .7  | 1850                   |                           |                         |                   |                |                         |
|    | 36.5 | 2620.         | 5   | 2200                   |                           |                         |                   |                |                         |
|    | 39.5 | 2650.         | 2.7 | 2100                   |                           |                         |                   |                |                         |
|    | 38.5 | 2530.         | 2.7 | 2200                   | 10.0                      | 193.                    | 90.               | 1160.          | 846.                    |
|    | 40.0 | 2500.         | 2.6 | 2000                   |                           |                         |                   |                |                         |
|    | 47.5 | 2400.         | 2.8 | 2100                   |                           |                         |                   |                |                         |
|    | 42.5 | 2475.         | 2.5 | 2100                   |                           |                         |                   |                |                         |
|    | 43.3 | 2420.         | 2.6 | 1750                   |                           |                         |                   |                |                         |
|    | 45.0 | 146°.         | 2.9 | 255°C                  |                           |                         |                   |                |                         |
|    | 43.0 | 2360.         | 2.6 | 275 C                  |                           | ,                       |                   |                |                         |

ate was 3/16/72.

TABLE A19

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 13
(STONE #1355, 1/8 x 0 SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD         | FLOW (ml/min) | рн         | SP. COND. (µmho) | FERROUS<br>IRON<br>(mg/1) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/1) | SULFATE (mg/l) | HOT PHT.<br>ACIDITY<br>(mg/1) |
|----------------------------|--------------|---------------|------------|------------------|---------------------------|-------------------------|----------------|----------------|-------------------------------|
| 1                          | 72.0         | 50.           | 6.3        | 1900             | 1.0                       | 13.0                    | 417.           | 999.           | 299.                          |
| ż                          | 72.0         | 30.           | 6.3        | 1700             |                           |                         |                |                |                               |
| $\tilde{3}$                | 72.0         | 30.           | 5.5        | 1750             |                           |                         |                |                |                               |
| 4                          | 72.0         | 20.           | 5.3        | 175C             |                           |                         |                |                |                               |
| 5                          | 72.0         | 40.           | 5.4        | 165C             |                           |                         |                |                |                               |
| 6                          | 72.0         | 23.           | 5.5        | 1700             |                           |                         |                |                | 205                           |
| 7                          | 72.0         | 39.           | 5.6        | 1800             | < 1.0                     | 2.3                     | 452.           | 928.           | 205.                          |
| 8                          | 72.0         | 35.           | 5.8        | 1800             |                           |                         |                |                |                               |
| 9                          | 72.0         | 26.           | 5.9        | 1850             |                           |                         |                |                |                               |
| 10                         | 72.7         | 20.           | 6.5        | 1850<br>1850     |                           |                         |                |                |                               |
| 11                         | 72.0         | 50.           | 6.3<br>5.9 | 1950             |                           |                         |                |                |                               |
| 12                         | 72.0<br>72.0 | 16.<br>30.    | 6.5        | 1950             |                           |                         |                |                |                               |
| 13<br>14                   | 72.0         | 30.           | 6.1        | 2050             | < 1.0                     | 0.04                    | 482.           | 1081.          | 104.                          |
| 15                         | 72.0         | 14.           | 6.4        | 1900             |                           |                         |                |                |                               |
| 16                         | 72.0         | 14.           | 6.7        | 2050             |                           |                         |                |                |                               |
| 17                         | 72.0         | 18.           | 6.4        | 1920             |                           | ,i                      |                |                |                               |
| 18                         | 72.0         | 20.           | 6.3        | 170C             |                           |                         |                |                |                               |
| 19                         | 72.0         | 16.           | 6.3        | 2200             |                           |                         |                |                |                               |
| 20                         | 72.0         | 14.           | 6.2        | 2100             |                           | .0.03                   | 525            | 1170           | 126                           |
| 21                         | 72.0         | 16.           | 7.5        | 2250             | < 1.0                     | <0.03                   | 525.           | 1170.          | 126.                          |
| 22                         | 72.0         | 15.           | 7.6        | 2150             |                           |                         |                |                |                               |
| 23                         | 72.0         | 20.<br>12.    | 7.7<br>7.4 | 2150<br>2100     |                           |                         |                |                |                               |
| 24<br>25                   | 72.0<br>72.0 | 15.           | 7.4        | 2100             |                           |                         |                |                |                               |
| 26                         | 72.0         | 14.           | 7.3        | 2150             |                           |                         |                |                |                               |
| 27                         | 72.0         | 14.           | 7.3        | 215C             |                           |                         |                |                |                               |
| 28                         | 72.0         | 16.           | 7.1        | 2050             | < 1.0                     | 0.03                    | 499.           | 882.           | 407.                          |
| 29                         | 72.0         | 9.            | 7.3        | 2100             |                           |                         |                |                |                               |
| 30                         | 72.0         | 14.           | 7.1        | 2150             |                           |                         |                |                |                               |
| 3.1                        | 72.0         | . 12.         | 7.3        | 2300             |                           |                         |                |                |                               |
| , 32                       | 72.0         | 10.           | 7.3        | 2200             |                           |                         |                |                |                               |
| 33                         | 72.0         | 12.           | 7.3        | 1900<br>1950     |                           |                         |                |                |                               |
| 34                         | 72.0         | 16.<br>16.    | 7.2<br>7.2 | 2150             | < 1.0                     | <0.03                   | 550.           | 1145.          | 15.4                          |
| 35                         | 72.0         | 16.           | 7.2        | 2150             |                           |                         |                |                |                               |
| 36<br>37                   | 72.0         | 12.           | 7.2        | 2250             |                           |                         |                |                |                               |
| 38                         | 72.0         | 16.           | 7.2        | 2100             |                           |                         |                |                |                               |
| 39                         | 72.0         | 16.           | 7.2        | 2100             |                           |                         |                |                |                               |
| 40                         | 72.0         | 15.           | 6.5        | 2250             |                           |                         |                |                |                               |
| 41                         | 72.1         | 12.           | 7.2        |                  |                           | A 25                    | 519.           | 1171.          | < 4.0                         |
| 42                         | 72.0         | 10.           | 6.6        | 215C             | < 1.0                     | 0.35                    | 217.           | 1171.          |                               |
| 43                         | 72.0         | 16.           | 7.2        |                  |                           |                         |                |                |                               |
| 44                         | 72.0         | 10.<br>11.    | 7.3<br>7.5 | 205C             |                           |                         |                |                |                               |
| 45                         | 72.0<br>72.0 |               | 7.1        |                  |                           |                         |                |                |                               |
| 46<br>47                   | 72.0         |               | 6.5        |                  |                           |                         |                |                |                               |
| - 48                       | 72.0         |               | 6.8        |                  |                           |                         |                |                | 22.4                          |
| 49                         | 72.0         |               | 6.6        | 215C             | < 1.0                     | 0.03                    | 518.           | 1142.          | 23.0                          |
| 50                         | 72.0         |               | 6.8        |                  |                           |                         |                |                |                               |
| 51                         | 72.0         |               | 7.0        |                  |                           |                         |                |                |                               |
| 52                         | 72.0         |               | 6.2        |                  |                           |                         |                |                | 4                             |
| 53                         | 72.0         | 10.           | 7.1        | 2310             |                           |                         |                |                |                               |

<sup>\*</sup>Start-up date was 3/16/72.

TABLE A20

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 14
(STONE #1355, 1/4 x 0 SIZE)

| DAYS<br>AFTER<br>START-UP*             | HEAD<br>(in)                                                 | FLOW (ml/min)                                 | рн                                                   | SP.<br>COND.<br>(µmho)                                       | FERROUS<br>IRON<br>(mg/1) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/l) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/l) |
|----------------------------------------|--------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1<br>2<br>3<br>4<br>5                  | 72.0<br>72.0<br>72.0<br>72.0<br>72.0                         | 125.<br>75.<br>71.<br>75.<br>60.              | 6.1<br>5.8<br>6.1<br>5.8<br>5.8                      | 1800<br>1800<br>1900<br>1850<br>1800                         | < 1.0                     | 0.89                    | 447.           | 974.           | < 4.0                   |
| 6<br>7<br>8<br>9<br>10<br>11           | 72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0                 | 76.<br>84.<br>55.<br>56.<br>40.<br>75.        | 6.0<br>5.9<br>6.2<br>6.4<br>6.7                      | 2050<br>1750<br>1850<br>1850<br>1750                         | < 1.0                     | 3.3                     | 418.           | 937.           | 10.8                    |
| 12<br>13<br>14<br>15<br>16<br>17       | 72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0                 | 38.<br>35.<br>35.<br>19.<br>21.               | 6.6<br>6.8<br>6.4<br>6.6<br>5.7                      | 1950<br>2000<br>2050<br>1900<br>1950<br>1850                 | < 1.0                     | 0.69                    | 4 7,1          | 1063.          | 126.                    |
| 18<br>19<br>20<br>21<br>22<br>23<br>24 | 72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0         | 20.<br>22.<br>16.<br>18.<br>20.<br>30.<br>20. | 6.7<br>6.8<br>6.9<br>7.3<br>7.6<br>7.8<br>7.6        | 1650<br>2100<br>2050<br>2250<br>2100<br>2100<br>2000         | < 1.0                     | <0.03                   | 520.           | 1199.          | 50.5                    |
| 25<br>26<br>27<br>28<br>29<br>30<br>31 | 72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0         | 15.<br>14.<br>16.<br>16.<br>14.<br>14.        | 7.4<br>7.3<br>7.3<br>6.7<br>7.0<br>7.0               | 2100<br>2150<br>2100<br>2000<br>2150<br>2250<br>2300         | < 1.0                     | 0.03                    | 519.           | 1015.          | 38.4                    |
| 32<br>33<br>34<br>35<br>36<br>37<br>38 | 72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0         | 14.<br>14.<br>16.<br>16.<br>16.<br>12.        | 7.3<br>7.3<br>7.2<br>7.0<br>7.0<br>7.1<br>7.1        | 2310<br>1950<br>1950<br>2200<br>2250<br>2250<br>2150         | < 1.0                     | <0.03                   | 550.           | 1164.          | 19.2                    |
| 39<br>40<br>41<br>42<br>43<br>44       | 72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0         | 16.<br>13.<br>14.<br>12.<br>24.<br>13.        | 7.2<br>6.3<br>7.3<br>6.8<br>7.1<br>7.4<br>7.5        | 2100<br>2250<br>2150<br>2150<br>2250<br>2100<br>2050         | < 1.0                     | 0.06                    | 511.           | 1172.          | < 4.0                   |
| 46<br>47<br>48<br>49<br>50<br>51<br>52 | 72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0 | 12.<br>8.<br>9.<br>12.<br>20.<br>14.<br>10.   | 7.0<br>6.5<br>6.8<br>6.7<br>6.6<br>6.9<br>7.0<br>7.1 | 2200<br>2150<br>2150<br>2200<br>2100<br>2400<br>2450<br>2350 | < 1.0                     | 0.03                    | 526.           | 1140.          | 61.4                    |

<sup>\*</sup>Start-up date was 3/16/72.

TABLE A21

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 15
(STONE #1355, 1/2 x 50M SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD | FLOW (ml/min) | рH<br>— | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/1) | TOTAL<br>IRON<br>(mg/l) | CALCIUM<br>(mg/1) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/l) |
|----------------------------|------|---------------|---------|------------------------|---------------------------|-------------------------|-------------------|----------------|-------------------------|
| 1                          | 58.0 | 3450.         | 2.9     | 1800                   | 3.8                       | 161.                    | 160.              | 1036.          | 511.                    |
|                            | 59.5 | 3420.         | 3.2     | 1550                   |                           |                         |                   |                |                         |
| 2<br>3                     | 72.0 | 3420.         | 3.2     | 1706                   |                           |                         |                   |                |                         |
| ī.                         | 57.0 | 3300.         | 3.0     | 1650                   |                           |                         |                   |                |                         |
| 4<br>5                     | 56.0 | 3160.         | 2.8     | 1750                   |                           |                         |                   |                |                         |
| 6                          | 51.5 | 2820.         | 3.2     | 1500                   |                           |                         |                   |                |                         |
| 6<br>7                     | 53.0 | 2720.         | 2.9     | 160C                   | 10.0                      | 150.                    | 98.               | 989.           | 533.                    |
| 8                          | 52.0 | 2530.         | 3.0     | 1600                   |                           |                         |                   |                |                         |
| 9                          | 52.0 | 2480.         | 3.0     | 1700                   |                           |                         |                   |                |                         |
| 10                         | 51.5 | 2380.         | 2.8     | 1650                   |                           |                         |                   |                |                         |
| 11                         | 51.5 | 2360.         | 2.8     | 1800                   |                           |                         |                   |                |                         |
| 12                         | 52.0 | 2340.         | 2.6     | 2050                   |                           |                         |                   |                |                         |
| 13                         | 50.5 | 2310.         | 2.7     | 2050                   |                           |                         |                   |                | c 5 11                  |
| 14                         | 50.0 | 2370.         | 2.8     | 1950                   | 10.0                      | 193.                    | 90.               | 1111.          | 654.                    |
| 15                         | 48.5 | 2200.         | 2.7     | 1850                   |                           |                         |                   |                |                         |
| 16                         | 50.0 | 2200.         | 2.7     | 2100                   |                           |                         |                   |                |                         |
| 17                         | 48.0 | 2130.         | 2.6     | 1950                   |                           | *                       |                   |                |                         |
| 18                         | 48.0 | 2180.         | 2.7     | 1550                   |                           |                         |                   |                |                         |
| 19                         | 49.0 | 2100.         | 2.9     | 235C                   |                           |                         |                   |                |                         |
| 20                         | 48.0 | 2000.         | 3.1     | 2200                   |                           |                         |                   |                |                         |

<sup>\*</sup>Start-up date was 3/16/72.

TABLE A22

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 16
(STONE #1355, 1/2 x 0 SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD         | FLOW (ml/min) | рн         | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/l) | CALCIUM<br>(mg/l) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/1) |
|----------------------------|--------------|---------------|------------|------------------------|---------------------------|-------------------------|-------------------|----------------|-------------------------|
| 1                          | 72.0         | 275.          | 6.1        | 1500                   | 4.5                       | 50.9                    | 340.              | 985.           | 7.2                     |
| 2                          | 72.0         | 250.          | 5.0        | 1550                   |                           |                         |                   |                |                         |
| 3                          | 72.0         | 220.          | 4.0        | 1650                   |                           |                         |                   |                |                         |
| ű                          | 72.0         | 250.          | 3.8        | 1550                   |                           |                         |                   |                |                         |
| 5                          | 72.0         | 240.          | 3.6        | 155C                   |                           |                         |                   |                |                         |
| 6                          | 72.0         | 300.          | 5.2        | 1650                   |                           |                         |                   |                |                         |
| 7                          | 72.0         | 196.          | 3.5        | 1550                   | 4.0                       | 71.4                    | 267.              | 973.           | 126.                    |
| В                          | 72.0         | 200.          | 3.5        | 1600                   |                           |                         |                   | •              |                         |
| 9                          | 72.0         | 176.          | 3.4        | 1600                   |                           |                         |                   |                |                         |
| 10                         | 72.0         | 166.          | 3.2        | 160C                   |                           |                         |                   |                |                         |
| 11                         | 72.0         | 180.          | 3.1        | 1700                   |                           |                         |                   |                |                         |
| 12                         | 72.0         | 152.          | 3.0        | 1800                   |                           |                         |                   |                |                         |
| 13                         | 72.0         | 160.          | 3.0        | 1900                   | 3 0                       | 110                     | 225.              | 1060.          | 356.                    |
| 14                         | 72.0         | 165.          | 3.0        | 1950                   | 3.8                       | 118.                    | 423.              | 1000.          | 330.                    |
| 15                         | 72.0         | 150.          | 2.9        | 1750<br>1800           |                           |                         |                   |                |                         |
| 16                         | 72.0         | 142.          | 2.9        | 1800                   |                           |                         |                   |                |                         |
| 17                         | 72.0         | 138.<br>150,  | 2.8<br>2.9 | 1550                   |                           |                         |                   |                |                         |
| 18                         | 72.0         | 140.          | 3.3        | 2100                   |                           |                         |                   |                |                         |
| 19                         | 72.0<br>72.0 | 140.          | 3.1        | 1950                   |                           |                         |                   |                |                         |
| 20<br>21                   | 72.0         | 136.          | 3.0        | 2000                   | 7.2                       | 140.                    | 210.              | 1160.          | 388.                    |
| 22                         | 72.0         | 135.          | 3.3        | 1950                   |                           |                         |                   |                |                         |
| 23                         | 72.0         | 150.          | 3.4        | 1900                   |                           |                         |                   |                |                         |
| 24                         | 72.0         | 140.          | 3.2        | 185¢                   |                           |                         |                   |                |                         |
| 25                         | 72.0         | 130.          | 3.2        | 1650                   |                           |                         |                   |                |                         |
| 26                         | 72.0         | 140.          | 2.9        | 2050                   |                           |                         |                   |                |                         |
| 27                         | 72.0         | 146.          | 3.3        | 1750                   |                           |                         |                   |                |                         |
| 28                         | 72.0         | 132.          | 3.1        | 2000                   | 8.5                       | 135.                    | 186.              | 1069.          | 626.                    |
| 29                         | 72.0         | 130.          | 2.8        | 1950                   |                           |                         |                   |                |                         |
| 30                         | 72.0         | 132.          | 3.2        | 2150                   |                           |                         |                   |                |                         |
| 31                         | 72.0         | 128.          | 3.1        | 2550                   |                           |                         |                   |                |                         |
| 32                         | 72.0         | 104.          | 3.4        | 1750                   |                           |                         |                   |                |                         |
| 33                         | 72.0         | 88.           | 3.7        | 160C                   |                           |                         |                   |                |                         |
| 34                         | 72.0         | 68.           | 3.5        | 1850                   | 10.2                      | 131.                    | 285.              | 1205.          | 457.                    |
| 35                         | 72.9         | 72.           | 3.1        | 2050<br>2100           | 10.2                      | 131.                    | 205.              | 1200.          |                         |
| 36                         | 72.0         | 64.<br>62.    | 3.0<br>2.9 | 2000                   |                           |                         |                   |                |                         |
| 37                         | 72.0<br>72.0 | 66.           | 3.0        | 2000                   |                           |                         |                   |                |                         |
| 38<br>39                   | 72.0         |               | 3.0        | 1950                   |                           |                         |                   |                |                         |
| 40                         | 72.0         | 55.           | 2.6        | 1900                   |                           |                         |                   |                |                         |
| 41                         | 72.0         | 60.           | 3.2        |                        |                           |                         |                   |                |                         |
| 42                         | 72.0         |               | 2.9        | 2100                   | 10.0                      | 119.                    | 242.              | 1215.          | 502.                    |
| 43                         | 72.0         |               | 3.0        | 2200                   |                           |                         |                   |                |                         |
| 44                         | 72.0         |               | 3.2        |                        |                           |                         |                   |                |                         |
| 45                         | 72.0         |               | 3.4        |                        |                           |                         |                   |                |                         |
| 46                         | 72.0         |               | 2.9        |                        |                           |                         |                   |                |                         |
| 47                         | 72.9         |               | 3.1        |                        |                           |                         |                   |                |                         |
| 48                         | 72.0         |               | 2.8        |                        | 2.0                       | 175                     | 211               | 1211.          | 522.                    |
| 49                         | 72.0         |               | 2.5        | 2100                   | 8.0                       | 125.                    | 211.              | 12110          | J 6 6 8                 |
| 50                         | 72.0         |               | 2.5        |                        |                           |                         |                   |                |                         |
| 51                         | 72.0         |               | 2.6        |                        |                           |                         |                   |                |                         |
| 52<br>53                   | 72.0         |               | 2.9<br>3.0 |                        |                           |                         |                   |                |                         |
| 53                         | 72.9         | 32.           | J • ()     | 2400                   |                           |                         |                   |                |                         |

<sup>\*</sup>Start-up date was 3/16/72.

TABLE A23

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 17
(STONE #1355, 1 x 50M SIZE)

| AF | YS<br>TER<br>ART-UP* | HEAD | FLOW (ml/min) | pH<br>— | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/1) | CALCIUM (mg/l) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/1) |
|----|----------------------|------|---------------|---------|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
|    | 1                    | 58.0 | 3650.         | 2.9     | 175°C                  | 8.5                       | 150.                    | 160.           | 999.           | 526.                    |
|    | 2                    | 59.5 | 3600.         | 3.4     | 1600                   |                           |                         |                |                |                         |
|    | 3                    | 72.0 | 3480.         | 3.0     | 180°                   |                           |                         |                |                |                         |
|    | 4                    | 59.0 | 3420.         | 2.8     | 1700                   |                           |                         |                |                |                         |
|    | 5                    | 58.5 | 3260.         | 2.7     | 1800                   |                           |                         |                |                |                         |
|    | б                    | 52.5 | 2920.         | 3.1     | 1500                   |                           |                         |                |                |                         |
|    | 7                    | 50.5 | 2760.         | 2.8     | 1550                   | 10.0                      | 141.                    | 99.            | 982.           | 515.                    |
|    | 8                    | 17.5 | 2600.         | 3.0     | 1700                   |                           |                         |                |                |                         |
|    | 9                    | 48.9 | 2520.         | 2.9     | 1650                   |                           |                         |                |                |                         |
|    | 10                   | 47.5 | 2420.         | 2.8     | 1800                   |                           |                         |                |                |                         |
|    | 11                   | 47.0 | 242.          | 2.7     | 18 י0                  |                           |                         |                |                |                         |
|    | 12                   | 47.5 | 2400.         | 2.7     | 2100                   |                           |                         |                |                |                         |
|    | 13                   | 46.5 | 1370.         | 2.7     | 2100                   |                           |                         |                |                |                         |
|    | 14                   | 46.5 | 2330.         | 2.8     | 2050                   | 10.0                      | 190.                    | 94.            | 1110.          | 741.                    |
|    | 15                   | 44.5 | 2280.         | 2.6     | 1850                   |                           |                         |                |                |                         |
|    | 16                   | 45.5 | 2180.         | 2.7     | 200C                   |                           |                         |                |                |                         |
|    | 17                   | 44.7 | 2250.         | 2.5     | 2000                   |                           |                         |                |                |                         |
|    | 18                   | 43.0 | 2220.         | 2.6     | 1500                   |                           | 1                       |                |                |                         |
|    | 19                   | 44.0 | 2140.         | 2.9     | 2400                   |                           |                         |                |                |                         |
|    | 20                   | 41.5 | 2100.         | 2.5     | 2200                   |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/16/72.

TABLE A24

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 18
(STONE #1355, 1 x 0 SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD         | FLOW (ml/min) | рн<br>—    | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/l) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/1) |
|----------------------------|--------------|---------------|------------|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 4                          | 72.0         | 1900.         | 2.9        | 1650                   | 8.0                       | 123.                    | 200.           | 1006.          | 389.                    |
| 1                          | 72.0         | 1660.         | 3.5        | 1700                   |                           | 123.                    | 2000           | (0,750         |                         |
| 2<br>3                     | 72.0         | 1520.         | 3.1        | 1750                   |                           |                         |                |                |                         |
| 4                          | 72.0         | 1480.         | 2.8        | 1750                   |                           |                         |                |                |                         |
| 5                          | 72.0         | 1400.         | 2.9        | 165C                   |                           |                         |                |                |                         |
| 6                          | 72.0         | 1100.         | 3.2        | 1550                   |                           |                         |                |                |                         |
| 7                          | 72.0         | 1010.         | 3.0        | 1700                   | 8.8                       | 140.                    | 143.           | 972.           | 421.                    |
| 8                          | 72.0         | 820.          | 3.0        | 1700                   |                           |                         |                |                |                         |
| 9                          | 72.0         | 760.          | 3.0        | 170C                   |                           |                         |                |                |                         |
| 10                         | 72.3         | 720.          | 3.0        | 1600                   |                           |                         |                |                |                         |
| 11                         | 72.0         | 720.          | 2.9        | 1650                   |                           |                         |                |                |                         |
| 12                         | 72.0         | 690.          | 2.7        | 1900                   |                           |                         |                |                |                         |
| 13                         | 72.0         | 33C.          | 2.9        | 1850                   |                           |                         |                |                |                         |
| 14                         | 72.0         | 650.          | 2.9        | 2000                   | 3.5                       | 168.                    | 135.           | 1086.          | 601.                    |
| 15                         | 72.0         | 620.          | 2.8        | 1750                   |                           |                         |                |                |                         |
| 16                         | 72.0         | 600.          | 2.9        | 1850                   |                           |                         |                |                |                         |
| 17                         | 72.0         | 60C.          | 2.7        | 1900                   |                           |                         |                |                |                         |
| 18                         | 72.0         | 600.          | 2.7        | 1400                   |                           |                         |                |                |                         |
| 19                         | 72.0         | 620.          | 3.1        | 2200                   |                           |                         |                |                |                         |
| 20                         | 72.0         | 620.          | 2.9        | 2250                   |                           |                         |                |                |                         |
| 21                         | 72.0         | 600.          | 2.8        | 2100                   | 10.0                      | 138.                    | 125.           | 1126.          | 711.                    |
| 22                         | 72.9         | 555.          | 3.0        | 2050                   |                           |                         |                |                |                         |
| 23                         | 72.0         | 560.          | 3.1        | 2050                   |                           |                         |                |                |                         |
| 24                         | 72,0         | 540.          | 2.9        | 2150                   |                           |                         |                |                |                         |
| 25                         | 72.0         | 550.          | 3.2        | 180C                   |                           |                         |                |                |                         |
| 26                         | 72.0         | 540.          | 2.6        | 225¢                   |                           |                         |                |                |                         |
| 27                         | 72.0         | 528.          | 3.1        | 1750                   |                           |                         |                |                | <b>= 4</b>              |
| 28                         | 72.0         | 500.          | 3.0        | 1890                   | 11.5                      | 138.                    | 140.           | 1051.          | 584.                    |
| 29                         | 72.0         | 590.          | 2.8        | 2000                   |                           |                         |                |                |                         |
| 30                         | 72.0         |               | 2.7        | 2400                   |                           |                         |                |                |                         |
| 31                         | 72.0         | 492.          | 2.8        | 2900                   |                           |                         |                |                |                         |
| 32                         | 72.0         | 414.          | 3.2        | 175C                   |                           |                         |                |                |                         |
| 33                         | 72.0         |               | 3.2        | 1650                   |                           |                         |                |                |                         |
| 34                         | 72.0         |               | 3.1        | 2000                   |                           |                         | 175            | 1221.          | 797.                    |
| 35                         | 72.0         |               | 2.7        | 2450                   | 11.0                      | 166.                    | 175.           | 1221.          | , , , ,                 |
| 36                         | 72.0         |               | 2.5        | 2300                   |                           |                         |                |                |                         |
| 37                         | 72.0         |               | 2.6        | 2250                   |                           |                         |                |                |                         |
| 38                         | 72.0         |               | 2.6        | 2400                   |                           |                         |                |                |                         |
| 39                         | 72.0         |               | 2.6        |                        |                           |                         |                |                |                         |
| 40                         | 72.0         |               | 2.8        | 2100                   |                           |                         |                |                |                         |
| 41                         | 72.0         |               | 2.9        |                        | 11.0                      | 176.                    | 147.           | 1211.          | 373.                    |
| 42                         | 72.0         |               | 2.8        |                        | 11.0                      | 170.                    |                | 12             | 3.7.                    |
| 43                         | 72.0         |               | 2.6        |                        |                           |                         |                |                |                         |
| 44                         | 72.0         |               | 2.8        |                        |                           |                         |                |                |                         |
| 45                         | 72.0         |               | 2.9<br>2.6 |                        |                           |                         |                |                |                         |
| 46                         | 72.0         |               | 2.6        |                        |                           |                         |                |                |                         |
| 47                         | 72.0         |               | 2.4        |                        |                           |                         |                |                |                         |
| 48                         | 72.0         |               | 2.2        |                        | 10.0                      | 161.                    | 112.           | 1221.          | 787.                    |
| 49                         | 72.0         |               | 2.2        |                        | 10.0                      |                         |                |                |                         |
| 50<br>54                   | 72.0         |               | 2.3        |                        |                           |                         |                |                |                         |
| 51<br>53                   | 72.0         |               | 2.3        |                        |                           |                         |                |                |                         |
| 52<br>53                   | 72.0<br>72.0 |               | 2.7        |                        |                           |                         |                |                |                         |
| 53                         | 12.0         | 300.          | 2.1        | .,000                  |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/16/72.

TABLE A25

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 19
(STONE #1337, 1/8 x 0 SIZE)

| DAYS<br>AFTER<br>START-UP*             | HEAD                                                 | FLOW (ml/min)                           | рн                                            | SP.<br>COND.<br>(µmho)                               | FERROUS<br>IRON<br>(mg/1) | TOTAL<br>IRON<br>(mg/l) | CALCIUM<br>(mg/1) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/1) |
|----------------------------------------|------------------------------------------------------|-----------------------------------------|-----------------------------------------------|------------------------------------------------------|---------------------------|-------------------------|-------------------|----------------|-------------------------|
| 1<br>2<br>3<br>4<br>5                  | 72.0<br>72.0<br>72.0<br>72.0<br>72.0                 | 25.<br>10.<br>9.<br>10.<br>8.           | 6.9<br>6.0<br>5.7<br>6.1                      | 2000<br>1950<br>1850<br>1950<br>1850                 | < 1.0                     | 0.29                    | 161.              | 972.           | 25.2                    |
| 6<br>7<br>8<br>9<br>10<br>11<br>12     | 72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0 | 22.<br>12.<br>20.<br>16.<br>14.<br>25.  | 5.9<br>5.6<br>5.8<br>6.0<br>6.5<br>6.3<br>6.3 | 1850<br>1900<br>1900<br>1950<br>1950<br>1900<br>2050 | < 1.0                     | 0.04                    | 291.              | 942.           | 14.4                    |
| 13<br>14<br>15<br>16<br>17<br>18       | 72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0         | 25.<br>20.<br>11.<br>11.<br>11.         | 6.5<br>6.4<br>6.7<br>6.8<br>6.7               | 1950<br>2150<br>1800<br>2100<br>2050<br>1950         | < 1.0                     | 0.31                    | 311.              | 1025.          | 62.4                    |
| 19<br>20<br>21<br>22<br>23<br>24<br>25 | 72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0 | 16.<br>140.<br>16.<br>20.<br>30.<br>20. | 6.8<br>6.2<br>7.3<br>6.9<br>7.1<br>6.9<br>6.5 | 2250<br>2150<br>2250<br>2150<br>2150<br>2050<br>2150 | < 1.0                     | <0.03                   | 343.              | 1169.          | 140.                    |
| 26<br>27<br>28<br>29<br>30<br>31       | 72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0 | 14.<br>14.<br>16.<br>9.<br>14.<br>14.   | 6.4<br>6.8<br>7.1<br>7.2<br>6.4<br>6.4        | 2150<br>2100<br>2000<br>2050<br>2150<br>2250<br>2300 | < 1.0                     | <0.03                   | 303.              | 980.           | 15.4                    |
| 33<br>34<br>35<br>36<br>37<br>38<br>39 | 72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0         | 20.<br>20.<br>14.<br>14.<br>8.<br>16.   | 6.4<br>6.3<br>6.4<br>6.7<br>6.5<br>7.0<br>7.3 | 1750<br>2000<br>2150<br>2200<br>2200<br>2100<br>2100 | < 1.0                     | <0.03                   | 353.              | 1196.          | 24.2                    |
| 41<br>42<br>43<br>44<br>45             | 72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0 | 11.<br>16.<br>12.<br>24.<br>14.<br>13.  | 6.1<br>6.4<br>7.2<br>6.7<br>6.3<br>6.4<br>7.1 | 2150<br>2250<br>2250<br>2150<br>2050                 | < 1.0                     | 0.05                    | 322.              | 1119.          | <4.0                    |
| 47<br>48<br>49<br>50<br>51<br>52<br>53 | 72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0         | 12.<br>8.<br>10.<br>18.<br>12.          | 6.0<br>6.4<br>6.6<br>6.7<br>6.8<br>6.5        | 2100<br>2100<br>2150<br>2100<br>2550<br>2150         | < 1.0                     | <0.03                   | 342.              | 1155.          | 177.                    |

<sup>\*</sup>Start-up date was 3/16/72.

FLOW AND EFFLUENT COMPOSITION DATA FOR TEST VESSEL NO. 20 (STONE #1337, 1/4 x 0 SIZE)

TABLE A26

| DAYS<br>AFTER<br>START-UP* | HEAD (in)    | FLOW (ml/min) | рн         | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/l) | CALCIUM<br>(mg/l) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/1) |
|----------------------------|--------------|---------------|------------|------------------------|---------------------------|-------------------------|-------------------|----------------|-------------------------|
| 1                          | 72.0         | 75.           | 6.4        | 2100                   | < 1.0                     | 0.03                    | 330.              | 1058.          | 144.                    |
| 2                          | 72.0         | 60.           | 6.1        | 1900                   |                           | •••                     |                   |                |                         |
| 3                          | 72.0         | 59.           | 6.4        | 1950                   | ٠                         |                         |                   |                |                         |
| 14                         | 72.1         | 45.           | 6.3        | 1950                   |                           |                         |                   |                |                         |
| 5                          | 72.0         | 45.           | 6.1        | 1800                   |                           |                         |                   |                |                         |
| 6                          | 72.0         | 62.           | 6.3        | 2000                   |                           |                         |                   | _              |                         |
| 7                          | 72.7         | 120.          | 7.1        | 1650                   | 1.5                       | 8.2                     | 227.              | 917.           | < 4.0                   |
| 8                          | 72.0         | 120.          | 6.2        | 1770                   |                           |                         |                   |                |                         |
| 9                          | 72.0         | 90.           | 6.3        | 1600                   |                           |                         |                   |                |                         |
| 10                         | 72.0         | 8C.           | 6.3        | 1650<br>1750           |                           |                         |                   |                |                         |
| 11<br>12                   | 72.3<br>72.9 | 75.<br>52.    | 6.6        | 1850                   |                           |                         |                   |                |                         |
| 13                         | 72.0         | 65.           | 6.5        | 1750                   |                           |                         |                   |                |                         |
| 14                         | 72.0         | 55.           | 6.6        | 1900                   | < 1.0                     | 14.0                    | 244.              | 1035.          | 18.0                    |
| 15                         | 72.0         | 50.           | 6.7        | 1850                   |                           |                         |                   |                |                         |
| 16                         | 72.0         | 35.           | 6.2        | 185 C                  |                           |                         |                   |                |                         |
| 17                         | 72.0         | 35.           | 6.4        | 1800                   |                           |                         |                   |                |                         |
| 18                         | 72.0         | 35.           | 6.8        | 1600                   | •                         |                         |                   |                |                         |
| 19                         | 72.0         | 84.           | 6.8        | 2050                   |                           |                         |                   |                |                         |
| 20                         | 72.0         | 42.           | 6.7        | 2100                   |                           |                         |                   |                |                         |
| 21                         | 72.0         | 38.           | 7.1        | 205C                   | < 1.0                     | 13.0                    | 275.              | 1130.          | 43.2                    |
| 22                         | 72.0         | 40.           | 7.2        | 1950                   |                           |                         |                   |                |                         |
| 23                         | 72.0         | 50.           | 6.8        | 2000<br>1950           |                           |                         |                   |                |                         |
| 24<br>25                   | 72.0<br>72.0 | 40.<br>40.    | 7.2<br>7.2 | 1950                   |                           |                         |                   |                |                         |
| 25<br>26                   | 72.0         | 32.           | 6.5        | 1950                   |                           |                         |                   |                |                         |
| 27                         | 72.0         | 32.           | 6.8        | 1900                   |                           |                         |                   |                |                         |
| 28                         | 72.0         | 32.           | 6.3        | 1800                   | < 1.0                     | 18.3                    | 240.              | 999.           | 19.2                    |
| 29                         | 72.0         | 25.           | 6.7        | 1900                   |                           | 10.3                    | 2401              | 337.           | .,,,,                   |
| 30                         | 72.0         | 20.           | 6.3        | 2000                   | •                         |                         |                   |                |                         |
| 31                         | 72.0         | 24.           | 6.5        | 2050                   |                           |                         |                   |                |                         |
| 32                         | 72.1         | 24.           | 6.9        | 2100                   |                           |                         |                   |                |                         |
| 33                         | 72.0         | 20.           | 6.8        | 180C                   |                           |                         |                   |                |                         |
| 34                         | 72.9         | 20.           | 6.8        | 1900                   |                           |                         |                   |                |                         |
| 35                         | 72.0         | 2C.           | 6.7        | 2100                   | < 1.0                     | 0.06                    | 310.              | 1205.          | 11.5                    |
| 36                         | 72.0         | 22.           | 6.4        | 215C                   |                           |                         |                   |                |                         |
| 3 <b>7</b>                 | 72.0         | 16.           | 6.8        | 2150                   |                           |                         |                   |                |                         |
| 38<br>30                   | 72.1         | 22.           | 6.8        | 2100<br>2000           |                           |                         |                   |                |                         |
| 39<br>40                   | 72.0<br>72.0 | 24.<br>15.    | 6.6<br>6.9 | 2150                   |                           |                         |                   |                |                         |
| 41                         | 72.0         | 20.           | 6.7        | 2100                   |                           |                         |                   |                |                         |
| 42                         | 72.0         | 16.           | 7.0        | 2100                   | < 1.0                     | 0.08                    | 279.              | 1172.          | 7.8                     |
| 43                         | 72.0         | 20.           | 6.8        | 215C                   |                           |                         |                   |                |                         |
| 44                         | 72.0         | 18.           | 6.8        | 2050                   |                           |                         |                   |                |                         |
| 45                         | 72.0         | 18.           | 6.7        | 2050                   | •                         |                         |                   |                |                         |
| 46                         | 72.3         | 20.           | 7.0        | 2100                   |                           |                         |                   |                |                         |
| 47                         | 72.0         | 12.           | 6.0        | 2150                   |                           |                         |                   |                |                         |
| 48                         | 72.0         | 8.            | 6.5        | 2050                   |                           |                         |                   | 4440           | 435                     |
| 49                         | 72.0         | 12.           | 6.6        | 2050                   | < 1.0                     | <0.03                   | 293.              | 1168.          | 123.                    |
| 52                         | 72.0         | 18.           | 6.6        | 1950                   |                           |                         |                   |                |                         |
| 51<br>50                   | 72.0         | 12.<br>25.    | 5.6<br>6.9 | 2200<br>2050           |                           |                         |                   |                |                         |
| 52<br>53                   | 72.0         | 12.           | 6.6        | 2100                   |                           |                         |                   |                |                         |
|                            |              | 14.           | 5.0        | 2100                   |                           |                         |                   |                |                         |

<sup>\*</sup>Start-up date was 3/16/72.

TABLE A27

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 21
(STONE #1337, 1/2 x 0 SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD<br>(in) | FLOW (ml/min) | pH<br>—    | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/1) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/1) |
|----------------------------|--------------|---------------|------------|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 72.0         | 125.          | 5.7        | 175C                   | 2.0                       | 6.5                     | 255.           | 1038.          | 18.0                    |
| 2                          | 72.0         | 15.           | 5.4        | 165C                   |                           |                         |                |                |                         |
| 3                          | 72.0         | 81.           | 6.7        | .175C                  |                           |                         |                |                |                         |
| 4                          | 72.0         | 650.          | 3.4        | 1600                   |                           |                         |                |                |                         |
| 5                          | 72.1         | 380.          | 3.2        | 1600<br>1550           |                           |                         |                |                |                         |
| 6<br>7                     | 72.1         | 341.<br>232.  | 4.2<br>3.4 | 1600                   | 7.5                       | 108.                    | 135.           | 944.           | 245.                    |
| ν<br>Ω                     | 72.2         | 200.          | 3.2        | 1700                   | 7.5                       | 100.                    | 1334           | 3 <b>44.</b>   | 243.                    |
| ġ.                         | 72.0         | 166.          | 3.2        | 1700                   |                           |                         |                |                |                         |
| 10                         | 72.0         | 136.          | 3.1        | 1600                   |                           |                         |                |                |                         |
| 11                         | 72.0         | 50.           | 6.4        | 1750                   |                           |                         |                |                |                         |
| 12                         | 72.0         | 34.           | 6.6        | 1900                   |                           |                         |                |                |                         |
| 13                         | 72.0         | 50.           | 6.4        | 1700                   |                           |                         |                |                |                         |
| 14                         | 72.0         | 40.           | 6.6        | 1950                   | < 1.0                     | 5.5                     | 255.           | 1127.          | 14.5                    |
| 15                         | 72.0         | 34.           | 6.7        | 1800                   |                           |                         |                |                |                         |
| 16                         | 72.0         | 22.           | 6.0        | 1900                   |                           |                         |                |                |                         |
| 17<br>18                   | 72.0<br>72.0 | 17.<br>25.    | 6.6<br>6.7 | 1900<br>1850           |                           |                         |                |                |                         |
| 19                         | 72.0         | 24.           | 7.0        | 2100                   |                           | .*                      |                |                |                         |
| 20                         | 72.)         | 20.           | 6.8        | 1900                   |                           |                         |                |                |                         |
| 21                         | 72.0         | 24.           | 7.1        | 2100                   | < 1.0                     | <0.03                   | 278.           | 1204.          | 32.4                    |
| 22                         | 72.0         | 3C.           | 7.1        | 2000                   |                           |                         |                |                |                         |
| 23                         | 72.0         | 3C.           | 7.1        | 2000                   |                           |                         |                |                |                         |
| 24                         | 72.0         | 14.           | 7.1        | 1900                   |                           |                         |                |                |                         |
| 25                         | 72.0         | 25.           | 7.0        | 1950                   |                           |                         |                |                |                         |
| 26                         | 72.0         | 24.           | 6.8        | 1950                   |                           |                         |                |                |                         |
| 27                         | 72.0         | 26.           | 6.8        | 1850                   |                           |                         |                |                |                         |
| 29                         | 72.3         | 24.           | 3.3        | 1850                   | < 1.0                     | <0.03                   | 253.           | 10 16.         | 11.5                    |
| 29                         | 72.0         | 18.           | 6.7        | 1900                   |                           |                         |                |                |                         |
| 3)<br>31                   | 72.0<br>72.0 | 20.<br>20.    | 6.7<br>7.0 | 2010<br>2200           |                           |                         |                |                |                         |
| 32                         | 72.0         | 24.           | 7.1        | 2100                   |                           |                         |                |                |                         |
| 33                         | 72.0         | 28.           | 6.9        | 175C                   |                           |                         |                |                |                         |
| 34                         | 72.0         | 26.           | 7.0        | 1800                   |                           |                         |                |                |                         |
| 35                         | 72.0         | 20.           | 6.8        | 2050                   | < 1.0                     | 3.97                    | 285.           | 1151.          | 10.8                    |
| 36                         | 72.0         | 24.           | 6.6        | 2050                   |                           |                         |                |                |                         |
| 37                         | 72.3         | 22.           | 6.9        | 2000                   |                           |                         |                |                |                         |
| 38                         | 72.0         | 24.           | 6.9        | 2000                   |                           |                         |                |                |                         |
| 30                         | 72.0         | 24.           | 6.9        | 2000                   |                           |                         |                |                |                         |
| 40                         | 72.0         | 18.           | 6.9        | 2050                   |                           |                         |                |                |                         |
| 41<br>42                   | 72.0         | 28.           | 6.8        | 2010<br>2050           | < 1.0                     | 0.38                    | 260.           | 1119.          | < 4.0                   |
| 43                         | 72.0         | 24.<br>28.    | 7.0<br>6.8 | 2100                   | <b>4</b> 1.0              | 0.70                    | 200.           | 1117.          | 74.0                    |
| 44                         | 72.0         | 24.           | 7.C        | 1900                   |                           |                         |                |                |                         |
| 45                         | 72.0         |               | 6.9        | 1900                   |                           |                         |                |                |                         |
| 46                         | 72.1         | 24.           | 7.0        | 2050                   |                           |                         |                |                |                         |
| 47                         | 72.0         | 28.           | 6.2        | 1950                   |                           |                         |                |                |                         |
| 4 B                        | 72.0         | 26.           | 6.5        | 5000                   |                           |                         |                |                |                         |
| 49                         | 72.0         | 20.           | 6.2        | 2050                   | < 1.0                     | <0.03                   | 291.           | 1175.          | 100.                    |
| 50<br>50                   | 72.0         | 24.           | 6.6        | 1900                   |                           |                         |                |                |                         |
| 51                         | 72.0         | 23.           | 6.0        | 2210                   |                           |                         |                |                |                         |
| 52<br>53                   | 72.0         | 24.           | 6.8        | 2000<br>2100           |                           |                         |                |                |                         |
| د ب.                       | 72.0         | 22.           | 6.8        | 2 10 6                 |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/16/72.

TABLE A28

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 22
(STONE #1337, 1/2 x 50M SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD<br>(in) | FLOW (ml/min)  | pH<br>— | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/1) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/1) |
|----------------------------|--------------|----------------|---------|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 37.5         | 3880.          | 2.8     | 1750                   | 8,5                       | 155.                    | 108.           | 1081.          | 547.                    |
| 2                          | 39.0         | 3785.          | 3.3     | 1500                   |                           |                         |                |                |                         |
| 2<br>3                     | 38.0         | 3 <b>7</b> 20. | 3.0     | 165C                   |                           |                         |                |                |                         |
| 4<br>5                     | 39.0         | 3 <b>710.</b>  | 2.8     | 165C                   |                           |                         |                |                |                         |
| 5                          | 38.9         | 348C.          | 2.8     | 175¢                   |                           |                         |                |                |                         |
| 6<br>7                     | 30.5         | 3200.          | 3.0     | 1550                   |                           |                         |                |                |                         |
| 7                          | 37.5         | 3000.          | 3.0     | 1500                   | 8.8                       | 164.                    | 85.            | 975.           | 529.                    |
| 8<br>9                     | 37.5         | 2810.          | 2.9     | 170 C                  |                           |                         |                |                |                         |
| 9                          | 39.5         | 2690.          | 2.9     | 170C                   |                           |                         |                |                |                         |
| 10                         | 41.0         | 2660.          | 2.8     | 175 C                  |                           |                         |                |                |                         |
| 11                         | 42.0         | 1630.          | 2.8     | 185C                   |                           |                         |                |                |                         |
| 12                         | 46.5         | 2650.          | 2.6     | 205C                   |                           |                         |                |                |                         |
| 13                         | 49.0         | 1530.          | 2.7     | 2050                   |                           |                         |                |                |                         |
| 14                         | 47.5         | 2520.          | 2.8     | 200C                   | 14.0                      | 187.                    | 82.            | 1086.          | 701.                    |
| 15                         | 47.0         | 2430.          | 2.6     | 1900                   |                           |                         |                |                |                         |
| 16                         | 49.0         | 2340.          | 2.7     | 2100                   |                           |                         |                |                |                         |
| 17                         | 48.7         | 2360.          | 2.7     | 175 C                  |                           |                         |                |                |                         |
| 18                         | 48.3         | 2350.          | 2.7     | 1650                   |                           |                         |                |                |                         |
| 19                         | 50.0         | 2290.          | 3.0     | 235C                   |                           |                         |                |                |                         |
| 20                         | 52.0         | 2280.          | 2.8     | 2300                   |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/16/72.

TABLE A29

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 23
(STONE #1337, 1 x 50M SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD | FLOW (ml/min) | pH<br>— | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/1) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/l) |
|----------------------------|------|---------------|---------|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 54.0 | 3790.         | 2.7     | 1850                   | 6.0                       | 160.                    | 110.           | 992.           | 583.                    |
| 2                          | 36.0 | 3785.         | 3.2     | 1600                   |                           |                         |                |                |                         |
| 2<br>3<br>4<br>5           | 36.0 | 3720.         | 2.9     | <del>1756</del>        |                           |                         |                |                |                         |
| 4                          | 36.5 | 3680.         | 2.8     | 1700                   |                           |                         |                |                |                         |
| 5                          | 36.5 | 3540.         | 2.7     | 1850                   |                           |                         |                |                |                         |
| 6                          | 30.0 | 3160.         | 3.0     | 155€                   |                           |                         |                |                |                         |
| 6<br>7                     | 33.0 | 2800.         | 3.0     | 1600                   | 10.0                      | 167.                    | 74.            | 983.           | 580.                    |
| 8                          | 33.5 | 2670.         | 2.9     | 175€                   |                           |                         |                |                |                         |
| 9                          | 35.0 | 2680.         | 2.8     | 170C                   |                           |                         |                |                |                         |
| 10                         | 36.0 | 2580.         | 2.8     | 1850                   |                           |                         |                |                |                         |
| 11                         | 37.0 | 1540.         | 2.7     | 1900                   |                           |                         |                |                |                         |
| 12                         | 41.5 | 2540.         | 2.6     | 2200                   |                           |                         |                |                |                         |
| 13                         | 45.0 | 1450.         | 2.7     | 2150                   |                           |                         |                |                |                         |
| 14                         | 45.5 | 2460.         | 2.7     | 2050                   | 10.0                      | 190.                    | 81.            | 1093.          | 701.                    |
| 15                         | 45.0 | 2370.         | 2.6     | 2000                   |                           |                         |                |                |                         |
| 16                         | 47.0 | 2300.         | 2.6     | 2050                   |                           |                         |                |                |                         |
| 17                         | 46.5 | 2280.         | 2.6     | 1800                   |                           |                         |                |                |                         |
| 18                         | 47.0 | 2290.         | 2.6     | 175C                   |                           |                         |                |                |                         |
| 19                         | 49.0 | 2280.         | 2.9     | 2450                   |                           | •                       |                |                |                         |
| 20                         | 50.0 | 2160.         | 2.6     | 2550                   |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/16/72.

TABLE A30

## FLOW AND EFFLUENT COMPOSITION DATA FOR TEST VESSEL NO. 24 (STONE \$1337, 1 x 0 SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD<br>(in) | FLOW (ml/min)  | рН<br>—    | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/1) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/1) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/1) |
|----------------------------|--------------|----------------|------------|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 72.0         | 2420.          | 2.8        | 1800                   | 8.5                       | 135.                    | 127.           | 987.           | 464.                    |
| 2                          | 72.9         | 2250.          | 3.5        | 1650                   |                           |                         |                |                |                         |
| 3                          | 72.0         | 2020.          | 2.9        | 180 C                  |                           |                         |                |                |                         |
| 4                          | 72.0         | 1580.          | 2.9        | 1700                   |                           |                         |                |                |                         |
| 5                          | 72.0         | 1700.          | 2.8        | 165 C                  |                           |                         |                |                |                         |
| 6                          | 72.0         | 1480.          | 3.2        | 1550                   |                           |                         |                |                |                         |
| 7                          | 72.0         | 1450.          | 3.1        | 1550                   | 8.5                       | 144.                    | 95.            | 966.           | 414.                    |
| 8                          | 72.0         | 1360.          | 3.0        | 165 C                  |                           |                         |                |                |                         |
| 9<br>10                    | 72.0         | 1280.          | 2.9        | 1750                   |                           |                         |                |                |                         |
| 11                         | 72.0         | 1180.<br>1120. | 2.9        | 1650<br>1750           |                           |                         |                |                |                         |
| 12                         | 72.0         | 1000.          | 2.8        | 2000                   |                           |                         |                |                |                         |
| 13                         | 72.0         | 1020.          | 2.8        | 185C                   |                           |                         |                |                |                         |
| 14                         | 72.0         | 890.           | 2.9        | 2000                   | 10.0                      | 181.                    | 96,            | 1091.          | 657.                    |
| 15                         | 72.0         | 880.           | 2.7        | 1850                   |                           | 1071                    | ,,,            | 10314          | 0.77.                   |
| 16                         | 72.0         | 860.           | 2.2        | 1850                   |                           |                         |                | -              |                         |
| 17                         | 72.0         | 740.           | 2.7        | 175C                   |                           |                         |                |                |                         |
| 18                         | 72.0         | 740.           | 2.7        | 1650                   |                           |                         |                |                |                         |
| 19                         | 72.0         | 760.           | 3.1        | 2200                   | •                         |                         |                |                |                         |
| 50                         | 72.0         | 740.           | 2.8        | 2400                   |                           |                         |                |                |                         |
| 21                         | 72.0         | 620.           | 2,9        | 1950                   | 9.6                       | 180.                    | 95.            | 1111,          | 641,                    |
| 22                         | 72.0         | 605.           | 3,1        | 2000                   |                           |                         |                |                |                         |
| 23                         | 72.0         | 640.           | 3.2        | 2050                   |                           |                         |                |                |                         |
| 24<br>25                   | 72.0<br>72.0 | 610.           | 2.9        | 190 <b>0</b><br>1850   |                           |                         |                |                |                         |
| 26                         | 72.0         | 500.<br>480.   | 3,2<br>2.8 | 2100                   |                           |                         |                |                |                         |
| 27                         | 72.0         | 170.           | 3.3        | 175 C                  |                           |                         |                |                |                         |
| 28                         | 72.0         | 128.           | 3,3        | 1800                   | 9.5                       | 85.0                    | 155.           | 1015.          | 365.                    |
| 29                         | 72.0         | 110.           | 3.0        | 1900                   | 7.3                       | 03.0                    | 133.           | 10 15.         | 303.                    |
| 30                         | 72.0         | 44.            | 3.2        | 2050                   |                           |                         |                |                |                         |
| 31                         | 72.0         | 48.            | 3.8        | 2150                   |                           |                         |                |                |                         |
| 32                         | 72.0         | 48.            | 5.6        | 2000                   |                           |                         |                |                |                         |
| 33                         | 72.0         | 24.            | 6.9        | 2450                   |                           |                         |                |                |                         |
| 34                         | 72.0         | 22.            | 6.9        | 2500                   |                           |                         |                |                |                         |
| 35                         | 72.0         | 20.            | 6.8        | 2650                   | < 1.0                     | 0.37                    | 405.           | 923.           | < 4.0                   |
| 36                         | 72.0         | 20.            | 6.9        | 2650                   |                           | •                       |                |                |                         |
| 37                         | 72.0         | 16.            | 7.0        | 2500                   |                           |                         |                |                |                         |
| 38                         | 72.0         | 22.            | 7.0        | 2350                   |                           |                         |                |                |                         |
| 39<br>40                   | 72.0         | 22.<br>20.     | 6.9<br>7.1 | 2100<br>2300           |                           |                         | ÷              |                |                         |
| 41                         | 72.0         | 28.            | 6.9        | 2150                   |                           |                         |                |                |                         |
| 42                         | 72.0         | 24.            | 7.2        | 185¢                   | < 1.0                     | 0.18                    | 276.           | 1260.          | < 4.0                   |
| 43                         | 72.0         | 28.            | 6.9        | 2150                   | 7                         | 0.000                   | 2,01           | 1200           | . 4.0                   |
| 44                         | 72.9         | 22.            | 7.1        | 2050                   |                           |                         |                |                |                         |
| 45                         | 72.0         | 30.            | 7.0        | 2000                   |                           |                         |                |                |                         |
| 46                         | 72.0         | 24.            | 7.0        | 2000                   |                           |                         |                |                |                         |
| 47                         | 72.0         | 18.            | 6.3        | 200C                   |                           |                         |                |                |                         |
| 48                         | 72.0         | 20.            | 6.6        | 2000                   |                           |                         | _              |                |                         |
| 49                         | 72.0         | 20.            | 6.4        | 1900                   | < 1.0                     | 0.07                    | 253.           | 1131.          | 23.0                    |
| 50                         | 72.0         | 32.            | 6.6        | 1850                   |                           |                         |                |                |                         |
| 5 <b>1</b>                 | 72.3         | 20.            | 6.4        | 2050                   |                           |                         |                |                |                         |
| 52<br>53                   | 72.0<br>72.0 | 21.<br>20.     | 7.0<br>6.9 | 1900<br>2100           |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/16/72.

TABLE A31

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 25

(STONE #1809, 1/2 x 0 SIZE CONTAINING 10% SLAG)

| DAYS<br>AFTER<br>START-UP* | HEAD         | FLOW (ml/min) | рH<br>—    | SP. COND. (µmho) | FERROUS<br>IRON<br>(mg/1) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/1) | SULFATE (mg/1) | HOT PHT. ACIDITY (mg/1) |
|----------------------------|--------------|---------------|------------|------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| .1                         | 72.0         | 150.          | 5.8        | 1900             | 12.0                      | 14.0                    | 417.           | 1012.          | 10.8                    |
| 2                          | 72.0         | 104.          | 5.6        | 1900             |                           |                         |                |                |                         |
| 3                          | 72.0         | 100.          | 5.7        | 185C             |                           |                         |                |                |                         |
| 4                          | 72.0         | 74.           | 6.2        | 185C             |                           |                         |                |                |                         |
| 5                          | 72.0         | 116.          | 5.2        | 2050             |                           |                         |                |                |                         |
| 6                          | 72.9         | 60.           | 5.3        | 175C             | 3.0                       | 7.6                     | 406.           | 1024.          | < 4.0                   |
| .7                         | 72.0         | 85.           | 5.2        | 1750<br>1800     | 3.0                       | 7.0                     | 400.           | 10211          |                         |
| 8                          | 72.0         | 68.<br>46.    | 5.8<br>6.4 | 1750             |                           |                         |                |                |                         |
| 9<br>10                    | 72.0<br>72.1 | 50.           | 6.2        | 1850             |                           |                         |                |                |                         |
| 11                         | 72.0         | 33.           | 5.8        | 1950             |                           |                         |                |                |                         |
| 12                         | 72.0         | 35.           | 6.1        | 1900             |                           |                         |                |                |                         |
| 13                         | 72.0         | 40.           | 5.9        | 1950             |                           |                         |                |                | 20.0                    |
| 14                         | 72.0         | 23.           | 6.3        | 1850             | < 1.0                     | 0.12                    | 420.           | 1089.          | 39.0                    |
| 15                         | 72.0         | 25.           | 5.2        | 1900             |                           |                         |                |                |                         |
| <b>1</b> 6                 | 72.0         | 22.           | 6.2        | 1800             |                           |                         |                |                |                         |
| 17                         | 72.0         | 24.           | 5.9        | 1800             |                           |                         |                |                |                         |
| 19                         | 72.0         | 24.           | 6.4        | 2050<br>2050     |                           |                         | 4              |                |                         |
| 19                         | 72.)         | 28.           | 6.5        | 2050             |                           |                         |                |                |                         |
| 20                         | 72.0         | 24.<br>25.    | 7.0<br>6.6 | 1950             | 30.0                      | 0.08                    | 455.           | 1155.          | 14.4                    |
| 21                         | 72.0         | 30.           | 6.5        | 2000             | 3,0 • 0                   | 0.75                    |                |                |                         |
| 22<br>23                   | 72.0         | 20.           | 6.7        | 2000             |                           |                         | 1              |                |                         |
| 24                         | 72.0         | 25.           | 6.2        | 1900             |                           |                         |                |                |                         |
| 25                         | 72.0         | 24.           | 6.4        | <b>1</b> 850     |                           |                         |                |                |                         |
| 26                         | 72.)         | 22.           | 6.3        | 1850             |                           |                         |                |                |                         |
| 27                         | 72.0         | 56.           | 6.8        | 1800             |                           |                         |                | 4000           | <i>.</i> " 0            |
| 28                         | 72.0         | 21.           | 7.0        | 190¢             | < 1.0                     | <0.03                   | 433.           | 1002.          | < 4.0                   |
| 29                         | 72.0         | 28.           | 6.4        | 1900             |                           |                         |                |                |                         |
| 3n                         | 72.)         |               | 6.7        | 1800             |                           |                         |                |                |                         |
| 3 <b>1</b>                 | 72.0         |               | 6.8        | 1750             |                           |                         |                |                |                         |
| 32                         | 72.0         |               | 6.5        | 1600<br>1750     |                           |                         |                |                |                         |
| 37                         | 72.0         |               | 7.3<br>7.3 |                  |                           |                         |                |                |                         |
| 34<br>35                   | 72.0<br>72.0 |               | 7.1        |                  | < 1.0                     | <0.03                   | 445.           | 1075.          | 11.5                    |
| . <b>3</b> 5               | 72.0         |               | 7.4        |                  | •                         |                         |                |                |                         |
| 37                         | 72.0         |               | 7.2        |                  |                           |                         |                |                |                         |
| 38                         | 72.0         |               | 7.3        |                  |                           |                         |                |                |                         |
| 39                         | 72.3         | 21.           | 6.1        |                  |                           |                         |                |                |                         |
| 40                         | 72.0         | 25.           | 7.1        |                  |                           |                         |                |                |                         |
| 41                         | 72.0         |               | 7.3        |                  |                           | 0.10                    | 435.           | 1126.          | < 4.0                   |
| r 7                        | 72.0         |               | 6.5        |                  | < 1.0                     | 0.10                    | 433.           | 11201          |                         |
| 4.3                        | 72.0         |               | 7.2        |                  |                           |                         |                |                |                         |
| 44                         | 72.2         |               | 7.2<br>7.2 |                  |                           |                         |                |                |                         |
| 45                         | 72.0<br>72.0 |               | 6.1        |                  |                           |                         |                |                |                         |
| 46<br>47                   | 72.0         |               | 6.1        |                  |                           |                         |                |                |                         |
| 48                         | 72.5         |               | 6.0        |                  |                           |                         |                |                |                         |
| 49                         | 72.3         |               | 7.0        |                  | < 1.0                     | 0.05                    | 442.           | 1085.          | 30.7                    |
| ริง์                       | 72.0         |               | 6.6        | 2050             |                           |                         |                |                |                         |
| 51                         | 72.3         | 23.           | 7.0        |                  |                           |                         |                |                |                         |
| 52                         | 72.0         | 22.           | 6.9        |                  |                           |                         |                |                |                         |
| 53                         | 72.0         | ) 24.         | 7.0        | 2100             |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/17/72.

FLOW AND EFFLUENT COMPOSITION DATA FOR TEST VESSEL NO. 26 (STONE #1809, 1 x 0 SIZE CONTAINING 10% SLAG)

TABLE A32

| DAYS<br>AFTER<br>START-UP* | HEAD<br>(in) | FLOW (ml/min)  | рН<br>—      | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/1) | CALCIUM<br>(mg/l) | SULFATE (mg/l) | HOT PHT.<br>ACIDITY<br>(mg/l) |
|----------------------------|--------------|----------------|--------------|------------------------|---------------------------|-------------------------|-------------------|----------------|-------------------------------|
| 1                          | 49.3         | 3430.          | 3.2          | 1800                   | 32.5                      | 172.                    | 167.              | 1094.          | 446.                          |
| 1                          | 47.0         |                |              | 2050                   | 24.0                      | 112.                    | 107.              | 10744          | 440.                          |
| 2                          | 52.0         | 3330.          | 2.8          | 1900                   |                           |                         |                   |                |                               |
| 3                          | 49.5         | 3490.          | 2.8          | 2000                   |                           |                         |                   |                |                               |
| 4                          | 51.5         | 3300.          | 2.7          | 185 C                  |                           |                         |                   |                |                               |
| 5                          | 43.5         | 3370.          | 2.8          |                        |                           |                         |                   |                |                               |
| 6                          | 46.0         | 3180.          | 2.8          | 1750                   | 90.0                      | 184.                    | 108.              | 1064.          | 594.                          |
| 7                          | 51.3         | 3100.          | 2.8          | 1900<br>1850           | 90.0                      | 1041                    | 16.0.             | 1204.          | 27.74                         |
| 8                          | 51.0         | 2920.          | 2.8          | 1800                   |                           |                         |                   |                |                               |
| ò                          | 52.0         | 2720.<br>2650. | 2.8<br>2.8   | 2000                   |                           |                         |                   |                |                               |
| 10                         | 52.0         |                |              | 2450                   |                           |                         |                   |                |                               |
| 11                         | 54.5         | 2480.          | 2.4          | 235 C                  |                           |                         |                   |                |                               |
| 12                         | 52.0         | 2290.<br>2090. | 2.8          | 2150                   |                           |                         |                   |                |                               |
| 13                         | 51.5<br>62.5 | 1900.          | 2.7          | 1950                   | 100.                      | 177.                    | 107.              | 1095.          | 640.                          |
| 14                         | 60.5         | 1830.          | 2.4          | 2200                   | 1000                      | 1774                    | ,07.              | 14 7 2 4       |                               |
| 15<br>16                   | 53.0         | 1760.          | 2.5          | 2050                   |                           |                         |                   |                |                               |
|                            | 57.0         | 1680.          | 2.7          | 1900                   |                           |                         |                   |                |                               |
| 17<br>18                   | 59.)         | 1500.          | 3.1          | 2400                   |                           |                         |                   |                |                               |
| 19                         | 72.0         | 1640.          | 3.0          | 2100                   |                           |                         |                   |                |                               |
| 20                         | 72.0         | 1720.          | 2.9          | 2100                   |                           |                         |                   |                |                               |
| 21                         | 72.0         | 1610.          | 2.8          | 2350                   | 120.                      | 184.                    | 113.              | 1138.          | 659.                          |
|                            | 72.          | 1610.          | 2.8          | 2250                   | 1204                      | .104.                   | , , , ,           | 115            |                               |
| 22<br>23                   | 72.7         | 1560.          | 3,3          | 1700                   |                           |                         |                   |                |                               |
| 24                         | 72.0         | 1470.          | 3.3          | 1600                   |                           |                         |                   |                |                               |
| 25                         | 72.0         | 1320.          | 3.1          | 1800                   |                           |                         |                   |                |                               |
| 26<br>26                   | 72.0         | 1120.          | 3.0          | 1950                   |                           |                         |                   |                |                               |
| 27                         | 72.3         | 1080.          | 3.0          | 2000                   |                           |                         |                   |                |                               |
| 28                         | 72.0         | 1050.          | 2.6          | 2100                   | 150.                      | 175.                    | 113.              | 1009.          | 632.                          |
| 20                         | 72.0         | 1040.          | 2.7          | 2310                   |                           | 1,,,                    | 113.              | 10.220         | 0.324                         |
| 30                         | 72.1         | 840.           | 3.2          | 185C                   |                           |                         |                   |                |                               |
| 3 1                        | 72.0         | 378.           | 3.5          | 1450                   |                           |                         |                   |                |                               |
| 32                         | 72.0         | 72.            | 6.3          | 1700                   |                           |                         |                   |                |                               |
| 33                         | 72.0         | 48.            | 6.8          | 2200                   |                           |                         |                   |                |                               |
| 34                         | 72.0         | 48.            | 7.1          | 2250                   |                           |                         |                   |                |                               |
| 35                         | 72.0         | 60.            | 6.9          | 2150                   | 30.0                      | 5.2                     | 5 <b>15.</b>      | 1248.          | 16.9                          |
| 36                         | 72.0         | 42.            | 7.2          | 2150                   |                           |                         |                   |                |                               |
| 37                         | 72.7         | 54.            | 7.3          | 2010                   |                           |                         |                   |                |                               |
| 18                         | 72.1         | 50.            | 7.0          | 1950                   |                           |                         |                   |                |                               |
| 39                         | 72.0         | 40.            | 6.7          | 1900                   |                           |                         |                   |                |                               |
| 40                         | 72.1         | 32.            | 7.2          | 1900                   | •                         |                         |                   |                |                               |
| 4.1                        | 72.0         | 32.            | 7.2          | 2000                   |                           |                         |                   |                |                               |
| 42                         | 72.3         | 32.            | 6.8          | 2050                   | < 1.0                     | 3.8                     | 465.              | 1172.          | < 4.0                         |
| 43                         | 72.3         |                | 7.3          |                        | •                         |                         |                   |                |                               |
| 44                         | 72.9         |                | 7.2          | 1970                   |                           |                         |                   |                |                               |
| 45                         | 72.3         | 32.            | 7.1          | 1900                   |                           |                         |                   |                |                               |
| 46                         | 72.0         |                | 6.2          |                        |                           |                         |                   |                |                               |
| 47                         | 72.9         |                | 6.4          | 1900                   |                           |                         |                   |                |                               |
| 48                         | 72.7         |                | 6.2          | 2050                   |                           |                         |                   |                |                               |
| 49                         | 72.3         | 3ó.            | 0.6          | 1850                   | 1.8                       | 13.6                    | 455.              | 1103.          | 115.                          |
| 50                         | 72.1         |                | 6.5          | 2 15 C                 |                           |                         |                   |                |                               |
| 5.1                        | 72.1         |                | 6.8          | 205C                   |                           |                         |                   |                |                               |
| 52                         | 72.3         |                | 6 <b>.</b> B | 2000                   |                           |                         |                   |                |                               |
| 5.3                        | 72.3         | 44.            | 6.9          | 225€                   |                           |                         |                   |                |                               |

<sup>\*</sup>Start-up date was 3/17/72.

TABLE A33

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 27
(STONE \$1809, 1/2 x 0 SIZE CONTAINING 5% BENTONITE)

| DAYS<br>AFTER<br>START-UP* | HEAD<br>(in) | FLOW (ml/min) | рн         | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/l) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/1) |
|----------------------------|--------------|---------------|------------|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 72.0         | 1540.         | 3.0        | 1900                   | 50.0                      | 175.                    | 161.           | 1024.          | 576.                    |
| 2                          | 72.0         | 1410.         | 2.8        | 2100                   | 30.0                      |                         |                |                |                         |
| 3                          | 72.0         | 1270.         | 2.7.       | 1950                   |                           |                         |                |                |                         |
| ,<br>4                     | 72.0         | 1180.         | 2.7        | 205C                   |                           |                         |                |                |                         |
| 5                          | 72.0         | 1240.         | 2.7        | 190C                   |                           |                         |                |                |                         |
| 5<br>6                     | 72.0         | 960.          | 2.8        | 1750                   |                           |                         |                |                |                         |
| η̈́                        | 72.0         | 940.          | 2.8        | 1950                   | 100.                      | 182.                    | 117.           | 1009.          | 612.                    |
| 8                          | 72.0         | 890.          | 2.8        | 1850                   |                           |                         |                |                |                         |
| 9                          | 72.0         | 840.          | 2.8        | 1800                   |                           |                         |                |                |                         |
| 10                         | 72.0         | 840.          | 2.8        | 1950                   |                           |                         |                |                |                         |
| 11                         | 72.0         | 820.          | 2.4        | 245 C                  |                           |                         |                |                |                         |
| 12                         | 72.0         | 780.          | 2.7        | 2300                   |                           |                         |                |                |                         |
| 13                         | 72.0         | 770.          | 2.8        | 2200                   |                           | 480                     | 445            | 40.00          | C 11 O                  |
| 14                         | 72.0         | 660.          | 2.7        | 1900                   | 90.0                      | 179.                    | 115.           | 1060.          | 640.                    |
| 15                         | 72.0         | 66C.          | 2.4        | 2100                   |                           | 1                       |                |                |                         |
| 16                         | 57.0         | 650.          | 2.6        | 2050                   |                           |                         |                |                |                         |
| 17                         | 72.0         | 64C.          | 2.6        | 1900<br>2400           |                           |                         |                |                |                         |
| .18                        | 72.0         | 620.<br>560.  | 3.0<br>2.9 | 2200                   |                           |                         |                |                |                         |
| 19<br>20                   | 72.0<br>72.0 | 560.          | 2.8        | 2150                   |                           |                         |                |                |                         |
| 20<br>21                   | 72.0         | 550.          | 2.8        | 2400                   | 130.                      | 186.                    | 120.           | 1136.          | 684.                    |
| 22                         | 72.0         | 550.          | 2.9        | 2300                   | 150                       | 100                     | ,,             |                |                         |
| 23                         | 72.0         | 550.          | 3.2        | 170C                   |                           |                         |                |                |                         |
| 24                         | 72.0         | 500.          | 3.3        | 155 C                  |                           |                         |                |                |                         |
| 25                         | 72.0         | 440.          | 3.1        | 1850                   |                           |                         |                |                |                         |
| 26                         | 72.0         | 380.          | 3.0        | 190C                   |                           |                         |                |                |                         |
| 27                         | 72.0         | 360.          | 3.0        | 190C                   |                           |                         |                |                |                         |
| 28                         | 72.0         | 350.          | 2.6        | 2100                   | 110.                      | 172.                    | 125.           | 1006.          | 611.                    |
| 29                         | 72.0         | 244.          | 2.7        | 2350                   |                           |                         |                |                |                         |
| 30                         | 72.0         | 240.          | 3.2        | 1900                   |                           |                         |                |                |                         |
| 31                         | 72.0         | 60.           | 3.6        | 1550                   |                           |                         |                |                |                         |
| 32                         | 72.0         | 20.           | 6.3        | 2100                   |                           |                         |                |                |                         |
| 33                         | 72.0         | 10.           | 7.0        | 2450                   |                           |                         |                |                |                         |
| 34                         | 72.0         | 10.           | 7.2        | 255C                   |                           |                         | c 25           | 1000           | <i>-</i> 11 0           |
| 35                         | 72.0         | 8.            | 7.2        |                        | < 1.0                     | 0.20                    | 625.           | 1402.          | < 4.0                   |
| 36                         | 72.0         | 5.            | 7.3        | 2450                   |                           |                         |                |                |                         |
| 37                         | 72.0         | 16.           | 6.7        |                        |                           |                         |                |                |                         |
| 38                         | 72.0         | 12.           | 7.2<br>6.8 |                        |                           |                         |                |                |                         |
| 39                         | 72.0         | 9.<br>8.      | 7.3        |                        |                           |                         |                |                |                         |
| 40<br>41                   | 72.0<br>72.0 |               | 7.2        |                        |                           |                         |                |                |                         |
| 42                         | 72.0         |               | 7.1        |                        | < 1.0                     | 0.39                    | 450.           | 1179.          | < 4.0                   |
| 43                         | 72.0         | 7.            | 7.5        |                        | •                         |                         |                |                |                         |
| 44                         | 72.0         |               | 7.4        |                        |                           |                         |                |                |                         |
| 45                         | 72.0         |               | 7.4        |                        |                           |                         |                |                |                         |
| 46                         | 72.0         |               | 6.7        | 2100                   |                           |                         |                |                |                         |
| 47                         | 72.0         |               | 6.8        |                        |                           |                         |                |                |                         |
| 48                         | 72.0         |               | 6.7        |                        |                           |                         | 404            | 4454           | 100                     |
| 49                         | 72.0         |               | 7.3        |                        | < 1.0                     | 0.10                    | 491.           | 1154.          | 108.                    |
| 50                         | 72.0         |               | 6.9        |                        |                           |                         |                |                |                         |
| 51                         | 72.0         |               | 7.1        |                        |                           |                         |                |                |                         |
| 52                         | 72.0         |               | 7.1        |                        |                           |                         |                |                |                         |
| 53                         | 72.0         | 4.            | 7.3        | 2250                   |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/17/72.

TABLE A34

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 28
(STONE #1809, 1 x 0 SIZE CONTAINING 5% BENTONITE)

| DAYS<br>AFTER<br>START-UP* | HEAD<br>(in) | FLOW (ml/min)           | pH<br>—    | SP. COND. (µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/1) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/1) |
|----------------------------|--------------|-------------------------|------------|------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 44.5         | 3569.                   | 2.9        | 2100             | 37.5                      | 180.                    | 127.           | 1016.          | 713.                    |
| 2                          | 43.0         | 3600.                   | 2.6        | 2400             | -                         |                         |                |                |                         |
| 3                          | 42.0         | 3590.                   | 2.7        | 2200             |                           |                         |                |                |                         |
| ā.                         | 45.0<br>43.5 | 13400.<br>3460.         | 2.5        | 2350<br>2050     |                           |                         |                |                |                         |
| 6                          | 42.3         | 3270.                   | 2.6        | 1900             |                           |                         |                |                |                         |
| ž                          | 49.5         | 3220.                   | 2.7        | 2100             | 100.                      | 190.                    | 87.            | 1037.          | 702.                    |
| S                          | 49.5         | 3040.                   | 2.6        | 2100             |                           |                         |                |                | , , , ,                 |
| j.                         | 50.0         | 2820.                   | 2.6        | 2150             |                           |                         |                |                |                         |
| 10                         | 50.5         | 2710.                   | 2.6        | 2100             |                           |                         |                |                |                         |
| 11                         | 51.0         | 2520.                   | 2.4        | 285C             |                           |                         |                |                |                         |
| 12<br>13                   | 49.5<br>49.5 | 2240.<br>2 <b>13</b> 0. | 2.5        | 2800             |                           |                         |                |                |                         |
| 14                         | 62,1         | 1920.                   | 2.8        | 2300<br>2100     | 100.                      | 181.                    | 90.            | 1082.          | 658.                    |
| 15                         | 52.7         | 1850.                   | 2.3        | 2350             | 177.4                     | 101.                    | 994            | 1002.          | 000.                    |
| 16                         | 72.          | 1720.                   | 2.4        | 2200             |                           |                         |                |                |                         |
| 17                         | 55.0         | 1580.                   | 2.5        | 2050             |                           |                         |                |                |                         |
| 18                         | 63.0         | 1500.                   | 2.9        | 2650             |                           |                         |                |                | •                       |
| 19                         | 72.7         | 1320.                   | 2.8        | 2500             |                           |                         |                |                |                         |
| 20                         | 72.7         | 1320.                   | 2.7        | 2310             |                           |                         |                |                |                         |
| 21                         | 72.7         | 1245.                   | 2.7        | 2550             | 110.                      | 188.                    | 95.            | 1144.          | 745.                    |
| 2 <i>2</i><br>23           | 72.3<br>72.3 | 1240.<br>1240.          | 2.7<br>3.1 | 2500<br>1700     |                           |                         |                |                |                         |
| 24                         | 72.5         | 1090.                   | 3.1        | 1500             |                           |                         |                |                |                         |
| 25                         | 72.3         | 960.                    | 3.0        | 1850             |                           |                         |                |                |                         |
| 26                         | 72.0         | 430.                    | 2.9        | 2050             |                           |                         |                |                |                         |
| 27                         | 72.0         | 440.                    | 3.0        | 1850             |                           |                         |                |                |                         |
| 28                         | 72.3         | 430.                    | 2.5        | 2100             | 120.                      | 177.                    | 113,           | 1028.          | 611.                    |
| 29                         | 72.7         | 440.                    | 2.6        | 2410             |                           |                         |                |                | .,,,,,                  |
| 30                         | 72.7         | 389.                    | 3.1        | 1950             |                           |                         |                |                |                         |
| 31                         | 72.0         | 192.                    | 3.3        | 1610             |                           |                         |                |                |                         |
| 32<br>33                   | 72.0<br>72.1 | 56.                     | 4.0        | 1450             |                           |                         |                |                |                         |
| 34                         | 72.0         | 20.<br>20.              | 6.9<br>7.0 | 2200<br>2250     |                           |                         |                |                |                         |
| 35                         | 72.1         | 16.                     | 7.0        | 2150             | < 1.0                     | 1.8                     | 490.           | 1084.          | < 4.0                   |
| 36                         | 72.0         | 14.                     | 7.2        | 2100             |                           | 1 • 53                  | 477.           | 1004.          | < 4.0                   |
| 37                         | 72.0         | 22.                     | 6.6        | 1950             |                           |                         |                |                |                         |
| 35                         | 72.0         | 18.                     | 6.8        | 1900             |                           |                         |                |                |                         |
| 30                         | 72.3         | 14.                     | 6.9        | 501C             |                           |                         |                |                |                         |
| 40                         | 72.1         | 16.                     | 7.3        | 2100             |                           |                         |                |                |                         |
| 4 <b>1</b><br>4 2          | 72.0         | 9.<br>11.               | 7.0        | 2050             |                           |                         |                | 4440           |                         |
| 43                         | 72.1         | 13.                     | 7.2<br>7.2 | 2100<br>2000     | < 1.0                     | 0.56                    | 475.           | 1160.          | < 4.0                   |
| 44                         | 72.0         | 13.                     | 7.5        |                  |                           |                         |                |                |                         |
| 45                         | 72.          | 10.                     | 7.4        | 2000             |                           |                         |                |                |                         |
| 46                         | 72.0         | 6.                      | 6.6        | 5000             |                           |                         |                |                |                         |
| 47                         | 72.          | 6.                      | 7.0        | 2000             |                           |                         |                |                |                         |
| 48                         | 72.3         | a.                      | 6.8        | 2050             |                           |                         |                |                |                         |
| f 0                        | 72.3         | 14.                     | 7.1        | 1900             |                           | 0.19                    | 450.           | 1108.          | 46.1                    |
| 50<br>51                   | 72.5<br>72.5 | 7.<br>10.               | 7.0        | 2100             |                           |                         |                |                |                         |
| 52                         | 72.3         | 11.                     | 7.4<br>7.3 | 2000<br>2050     |                           |                         |                |                |                         |
| 53                         | 72.0         | io.                     | 7.2        | 1950             |                           |                         |                |                |                         |
|                            |              | , •                     |            |                  |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/17/72.

TABLE A35

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 29
(STONE #1809, 1/2 x 0 SIZE CONTAINING 10% FLYASH)

| DAYS<br>AFTER<br>START-UP*                   | HEAD                                                         | FLOW (ml/min)                                     | рН                                            | SP.<br>COND.<br>(µmho)                                       | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/l) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/l) |
|----------------------------------------------|--------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1<br>2<br>3'<br>4<br>5                       | 72.0<br>72.0<br>72.0<br>72.0<br>72.0                         | 150.<br>15^.<br>140.<br>122.<br>162.              | 5.8<br>5.4<br>5.6<br>5.4<br>5.4               | 1950<br>2000<br>1950<br>1900<br>2150                         | 12.5                      | 14.0                    | 452.           | 957.           | 14.4                    |
| 6<br>7<br>8<br>9<br>10<br>11                 | 72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0         | 164.<br>120.<br>108.<br>96.<br>100.<br>84.<br>90. | 5.3<br>5.2<br>5.8<br>6.2<br>6.3<br>6.0<br>6.2 | 1800<br>1800<br>1800<br>1800<br>1850<br>2000                 | ઠ.4                       | 10.0                    | 437.           | 1024.          | < 4.0                   |
| 12<br>13<br>14<br>15<br>16<br>17             | 72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0                 | 90.<br>90.<br>76.<br>74.<br>80.                   | 5.8<br>6.3<br>5.9<br>6.1<br>5.9<br>6.4        | 2050<br>1950<br>1950<br>1800<br>1800<br>2050                 | 7.0                       | 10.0                    | 455.           | 1096.          | 18.0                    |
| 19<br>20<br>21<br>22<br>23<br>24             | 72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0                 | 80.<br>72.<br>75.<br>80.<br>75.<br>70.            | 6.5<br>6.6<br>6.3<br>6.3<br>6.3               | 2050<br>2050<br>2000<br>1950<br>1900<br>1950                 | 30.0                      | 34.0                    | 473.           | 1086,          | 18.8                    |
| 25<br>26<br>27<br>28<br>29<br>30<br>31       | 72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0         | 54.<br>52.<br>56.<br>49.<br>56.<br>48.<br>36.     | 6.3<br>6.7<br>6.9<br>6.6<br>6.3<br>6.3        | 1950<br>1950<br>1900<br>2050<br>2010<br>1850<br>1900         | 8.0                       | 11.0                    | 435.           | 1015.          | < 4.0                   |
| 32<br>33<br>34<br>35<br>36<br>37<br>38       | 72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0                 | 36.<br>32.<br>32.<br>26.<br>26.<br>32.            | 6.4<br>7.0<br>6.9<br>6.8<br>6.9<br>6.6        | 1650<br>1900<br>2050<br>2100<br>2150<br>2000<br>1950         | 11.0                      | 24.0                    | 485.           | 1221.          | 107.                    |
| 39<br>40<br>41<br>42<br>43<br>44             | 72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0                 | 17.<br>24.<br>24.<br>29.<br>22.<br>20.<br>24.     | 6.7<br>7.0<br>6.8<br>6.9<br>7.6<br>6.4<br>7.0 | 1900<br>1900<br>1900<br>2100<br>2100<br>2150                 | 17.0                      | 26.0                    | 475.           | 1106.          | < 4.0                   |
| 46<br>47<br>48<br>49<br>51<br>51<br>52<br>53 | 72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0 | 16.<br>16.<br>16.<br>22.<br>18.<br>20.<br>40.     | 6.4<br>6.6<br>6.5<br>6.6<br>6.9<br>7.0        | 1850<br>1950<br>2050<br>1950<br>2150<br>2050<br>2100<br>2100 | 15.0                      | 22.0                    | 494.           | 1081.          | < 4.0                   |

<sup>\*</sup>Start-up date was 3/17/72.

TABLE A36

FLOW AND EFFLUENT COMPOSITION DATA

FOR TEST VESSEL NO. 30

(STONE #1809, 1 x 0 SIZE CONTAINING 10% FLYASH)

| DAYS<br>AFTER<br>START-UP* | HEAD<br>(in) | FLOW (ml/min) | рH<br>——   | SP.<br>COND.<br>(µmho) | FERROUS IRON (mg/l) | TOTAL<br>IRON<br>(mg/l) | CALCIUM<br>(mg/1) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/l) |
|----------------------------|--------------|---------------|------------|------------------------|---------------------|-------------------------|-------------------|----------------|-------------------------|
| 1                          | 72.0         | 110.          | 6,1        | 2000                   | 15.0                | 18.0                    | 452.              | 1077.          | 21.6                    |
| 2                          | 72.0         | 77.           | 6.0        | 2000                   | ,3.0                | 100                     | 4.72.6            | 10 / / .       | 21.0                    |
| 3                          | 72.0         | 75.           | 6.0        | 2000                   |                     |                         |                   |                |                         |
| tt.                        | 72.0         | 68.           | 5.8        | 190 C                  |                     |                         |                   |                |                         |
| 5                          | 72.0         | 78.           | 5.8        | 2150                   |                     |                         |                   |                |                         |
| 6                          | 72.0         | 230.          | 6.8        | 1800                   |                     |                         |                   |                |                         |
| 7                          | 72.7         | 180.          | 5.7        | 1800                   | 8.8                 | 17.C                    | 417.              | 986.           | < 4.0                   |
| 8                          | 72.0         | 150.          | 6.1        | 170C                   |                     |                         |                   |                |                         |
| 9                          | 72.3         | 128.          | 6.4        | 175 C                  |                     |                         |                   |                |                         |
| 10                         | 72.0         | 150.          | 6.4        | 1850                   |                     |                         |                   |                |                         |
| 11                         | 72.0         | 120.          | 6.7        | 2050                   |                     |                         |                   |                |                         |
| 12<br>13                   | 72.0<br>72.0 | 120.          | 6.4        | 1850                   |                     |                         |                   |                |                         |
| 13<br>14                   | 72.0         | 100.          | 6.2        | 2100                   | 0. 5                | 4                       |                   |                |                         |
| 15                         | 72.0         | 100.<br>30.   | 6.2<br>5.8 | 2000                   | 8.0                 | 14.0                    | 442.              | 1088.          | 18.0                    |
| 16                         | 72.0         | 73.           | 6.4        | 2000<br>1850           |                     |                         |                   |                |                         |
| 17                         | 72.0         | 76.           | 6.4        | 1830                   |                     |                         |                   |                |                         |
| 18                         | 72.          | 72.           | 6.7        | 2130                   |                     |                         |                   |                |                         |
| 19                         | 72.0         | 76.           | 6.7        | 2000                   |                     |                         |                   |                |                         |
| 20                         | 72.)         | 70.           | 6.8        | 2150                   |                     |                         |                   |                |                         |
| 21                         | 72.0         | 70.           | 6.8        | 2500                   | 50.0                | 42.0                    | 463.              | 1104.          | 21.6                    |
| 22                         | 72.0         | 80.           | 6.8        | 1950                   | • •                 | V 2 •                   | 403.              | 1177.          | 21.0                    |
| 23                         | 72.0         | 70.           | 6.9        | 1900                   |                     |                         |                   |                |                         |
| 24                         | 72.3         | 65.           | 6.6        | 195C                   |                     |                         |                   |                |                         |
| 25                         | 72.0         | 54.           | 6.6        | 1950                   |                     |                         |                   |                |                         |
| 26                         | 72.1         | 50.           | 6.8        | 2010                   |                     |                         |                   |                |                         |
| 2 <b>7</b>                 | 72.3         | 52.           | 6.8        | 1950                   |                     |                         |                   |                |                         |
| 28                         | 72.0         | 49.           | 6.6        | 1650                   | 30.0                | 33.0                    | 475.              | 1031.          | < 4.0                   |
| 29                         | 72.1         | 52.           | 6.5        | 2000                   |                     |                         |                   |                |                         |
| 30                         | 72.0         | 48.           | 6.6        | 1900                   |                     |                         |                   |                |                         |
| 31                         | 72.0         | 4 C .         | 6.6        | 1900                   |                     |                         |                   |                |                         |
| 32                         | 72.3         | 44.           | 6.7        | 175 C                  |                     |                         |                   |                |                         |
| 33                         | 72.0         | 40.           | 7.0        | 2000                   |                     |                         |                   |                |                         |
| 34<br>35                   | 72.0         | 36.           | 6.8        | 2150                   | 13 3                | 20.0                    | E 1 3             | 1136           | 256.                    |
| 36                         | 72.0         | 36.<br>34.    | 6.8<br>6.8 | 2100<br>2150           | 12.0                | 20.0                    | 510.              | 1124.          | 230.                    |
| 37                         | 72.3         | 42            | 6.7        | 2050                   |                     |                         |                   |                |                         |
| 39                         | 72.3         | 44.           | 6.7        | 2000                   |                     |                         |                   |                |                         |
| 30                         | 72.3         | 36.           | 6.7        | 1930                   |                     |                         |                   |                |                         |
| 40                         | 72.0         | 32.           | 7.0        | 1900                   |                     |                         |                   |                |                         |
| 41                         | 72.0         | 36.           | 6.8        | 2000                   |                     |                         |                   |                |                         |
| 42                         | 72.0         | 36.           | 6.8        | 2 10 0                 | 19.0                | 28.0                    | 482.              | 1121.          | < 4.0                   |
| 43                         | 72.0         | 33.           | 7.0        | 1900                   |                     |                         |                   |                |                         |
| 44                         | 72.0         | 40.           | 7.1        | 2000                   |                     |                         |                   |                |                         |
| 45                         | 72.3         | 32.           | 6.9        | 1900                   |                     |                         |                   |                |                         |
| 46                         | 72.0         | 28.           | 6.3        | 1850                   |                     |                         |                   |                |                         |
| 47                         | 72.9         | 28.           | 6.5        | 2000                   |                     |                         |                   |                |                         |
| 4 A                        | 72.0         | 28.           | 6.5        | 2050                   | 45.3                | 3/ 0                    | 1. 41. 0          | *0.00          | <b>4.</b> 5.0           |
| 49<br>50                   | 72.0<br>72.0 | 32.           | 6.5        | 1950                   | 15.0                | 26.0                    | 448.              | 1086.          | 154.                    |
| 51                         | 72.0         | 31.<br>31.    | 6.6<br>6.8 | 2100<br>2050           |                     |                         |                   |                |                         |
| 52                         | 72.0         | 54.           | 7.0        | 2050                   |                     |                         |                   |                |                         |
| $5\overline{3}$            | 72.0         | 32.           | 7.1        | 2250                   |                     |                         |                   |                |                         |
| J J                        | 1 6 6 7      | J2.           |            | 2.40                   |                     |                         |                   |                |                         |

<sup>\*</sup>Start-up date was 3/17/72.

TABLE A37

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 31
(STONE \$1809, 1/8 x 0 SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD<br>(in) | FLOW (ml/min) | рн         | SP. COND. (µmho) | FERROUS<br>IRON<br>(mg/1) | TOTAL<br>IRON<br>(mg/1) | CALCIUM<br>(mg/1) | SULFATE (mg/l)                          | HOT PHT. ACIDITY (mg/l) |
|----------------------------|--------------|---------------|------------|------------------|---------------------------|-------------------------|-------------------|-----------------------------------------|-------------------------|
| 1                          | 72.0         | 320.          | 5.6        | 2000             | 11.3                      | 13.0                    | 457.              | 1043.                                   | < 4.0                   |
| 2                          | 72.0         | 280.          | 6.3        | 2000             |                           |                         |                   |                                         |                         |
| 3                          | 72.0         | 200.          | 6.3        | 205C             |                           |                         |                   |                                         |                         |
| 4                          | 72.0         | 184.          | 6.1        | 190C             |                           |                         |                   |                                         |                         |
| 5                          | 72.9         | 150.          | 6.1        | 2250             |                           |                         |                   |                                         |                         |
| 6                          | 72.0<br>72.0 | 200.<br>140.  | 6.9<br>6.0 | 1900<br>1900     | 7.6                       | 12.0                    | 464.              | 1013.                                   | < 4.0                   |
| 7<br>8                     | 72.0         | 130.          | 6.3        | 1850             | , <b>.</b> 0              | , 200                   |                   |                                         | •                       |
| 9                          | 72.0         | 120.          | 6.7        | 185 C            |                           |                         |                   |                                         |                         |
| 10                         | 72.0         | 120.          | 6.5        | 1950             |                           |                         |                   |                                         |                         |
| 11                         | 72.0         | 100.          | 6.9        | 225C             |                           |                         |                   |                                         |                         |
| 12                         | 72.0         | 125.          | 6.5        | 2000             |                           |                         |                   |                                         |                         |
| 13                         | 72.0         | 90.<br>80.    | 6.4<br>6.5 | 2150<br>2100     | 6.0                       | 9.0                     | 482.              | 1064.                                   | 36.0                    |
| 14<br>15                   | 72.0<br>72.0 | 66.           | 5.1        | 2050             | 0.0                       | , <del>.</del> .        |                   |                                         |                         |
| 16                         | 72.0         | 59.           | 6.5        | 1850             |                           |                         |                   |                                         |                         |
| 17                         | 72.0         | 60.           | 6.5        | 1900             |                           |                         |                   |                                         |                         |
| 18                         | 72.0         | 46.           | 6.8        | 220C             |                           |                         |                   |                                         |                         |
| 19                         | 72.0         | 48.           | 6.9        | 2200             |                           |                         |                   |                                         |                         |
| 20                         | 72.0         | 44.           | 6.9<br>7.0 | 225C<br>205C     | 2.4                       | 21.0                    | 510.              | 1144.                                   | 32.4                    |
| 21<br>22                   | 72.0<br>72.0 | 50.<br>40.    | 7.0        | 205C             | 2.4                       | 2.110                   | 3.00              |                                         |                         |
| 23                         | 72.3         | 50.           | 7.1        | 2250             |                           |                         |                   |                                         |                         |
| 24                         | 72.0         | 40.           | 6.8        | 2050             |                           |                         |                   |                                         |                         |
| 25                         | 72.7         | 28.           | 6.8        | 2000             |                           |                         |                   |                                         |                         |
| 26                         | 72.0         | 22.           | 6.9        | 2000             |                           |                         |                   |                                         |                         |
| 27                         | 72.0         | 20.           | 6.8        | 2100             | 2.5                       | 14.7                    | 525.              | 1084.                                   | < 4.0                   |
| 28                         | 72.0         | 16.           | 6.6<br>6.7 | 2050<br>2100     | 2.5                       | 14.7                    | ,,,,,             |                                         |                         |
| 29<br>30                   | 72.0<br>72.0 | 20.<br>12.    | 7.1        | 2150             |                           |                         |                   |                                         |                         |
| 31                         | 72.0         | 8.            | 6.9        | 2150             |                           |                         |                   |                                         |                         |
| 32                         | 72.0         | 10.           | 7.1        | 2150             |                           |                         |                   |                                         |                         |
| 33                         | 72.3         | 9.            | 7.3        | 200C             |                           |                         |                   |                                         |                         |
| 34                         | 72.0         | 8.            | 7.2        | 2000             | • 1                       | 0.14                    | 495               | 1107.                                   | 28.8                    |
| 35                         | 72.0         | 8.            | 7.3        | 210C<br>220C     | 1.2                       | 0.14                    | 495.              | 1107.                                   | 20.9                    |
| 36<br>37                   | 72.0<br>72.0 | 6.<br>16.     | 7.2<br>7.0 | 2200             |                           |                         |                   |                                         |                         |
| 37<br>38                   | 72.0         | 10.           | 7.3        | 2150             |                           |                         |                   |                                         |                         |
| 39                         | 72.3         | 16.           | 5.8        | 2200             |                           |                         |                   |                                         |                         |
| 40                         | 72.0         | 7.            | 7.2        | 2200             |                           |                         |                   |                                         |                         |
| 41                         | 72.0         | 7.            | 7.1        | 2150             | 2.2                       | 0.16                    | 487.              | 1184.                                   | < 4.0                   |
| 42                         | 72.3         | 7.            | 7.2<br>7.3 | 2100<br>2100     | 2.3                       | 0.10                    | 407.              | • • • • • • • • • • • • • • • • • • • • | • • •                   |
| 43<br>44                   | 72.0<br>72.0 | 6.<br>6.      | 6.6        | 2100             |                           |                         |                   |                                         |                         |
| 45                         | 72.0         | 7.            | 7.3        |                  |                           |                         |                   |                                         |                         |
| 46                         | 72.0         | 3.            | 5.9        | 2100             |                           |                         |                   |                                         |                         |
| 47                         | 72.0         | 2.            | 7.0        | 2100             |                           |                         |                   |                                         |                         |
| 48                         | 72.0         | 2.            | 6.8        | 2100             |                           | 0.05                    | 523.              | 1176.                                   | 76.8                    |
| 49                         | 72.0         | 8.            | 6.8        | 2150             |                           | 0.03                    | 229.              |                                         | . • • •                 |
| 50<br>51                   | 72.0<br>72.0 | 5.<br>8.      | 7.4        | 2050             |                           |                         |                   |                                         |                         |
| 51<br>52                   | 72.0         | 3.            | 7.3        | 2200             |                           |                         |                   |                                         |                         |
| 53                         | 72.0         | 3.            | 7.3        | 220 C            |                           |                         |                   |                                         |                         |
|                            |              |               |            |                  |                           |                         |                   |                                         |                         |

<sup>\*</sup>Start-up date was 3/17/72.

TABLE A38

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 32
(STONE #1809, 1/4 x 0 SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD         | FLOW (ml/min) | рн         | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/1) | SULFATE (mg/1) | HOT PHT. ACIDITY (mg/1) |
|----------------------------|--------------|---------------|------------|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 72.0         | 300.          | 6.5        | 2100                   | 20.0                      | 23.0                    | 437.           | 980.           | 14.4                    |
| 2                          | 72.0         | 260.          | 6.5        | 2050                   |                           |                         |                |                |                         |
| 3                          | 72.0         | 190.          | 6.4        | 195C                   |                           |                         |                |                |                         |
| 4                          | 72.0         | 153.          | 6.3        | 2000                   |                           |                         |                |                |                         |
| 5                          | 72.0         | 176.          | 5.4        | 2200                   |                           |                         |                |                |                         |
| 6                          | 72.0         | 110.          | 6.9        | 185C                   |                           |                         |                |                |                         |
| 7                          | 72.0         | 120.          | 6.2        | 1900                   | 2.5                       | 4.0                     | 453.           | 1019.          | < 4.0                   |
| 8                          | 72.0         | 108.          | 6.5        | 1900                   |                           |                         |                |                |                         |
| 9                          | 72.0         | 96.           | 6.7        | 1850                   |                           |                         |                |                |                         |
| 10                         | 72.0         | 110.          | 6.6        | 1950                   |                           |                         |                |                |                         |
| 11                         | 72.0         | 76.           | 6.9        | 225 C                  |                           |                         |                |                |                         |
| 12                         | 72.0         | 80.           | 6.8        | 2000                   |                           |                         |                |                |                         |
| 13                         | 72.0         | 7C.           | 6.5        | 2100                   | <b>a</b> 15               | 2.0                     | * 75           | 1073.          | 145.                    |
| 14                         | 72.0         | 7C.           | 6.6        | 2250                   | 1.4                       | 2.0                     | 475.           | 10/3.          | 143.                    |
| 15                         | 72.0         | 56.           | 5.2        | 1950                   |                           |                         |                |                |                         |
| 16                         | 72.0         | 56.           | 6.6        | 1850<br>1750           |                           |                         |                |                |                         |
| 17                         | 72.0         | 54.           | 5.9        | 2200                   |                           |                         |                |                |                         |
| 18                         | 72.^         | 52.<br>52.    | 7.0<br>7.0 | 2200                   |                           |                         |                |                |                         |
| 19                         | 72.0<br>72.0 | 50.           | 7.1        | 2250                   |                           |                         |                |                |                         |
| 20<br>2 <b>1</b>           | 72.0         | 50.           | 7.2        | 260¢                   | 2.0                       | 7.5                     | 505.           | 1143.          | 25.2                    |
| 22                         | 72.0         | 60.           | 7.2        | 2050                   | •••                       |                         |                |                |                         |
| 23                         | 72.0         | 43.           | 7.1        | 205C                   |                           |                         |                |                |                         |
| 24                         | 72.0         | 40.           | 6.9        | 2100                   |                           |                         |                |                |                         |
| 25                         | 72.0         | 30.           | 7.0        | 2050                   |                           |                         |                |                |                         |
| 26                         | 72.0         | 26.           | 7.1        | 2000                   |                           |                         |                |                |                         |
| 27                         | 72.0         | 68.           | 6.6        | 2050                   |                           |                         |                |                |                         |
| 28                         | 72.0         | 21.           | 7.1        | 2150                   | < 1.0                     | 0.12                    | 550.           | 1084.          | 691.                    |
| 29                         | 72.0         | 24.           | 7.0        | 215C                   |                           | ÷                       |                |                |                         |
| 30                         | 72.0         | 14.           | 7.2        | 2 10 0                 |                           |                         |                |                |                         |
| 31                         | 72.0         | 12.           | 7.2        | 215C                   |                           |                         |                |                |                         |
| 32                         | 72.0         | 12.           | 7.2        | 1950                   |                           |                         |                |                |                         |
| 33                         | 72.0         | 12.           | 7.5        | 1900                   |                           |                         |                |                |                         |
| 34                         | 72.0         | 10.           | 7.3        | 2000                   | - 4 ^                     | <b>40.03</b>            | cac            | 1217.          | < 4.0                   |
| 35                         | 72.0         | 10.           | 7.3        | 215C                   | < 1.0                     | <0.03                   | 525.           | 1217.          | 74.0                    |
| 36                         | 72.0         | 8.            | 7.3        | 2200                   |                           |                         |                |                |                         |
| 37                         | 72.0         | 12.           | 7.2        | 2200                   |                           |                         |                |                |                         |
| 38                         | 72.0         | 10.           | 7.4        | 210C<br>220C           |                           |                         |                |                |                         |
| 39                         | 72.1         | 6.<br>8.      | 6.6<br>7.4 | 2200                   |                           |                         |                |                |                         |
| 40                         | 72.0<br>72.0 | 8.            | 6.8        | 2000                   |                           |                         |                |                |                         |
| 41<br>42                   | 72.0         | 7.            | 7.3        | 2050                   | < 1. ?                    | 0.05                    | 500.           | 1131.          | < 4.0                   |
| 43                         | 72.0         | 6.            | 7.6        | 2150                   |                           |                         |                |                |                         |
| 44                         | 72.0         | 8.            | 6.3        |                        |                           |                         |                |                |                         |
| 45                         | 72.0         | 5.            | 7.4        | 2150                   |                           |                         |                |                |                         |
| 46                         | 72.0         | 3.            | 6.8        | 2100                   |                           |                         |                |                |                         |
| 47                         | 72.0         | 3.            | 7.1        | 2050                   |                           |                         |                |                |                         |
| 48                         | 72.0         | 3.            | 6.9        | 2100                   |                           |                         |                | 4457           | 46.0                    |
| 49                         | 72.0         | 8.            | 7.2        | 2000                   | < 1.0                     | <0.03                   | 494.           | 1157.          | 169.                    |
| 50                         | 72.0         | 6.            | 7.9        | 2150                   |                           |                         |                |                |                         |
| 51                         | 72.0         | 6.            | 6.5        | 2000                   |                           |                         |                |                |                         |
| 52                         | 72.0         | 10.           | 7.4        | 2200                   |                           |                         |                |                |                         |
| 53                         | 72.9         | 6.            | 7.3        | 2250                   |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/17/72.

TABLE A39

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 33
(STONE #1809, 1/2 x 50M SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD         | FLOW (ml/min)  | рн         | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/1) | IOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/l) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/1) |
|----------------------------|--------------|----------------|------------|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 72.0         | 3670.          | 3.5        | 1750                   | 50.0                      | 166.                    | 176.           | 1016.          | 526.                    |
| 2<br>3                     | 72.0<br>72.0 | 2890.          | 3.0        | 2000                   |                           |                         |                |                |                         |
| 4                          | 72.0         | 2500.<br>2044. | 3.1<br>3.0 | 1900<br>1900           |                           |                         |                |                |                         |
|                            | 72.0         | 1340.          | 3.2        | 1650                   |                           |                         |                |                |                         |
| 5<br>6<br>7<br>8           | 72.0         | 1060.          | 3.4        | 160C                   |                           |                         |                |                |                         |
| 7                          | 72.0         | 670.           | 3.3        | 1750                   | 90.0                      | 144.                    | 184.           | 1033.          | 457,                    |
| 8                          | 72.0         | 600.           | 3.2        | 1750                   |                           |                         |                |                | ,                       |
| 9                          | 72.0         | 560.           | 3.2        | 1600                   |                           |                         |                |                |                         |
| 10<br>11                   | 72.0<br>72.0 | 520.           | 3.0        | 1700                   |                           |                         |                |                |                         |
| 12                         | 72.0         | 580.<br>530.   | 3.0<br>2.9 | 2050<br>2050           |                           |                         |                |                |                         |
| 13                         | 72.0         | 490.           | 3.1        | 1900                   |                           |                         |                |                |                         |
| 14                         | 72.0         | 310.           | 3.1        | 1950                   | 80.0                      | 153.                    | 170.           | 1104.          | 455.                    |
| 15                         | 72.0         | 300.           | 2.7        | 185C                   |                           | .55.                    |                | 1104.          | 433.                    |
| 16                         | 72.0         | 320.           | 3.0        | 1750                   |                           |                         |                |                |                         |
| 17                         | 72.0         | 310.           | 3.0        | 1650                   |                           |                         |                |                |                         |
| 18                         | 72.0         | 230.           | 3.5        | 2050                   |                           |                         |                |                |                         |
| 19<br>20                   | 72.0         | 204.           | 3.7        | 1850                   |                           |                         |                |                |                         |
| 21                         | 72.0<br>72.0 | 164.<br>190.   | 3.3        | 2050                   | 00 0                      | 445                     | 252            |                |                         |
| 22                         | 72.0         | 190.           | 3.5<br>3.5 | 2450<br>1850           | 90.0                      | 117.                    | 263.           | 1137.          | 209.                    |
| 23                         | 72.0         | 200.           | 3.8        | 1700                   |                           |                         |                |                |                         |
| : 24                       | 72.0         | 180.           | 3.7        | 160C                   |                           |                         |                |                |                         |
| 25                         | 72.0         | 168.           | 3.7        | 1600                   |                           |                         | •              |                |                         |
| 26                         | 72.0         | 152.           | 3.6        | 165C                   |                           |                         |                |                |                         |
| 2 <b>7</b>                 | 72.0         | 148.           | 3.3        | 1800                   |                           |                         | •              |                |                         |
| 28                         | 72.0         | 150.           | 3.3        | 185C                   | 80.0                      | 122.                    | 233.           | 997.           | 350.                    |
| 29                         | 72.0         | 168.           | 3.3        | 190¢                   |                           |                         |                | -              |                         |
| 30<br>31                   | 72.0         | 144.           | 3.7        | 1730                   |                           |                         |                |                |                         |
| 32                         | 72.0<br>72.0 | 92.<br>76.     | 6.3        | 1450                   |                           |                         |                |                |                         |
| 33                         | 72.0         | 60.            | 6.8<br>7.0 | 150C<br>1800           |                           |                         |                |                |                         |
| 34                         | 72.0         | 56.            | 6.8        | 2000                   |                           |                         |                |                |                         |
| 35                         | 72.0         | 60.            | 6.7        | 2000                   | 16.0                      | 31.0                    | 455.           | 1062.          | < 4.0                   |
| 36                         | 72.0         | 46.            | 6.9        | 2000                   |                           | 3110                    | 4334           | 1002.          | 4.0                     |
| <b>37</b>                  | 72.0         | 60.            | 6.7        | 2100                   |                           |                         |                |                |                         |
| 38                         | 72.0         | 60.            | 6.5        | 1900                   |                           |                         |                |                |                         |
| 39                         | 72.0         | 48.            | 6.7        | 1850                   |                           |                         |                |                |                         |
| 40<br>41                   | 72.0<br>72.0 | 44.            | 7.5        | 2150                   |                           |                         |                |                |                         |
| 42                         | 72.0         | 52.<br>48.     | 6.2<br>6.7 | 1900<br>2050           | 21.0                      | 20.0                    |                |                |                         |
| 43                         | 72.0         | 50.            | 7.0        | 2000                   | 21.0                      | 29.0                    | 470.           | 1124.          | 12.0                    |
| 44                         | 72.0         | 46.            | 6.6        | 2050                   |                           |                         |                |                |                         |
| 45                         | 72.0         | 48.            | 6.9        | 1900                   |                           |                         |                |                |                         |
| 46                         | 72.0         | 40.            | 6.2        | 1900                   |                           |                         |                |                |                         |
| 47                         | 72.0         | 36.            | 6.6        | 2000                   |                           |                         |                |                |                         |
| 48<br>49                   | 72.0         | 36.            | 6.4        | 2050                   |                           |                         |                |                |                         |
| 49<br>50                   | 72.0         | 44.            | 6.5        | 1950                   | 3 <b>.1</b>               | 29.0                    | 466.           | 1098.          | 19.2                    |
| 51                         | 72.0<br>72.0 | 39.            | 6.5        | 2200                   |                           |                         |                |                |                         |
| 52                         | 72.0         | 35.<br>48.     | 6.8<br>7.0 | 2000<br>1950           |                           |                         |                |                |                         |
| 53                         | 72.0         | 70.            | 6.8        | 1950                   |                           |                         |                |                |                         |
|                            |              |                | J. U       | 13.71                  |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/17/72.

TABLE A40

## FLOW AND EFFLUENT COMPOSITION DATA FOR TEST VESSEL NO. 34 (STONE \$1809, 1/2 x 0 SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD<br>(in)  | FLOW (ml/min)  | pH<br>—    | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/1) | TOTAL<br>IRON<br>(mg/1) | CALCIUM (mg/l) | SULFATE (mg/1) | HOT PHT. ACIDITY (mg/1) |
|----------------------------|---------------|----------------|------------|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 39.0          | 3500.          | 3.2        | 1850                   | 25.0                      | 169.                    | 167.           | 1068.          | 605.                    |
| 2                          | 39.3          | 3550.          | 2.8        | 2100                   |                           |                         |                |                |                         |
| 3                          | 39.0          | 3420.          | 2.7        | 1950                   |                           |                         |                |                |                         |
| 4                          | 42.5          | 330C.          | 2.7        | 205C                   |                           |                         |                |                |                         |
| 5<br>6                     | 37.0          | 3360.          | 2.8        | 1800                   |                           |                         |                |                |                         |
| 6                          | 51.0          | 314C.          | 3.1        | 1700                   |                           |                         |                |                |                         |
| 7                          | 58.5          | 3100.          | 3.0        | 1850                   | 100.                      | 180.                    | 120.           | 1062.          | 612.                    |
| 8                          | 57.0          | 2940.          | 2.8        | 1900                   |                           |                         |                |                |                         |
| 9                          | 57.0          | 2780.          | 2.9        | 1750                   |                           |                         |                |                |                         |
| 10                         | 53.0          | 2650.          | 2.9        | 1950                   |                           |                         |                |                |                         |
| 11                         | 55.0          | 2520.          | 2.7        | 2400                   |                           |                         |                |                |                         |
| 12<br>13                   | 55.0<br>53.0  | 1170.<br>2000. | 2.7<br>2.9 | 2350<br>2050           |                           |                         |                |                |                         |
| 14                         | 6 <b>3.</b> 0 | 1880.          | 2.7        | 175C                   | 90.0                      | 174.                    | 120.           | 1086.          | 700.                    |
| 15                         | 63.0          | 1780.          | 2.5        | 2 15 0                 | 90.0                      | 1,4.                    | 120.           | 1000.          | ,,,,,                   |
| 16                         | 57.0          | 1610.          | 2.6        | 2000                   |                           |                         |                |                |                         |
| 17                         | 56.0          | 1580.          | 2.9        | 1650                   |                           |                         |                |                |                         |
| 18                         | 57.0          | 1460.          | 3.0        | 2300                   |                           |                         |                |                |                         |
| 19                         | 72.0          | 1720.          | 2.9        | 2100                   |                           |                         |                |                |                         |
| 20                         | 72.0          | 1600.          | 2.8        | 220C                   |                           |                         |                |                |                         |
| 21                         | 72.0          | 1580.          | 2.7        | 225C                   | 110.                      | 179.                    | 125.           | 1161.          | 691.                    |
| 22                         | 72.0          | 1540.          | 3.0        | 2200                   |                           |                         |                |                |                         |
| 23                         | 72.0          | 1480.          | 3.3        | 1600                   |                           |                         |                |                |                         |
| 24                         | 72.0          | 1460.          | 3.0        | 2050                   |                           |                         |                |                |                         |
| 25                         | 72.0          | 1280.          | 3.1        | 175C                   |                           |                         |                |                |                         |
| 26                         | 72.0          | 1160.          | 3.0        | 1850                   |                           |                         |                |                |                         |
| 27                         | 72.0          | 1120.          | 3.0        | 2000                   | 420                       | 170                     | 128.           | 1019.          | 603.                    |
| 28                         | 72.0          | 1037.          | 2.7        | 2100                   | 120.                      | 174.                    | 120.           | 10171          | 003.                    |
| 29                         | 72.7          | 1120.          | 2.8        | 2350                   |                           |                         |                |                |                         |
| 30                         | 72.0          | 920.           | 3.3        | 1900<br>1450           |                           |                         |                |                |                         |
| 31                         | 72.1          | 480.           | 3.5        | 1400                   |                           |                         |                |                |                         |
| 32                         | 72.0          | 236.           | 3.8<br>3.4 | 1900                   |                           |                         |                |                |                         |
| 33                         | 72.0<br>72.0  | 140.<br>148.   | 3.1        | 2050                   |                           |                         |                |                |                         |
| 34                         | 72.0          | 160.           | 2.9        | 2150                   | 80.0                      | 149.                    | 220.           | 1142.          | 458.                    |
| 35<br>36                   | 72.3          | 160.           | 3.0        | 2050                   | ,,,,,                     |                         |                |                |                         |
| 37                         | 72.0          | 176.           | 3.0        | 1850                   |                           |                         |                |                |                         |
| 38                         | 72.0          | 172.           | 3.1        | 195C                   |                           |                         |                |                |                         |
| 39                         | 72.0          | 160,           | 3.6        | 165C                   |                           |                         |                |                |                         |
| 40                         | 72.0          | 116.           | 7.2        | 1650                   |                           |                         |                |                |                         |
| 41                         | 72.0          | 128.           | 3.0        | 2000                   |                           | <del>.</del>            |                | 1194.          | 476.                    |
| 42                         | 72.0          | 140.           | 3.0        | 205¢                   | 80.0                      | 135.                    | 237.           | 1194.          | 470.                    |
| 43                         | 72.0          | 150.           | 3.2        | 2000                   |                           |                         |                |                |                         |
| 44                         | 72.0          | 150.           | 3.2        | 2200                   |                           |                         |                |                |                         |
| 45                         | 72.0          | 132.           | 3.6        | 1550                   |                           |                         |                |                |                         |
| 46                         | 72.0          | 120.           | 2.6        | 195C                   |                           |                         |                |                |                         |
| 47                         | 72.^          | 124.           | 2.8        | 2000<br>2050           |                           |                         |                |                |                         |
| 48                         | 72.0          | 136.           | 2.6        | 1900                   | 40.0                      | 141.                    | 164.           | 1058.          | 518.                    |
| 49                         | 72.0          | 142.<br>155.   | 2.6        | 2500                   | 40 <b>(</b> 0             |                         |                |                |                         |
| 50<br>51                   | 72.0          | 170.           | 2.6        | 2350                   |                           |                         |                |                |                         |
| 51<br>52                   | 72.0          | 180.           | 3.0        | 245 C                  |                           |                         |                |                |                         |
| 53                         | 72.0          | 192.           | 3.9        | 2150                   |                           |                         |                |                |                         |
| د د                        |               |                |            |                        |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/17/72.

\*FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 35
(STONE #1809, 1 x 50 SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD<br>(in) | FLOW (ml/min)  | р <b>н</b><br>— | SP. COND. (µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/1) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/1) |
|----------------------------|--------------|----------------|-----------------|------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 33.0         | 3500.          | 3.1             | 1900             | 44.0                      | 171.                    | 161.           | 925.           | 576.                    |
| 2                          | 35.0         | 3570.          | 2.6             | 2200             |                           |                         |                |                |                         |
| 3                          | 36.0         | 3380.          | 2.7             | 2000             |                           |                         |                |                |                         |
| 4                          | 41.0         | 3360.          | 2.7             | 215C             |                           |                         |                |                |                         |
| 5                          | 33.5         | 3380.          | 2.8             | 1950             |                           |                         |                |                |                         |
| 6<br>7                     | 38.5         | 3220.          | 2.9             | 175C             |                           |                         |                |                |                         |
| 8                          | 40.5         | 3120.          | 2.8             | 1900             | 80.0                      | 183.                    | 112.           | 1000.          | 680.                    |
| ò                          | 42.0<br>44.7 | 2960.          | 2.8             | 1950             |                           |                         |                |                |                         |
| 10                         | 45.0         | 3210.<br>3600  | 2.9             | 1800             |                           |                         |                |                |                         |
| 11                         | 50.5         | 2690.<br>2600  | 2.8             | 1950             |                           |                         |                |                |                         |
| 12                         | 52.5         | 2600.<br>1250. | 2.6<br>2.6      | 2550             |                           |                         |                |                |                         |
| 13                         | 51.9         | 2140.          | 2.8             | 2350<br>2100     |                           |                         |                |                |                         |
| 14                         | 62.0         | 1920.          | 2.7             | 1800             | 100.                      | 440                     |                |                |                         |
| 15                         | 60.0         | 1840.          | 2.4             | 2150             | 1994                      | 173.                    | 120.           | 1106.          | 637.                    |
| 16                         | 67.0         | 1730.          | 2.6             | 195¢             |                           |                         |                |                |                         |
| 17                         | 65.0         | 1690.          | 2.6             | 1750             |                           |                         |                |                |                         |
| 18                         | 72.0         | 1440.          | 3.0             | 235 C            |                           | ,                       |                |                |                         |
| 19                         | 72.0         | 1320.          | 3.C             | 2000             |                           |                         |                |                |                         |
| 20                         | 72.0         | 1360.          | 2.8             | 2200             |                           |                         |                |                |                         |
| 21                         | 72.0         | 1360.          | 2.8             | 225C             | 120.                      | 181.                    | 128.           | 1100.          | 680.                    |
| 22                         | 72.0         | 1320.          | 2.9             | 2200             |                           | ••                      | 120.           | 1100.          | 000.                    |
| 23                         | 72.0         | 1240.          | 3.2             | <b>17</b> 50     |                           |                         |                |                |                         |
| 24                         | 72.0         | 1230.          | 3.0             | 2100             |                           |                         |                |                |                         |
| 25                         | 72.7         | 1120.          | 3.1             | 1750             |                           |                         |                |                |                         |
| 26                         | 72.9         | 840.           | 3.1             | 1850             |                           |                         |                |                |                         |
| 27                         | 72.0         | 760.           | 3.1             | 1800             |                           |                         |                |                |                         |
| 28                         | 72.0         | 720.           | 2.8             | 2000             | 100.                      | 164.                    | 140.           | 1001.          | 595.                    |
| 29                         | 72.0         | 720.           | 2.7             | 240C             |                           |                         |                |                | 5.55                    |
| 30                         | 72.0         | 600.           | 3.1             | 1850             |                           |                         |                |                |                         |
| 31                         | 72.0         | 344.           | 3.4             | 150C             |                           |                         |                |                |                         |
| 32                         | 72.0         | 244.           | 3.8             | 1400             |                           |                         |                |                |                         |
| 33                         | 72.0         | 204.           | 3.1             | 2050             |                           |                         |                |                |                         |
| 34                         | 72.0         | 212.           | 2.8             | 2200             |                           |                         |                |                |                         |
| 35<br>36                   | 72.0         | 202.           | 2.7             | 2350             | 90.0                      | 168.                    | 165.           | 1168.          | 462.                    |
| 36<br>37                   | 72.1         | 216.           | 2.8             | 2200             |                           |                         |                |                |                         |
| 38                         | 72.0<br>72.0 | 202.           | 2.7             | 2100             |                           |                         |                |                |                         |
| 36<br>39                   | 72.0         | 220.           | 2.6             | 2200             |                           |                         |                |                |                         |
| 40                         | 72.0         | 210.<br>184.   | 3.2<br>3.5      | 1700<br>1800     |                           |                         |                |                |                         |
| 41                         | 72.0         | 212.           | 2.8             | 2100             |                           |                         |                |                |                         |
| 42                         | 72.0         | 192.           | 2.7             | 235 C            | 100.                      | 159.                    | 166            | 1105           | 630                     |
| 43                         | 72.0         | 190.           | 2.7             | 2300             | 100.                      | 139.                    | 165.           | 1195.          | 578.                    |
| 44                         | 72.0         | 200.           | 3.0             | 2150             |                           |                         |                |                |                         |
| 45                         | 72.0         | 180.           | 3.2             | 1600             |                           |                         |                |                |                         |
| 46                         | 72.0         | 176.           | 2.3             | 2350             |                           |                         |                |                |                         |
| 47                         | 72.0         | 192.           | 2.5             | 2350             |                           |                         |                |                |                         |
| 48                         | 72.0         | 216.           | 2.4             | 2450             |                           |                         |                |                |                         |
| 49                         | 72.0         | 144.           | 2.3             | 2250             | 50.0                      | 164.                    | 115.           | 1100.          | 649.                    |
| 50                         | 72.0         | 140.           | 2.4             | 245C             |                           |                         |                |                | 9434                    |
| 51                         | 72.0         | 120.           | 2.6             | 2300             |                           |                         |                |                |                         |
| 52                         | 72.3         | 116.           | 3.1             | 220C             |                           |                         |                |                |                         |
| 53                         | 72.0         | 106.           | 3.1             | 2550             |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/17/72.

FLOW AND EFFLUENT COMPOSITION DATA FOR TEST VESSEL NO. 36 (STONE #1809, 1 x 0 SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD<br>(in) | FLOW (ml/min) | рН          | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/1) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/l) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/1) |
|----------------------------|--------------|---------------|-------------|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 31.3         | 3251.         | 3.0         | 1900                   | 41.5                      | 168.                    | 161.           | 1035.          | 605.                    |
| 2                          | 31.0         | 3200.         | 2 <b>.7</b> | 2200                   |                           |                         |                |                |                         |
| 3                          | 31.5         | 3120.         | 2.8         | 2050                   | •                         |                         |                |                |                         |
| 4                          | 32. ٦        | 3020.         | 2.6         | 2200                   |                           |                         |                |                |                         |
| 5                          | 24.9         | 3520.         | 2.8         | 1850                   |                           |                         |                |                |                         |
| 6                          | 26.0         | 2900.         | 2.7         | 1800                   |                           |                         |                |                |                         |
| 7                          | 27.0         | 2860.         | 2.9         | 195 ሮ                  | 100.                      | 188.                    | 108.           | 1027.          | 684.                    |
| 8                          | 27.5         | 2680.         | 2.8         | 1950                   |                           |                         |                |                |                         |
| Ġ                          | 29.5         | 2580.         | 2.8         | 1800                   |                           |                         |                |                |                         |
| 10                         | 31.0         | 249C.         | 2.8         | 1950                   |                           |                         |                |                |                         |
| 11                         | 34.5         | 2340.         | 2.6         | 2650                   |                           |                         |                |                |                         |
| 12                         | 37.5         | 2000.         | 2.6         | 2400                   |                           |                         |                |                |                         |
| 13                         | 38.^         | 1870.         | 2.8         | 2150                   |                           |                         |                |                |                         |
| 14                         | 46.0         | 1730.         | 2.7         | 190C                   | 90.0                      | 177.                    | 115.           | 1104.          | 624.                    |
| 15                         | 45.5         | 1600.         | 2.7         | 2150                   |                           |                         |                |                |                         |
| 16                         | 43.0         | 1580.         | 2.5         | 1950                   |                           |                         |                |                |                         |
| 17                         | 43.0         | 1510.         | 2.7         | 1800                   |                           |                         |                |                |                         |
| 18                         | 43.0         | 1300.         | 3.0         | 2350                   |                           |                         |                |                |                         |
| 19                         | 72.0         | 1920.         | 2.9         | 2150                   |                           |                         |                |                |                         |
| 20                         | 72.0         | 1960.         | 2.8         | 2200                   |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/17/72.

TABLE A43

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 37
(STONE #1355, 1/8 x 0 SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD         | FLOW (ml/min) | рн         | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/1) | TOTAL<br>IRON<br>(mg/1) | CALCIUM (mg/1) | SULFATE (mg/1) | HOT PHT. ACIDITY (mg/1) |
|----------------------------|--------------|---------------|------------|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 72.0         | 75.           | 5.7        | 2100                   | < 1.0                     | 0.97                    | 500.           | 1034.          | 32.4                    |
| 2                          | 72.0         | 68.           | 5.4        | 2050                   |                           |                         |                |                |                         |
| 3<br>4                     | 72.0<br>72.0 | 50.           | 5.6        | 1950                   |                           |                         | •              |                |                         |
| 5                          | 72.0         | 52.<br>54.    | 5.4        | 2000                   |                           |                         |                |                |                         |
| 5<br>6                     | 72.0         | 82.           | 5.4<br>5.6 | 2050<br>1900           |                           |                         |                |                |                         |
| 7                          | 72.0         | 100.          | 5.5        | 1930                   | 5.2                       | 8.6                     | 475.           | 10.20          | 25.2                    |
| 8                          | 72.0         | 106.          | 5.8        | 1900                   | 3.2                       | 0.0                     | 475,           | 10 10.         | 25.2                    |
| 9                          | 72.0         | 140.          | 6.4        | 1750                   |                           |                         |                |                |                         |
| 10                         | 72.0         | 190.          | 6.2        | 1900                   |                           |                         |                |                |                         |
| 11                         | 72.0         | 180.          | 5.8        | 2250                   |                           |                         |                |                |                         |
| 12                         | 72.0         | 205.          | 6.2        | 1950                   |                           |                         |                |                |                         |
| 13                         | 72.0         | 175.          | 5.7        | 2100                   |                           |                         |                |                |                         |
| 14                         | 72.0         | 140.          | 6.1        | 1900                   | 7.2                       | 12.0                    | 475.           | 1092.          | 18.0                    |
| 15<br>16                   | 72.0         | 122.          | 5.8        | 2050                   |                           |                         |                |                |                         |
| 17                         | 72.0<br>72.0 | 113.<br>110.  | 6.1        | 1850                   |                           |                         |                |                |                         |
| 18                         | 72.0         | 38.           | 6.3<br>6.4 | 1700<br>2300           |                           |                         |                |                |                         |
| 19                         | 72.0         | 72.           | 6.3        | 2400                   |                           | د.                      |                |                |                         |
| 20                         | 72.0         | 68.           | 6.4        | 2150                   |                           |                         |                |                |                         |
| 21                         | 72.0         | 65.           | 6.3        | 2100                   | 3.6                       | 32.0                    | 495.           | 1123.          | 21.6                    |
| 22                         | 72.0         | 60.           | 6.4        | 2050                   | 3.0                       | 32.0                    | 475.           | 1143.          | 21.0                    |
| 23                         | 72.0         | 60.           | 6.2        | 2050                   |                           |                         |                |                |                         |
| 24                         | 72.0         | 50.           | 6.1        | 2100                   |                           |                         |                |                |                         |
| 25                         | 72.0         | 36.           | 6.4        | 2000                   |                           |                         |                |                |                         |
| 26                         | 72.0         | 30.           | 6.4        | 2000                   |                           |                         |                |                |                         |
| 27                         | 72.0         | 28.           | 6.9        | 2100                   |                           |                         |                |                |                         |
| 28                         | 72.0         | 21.           | 6.7        | 2100                   | 3.2                       | 15.4                    | 553.           | 1119.          | < 4.0                   |
| 29<br>30                   | 72.0         | 24.           | 6.3        | 2150                   |                           |                         |                |                |                         |
| 31                         | 72.0<br>72.0 | 16.<br>12.    | 6.3        | 2000                   |                           |                         |                |                |                         |
| 32                         | 72.0         | 12.           | 6.6<br>6.7 | 1900<br>2000           |                           |                         |                |                |                         |
| 33                         | 72.0         | 10.           | 6.4        | 1900                   |                           |                         |                |                |                         |
| 34                         | 72.0         | 10.           | 6.4        | 1950                   |                           |                         |                |                |                         |
| 35                         | 72.0         | 10.           | 7.1        | 2150                   | < 1.0                     | 3.0                     | 513.           | 1113.          | 14.2                    |
| 36                         | 72.0         | 8.            | 6.7        | 2150                   |                           | •••                     | 3.34           | ,,,,,,         | 14.2                    |
| 37                         | 72.0         | 14.           | 6.8        | 2200                   |                           |                         |                |                |                         |
| 38                         | 72.0         | 10.           | 6.9        | 2150                   |                           |                         |                |                |                         |
| 39                         | 72.0         | 10.           | 5.9        | 2200                   |                           |                         |                |                |                         |
| 40                         | 72.0         | 8.            | 3.1        | 2000                   |                           |                         |                |                |                         |
| 41<br>42                   | 72.0<br>72.0 | 8.            | 7.2        | 2100                   | <b>a</b> 1.               |                         |                |                |                         |
| 43                         | 72.0         | 7.<br>7.      | 7.3        | 2200                   | 1.4                       | 3.1                     | 512.           | 1155.          | < 4.0                   |
| 44                         | 72.0         | 4.            | 6.1<br>7.2 | 2100<br>2150           |                           |                         |                |                |                         |
| 45                         | 72.0         | 5.            | 6.4        | 2100                   |                           |                         |                |                |                         |
| 46                         | 72.0         | 4.            | 6.2        | 2050                   |                           |                         |                |                |                         |
| 47                         | 72.0         | 3.            | 6.5        | 2050                   |                           |                         |                |                |                         |
| 48                         | 72.0         | 3.            | 5.9        | 2050                   |                           |                         |                |                |                         |
| 49                         | 72.0         | 8.            | 6.8        | 2000                   | < 1.0                     | 23.0                    | 462,           | 1174.          | < 4.0                   |
| 50                         | 72.0         | 6.            | 5.5        | 215C                   |                           |                         | •              | • • •          |                         |
| 51                         | 72.0         | 6.            | 6.0        | 2100                   |                           |                         |                |                |                         |
| 52<br>53                   | 72.0         | 7.            | 6.3        | 2100                   |                           |                         |                |                |                         |
| 53                         | 72.0         | 12.           | 6.1        | 2200                   |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/17/72.

TABLE A43 (CONT'D.)

| DAYS<br>AFTER<br>START-UP* | HEAD | FLOW (ml/min) | рН  | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/1) | TOTAL<br>IRON<br>(mg/1) | CALCIUM (mg/1) | SULFATE (mg/1) | HOT PHT,<br>ACIDITY<br>(mg/l) |
|----------------------------|------|---------------|-----|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------------|
| 55                         | 72.0 | 50.           | 6.2 | 2100                   |                           |                         |                | 4455           | 225                           |
| 56                         | 72.0 | 76.           | 6.3 | 2000                   | 11.0                      | 47.0                    | 475.           | 1130.          | 227.                          |
| 5 <b>7</b>                 | 72.0 | 46.           | 6.8 | 2000                   |                           |                         |                |                |                               |
| 58                         | 72.0 | 44.           | 6.8 | 2100                   |                           |                         |                |                |                               |
| 59                         | 72.0 | 33.           | 6.6 | 2300                   |                           |                         |                |                |                               |
| 60                         | 72.0 | 32.           | 6.6 | 2300                   |                           |                         |                |                |                               |
| 61                         | 72.0 | 38.           | 6.6 | 2200                   |                           |                         |                |                |                               |
| 62                         | 72.0 | 68.           | 6.0 | 2050                   | 2 0                       | 11.2                    | 537.           | 1206.          | 76.8                          |
| 63                         | 72.9 | 60.           | 7.2 | 2300                   | 2.0                       | 42.0                    | 557.           | 1200.          | 70.0                          |
| 66                         | 72.0 | 44.           | 6.6 | 2350                   |                           |                         |                |                |                               |
| 67                         | 72.7 | 34.           | 6.1 | 2350                   |                           |                         |                |                |                               |
| 68                         | 72.0 | 40.           | 6.0 | 2200                   |                           |                         |                |                |                               |
| 69                         | 72.0 | 40.           | 6.0 | 2150                   |                           |                         |                | 1166.          | < 4.0                         |
| <b>7</b> 0                 | 72.0 | 32.           | 6.4 | 2150                   | 19.0                      | 47.0                    | 488.           | 1100.          | <b>~4.</b> 0                  |
| 73                         | 72.0 | 26.           | 6.1 | 2050                   |                           |                         |                |                |                               |
| 74                         | 72.0 | 22.           | 6.3 | 2100                   |                           |                         |                |                |                               |
| 75                         | 72.0 | 15.           | 6.3 | 200€                   |                           |                         |                |                |                               |
| <b>7</b> 6                 | 72.0 | 20.           | 7.0 | 1950                   |                           |                         |                |                |                               |
| 77                         | 72.0 | 16.           | 6.6 | 205C                   | < 1.0                     | 35.0                    | 450.           | 1114.          | 8.0                           |
| 80                         | 72.0 | 11.           | 6.4 | 2000                   |                           |                         |                |                |                               |
| 81                         | 72.0 | 13.           | 6.3 | 1900                   |                           |                         |                |                |                               |
| 82                         | 72.0 | 17.           | 6.6 | 2000                   |                           |                         |                |                |                               |
| 83                         | 72.0 | 19.           | 6.5 | 2000                   |                           |                         |                | 40.35          |                               |
| e 4                        | 72.0 | 10.           | 6.7 | 2200                   | 12.0                      | 35.6                    | 5 <b>70.</b>   | 1235.          | 4.0                           |
| ε7                         | 72.0 | 2.            | 6.6 | 2150                   |                           |                         |                |                |                               |
| 88                         | 72.0 | 1.            | 6.5 | 2100                   |                           |                         |                |                |                               |
| 89                         | 72.0 | 1.            | 6.3 | 2100                   |                           |                         |                |                |                               |
| 90                         | 72.0 | 2.            | 6.8 | 2250                   |                           | 44.5                    | (30            | 2065.          | 11.7                          |
| 91                         | 72.0 | 2.            | 6.1 | 2200                   | < 1.0                     | 11.7                    | 620.           | 2003.          | 11.7                          |
| 94                         | 72.0 | 2.            | 6.0 | 2200                   |                           |                         |                |                |                               |
| 95                         | 72.0 | 2.            | 6.0 | 2250                   |                           |                         |                |                |                               |
| 96                         | 72.3 | 2.            | 6.3 | 1800                   |                           |                         |                |                |                               |
| 9 <b>7</b>                 | 72.0 | 3.            | 6.0 | 2100                   |                           | • • •                   | 550            | 1355           | < 4.0                         |
| 98                         | 72.3 | 2.            | 6.3 | 180C                   | < 1.0                     | 10.2                    | 550.           | 1355.          | < 4.0                         |
| 101                        | 72.0 | 2.            | 6.0 | 2100                   |                           |                         |                |                |                               |

<sup>\*</sup>Start-up date was 3/17/72.

TABLE A44

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 38

(STONE \$1355, 1/4 x 0 SIZE)

| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DAYS<br>AFTER<br>START-UP* | HEAD | FLOW (ml/min) | рН  | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/1) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/1) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------|---------------|-----|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 2 72.0 200. 6.1 2050 3 72.0 170. 6.0 1950 4 72.0 165. 5.9 1950 5 72.0 132. 5.9 2250 6 72.0 130. 6.0 1830 7 72.0 130. 6.0 1830 7 72.0 130. 6.5 1800 9 72.0 98. 6.8 1800 10 72.0 125. 6.7 1950 11 72.0 80. 6.4 2050 11 72.0 70. 6.1 2050 12 72.0 70. 6.1 2050 13 72.0 70. 6.1 2050 14 72.0 58. 5.7 2050 15 72.0 58. 5.7 2050 16 72.0 46. 7.0 2250 17 72.0 46. 7.0 2250 19 72.0 46. 7.0 2250 19 72.0 46. 7.0 2250 20 72.0 55. 6.9 1800 20 72.0 46. 7.0 2250 21 72.0 50. 7.3 2000 22 72.0 55. 7.1 2130 22 72.0 55. 7.1 1550 23 72.0 46. 7.0 2057 24 72.0 35. 7.2 1950 25 72.0 34. 6.8 1900 26 72.0 35. 7.2 1950 27 72.0 35. 7.2 1950 28 72.0 35. 7.2 1950 29 72.0 35. 7.2 1950 20 72.0 35. 7.1 1650 21 72.0 30. 6.8 2000 22 72.0 33. 72 1950 23 72.0 24. 7.0 1950 24 72.0 30. 6.8 2000 30 72.0 24. 7.0 1950 31 72.0 24. 6.8 1900 32 72.0 24. 7.0 1550 33 72.0 24. 6.9 1850 34 72.0 24. 7.0 1560 35 72.0 24. 7.0 1560 36 72.0 18. 7.1 1650 37 72.0 24. 7.0 1560 38 72.0 24. 7.0 1560 39 72.0 22. 7.1 1650 39 72.0 24. 6.8 1900 30 72.0 24. 6.8 1900 31 72.0 24. 6.8 1900 32 72.0 22. 7.1 1650 33 72.0 24. 6.9 1850 34 72.0 22. 7.1 1950 35 72.0 22. 7.1 1950 36 72.0 18. 7.1 2050 37 72.0 24. 6.8 1900 38 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 6.8 1900 40 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 6.8 1900 40 72.0 22. 7.1 1950 41 72.0 24. 7.1 1950 42 72.0 20. 6.2 2000 <1.0 0.06 472. 1146. <4.0                                 | 1                          | 72.0 | 240.          | 6.0 | 1950                   | 19.0                      | 25.0                    | 445.           | 1031.          | 18.0                    |
| 4       72.0       105.       5.9       1950         5       72.0       110.       5.9       2250         6       72.7       120.       5.9       1800         7       72.0       130.       6.0       1830       < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |      | 200.          | 6.1 |                        |                           |                         |                |                | 10.0                    |
| 5 72.0 132. 5.9 2250 6 72.7 120. 5.9 180C 7 72.0 130. 6.0 1850 < 1.0 2.9 446. 1011. < 4.0 8 72.0 110. 6.5 180C 9 72.0 125. 6.7 1950 110 72.0 125. 6.7 1950 111 72.0 80. 6.4 2050 12 72.0 70. 6.1 2050 14 72.0 50. 7.0 2250 < 1.0 0.95 453. 1090. 29.0 15 72.0 46. 7.0 2250 16 72.0 47. 6.6 1750 17 72.0 55. 6.9 1870 19 72.0 48. 6.9 2170 20 72.0 50. 7.1 2180 21 72.0 48. 6.9 2180 22 72.0 50. 7.1 2180 23 72.0 45. 7.1 1550 24 72.0 35. 7.2 1950 25 72.0 34. 6.8 1870 26 72.0 34. 6.8 1870 27 72.0 34. 6.8 1870 28 72.0 33. 7.2 1950 29 72.0 30. 6.8 2000 30 72.0 26. 6.8 2000 31 72.0 24. 7.0 1750 32 72.0 24. 7.0 1750 33 72.0 24. 7.1 1650 34 72.0 24. 6.9 1850 37 72.0 24. 7.0 1750 38 72.0 24. 6.9 1650 39 72.0 22. 7.1 2000 40 72.0 26. 6.8 1900 30 72.0 26. 6.8 1900 31 72.0 24. 7.1 1950 32 72.0 20. 6.8 1900 33 72.0 24. 6.9 1650 34 72.0 22. 7.1 2000 35 72.0 22. 7.1 2000 36 72.0 28. 7.1 1950 37 72.0 24. 7.1 1950 38 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 22. 7.1 1950 39 72.0 20. 6.8 1900 40 72.0 22. 7.1 1950 41 72.0 22. 7.1 1950 42 72.0 20. 6.8 1900 | 3                          |      | 170.          | 6.0 | 1950                   |                           |                         |                |                |                         |
| 6 72.0 120. 5.9 180C 7 72.0 130. 6.0 1850 <1.0 2.9 446. 1011. <4.0 8 72.0 110. 6.5 180C 9 72.0 98. 6.8 180C 10 72.0 125. 6.7 1950 11 72.0 80. 6.4 2050 12 72.0 75. 6.7 1950 13 72.0 70. 6.1 2050 14 72.0 60. 7.0 2250 <1.0 0.95 453. 1090. 29.0 15 72.0 58. 5.7 2050 16 72.0 47. 6.6 1750 17 72.0 55. 6.9 1800 19 72.0 46. 7.0 2250 19 72.0 48. 6.9 2100 20 72.0 48. 6.9 2100 21 72.0 48. 6.9 2100 22 72.0 55. 7.1 2100 21 72.0 40. 7.0 2056 2.0 0.10 470. 1187. 18.0 22 72.0 55. 7.1 1550 23 72.0 45. 7.1 1550 24 72.0 35. 7.2 1950 25 72.2 34. 6.8 1900 26 72.0 35. 7.2 1950 27 72.0 40. 7.0 1900 28 72.0 33. 7.2 1950 <1.0 0.17 445. 1065. <4.0 30 72.0 24. 7.0 1750 31 72.0 24. 6.9 1850 31 72.0 24. 6.9 1850 31 72.0 24. 6.8 1900 32 72.0 24. 7.0 1750 33 72.0 24. 6.9 1650 34 72.0 25. 7.1 1550 35 72.0 28. 7.1 1650 37 72.0 24. 7.0 1750 38 72.0 24. 6.9 1850 39 72.0 22. 7.3 2000 <1.0 0.17 445. 1065. <4.0 36 72.0 18. 7.1 2050 37 72.0 24. 6.8 1900 37 72.0 24. 6.8 1900 38 72.0 22. 7.3 2000 <1.0 0.06 472. 1146. <4.0 40 72.0 20. 6.8 2150 41 72.0 20. 6.8 1000 40 72.0 20. 6.8 1000 40 72.0 20. 6.8 1000 41 72.0 20. 6.8 1000 42 72.0 20. 6.8 1000 43 72.0 20. 6.8 1000 44 72.0 20. 6.8 1000 45 72.0 17.7 7.4 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |      |               |     | 1950                   |                           |                         |                |                |                         |
| 7 72.0 130. 6.0 1850 < 1.0 2.9 446. 1011. < 4.0  8 72.0 110. 6.5 1800 9 72.0 98. 6.8 1800 10 72.0 125. 6.7 1950 11 72.0 80. 6.4 2050 12 72.0 75. 6.7 1950 13 72.0 70. 6.1 2050 14 72.0 60. 7.0 2250 15 72.0 58. 5.7 2050 16 72.0 47. 6.6 1750 17 72.0 46. 7.0 2250 18 72.0 46. 7.0 2250 19 72.0 48. 6.9 2100 20 72.0 48. 6.9 2100 20 72.0 48. 6.9 2100 21 72.0 49. 7.0 2250 22 72.0 50. 7.3 2000 23 72.0 45. 7.1 1550 24 72.0 35. 7.2 11950 25 72.1 34. 6.8 1000 26 72.0 34. 6.8 1000 27 72.0 35. 7.2 1950 28 72.0 34. 6.8 1000 29 72.0 30. 6.8 2000 30 72.0 26. 6.9 1850 31 72.0 26. 6.9 1850 31 72.0 26. 6.9 1850 32 72.0 30. 6.8 2000 30 72.0 26. 6.9 1850 31 72.0 24. 7.0 1750 32 72.0 25. 7.1 1650 33 72.0 24. 6.9 1650 34 72.0 35. 7.2 1950 35 72.0 26. 6.9 1850 37 72.0 24. 6.9 1650 38 72.0 24. 6.8 1900 36 72.0 24. 6.8 1900 37 72.0 24. 6.8 1900 38 72.0 24. 6.8 1900 39 72.0 24. 6.8 1900 36 72.0 24. 6.8 1900 37 72.0 24. 6.8 1900 38 72.0 24. 6.8 1900 39 72.0 24. 6.8 1900 39 72.0 24. 6.8 1900 39 72.0 20. 6.8 2000 40 72.0 24. 7.1 1950 38 72.0 22. 7.1 1950 39 72.0 20. 6.8 1000 40 72.0 24. 7.1 1950 39 72.0 20. 6.8 1000 40 72.0 24. 7.2 1950 42 72.0 20. 6.3 2150 42 72.0 20. 6.3 2150 42 72.0 20. 6.3 2150 42 72.0 20. 6.2 2000 < 1.0 0.06 472. 1146. < 4.0 43 72.0 20. 6.2 2000 < 1.0 0.06 472. 1146. < 4.0 44 72.0 17. 7.4 2000                                                                                                                                                                                                                                                                                                                                                                                    | 5                          |      |               |     |                        |                           |                         |                |                | -                       |
| 8 72.0 110. 6.5 1800 9 72.0 98. 6.8 1800 10 72.0 125. 6.7 1950 11 72.0 80. 6.4 2650 12 72.0 75. 6.7 1950 13 72.0 70. 6.1 2050 14 72.0 58. 5.7 2650 15 72.0 58. 5.7 2650 16 72.0 47. 6.6 1750 17 72.0 55. 6.9 1800 18 72.0 46. 7.0 2250 19 72.0 46. 7.0 2250 19 72.0 46. 7.0 2250 20 72.0 52. 7.1 2100 21 72.0 40. 7.0 2050 22 72.0 55. 7.1 2100 23 72.0 45. 7.1 1950 24 72.0 35. 7.2 1950 25 72.0 34. 6.8 1900 26 72.0 33. 7.2 1950 27 72.0 30. 6.8 2000 30 72.0 26. 6.9 1850 31 72.0 24. 7.0 1950 32 72.0 26. 6.9 1850 33 72.0 24. 7.0 1750 32 72.0 24. 7.0 1750 32 72.0 24. 7.0 1750 33 72.0 24. 7.0 1750 34 72.0 24. 7.0 1950 35 72.0 24. 7.0 1750 36 72.0 24. 7.0 1750 37 72.0 24. 7.0 1750 38 72.0 24. 6.9 1850 39 72.0 24. 6.9 1850 31 72.0 24. 7.0 1750 32 72.0 24. 7.0 1750 33 72.0 24. 6.9 1850 34 72.0 24. 6.9 1850 35 72.0 24. 6.9 1850 36 72.0 18. 7.1 1650 37 72.0 24. 6.8 1900 35 72.0 24. 6.8 1900 36 72.0 18. 7.1 2650 37 72.0 24. 6.8 1900 38 72.0 22. 7.1 1950 39 72.0 22. 7.3 2000 40 72.0 24. 6.8 1900 40 72.0 22. 7.1 1950 41 72.0 24. 7.2 1950 42 72.0 20. 6.2 2000 < 1.0 <0.03 460. 1079. <4.0 41 72.0 24. 7.2 1950 42 72.0 20. 6.2 2000 < 1.0 0.06 472. 1146. <4.0 43 72.0 20. 6.2 2000 < 1.0 0.06 472. 1146. <4.0 43 72.0 17. 7.4 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                          |      |               |     |                        |                           |                         |                |                |                         |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                          |      |               |     |                        | < 1.0                     | 2.9                     | 446.           | 1011.          | < 4.0                   |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |      |               |     |                        |                           |                         |                |                | •                       |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |      |               |     |                        |                           |                         |                |                |                         |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |      |               |     |                        |                           |                         |                |                |                         |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |      |               |     |                        |                           |                         |                |                |                         |
| 14       72.0       60.       7.0       2250       < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |      |               |     |                        |                           |                         |                |                |                         |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |      |               |     |                        |                           |                         |                |                |                         |
| 16       72.0       47.       6.6       1750         17       72.0       55.       6.9       1800         18       72.0       46.       7.0       2250         19       72.0       48.       6.9       2100         20       72.0       52.       7.1       2100         21       72.0       40.       7.0       2050       2.0       0.10       470.       1187.       18.0         22       72.0       50.       7.3       2000       2.0       0.10       470.       1187.       18.0         22       72.0       50.       7.3       2000       2.0       0.10       470.       1187.       18.0         22       72.0       35.       7.2       1950       2.0       0.10       470.       1187.       18.0         23       72.0       34.       6.8       1900       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |      |               |     |                        | < 1.0                     | 0.95                    | 453.           | 1090.          | 29.0                    |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |      |               |     |                        |                           |                         |                |                |                         |
| 18       72.0       46.       7.0       2250         19       72.0       48.       6.9       2100         20       72.0       52.       7.1       2100         21       72.0       40.       7.0       2050       2.0       0.10       470.       1187.       18.0         22       72.0       50.       7.3       2000       2.0       0.10       470.       1187.       18.0         23       72.0       45.       7.1       1950       2.0       0.10       470.       1187.       18.0         25       72.0       34.       6.8       1900       26.       72.0       34.       6.9       1850         27       72.0       34.       6.9       1850       2000       2.17       445.       1065.       <4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |      |               |     |                        |                           |                         |                |                |                         |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |      |               |     |                        |                           |                         |                |                |                         |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |      |               |     |                        |                           | 2                       |                |                |                         |
| 21 72.0 40. 7.0 2050 2.0 0.10 470. 1187. 18.0 22 72.0 50. 7.3 2000 23 72.0 45. 7.1 1550 24 72.0 35. 7.2 1950 25 72.0 34. 6.8 1900 26 72.0 34. 6.9 1850 27 72.0 40. 7.0 1990 28 72.0 30. 6.8 2000 30 72.0 26. 6.9 1850 31 72.0 24. 7.0 1750 32 72.0 28. 7.1 1650 33 72.0 24. 6.8 1900 35 72.0 24. 6.8 1900 36 72.0 24. 6.8 1900 37 72.0 24. 6.8 1900 38 72.0 24. 6.8 1900 39 72.0 24. 6.8 1900 31 72.0 24. 6.8 1900 32 72.0 24. 6.8 1900 33 72.0 24. 6.8 1900 34 72.0 24. 6.8 1900 35 72.0 22. 7.3 2000 < 1.0 <0.03 460. 1079. < 4.0 36 72.0 18. 7.1 1950 37 72.0 24. 7.1 1950 38 72.0 22. 7.1 1950 39 72.0 20. 6.3 2150 41 72.0 20. 6.3 2150 41 72.0 20. 6.2 2000 < 1.0 0.06 472. 1146. < 4.0 43 72.0 20. 6.2 2000 < 1.0 0.06 472. 1146. < 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |      |               |     |                        |                           |                         |                |                |                         |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |      |               |     |                        | 2.2                       |                         |                |                |                         |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |      |               |     |                        | 2.0                       | 9.10                    | 470.           | 1187.          | 18.0                    |
| 24 72.0 35. 7.2 1950 25 72.0 34. 6.8 1900 26 72.0 34. 6.9 1850 27 72.0 40. 7.0 1990 28 72.0 30. 6.8 2000 30 72.0 26. 6.9 1850 31 72.0 24. 7.0 1750 32 72.0 28. 7.1 1650 33 72.0 24. 6.9 1650 34 72.0 24. 6.8 1900 35 72.0 24. 6.8 1900 36 72.0 18. 7.1 2050 37 72.0 24. 7.1 1950 38 72.0 22. 7.3 2000 < 1.0 <0.03 460. 1079. < 4.0 36 72.0 18. 7.1 2050 37 72.0 24. 7.1 1950 38 72.0 22. 7.1 1950 40 72.0 20. 6.8 1900 40 72.0 20. 6.3 2150 41 72.0 24. 7.2 1900 42 72.0 20. 6.2 2000 < 1.0 0.06 472. 1146. < 4.0 43 72.0 72. 1950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |      |               |     |                        |                           |                         |                |                |                         |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |      |               |     |                        |                           |                         |                |                |                         |
| 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |      |               |     |                        |                           |                         |                |                |                         |
| 27       72.0       40.       7.0       1900         28       72.0       33.       7.2       1950       < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |      |               |     |                        |                           |                         |                |                |                         |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |      |               |     |                        |                           |                         |                |                |                         |
| 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |      |               |     |                        | . 1 0                     | 0 47                    | h 4 F          | 1015           | 4 11 2                  |
| 30 72.0 26. 6.9 1850 31 72.0 24. 7.0 1750 32 72.0 28. 7.1 1650 33 72.0 24. 6.9 1650 34 72.0 24. 6.8 1900 35 72.0 22. 7.3 2000 <1.0 <0.03 460. 1079. <4.0 36 72.0 18. 7.1 2050 37 72.0 24. 7.1 1950 38 72.0 22. 7.1 1950 39 72.0 20. 6.8 1900 40 72.0 20. 6.3 2150 41 72.0 24. 7.2 1900 42 72.0 20. 6.2 2000 <1.0 0.06 472. 1146. <4.0 43 72.0 20. 7.2 1950 44 72.0 17. 7.4 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |      |               |     |                        | < 1.0                     | 0.17                    | 445.           | 1065.          | < 4.0                   |
| 31 72.0 24. 7.0 1750 32 72.0 28. 7.1 1650 33 72.0 24. 6.9 1650 34 72.0 24. 6.8 1900 35 72.0 22. 7.3 2000 <1.0 <0.03 460. 1079. <4.0 36 72.0 18. 7.1 2050 37 72.0 24. 7.1 1950 38 72.0 22. 7.1 1950 39 72.0 20. 6.8 1900 40 72.0 20. 6.3 2150 41 72.0 24. 7.2 1900 42 72.0 20. 6.2 2000 <1.0 0.06 472. 1146. <4.0 43 72.0 20. 7.2 1950 44 72.0 17. 7.4 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |      |               |     |                        |                           |                         |                |                |                         |
| 32 72.0 28. 7.1 1650 33 72.0 24. 6.9 1650 34 72.0 24. 6.8 1900 35 72.0 22. 7.3 2000 <1.0 <0.03 460. 1079. <4.0 36 72.0 18. 7.1 2050 37 72.0 24. 7.1 1950 38 72.0 22. 7.1 1950 39 72.0 20. 6.8 1900 40 72.0 20. 6.3 2150 41 72.0 24. 7.2 1900 42 72.0 20. 6.2 2000 <1.0 0.06 472. 1146. <4.0 43 72.0 20. 7.2 1950 44 72.0 17. 7.4 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |      |               |     |                        |                           |                         |                |                |                         |
| 33 72.0 24. 6.9 165C 34 72.0 24. 6.8 1900 35 72.0 22. 7.3 200C <1.0 <0.03 460. 1079. <4.0 36 72.0 18. 7.1 205C 37 72.0 24. 7.1 195C 38 72.0 22. 7.1 195C 39 72.0 20. 6.8 190C 40 72.0 20. 6.3 215C 41 72.0 24. 7.2 190C 42 72.0 20. 6.2 2000 <1.0 0.06 472. 1146. <4.0 43 72.0 20. 7.2 195C 44 72.0 17. 7.4 200C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |      |               |     |                        |                           |                         |                |                |                         |
| 34 72.0 24. 6.8 1900<br>35 72.0 22. 7.3 2000 < 1.0 < 0.03 460. 1079. < 4.0<br>36 72.0 18. 7.1 2050<br>37 72.0 24. 7.1 1950<br>38 72.0 22. 7.1 1950<br>40 72.0 20. 6.8 1900<br>41 72.0 24. 7.2 1900<br>42 72.0 20. 6.2 2000 < 1.0 0.06 472. 1146. < 4.0<br>43 72.0 20. 7.2 1950<br>44 72.0 17. 7.4 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |      |               |     |                        |                           |                         |                |                |                         |
| 35 72.0 22. 7.3 2000 <1.0 <0.03 460. 1079. <4.0 36 72.0 18. 7.1 2050 37 72.0 24. 7.1 1950 38 72.0 22. 7.1 1950 39 72.0 20. 6.8 1900 40 72.0 20. 6.3 2150 41 72.0 24. 7.2 1900 42 72.0 20. 6.2 2000 <1.0 0.06 472. 1146. <4.0 43 72.0 20. 7.2 1950 44 72.0 17. 7.4 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |      |               |     |                        |                           |                         |                |                |                         |
| 36 72.0 18. 7.1 2050<br>37 72.0 24. 7.1 1950<br>38 72.0 22. 7.1 1950<br>39 72.0 20. 6.8 1990<br>40 72.0 20. 6.3 2150<br>41 72.0 24. 7.2 1990<br>42 72.0 20. 6.2 2000 < 1.0 0.06 472. 1146. < 4.0<br>43 72.0 20. 7.2 1950<br>44 72.0 17. 7.4 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |      |               |     |                        | Z 1.0                     | < 0.03                  | 660            | 1079           | / II O                  |
| 37 72.0 24. 7.1 1950 38 72.0 22. 7.1 1950 39 72.0 20. 6.8 1900 40 72.0 20. 6.3 2150 41 72.0 24. 7.2 1900 42 72.0 20. 6.2 2000 < 1.0 0.06 472. 1146. < 4.0 43 72.0 26. 7.2 1950 44 72.0 17. 7.4 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |      |               |     |                        |                           | ~ ( • ( )               | 400.           | 1072           | V 4.0                   |
| 38 72.0 22. 7.1 1950<br>39 72.0 20. 6.8 1900<br>40 72.0 20. 6.3 2150<br>41 72.0 24. 7.2 1900<br>42 72.0 20. 6.2 2000 < 1.0 0.06 472. 1146. < 4.0<br>43 72.0 20. 7.2 1950<br>44 72.0 17. 7.4 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |      |               |     |                        |                           |                         |                |                |                         |
| 39 72.0 20. 6.8 1900<br>40 72.0 20. 6.3 2150<br>41 72.0 24. 7.2 1900<br>42 72.0 20. 6.2 2000 < 1.0 0.06 472. 1146. < 4.0<br>43 72.0 20. 7.2 1950<br>44 72.0 17. 7.4 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |      |               |     |                        |                           |                         |                |                |                         |
| 40 72.0 20. 6.3 2150<br>41 72.0 24. 7.2 1900<br>42 72.0 20. 6.2 2000 < 1.0 0.06 472. 1146. < 4.0<br>43 72.0 20. 7.2 1950<br>44 72.0 17. 7.4 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |      |               |     |                        |                           |                         |                |                |                         |
| 41 72.0 24. 7.2 1900<br>42 72.0 20. 6.2 2000 < 1.0 0.06 472. 1146. < 4.0<br>43 72.0 20. 7.2 1950<br>44 72.0 17. 7.4 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40                         |      |               |     |                        |                           |                         |                |                |                         |
| 42 72.0 20. 6.2 2000 < 1.0 0.06 472. 1146. < 4.0 43 72.0 20. 7.2 1950 44 72.0 17. 7.4 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41                         | 72.0 |               |     |                        |                           |                         |                |                |                         |
| 43 72.0 20. 7.2 1950<br>44 72.0 17. 7.4 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42                         |      |               |     |                        | < 1.0                     | 0.06                    | 472.           | 1146-          | < 4.0                   |
| 44 72.0 17. 7.4 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 43                         |      |               |     |                        | •                         |                         | •              | * *            | , ,,,                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44                         | 72.0 | 17.           |     | 2000                   |                           |                         |                |                |                         |
| 45 72.0 20. 6.9 1850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45                         | 72.0 | 20.           | 6.9 | 1850                   |                           |                         |                |                |                         |
| 46 72.0 14. 6.7 1800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            | 72.0 |               |     |                        |                           |                         |                |                |                         |
| 47 72.0 14. 6.7 190C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            | 72.0 | 14.           |     | 190C                   |                           |                         |                |                |                         |
| 48 72.0 14. 6.4 200C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |      | 14.           | 6.4 |                        |                           |                         |                |                |                         |
| 49 72.0 20. 7.4 1950 < 1.0 < 0.03 390. 1131. 69.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |      | 20.           | 7.4 | 1950                   | < 1.0                     | < 0.03                  | 390.           | 1131.          | 69.1                    |
| 50 72.0 16. 6.4 2100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |      | 16.           | 6.4 |                        |                           |                         |                |                | -                       |
| 51 72.0 18. 6.6 205C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |      |               | 6.6 |                        |                           |                         |                |                |                         |
| 52 72.0 20. 6.7 2150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |      |               |     |                        |                           |                         |                |                |                         |
| 53 72.0 16. 6.6 2200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 53                         | 72.0 | 16.           | 6.6 | 2200                   |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/17/72.

TABLE A44 (CONT'D.)

| DAYS<br>AFTER<br>START-UP* | HEAD | FLOW (ml/min) | рн  | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/1) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/l) |
|----------------------------|------|---------------|-----|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 55                         | 72.0 | 27.           | 6.6 | 2100                   |                           |                         |                |                |                         |
| <b>5</b> 6                 | 12.1 | 52,           | 6.7 | 2100                   | < 1.0                     | 0.54                    | 510.           | 1070.          | 46.1                    |
| 57                         | 72.0 | 35.           | 7.2 | 2100                   | • • •                     |                         |                | 10.00          | 40.1                    |
| 5.9                        | 72.0 | 42.           | 7.0 | 2100                   |                           |                         |                |                |                         |
| 5 a                        | 72.0 | 36.           | 6.9 | 2200                   |                           |                         |                |                |                         |
| 60                         | 72.0 | 42.           | 6.7 | 215C                   |                           |                         |                |                |                         |
| 61                         | 72.0 | 64.           | 6.6 | 2050                   |                           |                         |                |                |                         |
| 62                         | 72.7 | 20.           | 6.2 | 1950                   |                           |                         |                |                |                         |
| 63                         | 72.5 | 32.           | 7.0 | 2 150                  | 16.0                      | 0.34                    | 512.           | 1233.          | 34.6                    |
| 66                         | 72.3 | 28.           | 7.1 | 2310                   |                           |                         |                |                |                         |
| 67                         | 72.  | 22.           | 6.3 | 2250                   |                           |                         |                |                |                         |
| 6.9                        | 72.7 | 24.           | 6.5 | 2300                   |                           |                         |                |                |                         |
| 69                         | 72.0 | 24.           | 6.3 | 1900                   |                           |                         |                |                |                         |
| 70                         | 72.1 | 32.           | 6.9 | <b>2</b> €50           | < 1.0                     | 0.03                    | 495.           | 1153.          | < 4.0                   |
| 73                         | 72.2 | 28.           | 6.3 | 2100                   |                           |                         |                |                |                         |
| 74                         | 72.0 | 20.           | 6.4 | 2250                   |                           |                         |                |                |                         |
| 75                         | 72.0 | 17.           | 6.6 | 1800                   |                           |                         |                |                |                         |
| 76                         | 72.0 | 39.           | 7.0 | 2200                   |                           |                         |                |                |                         |
| 77                         | 72.7 | 26.           | 6.8 | 1850                   | 6.5                       | 52.0                    | 375.           | 1125.          | 12.0                    |
| 8n                         | 72.3 | 18.           | 6.8 | 2100                   |                           |                         |                |                |                         |
| 8 <b>1</b>                 | 72.0 | 28.           | 6.4 | 1800                   |                           |                         |                |                |                         |
| 82                         | 72.0 | 42.           | 6.2 | 2250                   |                           |                         |                |                |                         |
| 83                         | 72.0 | 108.          | 6.7 | 2150                   |                           |                         |                |                |                         |
| ៤រ្វ                       | 72.0 | 16.           | t.5 | 2400                   | 2.6                       | 9.5                     | 700.           | 1504.          | 6.0                     |
| <b>₹ 7</b>                 | 72.0 | 7.            | 6.9 | 2100                   |                           |                         |                |                |                         |
| де                         | 72.0 | 7.            | 7.0 | 2100                   |                           |                         |                |                |                         |
| 99                         | 72.7 | 5.            | 7.0 | 2250                   |                           |                         |                |                |                         |
| 30                         | 72.0 | ∂.            | 7.4 | 2200                   |                           |                         |                |                |                         |
| 91                         | 72.0 | 8.            | υ.6 | 2200                   | < 1.0                     | 0.18                    | 550.           | 1276.          | 7.8                     |
| 94                         | 72.0 | 7.            | 6.5 | 2100                   |                           |                         |                |                |                         |
| 95                         | 72.0 | 7.            | 6.8 | 2100                   |                           |                         |                |                |                         |
| 36                         | 72.0 | 6.            | 6.7 | 165C                   |                           |                         |                |                |                         |
| 97                         | 72.0 | 7.            | 6.5 | 1850                   |                           |                         |                |                |                         |
| òβ                         | 73.0 | 6.            | 6.8 | 1€50                   | < 1.0                     | 0.06                    | 458.           | 1208.          | < 4.0                   |
| 101                        | 72.0 | 7.            | 6.5 | 1850                   |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/17/72.

TABLE A45

ELOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 39
(STONE #1355, 1/2 x 0 SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD (in)    | FLOW (ml/min) | рН         | SP.<br>COND.<br>(µmho) | FERROUS<br>IRÓN<br>(mg/1) | TOTAL<br>IRON<br>(mg/1) | CALCIUM (mg/l) | SULFATE (mg/1) | HOT PHT. ACIDITY (mg/l) |
|----------------------------|--------------|---------------|------------|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 72.0         | 440.          | 6.3        | 1850                   | 30.0                      | 52.4                    | 360.           | 985.           | 28.8                    |
| 2                          | 72.0         | 280.          | 6.4        | 1900                   |                           |                         |                |                |                         |
| 3                          | 72.0         | 240.          | 6.1        | 185C                   |                           |                         |                |                |                         |
| 4                          | 56.5         | 191.          | 6.1        | 1850                   |                           |                         |                |                |                         |
| 5<br>6                     | 72.0         | 260.          | 6.1        | 2000                   |                           |                         |                |                |                         |
| 7                          | 72.0<br>72.0 | 178.<br>135.  | 6.0<br>6.2 | 1750<br>1850           | 9.0                       | 21.0                    | 11 11 0        | 10 " 0         |                         |
| 8                          | 72.0         | 114.          | 5.8        | 1800                   | 8.0                       | 21.0                    | 449.           | 1040.          | 86.4                    |
| ğ                          | 72.0         | 104.          | 6.5        | 1800                   |                           |                         |                |                |                         |
| 10                         | 72.0         | 110.          | 6.4        | 1800                   |                           |                         |                |                |                         |
| 11                         | 72.0         | 100.          | 6.3        | 1900                   |                           |                         |                |                |                         |
| 12                         | 72.0         | 100.          | 6.3        | 1750                   |                           |                         |                |                |                         |
| 13                         | 72.0         | 85.           | 6.3        | 1950                   |                           |                         |                |                |                         |
| 14                         | 72.0         | 80.           | 6.1        | 1850                   | 30.0                      | 52.9                    | 362.           | 1072.          | 18.0                    |
| 15                         | 72.0         | 78.           | 5.0        | 1800                   |                           |                         |                |                |                         |
| 16                         | 72.0         | 73.           | 6.0        | 1700                   |                           |                         |                |                |                         |
| 17                         | 72.0         | 75.           | 6.5        | 1500                   |                           |                         |                |                |                         |
| 18<br>19                   | 72.0<br>72.0 | 72.           | 6.5        | 1950                   |                           | ,                       | ,              |                |                         |
| 20                         | 72.0         | 60.<br>50.    | 7.6<br>7.1 | 2150<br>2050           |                           |                         |                |                |                         |
| 21.                        | 72.0         | 55.           | 7.0        | 2050                   | 2.8                       | 25.0                    | 473.           | 1133           | 204                     |
| 22                         | 72.0         | 60.           | 7.1        | 2000                   | 2.0                       | 23.0                    | 4/3.           | 1123.          | 324.                    |
| 23                         | 72.0         | 45.           | 6.9        | 205C                   |                           |                         |                |                |                         |
| 24                         | 72.0         | 45.           | 6.6        | 1900                   |                           |                         |                |                |                         |
| 25                         | 72.0         | 42.           | 6.8        | 1950                   |                           |                         |                |                |                         |
| 26                         | 72.0         | 44.           | 6.8        | 1950                   |                           |                         |                |                |                         |
| 2 <b>7</b>                 | 72.0         | 44.           | 6.5        | 190C                   |                           |                         |                |                |                         |
| 28                         | 72.0         | 50.           | 6.7        | 2000                   | 6.0                       | 24.5                    | 470.           | 1046.          | < 4.0                   |
| 29                         | 72.0         | 42.           | 6.7        | 2100                   |                           |                         |                |                |                         |
| 30                         | 72.0         | 44.           | 6.8        | 1850                   |                           |                         |                |                |                         |
| 31                         | 72.0         | 36.           | 6.9        | 1750                   |                           |                         |                |                |                         |
| 32                         | 72.0         | 44.           | 7.0        | 1600<br>100            |                           |                         |                |                |                         |
| 33                         | 72.0         | 36.           | 6.3        | 1850                   |                           |                         |                |                |                         |
| 34<br>35                   | 72.0<br>72.0 | 36.<br>36.    | 6.6<br>6.7 | 1950<br>2050           | 6.0                       | 33.0                    | 470.           | 1069.          | 77.6                    |
| 36                         | 72.0         | 34.           | 6.8        | 2050                   | 0.0                       | 33.0                    | 4,0.           | 1003.          | 7740                    |
| 37                         | 72.0         | 50.           | 6.6        | 1950                   |                           |                         |                |                |                         |
| 38                         | 72.0         | 40.           | 6.6        | 1900                   |                           |                         |                |                |                         |
| 39                         | 72.0         | 52.           | 6.6        | 185C ·                 |                           |                         |                |                |                         |
| 40                         | 72.0         | 28.           | 6.9        | 1800                   |                           |                         |                |                |                         |
| 41                         | 72.0         | 32.           | 6.8        | 195C                   |                           |                         |                |                |                         |
| 42                         | 72.0         | 32.           | 6.4        | 2050                   | 17.0                      | 38.0                    | 465.           | 1115.          | < 4.0                   |
| 43                         | 72.0         | 28.           | 6.8        | 1900                   |                           |                         |                |                |                         |
| 44                         | 72.0         | 28.           | 7.0        | 2050                   |                           |                         |                |                |                         |
| <b>45</b>                  | 72.0         | 28.           | 6.7        | 1850                   |                           |                         |                |                |                         |
| 46                         | 72.0         | 22.           | 6.2        | 1850<br>1900           |                           |                         |                |                |                         |
| 47<br>48                   | 72.0<br>72.0 | 24.<br>24.    | 7.1<br>6.1 | 205C                   |                           |                         |                |                |                         |
| 48<br>49                   | 72.0         | 36.           | 6.5        | 1900                   | 15.0                      | 35.0                    | 398.           | 1090.          | 65.3                    |
| 50                         | 72.0         | 20.           | 6.2        | 2100                   | 15.0                      | 33.0                    | 3,0.           | 10 30 4        | U.J. J                  |
| 51                         | 72.0         | 32.           | 6.5        | 2050                   |                           |                         |                |                |                         |
| 52                         | 72.0         | 36.           | 6.7        | 2100                   |                           |                         |                |                |                         |
| 53                         | 72.0         | 40.           | 6.6        | 2150                   |                           |                         |                |                |                         |
|                            |              |               |            |                        |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/17/72.

FLOW AND EFFLUENT COMPOSITION DATA FOR TEST VESSEL NO. 40 (STONE \$1355, 1/2 x 50M SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD<br>(in) | FLOW (ml/min) | рН  | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/1) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/l) | SULFATE (mg/1) | HOT PH<br>ACIDI<br>(mg/l |
|----------------------------|--------------|---------------|-----|------------------------|---------------------------|-------------------------|----------------|----------------|--------------------------|
| 1                          | 56.0         | 3150.         | 3.5 | 175C                   | 45.0                      | 157.                    | 185.           | 996.           | 522.                     |
| 2<br>3                     | 72.0         | 3220.         | 3.0 | 2000                   |                           |                         |                |                |                          |
| 3                          | 56.5         | 3200.         | 2.9 | 1900                   | •                         |                         |                |                |                          |
| 4                          | 35.5         | 3060.         | 2.8 | 1900                   |                           |                         |                |                |                          |
| 5                          | 49.0         | 3100.         | 3.C | 1800                   |                           |                         |                |                |                          |
| 6<br>7                     | 50.5         | 2920.         | 2.9 | 1700                   |                           |                         |                |                |                          |
| 7                          | 49.5         | 2920.         | 3.0 | 1850                   | 80.0                      | 183.                    | 117.           | 1037.          | 612.                     |
| <b>8</b><br>9              | 49.0         | 2740.         | 2.9 | 185C                   |                           |                         |                |                |                          |
|                            | 47.0         | 2560.         | 2.9 | 1650                   |                           |                         |                |                |                          |
| 10                         | 45.5         | 2460.         | 2.9 | 185C                   |                           |                         |                |                |                          |
| 11                         | 46.5         | 2320.         | 2.5 | 2350                   |                           |                         |                |                |                          |
| 12                         | 44.5         | 2005.         | 2.7 | 2350                   |                           |                         |                |                |                          |
| 13                         | 42.0         | 1930.         | 2.8 | 2050                   |                           |                         |                |                |                          |
| 14                         | 44.0         | 1830.         | 2.9 | 200C                   | 90.0                      | 178.                    | 115.           | 1088.          | 593.                     |
| 15                         | 43.5         | 1640.         | 2.6 | 220C                   |                           |                         |                |                |                          |
| 16                         | 39.0         | 1600.         | 2.6 | 1700                   |                           |                         |                |                |                          |
| 17                         | 38.3         | 1510.         | 2.9 | 1700                   |                           |                         |                |                |                          |
| 18                         | 37.5         | 1460.         | 3.0 | 225C                   |                           |                         |                |                |                          |
| 19                         | 72.0         | 2680.         | 6.9 | 225C                   |                           |                         |                |                |                          |
| 20                         | 72.0         | 2720.         | 2.8 | 2050                   |                           |                         |                |                |                          |

<sup>\*</sup>Start-up date was 3/17/72.

TABLE A47

FLOW AND EFFLUENT COMPOSITION DATA FOR TEST VESSEL NO. 41 (STONE #1355, 1 x 50M SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD (in) | FLOW (ml/min) | рH<br>— | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/l) | SULFATE (mg/l) | HOT PHT.<br>ACIDITY<br>(mg/l) |
|----------------------------|-----------|---------------|---------|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------------|
| . 1                        | 35.5      | 2760.         | 3.2     | 180C                   | 45.0                      | 116.                    | 174.           | 1015.          | 508.                          |
| 2 3                        | 36.0      | 3600.         | 2.9     | 2100                   |                           |                         |                |                |                               |
| 3                          | 34.5      | 2700.         | 2.8     | 1900                   |                           |                         |                |                |                               |
| 4                          | 72.0      | 2620.         | 2.7     | 2000                   |                           |                         |                |                |                               |
| 5                          | 28.0      | 2580.         | 2.7     | 1850                   |                           |                         |                |                |                               |
| 6<br>7                     | 29.5      | 2500.         | 2.8     | 175 C                  |                           |                         |                |                |                               |
| 7                          | 28.0      | 2460.         | 2.8     | 1900                   | 90.0                      | 188.                    | 115.           | 1047.          | 659.                          |
| 8<br>9                     | 28.0      | 2380.         | 2.8     | 190C                   |                           |                         |                |                |                               |
|                            | 28.0      | 2160.         | 2.8     | 1800                   |                           |                         |                |                |                               |
| 10                         | 28.5      | 2190.         | 2.8     | 190¢                   |                           |                         |                |                |                               |
| 11                         | 29.5      | 1980.         | 2.4     | 260C                   |                           |                         |                |                |                               |
| 12                         | 28.0      | 1720.         | 2.6     | 2400                   |                           |                         |                |                |                               |
| 13                         | 26.5      | 1630.         | 2.6     | 2150                   |                           |                         |                |                |                               |
| 14                         | 25.0      | 1500.         | 2.8     | 2050                   | 90.0                      | 180.                    | 110.           | 1055.          | 720.                          |
| 15                         | 25.5      | 1340.         | 2.7     | 2200                   |                           |                         |                |                |                               |
| 16                         | 72.0      | 1260.         | 2.5     | 195 C                  |                           |                         |                |                |                               |
| 17                         | 23.0      | 1150.         | 2.6     | 1800                   |                           |                         |                |                |                               |
| 18                         | 21.5      | 1140.         | 3.0     | 230C                   |                           |                         | 1              |                |                               |
| 19                         | 72.0      | 2720.         | 2.9     | 2150                   |                           |                         |                |                |                               |
| 20                         | 47.0      | 2680.         | 2.7     | 2200                   |                           |                         |                |                |                               |

<sup>\*</sup>Start-up date was 3/17/72.

TABLE A48

## FLOW AND EFFLUENT COMPOSITION DATA FOR TEST VESSEL NO. 42 (STONE #1355, 1 x 0 SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD         | FLOW (ml/min) | рH         | SP.<br>COND.<br>(μπho) | FERROUS<br>IRON<br>(mg/1) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/l) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/l) |
|----------------------------|--------------|---------------|------------|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
|                            | 700          | 4340          |            | 4000                   | 35 0                      | 4 11 7                  |                |                |                         |
| . 1                        | 72.0         | 1310.         | 3.7        | 1800                   | 35.0                      | 147.                    | 245.           | 1096.          | 302.                    |
| 2<br>3                     | 72.0<br>72.0 | 2790.<br>870. | 3.1<br>2.0 | 1950<br>1950           |                           |                         |                |                |                         |
| 4                          | 72.0         | 820.          | 3.1        | 1750                   | ·                         | •                       |                |                |                         |
| 5                          |              | 840.          | 3.2        | 1750                   |                           |                         |                |                | •                       |
| 5<br>6                     | 72.0         | 740.          | 3.0        | 1700                   |                           |                         | ,              |                |                         |
| 7                          | 72.0         | 670.          | 3.1        | 1850                   | 80.0                      | 140.                    | 196.           | 1045.          | 425.                    |
| 8                          | 72.0         | 694.          | 3.1        | 1750                   |                           |                         |                |                | 723.                    |
| 9                          | 72.0         | 640.          | 3.1        | 1700                   |                           |                         | •              |                |                         |
| 10                         | 72.0         | 610.          | 3.0        | 1800                   |                           |                         |                |                |                         |
| 11                         | 72.0         | 600.          | 2.7        | 2200                   |                           |                         |                |                |                         |
| 12                         | 72.0         | 590.          | 2.8        | 2050                   |                           |                         |                |                |                         |
| 13                         | 72.0         | 770.          | 3.0        | 2050                   |                           |                         |                |                |                         |
| 14                         | 72.0         | 530.          | 2.9        | 205C                   | 80.0                      | 157.                    | 165.           | 1100.          | 523.                    |
| 15                         | 72.0         | 520.          | 3.0        | 2000                   |                           |                         |                |                |                         |
| 16                         | 72.0         | 510.          | 2.7        | 1850                   |                           | 22                      |                |                | • :                     |
| 17                         | 72.0         | 490.          | 2.7        | 1650                   |                           |                         |                |                |                         |
| 18                         | 72.0         | 520.          | 3.1        | 2250                   |                           |                         |                |                |                         |
| 19                         | 72.0         | 520.          | 3.1        | 205C                   |                           |                         |                |                |                         |
| 20                         | 72.0         | 520.          | 3.0        | 2050                   |                           |                         |                |                |                         |
| 21                         | 72.0         | 480.          | 3.0        | 2050                   | 100.                      | 137.                    | 163.           | 1136.          | 572.                    |
| 22                         | 72.0         | 480.          | 3.3        | 2000                   |                           |                         |                |                |                         |
| 23                         | 72.0         | 460.          | 3.5        | 1700                   |                           |                         |                |                | 5                       |
| 24<br>25                   | 72.0<br>72.0 | 440.<br>420.  | 3.6        | 2000                   |                           |                         |                |                | w.*                     |
| 26                         | 72.0         | 400.          | 3.2        | 1650<br>1800           |                           |                         |                |                |                         |
|                            |              |               | 3.3        |                        |                           |                         | *              |                |                         |
| 27                         | 72.0         | 380.          | 3.2        | 1750                   | 100.                      | 137.                    | 165.           | 1000.          | 522.                    |
| 28                         | 72.0         | 390.          | 2.9        | 1800<br>2150           | 100.                      | 137.                    | 10.5           | .000.          | 722.                    |
| 2 <b>9</b><br>30           | 72.0<br>72.0 | 380.<br>320.  | 3.4        | 1750                   |                           |                         |                |                |                         |
| 31                         | 72.0         | 96.           | 5.7        | 1450                   |                           |                         |                |                |                         |
| 32                         | 72.0         | 36.           | 7.0        | 2050                   |                           |                         |                |                |                         |
| 33                         | 72.0         | 64.           | 6.7        | 1850                   |                           |                         |                |                |                         |
| 34                         | 72.0         | 64.           | 6.8        | 2000                   |                           |                         |                |                |                         |
| 35                         | 72.0         | 54.           | 6.9        | 2100                   | < 1.0                     | 4.5                     | 505.           | 1175.          | 32.6                    |
| 36                         | 72.0         | 54.           | 6.9        | 2 10 0                 |                           |                         |                |                |                         |
| 37                         | 72.0         | 56.           | 6.8        | 2000                   |                           |                         |                |                |                         |
| 38                         | 72.0         | 50.           | 6.9        | 2000                   |                           |                         |                |                |                         |
| 39                         | 72.0         | 49.           | 6.8        | 1850                   |                           |                         |                |                |                         |
| 40                         | 72.0         | 44.           | 6.8        | 1850                   |                           |                         |                |                |                         |
| 41                         | 72.0         | 52.           | 6.1        | 1900                   |                           |                         |                |                |                         |
| 42                         | 72.0         | 56.           | 6.7        | 2100                   | < 1.0                     | 1.5                     | 487.           | 1183.          | < 4.0                   |
| 43                         | 72.0         | 50.           | 6.9        | 1750                   |                           |                         |                |                |                         |
| 44                         | 72.0         | 36.           | 7.0        | 2000                   |                           |                         |                |                |                         |
| 45                         | 72.0         | 32.           | 6.9        | 2000                   |                           |                         |                |                |                         |
| 46                         | 72.0         | 32.           | 6.6        | 1900<br>2050           |                           |                         |                |                |                         |
| 47                         | 72.0         | 30.           | 7.0        | 7                      |                           |                         |                |                |                         |
| 48                         | 72.0         | 28.<br>34.    | 6.5<br>6.8 | 2100<br>2000           | < 1.0                     | 3.2                     | 408.           | 1116.          | 69.1                    |
| 49                         | 72.0<br>72.0 | 34.<br>46.    | 6.2        | 2150                   | < 1.0                     | ع. د                    | 700            |                | ~ ~ ~ ,                 |
| 50<br>51                   | 72.0         | 44.           | 6.6        | 2000                   |                           |                         |                |                |                         |
| 5 i<br>52                  | 72.0         | 42.           | 6.7        | 2100                   |                           |                         |                |                |                         |
| 52<br>53                   | 72.0         | 42.           | 6.5        | 2000                   |                           |                         |                |                |                         |
| ور زر                      | 12.0         | 74.           | 0.0        | 2000                   |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/17/72.

TABLE A48 (CONT'D.)

| DAYS<br>AFTER<br>START-UP* | HEAD (in) | FLOW (ml/min) | рН  | SP. COND. (µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/1) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/1) |
|----------------------------|-----------|---------------|-----|------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 55                         | 72.0      | 63.           | 6.6 | 2000             |                           |                         |                |                |                         |
| 56                         | 72.0      | 60.           | 6.7 | 1900             | 25.0                      | 65.0                    | 417.           | 1078.          | 42.2                    |
| 57                         | 72.0      | 46.           | 6.8 | 185C             |                           |                         |                |                |                         |
| 58                         | 72.0      | 40.           | 6.4 | 215C             |                           |                         |                |                |                         |
| 59                         | 72.0      | 40.           | 6.8 | 2100             |                           |                         |                |                |                         |
| 6 C                        | 72.0      | 40.           | 6.6 | 1950             |                           |                         |                |                |                         |
| 61                         | 72.0      | 60.           | 6.6 | 1850             |                           |                         |                |                |                         |
| 62                         | 72.0      | 48.           | 6.2 | 1950             |                           |                         |                |                |                         |
| 63                         | 72.0      | 52.           | 6.9 | 2050             | 22.0                      | 44.0                    | 512.           | 1209.          | 53.8                    |
| 66                         | 72.0      | 56.           | 6.8 | 2250             |                           |                         |                |                |                         |
| 67                         | 72.0      | 48.           | 6.2 | 2250             |                           |                         |                |                |                         |
| 68                         | 72.0      | 140.          | 4.3 | 180C             |                           |                         |                |                |                         |
| 69                         | 72.0      | 68.           | 6.3 | 2000             |                           |                         | _              |                |                         |
| 70                         | 72.0      | 14.           | 7.1 | 2250             | < 1.0                     | 0.19                    | 600.           | 1433.          | < 4.0                   |
| 73                         | 72.0      | 10.           | 6.7 | 2150             |                           |                         |                |                |                         |
| 74                         | 72.0      | 9.            | 6.8 | 2200             |                           |                         |                |                |                         |
| 75                         | 72.0      | 8.            | 6.8 | 2250             |                           |                         |                |                |                         |
| 76                         | 72.0      | 10.           | 7.2 | 2000             |                           | ,                       |                |                |                         |
| 77                         | 72.0      | 11.           | 7.0 | 2000             | < 1.0                     | 0.18                    | 455.           | 1262.          | < 4.0                   |
| 80                         | 72.0      | 16.           | 7.3 | 1900             |                           |                         |                |                |                         |
| 81                         | 72.0      | 20.           | 6.3 | 1850             |                           |                         |                |                |                         |
| 82                         | 72.0      | 16.           | 6.6 | 1900             |                           |                         |                |                |                         |
| 83                         | 72.0      | 152.          | 6.8 | 1950             |                           |                         |                |                |                         |
| 84                         | 72.0      | 18.           | 6.5 | 2400             | < 1.0                     | 0.21                    | 700.           | 1423.          | 26.0                    |
| 87                         | 72.0      | 9.            | 7.3 | 2050             |                           |                         |                |                |                         |
| 88                         | 72.0      | 10.           | 7.6 | 2150             |                           |                         |                |                |                         |
| 89                         | 72.0      | 8.            | 7.2 | 2100             |                           |                         |                |                |                         |
| 90                         | 72.0      | 16.           | 7.6 | 2200             |                           |                         |                |                |                         |
| 91                         | 72.0      | 15.           | 6.7 | 2200             | < 1.0                     | 0.10                    | 540.           | 812.           | 11.7                    |
| 94                         | 72.0      | 8.            | 6.5 | 2050             |                           |                         |                |                |                         |
| 95                         | 72.0      | 9.            | 7.0 | 2100             |                           |                         |                |                |                         |
| 96                         | 72.0      | 14.           | 6.9 | 1600             |                           |                         |                |                |                         |
| 97                         | 72.0      | 14.           | 7.0 | 1950             |                           |                         |                | 4465           |                         |
| 98                         | 72.0      | 8.            | 7.0 | 1750             | < 1.0                     | 0.06                    | 438.           | 1165.          | < 4.0                   |
| 101                        | 72.0      | 8.            | 6.8 | 1750             |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/17/72.

TABLE A49

FLOW AND EFFLUENT COMPOSITION DATA FOR TEST VESSEL NO. 43 (STONE #1337, 1/8 x 0 SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD<br>(in) | FLOW (ml/min) | рH<br>—     | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/l) | SULFATE (mg/1) | HOT PHT. ACIDITY (mg/1) |
|----------------------------|--------------|---------------|-------------|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 72.0         | 15.           | 5.8         | 2000                   | 1.0                       | 0.04                    | 143.           | 1091.          | 10.8                    |
| 2                          | 72.0         | 12.           | 6.0         | 2000                   |                           |                         | ,,,,,          |                | , , ,                   |
| 3                          | 72.0         | 15.           | 6.2         | 2100                   |                           |                         |                |                |                         |
| 4                          | 72.0         | . 12.         | 5 <b>.7</b> | 1950                   |                           |                         |                |                |                         |
| 5                          | 72.3         | 11.           | 5.7         | 1950                   |                           |                         |                |                |                         |
| 6                          | 72.3         | 26.           | 5.6         | 2050                   |                           |                         |                |                |                         |
| 7                          | 72.1         | 70.           | 5.5         | 2000                   | < 1.0                     | 8.0                     | 355.           | 1044.          | 108.                    |
| 8                          | 72.0         | 16.           | 6.3         | 200C                   |                           |                         |                |                |                         |
| 9                          | 72.0         | 22.           | 7.0         | 1950                   |                           |                         |                |                |                         |
| 10                         | 72.0         | 25.           | 6.7         | 2000                   |                           |                         |                |                |                         |
| 11<br>12                   | 72.0<br>72.0 | 94.           | 6.4         | 2100                   |                           |                         |                |                |                         |
| 13                         | 72.0         | 25.<br>20.    | 6.7<br>6.5  | 2150<br>2100           |                           |                         |                |                |                         |
| 14                         | 72.0         | 19.           | 7.1         | 2150                   | < 1.0                     | 6.2                     | 315.           | 1058.          | 431.                    |
| 15                         | 72.0         | 13.           | 6.5         | 2100                   |                           | 0.2                     | 313.           | 1030.          | 431.                    |
| 16                         | 72.3         | 17.           | 6.3         | 190C                   |                           |                         |                |                |                         |
| 17                         | 72.0         | 20.           | 6.7         | 1850                   |                           |                         |                |                |                         |
| 18                         | 72.0         | 16.           | 6.8         | 220C                   |                           |                         |                |                |                         |
| 19                         | 72.0         | 24.           | 6.3         | 2000                   |                           |                         |                |                |                         |
| 20                         | 72.0         | 18.           | 7.0         | 225C                   |                           |                         |                |                |                         |
| 21                         | 72.0         | 20.           | 6.1         | 1900                   | < 1.0                     | 0.80                    | 333.           | 1141.          | 64.8                    |
| 22                         | 72.0         | 20.           | 6.7         | 2150                   |                           |                         |                |                |                         |
| 23                         | 72.0         | 20.           | 6.2         | 2100                   |                           |                         |                |                |                         |
| 24                         | 72.0         | 25.           | 6.3         | 215C                   |                           |                         |                |                |                         |
| 25                         | 72.0         | 20.           | 6.4         | 1900                   |                           |                         |                |                |                         |
| 26                         | 72.3         | 18.           | 6.7         | 1900                   |                           |                         |                |                |                         |
| 27                         | 72.0         | 20.           | 7.1         | 1950                   |                           |                         |                |                |                         |
| 28                         | 72.0         | 17.           | 6.8         | 2000                   | < 1.0                     | 7.1                     | 298.           | 1017.          | < 4.0                   |
| 29<br>30                   | 72.0<br>72.0 | 28.<br>18.    | 6.5<br>6.6  | 200C                   |                           |                         |                |                |                         |
| 31                         | 72.0         | 18.           | 6.9         | 1850<br>1800           |                           |                         |                |                |                         |
| 32                         | 72.0         | 28.           | 7.5         | 1600                   |                           |                         |                |                |                         |
| 33                         | 72.0         | 20.           | 7.1         | 1700                   |                           |                         |                |                |                         |
| 34                         | 72.0         | 20.           | 7.0         | 2000                   |                           |                         |                |                |                         |
| 35                         | 72.0         | 14.           | 7.2         | 2100                   | < 1.0                     | 0.12                    | 305.           | 1056.          | 154.                    |
| 36                         | 72.0         | 12.           | 7.1         | 2050                   |                           | 77.2                    |                |                | .5                      |
| 37                         | 72.0         | 18.           | 7.0         | 2050                   |                           |                         |                |                |                         |
| 38                         | 72.0         | 17.           | 7.3         | 2000                   |                           |                         |                |                |                         |
| 39                         | 72.0         | 11.           | 7.0         | 2050                   |                           |                         |                |                |                         |
| 4 Ç                        | 72.0         | 16.           | 7.3         | 180 C                  |                           |                         |                |                |                         |
| 41                         | 72.0         | 24.           | 6.6         | 1950                   |                           |                         |                |                |                         |
| 42<br>43                   | 72.0<br>72.0 | 16.           | 7.0         | 2100                   | < 1.0                     | 0.11                    | 322.           | 1106.          | < 4.0                   |
| 44                         | 72.0         | 12.<br>9.     | 7.2         | 2100                   |                           |                         |                |                |                         |
| 45                         | 72.0         | 10.           | 7.3<br>7.1  | 2050<br>2000           |                           |                         |                |                |                         |
| 46                         | 72.0         | 8.            | 6.8         | 1800                   |                           |                         |                |                |                         |
| 47                         | 72.0         | 8.            | 7.1         | 195C                   |                           |                         |                |                |                         |
| 48                         | 72.0         | 8.            | 6.8         | 2050                   |                           |                         |                |                |                         |
| 49                         | 72.0         | 20.           | 6.9         | 2000                   | < 1.0                     | 2.3                     | 254.           | 1100.          | 73.0                    |
| 50                         | 72.0         | 18.           | 6.5         | 2150                   |                           |                         |                |                |                         |
| 51                         | 72.0         | 11.           | 6.6         | 1850                   |                           |                         |                |                |                         |
| 52                         | 72.0         | 22.           | 6.8         | 210C                   |                           |                         |                |                |                         |
| 53                         | 72.0         | 28.           | 6 <b>.7</b> | 2050                   |                           |                         |                |                |                         |
|                            |              |               |             |                        |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/17/72.

TABLE A50

FLOW AND E-FLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 44
(STONE #1337, 1/4 x 0 SIZE)

| DAYS<br>AFTER<br>START-UE* | HEAD         | FLOW (ml/min) | Hq<br>—     | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/l) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/1) |
|----------------------------|--------------|---------------|-------------|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 72.0         | 100.          | 6.2         | 2000                   | 5.5                       | 11.0                    | 294.           | 999.           | 14.4                    |
| 2                          | 72.0         | 79.           | 6.3         | 2900                   |                           |                         |                |                |                         |
| 3                          | 72.0         | 90.           | 6.3         | 1950                   |                           |                         |                |                |                         |
| 4                          | 72.0         | 76.           | 5.9         | 1900                   |                           |                         |                |                |                         |
| 5                          | 72.0         | 140.          | 6.0         | 1950                   |                           |                         |                |                |                         |
| 6                          | 72.0         | 220.          | 6.0         | 1700                   |                           |                         |                |                |                         |
| 7                          | 72.0         | 260.          | 6.0         | 1700                   | 22.0                      | 2.7                     | 224.           | 1035.          | 36.0                    |
| 8                          | 72.0         | 220.          | 6.3         | 1650                   |                           |                         |                |                |                         |
| 9                          | 72.0<br>72.0 | 166.          | 6.2         | 1650                   |                           |                         |                |                |                         |
| 10<br>11                   | 72.0         | 150.<br>122.  | 6.3<br>6.5  | 1750<br>1950           |                           |                         |                |                |                         |
| 12                         | 72.0         | 140.          | 6.4         | 1800                   |                           |                         |                |                |                         |
| 13                         | 72.0         | 90.           | 6.7         | 2000                   |                           |                         |                |                |                         |
| 14                         | 72.0         | 130.          | 6.2         | 1900                   | 5.0                       | 5.4                     | 252.           | 1105.          | 46.8                    |
| 15                         | 72.0         | 96.           | 5.4         | 1800                   |                           |                         |                | •••••          | 40.0                    |
| 16                         | 72.0         | 104.          | 6.3         | 1700                   |                           |                         |                |                |                         |
| 17                         | 72.0         | 100.          | 6.2         | 1650                   |                           |                         |                |                |                         |
| 18                         | 72.0         | 90.           | 6.7         | 2050                   |                           | /                       |                |                |                         |
| 19                         | 72.0         | 100.          | 6.7         | 2200                   |                           |                         |                |                |                         |
| 20                         | 72.0         | 96.           | 6.8         | 2000                   |                           |                         |                |                |                         |
| 21                         | 72.0         | 100.          | 7.3         | 2150                   | 40.0                      | 34.0                    | 235.           | 1114.          | 10.8                    |
| 22                         | 72.0         | 90.           | 7.0         | 1800                   |                           |                         |                |                |                         |
| 23                         | 72.0         | 90.           | 7.0         | 1900                   |                           |                         |                |                |                         |
| 24                         | 72.0         | 80.           | 6.7         | 1850                   |                           |                         |                |                |                         |
| 25<br>26                   | 72.0<br>72.0 | 70.           | 6.5<br>6.6  | 1800                   |                           |                         |                |                |                         |
| 26<br>27                   | 72.0         | 64.<br>68.    | 6.7         | 1900<br>1850           |                           |                         |                |                |                         |
| 28                         | 72.0         | 65.           | 6.4         | 1850                   | 40.0                      | 24.0                    | 255.           | 1021.          | 26.9                    |
| 25,                        | 72.0         | 60.           | 6.4         | 1950                   |                           |                         |                |                |                         |
| 30                         | 72.0         | 52.           | 6.7         | 1750                   |                           |                         |                |                |                         |
| 31                         | 72.0         | 32.           | 7.0         | 1700                   |                           |                         |                | •              |                         |
| 32                         | 72.0         | 4 C .         | 7.3         | 1650                   |                           |                         |                |                |                         |
| 33                         | 72.0         | 32.           | 7.1         | 1850                   |                           |                         |                |                |                         |
| 34                         | 72.0         | 28.           | 6.8         | 2000                   |                           |                         |                |                |                         |
| 35                         | 72.0         | 28.           | 6.8         | 205C                   | 8.0                       | 10.0                    | 275.           | 1151.          | 8.1                     |
| 36                         | 72.0         | 24.           | 6.9         | 2000                   |                           |                         |                |                |                         |
| 37                         | 72.0         | 32.           | 6.7         | 1950                   |                           |                         |                |                |                         |
| 38                         | 72.0         | 28.<br>16.    | 6.6<br>7.1  | 1950<br>1850           |                           |                         |                |                |                         |
| 39<br>40                   | 72.0<br>72.0 | 32.           | 7.2         | 1850                   |                           |                         |                |                |                         |
| 41                         | 72.0         | 16.           | 6.7         | 1950                   |                           |                         |                |                |                         |
| 42                         | 72.0         | 19.           | 6.8         | 2100                   | 7.0                       | 11.0                    | 297.           | 1178.          | < 4.0                   |
| 43                         | 72.0         | 11.           | 7.1         | 2050                   |                           |                         |                |                |                         |
| 44                         | 72.0         | 11.           | 7.3         | 2050                   |                           |                         |                |                |                         |
| 45                         | 72.0         | 18.           | 7.0         | 1950                   |                           |                         |                |                |                         |
| 46                         | 72.0         | 10.           | 6.5         | 1850                   |                           |                         |                |                |                         |
| 47                         | 72.0         | 10.           | 6.9         | 1950                   |                           |                         |                |                |                         |
| 48                         | 72.0         | 10.           | 6.5         | 2050                   |                           |                         |                |                |                         |
| 49                         | 72.0         | 13.           | 6.7         | 1950                   | 1.0                       | 6.3                     | 226.           | 1149.          | 57.6                    |
| 50                         | 72.0         | 39.           | 6.6         | 2050                   |                           |                         |                |                |                         |
| 51                         | 72.0         | 49.           | 6.7         | 1800                   |                           |                         |                |                |                         |
| 52                         | 72.0         | 54.           | 6.7         | 1900                   |                           |                         |                |                |                         |
| 53                         | 72.0         | 68.           | 6 <b>.7</b> | 210C                   |                           |                         |                |                |                         |
|                            |              |               |             |                        |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/17/72.

FLOW AND EFFLUENT COMPOSITION DATA

FOR TEST VESSEL NO. 45 (STONE #1337, 1/2 x 50M SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD<br>(in) | FLOW (ml/min) | pH<br>— | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/1) | TOTAL<br>IRON<br>(mg/1) | CALCIUM (mg/l) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/1) |
|----------------------------|--------------|---------------|---------|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 36.0         | 3320.         | 3.2     | 175C                   | 35.0                      | 174.                    | 115.           | 1053.          | 504.                    |
| 2                          | 35.0         | 3300.         | 2.9     | 2000                   |                           |                         |                |                |                         |
| 3                          | 35.0         | 3300.         | 3.0     | 185C                   |                           |                         |                |                |                         |
| 4                          | 36.0         | 3180.         | 2.8     | 1900                   |                           |                         |                |                |                         |
| 5                          | 21.5         | 3200.         | 2.9     | 175C                   |                           |                         |                |                |                         |
| 6                          | 29.0         | 3080.         | 2.8     | 1750                   |                           |                         |                |                |                         |
| 7                          | 31.7         | 340.          | 3.0     | 1850                   | 100.                      | 190.                    | 97.            | 1067.          | 695.                    |
| 8                          | 31.0         | 2800.         | 2.9     | 165C                   |                           |                         |                |                |                         |
| 9                          | 31.5         | 2680.         | 2.9     | 1650                   |                           |                         |                |                |                         |
| 10                         | 32.0         | 2560.         | 2.9     | 185C                   |                           |                         |                |                |                         |
| 11                         | 33.5         | 2420.         | 2.5     | 2400                   |                           |                         |                |                |                         |
| 12                         | 34.0         | 2100.         | 2.7     | 235C                   |                           |                         |                |                |                         |
| 13                         | 33,5         | 194C.         | 2.9     | 2050                   |                           |                         |                |                |                         |
| 14                         | 34.^         | 1710.         | 2.8     | 1900                   | 90.0                      | 180.                    | 92.            | 1066.          | 512.                    |
| 15                         | 35.0         | 176C.         | 2.9     | 2150                   |                           |                         |                |                |                         |
| 16                         | 33.5         | 1590.         | 2.6     | 1850                   |                           |                         |                |                |                         |
| 17                         | 35.0         | 1530.         | 2.7     | 16^¢                   |                           |                         |                |                |                         |
| 18                         | 35.5         | 1460.         | 3.1     | 2200                   |                           |                         |                |                |                         |
| 19                         | 72.0         | 2960.         | 3.0     | 190C                   |                           |                         |                |                |                         |
| 20                         | 72.0         | 2960.         | 2.9     | 2050                   |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/17/72.

TABLE A52

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 46
(STONE #1337, 1/2 x 0 SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD         | FLOW (ml/min) | рн          | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/1) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/l) | SULFATE (mg/1) | HOT PHT. ACIDITY (mg/l) |
|----------------------------|--------------|---------------|-------------|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 72.0         | 260.          | 5.0         | 1700                   | 25.0                      | 73.0                    | 215.           | 1028.          | 86.4                    |
| 2                          | 41.0         | 97.           | 5.3         | 1850                   |                           |                         |                |                |                         |
| 3                          | 72.0         | 70.           | 5.4         | 1800                   |                           | ·                       |                |                |                         |
| 4                          | 72.0         | 60.           | 5.3         | 1800                   |                           |                         |                |                |                         |
| 5                          | 72.0<br>72.0 | 74.<br>124.   | 5.2<br>5.2  | 1900<br>1650           |                           |                         |                |                |                         |
| 6<br>7                     | 72.0         | 75.           | 5.2         | 1750                   | 6.0                       | 8.5                     | 236.           | 1054.          | 21.6                    |
| 8                          | 72.0         | 58.           | 5.6         | 1700                   | •••                       | .,.,                    | 2300           | .03.4          |                         |
| 9                          | 72.0         | 64.           | 6.2         | 165 C                  |                           |                         |                |                |                         |
| 10                         | 72.0         | 70.           | 6.1         | 1700                   |                           |                         |                | *              |                         |
| 11                         | 72.0         | 54.           | 6.7         | 1700                   |                           |                         |                |                |                         |
| 12                         | 72.0         | 50.           | 6.0         | 1850                   |                           |                         |                |                |                         |
| 13                         | 72.0         | 4C.           | 5 <b>.7</b> | 1900                   |                           |                         |                |                | 20.2                    |
| 14                         | 72.0         | 60.           | 6.1         | 1850                   | < 1.0                     | 0.29                    | 252.           | 1103.          | 32.2                    |
| 15                         | 72.0         | 49.           | 5.8         | 1850                   |                           |                         |                |                |                         |
| 16                         | 72.0<br>72.0 | 45.           | 5.8         | 1700<br>1600           |                           |                         |                |                |                         |
| 17<br>18                   | 72.0         | 60.<br>34.    | 5.6<br>6.3  | 2000                   |                           | •                       | 1              |                |                         |
| 19                         | 72.0         | 40.           | 6.2         | 2100                   |                           |                         |                |                |                         |
| 20                         | 72.0         | 72.           | 6.2         | 1950                   |                           |                         |                |                |                         |
| 21                         | 72.0         | 40.           | 7.4         | 1950                   | < 1.0                     | 1.9                     | 240.           | 1076.          | 10.8                    |
| 22                         | 72.0         | 50.           | 7.0         | 185C                   |                           |                         |                |                |                         |
| 23                         | 72.0         | 45.           | 6.9         | 1850                   |                           |                         |                |                |                         |
| 24                         | 72.0         | 40.           | 6.9         | 1650                   |                           |                         |                |                |                         |
| 25                         | 72.0         | 44.           | 6.7         | 1800                   |                           |                         |                |                |                         |
| 26                         | 72.0         | 44.           | 6.7         | 1800                   |                           |                         |                |                |                         |
| 27<br>28                   | 72.0<br>72.0 | 48.           | 6.7         | 1800                   | < 1.0                     | 0.04                    | 263.           | 1101.          | 8.5                     |
| 26<br>29                   | 72.0         | 31.<br>36.    | 6.8<br>6.8  | 1900<br>1900           | < 1.0                     | 0.04                    | 203.           | 1101.          | 0.0                     |
| 30                         | 72.0         | 36.           | 6.8         | 1700                   |                           |                         |                |                |                         |
| 31                         | 72.0         | 36.           | 6.8         | 1550                   |                           |                         |                |                |                         |
| 32                         | 72.0         | 52.           | 7.4         | 1450                   |                           |                         |                |                |                         |
| 33                         | 72.0         | 40.           | 7.2         | 1900                   |                           |                         |                |                |                         |
| 34                         | 72.0         | 44.           | 6.6         | 1950                   |                           |                         |                |                |                         |
| 35                         | 72.0         | 46.           | 6 <b>.7</b> | 1950                   | < 1.0                     | <b>7.</b> 0             | 260.           | 1072.          | 11.5                    |
| 36                         | 72.0         | 38.           | 6.8         | 2000                   |                           |                         |                |                |                         |
| 37                         | 72.0         | 24.           | 6.7         | 1850                   |                           |                         |                |                |                         |
| 38                         | 72.0<br>72.0 | 28.           | 7.0         | 1950                   |                           |                         |                |                |                         |
| 39<br>40                   | 72.0         | 25.<br>28.    | 5.6<br>6.3  | 170 <b>0</b><br>1900   |                           |                         |                |                |                         |
| 41                         | 72.0         | 32.           | 6.7         | 1900                   |                           |                         |                |                |                         |
| 42                         | 72.0         | 32.           | 6.8         | 2000                   | < 1.0                     | 0.05                    | 287.           | 1138.          | < 4.0                   |
| 43                         | 72.0         | 24.           | 7.8         | 180 C                  |                           |                         |                |                |                         |
| 44                         | 72.0         | 28.           | 7.2         | 2000                   |                           |                         |                |                |                         |
| 45                         | 72.3         | 32.           | 6.9         | 1800                   |                           |                         |                |                |                         |
| 46                         | 72.0         | 26.           | 6.3         | 180C                   |                           | •                       |                |                |                         |
| 47                         | 72.7         | 28.           | 6.6         | 190C                   |                           |                         |                |                |                         |
| 48                         | 72.0         | 34            | 6.1         | 1900                   |                           | 43.0                    | 100            | 1035           | <i>4</i> " 0            |
| 49                         | 72.0         | 38.           | 6.4         | 1800                   | 4.0                       | 13.0                    | 198.           | 1075.          | < 4.0                   |
| 50<br><b>51</b>            | 72.0<br>72.0 | 29.           | 6.9         | 2150<br>1850           |                           |                         |                |                |                         |
| 5 I<br>52                  | 72.0         | 35.<br>28.    | 6.6<br>6.7  | 2050                   |                           |                         |                |                |                         |
| 53                         | 72.0         | 36.           | 6.7         | 2100                   |                           |                         |                |                |                         |
| 2.7                        |              | J             | J.,         |                        |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/17/72.

FLOW AND EFFLUENT COMPOSITION DATA FOR TEST VESSEL NO. 47 (STONE #1337, 1 x 50M SIZE)

HOT PHT. SP. **FERROUS** TOTAL DAYS CALCIUM SULFATE AFTER HEAD FLOW pH COND. IRON IRON ACIDITY START-UP\* (in) (ml/min) (mg/1)(mg/1)(mg/1)(mg/1)(mg/1)(µmho) 374. 1039. 20.0 3300. 2.9 1850 37.0 178. 110. 1 2.7 2 21.0 3280. 2200 3140. 2000 21.5 2.8 3 2100 72.0 3000. 2.6 3060. 1900 5 12.0 2.7 2.7 185C 6 16.5 2940. 2860. 2.9 999. 195C 90.0 194. 87. 727. 7 16.5 1950 8 18.0 2720. 2.8 18.1 2580. 1750 9 2.8 10 19.0 2400. 2.8 1950 19.5 2200. 260C 2.4 11 19.5 1920. 2.6 2550 12 1800. 19.5 2.8 2150 13 1141. 708. 90.0 181. 82. 14 13.0 1400. 2.8 215C 2000 2.9 15 19.0 1600. 17.0 1430. 2.5 2000 16 1700 17 19.0 1400. 2.6 17.0 1320. 3.0 235C 18 2050 3240. 29.5 2.9 19 3120. 2.8 2200 29 35.0

<sup>\*</sup>Start-up date was 3/17/72.

TABLE A54

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 48
(STONE #1337, 1 x 0 SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD         | FLOW (ml/min) | pH<br>—     | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/1) | TOTAL<br>IRON<br>(mg/1) | CALCIUM (mg/1) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/l) |
|----------------------------|--------------|---------------|-------------|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 72.0         | 210.          | 4.8         | 1700                   | 35.0                      | 84.0                    | 206.           | 1030.          | 144.                    |
| ż                          | 72.0         | 150.          | 4.7         | 175C                   |                           |                         |                |                |                         |
| 3                          | 72.0         | 110.          | 5.1         | 1700                   |                           |                         |                |                |                         |
| 4                          | 72.0         | 72.           | 5.3         | 1700                   |                           |                         |                |                |                         |
| 5                          | 72.0         | 100.          | 5.2         | 185C                   |                           |                         |                |                |                         |
| 6                          | 72.0         | 84.           | 5.1         | 1650                   |                           |                         |                | 4405           | <i>.</i>                |
| 7                          | 72.0         | 70.           | 5.0         | 1750                   | 21.2                      | 2 <b>7.</b> 0           | 231.           | 1095.          | < 4.0                   |
| B                          | 72.0         | 84.           | 5.5         | 1650                   |                           |                         |                |                |                         |
| 9                          | 72.0<br>72.0 | 86.           | 5.8<br>6.0  | 1650<br>1650           |                           |                         |                |                |                         |
| 10<br>11                   | 72.0         | 190.<br>80.   | 5.7         | 180C                   |                           |                         |                |                |                         |
| 12                         | 72.0         | 80.           | 5.8         | 1750                   |                           |                         |                |                |                         |
| 13                         | 72.0         | 80.           | 5.4         | 1850                   |                           |                         |                |                |                         |
| 14                         | 72.0         | 90.           | 6.0         | 1850                   | 13.0                      | 21.0                    | 240.           | 1101.          | 28.9                    |
| 15                         | 72.0         | 72.           | 5.9         | 185C                   |                           |                         |                |                |                         |
| 16                         | 72.0         | 6 <b>6.</b>   | 5.6         | 1650                   |                           |                         |                |                |                         |
| 17                         | 72.0         | 8C.           | 5.8         | 160 C                  |                           |                         | d              |                |                         |
| 18                         | 72.0         | 72.           | 6.0         | 2050                   |                           |                         |                |                |                         |
| 19                         | 72.0         | 92.           | 5.8         | 1900                   |                           |                         |                |                |                         |
| 20                         | 72.0         | 72.           | 6.0         | 190C                   | 4.2.0                     |                         | 220            | 1110           | <i>-</i> " 0            |
| 21                         | 72.0         | 75.           | 7.0         | 1850                   | 40.0                      | 42.0                    | 228.           | 1119.          | < 4.0                   |
| 22                         | 72.0         | 80.           | 6.9         | 1800<br>1800           |                           |                         |                |                |                         |
| 23<br>24                   | 72.0<br>72.0 | 75.<br>65.    | 6.8<br>6.7  | 1850                   |                           |                         |                |                |                         |
| 25                         | 72.0         | 5 <b>6.</b>   | 6.6         | 1800                   |                           |                         |                |                |                         |
| 26                         | 72.0         | 64.           | 6.6         | 1650                   |                           |                         |                |                |                         |
| 27                         | 72.0         | 68.           | 6.5         | 1750                   |                           |                         |                |                |                         |
| 28                         | 72.0         | 7C.           | 6.2         | 185C                   | 30.0                      | 29.0                    | 238.           | 1016.          | 15.7                    |
| 29                         | 72.0         | 68.           | 6.4         | 1900                   |                           |                         | •              |                |                         |
| 30                         | 72.0         | 72.           | 6.7         | 1600                   |                           |                         |                |                |                         |
| 31                         | 72.0         | 72.           | 6.7         | 1450                   |                           |                         |                |                |                         |
| 32                         | 72.0         | 88.           | 7.0         | 1450                   |                           |                         |                |                |                         |
| 33                         | 72.0         | 84.           | 6.8         | 1750                   | •                         |                         |                |                |                         |
| 34<br>35                   | 72.0<br>72.0 | 88.           | 6.4         | 1850                   | 26.0                      | 28.0                    | 220            | 1075           | 12.7                    |
| 36                         | 72.0         | 84.<br>86.    | 6.4<br>6.5  | 1900<br>1900           | 26.0                      | 20.0                    | 238.           | 1075.          | 12.7                    |
| 3 <b>7</b>                 | 72.0         | 100.          | 6.4         | 175 C                  |                           |                         |                |                |                         |
| 38                         | 72.0         | 88.           | 6.4         | 180 C                  |                           |                         |                |                |                         |
| 39                         | 72.0         | 80.           | 6.1         | 1650                   |                           |                         |                |                |                         |
| 40                         | 72.0         | 68.           | 6.3         | 175 C                  |                           |                         |                |                |                         |
| 41                         | 72.0         | 76.           | 6.4         | 185C                   |                           |                         |                |                |                         |
| 42                         | 72.0         | 72.           | 6 <b>.6</b> | 195C                   | 28.0                      | 32.0                    | 255.           | 1123.          | < 4.0                   |
| 43                         | 72.0         | 70.           | 6.7         | 185C                   |                           |                         |                |                |                         |
| 44                         | 72.0         | 90.           | 7.0         | 1850                   |                           |                         |                |                |                         |
| 45                         | 72.0         |               | 6.7         | 1650                   |                           |                         |                |                |                         |
| 46<br>#7                   | 72.0         | 64.           | 6.0         | 1850                   |                           |                         |                |                |                         |
| 47<br>48                   | 72.0<br>72.0 | 64.<br>64.    | 6.2<br>5.9  | 1850<br>1900           |                           |                         |                |                |                         |
| 49                         | 72.0         | 76.           | 6.2         | 175C                   | 25.0                      | 27.0                    | 176.           | 1062.          | 50.0                    |
| 50                         | 72.0         | 175.          | 6.3         | 205 C                  | 23.0                      | 27.0                    | 170.           | 1002.          | 20.0                    |
| 51                         | 72.0         | 74.           | 6.5         | 1800                   |                           |                         |                |                |                         |
| 52                         | 72.0         | 76.           | 6.6         | 1900                   |                           |                         |                |                |                         |
| 53                         | 72.7         | 79.           | 6.6         | 2000                   |                           |                         |                |                |                         |
|                            |              |               |             |                        |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/17/72.

TABLE A55

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 49

(STONE \$1809, 1/2 x 0 SIZE CONTAINING 10% SLAG)

| DAYS<br>AFTER<br>START-UP* | HEAD<br>(in) | FLOW (ml/min) | pH         | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/l) | SULFATE (mg/1) | HOT PHT. ACIDITY (mg/l) |
|----------------------------|--------------|---------------|------------|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 72.0         | 600.          | 5,4        | 2000                   | 190.                      | 170.                    | 350.           | 1268.          | 320.                    |
| 2                          | 72.9         | 400.          | 6.5        | 1900                   |                           |                         |                |                | •                       |
| 3                          | 72.0         | 325.          | 5.6        | 185C                   |                           |                         |                |                |                         |
| 4                          | 72.0         | 265.          | 5.3        | 1850                   |                           | •                       |                |                |                         |
| 5                          | 72.0         | 210.          | 5.3        | 1850                   |                           |                         | 45             |                |                         |
| 6                          | 72.0         | 186.          | 5.5        | 185¢                   |                           |                         |                |                |                         |
| 7                          | 72.0         | 172.          | 5.6        | 1850                   | 160 <b>.</b>              | 156.                    | 338.           | 1150.          | 324.                    |
| 8                          | 72.0         | 168.          | 5.5        | 1750                   |                           |                         |                |                |                         |
| 9                          | 72.0         | 180.          | 5.7        | 2200                   |                           |                         |                |                |                         |
| 10                         | 72.0         | 169.          | 5.7        | 1650                   |                           |                         |                |                |                         |
| 11                         | 72.0         | 174.          | 5.8        | 1650                   |                           |                         |                |                |                         |
| 12                         | 72.0         | 200.          | 6.0        | 1700                   |                           |                         |                |                |                         |
| 13                         | 72.0         | 166.          | 5.9        | 1850                   | 1/ 0                      | 1110                    | 280.           | 1121.          | 216.                    |
| 14<br>15                   | 72.0<br>72.0 | 170.<br>170.  | 5.9<br>2.8 | 175C<br>2100           | 160.                      | 149.                    | 200.           | 1121.          | 210.                    |
| 16                         | 72.0         | 160.          | 6.0        | 1800                   |                           | •                       |                |                |                         |
| 17                         | 72.0         | 150.          | 5.2        | 1750                   |                           |                         |                |                |                         |
| 18                         | 72.0         | 141.          | 5.8        | 1650                   |                           |                         |                |                |                         |
| 19                         | 72.0         | 160.          | 5.5        | 165C                   |                           |                         |                |                |                         |
| 20                         | 72.0         | 144.          | 6.1        | 1950                   |                           |                         |                |                |                         |
| 21                         | 72.0         | 146.          | 6.2        | 165C                   | 140.                      | 146.                    | 270.           | 1096.          | 212.                    |
| 22                         | 72.0         | 152.          | 6.1        | 185 C                  |                           |                         |                |                |                         |
| 23                         | 72.0         | 150.          | 6.5        | 1800                   |                           |                         |                |                |                         |
| 24                         | 72.0         | 140.          | 6.5        | 1650                   |                           |                         |                |                |                         |
| 25                         | 72.0         | 130.          | 6.6        | 1600                   |                           |                         |                |                |                         |
| 26                         | 72.0         | 110.          | 6.6        | 1700                   |                           |                         |                |                |                         |
| 27                         | 72.0         | 110.          | 6.4        | 150C                   |                           |                         |                |                |                         |
| 28                         | 72.0         | 96.           | 6.4        | 1700                   | 130.                      | 128.                    | 272.           | 947.           | 161.                    |
| 29                         | 72.0         | 84.           | 6.5        | 1700                   |                           |                         |                |                |                         |
| 30                         | 72.0         | 80.           | 6.2        | 1700                   |                           |                         |                |                |                         |
| 31                         | 72.0         | 76.           | 6.4        | 1750                   |                           |                         |                |                |                         |
| 32<br>3 <b>3</b>           | 72.0<br>72.0 | 72.           | 6.7        | 1400                   |                           |                         |                |                |                         |
| 33<br>34                   | 72.0         | 64.<br>64.    | 6.7<br>6.8 | 1350<br>1350           |                           |                         |                |                |                         |
| 35                         | 72.0         | 72.           | 6.6        | 1650                   | 80.0                      | 114.                    | 315.           | 900.           | 18.8                    |
| 36                         | 72.0         | 68.           | 5.9        | 1750                   | 00.0                      | 114.                    | 313.           | ,,,,,          | 10.0                    |
| 37                         | 72.0         | 70.           | 6.4        | 1900                   |                           |                         |                |                |                         |
| 33                         | 72.0         | 68.           | 5.9        | 1850                   |                           |                         |                |                |                         |
| 39                         | 72.0         | 100.          | 6.4        | 1750                   |                           |                         |                |                |                         |
| 40                         | 72.0         | 76.           | 6.4        | 1750                   |                           |                         |                |                |                         |
| 41                         | 72.0         | 55.           | 6.2        | 1400                   |                           |                         |                |                |                         |
| 42                         | 72.0         | 64.           | 0.7        | 1650                   | 90:0                      | 117.                    | 297.           | 923.           | 55.0                    |
| 43                         | 72.0         | 60.           | 6.4        | 180C                   |                           |                         |                |                |                         |
| 44                         | 72.0         | 64.           |            | 2050                   |                           |                         |                |                |                         |
| 45                         | 72.0         | 56.           | 6.5        | 1990                   |                           |                         |                |                |                         |
| 46                         | 72.0         | 60.           | 6.6        | 1700                   |                           |                         |                |                |                         |
| 47                         | 72.3         | 60.           | 6.6        | 1400                   |                           |                         |                |                |                         |
| 48                         | 72.0         | 56.           | 6.2        | 1850                   | 00.0                      | 433                     | 220            | 1020           | 22.0                    |
| 49<br>50                   | 72.0<br>72.0 | <b>56.</b>    | 6.4        | 1800<br>1800           | 90.0                      | 123.                    | 338.           | 1039.          | 23.0                    |
| 5 <b>1</b>                 | 72.0         | 59.<br>72.    | 6.1        | 1890<br>1740           |                           |                         |                |                |                         |
| 52                         | 72.0         | 80.           | 6.2        | 2000                   |                           |                         |                |                |                         |
| 53                         | 72.0         | 59.           | 6.5        | 165 C                  |                           |                         |                |                |                         |
| ,                          | 4.4 1/       | 370           | 0.5        | 1030                   |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/15/72.

TABLE A56

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 50
(STONE \$1809, 1 x 0 SIZE CONTAINING 10% SLAG)

| DAYS<br>AFTER<br>START-UP* | HEAD<br>(in) | FLOW (ml/min) | рн  | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/1) | CALCIUM (mg/l) | SULFATE (mg/l) | HOT PHT.<br>ACIDITY<br>(mg/1) |
|----------------------------|--------------|---------------|-----|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------------|
| 1                          | 40.0         | 3785.         | 2.9 | 2150                   | 200.                      | 194.                    | 233.           | 1196.          | 562.                          |
| 2<br>3                     | 35.0         | 3800.         | 3.0 | 210C                   |                           |                         |                |                |                               |
| 3                          | 35.5         | 3785.         | 3.2 | 2050                   |                           |                         |                |                |                               |
| 4                          | 33.0         | 3840.         | 2.9 | 2150                   |                           |                         |                |                |                               |
| 5                          | 34.5         | 2900.         | 2.6 | 2500                   |                           |                         |                |                |                               |
| 6                          | 34.5         | 3720.         | 2.8 | 2450                   |                           |                         |                |                |                               |
| 7                          | 34.0         | 3660.         | 2.8 | 2100                   | 200.                      | 202.                    | 171.           | 1220.          | 763.                          |
| 8                          | 33.0         | 3560.         | 2.7 | 2050                   |                           |                         |                |                |                               |
| 9                          | 28.5         | 3180.         | 2.9 | 2050                   |                           |                         |                |                |                               |
| 10                         | 28.0         | 3000.         | 2.9 | 1900                   |                           |                         |                |                |                               |
| 11                         | 30.0         | 2900.         | 3.1 | 1800                   |                           |                         |                |                |                               |
| 12                         | 29.5         | 2760.         | 3.0 | 1900                   |                           |                         |                |                |                               |
| 13                         | 27,5         | 2600.         | 2.5 | 290 C                  |                           |                         |                |                |                               |
| 14                         | 28.0         | 2520.         | 2.5 | 2950                   | 210.                      | 195.                    | 100.           | 1099.          | 702.                          |
| 15                         | 29.0         | 2570.         | 2.8 | 2100                   |                           |                         |                |                |                               |
| 16                         | 28.5         | 2310.         | 2.8 | 2250                   |                           |                         |                |                |                               |
| 17                         | 28.0         | 2280.         | 2.5 | 230¢                   |                           |                         |                |                |                               |
| 18                         | 24.0         | 2190.         | 2.6 | 2050                   |                           |                         |                |                |                               |
| 19                         | 28.0         | 2130.         | 2.8 | 1700                   |                           |                         |                |                |                               |
| 20                         | 25.0         | 1920.         | 3.1 | 2350                   |                           |                         |                |                |                               |

<sup>\*</sup>Start-up date was 3/15/72.

TABLE A57

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 51
(STONE #1809, 1/2 x 0 SIZE CONTAINING 5% BENTONITE)

| DAYS<br>AFTER<br>START-UP* | HEAD         | FLOW (ml/min) | pH<br>—     | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/l) | SULFAME (mg/l) | HOT PHT. ACIDITY (mg/1) |
|----------------------------|--------------|---------------|-------------|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 72.0         | 65.           | 5.4         | 2000                   | 150.                      | 141.                    | 32 <b>7.</b>   | 1264.          | 216.                    |
| 2                          | 72.0         | 4C.           | 5.5         | 205C                   |                           |                         |                |                |                         |
| 3                          | 72.0         | 25.           | 5.7         | 2050                   |                           |                         |                |                |                         |
| 4                          | 72.0         | 18.           | 5.4         | 2150                   |                           |                         |                |                |                         |
| 5                          | 72.0         | 20.           | 5.4         | 2150                   |                           |                         |                |                |                         |
| 6                          | 72.0         | 13.           | 5.4         | 2150                   |                           |                         |                |                |                         |
| 7                          | 72.0         | 12.           | 5.6         | 2100                   | 40.0                      | 154.                    | 305.           | 1150.          | 324.                    |
| 8                          | 72.0         | 26.           | 5.1         | 1800                   |                           |                         |                |                |                         |
| 9                          | 72.0         | 30.           | 5.5         | 1650                   |                           |                         |                |                |                         |
| 10                         | 72.0         | 22.           | 5.6         | 1800                   |                           |                         |                |                |                         |
| 11                         | 72.0         | 26.           | 6.3         | 175 C                  |                           |                         |                |                |                         |
| 12                         | 72.0         | 25.           | 6.0         | 1900                   |                           |                         |                | •              |                         |
| 13                         | 72.0         | 10.           | 6.8         | 2050                   |                           |                         |                |                |                         |
| 14                         | 72.0         | 30.           | 6.3         | 1900                   | 40.0                      | 49.9                    | 390.           | 1075.          | < 4.0                   |
| <b>1</b> 5                 | 72.0         | 15.           | 5.5         | 2050                   |                           |                         |                |                |                         |
| 16                         | 72.0         | 9.            | 6.C         | 2050                   |                           |                         |                |                |                         |
| 17                         | 72.0         | 8.            | 5.6         | 1950                   |                           |                         |                |                |                         |
| 18                         | 72.0         | 85.           | 6.1         | 185 C                  |                           |                         |                |                |                         |
| 19                         | 72.0         | 20.           | 6.0         | 1300                   |                           |                         |                |                |                         |
| 20                         | 72.0         | 12.           | 6.5         | 2150                   |                           |                         |                |                |                         |
| 21                         | 72.0         | 12.           | 6.6         | 2000                   | 30.0                      | 32.0                    | 415.           | 1140.          | < 4.0                   |
| 22                         | 72.0         | 14.           | 6.7         | 2100                   |                           |                         |                |                |                         |
| 23                         | 72.0         | 15.           | 6.7         | 2000                   |                           |                         |                |                |                         |
| 24                         | 72.0         | 20.           | 6.7         | 2000                   |                           |                         |                |                |                         |
| 25                         | 72.9         | 10.           | 6.7         | 1900<br>1900           |                           |                         |                |                |                         |
| 26<br>27                   | 72.0         | 15.           | 6.8         |                        |                           |                         |                |                |                         |
| 2 <b>7</b><br>28           | 72.0<br>72.0 | 14.           | 6.8         | 1750                   | <b>F</b> 0                | 42.0                    | 24.2           | 011            | 26.0                    |
| 26<br>29                   | 72.0         | 14.           | 6.6         | 1800                   | 5.0                       | 42.9                    | 343.           | 911.           | 269.                    |
| 30                         | 72.0         | 13.<br>10.    | 6.6<br>6.5  | 1800<br>1800           |                           |                         |                |                |                         |
| 31                         | 72.0         | 14.           | 6.6         | 180 <b>0</b>           |                           |                         |                |                |                         |
| 32                         | 72.0         | 4C.           | 6.7         | 1250                   |                           |                         |                |                |                         |
| 33                         | 72.0         | 52.           | 6.7         | 1200                   |                           |                         |                |                |                         |
| 34                         | 72.0         | 48.           | 6.7         | 1200                   |                           |                         |                |                |                         |
| 35                         | 72.0         | 22.           | 6.5         | 1650                   | 40.0                      | 64.4                    | 310.           | 942.           | 23.0                    |
| 36                         | 72.0         | 16.           | 6.3         | 1800                   |                           | • • • •                 | 3.0.           | ,,,,,          | 23.0                    |
| 37                         | 72.0         | 18.           | 6.5         | 1950                   |                           |                         |                |                |                         |
| 38                         | 72.0         | 14.           | 6.3         | 1900                   |                           |                         |                |                |                         |
| 39                         | 72.0         | 12.           | 6.6         | 1850                   |                           |                         |                |                |                         |
| 40                         | 72.0         | 18.           | 6.7         | 1850                   |                           |                         |                |                |                         |
| 41                         | 72.0         | 9.            | 6.5         | 1600                   |                           |                         |                |                |                         |
| 42                         | 72.0         | 12.           | 7.3         | 1600                   | 4.0                       | 10.0                    | 350.           | 1364.          | < 4.0                   |
| 4.3                        | 72.0         | 8.            | 6.6         | 1800                   |                           |                         |                |                |                         |
| 44                         | 72.0         | 8.            | 6.7         | 1900                   |                           |                         |                |                |                         |
| 45                         | 72.0         | 7.            | 6 <b>.7</b> | 1800                   |                           |                         |                |                |                         |
| 46                         | 72.0         | 5.            | 6.7         | 1800                   |                           |                         |                |                |                         |
| 47                         | 72.0         | 8.            | 6.8         | 1650                   |                           |                         |                |                |                         |
| 48                         | 72.0         | 6.            | 6.4         | 1700                   |                           |                         |                |                |                         |
| 49                         | 72.0         | 5.            | 6.6         | 1850                   | 10.0                      | 26.0                    | 388.           | 1002.          | 4.0                     |
| 50                         | 72.0         | 6.            | 6.3         | 1950                   |                           |                         |                |                |                         |
| 51                         | 72.0         | 10.           | 6.4         | 1750                   |                           |                         |                |                |                         |
| 52                         | 72.0         | 6.            | 6.4         | 1900                   |                           |                         |                |                |                         |
| 53                         | 72.0         | 6.            | 6 <b>.7</b> | 170C                   |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/15/72.

TABLE A58.

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 52
(STONE \$1809, 1 x 0 SIZE CONTAINING 5% BENTONITE)

| DAYS<br>AFTER<br>START-UP* | HEAD (in) | FLOW (ml/min) | pH<br>— | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/l) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/l) |
|----------------------------|-----------|---------------|---------|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 35.0      | 3785.         | 2.5     | 2750                   | 190.                      | 198.                    | 169.           | 1178.          | 735.                    |
| 2<br>3                     | 25.5      | 3700.         | 2.6     | 2350                   |                           |                         |                |                |                         |
| 3                          | 24.5      | 3630.         | 3,2     | 1950                   |                           |                         |                |                |                         |
| 4                          | 25.0      | 3700.         | 2.1     | 2550                   |                           |                         |                |                |                         |
| 5<br>6<br>7                | 26.5      | 3590.         | 2.5     | 2750                   |                           |                         |                |                |                         |
| 6                          | 28.0      | 3560.         | 2.5     | 2900                   |                           |                         |                |                |                         |
|                            | 26.5      | 3440.         | 2.6     | 2300                   | 190.                      | 201.                    | 147.           | 1230.          | 756.                    |
| 8                          | 28.5      | 3300.         | 2.5     | 230 C                  |                           |                         |                |                |                         |
| 9                          | 27.5      | 3060.         | 2.8     | 2300                   |                           |                         |                |                |                         |
| 10                         | 27.5      | 2920.         | 2.8     | 2050                   |                           |                         |                |                |                         |
| 11                         | 28.0      | 2820.         | 2.9     | 1800                   |                           |                         |                |                |                         |
| 12                         | 28.0      | 2650.         | 2.8     | 1900                   |                           |                         |                |                |                         |
| 13                         | 29.5      | 2600.         | 2.2     | 3300                   |                           |                         |                |                |                         |
| 14                         | 28.0      | 2450.         | 2.4     | 3050                   | 200.                      | 201.                    | 77.            | 1111.          | 850.                    |
| 15                         | 28.0      | 2390.         | 2.7     | 2200                   |                           |                         |                |                |                         |
| 16                         | 29.0      | 2350.         | 2.6     | 2300                   |                           |                         |                |                |                         |
| 17                         | 29.0      | 2100.         | 2.6     | 235 C                  |                           | •                       |                |                |                         |
| 18                         | 29.0      | 2130.         | 2.5     | 2150                   |                           |                         |                |                |                         |
| 19                         | 30.0      | 2140.         | 2.7     | 165C                   |                           |                         |                |                |                         |
| 20                         | 31.0      | 1780.         | 3.0     | 2450                   |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/15/72.

TABLE A59

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 53

(STONE \$1809, 1/2 x 0 SIZE CONTAINING 10% FLYASH)

| DAYS<br>AFTER<br>START-UP* | HEAD         | FLOW (ml/min) | рН         | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/1). | TOTAL<br>IRON<br>(mg/1) | CALCIUM (mg/l) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/l) |
|----------------------------|--------------|---------------|------------|------------------------|----------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 72.0         | 290.          | 6.3        | 2150                   | 80.0                       | 86.9                    | 480.           | 1292.          | 5.5                     |
| 2                          | 72.0         | 125.          | 6.1        | 2000                   |                            |                         |                |                |                         |
| 3                          | 72.0         | 100.          | 5.5        | 2000                   |                            |                         |                |                |                         |
| 4                          | 72.0         | 120.          | 5.4        | 195C                   |                            |                         |                |                |                         |
| 5                          | 72.0         | 110.          | 5.6        | 1900                   |                            |                         |                |                |                         |
| 6<br>7                     | 72.0         | 111.          | 5.4        | 1950                   | FA 0                       | 2" 5                    |                | ****           |                         |
| 8                          | 72.0<br>72.0 | 66.<br>104.   | 5.6<br>5.3 | 1950<br>1800           | 50.0                       | 24.5                    | 466.           | 1180.          | 14.4                    |
| 9                          | 72.0         | 85.           | 5.8        | 1850                   |                            |                         |                |                |                         |
| 10                         | 72.0         | 74.           | 5.7        | 1750                   |                            |                         |                |                |                         |
| 11                         | 72.0         | 72.           | 6.4        | 1750                   |                            |                         |                |                |                         |
| 12                         | 72.0         | 75.           | 6.2        | 1850                   |                            |                         |                |                |                         |
| 13                         | 72.3         | 60.           | 5,9        | 1950                   |                            |                         |                |                |                         |
| 14                         | 72.0         | 75.           | 6.3        | 1800                   | 60.0                       | 18.5                    | 402.           | 993.           | < 4.0                   |
| 15                         | 72.0         | 80.           | 5.6        | 2000                   |                            |                         |                |                |                         |
| 16                         | 72.0         | 90.           | 6.6        | 1850                   |                            |                         |                |                |                         |
| 17<br>18                   | 72.0<br>72.0 | 84.<br>76.    | 5.7<br>5.8 | 1850<br>1700           |                            |                         |                |                |                         |
| 19                         | 72.0         | 130.          | 5.6        | 1550                   |                            |                         |                |                |                         |
| 20                         | 72.0         | 180.          | 6.2        | 2000                   |                            |                         |                |                |                         |
| 21                         | 72.0         | 146.          | 6.5        | 180C                   | 50.0                       | 100.                    | 348.           | 1087.          | < 4.0                   |
| 22                         | 72.0         | 68.           | 6.8        | 2000                   |                            |                         |                |                |                         |
| 23                         | 72.0         | 55.           | 7.1        | 2000                   |                            |                         |                |                |                         |
| 24                         | 72.0         | 60.           | 7.2        | 180 C                  |                            |                         |                |                |                         |
| 25                         | 72.0         | 55.           | 7.2        | 190C                   |                            |                         |                |                |                         |
| 26                         | 72.0         | 40.           | 7.0        | 1900                   |                            |                         |                |                |                         |
| 27<br>28                   | 72.0<br>72.0 | 32.           | 7.0        | 1750                   | - 1 0                      | <b></b>                 | 370            | 0.00           |                         |
| 29                         | 72.0         | 30.<br>36.    | 7.0<br>6.8 | 1750<br>1700           | < 1.0                      | < 0.03                  | 378.           | 948.           | < 4.0                   |
| 30                         | 72.0         | 27.           | 7.1        | 1800                   |                            |                         |                |                |                         |
| 31                         | 72.0         | 26.           | 7.0        | 1750                   |                            |                         |                |                |                         |
| 32                         | 72.0         | 32.           | 7.1        | 1450                   |                            |                         |                |                |                         |
| 33                         | 72.0         | 28.           | 7.2        | 1400                   |                            |                         |                |                |                         |
| 34                         | 72.0         | 24.           | 7.2        | 1450                   |                            |                         |                |                |                         |
| 35                         | 72.0         | 24.           | 7.4        | 1600                   | 6.5                        | < 0.03                  | 343.           | 837.           | 7.7                     |
| 36                         | 72.0         | 24.           | 6.8        | 185C                   |                            |                         |                |                |                         |
| 37<br>38                   | 72.0<br>72.0 | 22.<br>20.    | 7.1<br>6.8 | 1900<br>1900           |                            |                         |                |                |                         |
| 39                         | 72.0         | 32.           | 7.0        | 1800                   |                            |                         |                |                |                         |
| 40                         | 72.0         | 24.           | 6.8        | 1850                   |                            |                         |                |                |                         |
| 41                         | 72.0         | 25.           | 6.9        | 1550                   |                            |                         |                |                |                         |
| 42                         | 72.0         | 16.           | 7.1        | 1600                   | < 1.0                      | 0.10                    | 332.           | 812.           | < 4.0                   |
| 43                         | 72.0         | 20.           | 6.9        | 175C                   |                            |                         |                |                |                         |
| 44                         | 72.0         | 18.           | 7.0        | 1950                   |                            |                         |                |                |                         |
| 45                         | 72.0         | 16.           | 7.2        | 1900                   |                            |                         |                |                |                         |
| 46                         | 72.0         | 18.           | 7.1        | 1850                   |                            |                         |                |                |                         |
| 47<br>48                   | 72.0<br>72.0 | 36.           | 7.0        | 160C                   |                            |                         |                |                |                         |
| 48<br>49                   | 72.0         | 14.<br>14.    | 6.7<br>6.9 | 1600<br>1800           | 110                        | Z0 03:                  | 200            | 027            | < H O                   |
| 50                         | 72.0         | 14.           | 6.5        | 1900                   | < 1.0                      | <0.03                   | 384.           | 937.           | < 4.0                   |
| 51                         | 72.0         | 19.           | 7.0        | 1800                   |                            |                         |                |                |                         |
|                            | 72.0         | 18.           | 6.6        | 2000                   |                            |                         |                |                |                         |
| 53                         | 72.0         | 19.           | 7.0        | 1800                   |                            |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/15/72.

TABLE A60

## FLOW AND EFFLUENT COMPOSITION DATA FOR TEST VESSEL NO. 54 (STONE #1809, 1 x 0 SIZE CONTAINING 10% FLYASH)

| DAYS<br>AFTER<br>START-UP* | HEAD<br>(in) | FLOW (ml/min) | рН<br>—    | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/1) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/l) | SULFATE (mg/1) | HOT PHT. ACIDITY (mg/1) |
|----------------------------|--------------|---------------|------------|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 72.0         | 435.          | 5.7        | 2100                   | 130.                      | 127.                    | 412.           | 1268.          | 79.0                    |
| 2                          | 72.0         | 280.          | 6.4        | 165C                   |                           |                         |                |                | •                       |
| 3                          | 72.0         | 270.          | 6.0        | 1900                   |                           |                         |                |                |                         |
| 4                          | 72.0         | 230.          | 5.8        | 1920                   |                           |                         |                |                |                         |
| 5                          | 72.0         | 300.          | 5.8        | 185C                   |                           |                         |                |                |                         |
| 6                          | 72.0         | 340.          | 5.6        | 180C                   |                           |                         |                |                |                         |
| 7                          | 72.0         | 680.          | 4.6        | 1700                   | 180.                      | 148.                    | 325.           | 1180.          | 205.                    |
| 8                          | 72.0         | 152.          | 5.6        | 1700                   |                           |                         |                |                |                         |
| 9                          | 72.0         | 130.          | 6.0        | 1750                   |                           |                         |                |                |                         |
| 10                         | 72.0         | 98.           | 6.0        | 1700                   |                           |                         |                |                |                         |
| 11                         | 72.0         | 52.           | 6.5        | 1750                   |                           |                         |                |                |                         |
| 12                         | 72.0         | 70.           | 6.5        | 190C                   |                           |                         |                |                |                         |
| 13                         | 72.0         | 40.           | 6.3        | 2050                   | 20.0                      |                         |                |                |                         |
| 14                         | 72.0         | 60.           | 6.4        | 1800                   | 30.0                      | 33.0                    | 389.           | 1051.          | 10.8                    |
| 15<br>16                   | 72.0<br>72.0 | 40.           | 6.0        | 2100                   |                           |                         |                |                |                         |
| 16<br>17                   | 72.0         | 8.            | 6.7        | 1750                   |                           | 1                       |                |                |                         |
| 18                         | 72.0         | 10.<br>69.    | 6.6<br>6.1 | 2050                   |                           |                         |                |                |                         |
| 19                         | 72.0         | 70.           | 6.1        | 1600<br>1550           |                           |                         |                |                |                         |
| 20                         | 72.0         | 60.           | 6.3        | 1950                   |                           |                         |                |                |                         |
| 21                         | 72.0         | 60.           | 6.6        | 1650                   | 90.0                      | 94.4                    | 328.           | 1115           | 26.6                    |
| 22                         | 72.0         | 124.          | 5.6        | 1750                   | 50.0                      | 74.4                    | 320.           | 1115.          | 36.6                    |
| 23                         | 72.0         | 85.           | 6.5        | 1830                   |                           |                         |                |                |                         |
| 24                         | 72.0         | 90.           | 6.7        | 1650                   |                           |                         |                |                |                         |
| 25                         | 72.9         | 80.           | 6.8        | 1600                   |                           |                         |                |                |                         |
| 26                         | 72.0         | 80.           | 6.7        | 170 C                  |                           |                         |                |                |                         |
| 27                         | 72.3         | 68.           | 6.5        | 160C                   |                           |                         |                |                |                         |
| 28                         | 72.0         | 54.           | 6.5        | 165C                   | 80.0                      | 102.                    | 277.           | 904.           | 134.                    |
| 29                         | 72.0         | 72.           | 6.4        | 1600                   |                           |                         |                |                |                         |
| 30                         | 72.0         | 51.           | 6.2        | 1600                   |                           | ÷                       |                |                |                         |
| 31                         | 72.0         | 64.           | 6.3        | 165C                   |                           |                         |                |                |                         |
| 32                         | 72.0         | 72.           | 6.6        | 1250                   |                           |                         |                |                |                         |
| 33                         | 72.0         | 56.           | 6.6        | 1250                   |                           |                         |                |                |                         |
| 34                         | 72.0         | 9.            | 7.5        | 1700                   |                           |                         |                |                |                         |
| 35                         | 7220         | 10.           | 7.6        | 1650                   | 8.5                       | 0.05                    | 358.           | 914.           | < 4.0                   |
| 36                         | 72.0         | 20.           | 7.1        | 1800                   |                           |                         |                |                |                         |
| 37                         | 72.0         | 14.           | 7.3        | 1850                   |                           |                         |                |                |                         |
| 38                         | 72.0         | 8.            | 7.0        | 185€                   |                           |                         |                |                |                         |
| 39                         | 72.0         | 18.           | 7.2        | 190C                   |                           |                         |                |                |                         |
| 40                         | 72.0         | 14.           | 7.0        | 1850                   |                           |                         |                |                |                         |
| 41                         | 72.0         | 21.           | 7.0        | 165C                   |                           |                         | 20             | 0.00           |                         |
| 42                         | 72.0         | 8.            | 7.5        | 1550                   | < 1.0                     | 0.13                    | 342.           | 861.           | < 4.0                   |
| 43                         | 72.0         | 9.            | 7.1        | 1650                   |                           |                         |                |                |                         |
| 44                         | 72.0         | 8.            | 7.2        | 1800                   |                           |                         |                |                |                         |
| 45                         | 72.0         | 8.            | 7.0        | 1850                   |                           |                         |                |                |                         |
| 46                         | 72.0         | 9.            | 7.3        | 1900                   |                           |                         |                |                |                         |
| 47                         | 72.0         | 12.           | 7.3        | 1800                   |                           |                         |                |                |                         |
| 48                         | 72.0         | 8.            | 6.9        | 1600                   | < 1.0                     | 0.03                    | 382.           | 989.           | < 4.0                   |
| 49                         | 72.0         | 8.            | 7.1        | 1700<br>1800           | < 1.C                     | 0.03                    | 304.           | 307.           | ~ ₹•∪                   |
| 50<br>51                   | 72.0<br>72.0 | 12.           | 6.8        | 1750                   |                           |                         |                |                |                         |
| 51<br>52                   | 72.0         | 20.<br>15.    | 7.1<br>6.9 | 1900                   |                           |                         |                |                |                         |
| 53                         | 72.0         | 17.           | 7.1        | 1800                   |                           |                         |                |                |                         |
|                            | , 2 . 0      | • / •         |            |                        |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/15/72.

TABLE A61

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 55
(STONE #1809, 1/8 x 0 SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD         | FLOW (ml/min) | рн         | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/l) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/1) |
|----------------------------|--------------|---------------|------------|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 72.0         | 845.          | 6.2        | 2150                   | 112.                      | 106.                    | 475.           | 1258.          | 1.8                     |
| 2                          | 08.0         | 630.          | 5.7        | 195C                   |                           |                         |                |                |                         |
| 3                          | 72.0         | <b>570.</b>   | 6.1        | 1950                   |                           |                         |                |                |                         |
| 4                          | 72.3         | 530.          | 6.0        | 2000                   |                           |                         |                |                |                         |
| 5                          | 72.3         | 460.          | 6.0        | 2000                   |                           |                         |                |                |                         |
| 6                          | 72.0         | 446.          | 5.8        | 2000                   |                           |                         |                |                |                         |
| 7                          | 72.0         | 40%.          | 5.6        | 1350                   | 90.0                      | 100.                    | 417.           | 1160.          | 18.0                    |
| P                          | 72.5         | 424.          | 5.7        | 1650                   |                           |                         |                |                |                         |
| 9                          | 72.7         | 390.          | 6.0        | 1850                   |                           |                         |                |                |                         |
| 10                         | 72.0         | 360.          | 6.2        | 1700                   |                           |                         |                |                |                         |
| 11                         | 72.)<br>72.) | 264.          | 6.4        | 1650                   |                           |                         |                |                |                         |
| 12<br>13                   | 72.3         | 230.<br>200.  | 6.3<br>6.3 | 1800<br>2050           |                           |                         |                |                |                         |
| 14                         | 72.0         | 210.          | 6.4        | 1900                   | 60.0                      | 54.9                    | 403.           | 1037.          | 39.6                    |
| 15                         | 72.7         | 170.          | 6.1        | 2100                   | 00.0                      | 34.7                    | 40.5           | 1037.          | 37.0                    |
| 16                         | 72.0         | 156.          | 5.9        | 1950                   |                           |                         |                |                |                         |
| 17                         | 72.3         | 152.          | 6.5        | 2000                   |                           |                         |                |                |                         |
| 18                         | 72.7         | 122.          | 6.2        | 1800                   |                           |                         |                |                | ,                       |
| 19                         | 72.0         | 140.          | 6.3        | 1600                   |                           |                         |                |                |                         |
| 20                         | 72.0         | 120.          | 6.7        | 2 10 0                 |                           |                         |                |                |                         |
| 21                         | 72.0         | 90.           | 6.8        | 1900                   | 20.0                      | 17.0                    | 430.           | 1135.          | 7.2                     |
| 22                         | 72.          | 90.           | 6.5        | 2106                   |                           |                         |                |                |                         |
| 23                         | 72.3         | 90.           | 6.7        | 195C                   |                           |                         |                |                |                         |
| 24                         | 72.)         | <b>80.</b>    | 6.8        | 1820                   |                           |                         |                |                |                         |
| 25                         | 72.0         | 80.           | 6.8        | 195C                   |                           |                         |                |                |                         |
| 26                         | 72.0         | 40.           | 6.7        | 185C                   |                           |                         |                |                |                         |
| 27                         | 72.0         | 58.           | 6.8        | 1700                   | 1 0                       | 3.5                     |                | 0.07           | <i>-</i>                |
| 29                         | 72.0         | 54.           | 6.9        | 1800                   | 1.0                       | 3.5                     | 411.           | 997.           | < 4.0                   |
| 29<br>30                   | 72.3<br>72.3 | 46.<br>25.    | 6.7<br>6.9 | 1900<br>1900           |                           |                         |                |                |                         |
| 31                         | 72.0         | 47.           | 6.8        | 1900                   |                           |                         |                |                |                         |
| 32                         | 72.3         | 64.           | 7.0        | 1650                   |                           |                         |                |                |                         |
| 33                         | 72.0         | 44.           | 6.8        | 165C                   |                           |                         |                |                |                         |
| 34                         | 72.0         | 36.           | 7.5        | 1550                   |                           |                         |                |                |                         |
| 35                         | 72.0         | 44.           | 7.6        | 1620                   | 2.5                       | <0.03                   | 343.           | 788.           | < 4.0                   |
| 36                         | 72.0         | 52.           | 7.0        | 1850                   |                           |                         |                |                |                         |
| <b>37</b>                  | 72.0         | 56.           | 7.0        | 190C                   |                           |                         |                |                |                         |
| 38                         | 72.0         | 54.           | 6.9        | 1900                   |                           |                         |                |                |                         |
| 19                         | 72.0         | 70.           | 6.7        | 185 C                  |                           |                         |                |                |                         |
| 40                         | 72.0         | 76.           | 6.5        | 1750                   |                           |                         |                |                |                         |
| 41                         | 72.0         | 43.           | 6.8        | 165C                   |                           | 0.0                     | 35.5           | 700            | 200                     |
| 42                         | 72.0         | 60.           | 7.1        | 1600                   | < 1.0                     | 9.0                     | 355.           | 788.           | 288.                    |
| 43<br>44                   | 72.0<br>72.0 | 72.<br>76.    | 6.7<br>6.7 | 1900<br>1900           |                           |                         |                |                |                         |
| 45                         | 72.0         | 67.           | 6.9        | 1950                   |                           |                         |                |                |                         |
| 46                         | 72.0         | 70.           | 7.0        | 1750                   |                           |                         |                |                |                         |
| 47                         | 72.5         | 72.           | 6.9        | 1700                   |                           |                         |                |                |                         |
| 48                         | 72.0         | 62.           | 6.2        | 1800                   |                           |                         |                |                |                         |
| 49                         | 72.0         | 100.          | 6.4        | 1800                   | 33.C                      | 102.                    | 363.           | 1041.          | 9.0                     |
| 5 <b>C</b>                 | 72.0         | 112.          | 6.2        | 1800                   |                           |                         |                |                |                         |
| 51                         | 72.3         | 120.          | 6.2        | 1700                   |                           |                         |                |                |                         |
| 52                         | 72.0         | 100.          | 6.2        | 1890                   |                           |                         |                |                |                         |
| 53                         | 72.0         | 100.          | 6.7        | 1900                   |                           |                         |                |                |                         |
|                            |              |               |            |                        |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/15/72.

TABLE A62

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 56
(STONE \$1809, 1/4 x 0 SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD         | FLOW (ml/min)  | Нд  | SP. COND. (µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/l) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/1) |
|----------------------------|--------------|----------------|-----|------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 72.0         | 1100.          | 5.6 | 2000             | 160.                      | 145.                    | 376.           | 1211.          | 193.                    |
| 2                          | 72.0         | 850.           | 6.1 | 1550             |                           |                         |                |                |                         |
| 3                          | 40.5         | 790.           | 6.2 | 1800             |                           |                         |                |                |                         |
| 4                          | 41.0         | 785.           | 6.0 | 1800             |                           |                         |                |                |                         |
| 5<br>6                     | 72.0         | 770.           | 5.8 | 1850             |                           |                         |                |                |                         |
| 6                          | 72.0         | 800.           | 5.5 | 1800             |                           |                         |                |                |                         |
| 7                          | 72.0         | 840.           | 5.8 | 170C             | 170.                      | 157.                    | 280.           | 1160.          | 288.                    |
| 8                          | 72.0         | 1040.          | 4.8 | 1650             |                           |                         |                |                |                         |
| 9<br>10                    | 72.0         | 1070.          | 5.0 | 1650             |                           |                         |                |                |                         |
| 11                         | 72.0         | 1040.          | 4.9 | 1550             |                           |                         |                |                |                         |
| 12                         | 72.0<br>72.0 | 1120.          | 4.9 | 1550             |                           |                         |                |                |                         |
| 13                         | 72.0         | 1110.<br>1160. | 4.4 | 1500<br>1900     |                           |                         |                |                |                         |
| 14                         | 72.0         | 1120.          | 3.2 | 1900             | 180.                      | 166.                    | 107            | 4440           | E 2.2                   |
| 15                         | 72.0         | 1070.          | 4.1 | 1700             | <b>‡</b> DU <b>•</b>      | 100,                    | 197.           | 1114.          | 533.                    |
| 16                         | 72.0         | 960.           | 3.7 | 1750             |                           | ٠,                      |                |                |                         |
| 17                         | 72.0         | 940.           | 3.5 | 1800             |                           | »*                      |                |                |                         |
| 18                         | 72.0         | 930.           | 3.4 | 1600             |                           |                         |                |                |                         |
| 19                         | 72.0         | 920.           | 3.7 | 1500             |                           |                         |                |                |                         |
| 20                         | 72.0         | 920.           | 3.7 | 1900             |                           |                         |                |                |                         |
| 21                         | 72.0         | 920.           | 3.8 | 1650             | 180.                      | 166.                    | 185.           | 1106.          | 418.                    |
| 22                         | 72.0         | 720.           | 4.1 | 1900             | ,,,,,                     | ,,,,                    | 103            |                | 410.                    |
| 23                         | 72.0         | 765.           | 3.8 | 1850             |                           |                         |                |                |                         |
| 24                         | 72.0         | 620.           | 4.2 | 1650             |                           |                         |                |                |                         |
| 25                         | 72.0         | 660.           | 6.5 | 140C             |                           |                         |                |                |                         |
| 26                         | 72.0         | 480.           | 5.1 | 1500             |                           |                         |                |                |                         |
| 27                         | 72.0         | 480.           | 6.4 | 1300             |                           |                         |                |                |                         |
| 28                         | 72.0         | 520.           | 5.0 | 165C             | 160.                      | 143.                    | 204.           | 1003.          | 326.                    |
| 29                         | 72.0         | 520.           | 4.4 | 1550             |                           |                         |                |                |                         |
| 3¢                         | 72.0         | 55.            | 4.8 | 1400             |                           |                         |                |                |                         |
| 31                         | 72.0         | 520.           | 4.7 | 1500             |                           |                         |                |                |                         |
| 32                         | 72.0         | 232.           | 6.4 | 1250             |                           |                         |                |                |                         |
| 33                         | 72.0         | 228.           | 6.2 | 1200             |                           |                         |                |                |                         |
| 34                         | 72.0         | 168.           | 6.8 | 1250             |                           |                         |                |                |                         |
| 35                         | 72.0         | 248.           | 5.8 | 1600             | 160.                      | 120.                    | 250.           | 969.           | 251.                    |
| 36                         | 72.0         | 272.           | 6.6 | 1600             |                           |                         |                |                |                         |
| 37                         | 72.0         | 400.           | 4.1 | 1800             |                           |                         |                |                |                         |
| 38                         | 72.7         | 390.           | 4.9 | 1700             |                           |                         |                |                |                         |
| 39<br>40                   | 72.3         | 400.           | 4.7 | 160C             |                           |                         |                |                |                         |
| 41                         | 72.0<br>72.0 | 380.           | 4.6 | 1550             |                           |                         |                |                |                         |
| 42                         | 72.0         | 200.           | 6.7 | 1300             | 4:0                       | 4.0                     | 44.5           |                |                         |
| 43                         | 72.0         | 304.           | 5.5 | 1450             | 160.                      | 142.                    | 182.           | 898.           | < 4.0                   |
| 44                         | 72.3         | 348.<br>400.   | 4.2 | 1700             |                           |                         |                |                |                         |
| 45                         | 72.0         | 410.           | 4.0 | 1650<br>1600     |                           |                         |                |                |                         |
| 46                         | 72.0         | 340.           | 5.4 | 1500             |                           |                         |                |                |                         |
| 47                         | 72.0         | 200.           | 6.5 | 1200             |                           |                         |                |                |                         |
| 48                         | 72.0         | 280.           | 3.3 | 1750             |                           |                         |                |                |                         |
| 49                         | 72.0         | 276.           | 4.3 | 1700             | 160.                      | 142.                    | 225.           | 1067.          | 393.                    |
| 50                         | 72.0         | 288.           | 4.0 | 1550             | 1004                      | 174.                    | 220.           | 100/           | 373.                    |
| 51                         | 72.0         | 268.           | 2.9 | 1750             |                           |                         |                |                |                         |
| 52                         | 72.0         | 280.           | 3.9 | 175 C            |                           |                         |                |                |                         |
| 53                         | 72.0         | 280.           | 3.9 | 1650             |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/15/72.

TABLE A63

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 57
(STONE \$1809, 1/2 x 50M SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD<br>(in) | FLOW<br>(ml/min) | рН<br>— | SP. COND. (µmho) | FERROUS IRON (mg/l) | TOTAL<br>IRON<br>(mg/l) | CALCIUM<br>(mg/l) | SULFATE (mg/1)                          | HOT PHT.<br>ACIDITY<br>(mg/l) |
|----------------------------|--------------|------------------|---------|------------------|---------------------|-------------------------|-------------------|-----------------------------------------|-------------------------------|
| 1                          | 31.9         | 3785.            | 3.4     | 1950             | 200.                | 195.                    | 440.              | 1226.                                   | 485.                          |
| 2                          | 30.5         | 3200.            | 3.1     | .1550            |                     | •                       |                   |                                         |                               |
| 3                          | 34.0         | 3480.            | 3.5     | 1850             |                     |                         |                   |                                         |                               |
| 4                          | 36.0         | 3525.            | 3.2     | 1950             |                     |                         |                   |                                         |                               |
| 5                          | 37.          | 2490.            | 3.0     | 2150             |                     |                         |                   |                                         |                               |
| 6<br>7                     | 32.0         | 3380.            | 2.8     | 2200             |                     |                         |                   |                                         |                               |
| 7                          | 39.5         | 3240.            | 3.0     | 1800             | 190.                | 199.                    | 200.              | 1170.                                   | 626.                          |
| 8<br>9                     | 41.5         | 3200.            | 3.0     | 1850             |                     |                         |                   |                                         | 02.00                         |
|                            | 40.5         | 3000.            | 3.3     | 1850             |                     |                         |                   |                                         |                               |
| 10                         | 40.5         | 2880.            | 3.3     | 179C             |                     |                         |                   |                                         |                               |
| 11                         | 40.5         | 2800.            | 3.3     | 170C             |                     |                         |                   |                                         |                               |
| 12                         | 40.5         | 2660.            | 3.0     | 1850             |                     |                         |                   |                                         |                               |
| 13                         | 42.0         | 2520.            | 2.7     | 2350             |                     |                         |                   |                                         |                               |
| 14                         | 43.5         | 1500.            | 2.8     | 2400             | 200.                | 200.                    | 145.              | 1138.                                   | 691.                          |
| 15                         | 45.5         | 2430.            | 3.2     | 1900             |                     |                         |                   | * * * * * * * * * * * * * * * * * * * * | <b>u</b>                      |
| 16                         | 46.5         | 2280.            | 3.1     | 1850             |                     |                         |                   |                                         |                               |
| 17                         | 46.0         | 2050.            | 2.7     | 205 C            |                     |                         |                   |                                         |                               |
| 18                         | 47.5         | 2050.            | 2.8     | 1850             |                     |                         |                   |                                         |                               |
| 19                         | 49.0         | 2060.            | 2.9     | 1600             |                     |                         |                   |                                         |                               |
| 20                         | 50.5         | 1760.            | 3.3     | 2150             |                     |                         |                   |                                         |                               |

<sup>\*</sup>Start-up date was 3/15/72.

TABLE A64

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 58
(STONE #1809, 1/2 x 0 SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD<br>(in)  | FLOW (ml/min)           | pH<br>—    | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/l) | CALCIUM<br>(mg/l) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/l) |
|----------------------------|---------------|-------------------------|------------|------------------------|---------------------------|-------------------------|-------------------|----------------|-------------------------|
| 1                          | 41.0          | 3785.                   | 3.4        | 1950                   | 190.                      | 191.                    | 259.              | 1227.          | 478.                    |
| 2                          | 39.5          | 3740.                   | 2.9        | 2050                   |                           |                         |                   |                |                         |
| 3                          | 40.0          | 3 <b>7</b> 85.          | 3.2        | 1800                   |                           |                         |                   |                |                         |
| 4                          | 41.0          | 3810.                   | 3.1        | 2000                   |                           |                         |                   |                |                         |
| 5                          | 44.0          | 3770.                   | 2.9        | 2200                   |                           |                         |                   |                |                         |
| 6                          | 47.5          | 3640.                   | 2.7        | 2350<br>1900           | 200.                      | 196.                    | 200.              | 1190.          | 666.                    |
| 7<br>8                     | 50.0          | 3560.                   | 2.9        | 1900                   | 200.                      | 190.                    | 200.              | 1190.          | 000.                    |
| 9                          | 50.0<br>52.0  | 3460.<br>3 <b>1</b> 50. | 3.1        | 1900                   |                           |                         |                   |                |                         |
| 10                         | 50.0          | 3000.                   | 3.1        | 1850                   |                           |                         |                   |                |                         |
| 11                         | 46.0          | 2620.                   | 3.0        | 1750                   |                           |                         |                   |                |                         |
| 12                         | 48.0          | 2450.                   | 3.0        | 1900                   |                           |                         |                   |                |                         |
| 13                         | 50.5          | 2420.                   | 2.6        | 2610                   |                           |                         |                   |                |                         |
| 14                         | 56.0          | 1300.                   | 2.8        | 250C                   | 200.                      | 194.                    | 137.              | 1087.          | 688.                    |
| 15                         | 60.0          | 2210.                   | 3.0        | 2000                   |                           | •                       |                   |                |                         |
| 16                         | 61.0          | 2000.                   | 3.1        | 1900                   |                           |                         |                   |                |                         |
| 17                         | 62.0          | 1920.                   | 2.8        | 2050                   |                           | 1                       |                   |                |                         |
| 18                         | 64.0          | 1900.                   | 2.7        | 185C                   |                           |                         |                   |                |                         |
| 19                         | 65.0          | 870.                    | 2.9        | 155C                   |                           |                         |                   |                |                         |
| 20                         | 6 <b>7.</b> 0 | 1640.                   | 3.2        | 220C                   |                           |                         |                   |                |                         |
| 21                         | 72.0          | 1280.                   | 3,2        | 1400                   | 200.                      | 190.                    | 155.              | 1097.          | 490.                    |
| 22                         | 72.0          | 820.                    | 3.2        | 195C                   |                           |                         |                   |                |                         |
| 23                         | 72.0          | 870.                    | 3.2        | 200C                   |                           |                         |                   |                |                         |
| 24                         | 72.0          | 810.                    | 3.3        | 1900                   |                           |                         |                   |                |                         |
| 25                         | 72.0          | 740.                    | 6.4        | 1300                   |                           |                         |                   |                |                         |
| 26                         | 72.0          | 480.                    | 4.4        | 1400                   |                           |                         |                   |                |                         |
| 27                         | 72.0          | 480.                    | 6.0        | 1200                   | 100                       | 165                     | 160               | 988.           | 443                     |
| 28                         | 72.0<br>72.0  | 440.<br>420.            | 3.7        | 1650<br>1600           | 160.                      | 165.                    | 169.              | 900.           | 442.                    |
| 29<br>30                   | 72.0          | 370.                    | 3.7<br>4.2 | 1450                   |                           |                         |                   |                |                         |
| 31                         | 72.0          | 360.                    | 4.0        | 1550                   |                           |                         |                   |                |                         |
| 32                         | 72.0          | 100.                    | 6.4        | 125C                   |                           |                         |                   |                |                         |
| 33                         | 12.0          | 56.                     | 6.4        | 1300                   |                           |                         |                   |                |                         |
| 34                         | 72.0          | 52.                     | 6.6        | 1300                   |                           |                         |                   |                |                         |
| 35                         | 72.0          | 208.                    | 3.9        | 165C                   | 160.                      | 170.                    | 190.              | 1035.          | 449.                    |
| 36                         | 72.0          | 204.                    | 3.9        | 1650                   |                           |                         |                   |                |                         |
| 3 <b>7</b>                 | 72.7          | 250.                    | 3.4        | 1900                   |                           |                         |                   |                |                         |
| 38                         | 72.0          | 240.                    | 3.8        | 1700                   |                           |                         |                   |                |                         |
| 39                         | 72.0          | 210.                    | 4.1        | 16ቦር                   |                           |                         |                   |                |                         |
| 40                         | 72.0          | 200.                    | 4.0        | 1550                   |                           |                         |                   |                |                         |
| 41                         | 72.0          | 5 <b>7.</b>             | 6.7        | 1300                   |                           | _                       |                   |                |                         |
| 42                         | 72.0          | 136.                    | 5.3        | 1450                   | 150.                      | 147.                    | 172.              | 901.           | 332.                    |
| 43                         | 72.0          | 128.                    | 3.9        | 1700                   |                           |                         |                   |                |                         |
| 44                         | 72.0          | 124.                    | 4.5        | 1600                   |                           |                         |                   |                |                         |
| 45                         | 72.0          | 120.                    | 4.6        | 1600                   |                           |                         |                   |                |                         |
| 46                         | 72.0          | 110.                    | 4.9        | 1450<br>1300           |                           |                         |                   |                |                         |
| 47<br>48                   | 72.0<br>72.0  | 108.<br>96.             | 6.4<br>3.5 | 1300<br>1650           |                           |                         |                   |                |                         |
| 48                         | 72.0          | 96.                     | 4.1        | 1650                   | 150.                      | 132.                    | 221.              | 1051.          | 368.                    |
| 50                         | 72.0          | 96.                     | 3.7        | 1600                   | ,50.                      |                         |                   |                | 2000                    |
| 51                         | 72.0          | 110.                    | 3.2        | 1600                   |                           |                         |                   |                |                         |
| 52                         | 72.0          | 110.                    | 3.4        | 1700                   |                           |                         |                   |                |                         |
| 53                         | 72.0          | 100.                    | 3.4        | 1700                   |                           |                         |                   |                |                         |

<sup>\*</sup>Start-up date was 3/15/72.

TABLE A65

## FLOW AND EFFLUENT COMPOSITION DATA FOR TEST VESSEL NO. 59 (STONE #1809, 1 x 50 M SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD         | FLOW (ml/min)  | pH<br>—    | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/1) | TOTAL<br>IRON<br>(mg/1) | CALCIUM<br>(mg/l) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/1) |
|----------------------------|--------------|----------------|------------|------------------------|---------------------------|-------------------------|-------------------|----------------|-------------------------|
| 1                          | 29.0         | 3735.          | 4.6        | 1850                   | 190.                      | 196.                    | 25 <b>7.</b>      | 1241.          | 481.                    |
| 2                          | 34.5         | 3500.          | 3.1        | 200C                   |                           |                         |                   | -              |                         |
| 3                          | 36.0         | 3785.          | 3.2        | 1850                   |                           |                         |                   |                |                         |
| 4                          | 34.7         | 3910.          | 3.0        | 2050                   |                           |                         |                   |                |                         |
| 5                          | 72.5         | 3820.          | 2.4        | 215C                   |                           |                         |                   |                |                         |
| 6                          | 47.0         | 3680.          | 2.8        | 2 <b>25</b> C          |                           |                         |                   |                |                         |
| 7                          | 51.0         | 3580.          | 2.9        | 1850                   | 200.                      | 200.                    | 210.              | 1180.          | 630.                    |
| 8                          | 48.5         | 3320.          | 3.0        | 180C                   |                           |                         |                   |                |                         |
| 9                          | 45.5         | 3020.          | 3.2        | 1900                   |                           |                         |                   |                |                         |
| 10                         | 53.0         | 2820.          | 3.2        | 1750                   |                           |                         |                   |                |                         |
| 11                         | 60.5         | 2800.          | 3.2        | 1650                   |                           |                         |                   |                |                         |
| 12                         | 63.0         | 2570.          | 3.1        | 1850                   |                           |                         |                   |                |                         |
| 13<br>14                   | 72.0<br>72.0 | 2420.<br>1970. | 2.6        | 2500<br>2250           | 200.                      | 178.                    | 155.              | 1104.          | 587.                    |
| 15                         | 72.0         | 1900.          | 3.2        | 1900                   | 200.                      | 170.                    | 133.              | 1104.          | 307.                    |
| 16                         | 72.0         | 1460.          | 3.2        | 1800                   |                           |                         |                   |                |                         |
| 17                         | 72.0         | 1380.          | 3.0        | 190C                   |                           |                         |                   |                |                         |
| 18                         | 65.0         | 1180.          | 2.9        | 1800                   |                           |                         |                   |                |                         |
| 19                         | 72.0         | 1020.          | 3.0        | 1600                   |                           |                         |                   |                |                         |
| 20                         | 72.0         | 1040.          | 3.3        | 2200                   |                           |                         |                   |                |                         |
| 21                         | 61.0         | 900.           | 3.3        | 1600                   | 200.                      | 192.                    | 158.              | 1107.          | 508.                    |
| 22                         | 72.0         | 500.           | 3.3        | 195C                   |                           |                         |                   |                |                         |
| 23                         | 72.0         | 845.           | 3.2        | 2000                   |                           |                         |                   |                |                         |
| 24                         | 72.0         | 710.           | 3.4        | 2000                   |                           |                         |                   |                |                         |
| 25                         | 72.0         | 730.           | 6.1        | 125¢                   |                           |                         |                   |                |                         |
| 26                         | 72.0         | 515.           | 4.1        | 1400                   |                           |                         |                   |                |                         |
| 27                         | 72.C         | 640.           | 5.9        | 1150                   |                           |                         |                   |                |                         |
| 28                         | 72.0         | 640.           | 3.2        | 2000                   | 180.                      | 201.                    | 149.              | 1034.          | 545.                    |
| 29                         | 72.0         | 720.           | 3.4        | 175C                   |                           |                         |                   |                |                         |
| 30<br>31                   | 72.0         | 760.           | 3.5        | 1450                   |                           |                         |                   |                |                         |
| 32                         | 72.0<br>72.0 | 700.           | 3.2        | 1650                   |                           |                         |                   |                |                         |
| 32                         | 72.0         | 413.<br>364.   | 6.4        | 1100                   |                           |                         |                   |                |                         |
| 34                         | 72.0         | 292.           | 6.2<br>6.4 | 1100                   |                           |                         |                   |                |                         |
| 35                         | 72.0         | 600.           | 3.0        | 1100<br>2100           | 190.                      | 187.                    | 160               | ***            | F 0 #                   |
| 36                         | 72.0         | 564.           | 3.C        | 1950                   | 190.                      | 107.                    | 160.              | 1066.          | 584.                    |
| 37                         | 72.0         | 600.           | 2.7        | 245 C                  |                           |                         |                   |                |                         |
| 38                         | 72.0         | 560.           | 2.8        | 2100                   |                           |                         |                   |                |                         |
| 39                         | 72.0         | 520.           | 3.0        | 1850                   |                           |                         |                   |                |                         |
| 4.0                        | 72.0         | 580.           | 2.9        | 1900                   |                           |                         |                   |                |                         |
| 4 1                        | 72.0         | 250.           | 6.1        | 1100                   |                           |                         |                   |                |                         |
| 42                         | 72.0         | 432.           | 3.7        | 1600                   | 180.                      | 179.                    | 125.              | 904.           | 449.                    |
| 43                         | 72.0         | 510.           | 2.9        | 2100                   |                           |                         |                   |                |                         |
| L 4                        | 72.0         | 510.           | 3.1        | 1900                   |                           |                         |                   |                |                         |
| 45                         | 72.0         | 490.           | 3.2        | 1800                   |                           |                         |                   |                |                         |
| 46                         | 72.0         | 490.           | 3.4        | 1700                   |                           |                         |                   |                |                         |
| 47<br>48                   | 72.0         | 236.           | 6.2        | 1100                   |                           |                         |                   |                |                         |
| 43                         | 72.0         | 456.<br>408.   | 2.5        | 2300<br>2050           | 202                       | 17.0                    | 155               | 4000           |                         |
| 50                         | 72.0         | 384.           | 2.7        | 190C                   | 200.                      | 174.                    | 155.              | 1082.          | 553.                    |
| 51                         | 72.0         | 420.           | 2.3        | 2300                   |                           |                         |                   |                |                         |
| 52                         | 72.0         | 420.           | 2.7        | 2150                   |                           |                         |                   |                |                         |
| 53                         | 72.0         | 420.           | 2.9        | 2050                   |                           |                         |                   |                |                         |
|                            | •            | <del>-</del>   |            |                        |                           |                         |                   |                |                         |

<sup>\*</sup>Start-up date was 3/15/72.

TABLE A66

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 60
(STONE #1809, 1 x 0 SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD<br>(in) | FLOW (ml/min) | рн  | SP. COND. (µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/1) | CALCIUM (mg/l) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/1) |
|----------------------------|--------------|---------------|-----|------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 32.5         | 3785.         | 3.2 | 1900             | 200.                      | 191.                    | 245.           | 1216.          | 471.                    |
| 2                          | 23.0         | 3600.         | 5.8 | 2100             |                           |                         |                |                |                         |
| 3                          | 22.0         | 3480.         | 2.2 | 2000             |                           |                         |                |                |                         |
| 4                          | 22.0         | 3810.         | 2.2 | 2400             |                           |                         |                |                |                         |
| 5                          | 23.0         | 3580.         | 2.7 | 2400             |                           |                         |                |                |                         |
| 6<br><b>7</b>              | 23.0         | 344 G.        | 2.5 | 2550             |                           |                         |                |                |                         |
|                            | 22.5         | 3340.         | 2.6 | 2100             | 200.                      | 197.                    | 177.           | 1170.          | 742.                    |
| 8<br>9                     | 23.0         | 3220.         | 2.5 | 2000             |                           |                         |                |                |                         |
| 9                          | 21.0         | 2920.         | 2.9 | 2050             |                           |                         |                |                |                         |
| 10                         | 21.9         | 2760.         | 2.8 | 2100             |                           |                         |                |                |                         |
| 11                         | 21.0         | 2720.         | 2.8 | 1850             |                           |                         |                |                |                         |
| 12                         | 72.0         | 2570.         | 2.8 | 205C             |                           |                         |                |                |                         |
| 13                         | 21.5         | 2480.         | 2.4 | 2950             |                           |                         |                |                |                         |
| 14                         | 20.5         | 2430.         | 2.6 | 2800             | 200.                      | 201.                    | 113.           | 1125.          | 763.                    |
| 15                         | 20.5         | 2340.         | 2.7 | 2100             |                           |                         |                |                |                         |
| 16                         | 19.5         | 2240.         | 3.0 | 1950             |                           |                         |                |                |                         |
| 17                         | 19.5         | 2000.         | 2.8 | 2150             |                           |                         |                |                |                         |
| 18                         | 19.0         | 2060.         | 2.5 | 1950             |                           |                         |                |                |                         |
| 19                         | 19.0         | 2040.         | 2.8 | 160C             |                           |                         |                |                |                         |
| 20                         | 18.0         | 1460.         | 3.1 | 2250             |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/15/72.

TABLE A67

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 62
(STONE #1355, 1/8 x 0 SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD<br>(in) | FLOW (ml/min) | рн<br>—    | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/1) | CALCIUM (mg/1) | SULFATE (mg/1) | HOT PHT. ACIDITY (mg/l) |
|----------------------------|--------------|---------------|------------|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 72.0         | 85.           | 6.2        | 2250                   | 50.0                      | 51.9                    | 515.           | 1276.          | 21.6                    |
| 2                          | 72.0         | 60.           | 6.3        | 2050                   |                           |                         |                |                |                         |
| 3                          | 72.0         | 75.           | 5.8        | 2100                   |                           |                         |                |                |                         |
| 4                          | 72.1         | 83.           | 5.4        | 2010                   |                           |                         |                |                |                         |
| 5                          | 72.3         | .90.          | 5.5        | 1950                   |                           |                         |                |                |                         |
| 6<br>7                     | 72.0<br>72.0 | 78.<br>96.    | 5.4<br>5.4 | 1950<br>2050           | < 1.0                     | 109.                    | 435.           | 1137.          | 25.2                    |
| 8                          | 72.0         | 150.          | 5.2        | 1800                   |                           | 10 7.                   | 433.           | 1137.          | 23.2                    |
| 9                          | 72.0         | 140.          | 5.6        | 1850                   |                           |                         |                |                |                         |
| 16                         | 72.0         | 136.          | 5.7        | 1800                   |                           |                         |                |                |                         |
| 11                         | 72.0         | 130.          | 6.1        | 1750                   |                           |                         |                |                |                         |
| 12                         | 72.0         | 160.          | 5.9        | 1800                   |                           |                         |                |                |                         |
| 13                         | 72.7         | 134.          | 5.8        | 205 C                  |                           |                         |                |                |                         |
| 14                         | 72.0         | 150.          | 6.1        | 190C                   | 180.                      | 102.                    | 383.           | 1026.          | 21.6                    |
| 15                         | 72.7         | 130.          | 5.5        | 2050                   |                           |                         |                |                |                         |
| 16                         | 72.0         | 130.          | 5.9        | 1900                   |                           |                         |                |                |                         |
| 17<br>19                   | 72.0<br>72.0 | 122.<br>116.  | 6.1<br>5.7 | 2000<br>1800           |                           |                         |                |                |                         |
| 19                         | 72.0         | 120.          | 5.8        | 1550                   |                           |                         |                |                |                         |
| 20                         | 72.0         | 112.          | 6.4        | 2130                   |                           |                         |                |                |                         |
| 21                         | 72.0         | 120.          | 5.9        | 155C                   | 50.0                      | 84.C                    | 365.           | 1004.          | 10.8                    |
| 22                         | 72.0         | 104.          | 6.2        | 2000                   |                           |                         |                |                |                         |
| 23                         | 72.^         | 100.          | 6.1        | 1900                   |                           |                         |                |                |                         |
| 24                         | 72.0         | 90.           | 6.3        | 165C                   |                           |                         |                |                |                         |
| 25                         | 72.3         | 120.          | 6.4        | 1800                   |                           |                         |                |                |                         |
| 26                         | 72.0         | 80.           | 6.1        | 1800                   |                           |                         |                |                |                         |
| 27                         | 72.0         | 80.           | 6.4        | 165C                   | 30.3                      |                         | 224            | 093            |                         |
| 28<br>29                   | 72.0<br>72.1 | 30.           | 6.1        | 170¢                   | 80.0                      | 107.                    | 331.           | 973.           | 46.0                    |
| 30                         | 72.0         | 96.<br>93.    | 6.4        | 170C<br>1650           |                           |                         |                |                |                         |
| 31                         | 72.0         | 100.          | 6.C        | 175C                   |                           |                         |                |                |                         |
| 32                         | 72.0         | ວ).           | ó.7        | 1350                   |                           |                         |                |                |                         |
| 3.3                        | 72.0         | 4C.           | 6.7        | 135C                   |                           |                         |                |                |                         |
| 34                         | 72.0         | 36.           | 6.6        | 1350                   |                           |                         |                |                |                         |
| 35                         | 72.0         | 84.           | 6.2        | 1600                   | 60.0                      | 95.0                    | 323.           | 912.           | 7.7                     |
| 36                         | 72.0         | В4.           | 5.9        | 1700                   |                           |                         |                |                |                         |
| 37                         | 72.0         | 74.           | 6.3        | 1900                   |                           |                         |                |                |                         |
| 3º<br>39                   | 72.0         | 34.           | 5.9        | 1800                   |                           |                         |                |                |                         |
| 40                         | 72.0<br>72.0 | 76.<br>74.    | 6.2        | 1850<br>1700           |                           |                         |                |                |                         |
| 41                         | 72.0         | 40.           | 6.3        | 1400                   |                           |                         |                |                |                         |
| 42                         | 72.0         | 68.           | 6.2        | 1600                   | 30.0                      | 68.9                    | 322.           | 888.           | < 4.0                   |
| 43                         | 72.9         | 68.           | 5.9        | 1850                   |                           | 000                     | 3224           | V              |                         |
| 44                         | 72.0         | 72.           | 6.0        | 1850                   |                           |                         |                |                |                         |
| 45                         | 72.0         | 66.           | 5.7        | 1850                   |                           |                         |                |                |                         |
| 46                         | 72.0         | 68.           | 5.8        | 175C                   |                           |                         |                |                |                         |
| 47                         | 72.0         | 40.           | 6.5        | 1400                   |                           |                         |                |                |                         |
| 48                         | 72.0         | 68.           | 5.8        | 1850                   | 0.3.0                     |                         | 24.7           | 48.45          |                         |
| 49<br>50                   | 72.0         | 64.           | 5.9        | 1900                   | 80.0                      | 116.                    | 345.           | 1018.          | 6.0                     |
| 5 1                        | 72.0<br>72.0 | 62.<br>66.    | 5.8<br>5.8 | 1800<br>1650           |                           |                         |                |                |                         |
| 52                         | 72.0         | 69.           | 5.5        | 2000                   |                           |                         |                |                |                         |
| 53                         | 72.7         | 65.           | 5.5        | 1850                   |                           |                         |                |                |                         |
|                            | •            |               |            |                        |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/15/72.

TABLE A68

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 62
(STONE #1355, 1/4 x 0 SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD<br>(in) | FLOW (ml/min) | р <b>н</b><br>— | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/1) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/l) | SULFATE (mg/1) | HOT PHT. ACIDITY (mg/1) |
|----------------------------|--------------|---------------|-----------------|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 72.0         | 525.          | 5.9             | 2200                   | 110.                      | 102.                    | 506.           | 1259.          | < 4.0                   |
| 2                          | 72.0         | 310.          | 3.0             | 2050                   |                           |                         |                |                | 7.0                     |
| 3                          | 72.0         | 300.          | 6.0             | 2000                   |                           |                         |                |                |                         |
| 4                          | 72.0         | 290.          | 5.8             | 2050                   |                           |                         |                |                |                         |
| 5                          | 72.0         | 160.          | 5.9             | 1950                   |                           |                         |                |                |                         |
| 6                          | 72.0         | 146.          | 5.8             | 1950                   |                           |                         |                |                |                         |
| 7                          | 72.0         | 126.          | 5.8             | 2000                   | 40.0                      | 44.9                    | 424.           | 1118.          | < 4.0                   |
| 8                          | 72.0         | 242.          | 5.6             | 1900                   |                           |                         |                |                |                         |
| 9                          | 72.0         | 270.          | 6.0             | 1850                   |                           |                         |                |                |                         |
| 10                         | 72.0         | 216.          | 6.1             | 1800                   |                           |                         |                |                |                         |
| 11                         | 72.0         | 184.          | 6.3             | 175C                   |                           |                         |                |                |                         |
| 12<br>13                   | 72.0         | 180.          | 6.2             | 1850                   |                           |                         |                |                |                         |
| 14                         | 72.0<br>72.0 | 156.<br>160.  | 6.1             | 2100                   | 100                       | (5.0                    | 305            |                |                         |
| 15                         | 72.0         | 160.          | 6.3<br>6.1      | 1850<br>2050           | 100.                      | 65.9                    | 395.           | 1037.          | < 4.0                   |
| 16                         | 72.0         | 140.          | 5.6             | 1850                   |                           | 1                       |                |                |                         |
| 17                         | 72.0         | 134.          | 6.0             | 1900                   |                           |                         |                |                |                         |
| 18                         | 72.0         | 128.          | 6.1             | 180 C                  |                           |                         |                |                |                         |
| 19                         | 72.0         | 140.          | 6.2             | 1650                   |                           |                         |                |                |                         |
| 20                         | 72.0         | 124.          | 6.5             | 2000                   |                           |                         |                |                |                         |
| 21                         | 72.0         | 120.          | 6.5             | 1450                   | 40.0                      | 61.9                    | 388.           | 1038.          | < 4.0                   |
| 22                         | 72.0         | 120.          | 6.5             | 2000                   |                           |                         |                |                |                         |
| 23                         | 72.0         | 120.          | 6.8             | 1850                   |                           |                         |                |                |                         |
| 24                         | 72.0         | 100.          | 6.6             | 1800                   |                           |                         |                |                |                         |
| 25                         | 72.0         | 100.          | 6.7             | 1850                   |                           |                         |                |                |                         |
| 26                         | 72.0         | 80.           | 6.5             | 1900                   |                           |                         |                |                |                         |
| 27                         | 72.0         | 80.           | 6.6             | 1750                   |                           |                         |                |                |                         |
| 28                         | 72.0         | 80.           | 6.4             | 185C                   | 30.0                      | 44.9                    | 400.           | 993.           | 15.4                    |
| 29<br>30                   | 72.0<br>72.0 | 96.           | 6.4             | 1750                   |                           |                         |                |                |                         |
| 31                         | 72.0         | 100.<br>104.  | 6.3             | 1700                   |                           |                         |                |                |                         |
| 32                         | 72.0         | 64.           | 6.3<br>6.8      | 1800<br>1450           |                           |                         |                |                |                         |
| 33                         | 72.0         | 56.           | 6.8             | 140C                   |                           |                         |                |                |                         |
| 34                         | 72.0         | 48.           | 7.0             | 1450                   |                           |                         |                |                |                         |
| 35                         | 72.0         | 72.           | 6.8             | 1700                   | 5.0                       | 19.9                    | 365.           | 881.           | 0.6                     |
| 36                         | 72.0         | 76.           | 6.5             | 1800                   | 3.0                       | 1,74,7                  | 303.           | 001.           | 9.6                     |
| 37                         | 72.0         | 83.           | 6.4             | 1950                   |                           |                         |                |                |                         |
| 38                         | 72.0         | 80.           | 6.3             | 1900                   |                           |                         |                |                |                         |
| 39                         | 72.0         | 54.           | 6.2             | 1750                   |                           |                         |                |                |                         |
| 40                         | 72.0         | 88.           | 6.6             | 1800                   |                           |                         |                |                |                         |
| 41                         | 72.0         | 40.           | 6.7             | 1500                   | _                         |                         |                |                |                         |
| 42                         | 72.0         | 48.           | 6.9             | 1650                   | < 1.0                     | 3.5                     | 75.            | 871.           | < 4.0                   |
| 43<br>44                   | 72.0         | 52.           | 6.5             | 1900                   |                           |                         |                |                |                         |
| 45                         | 72.0<br>72.0 | 60.           | 6.5             | 1950                   |                           |                         |                |                |                         |
| 46                         | 72.0         | 49.<br>50.    | 5.0             | 1950                   |                           |                         |                |                |                         |
| 47                         | 72.0         | 40.           | 5.9<br>6.8      | 1850<br>1550           |                           |                         |                |                |                         |
| 48                         | 72.0         | 44.           | 6.2             | 1850                   |                           |                         |                |                |                         |
| 49                         | 72.0         | 42.           | 6.4             | 1900                   | 2.0                       | 2.5                     | 440.           | 1035.          | < 4.0                   |
| 50                         | 72.0         | 44.           | 6.1             | 1900                   | 2.0                       | ۷.5                     | 44U.           | 1033.          | ~ 4.0                   |
| 51                         | 72.0         | 50.           | 6.3             | 185C                   |                           |                         |                |                |                         |
| 52                         | 72.0         | 46.           | 6.1             | 205C                   |                           |                         |                |                |                         |
| 53                         | 72.0         | 52.           | 6.3             | 1900                   |                           |                         |                |                |                         |
|                            |              |               |                 |                        |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/15/72.

TABLE A69

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 63
(STONE #1355, 1/2 x 50M SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD         | FLOW (ml/min) | рн         | SP. COND. (µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/1) | CALCIUM (mg/l) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/1) |
|----------------------------|--------------|---------------|------------|------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 39.0         | 3785.         | 3.3        | 190C             | 200.                      | 178.                    | 251.           | 1263.          | 444.                    |
| 2                          | 45.5         | 3730.         | 4.5        | 1550             |                           | -                       |                | •              |                         |
| 3                          | 52.0         | 3740.         | 3.5        | 1750             |                           |                         |                |                |                         |
| 4                          | 33.0         | 3620.         | 3.3        | 1900             |                           |                         |                |                |                         |
| 5                          | 23.0         | 3230.         | 3.1        | 2000             |                           |                         |                |                |                         |
| 6                          | 72.0         | 1920.         | 3.3        | 185C             |                           |                         |                |                |                         |
| 7                          | 72.0         | 1440.         | 3,3        | 1830             | 180.                      | 185.                    | 195.           | 1179.          | 292.                    |
| 8                          | 72.0         | 2100.         | 3.0        | 1800             |                           |                         |                |                |                         |
| 9                          | 72.0         | 1050.         | 3.8        | 1700             |                           |                         |                |                |                         |
| 10                         | 72.0         | 1300.         | 4.0        | 1550             |                           |                         |                |                |                         |
| 11                         | 72.0         | 820.          | 3.7        | 1500             |                           |                         |                |                |                         |
| 12                         | 72.0         | 750.          | 3.7        | 1650             |                           |                         |                |                |                         |
| 13                         | 72.0<br>72.0 | 740.          | 3.2<br>3.4 | 185 C<br>185 C   | 70.0                      | 176.                    | 187.           | 1077.          | 479.                    |
| 14<br>15                   | 72.0         | 680.<br>620.  | 4.0        | 1750             | 70.0                      | 170.                    | 107.           | 10 7 7 8       | 4,,,                    |
| 16                         | 72.0         | 550.          | 3.4        | 175C             |                           |                         |                |                |                         |
| 17                         | 72.0         | 540.          | 3.5        | 1750             |                           |                         |                |                |                         |
| 18                         | 72.0         | 500.          | 3.5        | 165C             |                           |                         |                |                |                         |
| 19                         | 72.0         | 480.          | 3.5        | 1400             |                           |                         |                |                |                         |
| 20                         | 72.0         | 460.          | 4.2        | 2000             |                           |                         |                |                |                         |
| 21                         | 72.0         | 440.          | 4.2        | 160C             | 190.                      | 166.                    | 190.           | 1050.          | 422.                    |
| 22                         | 72.0         | 360.          | 4.1        | 1800             |                           |                         |                |                |                         |
| 23                         | 72.0         | 370.          | 4.1        | 1800             |                           |                         |                |                |                         |
| 24                         | 72.0         | 330.          | 5.0        | 160C             |                           |                         |                |                |                         |
| 25                         | 72.0         | 310.          | 6.1        | 145C             |                           |                         |                |                |                         |
| 26                         | 72.0         | 225.          | 5.1        | 1550             |                           |                         |                |                |                         |
| 27                         | 72.0         | 220.          | 5.9        | 1300             |                           |                         |                |                |                         |
| 28                         | 72.0         | 208.          | 4.9        | 1550             | 160.                      | 140.                    | 191.           | 968.           | 319.                    |
| 29                         | 72.0         | 176.          | 4.9        | 1650             |                           |                         |                |                |                         |
| 30                         | 72.0<br>72.0 | 190.          | 4.8        | 1450             |                           |                         |                |                |                         |
| 31<br>32                   | 72.0         | 164.<br>76.   | 5.1        | 1550<br>1300     |                           |                         |                |                |                         |
| 33                         | 72.0         | 48.           | 6,5        | 1350             |                           |                         |                |                |                         |
| 34                         | 72.0         | 36.           | 6.7        | 1300             |                           |                         |                |                |                         |
| 35                         | 72.0         | 152.          | 4.9        | 1550             | 170.                      | 156.                    | 200.           | 950.           | 373.                    |
| 36                         | 72.0         | 148.          | 5.0        | 1650             |                           | .,,,,                   | 2001           | ,,,,           |                         |
| 37                         | 72.0         | 160.          | 4.7        | 1750             |                           |                         |                |                |                         |
| 38                         | 72.0         | 142.          | 5.0        | 1650             |                           |                         |                |                |                         |
| 39                         | 72.0         | 224.          | 4.8        | 1550             |                           |                         |                |                |                         |
| 40                         | 72.0         | 212.          | 4.7        | 1500             |                           |                         |                |                |                         |
| 41                         | 72.0         | 73.           | 6.4        | 1250             |                           |                         |                |                |                         |
| 42                         | 72.0         | 168.          | 5.2        | 145C             | 160.                      | 147.                    | 172.           | 904.           | 351.                    |
| 43                         | 72.0         | 164.          | 4.7        | 165 C            |                           |                         |                |                |                         |
| 44                         | 72.0         | 160.          | 5.2        | 1600             |                           |                         |                |                |                         |
| 45                         | 72.0         | 150.          | 5.6        | 160C             |                           |                         |                |                |                         |
| 46                         | 72.0         | 150.          | 5.8        | 1550             |                           |                         |                |                |                         |
| 4 <b>7</b><br>48           | 72.0<br>72.0 | 84.<br>140.   | 6.5<br>4.6 | 1250<br>1650     |                           |                         |                |                |                         |
| 49                         | 72.0         | 132.          | 4.7        | 1650             | 170.                      | 135.                    | 222.           | 1064.          | 339.                    |
| 50                         | 72.0         | 128.          | 4.6        | 1600             |                           |                         |                | ,,,,,,         | J. J. 6                 |
| 51                         | 72.0         | 126.          | 4.2        | 1550             |                           |                         |                |                |                         |
| 52                         | 72.0         | 135.          | 4.3        | 1700             |                           |                         |                |                |                         |
| 53                         | 72.0         | 128.          | 4.4        | 1650             |                           |                         |                |                |                         |
|                            |              |               |            |                  |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/15/72.

TABLE A70

FLOW AND EFFLUENT COMPOSITION DATA

FOR TEST VESSEL NO. 64 (STONE #1355, 1/2 x 0 SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD<br>(in)         | FLOW (ml/min)  | рн         | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/1) | CALCIUM (mg/1) | SULFATE (mg/1) | HOT PHT. ACIDITY (mg/1) |
|----------------------------|----------------------|----------------|------------|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 72.0                 | 1470.          | 5.1        | 1950                   | 170.                      | 166.                    | 352.           | 1240.          | 282.                    |
| 2                          | 72.0                 | 1500.          | 2.8        | 2200                   |                           |                         |                |                |                         |
| 3                          | 72.0                 | 1830.          | 4.6        | 170C                   |                           |                         |                |                |                         |
| 4<br>E                     | 72.0                 | 2800.          | 3.6        | 1800                   |                           |                         |                |                |                         |
| 5                          | 70.0<br>72.0         | 2820.          | 3.3        | 1900                   |                           |                         |                |                |                         |
| 6<br><b>7</b>              | 72.0                 | 2560.<br>1480. | 2.9        | 1950                   | 100                       | 101                     | 240            | 445.           |                         |
| 8                          | 72.0                 | 1800.          | 3.4<br>3.1 | 1750<br>1750           | 190.                      | 191.                    | 210.           | 1154.          | 623.                    |
| 9                          | 72.0                 | 1280.          | 3.7        | 1700                   |                           |                         |                |                |                         |
| 10                         | 72.0                 | 800.           | 3.7        | 1650                   |                           |                         |                |                |                         |
| 11                         | 72.0                 | 1140.          | 3.5        | 1550                   |                           |                         |                |                |                         |
| 12                         | 72.0                 | 1125.          | 3.4        | 180C                   |                           |                         |                |                |                         |
| 13                         | 72.0                 | 1060.          | 3.1        | 1900                   |                           |                         |                |                |                         |
| 14                         | 72.0                 | 94 C.          | 3.2        | 50.JC                  | 190.                      | 188.                    | 175.           | 1099.          | 547.                    |
| 15                         | 72.0                 | .900.          | 3.5        | 1800                   |                           |                         |                |                |                         |
| 16<br>17                   | 72.0                 | 800.           | 3.4        | 180C                   |                           | ,                       |                |                |                         |
| 18                         | 72.0<br><b>72.</b> 0 | 760.           | 3.3        | 18º0                   |                           |                         |                |                |                         |
| 19                         | 72.0                 | 730.<br>700.   | 3.2<br>3.2 | 1650<br>1400           |                           |                         |                |                |                         |
| 20                         | 72.0                 | 660.           | 3.7        | 1900                   |                           |                         |                |                |                         |
| 21                         | 72.0                 | 600.           | 3.9        | 1550                   | 200.                      | 179.                    | 180.           | 1035.          | 442.                    |
| 22                         | 72.0                 | 360.           | 4.4        | 1800                   | 200                       | 1,75.                   | 100.           | 1033.          | 442.                    |
| 23                         | 72.0                 | 325.           | 4.4        | 1700                   |                           |                         |                |                |                         |
| 24                         | 72.0                 | 27C.           | 5.0        | 155C                   |                           |                         |                |                |                         |
| 25                         | 72.0                 | 240.           | 6.0        | 1500                   |                           |                         |                |                |                         |
| 26                         | 72.0                 | 170.           | 5.1        | 155C                   |                           |                         |                |                |                         |
| 27                         | 72.0                 | 180.           | 6.0        | 1350                   |                           |                         |                |                |                         |
| 28<br>29                   | 72.0<br>72.0         | 192.           | 5.0        | 1550                   | 150.                      | 137.                    | 219.           | 955.           | 269.                    |
| 30                         | 72.0                 | 166.<br>90.    | 5.2<br>5.4 | 1650<br>1500           |                           |                         |                |                |                         |
| 31                         | 72.0                 | 140.           | 5.5        | 1600                   |                           |                         |                |                |                         |
| 32                         | 72.0                 | 62.            | 6.5        | 140C                   |                           |                         |                |                |                         |
| 33                         | 72.0                 | 52.            | 6.3        | 145 C                  |                           |                         |                |                |                         |
| 34                         | 72.0                 | 40.            | 6.8        | 1400                   |                           |                         |                |                |                         |
| 35                         | 72.0                 | 112.           | 5.8        | 150C                   | 120.                      | 124.                    | 240.           | 911.           | 246.                    |
| 36                         | 72.0                 | 120.           | 4.9        | 1650                   |                           |                         |                | •              |                         |
| 37                         | 72.0                 | 140.           | 4.7        | 175 C                  |                           |                         |                |                |                         |
| 38<br>39                   | 72.0                 | 124.           | 4.7        | 1650                   |                           |                         |                |                |                         |
| 40                         | 72.0<br>72.0         | 192.           | 4.7        | 1550                   |                           |                         |                |                |                         |
| 41                         | 72.0                 | 184.<br>55.    | 4.2<br>6.3 | 1500<br>1300           |                           |                         |                |                |                         |
| 42                         | 72.0                 | 140.           | 4.9        | 145C                   | 160.                      | 162.                    | 170            | 0.0.1          | 345                     |
| 43                         | 72.0                 | 148.           | 3.8        | 1700                   | 100.                      | 102.                    | 170.           | 901.           | 345.                    |
| 44                         | 72.0                 | 144.           | 4.7        | 160C                   |                           |                         |                |                |                         |
| 45                         | 72.0                 | 134.           | 4.8        | 160C                   |                           |                         |                |                |                         |
| 46                         | 72.0                 | 130.           | 5.0        | 15C C                  |                           |                         |                |                |                         |
| 47                         | 72.0                 | 68.            | 6.4        | 1300                   |                           |                         |                |                |                         |
| 48                         | 72.0                 | 128.           | 3.3        | 175 C                  |                           |                         |                |                |                         |
| 49                         | 72.0                 | 116.           | 4.0        | 1700                   | 160.                      | 190.                    | 2 <b>17.</b>   | 1054.          | 381.                    |
| 50<br>51                   | 72.0                 | 120.           | 4.1        | 1600                   |                           |                         |                |                |                         |
| 52                         | 72.0                 | 120.<br>124.   | 3.2<br>3.6 | 1600                   |                           |                         |                |                |                         |
| 53                         | 72.0                 | 124.           | 3.4        | 1700<br>1700           |                           |                         |                |                |                         |
| 30                         | 0                    | 124.           | J • 4      | 17.6                   |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/15/72.

TABLE A71

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 65
(STONE #1355, 1 x 50M SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD | FLOW (ml/min)  | pH — | SP.<br>COND.<br>(µmho) | FERROUS IRON (mg/1) | TOTAL<br>IRON<br>(mg/l) | CALCIUM<br>(mg/l) | SULFATE (mg/1) | HOT PHT. ACIDITY (mg/l) |
|----------------------------|------|----------------|------|------------------------|---------------------|-------------------------|-------------------|----------------|-------------------------|
| 1                          | 21.0 | 3310.          | 3.3  | 1950                   | 93.0                | 148.                    | 250.              | 1175.          | 485.                    |
| 2                          | 22.1 | 3070.          | 3.4  | 1550                   |                     |                         |                   |                |                         |
| $\overline{3}$             | 23.  | 2 <b>77</b> ^. | 3.2  | 195C                   |                     |                         |                   |                |                         |
| a a                        | 24.3 | 2620.          | 3.0  | 2000                   |                     |                         |                   |                |                         |
| 5                          | 24.  | 2220.          | 2.8  | 2200                   |                     |                         |                   |                |                         |
| b                          | 23.1 | 2340.          | 2.7  | 225C                   |                     |                         |                   |                |                         |
| 7                          | 28.5 | 2330.          | 2.6  | 3500                   | 230.                | 219.                    | 136.              | 1193.          | 769.                    |
| Ġ                          | 31.^ | 2240.          | 2.7  | 1°50                   | *                   |                         |                   |                |                         |
| ċ                          | 27.0 | 2160.          | 3.1  | 1950                   |                     |                         |                   |                |                         |
| 13                         | 32.0 | 1657.          | 3.0  | 1910                   |                     |                         |                   |                |                         |
| 11                         | 31.5 | 2430.          | 2.9  | 1850                   |                     |                         | <i>i</i>          |                |                         |
| 12                         | 33.5 | 244^.          | 2.9  | 2100                   |                     |                         |                   |                |                         |
| 13                         | 35.7 | 2360.          | 2.6  | 2450                   |                     |                         |                   |                |                         |
| 14                         | 72.0 | 2230.          | 2.7  | 2600                   | 210.                | 194.                    | 132.              | 1122.          | 594.                    |
| 15                         | 43.7 | 2120.          | 3.0  | 1950                   |                     |                         |                   |                |                         |
| 16                         | 43.5 | 2120.          | 3.0  | 1950                   |                     |                         |                   |                |                         |
| 17                         | 46.  | 2000.          | 2.7  | 2100                   |                     |                         |                   |                |                         |
| 18                         | 47.) | 1390.          | 2.6  | 2050                   |                     |                         |                   |                |                         |
| 1.3                        | 40.3 | 1890.          | 2.9  | 1150                   |                     |                         |                   |                | •                       |
| 20                         | 46.3 | 1660.          | 3.1  | 2250                   |                     |                         |                   |                |                         |

<sup>\*</sup>Start-up date was 3/15/72.

TABLE A72

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 66
(STONE #1355, 1 x 0 SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD<br>(in) | FLOW (ml/min)  | рН         | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/1) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/1) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/1) |
|----------------------------|--------------|----------------|------------|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 62.0         | 2340.          | 4.6        | 1850                   | 170.                      | 179.                    | 287.           | 1239.          | 380.                    |
| 2                          | 50.0         | 2160.          | 3.7        | 1550                   |                           |                         |                |                |                         |
| 3                          | 49.0         | 2140.          | 3.6        | 175 C                  |                           |                         |                |                |                         |
| 4                          | 46.0         | 2150.          | 3.2        | 1900                   |                           |                         |                |                |                         |
| 5                          | 49.0         | 2000.          | 3.0        | 205C                   |                           |                         |                |                |                         |
| 6                          | 48.5         | 2200.          | 2.8        | 2150                   |                           |                         |                |                |                         |
| 7                          | 48.5         | 1800.          | 2.8        | 200C                   | 200.                      | 192.                    | 205.           | 1169.          | 695.                    |
| 8                          | 50.0         | 1700.          | 2.9        | 1700                   |                           |                         |                |                |                         |
| 9                          | 72.0         | 2740.          | 2.9        | 1900                   |                           |                         |                |                |                         |
| 10                         | 72.0         | 1660.          | 3.1        | 1750                   |                           |                         |                |                |                         |
| 11                         | 72.0         | 2400.          | 3.0        | 170C                   |                           |                         |                |                |                         |
| 12<br>13                   | 72.0<br>72.0 | 2010.          | 2.9        | 1900                   |                           |                         |                |                |                         |
| 14                         | 72.3         | 1800.          | 2.8        | 2250                   | 222                       | 40.4                    |                |                |                         |
| 15                         | 72.0         | 1510.<br>1320. | 2.8        | 2300                   | 200.                      | 191.                    | 152.           | 1116.          | 608.                    |
| 16                         | 72.0         | 1150.          | 3.2<br>3.2 | 1900                   |                           |                         |                |                |                         |
| 17                         | 72.0         | 1060.          | 3.0        | 1850<br>1950           |                           | *                       |                |                |                         |
| 18                         | 72.0         | 930.           | 2.8        | 1900                   |                           |                         |                |                |                         |
| 19                         | 72.0         | e70.           | 2.9        | 1350                   |                           |                         |                |                |                         |
| 20                         | 72.0         | 890.           | 3.4        | 2100                   |                           |                         |                |                |                         |
| 21                         | 72.0         | 720.           | 3.5        | 165C                   | 200.                      | 180.                    | 165.           | 1050.          | E 1 1                   |
| 22                         | 72.0         | 560.           | 3.7        | 1850                   | 235.                      | 100.                    | 10.5           | 10.50          | 511.                    |
| 23                         | 72.0         | 420.           | 3.7        | 1800                   |                           |                         |                |                |                         |
| 24                         | 72.0         | 300.           | 4.8        | 1600                   |                           |                         |                |                |                         |
| 25                         | 72.0         | 330.           | 5.6        | 1400                   |                           |                         |                |                |                         |
| 26                         | 72.0         | 235.           | 4.6        | 1550                   |                           |                         |                |                |                         |
| 27                         | 72.0         | 240.           | 5.4        | 1300                   |                           |                         |                |                |                         |
| :8                         | 72.1         | 220.           | 4.8        | 1600                   | 150.                      | 147.                    | 200.           | 960.           | 34.0                    |
| 29                         | 72.0         | 208.           | 5.0        | 1550                   |                           | 171.                    | 233.           | 900.           | 349.                    |
| 30                         | 72.0         | 210.           | 4.6        | 1550                   |                           |                         |                |                |                         |
| 31                         | 72.0         | 188.           | 4.8        | 1550                   |                           |                         |                |                |                         |
| 32                         | 72.0         | 80.            | 6.4        | 1300                   |                           |                         |                |                |                         |
| 33                         | 72.0         | 52.            | 6.1        | 1300                   |                           |                         |                |                |                         |
| 34                         | 72.0         | 44.            | 6.6        | 1300                   |                           |                         |                |                |                         |
| 35                         | 72.0         | 140.           | 4.8        | 1500                   | 160.                      | 157.                    | 200.           | 954.           | 361.                    |
| 36                         | 72.0         | 160.           | 4.5        | 165C                   |                           |                         |                |                | 301.                    |
| 37                         | 72.0         | 158.           | 4.4        | 1700                   |                           |                         |                |                |                         |
| 38                         | 72.0         | 152.           | 4.5        | 165C                   |                           |                         |                |                |                         |
| 39<br>40                   | 72.0         | 192.           | 4.6        | 1550                   |                           |                         |                |                |                         |
| 41                         | 72.0         | 204.           | 4.1        | 150C                   |                           |                         |                |                |                         |
| 42                         | 72.0<br>72.0 | 100.           | 6.3        | 1250                   |                           |                         |                |                |                         |
| 43                         | 72.0         | 180.           | 4.7        | 145 C                  | 170.                      | 158.                    | 160.           | 890.           | 406.                    |
| 44                         | 72.0         | 196.<br>188.   | 3.6        | 175C                   |                           |                         |                |                |                         |
| 45                         | 72.0         | 190.           | 4.3        | 1600                   |                           |                         |                |                |                         |
| 46                         | 72.0         | 170.           | 4.4        | 170C                   |                           |                         |                |                |                         |
| 47                         | 72.0         | 104.           | 6.0        | 145¢<br>120¢           |                           |                         |                |                |                         |
| 48                         | 72.0         | 168.           | 3.1        | 1800                   |                           |                         |                |                |                         |
| 49                         | 72.0         | 154.           | 3.4        | 1800                   | 150.                      | 1/1/2                   | 217            | 4047           |                         |
| 50                         | 72.0         | 156.           | 3.3        | 165C                   | 150.                      | 142.                    | 217.           | 1013.          | 446.                    |
| 51                         | 72.0         | 156.           | 2.9        | 1750                   |                           |                         |                |                |                         |
| 52                         | 72.0         | 160.           | 3.3        | 175C                   |                           |                         |                |                |                         |
| 53                         | 72.0         | 154.           | 3.4        | 175C                   |                           |                         |                |                |                         |
|                            |              | •              |            |                        |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/15/72.

TABLE A73

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 67
(STONE #1337, 1/8 x 0 SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD          | FLOW (ml/min) | рН         | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/l) | CALCIUM<br>(mg/1) | SULFATE (mg/1) | HOT PHT. ACIDITY (mg/l) |
|----------------------------|---------------|---------------|------------|------------------------|---------------------------|-------------------------|-------------------|----------------|-------------------------|
| 1                          | 72.0          | 25.           | 6.4        | 2100                   | 8.0                       | 11.0                    | 266.              | 1169.          | < 4.0                   |
| 2                          | 5 <b>7.</b> 0 | 10.           | 8.0        | -2100                  | .,.0                      |                         | 200.              | 11031          | 7.0                     |
| 3                          | 57.0          | 10.           | 5.9        | 2100                   |                           |                         |                   |                |                         |
| 4                          | 72.0          | 12.           | 5.9        | 2050                   |                           |                         |                   |                |                         |
| 5                          | 59.0          | 15.           | 5.7        | 205C                   |                           |                         |                   |                |                         |
| 6                          | 54.0          | 10.           | 5.5        | 2050                   |                           |                         |                   |                |                         |
| 7                          | 41.7          | 7.            | 5.7        | 2000                   | < 1.0                     | 0.28                    | 320.              | 1199.          | < 4.0                   |
| 8                          | 40.0          | 12.           | 5.5        | 200Ć                   |                           |                         |                   |                |                         |
| 9                          | 39.0          | 20.           | 5.8        | 1900                   |                           |                         |                   |                |                         |
| 10                         | 42.0          | 10.           | 5.8        | 1800                   |                           |                         | •                 |                |                         |
| 11                         | 42.0          | 8.            | 6.7        | 175C                   |                           |                         |                   |                |                         |
| 12                         | 42.5          | 25.           | 0.5        | 1900                   |                           |                         |                   |                |                         |
| 13                         | 50.0          | 15.           | 5.8        | 1950                   |                           |                         |                   |                |                         |
| 14                         | 48.0          | 35.           | 6.2        | 1850                   | < 1.0                     | 0.90                    | 440.              | 1037.          | 25.2                    |
| 15                         | 48.0          | 20.           | 5.7        | 1900                   |                           |                         |                   |                |                         |
| 16                         | 72.0          | 15.           | 6.3        | 1900                   |                           |                         |                   |                |                         |
| 17                         | 72.0          | 22.           | 6.1        | 1850                   |                           |                         |                   |                |                         |
| 18                         | 72.0          | 28.           | 5.9        | 1700                   |                           |                         |                   |                |                         |
| 19<br>20                   | 72.0<br>72.0  | 30.<br>36.    | 5.8<br>6.4 | 1250<br>2006           |                           |                         |                   |                |                         |
| 21                         | 72.0          | 36.           | 6.2        | 160C                   | 30.0                      |                         | 278.              | 1056.          | 10.8                    |
| 22                         | 72.0          | 32.           | 6.8        | 1950                   | 30.0                      |                         | 270.              | 1030.          | 10.0                    |
| 23                         | 72.0          | 35.           | 6.1        | 1800                   |                           |                         |                   |                |                         |
| 24                         | 72.3          | 55.           | 6.2        | 1750                   |                           |                         |                   |                |                         |
| 25                         | 72.0          | 30.           | 6.3        | 1800                   |                           |                         |                   |                |                         |
| 26                         | 72.0          | 30.           | 6.2        | 1750                   |                           |                         |                   |                |                         |
| 27                         | 72.0          | 28.           | 6.4        | 1650                   |                           |                         |                   |                |                         |
| 28                         | 72.0          | 60.           | 6.1        | 1650                   | 30.0                      | 45.0                    | 216.              | 948.           | 154.                    |
| 29                         | 72.0          | 28.           | 6.5        | 170 C                  |                           |                         |                   |                |                         |
| 3^                         | 72.0          | 25.           | 6.2        | 165C                   |                           |                         |                   |                |                         |
| 31                         | 72.0          | 28.           | ó.1        | 1700                   |                           |                         |                   |                |                         |
| 32                         | 66.0          | 28.           | 7.0        | 130C                   |                           |                         |                   |                |                         |
| 33                         | 72.0          | 0.            |            |                        |                           |                         |                   |                |                         |
| 34                         | 72.0          | 28.           | 7.3        | 135C                   |                           |                         |                   |                |                         |
| 35<br>36                   | 68.0          | 28.           | 6.5        | 1650                   | 1.0                       | 6.8                     | 228.              | 860.           | < 4.0                   |
| 36                         | 62.0          | 24.           | 6.4        | 1850                   |                           |                         |                   |                |                         |
| 37<br>38                   | 72.0<br>72.0  | 22.           | 6.2        | 1800                   |                           |                         |                   |                |                         |
| 39                         | 72.0          | 22.<br>26.    | 6.4<br>6.2 | 1850<br>1750           |                           |                         |                   |                |                         |
| 40                         | 72.0          | 24.           | 6.6        | 1750                   |                           |                         |                   |                |                         |
| 41                         | 72.0          | 29.           | 6.7        | 1300                   |                           |                         |                   |                |                         |
| 42                         | 60.0          | 26.           | 6.4        | 1500                   | < 1.0                     | 23.0                    | 200.              | 826.           | < 4.0                   |
| 43                         | 58.0          | 24.           | 5.8        | 180 C                  | <b></b>                   | 23.0                    | 200.              | 0211.          | <b>~ 4.</b> 0           |
| 44                         | 56.9          | 24.           | 6.0        | 180 C                  |                           |                         |                   |                |                         |
| 45                         | 72.0          | 26.           | 5.9        | 1800                   |                           |                         |                   |                |                         |
| 46                         | 72.0          | 19.           | 5.6        | 165C                   |                           |                         |                   |                |                         |
| 47                         | 54.5          | 24.           | 6.5        | 135C                   |                           |                         |                   |                |                         |
| 48                         | 54.0          | 20.           | 5.7        | 170 C                  |                           |                         |                   |                |                         |
| 49                         | 52.0          | 18.           | 5.8        | 1750                   | 8.0                       | 25.0                    | 220.              | 1025.          | 9.0                     |
| 50                         | 52.0          | 18.           | 5.9        | 1800                   |                           |                         |                   |                |                         |
| 51                         | 72.0          | 26.           | 6.0        | 160C                   |                           |                         |                   |                |                         |
| 52                         | 54.0          | 24.           | 5.5        | 1900                   |                           |                         |                   |                |                         |
| 53                         | 52.0          | 22.           | 5.5        | 165C                   |                           |                         |                   |                |                         |

<sup>\*</sup>Start-up date was 3/15/72.

TABLE A74

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 68
(STONE #1337, 1/4 x 0 SIZE)

| DAYS<br>AFTER<br>START-UP*             | HEAD<br>(in)                                         | FLOW (ml/min)                                 | <b>р</b> Н<br>—                        | SP:<br>COND.<br>(µmho)                               | FERROUS<br>IRON<br>(mg/1) | TOTAL<br>IRON<br>(mg/l) | CALCIUM<br>(mg/1) | SULFATE (mg/1) | HOT PHT. ACIDITY (mg/l) |
|----------------------------------------|------------------------------------------------------|-----------------------------------------------|----------------------------------------|------------------------------------------------------|---------------------------|-------------------------|-------------------|----------------|-------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br><b>7</b> | 72.0<br>72.0<br>72.0<br>53.0<br>61.0<br>50.0         | 180.<br>200.<br>225.<br>200.<br>50.<br>140.   | 5.9<br>5.6<br>6.1<br>6.2<br>6.0<br>6.0 | 2050<br>1600<br>1850<br>1900<br>1900                 | 80.0                      | 75.4                    | 302.              | 1178.          | < 4,0                   |
| 7<br>8<br>9<br>10<br>11<br>12          | 55.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0         | 125.<br>164.<br>80.<br>54.<br>70.             | 5.9<br>5.8<br>6.1<br>6.2<br>6.4<br>6.6 | 1900<br>1700<br>1750<br>1700<br>1700<br>1800         | 30.0                      | 29.5                    | 235.              | 1072.          | < 4.0                   |
| 14:<br>15:<br>16:<br>17:<br>18:<br>19: | 72.0<br>59.0<br>72.0<br>72.0<br>67.0<br>72.0         | 70.<br>50.<br>40.<br>41.<br>38.<br>46.        | 6.1<br>6.5<br>6.2<br>6.6<br>6.3<br>6.3 | 2000<br>1750<br>1950<br>1950<br>1900<br>1700<br>1650 | < 1.0                     | 127.                    | 420.              | 1037.          | 10.8                    |
| 20<br>21<br>22<br>23<br>24<br>25<br>26 | 72.0<br>72.0<br>35.0<br>40.0<br>48.0<br>47.0<br>49.5 | 34.<br>15.<br>16.<br>20.<br>15.<br>20.        | 6.8<br>6.5<br>6.7<br>6.6<br>6.8        | 2100<br>1700<br>2150<br>1950<br>2000<br>1900<br>1800 | < 1.0                     | <0.03                   | 248.              | 1146.          | < 4.0                   |
| 27<br>28<br>29<br>30<br>31<br>32<br>33 | 57.0<br>72.0<br>47.0<br>33.0<br>36.0<br>42.0<br>72.0 | 16.<br>16.<br>12.<br>11.<br>12.<br>12.        | 6.7<br>6.6<br>6.8<br>6.9<br>6.5<br>7.4 | 1750<br>1650<br>1750<br>1750<br>1750<br>1650         | 1.0                       | <0.03                   | 216.              | 944.           | < 4.0                   |
| 34<br>35<br>36<br>37<br>38<br>39<br>40 | 52.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0<br>72.0 | 12.<br>16.<br>20.<br>21.<br>18.<br>20.<br>18. | 7.6<br>6.8<br>6.7<br>6.8<br>6.7<br>7.0 | 1550<br>1550<br>1700<br>1750<br>1750<br>1750<br>1750 | < 1.0                     | <0.03                   | 203.              | 823.           | < 4.0                   |
| 41<br>42<br>43<br>44<br>45<br>46       | 49.0<br>68.0<br>53.0<br>43.0<br>44.0<br>36.0<br>57.0 | 10.<br>14.<br>22.<br>15.<br>10.<br>8.         | 7.0<br>6.7<br>6.2<br>6.4<br>6.4<br>6.3 | 1500<br>1450<br>1650<br>1650<br>1800<br>1750<br>1500 | < 1.0                     | <0.03                   | 195.              | 816.           | < 4.0                   |
| 48<br>49<br>50<br>51<br>52<br>53       | 52.0<br>58.0<br>55.0<br>72.0<br>72.0                 | 8.<br>7.<br>8.<br>12.<br>0.                   | 6.1<br>6.3<br>6.3<br>7.1<br>6.0        | 1500<br>1750<br>1800<br>1700<br>1850                 | < 1.0                     | <0.03                   | 235.              | 1018.          | < 4.0                   |

<sup>\*</sup>Start-up date was 3/15/72.

FLOW AND EFFLUENT COMPOSITION DATA FOR TEST VESSEL NO. 69 (STONE #1337, 1/2 x 50M SIZE)

TABLE A75

| DAYS<br>AFTER<br>START-UP* | HEAD<br>(in) | FLOW (ml/min)  | рН  | SP. COND. (µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/l) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/l) |
|----------------------------|--------------|----------------|-----|------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 31.0         | 3785.          | 3.0 | 2100             | 200.                      | 189.                    | 158.           | 1089.          | 432.                    |
| 2                          | 27.0         | 3640.          | 1.8 | 5800             |                           |                         |                |                |                         |
| 3                          | 24.0         | 3 <i>€</i> 30. | 3.5 | 1850             |                           |                         |                |                |                         |
| 4                          | 25.0         | 3620.          | 3.6 | 175C             |                           |                         |                |                |                         |
| 5                          | 24.5         | 3650.          | 3.2 | 190C             |                           |                         |                |                |                         |
| 6                          | 26.0         | 3540.          | 3.1 | 1950             |                           |                         |                |                |                         |
| 7                          | 25.5         | 3400.          | 3.1 | 185°C            | 200.                      | 192.                    | 155.           | 1162.          | 554.                    |
| 8                          | 26.0         | 3340.          | 3.4 | 165€             |                           |                         |                |                |                         |
| Q                          | 27.0         | 3020.          | 3.9 | 1700             |                           |                         |                |                |                         |
| 10                         | 24.0         | 2880.          | 4.1 | 1500             |                           |                         |                |                |                         |
| 11                         | 25.0         | 2820.          | 3.6 | 155C             |                           |                         |                |                |                         |
| 12                         | 22.5         | 2590.          | 3.8 | 1600             |                           |                         |                |                |                         |
| 13                         | 25.0         | 2480.          | 3.5 | 1800             |                           |                         |                |                |                         |
| 14                         | 26.0         | 247.           | 3.5 | 1850             | 210.                      | 193.                    | 120.           | 1095.          | 500.                    |
| 15                         | 25.0         | 2400.          | 3.9 | 1700             |                           |                         |                |                |                         |
| <b>1</b> 6                 | 24.0         | 2230.          | 3.8 | 1650             |                           |                         |                |                |                         |
| 17                         | 24.5         | 2200.          | 3.6 | 175C             |                           |                         |                |                |                         |
| 18                         | 25.0         | 2130.          | 3.5 | 1600             |                           |                         |                |                |                         |
| 19                         | 25.0         | 2100.          | 4.9 | 1450             |                           |                         |                |                |                         |
| 20                         | 24.0         | 1760.          | 4.4 | 1800             |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/15/72.

TABLE A76

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 70
(STONE #1337, 1/2 x 0 SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD<br>(in) | FLOW (ml/min) | рн  | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/1) | TOTAL<br>IRON<br>(mg/1) | CALCIUM (mg/l) | SULFATE (mg/1) | HOT PHT. ACIDITY (mg/l) |
|----------------------------|--------------|---------------|-----|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 72.0         | 320.          | 5.1 | 190C                   | 170.                      | 165.                    | 204.           | 1185.          | 310.                    |
| 2                          | 72.0         | 245.          | 1.7 | 5 8 5 C                |                           |                         |                |                |                         |
| 3                          | 72.0         | 240.          | 4.8 | 175 C                  |                           |                         |                |                |                         |
| 4                          | 72.0         | 240.          | 4.8 | 180 C                  |                           |                         |                |                |                         |
| 5                          | 72.7         | 230.          | 4.6 | 1800                   |                           |                         |                |                |                         |
| 6<br>7                     | 72.7         | 260.          | 4.6 | 175 C                  |                           |                         |                |                |                         |
| 7                          | 72.0         | 158.          | 4.5 | 1700                   | 180.                      | 175.                    | 171.           | 1100.          | 367.                    |
| 3                          | 72.1         | 480.          | 4.4 | 160C                   |                           |                         |                |                |                         |
| 9                          | 72.0         | 560.          | 4.5 | 165€                   |                           |                         |                |                |                         |
| 10                         | 72.0         | 560.          | 4.5 | 145C                   |                           |                         |                |                |                         |
| 11                         | 72.0         | 520.          | 4.3 | 150C                   |                           |                         |                |                |                         |
| 12                         | 72.0         | 600.          | 4.3 | 1600                   |                           |                         |                |                |                         |
| 13                         | 72.0         | 1120.         | 2.9 | 2050                   |                           |                         |                |                |                         |
| 14                         | 59.0         | 2410.         | 3.1 | 2000                   | 200.                      | 194.                    | 107.           | 1092.          | 585.                    |
| 15                         | 37.0         | 2320.         | 3,4 | 1800                   |                           |                         |                |                |                         |
| 16                         | 31.5         | 2200.         | 0.0 | 1750                   |                           |                         |                |                |                         |
| 17                         | 28.0         | 2120.         | 3.0 | 1900                   |                           |                         |                |                |                         |
| 18                         | 24.5         | 2140.         | 2.9 | 1800                   |                           |                         |                |                |                         |
| 19                         | 24.0         | 2050.         | 3.4 | 1450                   |                           |                         |                |                |                         |
| 20                         | 21.0         | 1800.         | 3.6 | 1950                   |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/15/72.

TABLE A77

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 71
(STONE \$1337, 1 x 50M SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD<br>(in) | FLOW (ml/min) | pH<br>— | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/1) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/l) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/1) |
|----------------------------|--------------|---------------|---------|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 1                          | 22.0         | 3785.         | 2.8     | 2100                   | 200.                      | 191.                    | 135.           | 1092.          | 600.                    |
| 2                          | 18.0         | 3440.         | 1.6     | 595C                   |                           |                         |                |                |                         |
| 3                          | 15.0         | 3500.         | 3.1     | 180C                   |                           |                         |                |                |                         |
| 4                          | 13.0         | 3420.         | 3.1     | 1950                   |                           |                         |                |                |                         |
| 5,                         | 72.0         | 3360.         | 2.8     | 220C                   |                           |                         |                |                |                         |
| 6                          | 72.0         | 3260.         | 2.7     | 225 C                  |                           |                         |                |                |                         |
| 7                          | 6.0          | 316C.         | 2.6     | 205C                   | 200.                      | 195.                    | 137.           | 1162.          | 511.                    |
| 8                          | 10.5         | 3000.         | 2.8     | 185 C                  |                           |                         |                |                |                         |
| 9                          | 9.5          | 2780.         | 3.2     | 185C                   |                           |                         |                |                |                         |
| 10                         | 10.0         | 2690.         | 3.5     | 1650                   |                           |                         |                |                |                         |
| 11                         | 9.0          | 2590.         | 3.2     | 165C                   |                           |                         |                |                |                         |
| 12                         | 8.5          | 2390.         | 3.2     | 175 C                  |                           |                         |                |                |                         |
| 13                         | 8.0          | 2340.         | 3.3     | 1900                   |                           |                         |                |                |                         |
| 14                         | 9.0          | 2480.         | 3.0     | 2050                   | 200.                      | 196.                    | 115.           | 1111.          | 615.                    |
| 15                         | 9.5          | 2230.         | 3.4     | 1800                   |                           |                         |                |                |                         |
| 16                         | 10.9         | 2150.         | 3.5     | 170C                   |                           |                         |                |                |                         |
| 17                         | 10.5         | 1980.         | 3.2     | 1800                   |                           |                         |                |                |                         |
| 18                         | 9.0          | 1990.         | 3.0     | 175¢                   |                           |                         |                |                |                         |
| 19                         | 10.0         | 2000.         | 3.6     | 145 C                  |                           |                         |                |                |                         |
| 20                         | 10.0         | 1740.         | 3.8     | 190C                   |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 3/15/72.

TABLE A78

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 72
(STONE #1337, 1 x 0 SIZE)

| DAYS<br>AFTER<br>START-UP* | HEAD<br>(in) | FLOW (ml/min) | рн  | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL IRON (mg/1) | CALCIUM (mg/1) | SULFATE (mg/1) | HOT PHT. ACIDITY (mg/1) |
|----------------------------|--------------|---------------|-----|------------------------|---------------------------|-------------------|----------------|----------------|-------------------------|
| 1                          | 27.0         | 3785.         | 2.9 | 215C                   | 200.                      | 191.              | 145.           | 1078.          | 622.                    |
| 2<br>3                     | 20.5         | 3290.         | 1.5 | 730C                   |                           |                   |                |                |                         |
| 3                          | 16.0         | 3230.         | 3.0 | 2100                   |                           |                   |                |                |                         |
| 4                          | 15.0         | 3380.         | 3.0 | 195 C                  |                           |                   |                |                |                         |
| 5                          | 13.5         | 3150.         | 2.8 | 2200                   |                           |                   |                |                |                         |
| 4<br>5<br>6<br><b>7</b>    | 35.5         | 3010.         | 2.7 | 230C                   |                           |                   |                |                |                         |
|                            | 10.5         | 2900.         | 2.6 | 2150                   | 190.                      | 195.              | 134.           | 1198.          | 648.                    |
| 8<br>9                     | 11.5         | 3100.         | 2.7 | 195C                   |                           |                   |                |                |                         |
| 9                          | 10.5         | 2940.         | 3.1 | 190C                   |                           |                   |                |                |                         |
| 10                         | 6.0          | 1900.         | 3.8 | 1550                   |                           |                   |                |                |                         |
| 11                         | 9.0          | 1880.         | 3.2 | 175 C                  |                           |                   |                |                |                         |
| 12                         | 8.0          | 1750.         | 3.2 | 175 C                  |                           |                   |                |                |                         |
| 13                         | 8.0          | 1740.         | 2.9 | 215C                   |                           |                   |                |                |                         |
| 14                         | 8.0          | 1660.         | 3.0 | 2100                   | 210.                      | 195.              | 105.           | 1097.          | 645.                    |
| 15                         | 8.0          | 1530.         | 3.2 | 180C                   |                           |                   |                |                |                         |
| 16                         | 7.5          | 1540.         | 3.3 | 179C                   |                           |                   |                |                |                         |
| 17                         | 8.0          | 700.          | 3.1 | 1900                   |                           |                   | •              |                |                         |
| 18                         | 7.0          | 1390.         | 3.0 | 1700                   |                           |                   |                |                |                         |
| 19                         | 7.0          | 1340.         | 3.4 | 150C                   |                           |                   |                |                |                         |
| 20                         | 7.0          | 1220.         | 3.6 | 195C                   |                           |                   |                |                |                         |

<sup>\*</sup>Start-up date was 3/15/72.

TABLE A79

## COMPARISON OF PARTICLE SIZE DISTRIBUTIONS BEFORE AND AFTER 50 DAYS OF MINE WATER PERCOLATION MATERIAL NO. 1809

#### (PERCENT OF MATERIAL SMALLER BY WEIGHT)

| Sieve |        | 1/:    | 2 × 0   |               | 1/4            | x 0     | 1/8    | x 0     |
|-------|--------|--------|---------|---------------|----------------|---------|--------|---------|
| Size  | Before |        | After   |               | Befor <b>e</b> | After   | Before | After   |
|       |        | Ferric | Ferrous | Ferric-       |                | Ferric- |        | Ferric- |
| 1     |        |        |         | Ferrous       |                | Ferrous | ***    | Ferrous |
|       |        | TV 10  | TV 38   | TV 34         |                | TV 32   |        | TV 31   |
|       |        |        |         |               |                |         |        |         |
| 1 1/2 |        |        |         |               |                |         |        |         |
| 3/4   | 100.0  | 100.0  | 100.0   | 100.0         |                |         |        |         |
| 3/8   | 84.0   | 91.7   | 90.6    | 81.2          | 100.0          | 100.0   |        |         |
| 4     | 42.5   | 64.9   | 62.1    | 49.8          | 88.3           | 84.1    | 100.0  | 100.0   |
| 8     | 24.9   | 44.4   | 40.4    | 30.0          | 58.1           | 47.7    | 65.9   | 67.8    |
| 16    | 14.2   | 30.1   | 26.0    | 1 <b>9.</b> 9 | 34.2           | 26.0    | 33.3   | 37.4    |
| 30    | 8.1    | 21.1   | 17.2    | 14.2          | 19.5           | 14.4    | 16.6   | 19.2    |
| 50    | 4.8    | 15.9   | 12.3    | 11.3          | 10.9           | 8.7     | 9.0    | 11.0    |
| 100   | 2.9    | 12.6   | 9.4     | 9.5           | 6.1            | 5.8     | 5.5    | 7.5     |
| 200   | 1.9    | 10.7   | 7.9     | 8.5           | 3.9            | 4.5     | 3.9    | 5.8     |

NOTE: TV indicates test vessel.

TABLE A80

## COMPARISON OF PARTICLE SIZE DISTRIBUTIONS BEFORE AND AFTER 100 DAYS OF MINE WATER PERCOLATION MATERIAL NO. 1355

#### (PERCENT OF MATERIAL SMALLER BY WEIGHT)

|       | 1 x    | 0       | 1/4 2  | 0       | 1/8 x 0                               |         |  |
|-------|--------|---------|--------|---------|---------------------------------------|---------|--|
| Sieve | Before | After   | Before | After   | Before                                | After   |  |
| Size  |        | Ferric- |        | Ferric- |                                       | Ferric- |  |
|       |        | Ferrous |        | Ferrous |                                       | Ferrous |  |
|       |        | TV 42   |        | TV 38   | · · · · · · · · · · · · · · · · · · · | TV 37   |  |
| 1 1/2 | 100.0  | 100.0   |        |         |                                       |         |  |
| 3/4   | 87.6   | 88.6    |        |         |                                       |         |  |
| 3/8   | 65.6   | 77.1    | 100.0  | 100.0   |                                       |         |  |
| 4     | 35.5   | 47.5    | 77.6   | 82.7    | 100.0                                 | 100.0   |  |
| 8     | 20.4   | 32.1    | 42.0   | 48.5    | 84.5                                  | 75.7    |  |
| 16    | 11.8   | 24.1    | 23.8   | 30.9    | 51.6                                  | 51.8    |  |
| 30    | 6.6    | 19.4    | 15.4   | 21.2    | 32.6                                  | 35.4    |  |
| 50    | 4.0    | 15.9    | 10.6   | 15.1    | 20.5                                  | 25.3    |  |
| 100   | 2.7    | 12.3    | 7.7    | 10.4    | 13.1                                  | 18.6    |  |
| 200   | 1.9    | 9.4     | 5.6    | 7.1     | 8.5                                   | 13.7    |  |

NOTE: TV indicates test vessel.

TABLE A81
Specimens Tested in Lab Cycle II

| Test<br>Vessel | Description                              | Approximate Relative Density (%) | Actual<br>Density<br>(LB/FT <sup>3</sup> ) |
|----------------|------------------------------------------|----------------------------------|--------------------------------------------|
| 73             | 5% Portland cement                       | 30                               | 105                                        |
| 74             | 5% Calcium sulfate hemihydrate           | 30                               | 105                                        |
| 75             | 5% Sodium silicate                       | 30                               | 105                                        |
| 76             | 2X original fines content                | 30                               | 105                                        |
| 77             | 2X original fines content                | 60                               | 116                                        |
| 78             | 3X original fines content                | 30                               | 105                                        |
| 79             | 3% original fines content                | 60                               | 116                                        |
| 80             | 5% $Fe_2(SO_4)_3 + 15$ % $Na_2SO_4$ zone | 30                               | 105                                        |
| 81             | 3/8 x 0 stone                            | 30                               | 105                                        |
| 82             | 3/8 x 0 stone                            | 60                               | 116                                        |
| 83*            | 3/8 x 0 stone                            | 0                                | 98                                         |
| 84*            | 3/8 x 0 stone                            | 30                               | 105                                        |
|                |                                          |                                  |                                            |

#### NOTE:

<sup>\*</sup> Tested on South Pittsburgh City water Others tested on ferric/ferrous water

TABLE A82

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 73
(5% PORTLAND CEMENT, 30% DR)

| DAYS<br>AFTER<br>START-UP* | HEAD (in) | FLOW<br>(ml/min) | Hq<br>— | SP.<br>COND.<br>(umho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/1) | CALCIUM<br>(mg/l) | SULFATE (mg/1) | HOT PHT. ACIDITY (mg/l) |
|----------------------------|-----------|------------------|---------|------------------------|---------------------------|-------------------------|-------------------|----------------|-------------------------|
| 30 min.                    | 72        | 155              |         |                        |                           |                         |                   |                |                         |
| 3 hr.                      | 72        | 120              |         |                        |                           |                         |                   |                |                         |
| 8 hr.                      | 72        | 96               | 12.4    |                        |                           |                         |                   |                |                         |
| 1<br>3                     | 72        | 82               | 11.8    | 8800                   | 1.0                       | 1.0                     |                   | 1211.          | 4.0                     |
| 3                          | 72        | 100              | 11.9    | 5700                   |                           |                         |                   |                |                         |
| 6<br>8                     | 72        | 70               | 11.7    | 3950                   |                           |                         |                   |                |                         |
|                            | 72        | 52               | 11.5    | 3000                   |                           |                         |                   |                |                         |
| 1.0                        | 72        | 40               | 11.5    | 2650                   |                           |                         |                   |                |                         |
| 13                         | 72        | 32               | 11.2    | 1950                   |                           |                         |                   |                |                         |
| 15                         | 72        | 22               | 11.5    | 2300                   |                           |                         |                   |                |                         |
| 17                         | 72        | 20               | 10.1    | 2300                   |                           |                         |                   |                |                         |
| 20                         | 72        | 12               | 10.7    | 1950                   |                           |                         |                   |                |                         |
| 22                         | 72        | 8                | 10.0    | 2100                   |                           |                         |                   |                |                         |
| 24                         | 72        | 8                | 10.2    | 2250                   | 1.0                       | 1.0                     | 600.              | 1319.          | 4.0                     |
| 27                         | 72        | 6                | 10.5    | 1850                   |                           |                         |                   |                |                         |
| 29                         | 72        | 4                | 10.7    | 2400                   |                           |                         |                   |                |                         |
| 31                         | 72        | 4                | 10.7    | 2650                   |                           |                         |                   |                |                         |
| 34                         | 72        | 3                | 10.8    | 2450                   |                           |                         |                   |                |                         |
| 36                         | 72        | 3                | 10.8    | 2350                   |                           |                         |                   |                |                         |
| 38                         | 72        | 3                | 10.9    | 2600                   |                           |                         |                   |                |                         |
| 41                         | 72        | 4                | 10.7    | 2550                   |                           |                         |                   |                |                         |
| 43                         | 72        | 6                | 10.5    | 2500                   |                           |                         |                   |                |                         |
| 45                         | 72        | 6                | 10.2    | 2500                   |                           |                         |                   |                |                         |
| 48                         | 72        | 10               | 9.5     | 2450                   |                           |                         |                   |                |                         |
| 50                         | 72        | 16               | 8.9     | 2400                   | 1.0                       | 1.0                     | 588.              | 1566.          | 4.0                     |

<sup>\*</sup>Start-up date was 8/15/72.

TABLE A83

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 74

(5% CALCIUM SULFATE HEMIHYDRATE, 30% DR)

| DAYS<br>AFTER<br>START-UP* | HEAD     | FLOW (ml/min) | рН  | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/1) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/l) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/l) |
|----------------------------|----------|---------------|-----|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 30 min.<br>3 hr.           | 72<br>72 | 240<br>154    |     |                        |                           |                         |                |                |                         |
| 8 hr.                      | 72       | 150           | 7.4 |                        |                           |                         |                |                |                         |
| 1                          | 72       | 126           | 6.9 | 2900                   | 18.8                      |                         |                | 1599.          | 12.0                    |
| 3                          | 72       | 258           | 7.2 | 2850                   |                           |                         |                |                |                         |
| 1<br>3<br>6<br>8           | 72       | 138           | 7.6 | 2750                   |                           |                         |                |                |                         |
|                            | 72       | 180           | 7.2 | 2650                   |                           |                         |                |                |                         |
| 10                         | 72       | 108           | 8.3 | 2700                   |                           |                         |                |                |                         |
| 13                         | 72       | 40            | 8.5 | 2100                   |                           |                         |                |                |                         |
| 15                         | 72       | 23            | 7.7 | 2600                   |                           |                         |                |                |                         |
| 17                         | 72       | 24            | 7.2 | 2450                   |                           |                         |                |                |                         |
| 20                         | 72       | 14            | 7.6 | 2350                   |                           |                         |                |                |                         |
| 22                         | 72       | 12            | 7.7 | 1900                   |                           |                         |                |                |                         |
| 24                         | 72       | 10            | 7.5 | 2450                   | 1.0                       | 2.0                     | 672.           | 1550           | 11.4                    |
| 27                         | 72       | 8             | 8.1 | 2150                   |                           |                         |                |                |                         |
| 29                         | 72       | 8             | 8.4 | 2700                   |                           |                         |                |                |                         |
| 31                         | 72       | 8             | 8.3 | 2600                   |                           |                         |                |                |                         |
| 34                         | 72       | 6             | 7.5 | 2700                   |                           |                         |                |                |                         |
| 36                         | 72       | 5             | 7.2 | 2700                   |                           |                         |                |                |                         |
| 38                         | 72       | 6             | 7.6 | 2600                   |                           |                         |                |                |                         |
| 41                         | 72       | 12            | 8.0 | 2650                   |                           |                         |                |                |                         |
| 45                         | 72       | 20            | 7.6 | 2500                   |                           |                         |                |                |                         |
| 48                         | 72       | 32            | 7.3 | 2800                   |                           |                         |                |                |                         |
| 50                         | 72       | 52            | 7.1 | 2200                   | 19.0                      | 21.0                    | 656            | 1501           | 4.0                     |
|                            |          |               |     |                        |                           |                         |                |                |                         |

<sup>\*</sup>Start-up date was 8/15/72.

TABLE A84

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 75
(5% SODIUM SILICATE, 30% DR)

| DAYS<br>AFTER<br>START-UP* | HEAD | FLOW (ml/min) | pH<br>— | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/1) | TOTAL<br>IRON<br>(mg/l) | CALCIUM<br>(mg/l) | SULFATE (mg/1) | HOT PHT. ACIDITY (mg/l) |
|----------------------------|------|---------------|---------|------------------------|---------------------------|-------------------------|-------------------|----------------|-------------------------|
| 30 min                     | 72   | 104           |         |                        |                           |                         |                   |                |                         |
| 3 hr.                      | 72   | 136           |         |                        |                           |                         |                   |                |                         |
| 8 hr.                      | 72   | 144           | 9.9     |                        |                           |                         |                   |                |                         |
| 1                          | 72   | 148           | 6.7     | 2850                   | 4.0                       | 5.0                     |                   | 1653.          | 4.0                     |
| 3                          | 72   | 206           | 7.2     | 2400                   | 4.0                       | 3.0                     |                   | 1033.          | 4.0                     |
| 3<br>6<br>8                | 72   | 235           | 7.1     | 2800                   |                           |                         |                   |                |                         |
| 8                          | 72   | 176           | 7.3     | 2500                   |                           |                         | 2                 |                |                         |
| 10                         | 72   | 100           | 7.5     | 1950                   |                           |                         |                   |                |                         |
| 13                         | 72   | 44            | 7.6     | 1700                   |                           |                         |                   |                |                         |
| 15                         | 72   | 22            | 7.6     | 2300                   |                           |                         |                   |                |                         |
| 17                         | 72   | <b>7</b> 5    | 7.0     | 2350                   |                           |                         |                   |                |                         |
| 20                         | 72   | 24            | 7.5     | 1950                   |                           |                         |                   |                |                         |
| 22                         | 72   | 23            | 7.5     | 1900                   |                           |                         |                   |                |                         |
| 24                         | 72   | 20            | 7.0     | 2300                   | 1.0                       | 1.0                     | 596.              | 1518.          | 7.6                     |
| 27                         | 72   | 12            | 7.7     | 2050                   | -                         |                         |                   |                |                         |
| 29                         | 72   | 12            | 8.1     | 2600                   |                           |                         |                   |                |                         |
| 31                         | 72   | 16            | 7.9     | 2550                   |                           |                         |                   |                |                         |
| 34                         | 72   | 20            | 7.5     | 2400                   |                           |                         |                   |                |                         |
| 36                         | 72   | 17            | 7.6     | 2550                   |                           |                         |                   |                |                         |
| 38                         | 72   | 18            | 7.5     | 2750                   |                           |                         |                   |                |                         |
| 41                         | 72   | 12            | 8.0     | 2500                   |                           |                         |                   |                |                         |
| 43                         | 72   | 12            | 8.0     | 2800                   |                           |                         |                   |                |                         |
| 45                         | 72   | 26            | 7.5     | 2700                   |                           |                         |                   |                |                         |
| 48                         | 72   | 24            | 7.4     | 2700                   |                           |                         |                   |                |                         |
| 5 <b>0</b>                 | 72   | 16            | 7.4     | 2750                   | 1.0                       | 1.0                     | 612.              | 1441.          | 4.0                     |

<sup>\*</sup>Start-up date was 8/15/72.

TABLE A85

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 76
(2X ORIGINAL FINES, 30% DR)

| DAYS<br>AFTER<br>START-UP* | HEAD | FLOW (ml/min) | <b>н</b> д | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/l) | SULFATE (mg/1) | HOT PHT. ACIDITY (mg/1) |
|----------------------------|------|---------------|------------|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 30 min.                    | 72   | 64            |            |                        |                           |                         |                |                |                         |
| 3 hr.                      | 72   | 80            |            |                        |                           |                         |                |                |                         |
| 8 hr.                      | 72   | 70            | 7.5        |                        |                           |                         |                |                |                         |
| 1                          | 72   | 64            | 6.6        | 3000                   | 1.9                       | 1.5                     |                | 1609.          | 12.0                    |
| 3                          | 72   | 64            | 7.2        | 2400                   |                           |                         |                |                |                         |
| 3<br>6<br>8                | 72   | 56            | 7.3        | 2900                   |                           |                         |                |                |                         |
| 8                          | 72   | 52            | 7.5        | 2200                   |                           |                         |                |                |                         |
| 10                         | 72   | 43            | 6.7        | 2000                   |                           |                         |                |                |                         |
| 13                         | 72   | 18            | 7.5        | 1750                   |                           |                         |                |                |                         |
| 15                         | 72   | 12            | 6.9        | 2200                   |                           |                         |                |                |                         |
| 17                         | 72   | 16            | 7.0        | 2300                   |                           |                         |                |                |                         |
| 20                         | 72   | 8             | 7.5        | 2000                   |                           |                         |                |                |                         |
| 22                         | 72   | 6             | 7.4        | 1950                   |                           |                         |                |                |                         |
| 24                         | 72   | 6             | 7.3        | 2350                   | 1.0                       | 1.0                     | 620.           | 1461.          | 4.0                     |
| 27                         | 72   | 4             | 7.6        | 1950                   |                           |                         |                |                |                         |
| 29                         | 72   | 4             | 7.5        | 2650                   |                           |                         |                |                |                         |
| 31                         | 72   | 4             | 7.9        | 2400                   |                           |                         |                |                |                         |
| 34                         | 72   | 3<br>2        | 7.9        | 2600                   |                           |                         |                |                |                         |
| 36                         | 72   | 2             | 7.8        | 2650                   |                           |                         |                |                |                         |
| 38                         | 72   | 2             | 8.0        | 2450                   |                           |                         |                |                |                         |
| 41                         | 72   | 26            | 8.0        | 2550                   |                           |                         |                |                |                         |
| 43                         | 72   | 4             | 8.0        | 2550                   |                           |                         |                |                |                         |
| 45                         | 72   | 2             | 7.9        | 2600                   |                           |                         |                |                |                         |
| 48                         | 72   | 2             | 7.8        | 2700                   |                           |                         |                | 3.500          |                         |
| 50                         | 72   | 2             | 7.9        | 2500                   | 1.0                       | 1.0                     | 632            | 1502.          | 4.0                     |

<sup>\*</sup>Start-up date was 8/15/72.

TABLE A86

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 77
(2X ORIGINAL FINES, 60% DR)

| DAYS<br>AFTER<br>START-UP* | HEAD<br>(in) | FLOW (ml/min) | рН         | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/1) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/1) | SULFATE<br>(mg/l | HOT PHT. ACIDITY (mg/1) |
|----------------------------|--------------|---------------|------------|------------------------|---------------------------|-------------------------|----------------|------------------|-------------------------|
| 30 min.                    | 72           | 0             |            |                        |                           |                         |                |                  |                         |
| 3 hr.                      | 72           | 35            |            |                        |                           |                         |                |                  |                         |
| 8 hr.                      | 72           | 30            | 7.7        | 2850                   | 1.0                       | 1.0                     |                | 1773.            | 11.2                    |
| 7                          | 72<br>72     | 24<br>21      | 7.0<br>7.4 | 2300                   | 1.0                       | 1.0                     |                | 1//3.            | 11.2                    |
| 1<br>3<br>6<br>8           | 72           | 20            | 7.5        | 2750                   |                           |                         |                |                  |                         |
| Ω<br>R                     | 72           | 24            | 7.7        | 2350                   |                           |                         |                |                  |                         |
| 10                         | 72           | 36            | 7.3        | 1950                   |                           |                         | ,              |                  |                         |
| 13                         | 72           | 16            | 7.6        | 1750                   |                           |                         |                |                  |                         |
| 15                         | 72           | 10            | 7.3        | 2150                   |                           |                         |                |                  |                         |
| 17                         | 72           | 12            | 7.3        | 2350                   |                           |                         |                |                  |                         |
| 20                         | 72           | 6             | 7.7        | 1850                   |                           |                         |                |                  |                         |
| 22                         | 72           | 4             | 7.7        | 1900                   |                           |                         |                |                  |                         |
| 24                         | 72           | 4             | 7.5        | 2300                   | 1.0                       | 1.0                     | 580.           | 1416.            | 4.0                     |
| 27                         | 72           | 3             | 7.9        | 1750                   |                           |                         |                |                  |                         |
| 29                         | 72           | 3<br>2<br>2   | 7.4        | 2350                   |                           |                         |                |                  |                         |
| 31                         | 72           | 2             | 8.0        | 2450                   |                           |                         |                |                  |                         |
| 34                         | 72           | 1             | 8.0        | 2400                   |                           |                         |                |                  |                         |
| 36                         | 72           | 1             | 7.7        | 2800                   |                           |                         |                |                  |                         |
| 38                         | 72           | 1             | 7.4        | 2550<br>2400           |                           |                         |                |                  |                         |
| 41                         | 72           | 4             | 8.0<br>8.0 | 2600                   |                           |                         |                |                  |                         |
| 43                         | 72<br>72     | 3<br>2        | 8.0        | 2650                   |                           |                         |                |                  |                         |
| 45                         | 72<br>72     | ĺ             | 7.9        | 2600                   |                           |                         |                |                  |                         |
| 48<br>50                   | 72<br>72     | 1             | 8.0        | 2550                   | 1.0                       | 1.0                     | 628.           | 1472.            | 4.0                     |
|                            |              |               |            |                        |                           |                         |                |                  |                         |

<sup>\*</sup>Start-up date was 8/15/72.

TABLE A87

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 78
(3X ORIGINAL FINES, 30% DR)

| DAYS<br>AFTER<br>START-UP* | HEAD | FLOW (ml/min) | рĦ<br>— | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/1) | TOTAL IRON (mg/l) | CALCIUM (mg/l) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/l) |
|----------------------------|------|---------------|---------|------------------------|---------------------------|-------------------|----------------|----------------|-------------------------|
| 30 min.                    | 72   | 0             |         |                        |                           |                   |                |                |                         |
| 3 hr.                      | 72   | 0             |         |                        |                           |                   |                |                |                         |
| 8 hr.                      | 72   | 0             |         |                        |                           |                   |                |                |                         |
| 1                          | 72   | 0             |         |                        |                           |                   |                |                |                         |
| 3<br>6                     | 72   | 0             |         |                        |                           |                   |                |                |                         |
| 6                          | 72   | 1.6           | 7.3     | 4050                   |                           |                   |                |                |                         |
| 8                          | 72   | 1.0           | 8.7     | 3150                   |                           |                   |                |                |                         |
| 10                         | 72   | 2.2           | 8.4     | 3150                   |                           |                   |                |                |                         |
| 13                         | 72   | 2.8           | 7.0     | 1900                   |                           |                   |                |                |                         |
| 15                         | 72   | 2.6           | 7.3     | 1800                   |                           |                   |                |                |                         |
| 17                         | 72   | 2.0           | 8.0     | 1650                   |                           |                   |                |                |                         |
| 20                         | 72   | 2.0           | 7.8     | 1850                   |                           |                   |                |                |                         |
| 22                         | 72   | 1.5           | 8.0     | 1850                   |                           |                   |                |                |                         |
| 24                         | 72   | 2.0           | 7.7     | 2200                   | 1.0                       | 1.0               | 472.           | 1323.          | 4.0                     |
| 27                         | 72   | 2.0           | 8.0     | 1750                   |                           |                   |                |                |                         |
| 29                         | 72   | 2.0           | 7.9     | 2400                   |                           |                   |                |                |                         |
| 31                         | 72   | 2.0           | 8.0     | 2400                   |                           |                   |                |                |                         |
| 34                         | 72   | 1.0           | 8.0     | 2450                   |                           |                   |                |                |                         |
| 36                         | 72   | 1.0           | 8.1     | 2350                   |                           |                   |                |                |                         |
| 38                         | 72   | 1.0           | 8.1     | 2500                   |                           |                   |                |                |                         |
| 41                         | 72   | 2.0           | 8.2     | 2400                   |                           |                   |                |                |                         |
| 43                         | 72   | 2.0           | 8.1     | 2450                   |                           |                   |                |                |                         |
| 45                         | 72   | 1.0           | 8.0     | 2450                   |                           |                   |                |                |                         |
| 48                         | 72   | 1.0           | 8.1     | 2300                   |                           |                   |                |                | . :_                    |
| 50                         | 72   | 1.0           | 8.0     | 2450                   | 1.0                       | 1.0               | 576.           | 1375.          | 4.0                     |

<sup>\*</sup>Start-up date was 8/15/72.

TABLE A88

#### FLOW AND EFFLUENT COMPOSITION DATA FOR TEST VESSEL NO. 79 (3X ORIGINAL FINES, 60% DR)

| DAYS<br>AFTER<br>START-UP* | HEAD | FLOW p | — | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/1) | CALCIUM<br>(mg/l) | SULFATE (mg/1) | HOT PHT. ACIDITY (mg/l) |
|----------------------------|------|--------|---|------------------------|---------------------------|-------------------------|-------------------|----------------|-------------------------|
| 30 min.                    | 72   | 0      |   |                        |                           |                         |                   |                |                         |
| 3 hr.                      | 72   | 0      |   |                        |                           |                         |                   |                |                         |
| 8 hr.                      | 72   | 0      |   |                        |                           |                         |                   |                |                         |
| 1                          | 72   | 0      |   |                        |                           |                         |                   |                |                         |
| 3                          | 72   | 0      |   |                        |                           |                         |                   |                |                         |
| 6                          | 72   | 0      |   |                        |                           |                         |                   |                |                         |
| 8                          | 72   | 0      |   |                        |                           | ,                       |                   |                |                         |
| 10                         | 72   | 0      |   |                        |                           |                         |                   |                |                         |
| 13                         | 72   | 0      |   |                        |                           |                         |                   |                |                         |
| 15                         | 72   | 0      |   |                        |                           |                         |                   |                |                         |
| 17                         | 72   | 0      |   |                        |                           |                         |                   |                |                         |
| 20                         | 72   | 0      |   |                        |                           |                         |                   |                |                         |
| 22                         | 72   | 0      |   |                        |                           |                         |                   |                |                         |
| 24                         | 72   | 0      |   |                        |                           |                         |                   |                |                         |
| 27                         | 72   | 0      |   |                        |                           |                         |                   |                |                         |
| 29                         | 72   | 0      |   |                        |                           |                         |                   |                |                         |
| 31                         | 72   | 0      |   |                        |                           |                         |                   |                |                         |
| 34                         | 72   | 0      |   |                        |                           |                         |                   |                |                         |
| 36                         | 72   | 0      |   |                        |                           |                         |                   |                |                         |
| 38                         | 72   | 0      |   |                        |                           |                         |                   |                |                         |
| 41                         | 72   | 0      |   |                        |                           |                         |                   |                |                         |
| 43                         | 72   | 0      |   |                        |                           |                         |                   |                |                         |
| 45                         | 72   | 0      |   |                        |                           |                         |                   |                |                         |
| 48                         | 72   | 0      |   |                        |                           |                         |                   |                |                         |
| 50                         | 72   | 0      |   |                        |                           |                         |                   |                |                         |

<sup>\*</sup>Start-up date was 8/15/72.

TABLE A89

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 80
("ZONED" PLUG, 30% DR)

| DAYS<br>AFTER<br>START-UP* | HEAD | FLOW (ml/min) | pH<br>—     | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/1) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/l) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/l) |
|----------------------------|------|---------------|-------------|------------------------|---------------------------|-------------------------|----------------|----------------|-------------------------|
| 30 min.                    | 72   | 62            |             |                        |                           |                         |                |                |                         |
| 3 hr.                      | 72   | 236           |             |                        |                           |                         |                |                |                         |
| 8 hr.                      | 72   | 196           | 6.8         |                        |                           |                         |                |                |                         |
| 1                          | 72   | 130           | 6.5         | 3000                   | 15.0                      | 17.5                    |                | 1707.          | 4.0                     |
| 1<br>3<br>6                | 72   | 181           | 7.1         | 2800                   |                           |                         |                |                |                         |
|                            | 72   | 300           | 7.0         | 2850                   |                           |                         |                |                |                         |
| 8                          | 72   | 208           | 7.2         | 2500                   |                           |                         |                |                |                         |
| 10                         | 72   | 72            | 7.2         | 2550                   |                           |                         |                |                |                         |
| 13                         | 72   | 34            | 6.9         | 2050                   |                           |                         |                |                |                         |
| 15                         | 72   | 26            | 7.1         | 2450                   |                           |                         |                |                |                         |
| 17                         | 72   | 29            | 7.2         | 2300                   |                           |                         |                |                |                         |
| 20                         | 72   | 20            | 7.4         | 1850                   |                           |                         |                |                |                         |
| 22                         | 72   | 16            | 7.3         | 1950                   |                           |                         |                |                |                         |
| 24                         | 72   | 16            | 7.1         | 2300                   | 1.0                       | 1.0                     | 608.           | 1482.          | 4.0                     |
| 27                         | 72   | 15            | 7.0         | 2100                   |                           |                         |                |                |                         |
| 29                         | 72   | 12            | <b>7.</b> 5 | 2550                   |                           |                         |                |                |                         |
| 31                         | 72   | 12            | 7.5         | 2500                   |                           |                         |                |                |                         |
| 34                         | 72   | 13            | 7.3         | 2650                   |                           |                         |                |                |                         |
| 36                         | 72   | 12            | 7.4         | 2600                   |                           |                         |                |                |                         |
| 38                         | 72   | 14            | 7.3         | 2600                   |                           |                         |                |                |                         |
| 41                         | 72   | 16            | 7.5         | 2750                   |                           |                         |                |                |                         |
| 43                         | 72   | 24            | 7.4         | 2800                   |                           |                         |                |                |                         |
| 45                         | 72   | 24            | 7.3         | 2750                   |                           |                         |                |                |                         |
| 48                         | 72   | 2             | 7.4         | 25 <b>50</b>           |                           |                         |                |                |                         |
| 50                         | 72   | 20            | 7.3         | 2650                   | 3.0                       | 3.0                     | 636.           | 1476.          | 4.0                     |

<sup>\*</sup>Start-up date was 8/15/72.

TABLE A90

FLOW AND EFFLUENT COMPOSITION DATA FOR TEST VESSEL NO. 81 (3/8 x 0 STONE, 30% DR)

| DAYS<br>AFTER<br>START-UP* | HEAD<br>(in) | FLOW (ml/min) | рH<br>— | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/l) | CALCIUM (mg/l) | SULFATE (mg/l) | HOT PHT<br>ACIDITY<br>(mg/l) |
|----------------------------|--------------|---------------|---------|------------------------|---------------------------|-------------------------|----------------|----------------|------------------------------|
| 30 min.                    | 72           | 406           |         |                        |                           |                         |                |                |                              |
| 3 hr.                      | 72           | 360           |         |                        |                           |                         |                |                |                              |
| 8 hr.                      | 72           | 280           | 6.8     |                        |                           |                         |                |                |                              |
| 1                          | 72           | 170           | 6.5     | 2900                   | 18.8                      | 18.8                    |                | 1665           | 4.0                          |
| 3<br>6                     | 72           | 160           | 6.5     | 2400                   |                           |                         |                |                |                              |
| 6                          | 72           | 176           | 6.9     | 2600                   |                           |                         |                |                |                              |
| 8                          | 72           | 136           | 7.1     | 2250                   |                           |                         |                |                |                              |
| 10                         | 72           | 80            | 7:0     | 2000                   |                           | ,                       |                |                |                              |
| 13                         | 72           | 17            | 7.1     | 1900                   |                           |                         |                |                |                              |
| 15                         | 72           | 12            | 7.3     | 2100                   |                           |                         |                |                |                              |
| 17                         | 72           | 12            | 7.3     | 2300                   |                           |                         |                |                |                              |
| 20                         | 72           | 8             | 7.5     | 1800                   |                           |                         |                |                |                              |
| 22                         | 72           | 6             | 7.7     | 1900                   |                           |                         |                |                |                              |
| 24                         | 72           | 4             | 7.3     | 2250                   | <1.0                      | <1.0                    | 612.           | 1456.          | <4.0                         |
| 27                         | 72           | 4             | 7.8     | 2050                   |                           |                         |                |                |                              |
| 29                         | 72           | 4             | 7.8     | 2650                   |                           |                         |                |                |                              |
| 31                         | 72           | 4             | 6.4     | 2450                   |                           |                         |                |                |                              |
| 34                         | 72           | 2<br>2        | 8.0     | 2700                   |                           |                         |                |                |                              |
| 36                         | 72           | 2             | 7.9     | 2600                   |                           |                         |                |                |                              |
| 38                         | 72           | 2             | 7.9     | 2500                   |                           |                         |                |                |                              |
| 41                         | 72           | 4             | 7.8     | 2650                   |                           |                         |                |                |                              |
| 43                         | 72           | 4             | 7.9     | 2600                   |                           |                         |                |                |                              |
| 45                         | 72           | 2             | 7.8     | 2700                   |                           |                         |                |                |                              |
| 48                         | 72           | 2<br>2        | 7.7     | 2650                   |                           |                         |                |                |                              |
| 50                         | 72           | 2             | 8.0     | 2550                   | <1.0                      | <1.0                    | 660.           | 1518.          | <4.0                         |

<sup>\*</sup>Start-up date was 8/15/72.

TABLE A91

FLOW AND EFFLUENT COMPOSITION DATA FOR TEST VESSEL NO. 82
(3/8 x 0 STONE, 60% DR)

| PH COND. IRON IRON CALCIUM SULFATE ACID                                                                                                    | PHT.<br>DITY<br>g/1) |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|                                                                                                                                            |                      |
| 7.0                                                                                                                                        |                      |
| 0.0 2000                                                                                                                                   | <4.0                 |
| 7.2 2250                                                                                                                                   |                      |
| 7.0 2700                                                                                                                                   |                      |
| 6.7 2200                                                                                                                                   |                      |
| 7.4 1900                                                                                                                                   |                      |
| 7.4 1600                                                                                                                                   |                      |
| 6.2 1950                                                                                                                                   |                      |
| • • •                                                                                                                                      |                      |
| · · · ·                                                                                                                                    |                      |
|                                                                                                                                            | <4.0                 |
| 7.1 2100                                                                                                                                   |                      |
|                                                                                                                                            |                      |
|                                                                                                                                            |                      |
|                                                                                                                                            |                      |
|                                                                                                                                            |                      |
|                                                                                                                                            |                      |
|                                                                                                                                            |                      |
|                                                                                                                                            |                      |
|                                                                                                                                            |                      |
|                                                                                                                                            |                      |
| 8.0 2300 <1.0 <1.0 584 1509 <                                                                                                              | 4.0                  |
| 7.8 2200 7.6 1750 7.7 1800 7.1 2100 <1.0 532 1504 8.0 1700 8.0 2500 6.8 400 7.9 2500 8.0 2300 8.1 2400 8.0 2350 8.1 2500 8.0 2450 7.9 2500 |                      |

<sup>\*</sup>Start-up date was 8/15/72.

TABLE A92

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 83
(3/8 x 0 STONE, 0% DR)

| DAYS<br>AFTER<br>START-UP* | HEAD (in) | FLOW (ml/min) | р <b>Н</b> | SP.<br>COND.<br>(µmho) | FERROUS IRON (mg/1) | TOTAL IRON (mg/1) | CALCIUM (mg/1) | SULFATE (mg/1) | HOT PHT. ACIDITY (mg/1) |
|----------------------------|-----------|---------------|------------|------------------------|---------------------|-------------------|----------------|----------------|-------------------------|
| 30 min.                    | 72        | 600           |            |                        |                     |                   |                |                |                         |
| 3 hr.                      | 72        | 530           |            |                        |                     |                   |                |                |                         |
| 8 hr.                      | 72        | 480           | 7.4        |                        | _                   |                   |                |                |                         |
| 1                          | 72        | 400           | 8.4        | 600                    | <1.0                | <1.0              |                | 223.           | <4.0                    |
| 3                          | 72        | 464           | 8.4        | 700                    |                     |                   |                |                |                         |
| 1<br>3<br>6<br>8           | 72        | 456           | 8.1        | 800                    |                     |                   |                |                |                         |
| 8                          | 72        | 328           | 7.3        | 800                    |                     |                   |                |                |                         |
| 10                         | 72        | 1400          |            | 600                    |                     | ,                 |                |                |                         |
| 13                         | 72        | 2000          | 8.1        | <b>7</b> 00            |                     |                   |                |                |                         |
| 15                         | 72        | 1880          | 6.8        | 800                    |                     |                   |                |                |                         |
| 17                         | 72        | 1960          | 7.8        | 800                    |                     |                   |                |                |                         |
| 20                         | 72        | 1720          | 8.0        | 650                    |                     |                   |                |                |                         |
| 22                         | 72        | 1800          | 8.2        | 600                    |                     | _                 |                |                |                         |
| 24                         | 72        | 1480          | 7.3        | 900                    | <1.0                | <1.0              | 40.            | 242.           | 7.6                     |
| 27                         | 72        | 1400          | 8.5        | 600                    |                     |                   |                |                |                         |
| 29                         | 72        | 1340          | 8.4        | 700                    |                     |                   |                |                |                         |
| 31                         | 72        | 1220          | 7.2        | 700                    |                     |                   |                |                |                         |
| 34                         | 72        | 1180          | 8.1        | 600                    |                     |                   |                |                |                         |
| 36                         | 72        | 1100          | 8.7        | 750                    |                     |                   |                |                |                         |
| 38                         | 72        | 1100          | 8.6        | 750                    |                     |                   |                |                |                         |
| 41                         | 72        | 1100          | 8.3        | 850                    |                     |                   |                |                |                         |
| 43                         | 72        | 1080          | 8.4        | 900                    |                     |                   |                |                |                         |
| 45                         | 72        | 1060          | 8.3        | 850                    |                     |                   |                |                |                         |
| 48                         | 72        | 1040          | 8.3        | 800                    |                     |                   |                |                |                         |
| 50                         | 72        | 1000          | 7.7        | 900                    | <1.0                | <1.0              | 104.           | 247.           | <4.0                    |

<sup>\*</sup> Start-up date was 8/15/72.

TABLE A93

FLOW AND EFFLUENT COMPOSITION DATA
FOR TEST VESSEL NO. 84
(3/8 x 0 STONE, 30% DR)

| DAYS<br>AFTER<br>START-UP* | HEAD<br>(in) | FLOW (ml/min) | pH<br>— | SP.<br>COND.<br>(µmho) | FERROUS<br>IRON<br>(mg/l) | TOTAL<br>IRON<br>(mg/l) | CALCIUM<br>(mg/l) | SULFATE (mg/l) | HOT PHT. ACIDITY (mg/l) |
|----------------------------|--------------|---------------|---------|------------------------|---------------------------|-------------------------|-------------------|----------------|-------------------------|
| 30 min.                    | 72           | 420           |         |                        |                           |                         |                   |                |                         |
| 3 hr.                      | 72           | 370           |         |                        |                           |                         |                   |                |                         |
| 8 hr.                      | 72           | 310           | 8.4     |                        |                           |                         |                   |                |                         |
| 1                          | 72           | 232           | 8.4     | 600                    | <1.0                      | <1.0                    |                   | 228.           | <4.0                    |
| 3<br>6<br>8<br>10          | 72           | 300           | 8.4     | 700                    |                           |                         |                   |                |                         |
| 6                          | 72           | 324           | 8.2     | 700                    |                           |                         |                   |                |                         |
| 8                          | 72           | 280           | 7.7     | 750                    |                           |                         |                   |                |                         |
| 10                         | 72           | 840           |         | 600                    |                           |                         |                   |                |                         |
| 13                         | 72           | 1240          | 8.8     | 650                    |                           |                         |                   |                |                         |
| 15                         | 72           | 1160          | 7.3     | 700                    |                           |                         |                   |                |                         |
| 17                         | 72           | 1160          | 8.8     | 600                    |                           |                         |                   |                |                         |
| 20                         | 72           | 1080          | 8.0     | 600                    |                           |                         |                   |                |                         |
| 22                         | 72           | 1000          | 8.6     | 550                    |                           |                         |                   |                |                         |
| 24                         | 72           | 960           | 7.1     | 700                    | <1.0                      | <1.0                    | 44.               | 247.           | 7.6                     |
| 27                         | 72           | 960           | 8.5     | 500                    |                           |                         |                   |                |                         |
| 29                         | 72           | 800           | 8.6     | 600                    |                           |                         |                   |                |                         |
| 31                         | 72           | 800           | 7.5     | 600                    |                           |                         |                   |                |                         |
| 34                         | 72           | 740           | 8.5     | 750                    |                           |                         |                   |                |                         |
| 36                         | 72           | 760           | 8.6     | 650                    |                           |                         |                   |                |                         |
| 38                         | 72           | 720           | 7.5     | 80 <b>0</b>            |                           |                         |                   |                |                         |
| 41                         | 72           | 680           | 8.5     | 800                    |                           |                         |                   |                |                         |
| 43                         | 72           | 700           | 8.5     | 800                    |                           |                         |                   |                |                         |
| 45                         | 72           | 700           | 8.3     | 750                    |                           |                         |                   |                |                         |
| 48                         | 72           | 640           | 8.3     | 750                    |                           |                         |                   |                |                         |
| 50                         | 72           | 640           | 7.8     | 850                    | <1.0                      | <1.0                    | 92.               | 328.           | <4.0                    |

<sup>\*</sup>Start-up date was 8/15/72.

#### TABLE A94

#### COMPARISON OF PARTICLE SIZE DISTRIBUTION

### BEFORE AND AFTER 50 DAYS OF FERRIC-FERROUS MINE WATER PERCOLATION VARYING QUANTITIES OF FINES AND DENSITIES IN TEST VESSELS

#### MATERIAL NO. 1809

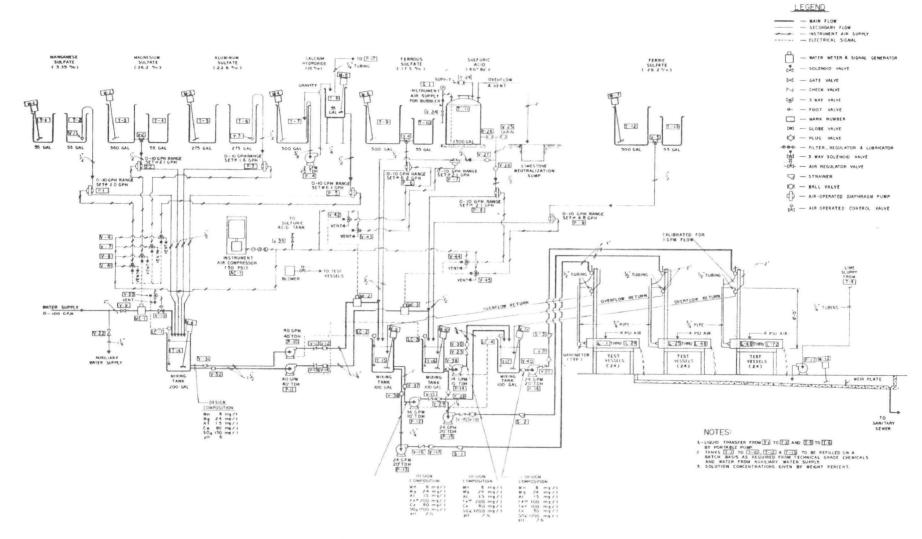
#### (Percent of Material Smaller by Weight)

|               |                |        | Natural a                               |                                         |        | x Fines                                             |                                                         | 3 x    | 3 x Fines <sup>c</sup>                  |                                                 |  |
|---------------|----------------|--------|-----------------------------------------|-----------------------------------------|--------|-----------------------------------------------------|---------------------------------------------------------|--------|-----------------------------------------|-------------------------------------------------|--|
| Sieve<br>Size | (a)<br>Natural | Before | After<br>DR <sup>d</sup> =30%<br>TVe 81 | After<br>DR <sup>d</sup> =60%<br>TVe 82 | Before | After<br>DR <sup>d</sup> =30%<br>TV <sup>e</sup> 76 | After<br>DR <sup>d</sup> <b>≈</b> 60%<br>TV <b>e</b> 77 | Before | After<br>DR <sup>d</sup> =30%<br>TWC 78 | After<br>DR <sup>d</sup> =60%<br>T <b>ve</b> 79 |  |
|               |                |        |                                         |                                         |        |                                                     |                                                         |        |                                         |                                                 |  |
| 3/8           | 100            | 100    | 100                                     | 100                                     | 100    | 100                                                 | 100                                                     | 100    | 100                                     | 100                                             |  |
| 4             | 99.7           | 99.7   | 99.8                                    | 100                                     | 99.0   | 98.7                                                | 99.6                                                    | 99.5   | 100                                     | 99.8                                            |  |
| 8             | 69.7           | 69.7   | 71.5                                    | 69 <b>.3</b>                            | 59.6   | 63.5                                                | 61.0                                                    | 85.4   | 83.1                                    | 84.2                                            |  |
| 16            | 42.7           | 42.7   | 46.5                                    | 43.6                                    | 40.8   | 42.6                                                | 41.5                                                    | 68.5   | 67.3                                    | 66.2                                            |  |
| 30            | 26.0           | 26.0   | 27.2                                    | 24.7                                    | 31.4   | 32.8                                                | 33.1                                                    | 56.5   | 56.1                                    | 55.7                                            |  |
| 50            | 15.8           | 15.8   | 16.8                                    | 15.4                                    | 26.0   | 27.2                                                | 28.2                                                    | 48.2   | 47.5                                    | 48.3                                            |  |
| 100           | 10.1           | 10.1   | 11.5                                    | 10.9                                    | 17.4   | 19.2                                                | 18.9                                                    | 32.6   | 34.0                                    | 35.0                                            |  |
| 200           | 6.9            | 6.9    | 8.7                                     | 8.6                                     | 11.6   | 14                                                  | 16.5                                                    | 21.1   | 24.9                                    | 25.6                                            |  |

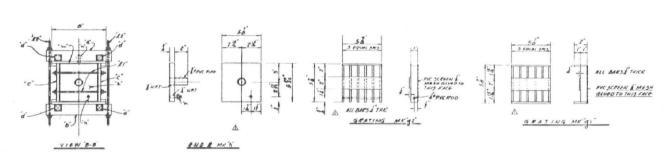
<sup>(</sup>a) Natural - as obtained from stone quarry.

<sup>(</sup>b) 2 x Fines - Approximately double percent of fines as measured by No. 50 Sieve.

<sup>(</sup>c) 3 x Fines - As above, but three times fines.

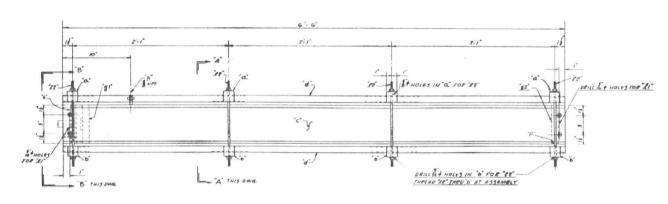

<sup>(</sup>d) DR - Relative Density

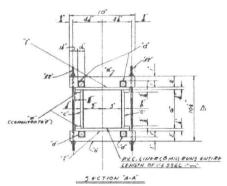
<sup>(</sup>e) TV - Test Vessel.


# TABLE A95 COMPARISON OF PARTICLE SIZE DISTRIBUTIONS BEFORE AND AFTER 50 DAYS OF FERRIC-FERROUS MINE WATER PERCOLATION MATERIAL NO. 1809 WITH ADDITIVES (PERCENT OF MATERIAL SMALLER BY WEIGHT)

|               |         | 5% C   | 5% Cement                    |        | ium Sulfate                  | 5% Sodium Sulfate |                              | Zoned  |                                |
|---------------|---------|--------|------------------------------|--------|------------------------------|-------------------|------------------------------|--------|--------------------------------|
| Sieve<br>Size | Natural | Before | $\frac{DR^{a}=30\%}{TV^{b}}$ | Before | $\frac{DR^{a}=30\%}{TV^{b}}$ | Before            | $\frac{DR^{a}=30\%}{TV^{b}}$ | Before | $\frac{DR^{a}=30\%}{TV^{b}80}$ |
| 3/8           | 100     | 100    | 100                          | 100    | 100                          | 100               | 100                          | 100    | 100                            |
| 4             | 99.7    | 100    | 99.5                         | 99.5   | 99.6                         | 99.4              | 99.5                         | 99.7   | 100                            |
| 8             | 69.7    | 72.2   | 51.5                         | 58.6   | 68.6                         | 70.4              | 65.6                         | 69.7   | 60.1                           |
| 16            | 42.7    | 47.5   | 39.4                         | 35.0   | 42.0                         | 46.6              | 40.1                         | 42.7   | 35.8                           |
| 30            | 26.0    | 31.2   | 35.8                         | 22.6   | 26.3                         | 24.5              | 25.6                         | 26.0   | 21.6                           |
| 50            | 15.8    | 21.0   | 22.7                         | 15.8   | 17.5                         | 13.4              | 17.3                         | 15.8   | 14.0                           |
| 100           | 10.1    | 14.9   | 14.0                         | 11.0   | 12.8                         | 7.8               | 12.4                         | 10.1   | 10.2                           |

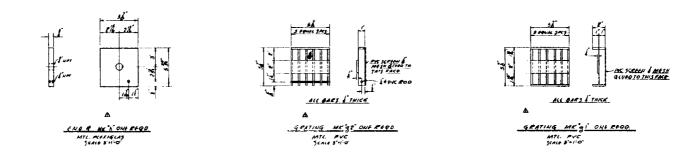
- (a) DR Relative Density.
- (b) TV Test Vessel.





PROCESS FLOW DIAGRAM
FIGURE A1



| ИK    | F 160 | DESCRIPTION                      | HI  | EGMAEK S    |
|-------|-------|----------------------------------|-----|-------------|
| -4-   | owe   | 7837 VE35EL                      |     | SEE DETAIL  |
| .0.   | 4     | BAR - 2" 1 2" 1 0'- 10"          | Na  |             |
| *b"   | 14    | BAR - 2' x L' x 0'-10"           | WO. |             |
| °C.   | 2     | 4.0" x 1 x 0'6'                  | PL. |             |
| 'd"   | 4     | TUBING - 1' x 1" x 6'.6"         | 376 |             |
| ·e"   | 4     | BAR-L" x L x G'-6"               | PL. |             |
|       | 2     | R. 8' X1' X G'-G"                | PL  |             |
| · a1" | ONE   | GRATING                          | PH  | 364 DETAIL  |
| .42   | ONE   | GRATING                          | PK  | * 11        |
| h     | ONE   | END R                            | DL. | 11 11       |
| 21    | 4     | COO. TO XO B THE PARTIES PUSHE.  | 276 | 14 T. B. E. |
| 110   | 8     | POO. 1 + x 1:0 % 2NUTS # E HUSAU | 357 | 14 T.B.S.   |
| * Tro | dus   | LINER 2-6'x G.G BMIL. THE        | PK  |             |
| h     | 8     | 1' + MALE CONMECTOR              | PR  |             |
| 'p"   | 1     | BAR-1 16 4 0.6                   | 258 | -           |


NOTE:
PARTS MK H. ST. 12 TOFIT SNUGLY IN \$106
VESSEL AS SNOWN

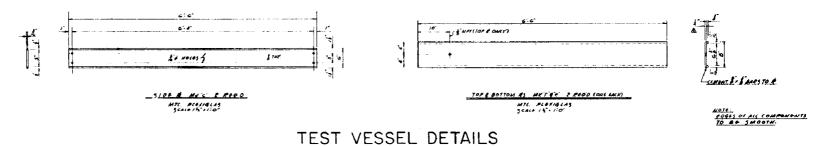
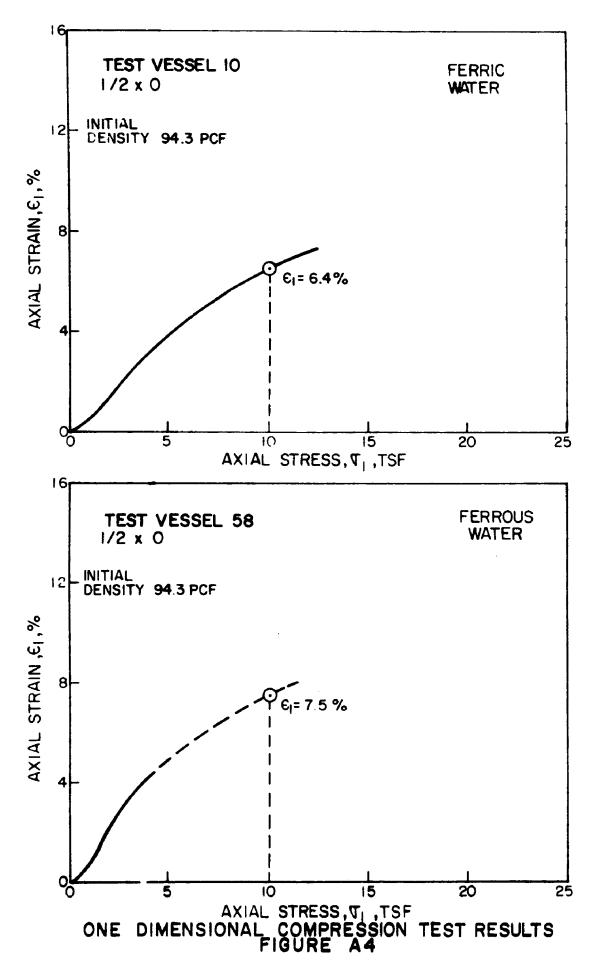
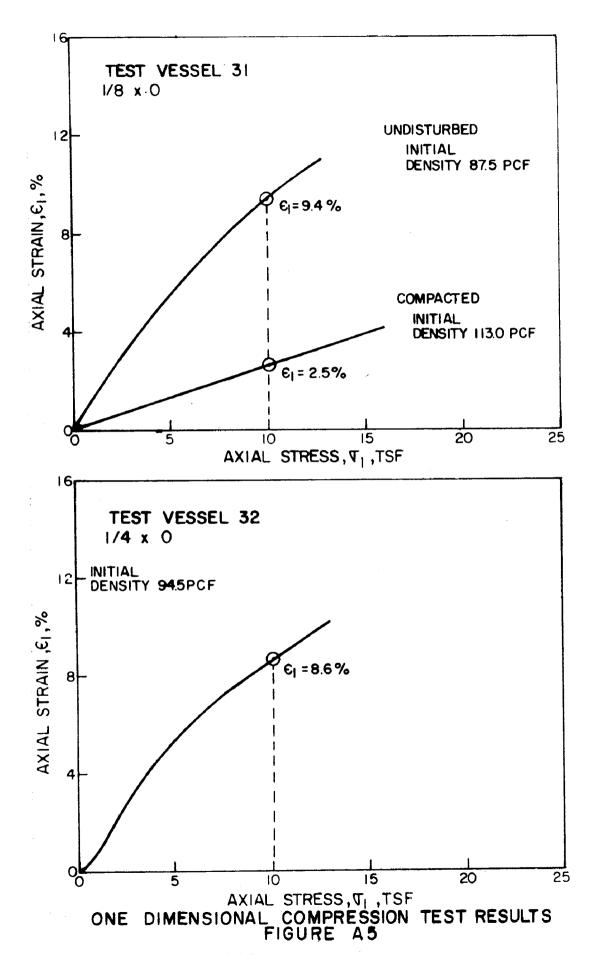
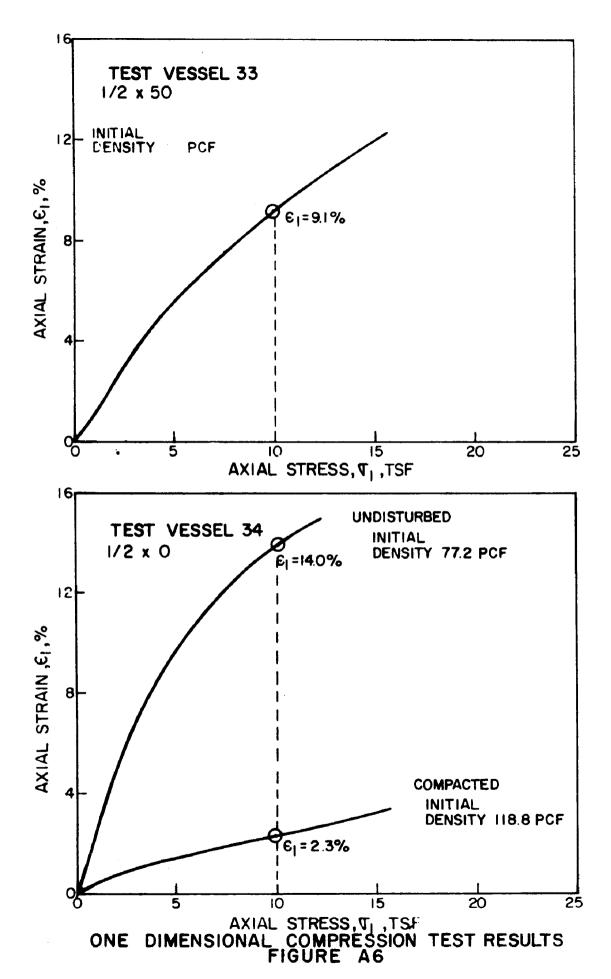
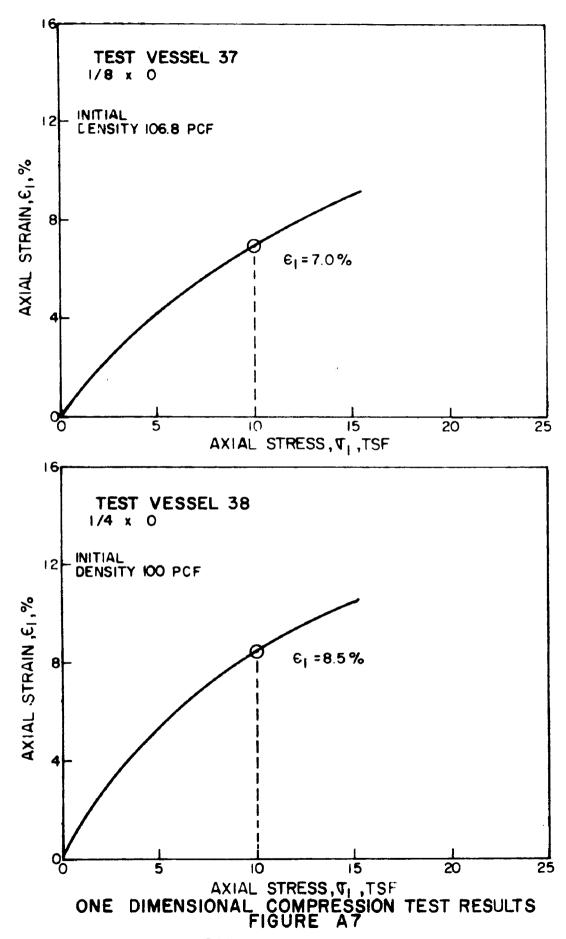


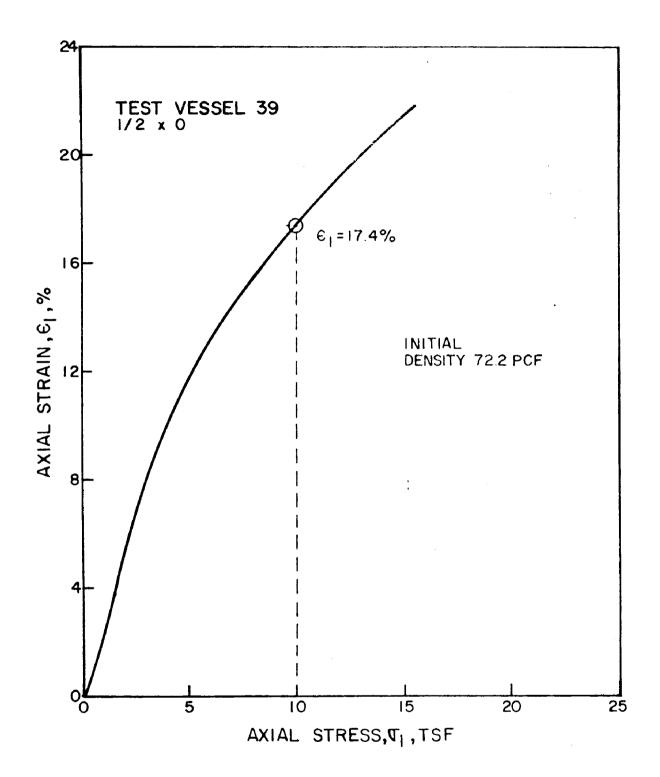


TEST VESSEL DETAIL
FIGURE A2

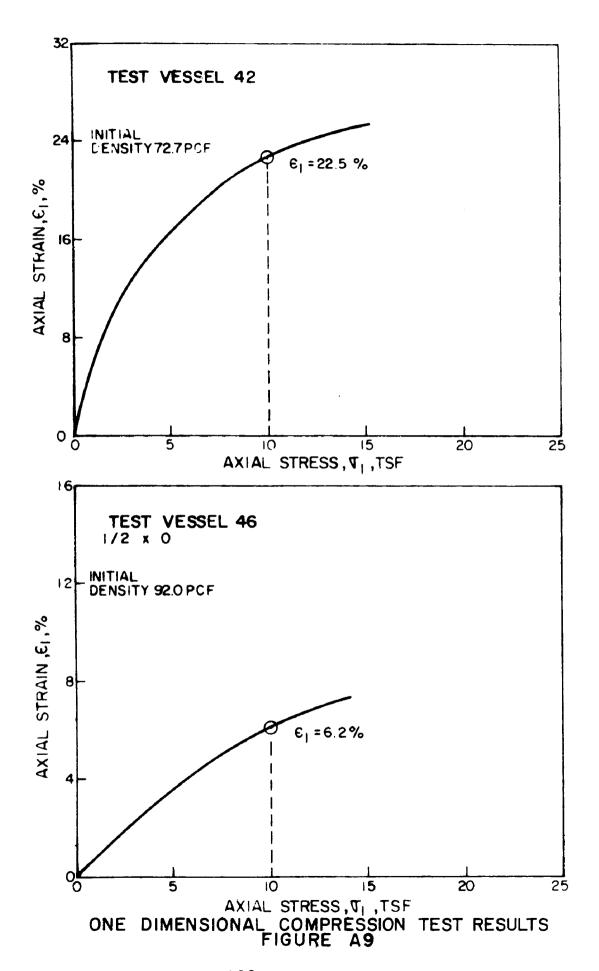
V E S S E L MR "L"

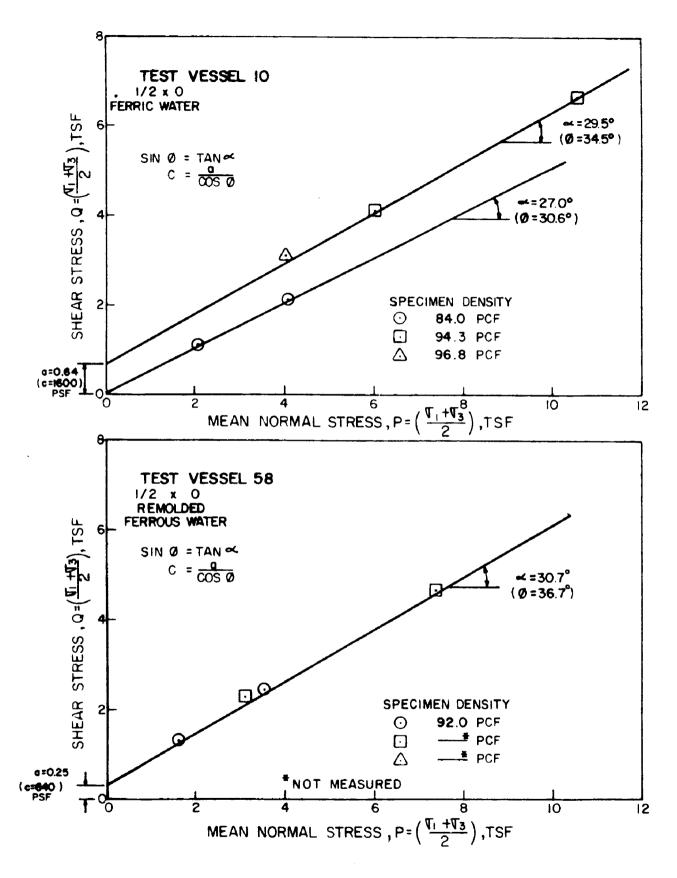


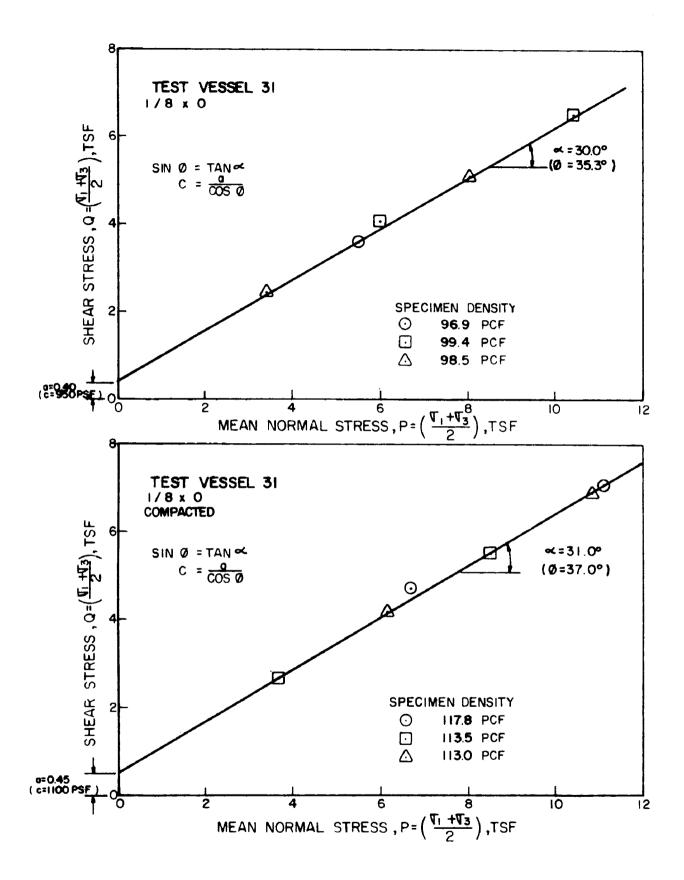


FIGURE A3



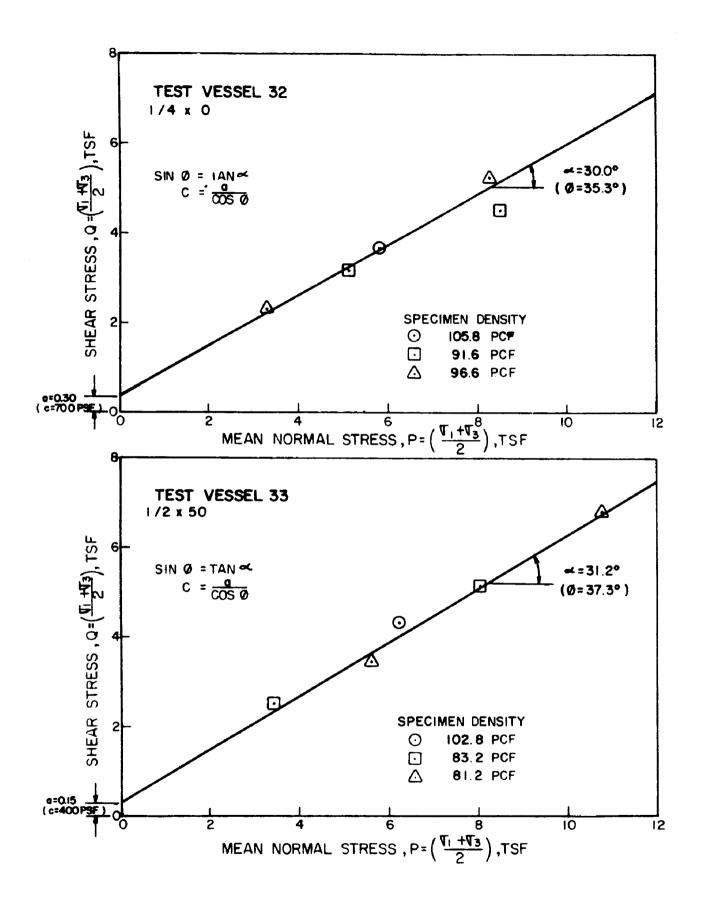


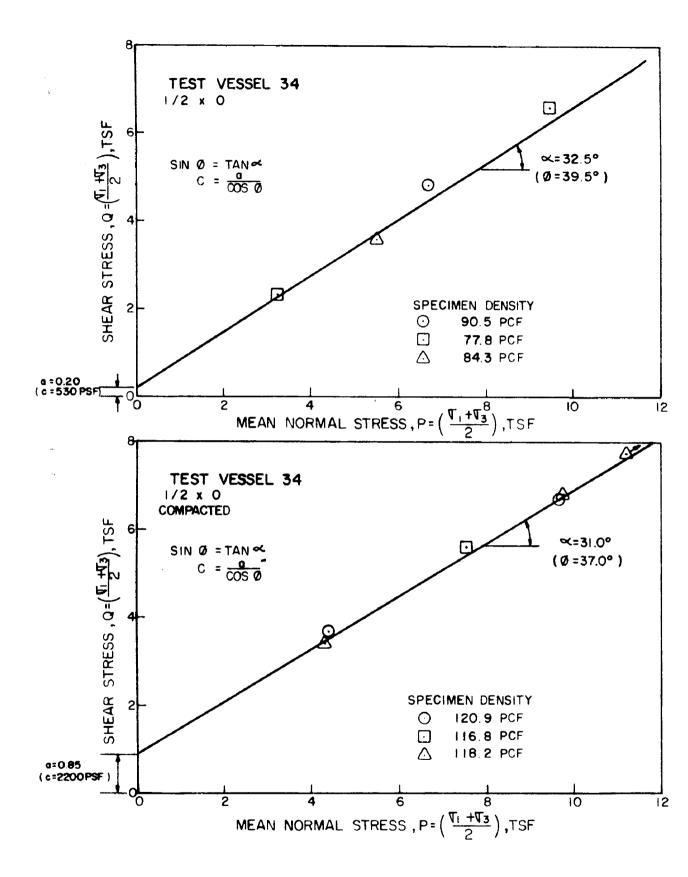


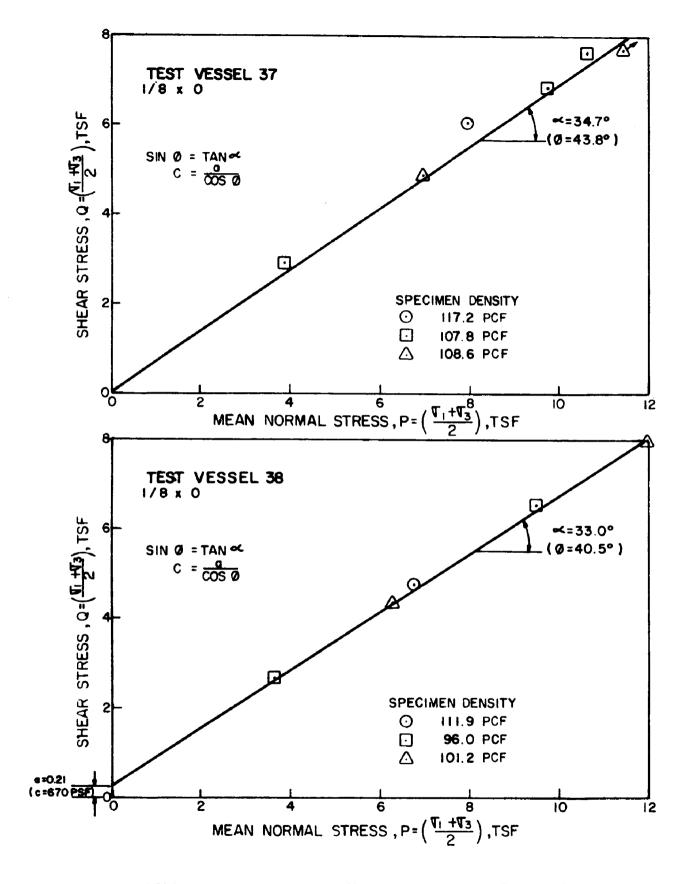

ONE DIMENSIONAL COMPRESSION TEST RESULTS
FIGURE A8



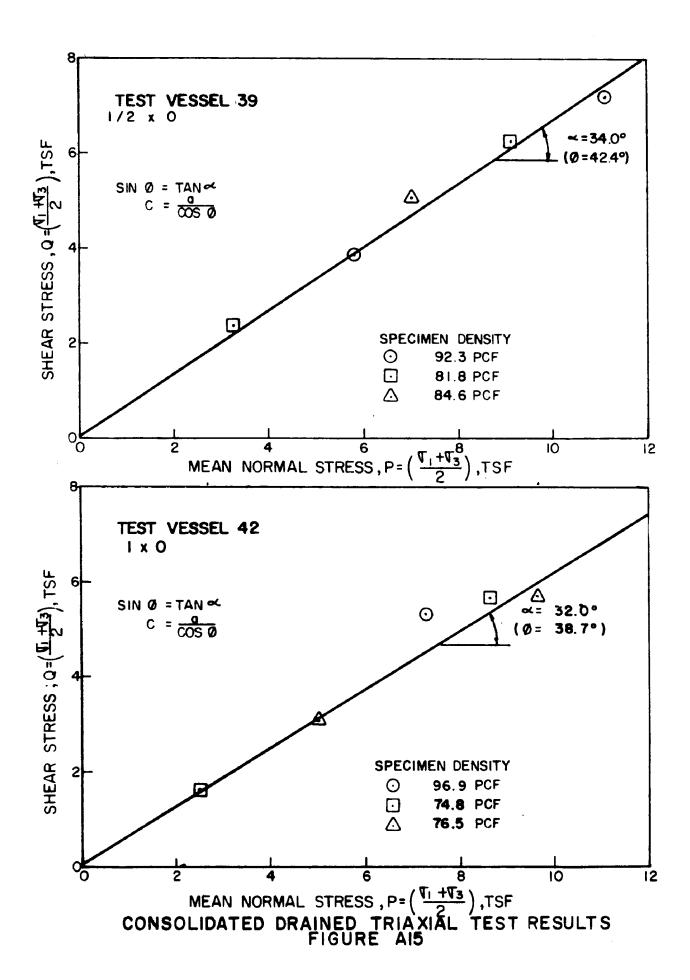


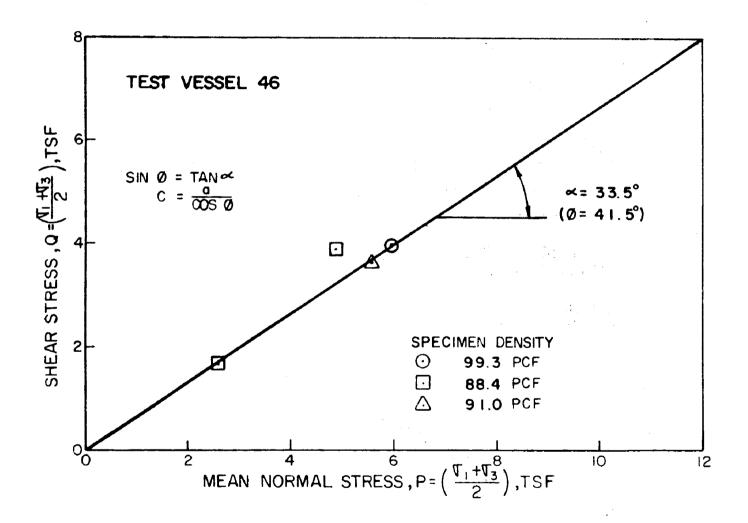


CCNSOLIDATED DRAINED TRIAXIAL TEST RESULTS
FIGURE AIO



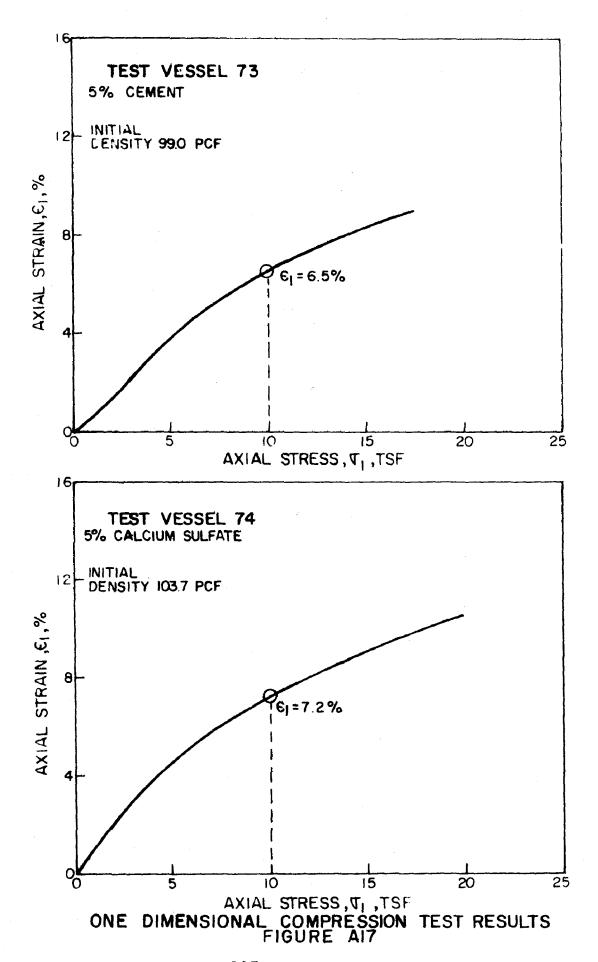

CONSOLIDATED DRAINED TRIAXIAL TEST RESULTS
FIGURE AII

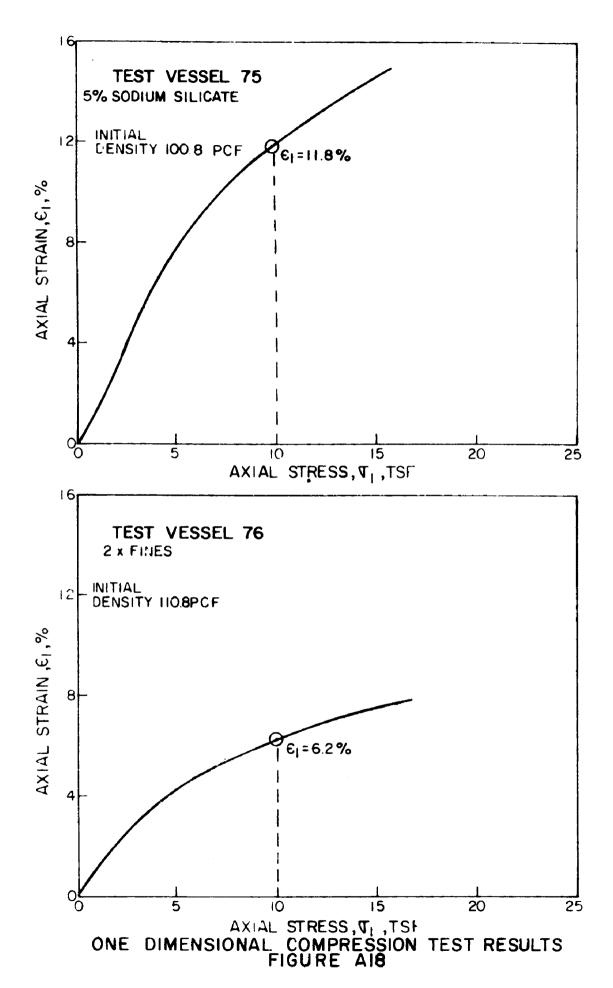


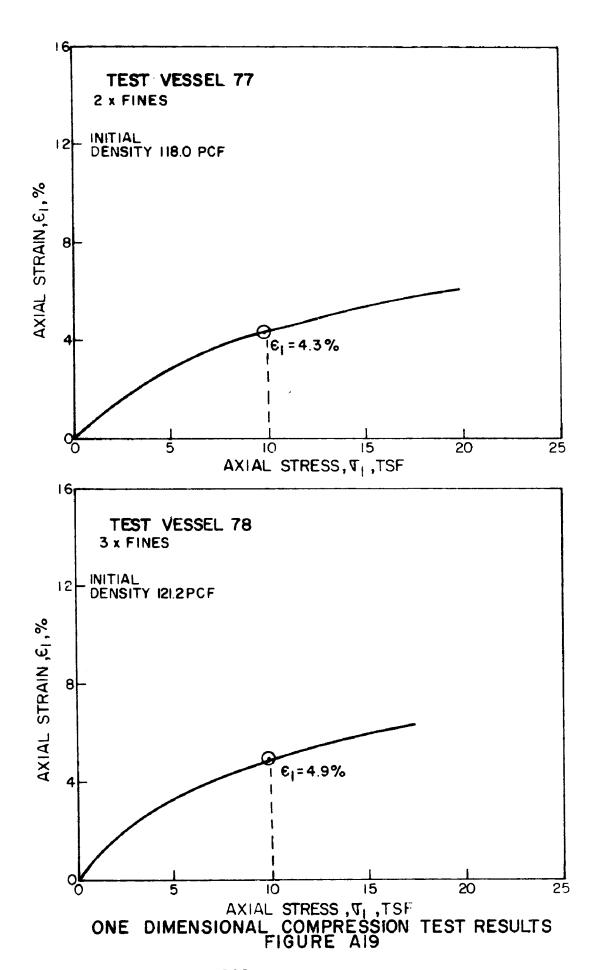

CONSOLIDATED DRAINED TRIAXIAL TEST RESULTS
FIGURE AI2

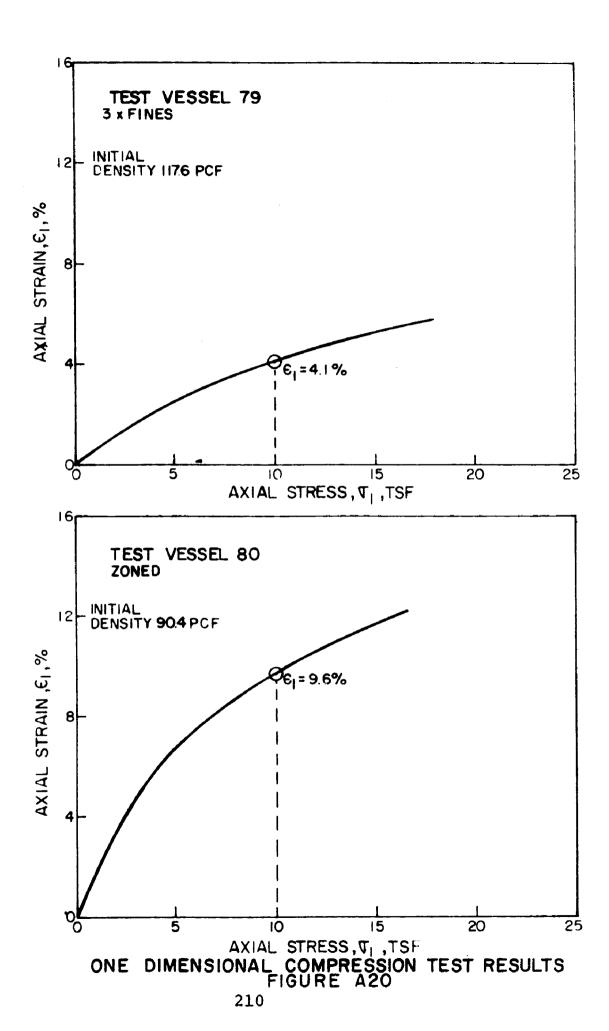


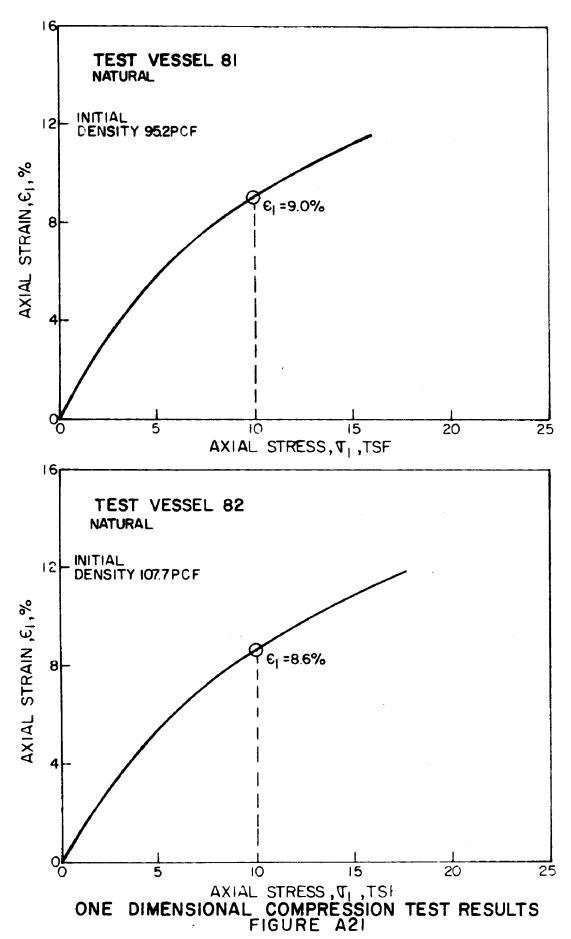

CONSOLIDATED DRAINED TRIAXIAL TEST RESULTS
FIGURE AI3

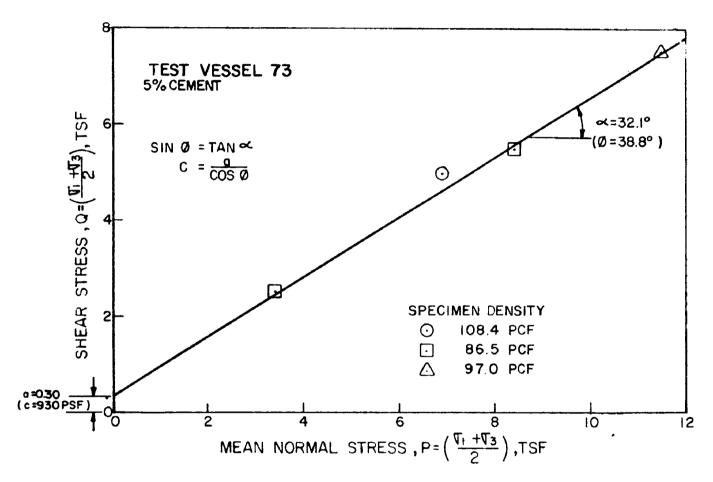




CONSOLIDATED DRAINED TRIAXIAL TEST RESULTS
FIGURE AI4

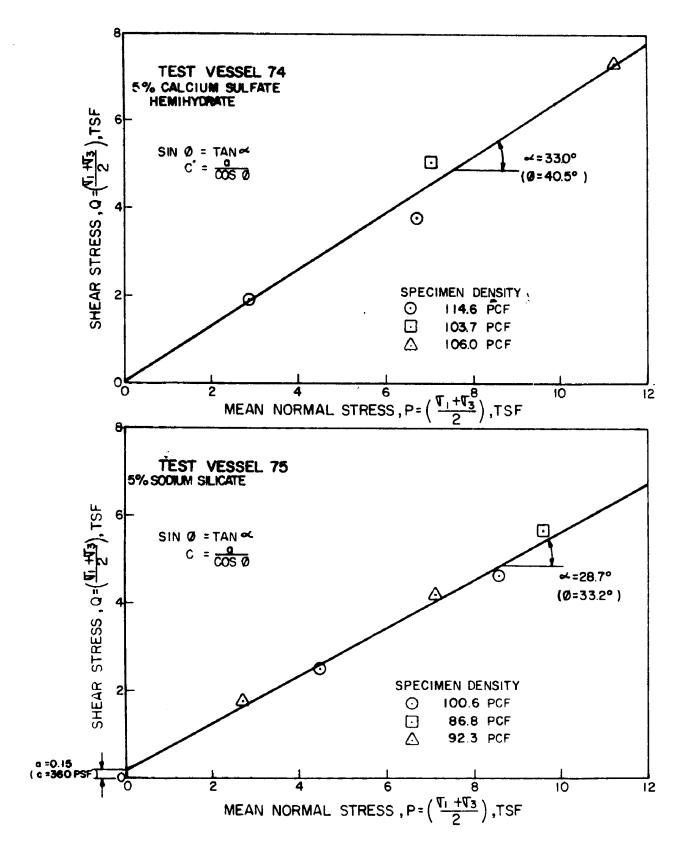


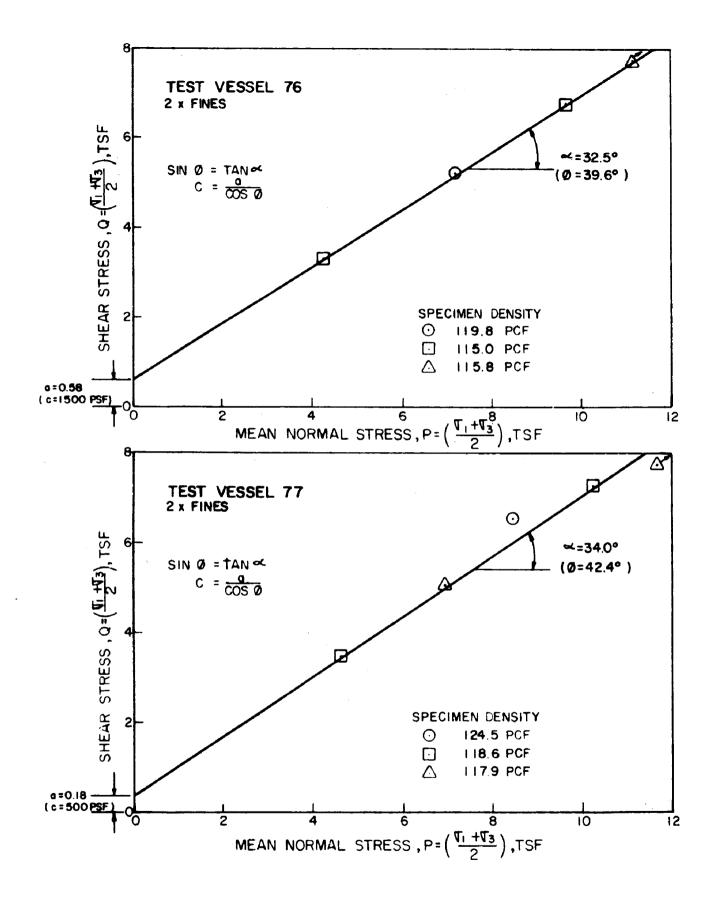


CONSOLIDATED DRAINED TRIAXIAL TEST RESULTS
FIGURE A16



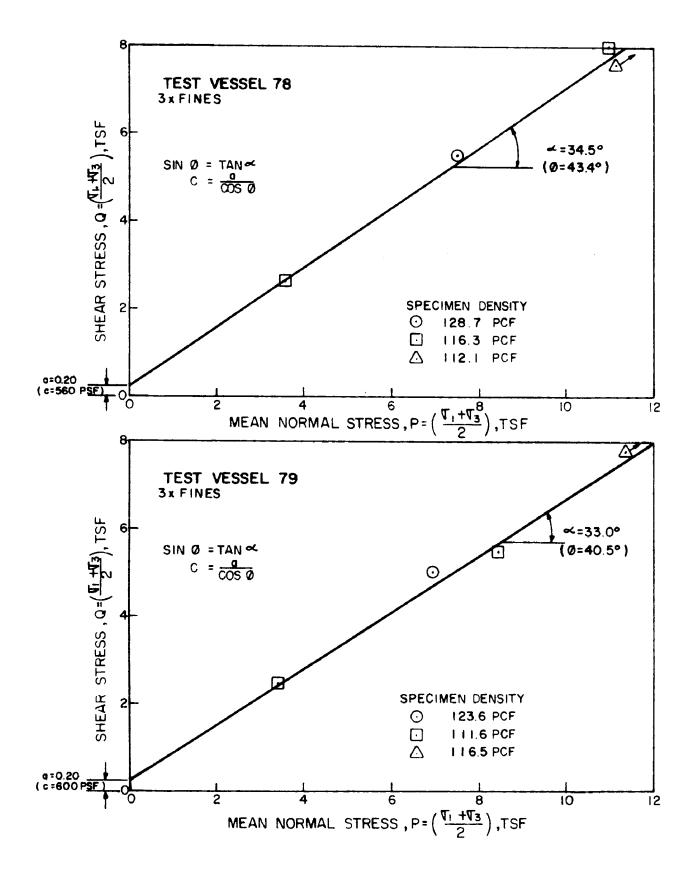


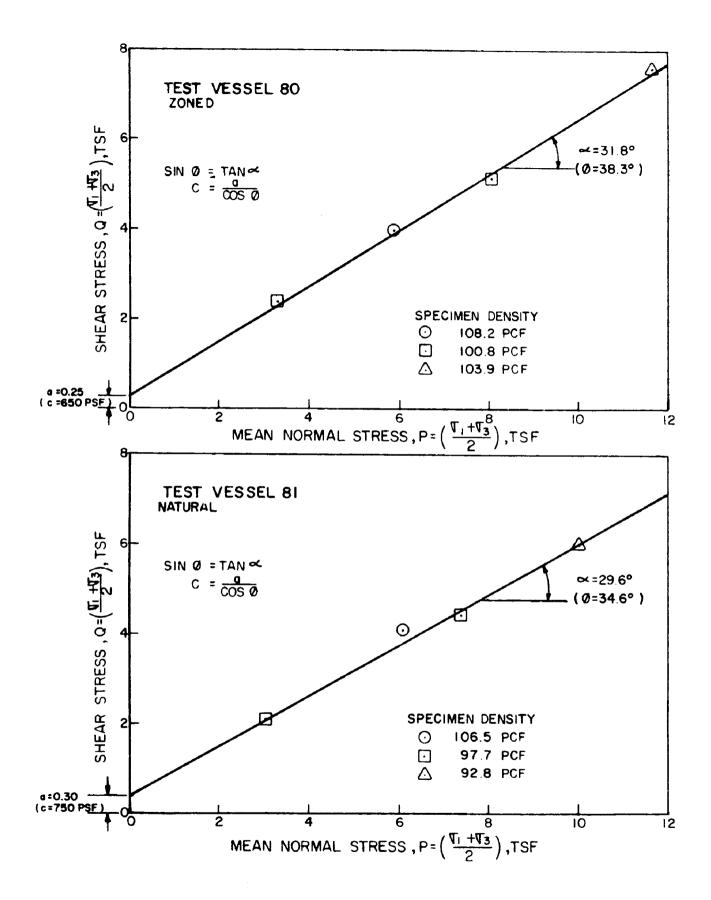


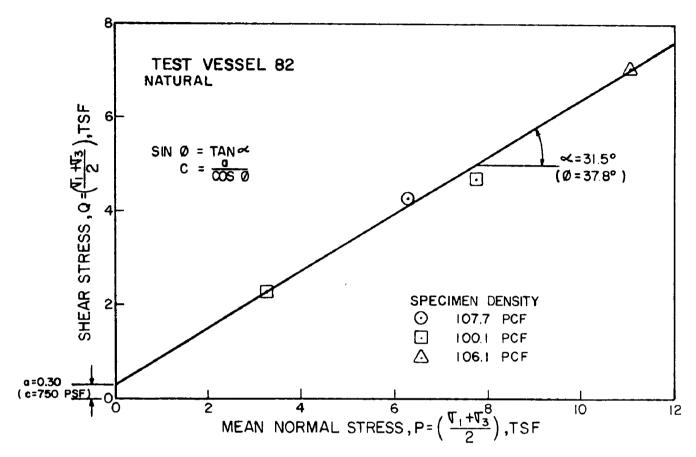




CONSOLIDATED DRAINED TRIAXIAL TEST RESULTS
FIGURE A22




CONSOLIDATED DRAINED TRIAXIAL TEST RESULTS
FIGURE A23




CONSOLIDATED DRAINED TRIAXIAL TEST RESULTS
FIGURE A24



CONSOLIDATED DRAINED TRIAXIAL TEST RESULTS
FIGURE A25



CONSOLIDATED DRAINED TRIAXIAL TEST RESULTS
FIGURE A26



CONSOLIDATED DRAINED TRIAXIAL TEST RESULTS
FIGURE A27

| Accession Number                                                                                                                        | 2 Subject Field & Group<br>05G                                                                              | SELECTED WATER RESOURCES ABSTRACTS INPUT TRANSACTION FORM                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Organization                                                                                                                            |                                                                                                             |                                                                                                                                                                                                                                                                                                                                               |
| NUS Corporation                                                                                                                         | , Cyrus Wm. Rice Division<br>Consulting Engineers, In                                                       |                                                                                                                                                                                                                                                                                                                                               |
| 6 Title LABORATORY STUDY                                                                                                                | Y OF SELF-SEALING LIMEST                                                                                    | ONE PLUGS FOR MINE OPENINGS                                                                                                                                                                                                                                                                                                                   |
| O Author(s) Penrose, Ray G.                                                                                                             | IIO EPA                                                                                                     | Designation WQO Project No. 14016 JBU, Contract No. 68-01-0135                                                                                                                                                                                                                                                                                |
| Holubec, Igor                                                                                                                           | 21 Note                                                                                                     |                                                                                                                                                                                                                                                                                                                                               |
| Report N 23 Descrips (Since Fine) *limestones, *ac                                                                                      | . ,                                                                                                         | ory tests, *pilot plants                                                                                                                                                                                                                                                                                                                      |
| neutralization                                                                                                                          | ,                                                                                                           |                                                                                                                                                                                                                                                                                                                                               |
| 25 Identifiers (Starred Firs                                                                                                            | in)                                                                                                         |                                                                                                                                                                                                                                                                                                                                               |
| conducted to descend to descend the conducting a the coperations utilizing aggregate additives which were varied in limestone used were | termine the optimum lime<br>brough study of the performenterms of size gradation<br>selected from results o | ng limestone plugs for mine openings were stone material for such a treatment and ormance of such plugs required pilot plant presentative of anticipated acid mine water ance, and several basic types of limestone and placement density. The types of f a previous neutralization study; synthetins for ferric, ferrous, and ferrous/ferric |

solutions; and percentage admixture of bentonite, flyash and air-cooled blast furnace slag additives were used with the aggregate.

Experimental results indicated that permeability, compressibility and strength of a limestone plug are primarily a function of the particle size distribution and density. Plug performance was most effective with high limestone placement density and smaller gradation of stone. Ferric waters were controlled most effectively. Additive effects were less significant throughout the tests.

Further tests were conducted on the effects of particle size distribution variations and placement density and other additives to cement particles into an effective plug. (Loos - NUS)

| Abstractor A. Loos      | Institution Corporation - Cyrus Wm. Rice Division                                                               |
|-------------------------|-----------------------------------------------------------------------------------------------------------------|
| WH:102 (REV. JULY 1969) | SEND TO: WATER RESOURCES SCIENTIFIC INFORMATION CENTER U.S. DEPARTMENT OF THE INTERIOR WASHING TON, D. C. 20240 |