EPA-600/7-78-042 March 1978

A COMPUTER-BASED CASCADE IMPACTOR DATA REDUCTION SYSTEM

Interagency
Energy-Environment
Research and Development
Program Report

Research reports of the Office of Research and Development, U.S. Environmental Protection Agency, have been grouped into nine series. These nine broad categories were established to facilitate further development and application of environmental technology. Elimination of traditional grouping was consciously planned to foster technology transfer and a maximum interface in related fields. The nine series are:

1. Environmental Health Effects Research
2. Environmental Protection Technology
3. Ecological Research
4. Environmental Monitoring
5. Socioeconomic Environmental Studies
6. Scientific and Technical Assessment Reports (STAR)
7. Interagency Energy-Environment Research and Development
8. "Special" Reports
9. Miscellaneous Reports

Titis report has been assigned to the INTERAGENCY ENERGY-ENVIRONMENT RESEARCH AND DEVELOPMENT series. Reports in this series result from the effort funded under the 17-agency Federal Energy/Environment Research and Development Program. These studies relate to EPA's mission to protect the public health and welfare from adverse effects of pollutants associated with energy systems. The goal of the Program is to assure the rapid development of domestic energy supplies in an environmentally-compatible manner by providing the necessary environmental data and control technology. Investigations include analyses of the transport of energy-related pollutants and their health and ecological effects; assessments of, and development of, control technologies for energy systems; and integrated assessments of a wide range of energy-related environmental issues.

EPA REVIEW NOTICE

This report has been reviewed by the participating Federal Agencies, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Government, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161.

A COMPUTER-BASED CASCADE IMPACTOR DATA REDUCTION SYSTEM

by
J. W. Johnson, G. I. Clinard,
L. G. Felix, and J. D. McCain
Southern Research Institute 2000 Ninth Avenue, South
Birmingham, Alabama 35205

Contract No. 68-02-2131
T. D. 10101

Program Element No. EHE624

EPA Project Officer: D. Bruce Harris
Industrial Environmental Research Laboratory
Office of Energy, Minerals and Industry
Research Triangle Park, N.C. 27711

Prepared for
U.S. ENVIRONMENTAL PROTECTION AGENCY

Office of Research and Development
Washington, D.C. 20460

Abstract

This document describes a cascade impactor data reduction system written in the FORTRAN IV language. The overall system incorporates six programs: MPPROG, SPLIN1, GRAPH, STATIS, PENTRA, and PENLOG. Impactor design, particulate catch information, and sampling conditions from single impactor runs are used to calculate particle size distributions. MPPROG and SPLINI perform data analyses and make curve fits, while GRAPH is totally devoted to various forms of graphical presentation of the calculated distributions. The particle size distributions can be output in several forms. STATIS averages data from multiple impactor runs under a common condition and PENTRA or PENLOG calculate the control device penetration and/or efficiency. The plotting routines have been written for a PDP15/76 computer and are not compatible with other computing systems without modification.

Page
Abstract ii
Figures vii
Tables viii
Acknowledgments x

1. Introduction I
2. General Program Outline 3
Individual Run Data Analysis 3
MPPROG 5
SPLIN1 18
Generation of Interpolated Points 19
GRAPH. 30
Analysis of Grouped Data 31
STATIS 31
Programs PENTRA/PENLOG 34
3. Programming Details 36
Program MPPROG 36
Breakdown of Program MPPROG 37
Functions of the Called Subprograms 59
Subroutine VIS 60
Subroutine MEAN 61
Subroutine CUT 62
Subroutine CUM 68
Subroutine DMDNGD 70
Block Data Subprogram COMBKl 74
Block Data Subprogram COMBK2 74
Input to Program MPPROG. 77
Card Input 77
File Input 86
Output from Program MPPROG 87
Graph Output 91
File Output. 91
Program SPLINl 95
Breakdown of Program SPLINl 95
Subroutines Called by Program SPLINl 107
Input to Program SPLINl 107
File Input 108
Output from Program SPLINl 108
File Input 109
Program GRAPH 110
Breakdown of Program GRAPH 110
Functions of the Called Subroutines 120
Subroutine CUMPCT 136
Subroutine WALLY2 142
Page
Subroutine WALLY3 152
Subroutine JOE2. 163
Input and Output for the Mainline Program GRAPH 170
Card Input and Resulting Output. 170
File Input and Output. 179
program STATIS 183
Breakdown of Program STATIS 184
Functions of the Called Subroutines 206
Subroutine STPLOT 213
Subroutine STATPT 224
Input for Mainline Program 228
Card Input 228
File Input 230
Output for Mainline Program STATIS 231
Graph Output 236
Program PENTRA 240
Functions of the Called Subroutines 254
Input to Mainline Program PENTRA 254
Card Input 254
File Input 255
Output from Mainline Program PENTRA 258
Line Printer Output 258
Graph Output 258
File Output. 258
Program PENLOG 259
General Subroutines and Functions 261
Subroutine SYMBOL 261
Breakdown of Subroutine SYMBOL 261
Function SLIM. 278
Breakdown of Function SLIM 278
Function XVAL 282
Breakdown of Function XVAL 282
Function YVAL. 283
Subroutine CPPLOT 283
Breakdown of Subroutine CPPLOT 283
Subroutine YPROB 288
4. User Instructions 291
Mainline Program MPPROG 291
Requirements for Program Execution 291
Card Format 292
Sample Job Stream. 292
Mainline Program SPLINl 294
Requirements for Program Execution 294
Card Format. 294
Sample Job Streams 296
Mainline Program Graph 297
Requirements for Program Execution 297
Page
Card Format 297
Sample Job Stream 299
Mainline Program STATIS. 300
Requirements for Program Execution 300
Card Format 300
Sample Job Streams 302
Mainline Program PENTRA. 303
Requirements for Program Execution 303
Card Format 303
Sample Job Streams 303
File Reference Information 306
Program and Subprogram Calling List. 308
5. Example Calculations 310
Data Deck for Program MPPROG-Hypothetical Andersen 312
Data Deck for Program MPPROG-Hypothetical Brink 316
Data Deck for Program MPPROG-Hypothetical University of Washington 354
Data Deck for Program MPPROG-Hypothetical Meteorology Research, Inc. 358
Data Deck for Program MPPROG-Brink 362
Data Deck for Program SPLIN1 370
Data Deck for Program GRAPH. 371
Data Deck for Program STATIS 384
Data Deck for Program MPPROG-Andersen 396
Data Deck for Program SPLIN1 402
Data Deck for Program GRAPH. 403
Data Deck for Program STATIS 416
Data Deck for Program PENTRA 428
Data Deck for Program PENLOG 431
6. Program Listings 434
Flow Chart of Program GRAPH. 435
Listing of Main Program GRAPH 441
Flow Chart of Program MPPROG 447
Listing of Main Program MPPROG 448
Flow Chart of Program PENTRA 463
Listing of Main Program PENTRA 470
Listing of Main Program PENLOG 477
Flow Chart of Program SPLINl 484
Listing of Main Program SPLIN1 486
Flow Chart of Program STATIS 491
Listing of Main Program STATIS 496
Listing of Subroutine AVCON. 508
Listing of Block Data Subprogram COMBKl. 511
Listing of Block Data Subprogram COMBK2 512
Listing of Subroutine CPPLOT 514
Listing of Subroutine CUM. 516
Listing of Subroutine CUMPCT 517
Listing of Subroutine CUT 521

CONTENTS (Continued)

Page
Listing of Subroutine DMDNGD 524
Listing of Subroutine FPLOT. 527
Listing of Subroutine JOEl 529
Listing of Subroutine JOE2 531
Listing of Subroutine LABEL 534
Listing of Subroutine LGLBL. 535
Listing of Subroutine MEAN 536
Listing of Subroutine NDTRI. 537
Listing of Subroutine PIONT. 538
Listing of Subroutine SIMQ 540
Listing of Function SLIM 542
Listing of Subroutine STAGE. 543
Listing of Subroutine STATPT 544
Listing of Subroutine STPLOT 547
Listing of Subroutine SYMBOL 551
Listing of Subroutine VIS. 554
Listing of Subroutine WALLYl 555
Listing of Subroutine WALLY2 560
Listing of Subroutine WALLY3 563
Listing of Subroutine XLOG 566
Listing of Subroutine XSLBL. 567
Listing of Subroutine XVAL 568
Listing of Subroutine YLOG 569
Listing of Subroutine YPROB. 570
Listing of Subroutine YVAL 573
References 574
Appendix 575
Number Page
la. Cumulative size distribution from raw impactor data 21
lb. Start of development of interpolated points between first and last D_{50} 21
lc. Continued generation of interpolated points 22
ld. Continued generation of interpolated points 22
le. Generation of interpolated points on parabola which includes DMAX 23
lf. Generation of interpolated points on hyperbola through $\mathrm{D}_{50}(1)$ and DMAX 23
2a. Start of the curve fitting procedure. 26
$2 b$. Second step in the curve fitting procedure. 27
2c. Third step in the curve fitting procedure 29
3. Beginning pen position for drawing of figures relative to pen position at call to SYMBOL. 263
4. Pen position changes to draw a square 266
5. Pen position changes to draw a triangle 267
6. Pen positions for drawing of a circle 269
7. Pen position changes for drawing a diamond. 271
8. Pen position changes to draw $\mathrm{a}+$. 273
9. Pen position changes to draw an X 274

TABLES

Number Page

1. Program Flow 4
2. Input Data to MPPROG 6
3. Sample Calculations 10
4. $\sqrt{\Psi}$ Calibration Constants for Each Stage of Six Andersen Impactors 63
5. $\sqrt{\Psi}$ Calibration Constants for Each Stage of Four Brink Impactors 64
6. $\sqrt{\Psi}$ Calibration Constants for Each Stage of Four University of Washington Mark III Impactors 65
7. $\sqrt{\Psi}$ Calibration Constants for Each Stage on One Meteorology Research Inc. Impactor 66
8. Values of Fractional Pressure Drop used in COMBKl 75
9. Number of Jets per Stage for Andersen, Brink, University of Washington, and MRI Impactors 76
10. Average Diameter Measured for Each Stage of Six Andersen Impactors 78
ll. Measured Jet Diameter for Each Stage of Four Brink Impactors 79
11. Average Jet Diameter for Each Stage of Four University of Washington Mark III Impactors. 80
12. Average Jet Diameter for Each Stage of One Meteorology Research Inc. Impactor 81
13. Relationship Between IMIN and the Corresponding Minimum Fractional Efficiency. 256
14. Guide to YPROB Subroutine 289
15. MPPROG Input Card Format 293

TABLES (Continued)

Number Page
17. SPLIN1 Input Card Format 295
18. GFAPH Input Card Format. 298
19. STATIS Input Card Format 301
20. Minimum Fractional Efficiency Corresponding to a Chosen Value of IMIN. 304
21. PENTRA Input Card Format 305
22. File Reference Information 307
23. Subroutines and Function Subprograms Called by Mainline and Other Subroutines. 309

ACKNOWLEDGMENTS

The initial programming done by Mr. Kenneth M. Cushing, Head, Aerosol Physics Section, Southern Research Institute, is greatly appreciated.

Guidance in programming was also given by the staff of the Computer Group of Southern Research Institute. Mr. Robert W. Gaston and Miss Ann Henry provided invaluable assistance in debugging our computer programs.

Also the help of various members of the Chemo-Therapy Department of Southern Research Institute is gratefully acknowledged. We especially thank Mr. Henry Finch for his cooperation, and also thank Mr. John A. Burdeshaw for sharing his expertise on the statistical aspects of our programming.

The continued support, guidance, and patience of Dr. Wallace B. Smith, Head of the Physics Division, Southern Research Institute, was essential to the proper completion of this project task.

The authors also wish to thank Mr. Bruce Harris, Project Officer, U. S. Environmental Protection Agency, for his sustained interest and patience in the completion of this project task.

SECTION 1

INTRODUCTION

Cascade impactors have gained wide acceptance as a practical means of making particle size distribution measurements. These devices are regularly used in a wide variety of environments, ranging from ambient conditions to flue gas streams at $400^{\circ} \mathrm{C}$ ($752^{\circ} \mathrm{F}$). Specially fabricated impactors can be used for more extreme conditions.

Because of their usefulness, the U.S. Environmental Protection Agency has funded research which has explored the theoretical and practical aspects of impactor operation. As part of this research, an effort has been made to design a comprehensive data reduction system which will make full use of cascade impactor measurements.

This publication describes a cascade impactor data reduction system designed to automatically reduce data taken with any one of four commercially available round jet cascade impactors: The Andersen Mark III Stack Sampler, the Brink Model BMS-ll (as supplied and with extra stages), the University of Washington Mark III Source Test Cascade Impactor, and the Meteorology Research Incorporated Model 1502 Inertial Cascade Impactor. Provision is not made in this system for reducing data taken with slotted jet impactors. With modification the computer programs can accomodate any round jet impactor with an arbitrary number of stages and with more extensive revision data can be reduced for slotted jet impactors.

The computer programs which comprise this data reduction system are written in the FORTRAN IV language. The plotting subroutines used were written specifically for the Digital Equipment Corporation (DEC) PDP-15/76 computer and these programs are not compatible with other plotting systems. However, these programs can be used as a guide when revision is made for use with another operating system.

The data reduction system is made up of six major (mainline) programs and 34 subroutines. Section 2 contains a broad outline of the functioning of each mainline program along with an explanation of the rationale for their design. The mainline programs and subroutines are discussed in detail in Section 3. Section 4 is a user's guide for each of the mainline programs. Detailed instructions for the input to each of the mainline programs is given in this section. Section 5 is a set of example calculations which are meant to be used in program checkout. An example of each kind of output that can be produced by this system is provided. Section 6 contains a complete program listing along with simplified flowcharts for the mainline programs. In an Appendix, a description is given of the plotter software used with the DEC PDP-15/76 computer system.

SECTION 2

GENERAL PROGRAM OUTLINE

In this section a broad outline of the program fundamentals is given with sufficient detail for anyone without a specialized knowledge of computers to understand the methods and rationale of the program. The program comprises two major blocks. The first block treats data from individual impactor runs while the second treats data from groups of runs, providing averages, statistical information and fractional penetration (efficiency) results. The overall program flow is shown in Table l. For programming details, see Section 3 of this report.

INDIVIDUAL RUN DATA ANALYSIS

This portion of the impactor data reduction package utilizes impactor hardware information, particulate catch information, and sampling conditions from single impactor runs to calculate size distributions. The overall distributions are available in several forms. The run analysis and output presentation are accomplished by three main programs, MPPROG, SPLIN1, and GRAPH. MPPROG and SPLINl perform analysis and manipulation while GRAPH is totally devoted to various forms of graphical presentation of the calculated distributions. The routines used in GRAPH are specifically for use on a PDP-15/76 computer and are not compatible with most other computers without modification. However, the general structure of GRAPH should serve as a useful base for programming to achieve similar graphical output from other computing systems.

TABLE l. PROGRAM FLOW

I. Impactor Program (MPPROG)

Takes testing conditions and stage weights to produce stage $D_{50}{ }^{\prime}$, cumulative and cumulative $\%$ mass concentrations $<D_{50}$, geometric mean diameters, and mass number size distributions. Executed for each run.

II. Fitting Program (SPLIN1)

Uses modified spline technique to fit cumulative mass loading points for each plot. Stores fitting coefficients and boundary points on file. Executed for each run.
III. Graphing Program (GRAPH)

Produces individual run graphs with points based on stage weights and impactor D_{50} 's. Also superimposes plot based on fitted data, if desired. Graphs include cumulative mass loading, cumulative \% mass loading, and mass and number size distributions. Can be executed as desired for each run.
IV. Statistical Program (STATIS)

Recalls cumulative mass loading fitting coefficients to produce average cumulative mass loading, average of cumulative mass loading, average mass size distribution, and average number size distribution plots each with 50% or 90% confidence bars. Executed for each group or data to be averaged.

Programs I-IV are used for both inlet and outlet data sets.
V. Efficiency Program (PENTRA) or (PENLOG)

Recalls average mass size distribution values along with 50\% confidence limits for inlet and outlet to plot percent penetration and efficiency with 50% confidence bars. Executed once for each pair or group and used to define a fractional efficiency curve.

MPPROG

In MPPROG, sampling hardware information, sampling conditions and particulate catch information are used to determine the effective cut sizes of the various impactor stages and the concentrations of particles caught on these stages. The output is organized into several tabular forms and stored on a disk file for later use.

Input Data to MPPROG--
Because individual impactors, even of the same type, do not necessarily have precisely the same operational characteristics, the program calculates stage cut diameters on an impactor specific basis. Hardware data are stored within the program which include, for each impactor to be used, the number of stages, the number of jets per stage, the jet diameters, the stage calibration constants, and flow-pressure drop relations for each stage. Run specific input data to MPPROG are listed in Table 2.

Stage Cut Diameter (D_{50})--
The effective stage cut diameter is assumed to be equal to the particle diameter for which the stage collection efficiency is 50%. This diameter, D_{50}, is calculated from an equation of the form

$$
\begin{equation*}
D_{50}=k_{s}\left\{\frac{\mu d}{\rho_{p} c v}\right\}^{\frac{1}{2}} \tag{1}
\end{equation*}
$$

where $D_{50}=$ effective cut size (micrometers),
$k_{s}=$ stage calibration constant,
$\mu=$ gas viscosity (poise),
d = jet diameter (centimeters),
$\rho_{p}=$ particle density (grams per cubic centimeter),
$\mathrm{c}=$ Cunningham slip correction factor, and
$\mathrm{v}=$ jet velocity (centimeter per second).
TABLE 2. INPUT DATA TO MPPROG

1. Impactor identification (required to call up hardwareinformation)
2. Fractional gas composition $\left(\mathrm{CO}_{2}, \mathrm{CO}, \mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}\right)$
3. Impactor flow rate (ACFM at stack conditions)
4. Stack pressure (inches of mercury)
5. Stack temperature (degrees Fahrenheit)
6. Gas temperature within impactor (degrees Fahrenheit)
7. Duration of sampling (minutes)
8. True density of particles (grams per cubic centimeter)
9. Maximum particle diameter present in sample (micrometers)
10. Masses of catches by stage (milligrams)

If the particle density, ρ_{p}, is set equal to the true density of the particles, the resulting diameter calculated from Equation 1 is the Stokes diameter, D_{S}. If ρ_{p} is set equal to 1.0 the resulting diameter is the aerodynamic diameter D_{A} as defined by the Task Group on Lung Dynamics. ${ }^{1}$ If both ρ_{p} and C are set equal to 1.0 , the resulting diameter is the aerodynamic impaction diameter, $D_{A I}$, as defined by Mercer. ${ }^{2}$ Unless otherwise specified, MPPROG will automatically provide parallel output in terms of D_{S} and D_{A}. Parallel results in terms of D_{S} and $D_{A I}$ or in terms of D_{A} and $D_{A I}$ are available if called for. Solution of equation l for D_{S} and D_{A} is executed in an iterative loop because the Cunningham slip factor, c, contains the particle diameter as part of its argument. The equations used for calculating μ and c are given below. These equations are adopted from J. A. Brink. ${ }^{3}$

$$
\begin{equation*}
\mathrm{c}=1+\frac{2 \mathrm{~L}}{\mathrm{D}_{50} \times 10^{-4}}\left[1.23+0.41 \mathrm{EXP}\left(-.44 \mathrm{D}_{50} \times 10^{-4} / \mathrm{L}\right)\right] \tag{2}
\end{equation*}
$$

$D_{50}=$ particle diameter in micrometers
$L=$ mean free path in cm

$$
\begin{equation*}
=\frac{2 \mu}{1.01325 \times 10^{6} \mathrm{P}}\left[\frac{\pi 1.38 \times 10^{-16} \times 6.02 \times 10^{23} \mathrm{~T}}{8 \mathrm{M}_{\mathrm{G}}}\right]^{\frac{1}{2}} \tag{3}
\end{equation*}
$$

where $\mu=$ gas viscosity, poise,

$$
\begin{aligned}
P & =\text { gas pressure, atmospheres, } \\
T & =\text { gas temperature, }{ }^{\circ} \mathrm{K}, \\
M_{G} & =f_{1} 44.10+f_{2} 28.01+f_{3} 28.02+f_{4} 32.00+f_{5} 18.02, \text { and } \\
& =\text { wet mean molecular weight of gas. }
\end{aligned}
$$

where

$$
\begin{aligned}
\mathrm{f}_{1-5}= & \text { wet gas fractions of } \mathrm{CO}_{2}, \mathrm{CO}, \mathrm{~N}_{2}, \mathrm{O}_{2}, \text { and } \mathrm{H}_{2} \mathrm{O} . \text { The } \\
& \text { values of } f_{1-4} \text { are input to the program as dry gas } \\
& \text { composition fractions. Then } f_{i}=f_{i}\left(1.0-\mathrm{f}_{5}\right) \text { to } \\
& \text { get wet fractions. }
\end{aligned}
$$

The gas viscosity, μ, is calculated in poise using an equation given by C. R. Wilke ${ }^{4}$ from the gas composition and the viscosities of the individual pure gas components. The pure gas viscosities are calculated from polynomial fits to data in the Handbook of Chemistry and Physics (Forty-first Edition, Charles D. Hodgman, ed. Chemical Rubber Publishing Co., Cleveland, Ohio, 1959. pp. 2188-2192).

$$
\begin{equation*}
\mu=\sum_{i=1}^{5}\left[\frac{u_{i}}{1+{\frac{1}{f_{i}}}_{\substack{j=1 \\ j \neq i}}\left(f_{j} \Phi_{i j}\right)}\right] \times 10^{-6} \tag{4}
\end{equation*}
$$

where $\Phi_{i j}=\frac{\left[1+\left(u_{i} / u_{j}\right)^{\frac{1}{2}}\left(w_{j} / w_{i}\right)^{\frac{1}{4}}\right]^{2}}{4 / \sqrt{2}\left[1+\left(w_{i} / w_{j}\right)\right]^{\frac{1}{2}}}$

$$
u_{1-5}=\text { pure gas viscosities (gm/cm-sec) }
$$

$$
\begin{equation*}
u_{1}=\text { gas viscosity of } \mathrm{CO}_{2} \tag{6}
\end{equation*}
$$

$$
=138.494+0.499 \mathrm{~T}_{\mathrm{CI}}-0.267 \times 10^{-3} \mathrm{~T}_{\mathrm{CI}}{ }^{2}
$$

$$
+0.972 \times 10^{-7} \mathrm{~T}_{\mathrm{CI}}{ }^{\frac{1}{3}}
$$

$$
u_{2}=\text { gas viscosity of co }
$$

$$
\begin{equation*}
=165.763+0.442 \mathrm{~T}_{\mathrm{CI}}-0.213 \times 10^{-3} \mathrm{~T}_{\mathrm{CI}}{ }^{2} \tag{7}
\end{equation*}
$$

$$
u_{3}=\text { gas viscosity of } N_{2}
$$

$$
\begin{equation*}
=167.086+0.417 \mathrm{~T}_{\mathrm{CI}}-0.139 \times 10^{-3} \mathrm{~T}_{\mathrm{CI}}{ }^{2} \tag{8}
\end{equation*}
$$

$$
u_{4}=\text { gas viscosity of } \mathrm{O}_{2}
$$

$$
\begin{equation*}
=190.187+0.558 \mathrm{~T}_{\mathrm{CI}}-0.336 \times 10^{-3} \mathrm{~T}_{\mathrm{CI}^{2}} \tag{9}
\end{equation*}
$$

$$
+0.139 \times 10^{-6} \mathrm{~T}_{\mathrm{CI}^{3}}
$$

$$
u_{5}=\text { gas viscosity of } \mathrm{H}_{2} \mathrm{O}
$$

$$
\begin{equation*}
=87.800+0.374 \mathrm{~T}_{\mathrm{CI}}-0.238 \times 10^{-4} \mathrm{~T}_{C I}{ }^{2} \tag{10}
\end{equation*}
$$

where $\mathrm{T}_{\mathrm{CI}}=$ temperature $\left({ }^{\circ} \mathrm{C}\right)$
$\mathrm{f}_{1-5}=$ wet gas fractions of $\mathrm{CO}_{2}, \mathrm{CO}, \mathrm{N}_{2}, \mathrm{O}_{2}$, and $\mathrm{H}_{2} \mathrm{O}$, respectively
$\mathrm{w}_{1-5}=$ molecular weights of $\mathrm{CO}_{2}, \mathrm{CO}, \mathrm{N}_{2}, \mathrm{O}_{2}$, and $\mathrm{H}_{2} \mathrm{O}$, respectively.

The local pressure at the inlet of each stage of the impactor is calculated by subtraction of the cumulative pressure drop through the impactor to the stage in question from the inlet pressure to the impactor proper.
$P_{s}=P_{o}-\left(F_{i}\right) \Delta P$
$\mathrm{P}_{\mathrm{s}}=$ stage pressure (atmospheres)
$P_{o}=$ impactor inlet pressure (atmospheres)
$F_{i}=$ fraction of the total impactor pressure drop to the stage in question
$\Delta \mathrm{P}=$ total fressure drop through the impactor stages (atmospheres)
The total pressure drop is assumed to be divided among the various stages in the same relative fashion for all impactors of a particular type, i.e., Brink. (This assumption ignores minor differences in jet diameters for a given stage among impactors of the same type.) The impactor is assumed to have a flow-pressure drop relation of the following form for a simple sharp edged orifice: ${ }^{5}$

$$
\begin{equation*}
\Delta P=K_{I} Q^{2} \rho \tag{12}
\end{equation*}
$$

$K_{I}=$ empirically determined constant for each impactor type, $Q=$ flowrate through impactor ($\left.\mathrm{cm}^{3} / \mathrm{sec}\right)$, $\rho=$ gas density $\left(\mathrm{gm} / \mathrm{cm}^{3}\right)$ at the impactor inlet.

Particulate Loading and Loading Breakdown Calculations--
This discussion is based on Table 3 which was generated by the computer program. In the example shown, the data were reduced using a particle density of $1.35 \mathrm{gm} / \mathrm{cm}^{3}$; thus, the diameters reported are Stokes diameters.

Input information for each run is printed at the top of Table 3. The maximum particle diameter must be measured by examining the particles collected on the first stage (or first cyclone) with the aid of a microscope. Gas analyses must be

TABLE 3. SAMPLE CALCULATIONS

HYONTHFTICAI. ANIFPRSEN									
IMPACTON PRESSURE ITROH E 0.3 IN. UF HG,									
ASSUMED PARTICLE DENSITY 1.35 EM/CU.EM.									
GAS COMPOSITIGN (PERCTNT) CTE	CO2 $=1.94$	CO: 0.00		N2 = 16,53		$02=20.53$		H2O-1.00	
CALC. MASE LOADING E A.0711E-03 GH/ACF		1.4T48E-02 GR/DNCF			1.8470E+ 01 MG/ACM			3.3748E+01 MO/DNEM	
IMPACTOR ATAGE	31	92	33	34	85	56	39	88	FIGTER
STAGE INDFX NHIMREQ	1	2	3	4	5	6	7	8	9
050 (MICROMETERS)	10.72	9.93	6.35	4.18	2.21	1.28	0,67	0.33	
MASS (MILLIGRAMS)	0.72	0.40	0.53	0.99	0.18	1.43	1.25	0.04	0.34
MG/DNCM/STAGE	$4.715+00$	$2.62 E+20$	1.47E+00	5,89F-01	$2.49 E+00$	9.35E+00	$8.18 E+00$	2,62E-01	2.55E400
Cum. PERCENT OF Mass gmaller than dSo	R6, 23	78.59	68.45	66,73	59.46	32.12	8,22	7.40	
CUM. (MG/aCM) SMALLEA THADS 050	1.59E+01	$1.455+01$	1.26E+01	1.23E+01	$1.10 E+01$	$5.93 E+00$	$1.52 E+00$	1,38E+00	
CUM. (MG/DNCM) SMAILER THAN DSO	2.01E+01	2.65E+01	2.31E+01	2.25E+04	2,01E+01	1.085.01	2.97E+00	2.52E+00	
CUM. (GR/ACF) SMALIEER THAN OSO	6,96E=03	6.34E-03	5.52E-03	5.39E-03	$4.80 E=03$	2.59E03	$6.64 E=04$	$6.02 E=04$	
CUM. (GR/ONCF) gMalleq than ofn	$1,27 E=02$	1.10E=02	1.01E-n2	9,84E-03	A.778-0 3	4.74E-03	$1.21 E=03$	$1.10 E=03$	
GEO. MEAN DIA. (MICROMETERS)	3. PTE+01	1.03E+01	7.946.0n	5.15E+00	3.04E+00	$1,68 E+00$	$9.30 \mathrm{~F}=01$	4.758-01	2,36E-01
OM/OLOGT (MG/DNC*)	$4.86 E+00$	7.93E-01	1.7AE+01	3.2 EE +00	$0.96 E+10$	$3.95 E+01$	2.94F. 01	6.56F-01	6.47E +00
DN/DI OGT (NM. PARTICLES/INEM)	1.96E+05	$1,02 E+08$	5.036+07	3.35E*07	4.52E*08	$1.18 E+10$	$5.18 E+10$	$1.13 E+10$	9.12E+11

NORMAG (EHGINFERINT, STAHINARDI CONDITIONS ARE $2 I$ DEG C ANO 7GOMM MG:
made at the same time the impactor is run. The mass loading is calculated from the total mass of particles collected by the impactor and the total gas volume sampled, and it is listed in four different units after the heading CALC. MASS LOADING. The units are defined as:
GR/ACF - grains per actual cubic foot of gas at stack conditions of temperature, pressure, and water content. GR/DSCF - grains per dry standard cubic foot of gas at engineering standard conditions of the gas. Engineering dry standard conditions in the English system are defined as 0% water content, $70^{\circ} \mathrm{F}$, and 29.92 inches of Hg .
MG/ACM - milligrams per actual cubic meter of gas at stack conditions of temperature, pressure, and water content.
MG/DNCM - milligrams per dry normal cubic meter of gas at engineering normal conditions of the gas. Engineering dry normal conditions in the metric system are defined as 0% water content, $21^{\circ} \mathrm{C}$ and 760 mm of Hg (Torr).
Below these data the information pertinent to each stage is summarized in columnar form in order of decreasing particle size from left to right. Thus 51 is the first stage, 58 is the last stage, and FILTER is the back-up filter. If a precollector cyclone was used, a column labeled CYC would appear to the left of the Sl column and information relevant to the cyclone would be listed in this column. Beneath each impactor stage number is listed the corresponding stage index number, which also serves as identification for the stage. Directly beneath these listings are the stage cut diameters which were calculated as described previously. They are stage $\mathrm{D}_{50} 0$ values and are given in units of micrometers. The stage weights are likewise listed for the respective stages, labeled MASS, and are in units of miliigrams. The mass loadings from each stage are labeled MG/DNCM/STAGE and are written in milligrams per dry normal cubic meter. They are calculated for each particular stage, j, by the formula

MG/LNCM/STAGE ${ }_{j}=\frac{\text { MASS }_{j}}{\text { SAMPIING DURATION (minutes) }}$
$\mathbf{x} \frac{35.31 \text { cubic feet/cubic meter }}{\text { FLOWRATE (ACFM) }} \times \frac{\text { Absolute Stack Temperature }}{\text { Absolute Standard Temperature }}$
$\times \frac{\text { Absolute Standard Pressure }}{\text { Absolute Stack Pressure }} \times \frac{1}{\left(1-\text { Fraction of } \mathrm{H}_{2} \mathrm{O}\right)}$
where absolute means the temperature and pressure are in absolute units-degrees Rankin or degrees Kelvin for temperature, and atmosphere, inches or millimeters of mercury for pressure, as appropriate. For Sl,

MG/DNCM/STAGE ${ }_{1}=\frac{.72 \mathrm{mg}}{20 \mathrm{~min}} \times \frac{35.31 \mathrm{cubic} \text { feet/cubic meter }}{0.500 \mathrm{ACFM}}$
$\times \frac{(400+460)^{\circ} \mathrm{R}}{(70+460)^{\circ} \mathrm{R}} \times \frac{29.92 \mathrm{in} . \mathrm{Hg}}{26.50 \mathrm{in} . \mathrm{Hg}} \times \frac{1}{(1.0-0.01)}=4.71 \mathrm{mg} / \mathrm{DNCM}$.
The subscripts indicate stage index numbers.
The percentage of the total mass sampled contained in particles with diameters smaller than a particular D_{50} is called the CUMULATIVE PERCENT OF MASS SMALLER THAN D50. It is the cumulative mass accumulated to the stage j divided by the total mass collected on all the stages, and converted to a percentage:

$$
\begin{align*}
& 9 \\
& \text { CUM }^{\gamma_{j}}=\frac{\sum_{j=1} \text { MASS }_{i}}{\text { Total Mass }} \times 100 \tag{14}
\end{align*}
$$

For example, for $S 6$, the cumulative percent is given by

$$
\begin{aligned}
\text { CUM }_{6} & =\frac{\text { MASS }_{7}+\text { MASS }_{9}+\text { MASS }_{9}}{\text { Total Mass }} \times 100 \\
& =\frac{1.25 \mathrm{mg}+0.04 \mathrm{mg}+0.39 \mathrm{mg}}{5.23 \mathrm{mg}} \times 100=32.12 \%
\end{aligned}
$$

For 58 , the mass of the particulate matter collected on the filter is used,

$$
\text { CUM } \%_{8}=\frac{\text { MASS }_{g}}{\text { Total Mass }} \times 100=\frac{0.39 \mathrm{mg}}{5.23 \mathrm{mg}} \times 100=7.46 \%
$$

The apparent errors in the least significant figures of the calculated percentages above as compared to those in Table 3 are due to using masses from the computer printout which have been rounded to two decimal places before printing.

The cumulative mass loading of particles smaller in diameter than the corresponding D_{50} in milligrams per actual cubic meter (CUM. (MG/ACM) SMALLER THAN D_{50})) for a particular stage j is given by the formula

$$
\text { CUM. (MG/ACM) }{ }_{j}=\frac{\sum_{i=j+1}^{9} \text { MASS }_{i}}{\text { sampling duration(min) }} \times
$$

From the information at the top of the computer print-out sheet, the flowrate is 0.500 actual cubic feet per minute (ACFM) and the sampling duration is 20.00 minutes. Therefore, for 54, CUM. $(\mathrm{MG} / \mathrm{ACM})_{4}=\frac{\mathrm{MASS}_{5}+\mathrm{MASS}_{6}+\mathrm{MASS}_{7}+\mathrm{MASS}_{8}+\mathrm{MASS}_{9}}{20 \text { minutes }}$

$$
x \frac{35.31 \text { cubic feet/cubic meter }}{0.500 \mathrm{ACFM}}=12.3 \mathrm{mg} / \mathrm{ACM}
$$

For S 8 , the mass of the particulate collected on the filter is again used,

$$
\begin{aligned}
\text { CUM. } \begin{aligned}
(\text { MG/ACM })_{8} & =\frac{\text { MASS }}{20 \text { minutes }} \times \frac{35.31 \text { cubic feet } / \text { cubic meter }}{0.500 \mathrm{ACFM}} \\
& =\frac{0.39 \mathrm{mg}}{20 \text { minutes }} \times \frac{35.31 \text { cubic feet } / \text { cubic meter }}{0.500 \mathrm{ACFM}} \\
& =1.38 \mathrm{mg} / A C M
\end{aligned}
\end{aligned}
$$

The cumulative mass loading of particles smaller in diameter than the corresponding D_{50} in grains per actual cubic foot (CUM. ($G R / A C F)$ SMALLER THAN D_{50})) for a particular stage j is given by the formula

CUM. $(\mathrm{GR} / \mathrm{ACF})_{j}=\frac{\text { CUM.(MG/ACM) }{ }_{j}}{2.288 \frac{\text { grams/cubic meter }}{\text { grains/Cubic foot }} \times 1000 \mathrm{mg} / \mathrm{gram}}$
For S7,
CUM. (GR/ACF) $=\frac{1.52 \mathrm{mg} / \mathrm{ACM}}{2.288 \frac{\text { grams/cubic meter }}{\text { grains/cubic foot }} \times 1000 \mathrm{mg} / \mathrm{gram}}$

$$
=6.64 \times 10^{-4} \text { grains } / \mathrm{ACF}
$$

The cumulative mass loading of particles smaller in diameter than the corresponding D_{50} in grains per dry normal cubic foot (CUM. (GR/DNCF) SMALLER THAN D_{50}) is calculated to show what the above cumulative would be for one cubic foot of dry gas at $70^{\circ} \mathrm{F}$ and at a pressure of 29.92 inches of mercury. For a particular stage j,

CUM. (GR/DNCF) ${ }_{j}=$ CUM. $(G R / A C F)_{j}$
$x \frac{\text { Absolute Stack Temperature }}{\text { Absolute Standard Temperature }} \times \frac{\text { Absolute Standard Pressure }}{\text { Absolute Stack Pressure }}$ $x \frac{1}{\left(l-\text { Fraction of } \mathrm{H}_{2} \mathrm{O}\right)}$
where absolute means the temperature and pressure are in absolute units-degrees Rankin or degrees Kelvin for temperature, and atmospheres, inches or millimeters of mercury for pressure. For Sl.
CUM. (GR/DNCF) $=6.96 \times 10^{-3} \mathrm{GR} / \mathrm{ACF}$
$\times \frac{(400+460)^{\circ} \mathrm{R}}{(70+460)^{\circ} \mathrm{R}} \times \frac{29.92 \text { in. } \mathrm{Hg}}{26.50 \mathrm{in} . \mathrm{Hg}} \times \frac{1}{(1.00-0.01)}=1.29 \times 10^{-2} \mathrm{GR} / \mathrm{DNCF}$
The particle-size distribution may be presented on a dif-
ferential basis which is the slope of the cumulative curve.
Differential size distributions may be derived two ways:

1. Curves may be fitted to the cumulative mass distribution from which the differential curves (slope) for each test can be calculated. This method is described later.
2. Alternatively, finite difference methods may be used based on the D50's (abscissa) and the particulate masses on each stage (ordinate). This technique was used to generate the differential size distribution data in Table 3, and is described in detail in the following paragraphs.

If we define the terms:
$\Delta M_{j}=M G / D N C M / \operatorname{STAGE}_{j}$ and
$(\Delta \log D)_{j}=\log _{10}\left(D_{50}{ }_{j-1}\right)-\log _{10}\left(D_{50}\right)$ then
$\left(\frac{\Delta M}{\Delta \log D}\right)_{j}=\frac{M G / D N C M / S T A G E}{j_{j}} \log _{10}\left(D_{50_{j-1}}\right)-\log _{10}\left(D_{50}\right) \quad$
Because the computer printer does not contain Greek letters, the computer print-out sheet reads DM/DLOGD instead of $\Delta M / \triangle L O G D$. For 56
$\left(\frac{\Delta \mathrm{M}}{\Delta \mathrm{LOGD}}\right)_{6}=\frac{9.35 \mathrm{mq} / \mathrm{DSCM}}{\log _{10}(2.21)-\log _{10}(1.28)}=39.4 \mathrm{mg} / \mathrm{DNCM}$
Note that $\triangle M / \triangle L O G D$ has the dimensions of the numerator since the denominator is dimensionless. In the calculation for Sl , a maximum particle diameter is used. For this example, MAX. PARTICLE DIAMETER $=100.0$ microns.
$\left(\frac{\Delta M}{\Delta L O G D}\right)_{1}=\frac{4.71 \mathrm{mg} / \mathrm{DNCM}}{\log _{10}(100)-\log _{10}(10.72)}=4.86 \mathrm{mg} / \mathrm{DNCM}$
For the filter stage, the D_{50} is arbitrarily chosen to be one-half of the $D_{5} 0$ for stage eight (S8). For this example, it is chosen to be (0.33 micrometers) $/ 2=0.165$ micrometers. Thus,
$\left(\frac{\Delta M}{\Delta L O G D}\right)_{9}=\frac{2.55 \mathrm{mg} / \mathrm{DNCM}}{\log _{10}(0.33)-\log _{10}(0.165)}=8.47 \mathrm{mg} / \mathrm{DNCM}$

The geometric mean diameter in micrometers (GEO. MEAN DIA. (MICROMETERS)) for a particular stage j is given by the formula

$$
\begin{equation*}
\text { GEO. MEAN DIA. }{ }_{j}=\sqrt{D_{50_{j}} \times D_{50}{ }_{j-1}} \tag{17}
\end{equation*}
$$

For S8,

$$
\begin{aligned}
\text { GEO. MEAN DIA. } & =\sqrt{0.33 \times 0.67} \text { micrometers } \\
& =0.47 \text { micrometers }
\end{aligned}
$$

As in the $\triangle L O G D$ calculation, we again use the maximum particle diameter for the stage one calculation and one-half the D_{50} of stage eight for the filter stage calculation.
For Sl,

$$
\text { GEO. MEAN DIA. } \begin{aligned}
1 & =\sqrt{10.72 \times 100.0} \text { micrometers } \\
& =32.7 \text { micrometers }
\end{aligned}
$$

For the filter,

$$
\text { GEO. MEAN DIA. } \begin{aligned}
9 & =\sqrt{0.165 \times 0.33} \text { micrometers } \\
& =0.23 \text { micrometers }
\end{aligned}
$$

The finite difference methods used here result in values of $\Delta M / \Delta L O G D$ for the first stage of the collector and the backup filter which can have little physical meaning because of the large size intervals in LOGD covered by them.

A differential number distribution can also be derived. Since $\Delta M_{j}=M G / D N C M / S T A G E{ }_{j}$ is the mass per unit volume for stage j then we can define $\Delta N_{j}=$ NUMBER OF PARTICLES/DNCM/STAGE ${ }_{j}$ or the number of particles per unit volume for stage j. Now ΔM_{j} and ΔN_{j} are related by the equation $M_{j}=N_{j} x m_{p}$, where m_{p} is the average mass of the particles collected on one stage. Dividing both sides of the equation by $m_{p} x \Delta L O G D$ yields

$$
\begin{equation*}
\frac{(\Delta M / \Delta L O G D)_{j}}{m_{p}}=\left(\frac{\Delta N}{\Delta L O G D}\right)_{j} \tag{18}
\end{equation*}
$$

Now $m_{p}=\rho_{p} V_{p}$ where ρ_{p} is the assumed particle density and V_{p} is the average volume of one particle on one stage. To obtain m_{p} in milligram units when ρ_{p} is in grams per cubic centimeter and V_{p} is in cubic micrometers, certain conversion factors must be used. The complete formula, using the correct conversion factors and the expression (4/3)(π) $(d / 2)^{3}$ for V_{p}, where d is the geometric mean diameter in micrometers, is:

$$
\begin{align*}
m_{p} & =\rho_{p}\left(\frac{10^{3} \mathrm{mg}}{1 \mathrm{gm}}\right)\left(\frac{4 \pi}{3}\right)\left(\frac{\mathrm{d}}{2}\right)^{3} \quad\left(\frac{10^{-12} \mathrm{~cm}^{3}}{1 \text { cubic micrometer }}\right) \\
& =\left(5.23599 \times 10^{-10}\right) \rho_{p} d^{3} \tag{19}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
\left(\frac{\Delta N}{\Delta L O G D}\right)_{j}=\frac{(\Delta M / \Delta L O G D)_{j}}{5.23599 \times 10^{-10} \rho_{p}^{d^{3}}} \tag{20}
\end{equation*}
$$

where $\triangle M / \triangle L O G D$ is in units of $\mathrm{mg} / \mathrm{LNCM}, \rho_{p}$ is in $\mathrm{gm} / \mathrm{cm}^{3}$, d is in micrometers, and $\triangle N / \triangle L O G D$ is in number of particles/DNCM.
For S3,

$$
\begin{aligned}
\left(\frac{\Delta N}{\Delta L O G D}\right)_{3} & =\frac{17.8 \mathrm{mg} / \mathrm{DNCM}}{\left(5.23599 \times 10^{-10}\right) \times(1.35 \mathrm{gm} / \mathrm{CC}) \times(7.94 \text { microns })^{3}} \\
& =5.03 \times 10^{7} \text { particles } / \mathrm{DNCM} .
\end{aligned}
$$

For the filter stage

$$
\begin{aligned}
\left(\frac{\Delta \mathrm{N}}{\mathrm{ULOGD}}\right)_{9} & =\frac{8.47 \mathrm{mg} / \mathrm{DNCM}}{\left(5.23599 \times 10^{-10}\right) \times(1.35 \mathrm{gm} / \mathrm{CC}) \times(0.231 \text { microns })^{3}} \\
& =9.12 \times 10^{11} \text { particles/DNCM }
\end{aligned}
$$

SPLIN1
In many, if not most, sampling programs, a number of
impactor runs will be made. Frequently, these runs will be made using several impactors, having different performance characteristics. The latter may be true even if the same type of impactor is used throughout a sampling program. This behavior results from manufacturing variations which cause calibration differences as well as run-to-run variations in sampling rates, which cause shifts in the $D_{50}{ }^{\prime} s$. Averaging results from such testing to obtain a representative composite size distribution requires that the distributions be broken down into like size intervals for all the runs to be averaged. The same requirement for like size intervals also holds for using inlet and outlet data from control device sampling programs to obtain fractional efficiencies. The program "SPLINI" provides the ability to perform this required breakdown of the size distributions obtained from each impactor run into preselected uniform size intervals.

Before making the final selection of the spline technique, consideration was given to a number of alternate fitting methods, and several of them were tried. It was concluded that any attempt to fit a predetermined functional form (e.g. log-normal) to the data was generally not proper. Multimodal size distributions based on real data do not conform faithfully to the sum of these functional forms. Other non-linear forms were found unsatisfactory due to the high number of parameters needed to specify the fitting equation, especially those used on multimodal distributions. Because the slope of the cumulative distribution curve, the differential distribution, is the required quantity for calculating fractional efficiencies, consideration was also given to curve fitting the $\Delta M / \Delta \log D$ approximations of the true differential distribution, which was estimated directly from the stage loadings and $\mathrm{D}_{50} \mathrm{'}^{\prime} \mathrm{s}$. However, the magnitude of the steps in D_{50} are large enough in most impactors as to frequently make $\triangle M / \Delta l o g D$ a poor approximation
to $d M / D l_{0} D$. Moreover, the boundary conditions are more difficult to handle in fitting curves to $\Delta M / \Delta \log D$ than in fitting to the cumulative distributions.

SPLIN1 operates by fitting a curve which is continuous in X and Y and the first derivative of Y with respect to X to the cumulative mass concentration size distribution data. The resulting fitted curve is similar to that which one would draw through the data points using a "French curve" or mechanical spline. This fitted curve invokes no a priori assumptions as to the shape of the distribution (i.e., power law, log-normal, etc.).

Generation of Interpolated Points -
The technique used to fit the set of points defining the cumulative distribution curve is a modified spline procedure. The set of cumulative distribution points are used to define a set of interpolated points between each D_{50} value. A spline fitting procedure is then followed for the new set of original plus interpolated points. Initial attempts at using this technique on the set of points defining the cumulative distribution curve obtained directly from the D_{50} 's were not satisfactory. The difficulty occurred as a result of the inability of the method to generate sufficiently rapid changes in curvature when the curve to be generated was defined by a small number of points. A satisfactory fit could be obtained by adding a set of interpolated points between the original data points of the measured cumulative curve. These points are generated by means of a series of parabolas through consecutive sets of three adjacent data points of the actual cumulative curve defined at the D_{50} 's. The fitting is done using log (concentration) and log (particle diameter) as variables and begins with the segment containing the smallest D_{50} in the data set.

The sequence of operations by which the interpolated points are generated is shown in Figures 1. A series of parabolas are fitted through consecutive sets of 3 data points beginning at the smallest D_{50} as shown in Figures la and lb. Three interpolation points are located along this parabola, between the lower pair of the three points used to generate the parabola. The three interpolated points are spaced evenly in log diameter between the pair of original points. A similar process is used to generate interpolated points between consecutive pairs of D_{50} 's up to the segment which terminates at the D_{50} of the first collection stage as illustrated in Figures lc to le. A slightly different procedure which will be described later, is used for segments which include the first collection stage D_{50}.

Since the fitting is for a cumulative curve, a check is made for negative first derivatives of the interpolation parabola at the bounds of each segment within which the interpolated points are to be generated. If a negative derivative is found in any segment other than the first (the segment including the smallest D_{50}) a straight line interpolation between the segment bounds is used rather than parabolic interpolation. If a negative first derivative is found in the first segment to be fitted, a fictitous point is generated and used to form a parabola which has no negative derivatives in this segment. This fictitious point has the same concentration value as that of the first point on the cumulative curve and has a diameter defined by

$$
\begin{equation*}
\mathrm{D}_{\text {fictitious }}=\frac{\left(\mathrm{D}_{50} \text { of last stage }\right)^{2}}{\left(\mathrm{D}_{50} \text { of next to last stage }\right)} \tag{21}
\end{equation*}
$$

The interpolated values for the segment between the last two Dso's on the cumulative curve are then generated from the parabola which passes through this fictitious point, and the points for the last two stages on the cumulative distribution curve.

Figure 1a. Cumulative size distribution from raw impactor data.

Figure 1b. Start of development of interpolated points between first and last D_{50}

Figure 1c. Continued generation of interpolated points

Figure 1d. Continued generation of interpolated points

Figure 1e. Generation of interpolated points on parabola which includes DMAX.

Figure 1f. Generation of interpolated points on hyperbola through $D_{50}{ }^{(1)}$ and DMAX

In the region about the first stage D_{50}, three sets of interpolated points are generated. The first are generated by parabolic interpolation using a parabola through DMAX, D_{50} (stage l), and D_{50} (stage 2) as was done in the case of the previous segments. However, in addition to these, three more points are generated along the parabola above the first stage D_{50}. These additional points are spaced evenly in log (diameter) at the same intervals in \log (diameter) as the interpolated points between D_{50} (stage l) and D_{50} (stage 2) as shown in Figure le. These points are used in generating the final curve fit up to the point on the cumulative distribution curve defined by the first stage D_{50}. The third set of points is illustrated in Figure lf.

Note that the cumulative mass distribution used in the illustrations of figure l is one in which a large step in concentration occurs between D_{50} (stage l) and DMAX. This is typical of a cumulative curve for a bimodal distribution in which one mode has a median diameter substantially greater than first stage D_{50}. The interpolation parabola through DMAX, D_{50} (stage l) and D_{50} (stage 2) does not properly represent the shape of the true distribution curve in this region. In particular, the true curve must have zero slope at DMAX. It was empirically determined that a hyperbolic interpolation equation fit in terms of linear concentration and linear diameter between DMAX and D50 (stage l) with the hyperbola asymptotic to the total loading at infinite particle size resulted in very acceptable results in the final spline fits. Therefore a seven point hyperbolic interpolation is used in addition to the previously described parabolic interpolation over this segment of the curve. This hyperbolic interpolation is illustrated in Figure lf. The use of the two sets of interpolated points in the final interval will be discussed later.

Generation of the Final Spline Fit--
The original data points, together with the interpolated points just generated, form a set of points along a continuous curve (if one disregards the two sets of points in the final segment) which has no negative slopes. However, the derivative of the curve in most cases will not be continuous at the D_{50} points. The spline fit to be described is a smoothing technique which generates a series of parabolic segments that approximates a continuous curve through the complete set of points defining the cumulative distribution. The segments to be generated now will pass near or through those points and will have forced continuity in both coordinates and first derivatives. The technique is applied first to cover the interval between the first and last D_{50} 's and then a second time to cover the interval between the first stage D_{50} and DMAX. From this point on, no distinction is made between the original points defined by the D_{50} 's and the interpolated values located between them.

The spline fit is generated by joining successive parabolas at points located by the x (or \log diameter) coordinates of the points which now represent the cumulative distribution curve (original points at the D_{50} 's plus the interpolated points). These parabolas have continuity in slope forced by the fitting procedure and are generated in such a fashion as to pass near or through the points on the cumulative distribution curve.

The procedure is illustrated in Figures 2. The spline fit is begun at the lowest point on the distribution curve (at the D_{50} of the last stage). The parabola used to generate the interpolated points between the last two stages is assumed to be the fitted curve up to the first interpolated point. (Point l in Figure 2a.) This parabola, a, is followed until the x-coordinate at point l is reached. At the point A, located on this parabola by the x-coordinate of point 1 , a new parabola is fitted as shown in Figure 2b. This parabola, b, is forced to pass

Figure 2a. Start of the curve fitting procedure. Cumulative mass loadings derived from stage catches are represented by solid circles. Interpolated values are shown with open circles.

PARTICLE DIAMETER

Figure 2b. Second step in the curve fitting procedure. Cumulative mass loadings derived from stage catches are represented by solid circles. Interpolated values are shown with open circles.
through point A with the same slope at A as the parabola used to define point A, and is forced to pass through the third point above point 1 in the set of points defining the cumulative curve, i.e., point 4. The parabola, b, is followed to the point defined by the x-coordinate of point 2 , thus locating a point B. At B a new parabola is fit with forced slope continuity with b passing through the third point ahead of point 2 , i.e., point 5 , as shown in Figure 2c. From C this process is repeated using point C and 6 to generate a new parabola, d, and termination point D, e, and E, etc., until a termination point at the D_{50} of the first collection stage is reached. The last three points obtained by parabolic interpolation are used in generating the spline fit parabolas up to the first collection stage D_{50}. The coefficients of the fitting spline fit parabolas for the segments a, b, c, d, \ldots etc., are saved for future use. These now represent the smoothed curve and will be used henceforth to define the cumulative curve for that run.

The final spline fit starts by picking up at the point on the fitting parabola which terminated at the D_{50} of the first stage. The same procedure as before is followed, except that the third point ahead determined by the hyperbolic interpolation is now used for fitting, and the fitting parabolas are followed to x-coordinates defined by the hyperbolic interpolation points. The curve generated in this second zone of the spline fit (í.e., between D_{50} (stage l) and DMAX) is an extrapolation, but one which has been found to be quite good to diameters equal to about 2 to 3 times the first stage D_{50} for unimodal distributions.

The cumulative concentration and slope of the cumulative curve, $d m / d \log D, c a n$ be calculated for any arbitrary particle size by locating the fitting coefficients for the spline segment containing that size. The boundary locations of each of the parabolic segments, $\mathrm{O}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots$, and the fitting coefficients for each segment are stored in a disk file for subsequent use by other programs (e.g., GRAPH, STATIS, etc.).

Figure 2c. Third step in the curve fitting procedure. Cumulative mass loadings derived from stage catches are represented by solid circles. Interpolated values are shown with open circles.

Problems Resulting from Extremely Close Stage Cut Diameters ($\mathrm{D}_{5}{ }^{\prime} \mathrm{s}$) --

In the case of certain impactors (Andersen, University of Washington, and MRI), calibration data indicate that the first two stages have effective D_{50} 's which are very nearly equal. When two stages are used which differ only slightly in D_{50}, the second of the two will collect too much material because of the finite slope of real impactor stage collection characteristics. The simplest example of this effect would be obtained if two identical stages are used sequentially. If that were the case, in an ideal impactor the second stage should collect no material; however, because of the finite slope of the real stage collection efficiency curve, it will. This could lead to the formation of a step increase (infinite slope) in the cumulative concentration curve. The severity of the effect is reduced as the spacing between the D_{50} 's increases but can be sufficiently severe so as to cause significant errors in the size distribution curves if it is not properly accounted for. The program MPPROG, because of this problem, ignores the presence of the second stage of Andersen, MRI, and University of Washington impactors in generating the cumulative mass concentration data from which the fitted curves will be made by SPLINl. This procedure effectively nullifies the problem. However, if calibrations of future versions of these impactors do not show the small spacing in D_{50}, MPPROG should be modified appropriately so as not to lose good information when the curve fits are made.

GRAPH

Program GRAPH is dedicated entirely to presenting data from single impactor runs. The output forms available on call are cumulative mass loading versus D_{50} and $\Delta M / \Delta l o g D$ versus geometric mean diameter as calculated in MPPROG. The latter are available on both Stokes, aerodynamic and aerodynamic impaction diameter bases. As an option, up to ten runs can be superimposed on a
single plot. Plots and tabular output of the fitted curves from SPLINl are also available. The fitted curves from SPLIN1 are plotted superimposed on the data points from MPPROG, but only as single run plots. The plots are all made on log-log grids.

The tabular output includes only $d M / d l o g D$ versus particle diameter generated by differentiation of the SPLIN1 fitted curves.

ANALYSIS OF GROUPED DATA
STATIS

STATIS is a program for combining data from multiple impactor runs under a common condition. The program tests data from a series of runs specified by the user for outliers, flags and removes outliers from the set, and then provides output in the form of averaged size distributions with 50% confidence intervals as desired in both tabular and graphical form. The program is set up to provide 50% confidence intervals; however, changes can be made for the calculation of 90% confidence intervals. These changes are documented in the explanation of STATIS.

The input data to STATIS are the fitted polynomial segments generated from MPPROG by SPLINl which now define the cumulative mass loadings for each run. The individual runs to be included in the averages and the particle diameter basis (i.e., aerodynamic, aerodynamic impaction, Stokes) are user specified on control cards used to execute STATIS.

The fitting equations from SPLINl are differentiated at preselected particle diameters to obtain the quantity (dM/dlogdi) ${ }_{j}$ where i refers to particle diameter and j refers to the sequence number of a particular run in the set to be averaged. The values, at each particle diameter, D_{i}, are subjected to an outlier
analysis based on the deviations of the values of $d M / d \log D$ for individual runs from the mean for all runs.

The outlier test used is that for the "Upper 5% Significance Level" as given in Quality Assurance Handbook for Air Pollution Measurement Systems, Vol. 1. Principles. (EPA-600/9-76-005, January 1976, Section No. F, pp. 5-9). A curve fitted to the tabular list at critical values for excluding an outlier is used to generate the table. A tested value X_{i} is an outlier if

$$
\begin{equation*}
\frac{\left|x_{i}-\bar{x}\right|}{s}>c_{n} \tag{22}
\end{equation*}
$$

$c_{n}=$ critical value $=$ function of the number of points in $X_{i}=$ individual value
$\overline{\mathrm{X}}=$ mean of all values
S = standard deviation at the data set.

The application of this test requires that there be three or more runs in the sequence to be averaged. This outlier test is repeated after discarding any outliers already identified, provided there are at least three runs remaining in the set of retained points.

After discarding outliers for each ($\mathrm{dM} / \mathrm{dlog})_{i}$, a final average, standard deviation, and 50% confidence interval are calculated. These values are output on the line printer and are plotted on demand by the user.

Cumulative size distributions on a mass basis or percentage basis are derived from the averaged dM/dlogD values by integration of these values. The choice of integrating the $d M / d \log D$ curve rather than direct computation of the cumulative averages from the individual cumulative distributions was based on the
fact that an error in a single stage weight is propagated forward throughout the cumulative curve for all stages subsequent to the one on which the error occurred. This would cause substantial quantities of good data from other stages to be discarded by the outlier analysis. Integration of the averaged differential distribution, on the other hand, allows the data from the remaining, error free, stages to have their proper influence on the averaged cumulative distributions. These cumulative distributions are again output in tabular form and, on call, in graphical form.

The cumulative distributions can be obtained either including or excluding particles smaller than $0.25 \mu \mathrm{~m}$ in diameter. The option of excluding the particles smaller than $0.25 \mu \mathrm{~m}$ results from the fact that in a significant percentage of sampling situations, impactor back up filter catches can be dominated by oversize particles because of bounce and/or reentrainment. This results in a filter weight gain which can be many times higher than the weight of the fine particles which, ideally, should be the only material present. In those cases, omission of the material which is nominally smaller than $0.25 \mu \mathrm{~m}$ from the cumulative distributions will make the result a much better representation of the true size distribution.

Standard deviations and confidence limits for the cumulative distributions are calculated from the approximation that the variance (and square of a confidence interval) for a sum, $A+B$, is given by the sums of the variances (and squares of the confidence intervals) for A and B separately, i.e.,

Variance $_{A}+_{B}=$ Variance $_{A}+$ Variance $_{B}$
and (confidence interval) ${ }_{A}^{2}+B=(\text { confidence interval })_{A}^{2}$ $+\left(\right.$ confidence interval) ${ }_{B}^{2}$

The averaged differential size distributions generated by STATIS are stored in a disc file for use by the programs PENTRA or PENLOG in calculating control device fractional efficiency curves.

Tabular and graphical output from STATIS includes cumulative mass loading versus diameter, cumulative percentage on a mass base versus diameter, $d M / d l o g D$ versus diameter, and $d N / d l o g D$ versus diameter. The graphical presentations are made on log-log grids with the exception of the cumulative percentage plot which is made on a log-probability grid. All output forms, graphical and tabular, include confidence limits. The choice of diameter definition used is left to the user. An index of runs which were rejected through the outlier analysis before averaging is also printed. Rejection at any one particle size does not result in the run being excluded at all particle sizes.

Programs PENTRA/PENLOG

These two programs are virtually identical and provide tabular and graphical output of control device penetration and/ or efficiency versus particle size for a preselected series of particle sizes from about 0.25 to $20 \mu \mathrm{~m}$. The only difference between the two programs is in the form of the graphical output. In the case of PENTRA, the fractional efficiency curves are presented on a log-probability grid while in PENLOG they are presented on a log-log grid.

The calculations are made from averaged sets of inlet and outlet data developed by STATIS. The user identifies the pair of averaged data sets from which the efficiency is to be calculated together with the diameter basis required (i.e., Stokes,
aerodynamic, aerodynamic impaction). The program retrieves the appropriate averaged data sets and calculates the fractional efficiency as

$$
\begin{equation*}
\text { efficiency }_{i}(\%)=\left[1-\frac{\left(d m / \operatorname{dlog}_{i}\right)_{o u t l e t}}{\left(d M / \operatorname{Dlog}_{i}\right) \text { inlet }}\right] \times 100 \tag{25}
\end{equation*}
$$

where i refers to the $i^{\text {th }}$ particle diameter in the preselected diameter sequence. Simultaneously, if both the inlet and outlet data sets included two or more runs, confidence limits are calculated based on a method described by Y. Beers. ${ }^{6}$ The confidence level associated with the limits generated by the program are 50\% levels in the program as provided; however, other levels can be generated by simply changing values of three constants used to generate the appropriate t-table.

This section provides detailed breakdowns on the programs and subprograms used in CIDRS. The description of the programs given here are keyed to the line sequence numbers of the program listings which make up Section 5 of this manual.

PROGRAM MPPROG

The purpose of program MPPROG is to calculate all of the necessary variables (viscosity, mean free path, slip correction factor, etc.) in order to obtain stage D_{50} 's or cut point diameters, cumulative mass loadings, and differential size distributions on both a mass and number basis for cascade impactors. The program handles data collected by the Andersen Mark III Stack Sampler, the modified Brink Cascade Impactor, the University of Washington Mark III Source Test Cascade Impactor, or the Meteorology Research Incorporated Cascade Impactor. This is the first of a series of four programs which together yield a complete profile of a particulate loading at the tested point. This may be either at the inlet or outlet of the gas cleaning device. A fifth program compares inlet and outlet testing to yield the devices penetration-efficiency.

All input for MPPROG is received by card reader. The cut point diameters, cumulative mass loadings, and a preliminary view of the differential size distributions are output on a line printer. Much of this information is also output on a disk file. This file serves as input data for later programs in the series.

Breakdown of Program MPPROG

032-112: Read input data from cards. Set the value of NMASS which is the number of masses to be read:

NMASS $=9$ if using the Andersen Mark III Stack Sampler
$=9$ if using the modified Brink Cascade Impactor
$=8$ if using the University of Washington Mark III Source Test Cascade Impactor $=8$ if using the Meteorology Research Incorporated Cascade Impactor

Set the value of NCUM which is the number of cumulative mass loadings less than stage D_{50} : NCUM $=8$ if using the Andersen Impactor $=7$ if using the Brink Impactor, the University of Washington Impactor, or the MRI Impactor
The only calculation here is a conversion of the units of mass on each stage (including the filter) to grams using the mass on each stage in milligrams as input.

$$
\text { MASS }_{I}=\text { MASS }_{I} / 1000.0, I=1,9
$$

The order here is from mass on the back-up filter ($\mathrm{I}=1$) to mass on the first stage ($\mathrm{I}=$ NMASS=8 or 9) or cyclone (if used).
ll3-116: Increment the index NRUN for each set of data read in here.
ll7-125: If $\mathrm{D}_{5}{ }^{\prime}$'s, cumulative mass loadings, etc., are desired using both the classic definition and Mercer's definition of aerodynamic diameter, the input density RHO will be 1.0 (rather than a physical density). In this case, the index which signals the definition of aerodynamic diameter to be used, NAERO, is set equal to 0 so that D_{50} 's,
cumulative mass loadings, etc., are calculated based on the TGLD definition for the first computation. (D_{50} 's, mass loadings, etc., are calculated based on Mercer's definition of aerodynamic diameter for the second computation.)
126-131: Calculate the wet fractional gas composition, $\mathrm{FG}_{\mathrm{I}}, \mathrm{I}=1,4$, for carbon dioxide $(\mathrm{I}=1)$, carbon monoxide ($I=2$), nitrogen ($I=3$), and oxygen ($I=4$) using the input dry fractional gas compositions, $\mathrm{FG}_{\mathrm{I}}, \mathrm{I}=1,4$ in the formula:

$$
\begin{equation*}
F G_{I}=F G_{I}\left(1.0-F G_{5}\right), \text { where } \tag{26}
\end{equation*}
$$

FG_{5} is the fractional water content.
132-135: Define the average molecular weight of air to be $R A=28.97$ atomic mass units.
136-139: Calculate the av?rage molecular weight of the flue gas in atomic mass units, MM, using the wet gas composition fractions, $F G_{I}, I=1,5$, (for carbon dioxide, carbon monoxide, nitrogen, oxygen, and water, respectively) by the formula:

$$
\begin{align*}
M M=\left(44.10 \mathrm{FG}_{1}\right)+\left(28.01 \mathrm{FG}_{2}\right) & +\left(28.02 \mathrm{FG}_{3}\right)+\left(32.00 \mathrm{FG}_{4}\right) \\
& +\left(18.02 \mathrm{FG}_{5}\right) \tag{27}
\end{align*}
$$

140-143: Calculate the temperature of the gas in the impactor in degrees centigrade, TCI, using the input temperature of the gas in the impactor in degrees Fahrenheit, TFI, by the formula:

$$
\begin{equation*}
\mathrm{TCI}=(5 / 9)(\mathrm{TFI}-32.0) \tag{28}
\end{equation*}
$$

144-147: Calculate the temperature of the gas in the impactor in degrees Kelvin, TKI, using the input temperature of gas in the impactor in degrees Fahrenheit, TFI, by the formula:

$$
\begin{equation*}
T K I=273.0+[(5 / 9)(T F I-32.0)] \tag{29}
\end{equation*}
$$

148-151: Calculate the temperature of the gas in the impactor in degrees Rankine, TRI, using the input temperature of gas in the impactor in degrees Fahrenheit, TFI, by the formula:

$$
T R I=T F I+460.0
$$

152-155: Calculate the temperature of gas in the stack in degrees centigrade, TCS, using the input temperature of gas in the stack in degrees Fahrenheit, TFS, by the formula:

$$
\operatorname{TCS}=(5 / 9) \quad(\text { TFS }-32.0)
$$

156-159: Calculate the temperature of gas in the stack in degrees Kelvin, TKS, using the input temperature of gas in the stack in degrees Fahrenheit, TFS, by the formula:

$$
T K S=273.0+[(5 / 9)(T F S-32.0)]
$$

160-163: Calculate the gas flow rate for impactor conditions in actual cubic feet per minute, Q, using the input gas flow rate for stack conditions in actual cubic feet per minute, F, the temperature of gas in the impactor in degrees Kelvin, TKI, and the temperature of gas in the stack in degrees Kelvin, TKS:

$$
Q=F(T K I / T K S)
$$

164-167: Calculate the gas pressure at the impactor inlet in atmospheres, POA, using the input gas pressure at the impactor inlet in inches of mercury, PO:

$$
\mathrm{POA}=\mathrm{PO} / 29.92
$$

168-175: Calculate the drop in pressure across the impactor in inches of mercury, DP. From the ideal gas law: $\mathrm{PV}=\mathrm{NkT}$
where $P=$ pressure, inches of mercury
$\mathrm{V}=$ volume, cubic meters
$\mathrm{N}=$ total number of molecules in volume V
$\mathrm{k}=$ Boltzmann's constant
$T=$ temperature, degrees Kelvin
and the ideal orifice equation (Eq. 12), the following relationship is easity derived:

$$
\begin{equation*}
\Delta P=\left(\mathrm{DPCON}_{\mathrm{J}}\right) \quad\left(\mathrm{Q}^{2} \mathrm{PO} / T R I\right) \quad(\mathrm{MM}) \tag{35}
\end{equation*}
$$

where $\operatorname{DPCON}_{J}=\underset{\text { for each impactor type }}{\text { a constant determined imperically }}$

$$
\begin{aligned}
Q= & \text { gas flow rate for impactor condi- } \\
& \text { tions, actual cubic feet per minute }
\end{aligned}
$$

$\mathrm{PO}=$ gas pressure at impactor inlet, inches of mercury
$T R I=$ temperature of gas in the impactor, degrees Rankine
$M M=$ average molecular weight of the flue gas, atomic mass units.
The values of DPCON_{J} for each impactor (given in the data statement at card 029) as empirically determined are:

J	DPCON_{J}	Impactor
1	1.287	Andersen
2	3.783×10^{2}	$\begin{aligned} & \text { Brink }(\text { last stage } \\ & \text { stage 5) } \end{aligned}=$
3	3.928	Univ. of Washington
4	1.093×10^{3}	$\begin{aligned} & \text { Brink }(\text { last stage } \\ & \text { stage 6) } \end{aligned}$
5	9.375	MRI

176-179: Calculate the drop in pressure across the impactor in atmospheres, DPA, using the drop in pressure across the impactor in inches of mercury, DP:

$$
\begin{equation*}
D P A=D P / 29.92 \tag{36}
\end{equation*}
$$

180-183: Call subroutine STAGE to calculate the local pressure at each impactor stage in atmospheres, $\mathrm{PS}_{\mathrm{I}}, \mathrm{I}=1$, NCUM.

184-187: Call subroutine VIS to calculate the gas viscosity in poise, MU.
188-191: Call subroutine MEAN to calculate the molecular mean free path at each impactor stage in centimeters, $L_{I}, I=1$, NCUM.
192: RHOl is the input particle density. The initial value is the aerodynamic density, 1.0 gram per cubic centimeter. Note that density is read in as RHO, but this value is saved as RHOl, if RHO is input as physical density. If RHO is input as aerodynamic density, both RHO and RHOl are 1.0 gram per cubic centimeter.
193-196: The program comes to this continue statement 2010 (card 193) twice for each input set of data. The first calculations are made for assumed physical density if density is input as a value greater than 1.0 gram per cubic centimeter. The first calculations are made for assumed unit density using the classic definition of aerodynamic diameter as defined by the Task Group on Lung Dynamics (TGLD) ${ }^{1}$ if density is input as 1.0 gram per cubic centimeter. (In this second case, NAERO= MAERO is overridden. It is set equal to l to get second calculations for D_{50}, cumulative mass loadings, etc., based on Mercer's definition ${ }^{2}$ of aerodynamic density.) The record number, IS, of file KMC001 (file l0) is odd where the D_{50} values, cumulative mass loadings, etc., are stored for these first calculations. Each time the program passes this continue statement 2010 , the record number, IS, is incremented by one. Thus, on the second traverse for a given set of data, IS is even. Here the assumed density, RHO, is unit density = 1.0 gram per cubic centimeter. The definition of aerodynamic density used for these second calcula-
tions is dependent on the input code value MAERO. If calculations for the TGLD aerodynamic diameter have been made on the first traverse (RHO input as 1.0), NAERO is set equal to 1 and this second traverse yields D_{50} 's cumulative mass loadings based on Mercer's definition. If calculations for physical density have been made on the first traverse, these aerodynamic values may be calculated according to the TGLD (MAERO input as 0) or Mercer's definition (MAERO input as 1). Also, the input maximum particle diameter in micrometers, LMAX, is modified for assumed aerodynamic diameter

$$
\text { DMAX }=(\text { RHOL })^{\frac{1}{2}} \text { DMAX }
$$

where RHOl is the input density in grams per cubic centimeter.

Call subroutine CUT to calculate the lower size limit of D_{50} of each stage in micrometers, $D P C_{I}$, $I=1, N C U M$, where $N C U M=8$ for the Andersen impactor or NCUM $=7$ for the Brink, University of Washington, or MRI impactor. Also, this subroutine calculates the cut point of the cyclone in micrometers, CYC3, if the Brink impactor is used. Call subroutine CUM to calculate the cumulative mass distribution in grams, CUMM $_{I}, I=1$,NMASS, and the cumulative percent mass distribution value, PERCU $_{I}$, $I=1$,NMASS. NMASS $=9$ for the Andersen or Brink impactor or NMASS $=8$ for the University of Washington or MRI impactor. These distributions are ordered such that the least cumulative mass value is CUMMI. It represents the mass on the filter only; CUMM2 is the sum of the masses on both the filter and the last stage; CUMM NMASS is the sum of all masses through the first or coarsest stage (or the cyclone if
applicable). The cumulative percent mass distribution, PERCU, is ordered in the same manner. This subroutine also finds the total mass loading in grains per actual cubic foot, GRNA, in grains per normal dry cubic foot, GRNS, in milligrams per actual cubic meter, GRNAM, and in milligrams per normal dry cubic meter, GRNSM.
206-211: This loop changes the fractional flue gas composition, FG_{I}, $\mathrm{I}=1,5$, to percent flue gas composition

$$
\begin{equation*}
\mathrm{FG}_{\mathrm{I}}=\mathrm{FG}_{\mathrm{I}} \times 100.0, \mathrm{I}=1,5 \tag{37}
\end{equation*}
$$

(Recall that these percentages represent $\mathrm{CO}_{2}, \mathrm{CO}$, $\mathrm{N}_{2}, \mathrm{O}_{2}$, and $\mathrm{H}_{2} \mathrm{O}$, respectively.)
212-222: Define new variables for the mass captured on each stage in grams, IMASS $I^{\prime} I=1$,NMASS, which are the same as MASS ${ }_{I}, I=1$,NMASS, except that the ordering is reversed. For example:

$$
\begin{aligned}
& \text { IMASS }_{1}=\text { MASS }_{\text {NMASS }} \\
& \vdots \\
& \text { IMÁSS }_{6}=\text { MASS } \\
& \vdots \\
& \text { IMÁSS }_{\text {NMASS }}=\text { MMASS }_{1}
\end{aligned}
$$

Likewise define new variables for cumulative mass captured at each stage, ICUMM $_{I}, I=$ NMASS, and new variables for cumulative percent mass captured at each stage, $\mathrm{PRCU}_{I}, \mathrm{I}=1$,NMASS. These are the same as CUMM $_{I}, I=1$,NMASS and $\mathrm{PRCU}_{\mathrm{I}}, \mathrm{I}=1$,NMASS, respectively, except that the ordering has been reversed. For example:

$$
\begin{aligned}
& \text { ICUMM }_{1}=\text { CUMM }^{\text {NMASS }} \\
& \vdots \\
& \text { ICUMM }_{6}=\text { CUMM } \\
& \vdots\left(\text { NMASS }^{\prime}+1-6\right) \\
& \text { ICUMM }_{\text {NMASS }}=\text { CUMM }_{1} \\
& \text { and }
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{PRCU}_{1}=\text { PERCU }_{\text {NMASS }} \\
& \vdots \\
& \operatorname{PRCU}_{6}=\text { PERCU }^{\vdots} \vdots \\
& \vdots \\
& \operatorname{PRCU}_{\text {NMASS }}=\text { PERCU }_{1}
\end{aligned}
$$

NMASS is the number of stage catches. NMASS $=9$ for the Andersen or Brink impactor; NMASS $=8$ for the University of Washington or MRI impactor. This loop converts the mass collected on each stage in grams, IMASS $_{I}$, $I=1, N M A S S$, and the cumulative mass at each stage in grams, ICUMM $_{I^{\prime}}$ $I=1, N M A S S$, to milligrams:

$$
\begin{align*}
& \text { IMASS }_{I}=\text { IMASS }_{I} \times 1000.0, I=1, \text { NMASS } \tag{38}\\
& \text { ICUMM }_{I}=\text { ICUMM }_{I} \times 1000.0, I=1, \text { NMASS } \tag{39}
\end{align*}
$$

Again, NMASS is the number of stage catches. NMASS $=9$ for the Andersen or Brink impactor; NMASS $=8$ for the University of Washington or MRI impactor.
230-249: For each stage:
Calculate the mass loading of particulate with diameters less than the D_{50} of the given stage in milligrams per actual cubic foot, CUMG ${ }_{I}$, $I=1, M L S, ~ u s i n g$ the total loading in milligrams per actual cubic meter, GRNAM, and the cumulative percent of total mass up to and including the stage having the next smaller $\mathrm{D}_{50}, \mathrm{PRCU}_{I}+\mathrm{MMM}^{\prime}$ $\mathrm{I}=1, \mathrm{MLS}$

$$
\begin{equation*}
\text { CUMG }_{I}=\operatorname{GRNAM}^{\left(P R R C U_{I}\right.}+\mathrm{MMM}^{/ 100.0)} \tag{40}
\end{equation*}
$$

Calculate the mass loading for particulate diameters less than the D_{50} of the given stage in grains per dry normal cubic foot, CUMM(I), $I=1, M L S, ~ u s i n g ~ t h e ~ t o t a l ~ l o a d i n g ~ i n ~ g r a i n s ~ p e r ~$ actual cubic foot, GRNA, and $P^{2 R C U} I_{I}+M M M$ as
described above:

$$
\begin{equation*}
\mathrm{CUMH}_{I}=\operatorname{GRNA}\left(\mathrm{PRCU}_{I}+\mathrm{MMM}^{/ 100.0}\right) \tag{41}
\end{equation*}
$$

Calculate the mass loading of particulate with diameters less than the D_{50} of the given stage in grains per day normal cubic foot, CUMI ${ }_{I}$, $I=1, M L S, ~ u s i n g$ the total loading in grains per
 described above:

$$
\begin{equation*}
\mathrm{CUMI}_{I}=\operatorname{GRNS}\left(\mathrm{PRCU}_{I}+\mathrm{MMM}^{\prime} / 100.0\right) \tag{42}
\end{equation*}
$$

Calculate the mass loading of particulate with diameters less than the D_{50} of the given stage in milligrams per dry normal cubic meter, CUMJ ${ }_{I}$, $I=1, M L S, ~ u s i n g ~ t h e ~ t o t a l ~ l o a d i n g ~ i n ~ m i l l i g r a m s ~$ per dry normal cubic meter, GRNSM, and $P_{\text {PRCU }}+M M M$ as described above:

$$
\begin{equation*}
C U M J_{I}=\operatorname{GRNSM}\left(\mathrm{PRCU}_{I}+\mathrm{MMM}^{/ 100.0)}\right. \tag{43}
\end{equation*}
$$

The total number of cumulative mass loadings less than stage $\mathrm{D}_{50}, \mathrm{MLS}$, and the value added to the PRCU index, MMM, are dependent on the impactor used and its configuration. For the Andersen, the University of Washington, or the MRI impactor, the number of cumulative mass loading values, MLS, is the same as the number of stages (excluding the filter), NCUM. NCUM $=8$ for the Andersen impactor; NCUM $=7$ for the University of Washington or the MRI impactor. Also, in these three cases, the cumulative percent mass used to find the mass loading of a given stage is the cumulative percent mass up to the next stage. Therefore, $M M M=1$. For the Brink impactor the values of MLS and MMM are dependent on the impactor configuration used:

$$
\begin{align*}
& M L S=M C 3+M O O+6 \tag{44}\\
& M M M=3-(M C 3+M O O) \tag{45}
\end{align*}
$$

Recall that MC3 is the code variable for use of the cyclone. It is 1 , when the cyclone is used; 0 , when not used. Likewise, MOO is the code variable for use of stage 0 .
250-257: Calculate the mass loading in milligrams per dry normal cubic meter, GGRNS $_{I}$, $I=1$,NMASS, using the mass collected on the given stage in grams, IMASS $_{I}$, $I=1$,NMASS, the temperature of the stack in degrees Kelvin, TKS, the flow rate under stack conditions in actual cubic feet per minute, F, the sampling duration in minutes, DUR; the pressure at the impactor inlet in atmospheres, POA, and the percent water content of the gas, $F G_{5}$, by the formula:

GGRNS $_{I}=\frac{\text { IMASS }_{I} 15.4324 \mathrm{TKS} 2288.34}{\left.\text { FDUR } 294.0\left[1.0-\mathrm{FG}_{5} / 100.0\right)\right] \text { POA } 1000.0}$
where $I=1$, NMASS.
258-274: Regardless of the impactor used, this section outputs the following information by line printer:

ID - general identification label
F - impactor flow rate under stack conditions in actual cubic feet per minute

TFI - impactor temperature in degrees Fahrenheit
TCI - impactor temperature in degrees centigrade
DUR - sampling duration in minutes
DP - drop in pressure across the impactor in inches of mercury

TFS - stack temperature in degrees Fahrenheit
TCS - stack temperature in degrees centigrade RHO - assumed density (physical or unit) in grams per cubic centimeter

PO - gas pressure at impactor inlet in inches of mercury

DMAX - maximum particle diameter in micrometers FG1-5 - wet percent flue gas composition $\left(\mathrm{CO}_{2}\right.$, $\mathrm{CO}, \mathrm{N}_{2}, \mathrm{O}_{2}$, and $\mathrm{H}_{2} \mathrm{O}$, respectively)

GRNA - total mass loading in grains per actual cubic foot

GRNAM - total mass loading in milligrams per actual cubic meter

GRNSM - total mass loading in milligrams per normal dry cubic meter

275-535: This large section outputs the following information on the line printer:

Impactor Stage - column headings showing the stage name as imprinted on the metal
Stage Index Number - column headings corresponding to the "Impactor Stage" as above, but numbered 1 to NMASS where NMASS is the number of captured masses CYC3,DPC - if the Brink impactor is used with the cyclone, its lower size limit in micrometers, CYC3, is printed; the lower size limits of the stages, DPC, are (then) listed

IMASS - masses captured on each stage and on the filter, (and in the cyclone, if applicable) in milligrams

536-539: Call subroutine DMDNGD to calculate and print out the values of the geometric mean diameter at each stage in micrometers, GEOMD, the values of mass size concentration at each of these mean sizes in milligrams per normal dry cubic meter, DMDLD, and the value of number size concentration at each of these mean sizes in number of particles per normal dry cubic meter, DNDLD.
540-543: Write a footnote defining normal or engineering standard conditions - "NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEG C and $760 \mathrm{MM} \mathrm{HG."}$
544-553: If calculations have been made here for assumed aerodynamic diameter, a footnote is also written here indicating the definition used to find aerodynamic diameter. It states "AERODYNAMIC DIAMETERS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS" if code variable MAERO is input as a nonpositive integer, or if the first calculations of $\mathrm{D}_{50} \mathrm{D}^{\prime} \mathrm{s}$, cumulative mass loadings, etc., are being made and the density was input as 1.0 gram per cubic centimeter regardless of input value of MAERO. It states "AERODYNAMIC DIAMETERS ARE CALCULATED HERE ACCORDING TO MERCER" if code variable MAERO is input as a positive integer and this is the second calculation of $D_{50}{ }^{\prime} s$, cumulative mass loadings, etc., for this set of data. Note: The programming on cards 554-616 is executed to find maximums and minimums of all plotted variables for this single run at the indicated assumed density. These values are later compared to maximums and minimums of all other runs at the indicated assumed density to find overall maximum and minimum values (see calculations on cards 751-781). This enables one to make "data regulated" graphs if desired, i.e., the number and range of cycles may be regulated according to the span of data.

Search the values of cumulative mass loading in milligrams per actual cubic meter, CUMG $_{\text {I }}$ $\mathrm{I}=1, \mathrm{NC}$, for the minimum value. Express it as an element in the run-indexed array, $C^{C U M G F}{ }_{\text {IS }}$. Since the values in array CUMG ${ }_{I}$ are decreasing with higher index, the search consists of finding the last nonzero value of CUMG $_{I}$. For example, unless the last cumulative mass loading value, CUMG $_{N C}$, is zero:

$$
\mathrm{CUMGF}_{\text {IS }}=\text { CUMG }_{\mathrm{NC}}
$$

If this value is zero and $\mathrm{CUMG}_{\mathrm{NC}-2}$ is not zero:

$$
\text { CUMGF }_{\text {IS }}=\text { CUMG }_{\mathrm{NC}-1}
$$

The number of cumulative mass loadings less than D_{50} which must be searched for a given run, NC, is the same as the number of stage D_{50} values +1 for the cyclone (if applicable). This value is NCUM $=8$ for the Andersen impactor or NCUM $=7$ for the University of Washington or the MRI impactor. For the Brink impactor, the configuration may vary. Therefore, NC = MS + M00 + MC3 where MS = index of last stage (5 or 6); MOO = 1 if stage 0 is included, or MOO = 0 if stage 0 is not included; and MC3 $=0$ if the cyclone is included or MC3 $=1$ if the cyclone is not included.

574: Express the total mass loading in milligrams per actual cubic meter, GRNAM, as an element in the run indexed array, CUMG1 ${ }_{I S}$:

$$
\begin{equation*}
\text { CUMGI }_{\text {IS }}=\text { GRNAM } \tag{47}
\end{equation*}
$$

575-579: Search the values of the stage D_{50} 's in micrometers, $\mathrm{DPC}_{I}, I=1, N D$, to find the minimum nonzero value. Express it as an element in the run-indexed array, $\mathrm{DPCF}_{\text {IS }}$. As with CUMG ${ }_{\mathrm{I}}, \mathrm{I}=1, \mathrm{NC}$, the values are decreasing with higher index. Thus, unless $D^{\prime} C_{N D}$ is zero:

$$
\begin{equation*}
\mathrm{DPCF}_{I S}=\mathrm{DPC} \tag{48}
\end{equation*}
$$

The number of D_{50} values to be searched for a given run, ND, is NCUM as defined above for the Andersen, the University of Washington, or the MRI impactor. If the Brink impactor is used, the configuration determines the value of ND. $N D=M S+M 00$, where MS and MOO are defined above in determining NC.
580: Express the diameter of the maximum captured particle in micrometers, DMAX, as an element in the run indexed array, DMAXX ${ }_{I S}$:

$$
\begin{equation*}
\operatorname{DMAXX}_{I S}=\operatorname{DMAX} \tag{49}
\end{equation*}
$$

581-591: Search the values of the geometric mean diameter at each stage in micrometers, GEOMD $_{I}$, $I=1$,NMASS, to find minimum nonzero value. Express it as an element in the run-indexed array, GDMIN IS. Again, the values are decreasing with higher index. Thus, unless GEOMD ${ }_{\text {NMASS }}$ is zero:

$$
\begin{equation*}
\mathrm{GDMIN}_{\mathrm{IS}}=\mathrm{GEOMD}_{\text {NMASS }} \tag{50}
\end{equation*}
$$

592: Express the maximum geometric mean diameter in micrometers, GEOMD $_{1}$ as an element in the runindexed array, GDMAX IS * GEOMD $_{1}$ must be the value of maximum geometric mean diameter since the
values of GEOMD $_{I}, I=1$,NMASS are decreasing with increasing I. Thus:

$$
\begin{equation*}
\operatorname{GDMAX}_{I S}=\text { GEOMD }_{1} \tag{51}
\end{equation*}
$$

593-600: Search the values of $\Delta M / \Delta$ LogD size distribution in milligrams per dry normal cubic meter, DMDLD_{I}, $I=1, N M A S S$, to find the minimum nonzero value. Express it as an element in the run-indexed array, $\mathrm{DMMN}_{\text {IS }}$. Note that unlike the previous "searches" for minimums and maximums, this value may be any one of the values between DMDLD_{1} and $\mathrm{DMDLD}_{\text {NMASS }}{ }^{\circ}$

601-604: Search the values of the $\Delta M / \Delta \operatorname{LogD}$ size distribution in milligrams per dry normal cubic meter, DMDLD $_{I}, I=1, N M A S S$, to find the maximum value. Express it as an element in the run-indexed array, DMMX $_{\text {IS }}$ •

605-612: Search the values of $\Delta N / \Delta$ LogD size distribution in number per dry normal cubic meter, DNDLD_{I}, $I=1, N M A S S$, to find the minimum nonzero value. Express it as an element in the run-indexed array, $\mathrm{DNMN}_{\text {IS }}$.
613-616: Search the values of the $\Delta N / \Delta L o g D$ size distribution in number per dry normal cubic meter, DNDLD_{I}, $I=1, N M A S S$, to find the maximum value. Express it as an element in the run-indexed array, $\mathrm{DNMX}_{\text {IS }}$.

617-626: VARD is a one-dimensional array consisting of the maximum particle diameter, DMAX, the cut point of the cyclone, cyc3, (if Brink impactor with cyclone is used), D_{50} of the first stage,...., D_{50} of the last stage all in micrometers in this order. The first VARD value is defined here:

$$
\begin{equation*}
\operatorname{VARD}_{1}=\mathrm{DMAX} \tag{52}
\end{equation*}
$$

VARC is a one-dimensional array consisting of the total mass loading, GRNAM, mass loading < cut point of the cyclone (if Brink impactor with cyclone is used) ; mass loading < D_{50} (first stage),..., mass loading $<\mathrm{D}_{50}$ (last stage) all milligrams per actual cubic meter. The first VARC value is defined here:

$$
\begin{equation*}
\operatorname{VARC}_{1}=\text { GRNAM } \tag{53}
\end{equation*}
$$

627: The VARC and VARD arrays are being defined in order to define the XNDPEN and YO arrays which will be used by program SPLINl for curve fitting. The remainder of the VARD and VARC arrays is dependent on the impactor used and its configuration. This statement sends the program to statement 6300 (card 634) if the Andersen impactor is being used (MPACTY=1), to statement 6350 (card 642), if the Brink impactor is being used (MPACTY=2); or to statement 6375 (card 663), if the University of Washington or MRI impactor is being used (MPACTY=3 or MPACTY=4, respectively).

628-641: The program comes to this section to define the remaining VARD and VARC values, if the Andersen impactor is being used. There are eight stage D_{50} values, DPC, and eight associated cumulative mass loading values, CUMG, with which to complete the VARD and VARC arrays, respectively. However, the cut points of the first and second stages are so nearly the same that a more realistic view of mass distribution can be obtained by ignoring the D_{50} and associated cumulative mass loading of the second stage. Thus, only seven more values are added to the VARD and VARC arrays:

$$
\begin{aligned}
\mathrm{VARD}_{2} & =\mathrm{DPC}_{1} ; \operatorname{VARC}_{2}=\text { CUMG }_{1} \\
\mathrm{VARD}_{3} & =\mathrm{DPC}_{3} ; \operatorname{VARC}_{3}=\text { CUMG }_{3} \\
\mathrm{VARD}_{4} & =\mathrm{DPC}_{4} ; \operatorname{VARC}_{4}=\text { CUMG }_{4} \\
\vdots & \vdots \\
\operatorname{VARD}_{8} & =\text { DPC }_{8} ; \operatorname{VARC}_{8}=\text { CUMG }_{8}
\end{aligned}
$$

VV is the total number of VARD and VARC values. For the Andersen impactor, $V V=8$. The program then skips to statement 6400 (card 675) to set up the XNDPEN and YO arrays which program SPLINI uses for fitting cumulative mass loading vs. D_{5}.

642-662: The program comes to this section to define the remaining VARD and VARC values if the Brink impactor is being used. In this case the impactor configuration also determines the values of the two arrays. If the cyclone is used, its cut point, CYC3, becomes the second value of the VARD array $V_{A R D}^{2}$. If stage 0 is the first stage (without the cyclone), then its cut point $\mathrm{DPC}_{1}=\mathrm{VARD}_{2}$. If neither the cyclone nor stage 0 is included, the cut point of stage $1, \mathrm{DPC}_{2}=\mathrm{VARD}_{2}$. (Whatever the configuration here, the first cumulative mass loading value, CUMG_{1}, is the cumulative mass loading of the first "stage" whether this be the cyclone, stage 0 , or stage l). Therefore, VARC $_{2}=$ CUMG $_{1}$. The VARD and VARC values are defined consecutively after this with the values of DPC and CUMG. The total number of values in the VARD and VARC arrays VV $=1+\mathrm{MC} 3+\mathrm{MOO}+\mathrm{MS}$ where MC3 $=1$ when the cyclone is used or 0 when it is not, $M O O=1$ when stage 0 is used or 0 when it is not, and MS = last stage of the Brink impactor $=5$ or 6. After defining all VARD and VARC values, the program skips to statement 6400
(card 675) to define the XNDPEN and Yo arrays used for fitting in program SPLINl.
663-669: The program comes to this section to define the remaining VARD and VARC values if the University of Washington or the MRI impactor is being used. In this case there are seven stage $\mathrm{D}_{5} \mathrm{o}^{\prime} \mathrm{s}$, DPC, with seven associated cumulative mass loadings, CUMG. However, as with the Andersen impactor, the cut points of the first and second stages of the University of Washington and MRI impactors are so nearly the same that a more realistic view of mass distribution can be obtained by ignoring the D_{50} and associated cumulative mass loading of the second stage. The VARD and VARC arrays, therefore, are completed with these values:

$$
\begin{aligned}
\mathrm{VARD}_{2} & =\mathrm{DPC}_{1} ; \mathrm{VARC}_{2}=\mathrm{CUMG}_{1} \\
\mathrm{VARD}_{3} & =\mathrm{DPC}_{3} ; \mathrm{VARC}_{3}=\mathrm{CUMG}_{3} \\
\vdots & \vdots \\
\mathrm{VARD}_{7} & =\mathrm{DPC}_{7} ; \operatorname{VARC}_{7}=\mathrm{CUMG}_{7}
\end{aligned}
$$

The total number of VARD and VARC values, VV, is then 7.
670-685: The fitting arrays XNDPEN and Yo are defined here. The values are the same as the VARD and VARC arrays, respectively, except that any pair of values (VARD, VARC) ${ }_{J}$ where either VARD ${ }_{J}$ or VARC $_{J}$ is zero is excluded from the XNDPEN and YO arrays. For example, since the values of VARD represent maximum particle diameter, cut points of the cyclone (this value is included only if the Brink is used with the cyclone), and stage cut points, there are no VARD values equal to zero. However, if no mass is collected on the filter, $V_{V A R C}=0.0$ where $V V$ is the total
number of VARD and VARC values. In this case the XNDPEN and YO arrays have one less value in them than the VARD and VARC arrays. This number of values in the XNDPEN and YO arrays is then NFIT = VV - 1 .

686-697: Here the VARD and VARC arrays are redefined as the XNDPEN and YO arrays, respectively, with inverted order. Using the newly ordered VARD and VARC arrays, the XNDPEN and YO arrays are also reordered; i.e., (XNDPEN, YO) ${ }_{1}$ is the point representing the last (smallest) stage cut point diameter and cumulative mass loading less than this stage cut point (where the mass loading is nonzero); and (XNDPEN, YO) NFIT is the point representing the maximum particle diameter and total mass loading. Values of XNDPEN are in micrometers. Values of YO are in grams per actual cubic meter.
698-716: The order of XNDPEN $_{I}, I=1, N F I T$ and YO_{I}, $I=1, N F I T$ should be such that both are increasing with I. However, it has been found empirically by Southern Research Institute that the cut point of the first stage of the University of Washington impactor may actually be less than that of the second stage. The program SPLINl cannot make a proper fit to the (XNDPEN, YO) points in such a case. This loop, therefore, checks the XNDPEN array and orders it. The values of YO_{I}, $I=1, N F I T$ are reordered to follow XNDPEN, i.e., the pairing of (XNDPEN, YO) is not changed.
717-720: The smallest stage D_{50} for this run XNDPEN 1 is given the name DSMA. This value will be the starting diameter for plotting the curve fit through cumulative mass loading vs. D_{50} points in the program GRAPH.

721-726: Define the total number of points to be plotted for the plot of cumulative mass loading vs.
D_{50}, JV. This does not exclude any points with zero cumulative mass loading. It does exclude the total mass loading vs. maximum particle diameter.
727-734: Write on file any variable values from this single run which will be needed in later programs SPLINl, GRAPH, and STATIS.
735-740: This loop changes the percent flue gas composition values, FG_{I}, $\mathrm{I}=1,5$, back to fractional flue gas composition:

$$
F G_{I}=F G_{I} / 100.0, I=1,5
$$

(Recall that these fractions represent $\mathrm{CO}_{2}, \mathrm{CO}$, $\mathrm{N}_{2}, \mathrm{O}_{2}$, and $\mathrm{H}_{2} \mathrm{O}$, respectively.
741-750: Check the record number, IS, for the calculations above. If IS is odd ((IS+I)/2-IS/2=1), these are the first calculations of D_{50} 's, cumulative mass loadings, etc., for this set of data (may be based on physical density or unit density). In this case the program goes to statement 2020 (card 748) to save the input density values as RHOl, define density RHO as the unit value 1.0 gram per cubic centimeter, and return to statement 2010 (card 193) to make similar calculations based on this unit density. These new D_{50} values, cumulative mass loading values, etc., are found based on the TGLD definition ${ }^{1}$ of aerodynamic diameter if NAERO is 0 or based on Mercer's definition ${ }^{2}$ if NAERO is l. If IS is even [(IS+l) /2-IS/2=0], these second calculations have just been made and the program returns to statement 12 (card 76) to read a new set of data.

751-781: If data for all runs has been read in and appropriate calculations made on each for both densities, the program returns to statement 93 (card 758) to calculate the overall (for all runs) maximum and minimum values of every plotted variable for each of the two densities. As discussed in the note preceeding explanation at card 554, the maximum and minimum values will allow for data regulated plots, if desired. The variables which are searched for are defined below. Although not indicated here, each is dimensioned two; one value for each of the two densities.

DPMIN - minimum stage D_{50} in micrometers; to be found in the DPCF ${ }_{\text {IS }}$ array.
DPMAX - maximum particle diameter in micrometers; to be found in the DMAXX ${ }_{\text {Is }}$ array
CUMIN - minimum cumulative mass loading value in milligrams per actual cubic meter; to be found in the CUMGF ${ }_{\text {IS }}$ array
CUMAX - maximum cumulative mass loading or maximum total mass loading in milligrams per actual cubic meter; to be found in the CUMGl IS array
GEMIN - minimum geometric mean diameter in micrometers; to be found in the GDMIN ${ }_{\text {IS }}$ array
GEMAX - maximum geometric mean diameter in micrometers; to be found in the GDMAX IS array
DMMIN - minimum value of the $\triangle M / \Delta L o g D$ size distribution in milligrams per dry normal cubic meter; to be found in the $\mathrm{DMMIN}_{\text {IS }}$ array
DMMAX - maximum value of the $\Delta M / \Delta$ LogD size distribution in milligrams per dry
normal cubic meter; to be found in the DMMX $_{\text {IS }}$ array
DNMIN - minimum value of the $\triangle N / \Delta \log D$ size distribution in number of particles per dry normal cubic meter; to be found in the DNMN Is array
DNMAX - maximum value of the $\triangle N / \Delta \log D$ size distribution in number of particles per dry normal cubic meter; in the DNMX ${ }_{I S}$ array. For example, the DPMIN $_{I}$ value is found by arbitrarily setting it equal to DPCF_{1}. This is the minimum D_{50} value of the first odd record. This temporary DPMIN $_{1}$ is compared with all the other $\mathrm{DPCF}_{\text {IS }}$ values where IS is odd. Each time a smaller $D_{\text {DCF }}$ IS value is found, that DPCF $_{\text {IS }}$ value becomes the new DPMIN. This process is continued until all values have been checked to arrive at the absolute minimum D_{50} value for all physical density runs. All other minimum values are found in this manner. A similar "bubble up" method is used to find the maximums.
782-788: Write variable values on file which may be needed in later programs. These include the minimum and maximum values just found.
789: Stop.

Functions of the Called Subprograms

Subroutine STAGE--
This subroutine consists of a simple DO loop at cards 010012. It calculates the local pressure at each stage of the
impactor in atmospheres $P_{I}, I=1, N C U M$ as a function of the pressure at the impactor orifice in atmospheres, POA; the cumulative fraction of pressure drop at stage I (depending on the impactor used as indicated by code value MPACTY), DELP $I_{\text {, MPACTY }}$; and the total drop in pressure across the impactor in atmospheres, DPA:

$$
\mathrm{PS}_{\mathrm{I}}=\mathrm{POA}-\mathrm{DELP}_{\mathrm{I}, \mathrm{MPACTY}} \cdot \mathrm{DPA}
$$

POA and DPA are brought into the subroutine as calculated in the calling mainline program MPPROG. The values of the DELP matrix are initialized in the block data subprogram COMBKl.

Subroutine VIS--
This subroutine calculates the viscosity of the gas in poise, MU, by a method proposed by C. R. Wilke. ${ }^{4}$

017-024: Calculate the pure gas viscosities of the gases composing the flue gas in poise, $\mathrm{VS}_{\mathrm{I}}, \mathrm{I}=1,5$, where these gases are $\mathrm{CO}_{2}, \mathrm{CO}, \mathrm{N}_{2}, \mathrm{O}_{2}$, and $\mathrm{H}_{2} \mathrm{O}$ for $I=1,5$, respectively. These viscosities are functions of the impactor temperature in degrees centigrade, TCI:
$V S_{I}=K_{I I}+\left[K_{I 2}(T C I)\right]+\left[K_{I 3}(T C I)^{2}\right]+\left[K_{I 4}(T C I)^{3}\right]$
where $K_{I J}, I=1,5$ (gas index), $J=1,4$ are constants (see discussion of gas viscosities in Sec. l).
025-026: A small DO loop converts the pure gas viscosities, V_{I}, $I=1,5$, from micropoise to poise so that the final gas viscosity, MU, is in poise:

$$
V S_{I}=V S_{I} \times 10^{-6}
$$

027: The gas viscosity MU is initialized as 0.0 poise.
028-031: The pure gas fractional contributions, FG_{I}, $\mathrm{I}=1,5$, (for $\mathrm{CO}_{2}, \mathrm{CO}, \mathrm{N}_{2}, \mathrm{O}_{2}$, and $\mathrm{H}_{2} \mathrm{O}$, respectively) are examined here in a DO loop. Any pure gas which has zero contribution to the flue gas
composition has its fractional contribution FG_{I} set equal to an arbitrary extremely small number to prevent division by zero in succeeding calculations:

$$
\begin{equation*}
\mathrm{FG}_{\mathrm{I}}=1.0 \times 10^{-20} \tag{56}
\end{equation*}
$$

where previously $\mathrm{FG}_{I}=0.0$.
032-045: The flue gas viscosity $M U$ is calculated in poise here. MU is calculated as a function of the pure gas viscosities in poise $V S_{I^{\prime}} I=1,5$ as calculated at cards 017-027, the pure gas molecular weights in atomic mass units W_{T}, $\mathrm{I}=1,5$ for CO_{2}, $\mathrm{CO}, \mathrm{N}_{2}, \mathrm{O}_{2}$, and $\mathrm{H}_{2} \mathrm{O}$, respectively, as given in a data statement at card 016, and these pure gas fractional contributions F_{I}, $I=1,5$ as brought from mainline program MPPROG (with exception of $\mathrm{FG}_{\mathrm{I}}=0.0$ as altered at cards 028-030):

$$
\begin{equation*}
M U=\sum_{I=1}^{5} \frac{V S_{I}}{1.0+\left(1 / F G_{I}\right) \sum_{\substack{J=1 \\ J \neq I}}^{5}\left(F G G_{J}\right)\left(X \Phi_{I J}\right)} \tag{57}
\end{equation*}
$$

where $\mathrm{X} \mathrm{\Phi}_{\mathrm{IJ}}=\frac{\left\{1.0+\left(\mathrm{VS}_{I} / \mathrm{VS}_{J}\right)^{1 / 2}\left(\mathrm{WT}_{J} / \mathrm{WT}_{I}\right)^{1 / 4}\right\}^{2}}{(4 / 1.414)\left[1.0+\left(\mathrm{WT}_{I} / \mathrm{WT}_{J}\right)\right]^{1 / 2}}$
Subroutine MEAN--
This subroutine consists of a simple DO-loop at cards 012-014 which calculates the molecular mean free path at each stage jet, $I_{I}, I=1, N C U M$, by a method proposed by J. A. Brink, Jr., ${ }^{3}$ as a function of the gas viscosity in poise, MU, the local pressure at this stage I in atmospheres, P_{I}, the impactor temperature in degrees Kelvin, TKI (as brought from the mainline program MPPROG), and the mean molecular weight in atomic mass units, MM (as brought from the mainline program MPPROG):

$$
\begin{equation*}
L_{I}=\frac{}{1.0132510^{6} \mathrm{PS}_{\mathrm{I}}}\left(\frac{\mathrm{BZ} \mathrm{TKI} 602.3 \times 10^{21}}{8 \mathrm{MM}}\right)^{\frac{1}{2}} \tag{59}
\end{equation*}
$$

where $\mathrm{BZ}=1.38 \times 10^{-16} \times 3.14159$
$=$ Boltzmann's constant (erg $/{ }^{\circ} \mathrm{K}$) $\mathrm{x} \pi$

Subroutine CUT--
This subroutine consists of an iterative loop at cards 033046 which calculates the stage cut points or D_{50} 's in micrometers, $D_{I} C_{I}=1, N C U M$, based on equations developed by Ranz and Wong. Each $\mathrm{DPC}_{\mathrm{I}}$ is calculated as a function of the calibration constants, $S^{S R P S I} I_{\text {, MPACNO, MPACTY' }}$ the gas viscosity in poise, MU, the number of jets per stage, $X_{I, M P A C T Y}$, and the stage jet diameter, $D_{I, M P A C N O, M P A C T Y, ~ t h e ~ l o c a l ~ p r e s s u r e ~ a t ~ s t a g e ~} I$ in atmospheres, P_{I}, the assumed density in grams per cubic centimeter, RHO, gas flow rate under impactor conditions in actual cubic feet per minute, Q, the pressure at the impactor orifice in atmospheres, POA, and the slip correction factor, C (see below):

$$
\begin{gather*}
\operatorname{DPC}_{I}=\left[\frac{1.43 \times 10^{4}}{0.38} \text { SRPSI }_{I, M P A C N O, M P A C T Y}\right] x \\
{\left[\frac{\text { MU }_{I, \text { MPACTY }}\left(\mathrm{DC}_{I, \text { MPACNO, MPACTY }}\right)^{3} \mathrm{PS}_{I}}{\text { RHO Q } 472.0 \text { POA } C}\right]^{\frac{1}{2}}} \tag{60}
\end{gather*}
$$

The square root of psi calibration constants, SRPSI $I, M P A C N O, M P A C T Y '$ are empirical constants measured for each impactor. These conconstants were determined according to the published procedures of Seymour Calvert, ${ }^{8}$ et al, and of Kenneth M. Cushing, et al. These values are shown in Tables 4, 5, 6, and 7. (The user should insert his own calibration constants.) The index I-l,NCUM is the stage index. The index MPACTY is impactor type coding where MPACTY $=1$ indicates that the Andersen impactor is used, MPACTY = 2 indicates the Brink, MPACTY = 3 indicates the University of Washington, or MPACTY $=4$ indicates the MRI. MPACNO is coding for the impactor number within a type.

TABLE 4. $\sqrt{\psi}$ CALIBRATION CONSTANTS FOR EACH STAGE OF SIX ANDERSEN IMPACTORS ${ }^{\text {a }}$

63

a. A maximum of 6 impactors of this type can be used.

TABLE 5. $\sqrt{\psi}$ CALIBRATION CONSTANTS FOR EACH STAGE OF FOUR BRINK IMPACTORS ${ }^{\text {a }}$

Impactor Stage no	. I	$\stackrel{A}{\operatorname{SRPSI}_{I_{12}}}$	$\stackrel{B}{\operatorname{SRPSI}_{I_{22}}}$	$\underset{\mathrm{SRPSI}_{I_{3} 2}}{\mathrm{C}}$	$\begin{gathered} D \\ \operatorname{SRPSI}_{I_{42}} \end{gathered}$	$\begin{gathered} \text { none } \\ \text { SRPSI }_{\text {I } 52} \end{gathered}$	$\begin{gathered} \text { none } \\ \text { SRPSI }_{\text {I } 62} \end{gathered}$
0	1	0.322	0.322	0.322	0.322	0.000	0.000
1	2	0.322	0.322	0.322	0.322	0.000	0.000
2	3	0.338	0.349	0.351	0.346	0.000	0.000
3	4	0.345	0.330	0.388	0.354	0.000	0.000
4	5	0.258	0.302	0.330	0.297	0.000	0.000
5	6	0.317	0.345	0.350	0.337	0.000	0.000
6	7	0.229	0.175	0.273	0.226	0.000	0.000
none	8	0.000	0.000	0.000	0.000	0.000	0.000

a. A maximum of 6 impactors of this type can be used.

TABLE 6. $\sqrt{\psi}$ CALIBRATION CONSTANTS FOR EACH STAGE OF FOUR UNIVERSITY OF WASHINGTON MARK III IMPACTORS ${ }^{\text {a }}$

Impactor Stage no.	I	$\stackrel{A}{\operatorname{SRPSI}_{I_{13}}}$	$\stackrel{B}{\operatorname{SRPSI}_{I_{2} 3}}$	$\stackrel{C}{\operatorname{SRPSI}_{I_{3} 3}}$	$\begin{gathered} \mathrm{D} \\ \mathrm{SRPSI}_{I_{4} 3} \end{gathered}$	$\begin{gathered} \text { none } \\ \text { SRPSI }_{53} \end{gathered}$	$\begin{gathered} \text { none } \\ \text { SRPSI }_{I_{63}} \end{gathered}$
1	1	0.144	0.144	0.144	0.144	0.000	0.000
2	2	0.330	0.330	0.330	0.330	0.000	0.000
3	3	0.371	0.371	0.371	0.371	0.000	0.000
4	4	0.271	0.322	0.320	0.319	0.000	0.000
5	5	0.308	0.313	0.295	0.321	0.000	0.000
6	6	0.373	0.340	0.363	0.389	0.000	0.000
7	7	0.349	3.337	0.312	0.354	0.000	0.000
none	8	0.000	0.000	0.000	0.000	0.000	0.000

a. A maximum of 6 impactors of this type can be used.

TABLE 7. $\sqrt{\psi}$ CALIBRATION CONSTANTS FOR EACH STAGE OF ONE METEOROLOGY RESEARCH INCORPORATED IMPACTOR ${ }^{\text {a }}$

a. A maximum of 6 impactors of this type can be used.

The value of the slip correction factor C depends on the definition of the cut point diameter being calculated. It may be a function of DPC_{I} or it may be given the value 1.0 , i.e., C may be a factor.

If physical density is assumed (RHO>1.0) or where the classically defined (TGLD) aerodynamic diameter is assumed (NAERO $=0$ and RHO=1.0), an iterative process is necessary to find each of the DPC values, since C is defined as a function of $D P C_{I}$ and also as a function of the mean free path at this stage in centimeters, L_{I} :

$$
\begin{equation*}
C=1+\frac{2 L_{I}}{\mathrm{DPC}_{I}} \frac{I 0^{-4}}{\left.\times 1.23+0.41 \exp \left(-0.44 \mathrm{DPC}_{I} \times 10^{-4} / \mathrm{L}_{\mathrm{I}}\right)\right]} \tag{61}
\end{equation*}
$$

In this case, each $\mathrm{DPC}_{\mathrm{I}}$ must be given an initial value SUB $I_{\text {, MPACTY }}$ in order to begin the iterative process. Each value of DPC_{I} is compared to DPCI which is the previously calculated value of $\mathrm{DPC}_{\mathrm{I}}$. If the two values are within 0.1% of each other (as checked at card 044), the iterative calculation of DPC_{I} is said to have converged, and the program returns to the beginning of this loop to calculate the D_{50} of the next stage.

If aerodynamic diameter by Mercer's definition is assumed (NAERO=l and RHO=1.0), the slip correction factor is essentially not used. Rather than being a functional quantity, it is the constant l.0. In this case the first calculation of $\mathrm{DPC}_{\mathrm{I}}$ is the same as the second calculation, and iteration is not necessary.

If the Brink impactor is used (MPACTY=2), the lower cut point for the cyclone, CYC3, is calculated in micrometers as a function of the gas viscosity is poise, MU, the assumed density in grams per cubic centimeter, RHO, and the gas flow rate under impactor conditions in actual cubic feet per minute, Q :

$$
\begin{equation*}
C Y C=199.5(\mathrm{MU} / \mathrm{RHO} Q)^{1 / 2} \tag{62}
\end{equation*}
$$

Note that the slip correction factor is not a factor here for any assumed density. This is due to the fact that C becomes very nearly 1.0 for large diameters. For example, assuming a mean free path of 6.53×10^{-6} centimeters, the following values of C for given cut points are:*

Particle diameter $(\mu \mathrm{m})$	C
10	1.0164
20	
30	
50	1.0082
100	1.0055

Subroutine CUM--
This subroutine calculates the cumulative mass less than the D_{50} of the previous stage in grams, CUMM ${ }_{I}$, $I=1$, NMASS (CUMM ${ }_{\text {NMASS }}=$ SUM = total mass) and the cumulative percent mass less than the D_{50} of the previous stage, $\mathrm{PERCU}_{\mathrm{I}}$, $\mathrm{I}=1$, NMASS $\left(\mathrm{PERCU}_{\text {NMASS }}=\right.$ 100.0\%). Also calculated are the total mass loading in grains per actual cubic foot, GRNA, in grains per normal dry cubic foot, GRNS, in milligrams per actual cubic meter, GRNAM, and in milligrams per normal dry cubic meter, GRNSM. Note that normal (or engineering standard) conditions here are 21 degrees centigrade and 760 millimeters of mercury.

013-016: After initializing the sum of masses, SUM, as 0.0 grams, the "DO 50" loop here finds the cumulative mass at each stage in grams, CUMM I^{\prime} I = l, NMASS, by summing the masses MASS $_{I}$ on all stages up to and including the $I^{\text {th }}$ stage:

$$
\begin{equation*}
\text { CUMM }_{J}=\sum_{\mathrm{I}=1}^{\mathrm{J}} \quad\left(\text { MASS }_{\mathrm{I}}\right) \tag{62}
\end{equation*}
$$

where $J=1$, NMASS

[^0]After NMASS traverses of the loop:
NMASS

$$
\begin{equation*}
\text { SUM }=\sum_{I=1} \quad\left(\text { MASS }_{I}\right) \tag{63}
\end{equation*}
$$

which is the sum of all masses or the total mass captured in the impactor in grams
017-019: This loop converts the cumulative mass at each stage in grams CUMM $I=1, N M A S S$ to cumulative percent of total mass captured (SUM), PERCU_{I}, I = l,NMASS:

$$
\begin{equation*}
\left.\operatorname{PERCU}_{J}=\sum_{\mathrm{I}=1}^{J} \quad\left[\text { (CUMM }_{\mathrm{I}} / \text { SUM }\right) \quad 100.0\right] \tag{64}
\end{equation*}
$$

020-023: The total mass loading in grains per actual cubic foot, GRNA, is calculated here as a function of the total captured mass in grams, SUM, gas flow rate under stack conditions in actual cubic feet per minute, F, and the duration of sampling time in minutes, DUR.

$$
\text { GRNA }=\text { SUM } 15.4324 / F \text { DUR }
$$

The constant 15.4324 = grains/gram
024-027: The total mass loading in grains per normal dry cubic foot, GRNS, is calculated here as a function of the total mass captured in grams, SUM, the gas flow rate under stack conditions in actual cubic feet per minute, F, the duration of sampling in minutes, DUR, the pressure at the impactor inlet in atmospheres, POA, the stack temperature in degrees Kelvin, TKS, and the fractional water content, FG_{5} :

$$
\begin{equation*}
\text { GRNS }=\frac{\text { SUM } 15.4324}{\text { FDUR }(294.0 / T K S)(\text { POA } / 1.0)\left(1.0-\mathrm{FG}_{5}\right)} \tag{65}
\end{equation*}
$$

The units of constants here are:

$$
\begin{aligned}
15.4324 & =\text { grains/gram } \\
294.0 & =\text { degrees Kelvin }=21 \text { degrees Centigrade } \\
1.0 & =1 \text { atmosphere }
\end{aligned}
$$

028-032: The total mass loading in milligrams per actual cubic meter, GRNAM, is calculated here as a function of the total mass loading in grains per actual cubic foot, GRNA:

$$
\begin{equation*}
\text { GRNA }=2288.34 \mathrm{GRNA} \tag{66}
\end{equation*}
$$

The constant $2288.34=\frac{\text { milligrams/grain }}{\text { cubic meters/cubic foot }}$
033-037: The total mass loading in milligrams per normal dry cubic meter, GRNSM, is calculated here as a function of the total mass loading in grains per normal dry cubic foot, GRNS:

$$
\begin{equation*}
\text { GRNSM }=2288.34 \text { GRNS } \tag{67}
\end{equation*}
$$

The constant 2288.34 has units as given above.

Subroutine DMDNGD--
This subroutine calculates and prints out the set of stage geometric mean diameters in micrometers, GEOMD, the $\Delta M / \Delta \log D$ values in milligrams per dry normal cubic meter, DMDLD, and the $\Delta N / \Delta \log D$ values in number of particles per dry normal cubic meter, DNDLD. The technique for finding these values and the printout format varies only slightly depending on the type of impactor and, if using the Brink impactor, also on the impactor configuration. The statement at card 037 sends the program to the proper section of the subroutine depending on the impactor used (controlled by coding MPACTY = 1 for Andersen, 2 for Brink, 3 for University of Washington, and 4 for MRI). Cards 038-137 comprise a long section which calculates the GEOMD, DMDLD, and DNDLD values for the Brink impactor of any configuration and prints out these values. If the cyclone, stage 0 , stage $1, \ldots$, stage 5 , or
stage 6 and filter are used in the Brink, cards 043-081 are executed. If stage 0 , stage 1, stage $2, \ldots$, stage 5 , or stage 6 , and filter are used in the Brink, cards 082-ll0 are used. If stage l, stage 2, stage 3, stage 4, stage 5, or stage 6, and filter configuration are used in the Brink, cards lll-l38 are executed. There is only one configuration for the Andersen impactor, i.e., stage 0 , stage l, stage $2, . . .$, stage 7, and filter. Also, there is only one configuration for the University of Washington or MRI, i.e., stage l, stage 2, stage 3,..., stage 7, and filter. Cards 139-162 comprise the section which calculates and prints out the GEOMD, DMDLD, and DNDLD values for the Andersen, the University of Washington, or the MRI impactor. For each of these six configurations, there are five sets of values found.

The value DIFF $_{I}$ is defined in a loop for each stage as being the difference in the common logs of the cut point diameter of the previous stage $I-1$ and this stage $I . \quad D F_{1}$, however, must be calculated outside this loop since there is no "cut point diameter of the previous stage". Here the common log of the maximum particle diameter DMAX is used instead. If the Brink impactor is used with the cyclone, DIFF_{2} must also be calculated outside this loop. In this case, $\mathrm{DIFF}_{2}=\log _{10}\left(C Y C 3-\log _{10}\right.$ (DPC (1)), i.e., the name for the cut point of the cyclone is CYC3 and is not part of the ordinary D_{50} array DPC. Also, for each configuration, the final value of $\mathrm{DIFF}_{\mathrm{NS}}$ must be given outside the loop since there is no lower cut point for this "stage" (actually the filter). For each configuration, DIFF ${ }_{N S}$ is defined as $\log _{10} 2=0.3010$. This is a somewhat arbirary asigned value; however, it has been found that the $\log _{10}$ difference of consecutive D_{50} 's is within this range.

The next set of values calculated for each configuration is the $\Delta M / \Delta l o g D$ value at each stage in milligrams per normal dry cubic meter, DMDLD_{I}, as a function of the common log difference
in lower cut point diameters DIFF $_{I}$ (as found above) and the mass loading for this stage in milligrams per actual cubic meter GGRNS $_{I}$ as brought from the mainline program MPPROG:

$$
\begin{equation*}
D_{D D L D}^{I}=G G R N S_{I} / \operatorname{DIFF}_{I} \tag{68}
\end{equation*}
$$

The geometric mean diameter in micrometers, GEOMD $_{I}$, is then found for each stage (including the cyclone if used and the filter). This is the average of the logs of the maximum and minimum particle sizes found on the stage. It is calculated here as the square root of the minimum cut point particle size of this stage times the minimum cut point particle size of the previous stage I - l (this latter particle size being an upper limit of particle size for stage I). As in calculating the DIFF values, there is no "lower cut point diameter of the previous stage" when finding GEOMD_{1}. Therefore, GEOMD $_{1}=$ the square root of the maximum particle diameter in micrometers, DMAX, times the lower cut point particle size of this first stage (or cyclone if used). Also, as in finding the last value of DIFF, the GEOMD of the filter must be found in a different manner since there is no lower cut point diameter for the filter. It is found by multiplying the lower cut point diameter of the previous stage by $1 / \sqrt{2}=0.707107$. (This is again the result of defining the difference in the log of the last stage D_{50} and the log of the "filter D_{50} " as $\left.\log 2.\right)$

The next set of values calculated for each configuration is the $\Delta N / \Delta \log D$ value at each stage in number of particles per normal dry cubic meter, DNDLD_{I}, as a function of the $\Delta M / \Delta \log D$ value at the stage in milligrams per dry normal cubic meter, $D^{\prime} M D D_{I}$, the assumed density in grams per cubic centimeter, RHO, and the geometric mean diameter of the stage in micrometers $\mathrm{GEOMD}_{\mathrm{I}}$. To show the development of this function for DNDLD, note that $\Delta M / \Delta \log D$ may be written as:

$$
\begin{aligned}
\Delta M / \Delta \log D= & \Delta(N m) / \Delta \log D \\
= & m(\Delta N) / \Delta \log D \\
\text { where } m= & \text { mass of a single particle } \\
\Delta N / \Delta \log D= & \text { change in number concentration } \\
& \text { due to particles caught on this } \\
& \text { stage }
\end{aligned}
$$

Then $\Delta \mathrm{N} / \Delta \mathrm{logD}$ may be expressed as:

$$
\begin{equation*}
\Delta \mathrm{N} / \Delta \log \mathrm{D}=(\Delta \mathrm{M} / \Delta \log \mathrm{D}) / \mathrm{m} \tag{70}
\end{equation*}
$$

Also the single particle mass m may be expressed as:

$$
\begin{equation*}
m=\rho\left(\frac{\pi D^{3}}{6}\right)\left(10^{3}\right)\left(10^{-4}\right)^{3} \tag{71}
\end{equation*}
$$

$$
\begin{aligned}
\text { where } \rho= & \text { particle density in grams per cubic } \\
& \text { centimeter }
\end{aligned}
$$

$$
\begin{aligned}
\frac{\pi D^{3}}{6}= & \text { volume in cubic micrometers of a } \\
& \text { particle with diameter } D \text { in microm- } \\
& \text { eters } \\
10^{3}= & \text { milligrams/gram } \\
10^{-4}= & \text { centimeter/micrometer }
\end{aligned}
$$

Therefore:

$$
\begin{equation*}
\Delta \mathrm{N} / \Delta \log \mathrm{D}=(\Delta \mathrm{M} / \Delta \log \mathrm{D})\left[6 /\left(\rho \pi \mathrm{D}^{3}\right)\right] 10^{9} \tag{72}
\end{equation*}
$$

In terms of the program:

$$
\begin{equation*}
\operatorname{DNDLD}=\operatorname{DMDLD}\left[6 /\left(\text { RHO } \pi \operatorname{GEOMD}^{3}\right)\right] 10^{9} \tag{73}
\end{equation*}
$$

The final part of each configuration section is the printing of the GEOMD, DMDLD, and DNDLD values. Each of the six configurations has its own format. The subroutine then returns to the calling mainline program MPPROG.

Block Data Subprogram COMBKl--

COMBKI is a block data subprogram. It is used to define the values of the cumulative fraction of pressure drop DELP.* DELP is a two dimensional real array with elements DELP $I_{I, J}$. The first dimension I specifies the stage of the impactor. The second dimension J specifies the type of impactor (same as code variable MPACTY where 1 indicates the use of the Andersen impactor, 2 indicates the use of the Brink impactor, 3 indicates the use of the University of Washington impactor, and 4 indicates the use of the MRI impactor). The values of fractional pressure drop used in this subprogram are empirically determined and are listed in Table 8. Note that even though there are only 7 stages for the Brink, University of Washington, and MRI impactors, a dummy value of 0.0 for DELP $_{8,2}$, DELP $_{8,3}$, and DELP $_{8,4}$ must be used to keep proper ordering in the 8×4 DELP array.

Block Data Subprogram COMBK2--
COMBK2 is a block data subprogram. It is used to define the number of jets per stage, X, and to define the diameter of the jets at each stage in centimeters, DC.**
X is a two dimensional integer array with elements $X_{I, J}$ The first dimension I indicates the stage of the impactor. The second dimension J indicates the type of impactor. The number of jets per stage as specified in COMBK2 are given in Table 9. Note that even though there are only 7 stages for the Brink, University of Washington, and MRI impactors, a dummy value of 0 for $X_{8,2}$,

[^1]TABLE 8. VALUES OF FRACTIONAL PRESSURE DROP USED IN COMBKI

TABLE 9. NUMBER OF JETS PER STAGE FOR ANDERSEN, BRINK, UNIVERSITY OF WASHINGTON, AND MRI IMPACTORS

$X_{8,3}$, and $X_{8,4}$ must be used to keep proper ordering in this 8×4 array.
$D C$ is a three dimensional real array with elements $D C_{I J K}$. The first dimension I indicates the stage of the impactor. The second dimension J indicates the impactor number (same as code variable MPACNO used to distinguish between impactors of the same type). The third dimension K indicates the type of impactor. The diameter of the jets at each stage in centimeters as specified in COMBK2 are in Tables 10, 11,12 , and 13 . Note that even though there are only four Brink impactors, three University of Washington impactors, and one MRI impactor used, a dummy value of 0.0 is used for $D C_{I_{52}}, D C_{I_{62}}, D C_{I_{43}}, D C_{I_{53}}, D C_{I_{63}}$, and $D C_{I_{24}}-D C_{I_{64}}$. jet diameters, also for $D_{82} \mathrm{~K}, \mathrm{DC}_{83} \mathrm{~K}$, and $\mathrm{DC}_{84} \mathrm{~K}$ (even though there are only 7 stages for the Brink, University of Washington, and MRI impactors). Again, the dummy value 0.0 is used in these positions to keep the proper ordering of this $8 \times 6 \times 4$ array. The user should use his own measured jet diameters in this array.

Input to Program MPPROG

Card Input--

Card A--The type of impactor used to obtain data is indicated by coding on this card. Also, if physical density is input (card D, columns 18-21), this card contains the coding which indicates whether the definition according to the Task Group on Lung Dynamics 1 or Mercer's definition ${ }^{2}$ of aerodynamic diameter is to be used on the second calculation of $\mathrm{D}_{5}{ }^{\prime}$'s cumulative mass loadings, etc., for a given run.

Column 1: Punch a "l" here if the Andersen Mark III Stack Sampler is used to obtain data. Punch "2" here if the modified Brink Cascade Impactor is used. Punch "3" here if the University of Washington Mark III Source Test Cascade Impactor is used. Punch "4" here if the Meteorology Research, Inc., Cascade Impactor is used.

TABLE 10. AVERAGE DIAMETER MEASURED FOR EACH STAGE OF SIX ANDERSEN IMPACTORS ${ }^{\text {a }}$

Impactor no. Stage no.		$\stackrel{229}{D C_{I_{11}}}$	$\mathrm{DC}_{\mathrm{I}_{21}}^{231}$	$\begin{gathered} 583 \\ D C_{\text {I31 }} \end{gathered}$	$\begin{gathered} 619 \\ D C_{I 41} \end{gathered}$	$\stackrel{620}{D^{2}}{ }_{\text {I } 51}$	$\begin{gathered} 627 \\ D C_{I_{61}} \end{gathered}$
0	1	0.1632	0.1632	0.1671	0.1621	0.1621	0.1651
1	2	0.1233	0.1253	0.1281	0.1263	0.1249	0.1240
2	3	0.0954	0.0949	0.0953	0.0946	0.0935	0.0951
3	4	0.0742	0.0749	0.0780	0.0757	0.0751	0.0774
4	5	0.0577	0.0569	0.0547	0.0581	0.0563	0.0565
5	6	0.0368	0.0369	0.0359	0.0355	0.0359	0.0346
6	7	0.0254	0.0254	0.0269	0.0258	0.0264	0.0266
7	8	0.0255	0.0257	0.0253	0.0245	0.0250	0.0245

a. A maximum of 6 impactors of this type can be used.

TABLE ll. MEASURED JET DIAMETER FOR EACH STAGE OF FOUR BRINK IMPACTORS ${ }^{\text {a }}$

Impactor no. Stage no.		$D C_{I_{12}}^{A}$	$D C_{I_{22}}^{B}$	$\mathrm{DC}_{\mathrm{I} 32}$	$D C_{I_{42}}^{D}$	none $\mathrm{DC}_{\text {I } 52}$	none $D C_{I_{62}}$
0	1	0.3554	0.3618	0.3658	0.3560	0.0000	0.0000
1	2	0.2422	0.2414	0.2460	0.2461	0.0000	0.0000
2	3	0.1779	0.1737	0.1724	0.1778	0.0000	0.0000
3	4	0.1364	0.1366	0.1360	0.1368	0.0000	0.0000
4	5	0.0884	0.0918	0.0896	0.0937	0.0000	0.0000
5	6	0.0705	0.0719	0.0719	0.0730	0.0000	0.0000
6	7	0.0556	0.0532	0.0589	0.0550	0.0000	0.0000
none	8	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

[^2]TABLE 12. AVERAGE JET DIAMETER MEASURED FOR EACH STAGE OF FOUR UNIVERSITY OF WASHINGTON MARK III IMPACTORS a

Impactor no. Stage no.	I	$D C_{I_{13}}^{A}$	$D C_{I_{23}}^{B}$	$\mathrm{DC}_{\mathrm{I}_{3} 3}^{C}$	$D C_{I_{4} 3}^{D}$	none $D C_{I_{53}}$	none $D C_{I_{63}}$
1	1	1.82372	1.82372	1.82372	1.82372	0.0000	0.0000
2	2	0.5768	0.5822	0.5874	0.5743	0.0000	0.0000
3	3	0.2501	0.2458	0.2459	0.2512	0.0000	0.0000
4	4	0.0808	0.0802	0.0807	0.0793	0.0000	0.0000
5	5	0.0524	0.0504	0.0532	0.0495	0.0000	0.0000
6	6	0.0333	0.0340	0.0376	0.0330	0.0000	0.0000
7	7	0.0245	0.0323	0.0260	0.0229	0.0000	0.0000
none	8	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

a. A maximum of 6 impactors of this type can be used.

TABLE 13. AVERAGE JET DIAMETER MEASURED FOR EACH STAGE OF ONE METEOROLOGY RESEARCH INCORPORATED IMPACTOR ${ }^{\text {a }}$

TABLE 13. AVERAGE JET DIAMETER MEASURED FOR EACH STAGE OF ONE METEOROLOGY RESEARCH INCORPORATED IMPACTOR ${ }^{\text {a }}$						
Impactor no: Stage no.	$\mathrm{DC}_{\mathrm{I}_{14}}^{\mathrm{A}}$	none $\mathrm{DC}_{\mathrm{I} 24}$	none $D_{I_{34}}$	none $D_{\mathrm{I}_{44}}$	none $D_{I_{54}}$	none $D C_{I_{64}}$
11	0.870	0.0000	0.0000	0.0000	0.0000	0.0000
22	0.476	0.0000	0.0000	0.0000	0.0000	0.0000
3 3	0.205	0.0000	0.0000	0.0000	0.0000	0.0000
44	0.118	0.0000	0.0000	0.0000	0.0000	0.0000
$5 \quad 5$	0.084	0.0000	0.0000	0.0000	0.0000	0.0000
$6 \quad 6$	0.052	0.0000	0.0000	0.0000	0.0000	0.0000
$7 \quad 7$	0.052	0.0000	0.0000	0.0000	0.0000	0.0000
8 none	0.000	0.0000	0.0000	0.0000	0.0000	0.0000

a. A maximum of 6 impactors of this type can be used.

Column 2: Punch a "0" here or leave blank if the density (on card D, columns l8-2l) is physical density and if the classic definition of aerodynamic diameter is to be used for the second calculation of D_{50} 's, i.e., Cunningham correction factor as function of cut point diameter in an iterative evaluation. Punch a "l" here if the density (on Card D, columns l8-2l)is physical density and if Mercer's definition of aerodynamic diameter is to be used for the second calculation of D_{50} 's, i.e., Cunningham correction factor is l with no iteration. The value punched here is overridden if unit density is punched on card D, columns 18-2l (see below).

Card B--The general identification label is punched on this card. Everything punched on this card will appear on any line printer output and on any statistical graphs which pertain to averaged data for all impactor runs using this impactor. See mainline program STATIS. This label usually includes testing site, date, and run numbers included in this job. The card is read using $80 A 1$ format. Therefore, any combination of letters, numbers, or symbols is acceptable.

Columns 1-80: Punch the general identification label.

Card C--Coding to indicate the number of the impactor used is punched on this card. This value together with the impactor type coding punched in the first column of Card A indicates the specific impactor. Impactor identification is given here for the impactors available at Southern Research Institute, and only serve as an example to the program user.

Column 2: If the Andersen impactor is used, the following listing shows the number punched for the indicated impactor used:

Card D--This card contains the impactor pressure and temperature conditions, the stack temperature, the assumed particle density, the duration of sampling, maximum particle size, configuration constants lapplicable if the Brink impactor is being used (, and coding to indicate whether the back-up filter is used. Columns 1-5: Punch the gas pressure at the impactor inlet in inches of mercury using an F5. 2 format.
Columns 6-11: Punch the temperature of the stack in degrees Fahrenheit using an F6.1 format.
Columns 12-17: Punch the temperature of the impactor in degrees Fahrenheit using an F6.l format.
Columns 18-21: Punch the assumed density of the particle in grams per cubic centimeter to be used for the first calculation of $\mathrm{D}_{50}{ }^{\prime} \mathrm{s}$ using an F4.2 format. If the assumed physical density (>1.0) is punched, it is used for the first calculation of D_{50} 's, and the second calculation of D_{50} 's is based on assumed unit density where the definition according to the Task Group on Lung Dynamics (TGLD) ${ }^{1}$ or Mercer's definition ${ }^{2}$ of aerodynamic diameter is used (dependent on coding punched on card A, column
2). If unit density is punched here, the TGLD definition of aerodynamic diameter is used for the first calculation of $\mathrm{D}_{5}{ }^{\prime}$'s; Mercer's definition of aerodynamic diameter is used for the second calculation of $D_{5}{ }^{\prime}$'s regardless of value punched on card A, column 2.
Columns 22-26: Punch the duration of impactor sampling in minutes using an F5.1 format.
Columns 27-31: Punch the maximum particle diameter of material collected in micrometers using an F5.l format.

Column 32: Punch a "l" here if the Brink impactor is used with cyclone. Otherwise punch "0" or leave blank.

Column 33: Punch a "l" here if the Brink impactor is used with stage 0 . Otherwise punch " 0 " or leave blank.
Column 34: Punch the index of the last stage if the Brink impactor is used. This is either "5" or "6". If the Andersen impactor, University of Washington, or MRI impactor is used, punch " 0 " or leave blank. Punch a "l" here if the back-up filter is used in the impactor. Punch " 0 " here or leave blank if the filter is not used.

Card E--This card contains the fractional gas composition. The composing gases are carbon dioxide (dry), carbon momoxide (dry), nitrogen (dry), oxygen (dry), and water. All fractions are read using F6. 2 format.

Columns l-6: Punch the dry gas fraction of carbon dioxide.
Columns 7-12: Punch the dry gas fraction of carbon monoxide.
Columns 13-18: Punch the dry gas fraction of nitrogen.
Columns 19-24: Punch the dry gas fraction of oxygen.
Columns 25-30: Punch the fraction of water-steam.

Card F--This card contains the particulate masses captured at each stage of the cascade impactor. All masses are read using F6. 2 format.

Columns l-6: Punch the mass captured on the back-up filter in milligrams.
Columns 7-12: Punch the mass captured on the last (finest D_{50}) stage in milligrams.
Columns 13-18: Punch the mass captured on the next to the last stage in milligrams.

Continue this list using Columns 19-24, 25-30, etc., punching the masses captured on each stage in milligrams. Note that the order is by descending order of stage numbers so that the final number punched on the card is the mass captured on the first (coarsest) stage in milligrams or in the cyclone if the Brink impactor is used. If a stage weight is zero, the field allocated to that stage may be left blank or punched as "0".

Card G--This card contains the impactor sampling flow rate. The number is read using an $F 7.4$ format.

Columns 1-7: Punch the impactor sampling flow rate in actual cubic feet per minute.

Card H--This card contains the individual run identification label. Everything punched on this card will appear verbatim at the top of line printer output pertaining to that run, and also above any graph plotted (see mainline program GRAPH) pertaining to this one run. This label usually includes the name of the testing site, whether inlet or outlet data, the run number, testing date, and location of testing port. The card is read using an 80Al format. Therefore, any combination of letters, numbers, or symbols is acceptable.

Columns 1-80: Punch the individual run identification label.

Cards C through H are repeated for each new data set (i.e... for each run of the impactor). The final card (which would be in card position C of the next set of data, had there been more runs of the impactor to process) is left blank to end reading and processing of further data.

File Input--
There are no variable values input to program MPPROG by means of file reading.

Line Printer Output--

Each impactor run data set will cause two output forms of the type discussed here. The first output for the given run is the result of calculations made with density of the particles taken as their physical density. Identical calculations are made with density of the particles taken as unit density $=1.0$ gram/cubic centimeter (aerodynamic diameter). Of course, output values for the two differ where calculations are dependent on this density. Two choices are available for unit density calculations. D_{50} values can be calculated using the Task Group on Lung Dynamics definition (TLGD), or the aerodynamic impaction diameter definition of Mercer.

The individual identification label as input on Card B is printed at the top of the page.

Line l: The individual run identification label.

The next five lines give information on running conditions, gas composition, and general characteristics of the particulate content.

Line 2:
a. Impactor flow rate in actual cubic feet per minute (as input)
b. Impactor temperature in degrees Fahrenheit (as input)
c. Impactor temperature in degrees centigrade
d. Sampling duration in minutes (as input)

Line 3:
a. Impactor pressure drop in inches of mercury
b Stack temperature in degrees Fahrenheit (as input)
c. Stack temperature in degrees centigrade

Line 4:

a. Particle density in grams per cubic centimeter. This is as input for the first calculations of D_{50} 's cumulative mass loadings, etc. This is 1.0 gram/cubic centimeter for the second calculation of these same values.
b. Stack pressure (pressure at impactor inlet) in inches of mercury (as input)
c. Maximum particle diameter in micrometers (as input)

Line 5:
a. Wet percent gas content of carbon dioxide
b. Wet percent gas content of carbon monoxide
c. Wet percent gas content of nitrogen
d. Wet percent gas content of oxygen
e. Percent gas content of water

Line 6:
a. Calculated total mass loading in grains per actual cubic foot
b. Calculated total mass loading in grains per dry normal cubic foot.
c. Calculated total mass loading in milligrams per actual cubic meter.
d. Calculated total mass loading in milligrams per dry normal cubic meter

The remainder of line printer output shows the particle concentration and distribution according to particle size in the form of a chart.

Line 7: "IMPACTOR STAGE" followed by the column headings for each stage, e.g., "S1", "S2", "S3", "S4", "S5", "S6", "S7", "S8", and "FILTER" for the Andersen impactor.

Line 8: "STAGE INDEX NUMBER" followed by the column headings, e.g., "1", "2", "3", "4", "5", "6", "7", "8", and "9" for the Andersen impactor. The last number is the stage index number for the back-up filter. Each of the index numbers is aligned with its proper "IMPACTOR STAGE" column heading. There are NMASS such "IMPACTOR STAGE" and "STAGE INDEX NUMBER" column headings.
Line 9: "D50" (MICROMETERS)" is followed by the particle diameter lower size limit for each stage in micrometers. There is no such "lower limit" given for the all-capturing back-up filter, and, therefore, there are only NMASS-l diameter sizes listed here.
Line 10: "MASS (MILLIGRAMS)" is followed by the mass captured at each stage in milligrams as input. There are NMASS values listed here.
Line ll: "MG/DNM3/STAGE" is followed by the equivalent mass loading at each stage in milligrams per dry normal cubic meter. There are NMASS values listed here.
Line 12: "CUM. PERCENT OF MASS SMALLER THAN D50" is followed by this cumulative percent value at each stage. There are only NMASS-l percent values listed here, since there is no lower size limit for the back-up filter and no mass loading which escapes this filter.
Line 13: "CUM. (MG/ACM) SMALLER THAN D50" is followed by the cumulative particulate mass loading with diameters less than the lower size limit of the given stage. The units here are milligrams per actual cubic meter. There are only NMASS-2 values since there is no mass loading which escapes the back-up filter.
Line 14: "CUM. (MG/DNCM) SMALLER THAN D50" as described above but in units of milligrams per dry normal cubic meter.

Line 15: "CUM. (GR/ACF) SMALLER THAN D50" as described above but in units of grains per actual cubic foot.

Line 16: "CUM. (GR/DNCF) SMALLER THAN D50" as described above but in units of grains per dry normal cubic foot.

Line 17: "GEO. MEAN DIAMETER" is followed by the geometric mean diameter in micrometers of all particles which may be captured at each stage obtained by taking the mid-point diameter of the natural log difference of the D_{50} of the given stage and the D_{50} of the previous stage.

Line 18: "DM/DLOGD (MG/DNCM)" is followed by the change in mass concentration at each stage in milligrams per dry normal cubic meter. These are also known as the values of the size distribution on a mass basis. There are NMASS values.
Line 19: "DN/DLOGD (NO. PARTICLES/DNCM)" is followed by the change in number concentration at each stage in number of particles per dry normal cubic meter. These are also known as the values of the size distribution on a number basis. There are NMASS dN/dlogD values.
Line 20: A footnote is given here for the definition of "normal conditions" by engineering standards. It states, "NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEG C AND 760 MM HG."

Line 21: A footnote is given here if the figures on this output page have been made for assumed aerodynamic diameter, density $=1.0$ gram/cubic centimeter. The definition used for aerodynamic diameter is specified by writing either "AERODYNAMIC DIAMETERS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS" or "AERODYNAMIC DIAMETERS ARE CALCULATED HERE ACCORDING TO MERCER".

Graph Output--

There are no graphs plotted by program MPPROG

File Output--

There is one random access file used for output in the program MPPROG. It is referenced as "FILNAM" under the file name "KMC OOl". The file is referred to as file number 10 (decimally) in all written statements for this file. File 10 has lol records each with 251 words. For each run of the impactor, 2 records are used to store compiled data. If the first or odd numbered record stores data compiled while assuming a physical density, the second or even numbered record stores data compiled while assuming unit density of 1.0 gram per cubic centimeter, using either the TGDL or Mercer's definition of aerodynamic diameter. If the first or odd numbered records store data compiled while assuming unit density, the TGLD definition of aerodynamic diameter is used to get these values. In this case, the second or even numbered records also store data compiled while assuming unit density, but Mercer's definition of aerodynamic diameter is used. The last record, record 101 , is used to store general information which applies to all impactor runs.

For records l-100, below is listed the variable names, their dimension and total number of words (integer variable values requiring one word, real variable values two words) and a description of the variable. These records contain information referring to an individual impactor run.

IS: This is a one-dimensional integer requiring one word. It is the record index number.
NFIT: This is a one-dimensional integer requiring one word. It is the total number of points which may be used in making the cumulative mass loading curve fit in program SPLINl. This number of points comes from taking the
nonzero values for cumulative mass loading of particulate less than the D_{50} of the given stage vs. the stage D_{50} plus one point for the total grain loading vs. the maximum particle diameter.
GRNAM: This is a one-dimensional real variable requiring two words. It is the value of the total mass loading in milligrams per actual cubic meter.
ID: This is a one-dimensional integer variable array with 80 elements requiring 80 words. It is the individual run identification label giving such information as name of testing site, whether it is inlet or outlet data, the run number (not the same as IS), testing data, and location of testing port.
RHO: This is a one-dimensional real variable requiring two words. It is the value of the assumed density. This is the physical density if IS is odd or unit density if IS is even. The density is given in grams per cubic centimeter.
TKS: This is a one-dimensional real variable requiring two words. It is the temperature of the stack in degrees Kelvin.
POA: This is a one-dimensional real variable requiring two words. It is the pressure at the impactor inlet in atmospheres.
FG_{5} : This is one value of a five element, one-dimensional real variable array. This one value requires two words. It is the percent water content of the flue gas.
DSMA: This is a one-dimensional real variable requiring two words. It is the smallest stage D_{50} value in micrometers, i.e., the D_{50} of the last (finest) stage.
DMAX: This is a one-dimensional real variable requiring two words. It is the diameter in micrometers of the largest particle captured.

DPC: This is a one-dimensional real variable array with 8 elements requiring 16 words. These are the D_{50} values or lower size limit values in micrometers for the stages of the impactor.
CUMG: This is a one-dimensional real variable array with 8 elements requiring 16 words. These are the cumulative particulate mass loading values with diameters less than the lower size limit of the given stage in milligrams per actual cubic meter.
DMDLD: This is a one-dimensional real variable array with 9 elements requiring 18 words. These are the values at each stage (including the back-up filter) of the size distribution on a mass basis in milligrams per dry normal cubic meter. These values are also referred to as the change in mass concentration at each stage.
GEOMD: This is a one-dimensional real variable array with 9 elements requiring 18 words. These values are the geometric mean diameter of all particles at each stage (including the back-up filter) in micrometers.
DNDLD: This is a one-dimensional real variable array with 9 elements requiring 18 words. These are the values at each stage (including back-up filter of the size distribution on a number basis in number of particles per dry normal cubic meter. These values are also referred to as the change in number concentration at each stage.
CYC3: This is a one-dimensional real variable requiring two words. It is the lower size limit of the cyclone in micrometers. The value written here is 0.0 unless the Brink impactor is used with the cyclone.
MC3: This is a one-dimensional integer variable requiring one word. It is the code variable to indicate use of the cyclone with the Brink impactor. If the cyclone is used with the Brink impactor, 1 is entered here. Otherwise, the MC3 value is entered as 0.
M00: This is a one-dimensional integer variable requiring one word. It is the code variable to indicate use of
stage 0 with the Brink impactor. If this stage 0 is used with the Brink impactor, 1 is entered here. Otherwise, the MOO value is entered as 0 .
MS: This is a one-dimensional integer variable requiring one word. It is the code variable to indicate the last stage of the Brink impactor. The figure entered here is then 5 or 6 depending on the configuration used for the Brink impactor. If the Andersen, University of Washington, or MRI impactor is used, 0 is entered here as the value of MS.
JV: This is a one-dimensional integer variable requiring one word. It is the number of stage D_{50} values. If the Brink impactor is used, one is added for the cyclone (whether it is used or not).
XNDPEN $_{I}, I=1, N F I T:$ This is a one-dimensional real variable array with NFIT elements requiring ($2 \times N F I T$) words. These are the values of the independent variable used for fitting in program SPLINl. These are the D_{50} values of each stage of the impactor and the maximum captured particle diameter in micrometers (excluding the $\mathrm{D}_{5} 0$ of stage 2 if the Andersen impactor is used).
$\mathrm{YO}_{I}, \mathrm{I}=1$, NFIT: This is a one-dimensional real variable array with NFIT elements requiring ($2 \times N F I T$) words. These are the values of the dependent variable used for fitting in program SPLINl. These are the nonzero cumulative mass loading values less than the stage $D_{s o}$ and the total mass loading in milligrams per actual cubic meter (excluding the mass loading less than D_{50} of stage 2 , if the Andersen, University of Washington, or MRI impactor is used).

PROGRAM SPLINI

Program SPLINI uses a series of overlapping, second degree polynomials to fit each specified set of logio (cumulative mass loading) vs. $\log _{10}\left(\mathrm{D}_{50}\right)$ values such that both the polynomials and their first derivatives are continuous at the points of overlap. It is executed as the second progran in the cascade impactor data reduction system. Impactor program MPPROG must first be executed in order to store values to be used for fitting on the random access file KMCOOl (file lo). These stored values are the set of cumulative mass loadings and total mass loading YOI, I $=1$, NFIT, in milligrams per actual cubic meter and the set of stage diameter cut points and maximum particle diameter, XNDPEN (I), $\mathrm{I}=\mathrm{l}, \mathrm{NFIT}$, in micrometers.

After fits are made, the following information is stored for each data set in file FILSPL (file ll) for use in all subsequent programs of the system:

NPT - the number of points used in making the fit $\left(X_{I}, Y_{I}\right), I=1, N P T$ - the boundary point values for each of these intervals. These include $\log _{10}$ (XNDPEN $_{I}, \mathrm{YO}_{I}$), $\mathrm{I}=1, \mathrm{NFIT}$ in addition to interpolated points. $\operatorname{COE}_{I, J}, I=1, I N T, J=1,3-$ the spline curve fit second degree polynomial coefficients for each interval. Here INT = number of intervals $=$ NPT -l.

Breakdown of Program SPLIN1

028-029: Record 101 contains general information pertaining to all runs. There are two records for each run. ISFIN is the last record containing individual run data in file lo.

034: The code variable KREAD is read to specify whether all sets of data are to be fitted (KREAD $=0$) or whether only certain specified sets are to be fitted (KREAD = 1).

041-044: Each pair of $\log _{10}\left(D_{50}\right)$ values has its range divided into equal subintervals ($N=4$). R is the real number equivalent, 4.0. The interval between $\log _{10}\left(\mathrm{D}_{50}\right)$ of the largest D_{50} stage and the $\log _{10}$ (maximum particle diameter) is divided into NN equal subintervals (NN = 8). $R R$ is the real number equivalent, 8.0.

045: The loop begins here which on each pass reads a set of cumulative mass loadings plus total mass loading, $\mathrm{YO}_{\mathrm{I}}, \mathrm{I}=1$, NFIT, and the corresponding set of $\mathrm{D}_{5} 0$ values plus maximum particle diameter, XNDPEN $_{I}$, $I=1$, NFIT. A new set of points (X, Y) are defined based on the set of points, $\log _{10}$ (XISDPEN, YO), and points interpolated in between. A series of overlapping, second degree polynomials are fitted to these values such that the polynomials and their first derivatives are continuous for each contiguous set of data points. The number of points NPT used to made the fits, the point values (X, Y) $\mathrm{I}^{\prime} \mathrm{I}=1$, NPT (which are the inverval boundary points), and the second degree polynomial curve fit coefficients for the intervals, $\mathrm{COE}_{\mathrm{IJ}}$; $\mathrm{I}=1$, INT and $J=1$, INT where INT $=$ NPT -1 , are stored on a record of file FILSPL (file ll). Each traverse of the loop produces a polynomial fit to a new set of cumulative mass loading vs. D50 values and stores the results.

046-065: A record of file KMC001 (file 10) is read here to obtain the following:

NFIT $=$ the number of cumulative mass loading vs. D_{50} points $(+1$ for total mass loading vs. maximum particle diameter). This is less than the number of stages +1 if a cumulative mass loading is to
be ignored as for stage 2 of the Andersen, University of Washington, or MRI impactors.

$$
\begin{gathered}
X^{X N D P E N_{I}}, I=I, N F I T \text { - the set of } D_{50} \text { values } \\
\text { and maximum particle diameter (with }
\end{gathered}
$$ possible exclusions as noted above).

$\mathrm{YO}_{\mathrm{I}}, \mathrm{I}=1, \mathrm{NFIT}$ - the set of cumulative mass loading values and total mass loading (with possible exclusions as noted above).

The other variables read from the record are not used. The number of the record read, IAV, is the same as the loop index, INDEX, if all sets of data are to be fitted (KREAD $=0$). If only specified sets are to be fitted, (KREAD $\neq 0)$, the specific record number to be read, IAV, is read by card input. A blank card stops the program for KREAD $\neq 0$.
066-074: Some constants used in the loop to follow are defined here. NFIT is the number of original points to be fitted.

$$
\begin{equation*}
\text { NFITI }=\text { NFIT }-1 \tag{74}
\end{equation*}
$$

$$
\begin{equation*}
\text { NFIT2 }=\text { NFIT }-2 \tag{75}
\end{equation*}
$$

NPT = total number of points used for fitting between (and including) the D_{50} of the last stage and maximum particle diameter $=($ NFIT2 $x 4)+9$

075-105: The loop begins here which defines the set of points to be fitted from $\log _{10}\left(\mathrm{D}_{50}\right)$ of the last stage to $\log _{10}\left(\mathrm{D}_{50}\right)$ of the first stage plus two more extrapolated points beyond $\log _{10}\left(\mathrm{D}_{50}\right)$ of the first stage. These are the (Xl,Yl) points or (X, Y) points. The two sets are equivalenced to each other. On each traverse of this loop, four
more points are defined, except when $I=$ NFIT2, when seven more points are defined. The first of these, $\left(\mathrm{Xl}_{\mathrm{M}}, \mathrm{Yl}_{\mathrm{M}}\right)$, is a function of cumulative mass loading vs. D_{50} :

$$
\begin{align*}
& \mathrm{Xl}_{\mathrm{M}}=\log \left(\mathrm{XNDPEN}_{\mathrm{I}}\right) \tag{77}\\
& \mathrm{Y}_{\mathrm{M}}=\log \left(\mathrm{YO}_{\mathrm{I}}\right) \tag{78}\\
& \text { where } \mathrm{M}=(\mathrm{I}-1) \times 4+1, \text { i.e., } \mathrm{M} \text { increases } \\
& \text { by } 4 \text { on each traverse so that: } \\
& (\mathrm{Xl}, \mathrm{Yl})_{1}=\log _{10} \quad\left(\mathrm{XNDPEN}_{1}, \mathrm{YO}_{1}\right) \\
& (\mathrm{XI}, \mathrm{Yl})_{5}=\log _{10}\left(\mathrm{XNDPEN}_{2} \mathrm{YO}_{2}\right) \\
& (\mathrm{XI}, \mathrm{Y} 1) 9=\log _{10} 0\left(\mathrm{XNDPEN}_{3}, \mathrm{YO}_{3}\right)
\end{align*}
$$

$(\mathrm{XI}, \mathrm{Yl})_{M M}=\log _{10} \quad(X N D P E N, Y O)_{\text {NFIT }}$
where $M M=(N F I T 2-1) \times 4+1$
We will occasionally adopt the convention of writing $\log _{10}\left(X^{\prime} \operatorname{PNPEN}_{I} \mathrm{YO}_{I}\right)$ as $\log _{10}(X N D P E N, Y O)_{I}$ for ease of presentation. Thus:
$(\mathrm{XI}, \mathrm{Yl})_{1}=\log _{10} \quad(X N D P E N, Y O)_{1}$
$(\mathrm{Xl}, \mathrm{Yl})_{5}=\log _{10} \quad(\mathrm{XNDPEN}, \mathrm{YO})_{2}$
$(\mathrm{XI}, \mathrm{Yl})_{9}=\log _{10}(\mathrm{XNDPEN}, \mathrm{YO})_{3}$
$(\mathrm{X1}, \mathrm{Y} 1)_{\text {MM }}=\log _{10}(\mathrm{XNDPEN}, \mathrm{YO})_{\text {NFIT2 }}$
The additional number of (Xl, Yl) points to be defined in traversing the "DO 100 " loop is $J J=$ 3. These points are equally spaced on a common \log scale between $\log _{10}(X N D P E N)_{I}$ and $\log _{10}$ (XNDPEN $^{\text {I }+1}$. On the last traverse where $\mathrm{I}=$ NFIT2, six more points are defined since $J J=6$. The first three are equally spaced on a common \log scale as before. The fourth $=\log _{10}$ (XNDPEN,

YO) NFITI where NFITI $=$ NFIT - 1 . The last two points are extrapolated beyond $\log _{10}$ (XNDPEN, YO) NFITI and are spaced by the same $\log _{10}$ increment as the previous four points. This $\log _{10}$ increment between points, XINC, is defined as:

$$
\text { XINC }=\left[\log _{10}(X N D P E N)_{I+1}-\log _{10}(X N D P E N)_{I}\right] / 4
$$

The range is divided by 4 here so that the $\log _{10}$ interval of each pair of cumulative mass loading vs. D_{50} points is divided into 4 equal subintervals with 3 interval boundary points to be interpolated. 106-134: The "DO 1100" loop here prepares the input for subroutine SIMQ ($A, B, 3, \mathrm{KS}$). SIMQ is one of the IBM 360 Scientific Subroutine Package-Version III programs. SIMQ solves three. simultaneous equations here to fit a second degree polynomial to the following points:
$\log _{10}$ (XNDPEN,YO) I_{I}
$\log _{10}(X N D P E N, Y O)_{I+1}$
$\log _{10}(X N D P E N, Y O) I+2$
If

$$
\begin{equation*}
\mathrm{SLOPE}=\mathrm{B}_{2}+2 \mathrm{~B}_{3}\left[\log _{10}(\mathrm{XNDPEN})_{\mathrm{I}}\right]<0 \tag{83}
\end{equation*}
$$

or if

$$
\mathrm{SLOPE}=\mathrm{B}_{2}+2 \mathrm{~B}_{3}\left[\log _{10}(\mathrm{XNDPEN})_{I+1]}<0,(84)\right.
$$

the original second degree polynomial coefficients vector \bar{B} found by SIMQ is replaced with the coefficients defining a straight line fit between $\log _{10}(X N D P E N, Y O)_{I}$ and $\log _{10}(X N D P E N, Y O)_{I+1}$:

$$
\begin{align*}
& \mathrm{B}_{1}=\log _{10}(\mathrm{YO})_{I}-\mathrm{B}_{2} \log _{10}(\mathrm{XNDPEN})_{I} \tag{85}\\
& \mathrm{~B}_{2}=\log _{10}\left(\mathrm{YO}_{\mathrm{I}+1} / \mathrm{YO}_{\mathrm{I}}\right) / \log _{10}\left(\mathrm{XNDPEN}_{\mathrm{I}+1} / \mathrm{XNDPEN}_{\mathrm{I}}\right) \tag{86}\\
& \mathrm{E}_{3}=0.0
\end{align*}
$$

135-139: The three interpolated points between $\log _{10}$ (XNDPEN,YO) ${ }_{I}$ and $\log _{10}$ (XNDPEN, YO I_{I}) (or
six points if $I=N F I T 2)$ are defined here using the appropriate fitting coefficients as described at cards 106-134:

$$
\left.\begin{array}{l}
X l_{K}=\log _{10}\left(X_{N D P E N}^{I}\right.
\end{array}\right)+(\mathrm{J}) \text { (XINC) }
$$

Here $K=M+J . M$ is the index of the (Xl,Yl) point which is the same as $\log _{10}(X N D P E N, Y O)_{I}$, i.e. $M=(I-1) \times 4+1$ (see discussion of cards 075-105). J is the index of this small nested "DO 100" loop which defines the three (six if $I=N F I T 2)$ interpolated points.

At this location in the program, all (Xl, Yl) points to ve used for curve fitting over the range of the D_{50} 's have been defined. Any curve fitting up to this point has been only for the purpose of defining the (Xl, Yl) points to be used for the actual final fitting of $\log _{10}$ (cumulative mass loading) vs. $\log _{10}$ (D_{50}) in the section to follow. Note that (X1, Yl) points have not been defined over the range of $\log _{10}\left(D_{50}\right)$ of the first stage, $=\log _{10}(X N D P E N)_{N F I T l}$ to $\log _{10}$ (maximum particle diameter) $=$ $\log _{10}(X N D P E N)_{N F I T}$) except for two extrapolated points beyond $\log _{10}(X N D P E N)_{N F I T 1}$, which will be replaced. The interpolated (Xl, Yl) points for this last range are to be defined by a hyperbolic fit to $\log _{10}(X N D P E N, Y O)_{N F I T 1}$ and $\log _{10}(X N D P E N, Y O)$ NFIT is opposed to the parabolic fit used previously. Also, the (Xl,Yl) points used previously are now referred to as (X, Y) points. These two sets are made the same by the equivalence statement at card 018 as are the curve fitting coefficients COE and COEl.

140-154: The first three (X, Y) points, $\left(\mathrm{X}_{1}, \mathrm{Y}_{1}\right)$, $\left(\mathrm{X}_{2}, \mathrm{Y}_{2}\right)$, and $\left(X_{3}, Y_{3}\right)$, are fitted here with a second degree polynomial in order to define the slone at ($\mathrm{X}_{1}, \mathrm{Y}_{1}$). As above we will cccasionally adopt the convention
of writing $\left(X_{1}, Y_{1}\right)$ as $(X, Y)_{1}$, etc., for ease of presentation. The coefficients found here do not define the final curve fit over the first interval but are used only to define the slope at $(X, Y)_{1}=$ $\log _{10}(X N D P E N, Y O)_{1}$. The matrix equation $\overline{A X}=\bar{E}$ must be solved for \bar{X}. The coefficient matrix \bar{A} is defined as:

$$
\left(\begin{array}{lll}
A_{1} & A_{4} & A_{7} \tag{90}\\
A_{2} & A_{5} & A_{8} \\
A_{3} & A_{6} & A_{9}
\end{array}\right)=\left(\begin{array}{lll}
1 & X_{1} & \left(X_{1}\right)^{2} \\
1 & X_{2} & \left(X_{2}\right)^{2} \\
1 & X_{3} & \left(X_{3}\right)^{2}
\end{array}\right)
$$

The constant vector $\overline{\mathrm{E}}$ is defined as:

$$
\left(\begin{array}{l}
B_{1} \tag{91}\\
B_{2} \\
B_{3}
\end{array}\right)=\left(\begin{array}{l}
Y_{1} \\
Y_{2} \\
Y_{3}
\end{array}\right)
$$

Subroutine SIMQ replaces vector \bar{B} with the solution vector \bar{X}. Vector \bar{B} now holds the coefficients for the second degree polynomial fit to points $(\mathrm{X}, \mathrm{Y})_{1},(\mathrm{X}, \mathrm{Y})_{2}$, and $(\mathrm{X}, \mathrm{Y})_{3}$.
155-179: The slope, SLOPE, at $(\mathrm{X}, \mathrm{Y})_{1}$ is calculated here:

$$
\begin{equation*}
\mathrm{SLOPE}=\mathrm{B}_{2}+2 \mathrm{~B}_{3} \mathrm{X}_{1} \tag{92}
\end{equation*}
$$

If SLOPE < 0.0, the polynomial curve fit through ($\mathrm{X}, \mathrm{Y})_{1}$ must be redefined to assure a positive first derivative at this point. This is done by defining a point $\left(X_{0}, Y_{1}\right)$ where $X_{0}=X_{1}-\left(X_{2}-X_{1}\right)$ and making a second degree polynomial curve fit through $\left(X_{0}, Y_{1}\right),\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$. Since (X_{0}, Y_{1}) and (X_{1}, Y_{1}) have the same ordinate value and $Y_{2}>Y_{1}$, the only minimum of the second degree polynomial must lie between X_{0} and X_{1}. The slope at $\left(X_{1}, Y_{1}\right)$ is then positive. To find the fitting coefficients, the subroutine SIMQ ($A, B, 3, K S$) solves the matrix equation $\overline{A X}=\bar{B}$ for \bar{X} where \bar{A} is:

$$
\left(\begin{array}{lll}
A_{1} & A_{4} & A_{7} \tag{93}\\
A_{2} & A_{5} & A_{8} \\
A_{3} & A_{6} & A_{9}
\end{array}\right)=\left(\begin{array}{ccc}
1 & {\left[X_{1}-\left(X_{2}-X_{1}\right)\right]} & {\left[X_{1}-\left(X_{2}-X_{1}\right)\right]^{2}} \\
1 & X & \left(X_{1}\right)^{2} \\
X & \left(X_{2}\right)^{2}
\end{array}\right)
$$

and \bar{B} is:

$$
\left(\begin{array}{l}
B_{1} \tag{94}\\
E_{2} \\
B_{3}
\end{array}\right)=\left(\begin{array}{l}
Y_{1} \\
Y_{1} \\
Y_{2}
\end{array}\right)
$$

The input vector $\overline{\mathrm{B}}$ is destroyed in the computations of subroutine SIMQ. The solution fitting coefficients $\overline{\mathrm{X}}$ are returned in place of $\overline{\mathrm{B}}$.

180-181: The coefficients of the second degree polynomial which fits through point $(X, Y)_{1}$ with non-negative first derivative are saved as the fitting coefficients of the first interval between $(X, Y)_{1}$ and $(X, Y)_{2}$ as $\operatorname{COE}(1, I), I=1,3$. These are only the temporary coefficients to find the first derivative at $(X, Y)_{1}$ in order to make the final fit over the first interval in the first traverse of the "DO 50" loop beginning at statement 23 (card 204).
182-189: The beginning and ending index values are defined here for the loop which makes the final fits over the intervals between $\log _{10}(X N D P E N, Y O)_{1}$ and $\log _{10}(\mathrm{XNDPEN}, \mathrm{YO})_{\text {NFITl }}$. The first interval, II, is 1. The lower boundary point of this interval is $(X, Y)_{1}=\log _{10}(X N D P E N, Y O)_{1}$. The last interval, INTSl, is NPT-9 $=$ NFIT2 x 4 . This interval has an upper boundary $(X, Y)(N F I T 2 \times 4)+1=\log _{10}$ (XNDPEN, YO) NFITI•
190-235: This "DO 50" loop makes second degree polynomial fits to all intervals between $\log _{10}(X N D P E N, Y O)_{1}$ and $\log _{10}(X N D P E N, Y O)$ NFIT. These intervals are defined ty the houndary points (X, Y) aich also
serve as the points to be fitted. The three equations used to define the fitting polynomial over a given interval I, between $(X, Y)_{I}$ and $(X, Y)_{I+1}$, must meet the following three conditions:

1. The fitting polynomial over interval I must have a continuous first derivative with that of intervals I-l. (For I = 1, the first derivative must be as found at cards 140-181).
2. The polynomial to be calculated for interval I must be continuous with the polynomial fitting interval $\mathrm{I}-1$. (For $I=1$, the polynomial must fit exactly through ($\mathrm{X}, \mathrm{y})_{1}$).
3. The fitting polynomial of this Ith interval which fits hetween points (X, Y_{I} and ($\left.\mathrm{X}, \mathrm{Y}\right)_{I+1}$ goes through the ($I+3$)rd point. This means that a point beyond the fitted interval I is used to determine the fit over I. This has the effect of "looking ahead" at the coming points to influence the curve direction as one would do visually when using a French curve.
Mathematically, the above conditions may be expressed in order by the following equations:

$$
\begin{align*}
\text { 1. } \operatorname{COE}_{I, 2} & +2 \operatorname{COE}_{I, 3} X_{I}=\operatorname{COE}_{I-1,2} \\
& +2 \operatorname{COE}_{I-1,3} X_{I} \tag{95}\\
\text { 2. } \operatorname{COE}_{I, 1} & +\operatorname{COE}_{I, 2} X_{I}+\operatorname{COE}_{I, 3} X_{I}^{2} \\
= & \operatorname{COE}_{I-1,1}+\operatorname{COE}_{I-1,2} X_{I} \tag{96}\\
& +\operatorname{COE}_{I-1,3} X_{I}^{2}
\end{align*}
$$

$$
\text { 3. } \begin{align*}
\operatorname{COE}_{I, 1} & +\operatorname{COE}_{I, 2} X_{I+3}+\operatorname{COE}_{I, 3} X_{I+3}^{2} \\
& =Y_{I+3} \tag{97}
\end{align*}
$$

Here $\operatorname{COE}_{I, J}, J=1,3$ are the second degree polynomial curve fit coefficients to be determined for the Ith interval and $\operatorname{COE}_{I-1, J} J^{\prime} J=1,3$ are similar coefficients found to fit over the previous interval. X_{I} is the ordinate of the lower boundary point of this Ith interval, and (X,Y) I+3 is the point external to the actual fitted interval which is 3 points beyond the lower boundary of the Ith interval. To find the fitting coefficients $\operatorname{COE}_{\mathrm{I}, \mathrm{J}}, \mathrm{J}=1,3$ the matrix equation $\overline{A X}=$ \bar{B} is solved in the IBM 360 Scientific Subroutine, SIMQ ($\mathrm{A}, \mathrm{B}, 3, \mathrm{~K}$). The vector \bar{A} is input as:

$$
\left(\begin{array}{ccc}
A_{1} & A_{4} & A_{7} \tag{98}\\
A_{2} & A_{5} & A_{8} \\
A_{3} & A_{6} & A_{9}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & 2 X_{I} \\
1 & X_{I} & X_{I}^{2} \\
1 & X_{I+3} & X_{I+3}^{2}
\end{array}\right)
$$

The vector $\overline{\mathrm{B}}$ is input as:

$$
\left(\begin{array}{c}
B_{1} \tag{99}\\
B_{2} \\
B_{3}
\end{array}\right)=\left(\begin{array}{c}
\operatorname{COE}_{I-1,2}+2 \operatorname{COE}_{I-1,3} X_{I} \\
\operatorname{COE}_{I-1,1}+\operatorname{coE}_{I-1,2} X_{I}+\operatorname{coE}_{I-1,3} X_{I}^{2} \\
Y_{I+3}
\end{array}\right)
$$

The solution vector \bar{X} found by SIMQ is then returned with the fitting coefficient values. The values of vector \bar{B} are destroyed in the computation and the solution coefficients of vector \bar{x} are returned as \bar{B}. Thus the values of vector \bar{B} are saved in the "DO 45" loop at card 233 upon return from SIMQ as the vector $\operatorname{COE}_{I, J} J^{\prime}$ $\mathrm{J}=1,3$ for the fitting coefficients of interval I.

This "DO 50" loop is executed twice. The first execution fits second degree polynomials to the intervals between $\log _{10}(\mathrm{KNDPEN}, \mathrm{YO})_{1}$ and $\log _{10}(X N D P E N, Y O)$ NFITI. The interval boundary points (X, Y) over the second range are calculated according to a hyperbolic fit between $\log _{10}$ (XNDPEN,YO) ${ }_{\text {NFITl }}$ and $\log _{10}\left(\right.$ KNDPEN,YO) ${ }_{\text {NFIT }}$. The program then returns to statement 23 (card 204) for the second execution of the "DO 50" loop to make curve fits over these last intervals. (See discussion of cards 236-263.)

236-263: The boundary points of the last intervals for which fitting coefficients are to be defined are found here. These boundary points and their intervals cover the range of $\log _{10}(X N D P E N, Y O)$ NFITl to $\log _{10}(X N D P E N, Y O) N_{N F I T}, \underline{i} \cdot \underline{e} \cdot$ from $\log _{10}\left(D_{50}\right)$ of the first stage to the logio (maximum particle diameter), plus two extrapolated points beyond $\log _{10}$ (maximum particle diameter). The interval boundary points over this range are defined according to a hyperbolic fit to (XNDPEN, logio YO) NFITI ${ }^{\left.\text {and (XNDPEN, } \log _{10} Y O\right)_{\text {NFIT }} \text { : }}$

$$
\begin{equation*}
\log Y=B_{1}+B_{2} / X \tag{100}
\end{equation*}
$$

Note that the interval between these two points is divided into 8 subintervals with (X,Y) koundary points (rather than 4 subintervals as between each pair of D_{50} 's) with 2 more extrapolated (X,Y) points.
264-272: The index of the "DO 50" loop is the interval number. Here the beginning and ending indices, II and INTSl, respectively, are redefined for this loop. These values are:

$$
I I=\operatorname{INPT}-N N
$$

INTE1 = NPT-1
where NPT $=$ total number of points between $\log _{10}$ (D_{50}) of the last stage to $\log _{10}$ (maximum particle diameter), and $N N=$ number of intervals defined between $\log _{10}\left(D_{50}\right)$ of the first stage and $\log _{10}$ (maximum particle diameter). The program then returns to the "DO 50" loop at statement 23 icard 204) to make continuous second degree polynomial fits over this hyperbolic region just as is done over the range of the $\mathrm{D}_{5} \mathrm{o}^{\prime} \mathrm{s}$.
273-284: The program comes to statement 55 (card 277) after curve fit coefficients for all intervals between $\log _{10}\left(\mathrm{D}_{50}\right)$ of the last stage to $\log _{10}$ (maximum particle diameter), inclusive, have been found. The total number of fitted intervals INT is now:

$$
I N T=N P T-1
$$

where NPT is as defined above. The number of fitted points, NPT, the values of these points, which form the interval boundaries, $(X, Y)_{I}=1$, NPT, and the second degree polynomial curve fit coefficients for these intervals $\operatorname{COE}_{I, J} ; I=1$, INT; $J=1,3$ are written on a record in the file FILSPL, (file ll). The record number used here, IAV, is the same as that in file KCOOl, (file lo). There the original cumulative mass loading and total mass loading, $\mathrm{YO}_{\mathrm{I}}, \mathrm{I}=1$, NFIT, are recorded along with the original stage D_{50} 's and maximum particle diameter, $X^{\prime} \operatorname{XDPEN}_{I}, I=1, N F I T$. In all programs executed following SPLINl (i.e., GRAPH, STATIS, and PENTRA), these interval boundary points and their curve fit coefficients are used to reproduce the cumulative mass loading vs. D50 curve fit and to derive the mass and number size distributions.

The program SPLINl now returns to the beginning of the "DO 400" loop to read the next set of cumulative mass loading (and total mass loading) vs. $\mathrm{D}_{50}{ }^{\prime} \mathrm{s}$ (and maximum particle diameter) to be fitted, (XNDPEN,YO) $I^{\prime} \quad \mathrm{I}=1$, NFIT.

Subroutines Called by Program SPLIN1

Subroutine SIMQ (A, B, N, KS)--
This subroutine, the only subroutine called by SPLINl, is taken directly from the IBM 360 Scientific Subroutine PackageVersion III. It solves N simultaneous linear equations, $\overline{\mathrm{AX}}=\overline{\mathrm{B}}$ where \bar{A} is the matrix of coefficients, \bar{B} is the vector or original constants, and $\overline{\mathrm{X}}$ is the solution vector. The input values of vector \bar{B} are destroyed in the computation and the solution values of vector $\overline{\mathrm{X}}$ are returned in its place.

Input to Program SPLIN1

Card Input--

Card A--This card contains the integer code KREAD which determines whether all records of file KMCOOl (file lo) are to be read and cumulative mass loading vs. Dso values to be fitted, or whether only data from selected records are to be fitted.

Columns l-2: The integer is read here in an 12 format. Punch a non-positive integer here (e.g., 0 is punched in column 2 or left blank) if all records of file 10 containing data are to be read, and fits are made to the set of cumulative mass loading (and total mass loading) vs. D50 (and maximum particle diameter) values found at each record. In this case Card A is the only card of the data deck. Punch a positive integer here (e.q., 1 is punched in column l) if data from specified records is to
be fitted. In this latter case, card set B follows.
Card Set B--Each of these cards has the record number of file KMCOOI (file 10) containing cumulative mass distribution values to be fitted. These cards are included only if card A is punched with a positive number.
Columns 1-2: Punch the record number of the cumulative mass loadings (and total mass loading) vs. D_{50} 's (and maximum particle diameter) to be fitted. This is an 12 format.
There are as many cards in this card set B as there are sets of cumulative mass distritutions to be fitted plus one additional card to stop the program. The last card of this set should be left blank (or 0 punched in columns 1 and 2) for this purpose.

Abstract

File Input-- File 10--This is a random access file with the name KMC001. It contains 101 records of 251 words each. The variables of file 10 which are used in program SPLIJl from records 1-100 are named and described below. The last record, record l01, is used to store general information which applies to all impactor runs. See PROGRAM MPPROG - File Output for the variables which make up each record of file 10.

Output from Program SPLIN1

Line Printer Output--
 None

Graph Output--
 None

File Output--

File ll--This is a random access file with the name FILSPL. It contains 100 records of 507 words each. The following variables make up each record of file ll:

NPT: This is an integer variable requiring one word. It is the total number of points which are fitted between $\log _{10}(X N D P E N, Y O)$, and $\log _{10}(X N D P E N, Y O)$ NFIT1 inclusive, i.e., between $\log _{10}\left(\mathrm{D}_{50}\right.$ of last stage, cumulative mass loading of last stage) and $\log _{10}$ (maximum particle diameter, total mass loading).
X: This is a real variable array with NPT values requiring 2 x NPT words. It is the set of abcissa values to which SPLINl makes its series of continuous second degree polynomial fits.
Y: This is a real variable array with NPT values requiring 2 x NPT words. It is the set of ordinate values to which SPLINl makes its series of continuous second degree polynomial fits.
COE: This is a two dimensional array with INT values in the first dimension and three values in the second dimension. COE thus requires 2 x INT x 3 words. Recall that INT, the number of intervals, equals NPT-l. This is the set of curve fitting coefficients for the cumulative mass distribution. The first index refers to the order of the coefficient. The second index refers to the order of the coefficient. For example, $\operatorname{COE}(14, J), J=$ 1,3 is the set of second degree polynomial coefficients fitting the l4th interval such that:

$$
Y=\operatorname{COE}(14,1)+\operatorname{COE}(14,2) X+\operatorname{COE}(14,3) X^{2}
$$

where $X_{14}<X<X_{15}$

PROGRAM GRAPH

Program GRAPH is the third program of the Cascade Impactor Data Reduction System. Its execution follows that of impactor program MPPROG and cumulative mass curve fitting program SPLINl. The purpose of GRAPH is to make all graphs desired for the individual runs of the impactors. For each type of graph there are two graphs possible - one for particle sizing data obtained by assuming unit density and one for data obtained by assuming physical density. These types of graphs include cumulative mass loading less than the stage D_{50} vs. stage D_{50}, and both $\mathrm{dM} / \mathrm{dlog} \mathrm{d}$ and $d N / d l o g D$ size distribution plots vs. the geometric mean diameter of the stages. There are also similar plots which show the above "raw data" points plotted (finite differences data based on the mass captured at each stage as generated by MPPROG), with "fitted data" (interpolation data as generated by SPLIN1) superimposed. A fitted curve may be superimposed on the cumulative mass loading graph, and a dM/dlogD or dN/dlogD size distribution based on the derivative of fitted cumulative mass loading curve may be superimposed on the original size distribution plot.

GRAPH is the only program of this data reduction system which may be omitted from the execution series since it adds no values to the random access files KMCOOl or FILSPL(used in subsequent programs). GRAPH reads these files in order to label and plot graphs. One other file is used internally. This is the random access file named GRAPHO used to store plotting code values read in from the card reader for each run of the impactor. The file GRAPHO then contains instructions to plot or suppress any given individual run graph. This file is used in no program other than GRAPH. Therefore, if one is interested only in averaged data and penetrationefficiency results, this program is not executed.

It should be noted that in the Breakdown of Program GRAPH below, physical density is assumed to have been input to program MPPROG. This results in calculations based on physical density
and unit density (definition of aerodynamic diameter user specified) being listed alternately in output files. The user may instead desire to input only unit density to MPPROG yeilding calculations based on the two different definitions of aerodynamic diameter (Mercer's ${ }^{2}$ and Task Group on Lung Dynamics ${ }^{1}$).

Breakdown of Program GRAPH

029-045: Read the identification and general plotting input data from file 10.
046-063: Read coding from cards to indicate how range and number of cycles for graphs is to be determined. Also, read coding to control read-in of coding which specifies desired plots.
064-106: Read the individual run plotting codes from cards in the manner indicated from above input, and write these values on file 8.
107-11l: The first graphs drawn will be based directly upon the masses captured at each stage (along with other factors such as flow rate, temperature, etc.) rather than on points calculated from a curve fit. These are sometimes referred to as the "raw data" graphs. The code value ISIG is set equal to 0 here in order to produce these graphs.
112-119: The remainder of the program is a large loop beginning here at card ll9. It is controlled by the variable INDEX. All plotting and line printer output is done within this loop. The type of output data for value of INDEX is given below:

INDEX
1

2

Type of Data
Cumulative and Cumulative \% Mass Loading vs. D50 for assumed unit density. dM/dlogD vs. Geometric Mean Diameter for assumed unit density.
dN/dlogD vs. Geometric Mean Diameter for assumed unit density.
As INDEX $=1$ for assumed physical density.
As INDEX $=2$ for assumed physical density.
As INDEX $=3$ for assumed physical density. Cumulative and Cumulative \% Mass Loading, dM/dlogD, and dN/dlogD Distributions as above with superimposed fitting for assumed unit density. As INDEX $=7$ for assumed physical density.
120: The variable INC is set equal to 2 . This is the interval of records read from file 10. This means that every other record is read each time the loop from statement 730 to statement 790 (card 136 to card 325) is traversed. Data from each record read in this manner have the same density.
121-126: Determine the first and last possible record numbers, ISTRT and IEND, to be read according to the value of INDEX. For INDEX $=1,2,3$ or 7, ISTRT $=2$ and IEND $=$ the last even numbered record containing data which is a function of the number of runs, NRUN. Since every other record is read, this results in the even records being read where the assumed density is unity. For $\operatorname{INDEX}=4,5,6$ or 8 , ISTRT $=1$ and IEND $=$ the last odd numbered record containing data which is also a function of the number of runs,

NRUN. This results in the odd records being read where the assumed density is the physical density.
127-136: The loop which begins here contains the remainder of the program (cards 127-324) and is inside the loop described above. It is controlled by the variable IAV which is equivalent to the record number IS. This loop comprises the major part of the program and controls all reading of records and all calls to subroutines which produce the desired plots.
137-177: Record IAV = IS is read to retrieve stored information on this impactor run at the assumed density.
178-179: This section calculates the record number, IREC, of file 8 which corresponds to the proper record number, IS, of file 10 and reads this record. Record IREC in file 8 contains the values of the plotting code variables which indicate the desired plots. The meaning of each of these variables Jl, J2, J3, J4, J5, J6, JPl, JPCNTl, JP2, JP3, JP4, JPCNT4, JP5, and JP6 is discussed at cards 284-323. There are two records in file 10 for each run of the impactor. One is based on the assumption of physical density; the other is based on the assumption of unit density. There is one record in file 8 for these two records in file 10. It contains the value of the plotting code variables for both densities. For example, if IS $=5$ or $I S=6$, the corresponding record in file 8 is IREC $=($ IS +1$) / 2=3$ corresponding to the third recorded impactor run. Note that $(I S+1) / 2=3.5$ for $I S=6$ but setting this equal to an integer variable truncates the fraction 0.5. The values of the plotting code variables are then read at record IREC $=3$. If IREC is
greater than the total number of runs, NRUN, the program has completed all graphs of the given type (as determined by the value of INDEX), and the program goes to the end of the "DO 799" loop to increment INDEX.
180-283: According to the value of INDEX, the program goes to the appropriate statement which will produce the desired graphs.
284-286: The program comes to this statement 731 (card 284) when INDEX $=1$. If the plotting code variable Jl is punched as "0" in column 2 on card E, subroutine WALLYl is called and produces a graph of cumulative mass loading of particulate less than the Stage D_{50} in milligrams per actual cubic meter, CUMG, vs. the Stage D_{50} or the lower size limit of particles on that stage in micrometers, DPC, assuming unit density. The total mass loading GRNAM, is shown at the maximum particle diameter, DMAX. The program will then return to statement 730 (card 136) to read the next record and make a similar plot either superimposed on this graph (MPLOT $=0$) or on a new grid (MPLOT > 0). If there is no "next record" (IREC > NRUN), the program returns to card 119 where INDEX is incremented by one for a new type of plot.
287-289: The program goes to statement 732 (card 287) when INDEX $=2$. If the plotting code variable J2 is punched as "0" in column 3 of card B, subroutine WALLY2 is called and produces a graph of $d M / \log D$ in milligrams per dry normal cubic meter, DMDLD, vs. the geometric mean diameter of particles captured on the stage in micrometers, GEOMD, assuming unit density. The program will then return to statement 730 (card 136) to read the next record and make a
similar plot either superimposed on this graph (MPLOT $=0$) or on a new grid (MPLOT > 0). If there is no "next record", (IREC > NRUN), the program returns to card 119 where INDEX is incremented by one for a new type of plot.
290-292: The program goes to statement 733 (card 290) when $I N D E X=3$. If the plotting code variable J3 is punched as "0" in column 4 of card B, subroutine WALLY3 is called and produces a graph of diJ/dlogD in number of particles per dry normal cubic meter, DNDLD, vs. the geometric mean diameter of particles captured on the stage in nicrometers, GEOMD, assuming unit density. The program then returns to statement 730 (card 136) to read the next record and make a similar plot either superimposed on this graph (MPLOT $=0$) or on a new grid (MPLOT > 0). If there is no "next record", (IREC > NRUN), the program returns to card 119 where INDEX is incremented by one for a new type of plot.
293-295: The program goes to statement 734 (card 293) when INDEX $=4$. If the plotting code variable J4 is punched as "0" in column 5 of card B, subroutine WALLYl is called and produces the same graph as described by cards 284-286 above, except that physical density is assumed. Again, there is the option to superimpose these data on the previous grid if MPLOT $=0$. After all odd records are read and each desired cumulative mass distribution graph is drawn, the program returns to card 119 where INDEX is incremented by one for a new type of plot.
296-298: The program goes to statement 735 (card 297) when INDEX $=5$. If the plotting code variable J5 is punched as "0" in column 6 of Card B, subroutine WALLY2 is called and produces the
same graph as described by cards 288-290 above except that physical density is assumed. The input coding for Card B is explained elsewhere. There is the option to superimpose these data on the previous grid (if MPLOT $=0$). After all odd records are read and each desired mass size distribution graph is drawn, the program returns to card 119 where INDEX is incremented by one for a new type of plot.
299-301: The program goes to statement 736 (card 300) when INDEX $=6$. If the plotting code variable J 6 is Funched as "0" in column 7 of card B, subroutine WALLY3 is called and produces the same graph as described by cards 290-292 above except that physical density is assumed. There is the option to superimpose these data on the previous grid (if MPLOT $=0$). After all odd records are read and each desired cumulative mass distribution graph is drawn, the program returns to card 119 where INDEX is incremented by one for a new type of plot.

Note that for INDEX $=7$, an even record (assumed unit density) is read once and then all graphs pertaining to those data are plotted without having to repeat the reading of the record for each plot. This is made possible by excluding the option to superimpose data sets. There is already a superposition of points derived directly from the particulate collected at each stage with points derived from the fitting equation or its derivative. Similarly, each odd record (assumed physical density) is read only once to produce all graphs pertaining to these data when INDEX $=8$. Recall that none of the following graphs may be drawn unless for each record concerned there has been a
series of continuous second degree polynomials fitted to the log 10 (cumulative mass loading of particles less than the stage D_{50}) in milligrams per actual cubic meter vs. log 10 (stage D_{50} or lower size limit of each stage) in micrometers (done by execution of program SPLIN1).

302: The program comes to this statement 737 when INDEX $=7$. ISIG is set equal to a number >0 (here ISIG = l) in order to produce plots of points based on curve fitting superimposed on "raw data" plots.
303-304: An even record has just been read from file 10 (file KMCOOl) at Statement 800 (card 175) previous to reaching this statement. If the plotting code variable JPl is punched as "0" in column l of card C, subroutine WALLYl is called, and the same cumulative mass loading graph as discussed in the description of cards 284-286 is drawn. In addition, WALLYl calls subroutine JOEI to superimpose the cumulative mass loading curve fit to these data. This graph is for points derived assuming unit density.
305-306: INDEX is 7, and the data from the same record as above are used. If the plotting code variable JPCiNT is punched as "0" in column 2 of card C, subroutine CUMPCT is called. This produces a probability scale vs. a common log scale on which the curve of cumulative percent of total mass loading less than the indicated particle diameter vs. the particle diameter in micrometers is plotted. This curve is dependent on the series cumulative mass loading fitting equations as used for the previous graph. This graph is for points derived assuming unit density.
307-308: INDEX is 7, and the data from the same record as
above are used. If the plotting code variable JP2 is punched as "0" in column 3 of card C, subroutine WALLY2 is called, and the same dM/dlogD graph as discussed in the description of cards 287-289 is drawn. In addition WALLY2 calls subroutine JOE2 to superimpose mass size distribution points based on the derivative of the cumulative mass loading curve fit. This graph is for points derived assuming unit density.
309-313: INDEX is 7, and the data from the same record as above are used. If the plotting code variable JP3 is punched as "0" in column 4 of card C, subroutine WALLY3 is called, and the same div/dlogD graph as discussed in the description of cards 290-292 is drawn. In addition !!ally3 calls subroutine JOE2 to superimpose the number size distribution points based on the derivative of a cumulative mass loading curve fit. This graph is for points derived assuming unit density.
314-315: The program goes to statement 738 (card 315) when INDEX $=3$. An odd record has just been read from file 10 (file KMCOOl) at statement 800 (card 180) before reaching this statement. If the plotting code variable JP4 is punched as " 0 " in column 5 of card C, subroutine WALLYl is called, and the same cumulative mass loading graph as discussed in the description of cards 284-286 is drawn except that these points are derived assuming physical density. In addition WALLYl calls subroutine JOEl to superimpose the cumulative mass loading curve fit for physical density to these data.
316-317: INDEX is 8, and the data from the same record as above are being used. If the plotting code
variable JPCNT4 is punched as "0" in column 6 of card C, subroutine CUMPCT is called. This produces a probability scale vs. a common log scale on which the curve of cumulative percent of total mass loading less than the indicated particle diameter vs. the particle diameter in micrometers is plotted. This curve is dependent on the cumulative mass loading curve fit as used for the previous graph. This graph is for points derived assuming physical density.
318-319: INDEX is 8, and the data from the same record as above are being used. If the plotting code variable JP5 is punched as "0" in column 7 of card C, subroutine WALLY2 is called, and the same dU/dlogD graph as discussed in the description of cards 287-289 is drawn except that these points are derived assuming physical density. In addition WALLY2 calls subroutine JOE2 to superimpose the dM/dlogD points as calculated from the derivative of the cumulative mass loading curve fit for physical density.
320-323: INDEX is 8, and the data from the same record as above are being used. If the plotting variable JP6 is punched as " 0 " in column 8 of card C, subroutine WALLY3 is called, and the same dN/ dlogD graph as discussed in the description of cards 290-292 is drawn except that these points are derived assuming physical density. In addition, WALLY3 calls JOE 2 to superimpose the dN/dlogD points as calculated from the derivative of the cumulative mass loading curve fit for physical density.

Functions of the Called Subroutines

Subroutine WALLYl--

This subroutine plots the cumulative mass loading of particulate less than the stage D_{50} in milligrams per actual cubic meter and in grains per actual cubic foot vs. stage D_{50} micrometers. WALLYl uses some plotting subroutines written especially for the DEC PDP $15 / 76$ computer system. These routines are identified and explained in the Appendix. Of these subroutines, WALLYl uses SCALF, XSLBL, XLOG, FCHAR, LGLBL, and YLOG.

024-025: Define π as PI $=3.1415$.
026-029: Define the output device for the subroutine as $\mathrm{M}=7$ where 7 designates the output device as the plotter.
030-036: Indicate whether working with a unit density record or a physical density record. $N=1$ for a physical density record (all odd records). if $=2$ for a unit density record (all even records).
037-041: When ISIG = 1, subroutine WALLYl graphs the cumulative mass loading in milligrams per actual cubic meter and in grains per actual cubic foot vs. the particle diameter as calculated directly from the mass loading of each stage. This is done in preparation for JOEl to draw the curve fit to these points. A new grid must be drawn for each new set of data. Therefore, in this case the program goes immediately to the section of WALLYl which draws this grid without checking MPLOT.
042: In the case where ISIG does not $=1$, ISIG must $=0$, and there is the possibility of superimposing 2-10 sets of data on one graph. MPLOT is checked here to see if superimposition of these
data on the previous graph is desired. If this is desired, MPLOT is input as non-positive (usually MPLOT $=0$), and the subroutine skips the section for drawing a new grid and proceeds to plot. If a new grid is desired, MPLOT > 0 , and the subroutine continues by drawing the grid.
043-049: A new grid is to be drawn and the counter, KNT, for the $n^{\text {th }}$ set of data drawn on that grid is reset to 0 . Define the length of the horizontal x-axis or particle diameter axis XIN in inches:

$$
X I N=4.5
$$

Define the length of the left perpendicular Y^{-} axis or cumulative mass loading axis YIN in inches:

$$
\mathrm{YIN}=6.5
$$

050-057: The code variable ISIZl $\neq 1$, e.g. ISIZl $=0$, when a standard number and range of cycles for each axis is desired. The program continues to define the standard maximum and minimum x-axis values and y-axis values for the cumulative mass loading graph to follow. If the code variable ISIZl $=1$, the number and range of cycles for each axis are regulated according to the range of the data for all runs.
058-062: The maximum and minimum axis values, and therefore the number and range of cycles, are defined as standard values. XMAX and XMIN are the maximum and minimum x-axis values to be plotted. YMAX and YMIN are the maximum and minimum y-axis values to be plotted.

$$
\begin{aligned}
& \operatorname{YMAX}=\log _{1_{0}}(100.0)=2.0 \\
& \text { YMAX }=\log _{1_{0}}(10,000)=4.0 \\
& X M I N=\log _{10}(0.1)=-1.0 \\
& \text { YMIN }=\log _{10}(0.1)=-1.0
\end{aligned}
$$

063-066: When ISIZ1 $=1$, the program skips to this statement 25 (card 63). The maximum and minimum axis values, and therefore the number and range of cycles, are regulated according to the range of the data for all runs. XMIN is the common log of the minimum cut point diameter in micrometers for all runs. YMAX is the common log value of the maximum total mass loading for all runs in milligrams per actual cubic meter. YMIN is the common log of the minimum cumulative mass loading value for all runs in milligrams per actual cubic meter. Note that the value of XMAX is still standard. The function SLIM (MAXMIN, ALIMIT) finds a maximum as a function of ALIMIT when MAXMIN $=1$. SLIM finds a minimum as a function of ALIMIT when MAXMIN $=0$. The graphing limits are therefore:
$X M A X=\log _{10}(100.0)=2.0$
$\operatorname{YMAX}=\operatorname{SLIM}\left(1, \log _{10}\left(\right.\right.$ CUMAX $\left.\left._{N}\right)\right)$
where $\operatorname{CUMAX}_{\mathrm{N}}=$ the maximum total mass loading in milligrams per actual cubic meter for all runs of the same density as indicated by the value of N.
$\operatorname{XMIN}=\operatorname{SLIM}\left(0, \log _{10}\left(\operatorname{DPMIN}_{N}\right)\right)$
where DPMIN $_{N}=$ the minimum stage D_{50} in micrometers for all runs of the same density as indicated by the value of N.

YMIN $=\operatorname{SLIM}\left(0, \log _{20}\left(\operatorname{CUMIN}_{N}\right)\right)$
where CUMIN $_{N}=$ the minimum cumulative mass loading in milligrams per actual cubic meter for all runs of the same density as indicated by the value of N .

067-070: Calculate the x - and y-axis scale factors, $X s$ and YS, in inches per user's unit (í.e., inches per power of 10 for the common logarithmic scale) :

$$
\begin{aligned}
\text { XS }= & \text { XIN } /(X M A X-X M I N) \\
\text { YS }= & \text { YIN } /(Y M A X-Y M I N) \\
\text { where XIN }= & x \text {-axis length in inches } \\
\text { YIN }= & y \text {-axis length in inches } \\
\text { XMAX-XMIN }= & \text { difference in maximum and minimum } \\
& \text { x-axis values }=\text { number of user's } \\
& \text { units along } x \text {-axis. } \\
\text { YMAX-YMIN }= & \text { difference in maximum and minimum } \\
& y \text {-axis values }=\text { number of user's } \\
& \text { units along } y \text {-axis. }
\end{aligned}
$$

071: Define the Y-coordinate location of the pen, YORIG, when WALLYl is called, in terms of the minimum y-axis value, YMIN (which is the Y-value at the graph origin), and the y-axis scale factor, YS, in inches per user's unit.

YORIG = YMIN - (2./YS)
The pen location should always be on the right base line of the graphing paper when any plotting subroutine is called. Therefore, the user's origin, (XMIN, YMIN) is 2 inches (or 2./YS) above the original location of the pen, (XMIN, YORIG) .
072: The call to plotter subroutine SCALF (XS, YS, YMIN, YORIG) stores the number of inches per user's unit along the x - and y-axis, $X S$ and YS, respectively, and the original location of the pen, (XMIN, YORIG), in user's units for later reference by the plotter.

073-079: This begins the section which draws the x-axis. Calculate the number of x-axis cycles IXRAN by
taking the difference of the x-axis limits XMAX and XMIN:

$$
\text { IXRAN }=\text { XMAX }-X M I N
$$

080: The call to plotter subroutine XSLBL (XS, YS, XMIN, YMIN, IXRAN, XMIN) labels the x-axis for the $\log _{10}$ scale.
081: The call to plotter subroutine XLOG (XS, YS, XMAX, YMIN, -1, IXRAN) draws the x-axis for the $\log _{10}$ scale.
082-086: This begins the section which labels the x -axis. Define the desired width of written characters, XCS, in inches and the desired height of written characters, YCS, in inches for labeling of the x-axis:

$$
\begin{aligned}
& \mathrm{XCS}=0.15 \\
& \mathrm{YCS}=0.15
\end{aligned}
$$

087-088: Define the point (X, Y) in user's units at which the labeling of the x-axis is to begin. This position should be at the lower left-hand corner of the location at which the first character is to be drawn. In order to center the label below the x-axis, first define the x-coordinate of the beginning pen position by placing the pen at the center of x-axis length, i.e., XMIN + [(XMAXXMIN)/2]. Multiply one-half the total number of characters to be written, including spaces, by the number of inches for each character, XCS. The label to be written is "PARTICLE DIAMETER (MICROMETERS)" which contains 32 characters. Therefore the number of inches to be "backspaced" from the center is $16 \cdot \mathrm{XCS}$. Dividing this by the inches per user's unit along the x-axis, XS, gives the number of user's units to be backspaced from the center point. Therefore:

$$
X=X M I N+[(X M A X-X M I N) / 2]+[(16 \cdot X C S) / X S] .
$$

The Y coordinate is defined far enough below the x-axis so that there is sufficient room to draw the characters (0.15 inches) without interfering with the drawn x-axis. The Y-coordinate is therefore defined as 0.7 inches below the x-axis allowing 0.55 inches between the top of the characters and the y -axis.
089: Call the plotter subroutine FCHAR ($\mathrm{X}, \mathrm{Y}, \mathrm{XCS}$, YCS, 0.0) to initialize the annotation subroutine by establishing the starting location for the pen, (X, Y), in user's units, the height and width cf the characters in inches, XCS and YCS, respectively, and the angle of writing relative to the x-axis in radians, here 0.0 .
090: Write the x-axis label "PARTICLE DIAMETER (MICROMETERS) ".
091-094: This begins the section which draws the y-axis on the right side of the graph. Define the $\mathrm{Y}-$ coordinate of the point at which this axis will begin, YO. It does not begin at YMIN as does the left y-axis. This is because the left y-axis is in milligrams per actual cubic meter and the right y-axis is in grains per actual cubic foot. The conversion factor between these two units is 4.3702×10^{-4} grains per actual cubic foot to one milligram per dry normal cubic meter. This means that on the graph of cumulative mass loading, a value of 1 milligram per actual cubic meter on the left y-axis is parallel to 4.3702×10^{-4} grains per actual cubic foot on the right axis. In terms of the "user's units" which are common logs of these values, 0 is parallel to -3.3595. As another example, 4 (10^{4} milligrams per actual cubic meter) is parallel to 0.6405 (4.3702 grains
per actual cubic foot). The right y-axis is always different from the left by the $\log _{10}$ term, -3.3595. The right axis is drawn beginning with the first integral logio value in grains per actual cubic foot. The fraction of a cycle, 0.3595 , must be added to the Y-coordinate of the origin to locate the beginning Y-coordinate of the right y-axis, $y 0$:

$$
\begin{equation*}
\mathrm{YO}=\mathrm{YMIN}+0.3595 \tag{101}
\end{equation*}
$$

095-097: Calculate the number of y-axis cycles IYRAN by finding the difference in the y-axis limits, YMAX and YMIN:

$$
\begin{equation*}
\text { IYRAN }=\text { YMAX-YMIN } \tag{102}
\end{equation*}
$$

098: Define the exponent of the first cycle in the right axis, YLEFl, by subtracting 3.0 from the first cycle on the left y-axis, YMIN. Recall that the fractional difference between these two y-axes (left and right) has been accounted for with the fraction 0.3595. Here the remaining difference in the total 3.3595 common log difference is accounted for in the labeling of each cycle:

$$
\begin{equation*}
\text { YLEFI }=\text { YMIN }-3.0 \tag{103}
\end{equation*}
$$

099: This call to plotter subroutine LGLBL (XS,YS, XMAX,Y0,IYRAN, YLEF1,0) labels the y-axis on the right side of the graph for $\log _{10}$ scale.

100: This call to plotter subroutine YLOG (XS,YS,XMAX, YMAX + 0.3595, -1, IYRAN) draws the y-axis on the right side of the graph for $\log _{10}$ scale.

101-105: This begins the section for labeling the y-axis on the right side of the graph. The pen position in user's units (X, Y) is defined for the beginning of the right y-axis label. The Y-coordinate is such that the writing will be centered
along the length of the right y-axis. The $x-$ coordinate is such that there is room for the length of the characters without interfering with the drawn right y-axis. See the discussion of cards 87-88 for a detailed example of how these are calculated:

$$
X=X M A X+0.8 / Y S
$$

$$
Y=Y M I N+[(Y M A X+0.3595-Y M I N) / 2-(16 \cdot X C S)
$$

/YS]

106: The call to plotter subroutine FCHAR (X,Y,XCS, YCS,PI/2) initializes the annotation subroutine by establishing the starting location for the pen, (X, Y), the height and width of the characters, YCS and XCS respectively, and the angle of writing in radians, here $P I / 2$.
107: Write the y-axis label "CUMULATIVE MASS LOADING (GR/ACF)".

108-ll2: This begins the section for writing the identification label, ID, and the density, RHO, above the grid. Redefine the width of written characters, XCS, in inches for writing the identification label ID:

$$
\begin{aligned}
& \mathrm{XCS}=0.056 \\
& \mathrm{YCS}=0.100
\end{aligned}
$$

ll3-ll4: Define the point (X, Y) at which writing will begin for the run identification label ID as being on the parallel with the left y-axis at $\mathrm{X}=\mathrm{XMIN}$ and $1 / 2$ inch above the top of this grid at $Y=$ YMAX $+(0.5 / Y S)$.
115-119: This DO-loop searches for the last character of the identification label $I D_{J}$. This prevents any unnecessary movement of the pen for identification labels of less than 80 characters.

120: The call to plotter subroutine FCHAR (X,Y,XCS,

YCS,0) initializes the annotation subroutine by establishing the starting location for the pen, (X, Y), in user's units, the height, YCS, and width, XCS, of the characters in inches, and the angle of writing in radians, here 0.0 .

121: Write the identification label for the run, ID. 122-123: Redefine the beginning pen location (X, Y) in user's units for writing the density RHO. The beginning X-coordinate is defined so that the first character is in line with the left y-axis, as is the case for writing ID above. The beginning Y-coordinate is 0.25 inches above the maximum y-axis value so that with characters 0.10 inches in height there is a 5.15 inch margin between the writing for RHO and ID:

$$
\begin{aligned}
& \mathrm{X}=\mathrm{XMIN} \\
& \mathrm{Y}=\mathrm{YMAX}+(0.25 / \mathrm{YS})
\end{aligned}
$$

124: Call the plotter subroutine FCHAR(X,Y,XCS,YCS, $0.0)$ to initialize the annotation subroutine by establishing the starting location for the pen (X, Y), the width, XCS , and height, YCS, of the characters and the angle of writing in radians, here 0.0.
125: Write the assumed density, "RHO = \qquad ."
126-129: This begins the section for drawing the y-axis on the left side of the graph. The call to plotter subroutine YLOG (XS,YS,XMIN, YMAX,-l,IYRAN) draws the y-axis on the left of the graph for $\log _{10}$ scale.
130: The call to plotter subroutine LGLBL(XS,YS,XMIN, YMIN, IYRAN, YMIN,l) labels the y-axis on the left for $\log _{10}$ scale.

131-135: This begins the section for labeling the y-axis on the left side of the graph. Redefine the
width and height of written characters XCS and YCS respectively in inches for labeling the left y-axis:

$$
\begin{aligned}
\mathrm{XCS} & =0.15 \\
\mathrm{YCS} & =0.15
\end{aligned}
$$

136-137: The pen position in user's units, (X,Y), is defined for the beginning of the left y-axis label. The Y-coordinate is defined so that the writing will be centered on the midpoint of the left y-axis. The X -coordinate is defined so that the characters do not interfere with the arawn left y-axis. See the discussion of cards 087-088 for a detailed example of how these coordinates are calculated:

$$
\begin{align*}
\mathrm{X} & =\text { XMIN }-(0.7 / \mathrm{XS}) \tag{105}\\
\mathrm{Y} & =\mathrm{YMIN}+[(\mathrm{YMAX}-\mathrm{YMIN}) / 2]-[(16 \cdot X C S) / \mathrm{YS}]
\end{align*}
$$

138: The call to plotter subroutine FCHAR(X,Y,XCS, YCS,PI/2) initializes the annotation subroutine by establishing the starting location for the pen, (X, Y), the width, XCS, and height, YCS, of the characters in inches, and the angle of writing in radians, here PI/2.0.
139: Write the left y-axis label, "CUMULATIVE MASS LOADING (MG/ACM)".

Note: The plotting grid and labeling have been drawn. Cards 140-210 are concerned with the plotting of X and Y values for cumulative mass loading in milligrams per actual cubic meter (and total grain loading in the same units) vs. the stage D50's in micrometers (and the maximum particle diameter in the same units).

140-147: The variable KNT is a code value for the number of sets of data plotted on one graph up to this point; e.g., KNT $=4$ indicates that the 4 th set
of data is to be plotted on this grid, and a special symbol for the 4 th set will be used to plot the points. Each time a new grid is drawn, KNT $=0$ and the first set of data has the KNT value $\mathrm{KNT}+\mathrm{l}=0+\mathrm{l}=1$.

148-151: The first point (X, Yl) to be plotted is:

$$
X 1=\log _{10}(D M A X)
$$

$\mathrm{Yl}=\log _{10}$ (GRNAM)
where DMAX = the largest particle diameter in micrometers.

GRNAM $=$ the total mass loading in milligrams per actual cubic meter.

The functions XVAL(XI,XMAX,XMIN,XS) and YVAL(YI, YMAX,YMIN,YS) check the values of Xl and Yl respectively to see if they are within the graph boundaries XMAX, YMAX, SMIN, and YMIN. If Xl and $Y 1$ are within XMAX-XMIN and YMAX-YMIN respectively, the original values remain unchanged so that:

$$
\text { XN }=X V A L(X 1, X M A X, X M I N, X S)=X 1
$$

$$
\mathrm{YN}=\mathrm{YVAL}(\mathrm{Yl}, \mathrm{YMAX}, \mathrm{YMIN}, \mathrm{YS})=\mathrm{Yl}
$$

If, however, one of the values is outside the graph limits, it is returned as a value which will be plotted 0.15 inches outside of the boundary which it exceeds. For example, for $\mathrm{Xl}=\mathrm{DMAX}$ and $\mathrm{Yl}=$ GRNAM:

If $X 1=\log _{10}(D M A X)=\log (100.0)=2.0$ and $\mathrm{XMAX}=\log _{10}(10.0)=1.0$ then $\mathrm{XN}=\mathrm{XVAL}(\mathrm{Xl}, \mathrm{XMAX}, \mathrm{XMIN}, \mathrm{XS})=$

$$
1.0+0.25 / \mathrm{XS}
$$

The plotted point (XN, YN) has a value which is 0.15 inches beyond the right y-axis and at the appropriate Y-position, $\log _{10}$ (GRNAM), assuming $\log _{10}(G R N A M) \leq$ YMAX.

152: The call to subroutine PIONT (KNT, XN, YN, XS, YS) plots the point (XN, YN) at the appropriate position using a symbol determined by the value of KNT. 153-158: The type of cascade impactor used is indicated by the code variable IMPAC:

$$
\begin{aligned}
\text { IMPAC } & =1-\text { Andersen Mark III } \\
& =2-\text { Brink } \\
& =3-\text { University of Washington } \\
& =4 \text { Mark III } \\
& \text { Meteorology Research, Inc. }
\end{aligned}
$$ For the Brink cascade impactor there are various possible impactor configurations. Therefore, if IMPAC $=2$, the program goes to statement 181 (card 159) to test for the configuration used and plot the points appropriately. If IMPAC $=1,3$, or 4, the program goes to statement 200 (card 203) to plot the points excluding checks of the configuragion in which the impactor was run.

159-175: Check for the use of the cyclone as the first stage. If it is used, $M C 3=0$. The $\log _{10}$ of the cumulative mass loading of particles smaller than the cyclone $D_{50}, C_{C U G_{1}}$, in milligrams per actual cubic meter and the $\log _{10}$ of the cyclone $D_{50}, C Y C 3$, in micrometers are checked in functions YVAL and XVAL. These values are altered only if they lie outside the bounds of the grid. The call to subroutine PIONT (KNT, XN, YN, XS, YS) plots the point with a symbol determined by the value of KNT. The remaining number of points to be plotted, M, depends on whether the last stage, MS, is 5 , in which case $M=6$, or whether the last stage MS is 6 , in which case $M=7$. The program then enters a loop which plots the $\log _{10}$ of the remaining non-zero cumulative mass loading
values, CUMG $_{J}, J=2, M+1$, in milligrams per actual cubic meter vs. the $\log _{10} 0$ of the stage D_{50} 's, $\mathrm{DPC}_{J}, J=1, \mathrm{M}$. Each $\log _{10}$ value is checked by XVAL or YVAL before plotting.
176-187: If the cyclone is not included in the Brink configuration (MC3 $=1$) but stage 0 is included ($M 00=0$), the program checks for the last stage MS and from this determines the number of points yet to be plotted, M. If the last stage MS is 5, then $M=6$. If the last stage $M S=6$, then $M=$ 7. The program then enters a loop which plots the $\log _{10}$ of all non-zero cumulative mass loading values CUMG $_{J}, J=1, M$ in milligrams per actual cubic meter vs. the $\log _{10}$ of the stage D_{50} 's $D_{J P}, J=1, M$. Each $\log _{10}$ value is checked by XVAL or YVAL before plotting.
188-198: If neither the cyclone nor stage 0 is included in the Brink configuration (MC3 = 1 and M00 = 1), the program checks for the last stage, MS, and from this determines the number of points yet to be plotted, M. If the last stage MS is 5 , then $M=5$. If the last stage $M S$ is 6 , then $M=6$. The program then enters a loop which plots the $\log _{10}$ of all non-zero cumulative mass loading values (CUMG $_{J}, J=1, M$) in milligrams per actual cubic meter vs. the $\log _{10}$ of the stage D_{50} 's $\left(D^{\prime} C_{J}, J=2, M+1\right)$. Each $\log _{10}$ value is checked by XVAL and YVAL before plotting.
199-210: If the Andersen, University of Washington, or Meteorology Research, Inc., impactor is used, there is only one configuration since a cyclone is not used and the first stage is always included. Therefore, the program enters the plotting loop without checking for a configuration type.

The number of points to be plotted, VV, is 8 for an Andersen impactor and 7 for the University of Washington Mark III or the MRI impactor. The $\log _{10}$ of each non-zero cumulative mass loading value, (CUMG ${ }_{J}, J=1, V V$) in milligrams per actual cubic meter, is plotted against the $\log _{10}$ of the stage $D_{50}{ }^{\prime} s,\left(D P C_{J}, J=1, V V\right)$. Each $\log _{10}$ value is checked by XVAL and YVAL before plotting.
211-233: Subroutine WALLYl may have been called to plot only the cumulative mass loading at each stage vs. the D_{50} of each stage. In this case. ISIG $=$ 0 and the program goes to statement 130 (card 219). There, WALLYl calls subroutine LABEL (KNT, XS, YS, YMAX, XMIN) to write the number of this set of data plotted on this graph and the symbol used to plot this $n^{\text {th }}$ set of data. For example, if this is the 6 th set of data plotted on this one graph, LABEL causes "TEST 6 - *" to be written above the graph indicating that the symbol * is used for each point of this 6th superimposed set of data points. The pen is then returned to the base line of the plotter in the up position and 4.5 inches beyond the maximum x-axis limit. The pen is now ready for the next plot. WALLYl returns to mainline GRAPH to seek instructions for the next graph. If ISIG $=1$, the program now calls subroutine JOEl (instead of LABEL and PIONT) to draw the cumulative mass loading curve fit to this one set of data. Only one set of data is represented on a plot for these calls to WALLYl where ISIG $=1$. After this curve is drawn on the plot and the pen returned in readiness for the next plot, JOEl returns to mainline GRAPH to seek instruction for the next graph.

Subroutine JOEl--
This subroutine plots the curve fit to cumulative mass loading less than the stage D_{50} in milligrams per actual cubic meter vs. stage D_{50} in micrometers which was found in mainline program SPLIN1.

026-036: Read record IS from file ll (file FILSPL) containing the information for fitting $\log _{10}$ (cumulative mass loading) vs. $\log _{10}\left(\mathrm{D}_{50}\right)$ for this run and assumed density. These variables are the number of interval boundary points which are fitted, NPOIN, the values of these points, (Xl, Yl) $I^{\prime} I=1, N P O I N$, and the series of fitting second degree polynomial coefficients, $\operatorname{COE}_{I J}, I=1, I N T$, $J=1,3$, where $I N T$ is the number of fitted intervals $=$ NPOIN-1.

037-049: Define the first value of the independent variable DLD as a function of the smallest stage D_{50}, DSMA, in micrometers for this run:

DLD $=\log _{10}$ (DSMA)
Define the last value of the independent variable, DLDF, to be the common log of the maximum x-axis limit, XMAX.

DLDF $=\log _{10} \quad(X M A X)$
050-055: A loop begins here at card 055 continuing to statement 750 (card 096) in which DLD $=\log _{10}$ (diameter in micrometers) is used as the independent variable in the $\log _{1_{0}}$ (cumulative mass loading in milligrams per actual cubic meter) fitting equation. The resulting dependent variable is PPP, equal to the $\log _{1_{0}}$ (cumulative mass loading in milligrams per actual cubic meter). At the end of the loop, DLD is incremented by a very small amount (see comment on cards 162-169). The process is repeated until DLD \geq DLDF.

056-064: The "DO 20" loop here takes the diameter variable DLD and compares it with ever increasing x-coordinate values of the interval boundary points (Xl, Yl), fitted in program SPLINl, to find the interval NINT containing DLD. For example, suppose DLD $=0.135$ (corresponding to a diameter of $\left.10.0^{0.135}=1.36458\right)$. Also suppose $(\mathrm{XI}, \mathrm{Yl})_{14}$ $=(0.125,2.89)$ and $(\mathrm{Xl}, \mathrm{Yl})_{15}=(0.148,2.91)$. Then $\mathrm{Xl}_{14}<\mathrm{DLD}<\mathrm{Xl}_{15}$, and the interval containing DLD is the l4th interval or NINT $=14$.
065-073: The second degree polynomial curve fitting coefficients over the NINT interval $\mathrm{COE}_{\mathrm{NINT}, \mathrm{J}} \mathrm{J}=1$, 3, are then used to calculate the dependent variable $\mathrm{PPP}=\log _{10}$ (cumulative mass loading less than indicated diameter in milligrams per actual cubic meter) :

$$
\begin{align*}
\mathrm{PPP}=\mathrm{COE}_{\mathrm{NINT}, 1} & +\mathrm{COE}_{\mathrm{NINT}, 2}(\mathrm{DLD}) \\
& +\mathrm{COE}_{\mathrm{NINT}, 3}(\mathrm{DLD})^{2} \tag{107}
\end{align*}
$$

074-083:

084-087:

DLD is the $\log _{10}$ (particle diameter in micrometers). PPP is the $\log _{10}$ (cumulative mass loading in milligrams per actual cubic meter). The program checks DLD and PPP in the functions XVAL and YVAL respectively, to see if their values are within the plotting bounds. If either coordinate is not within the bounds, it is assigned a value which causes the point to be plotted just outside the boundary which it exceeds. If this is the first point to be plotted, the loop index $I=1$. In this case, the pen is moved to this position and lowered by the plotter subroutine FPLOT ($-2, \mathrm{XN}, \mathrm{YN}$). Previous to execution of this instruction the pen was at the base line, 4.5 inches beyond the maximum x-axis boundary,

XMAX, in the up position. This is where the pen was positioned at the closing of subroutine WALLYl which prepared this grid for JOEl. On subsequent traverses of the loop, the plotter subroutine FPLOT ($0, \mathrm{XN}, \mathrm{YN}$) is called. This causes the pen to be moved to the new (XN, YN) position without raising or lowering the pen. Here the pen is already down, causing a solid curve to be drawn from point to point.
088-096: The value of DLD is incremented an amount corresponding to a one one-hundredth of an inch movement along the diameter axis:

$$
D L D=D L D+(0.01 / X S)
$$

where $X S=$ the x-axis scale factor in inches per user's units.
This new value of DLD is compared to the final $\log _{10}$ value, DLDF. If DLD \geq DLDF, the program exits the loop. If DLD < DLDF, the program returns to the top of the loop at card 054 and finds the logio (cumulative mass loading) for the new diameter.
097: Raise the pen by calling plotter subroutine FPLOT (+1 , XN, YN).
098-106: After all plotting, the pen is moved in the up position to the base line of the plotting paper 4.5 inches beyond the maximum x-axis boundary. The plotter is now ready for the next plotting subroutine. The program returns to the calling subroutine WALLYl which then returns to the calling mainline GRAPH.

Subroutine CUMPCT--

This subroutine plots the curve of cumulative percent mass loading less than a given diameter vs. the diameter in micrometers.

It also provides a listing on the line printer of selected diameter values in micrometers with the corresponding cumulative percent mass loading less than this particle size.

033-037: Divide the range between 0.25 micrometers and 100.0 micrometers into 70 equal $\log _{10}$ increments DINC:

$$
\begin{align*}
\text { DINC } & =\left[\log _{10}(100.00)-\log _{10}(0.25)\right] / 70.0 \\
& =0.0357142857 \tag{108}
\end{align*}
$$

038-042: Define the first value of the independent variable DLD as a function of 0.25 micrometers. This is an arbitrary small particle size at which to begin the plot.
$\mathrm{DLD}=\log _{10}(0.25)$
043-046: Since there are several hundred points plotted to make up the solid curve for cumulative percent mass loading vs. particle diameter, only a few specified values are printed out on the line printer. A point chosen for print out is such that the diameter is just greater than the "flag diameter variable value", Dl. Once a diameter and associated cumulative percent mass loading is printed out, Dl is redefined by repeated addition of the increment DINC. Therefore, the first Dl value is initialized here as:

Dl $=$ DLD $=\log _{10}(0.25)$
In the large "DO 750" loop to follow the next Dl value is defined as:
$\mathrm{Dl}=\mathrm{Dl}+\mathrm{DINC}=\mathrm{Dl}+0.0357142857$
This increment, DINC, continues to be added and values of diameter and cumulative percent mass loading less than this diameter are printed out up to the maximum diameter variable value, DLDF.

047-053: Define the last value of the independent variable

DLDF to be the maximum x-axis limit, XMAX. Recall that the x-axis (diameter) is a common log scale so that DLDF $=$ XMAX is already in common log form.

054-062: Call subroutine CPPLOT(IC, RHO, XMAX, XMIN, YMAX, YMIN, XS, YS). CPPLOT causes the plotter to draw a probability vs. $\log _{10}$ grid, labels the axes with "CUMULATIVE PERCENT" vs. "PARTICLE DIAMETER (MICROMETERS)", writes the identification label for the run ID and particle density in grams per cubic centimeter, RHO, above the grid, and returns with the minimum and maximum axis values XMAX, XMIN, YMAX, and YMIN and the scale factors $X S$ and $Y S$ in inches per user's unit.

063-072: Read record number IS from file ll (file FILSPL) containing the information for fitting $\log _{10}$ (cumulative mass loading) vs. $\log _{10}\left(D_{50}\right)$ for this run and assumed density. These variables are the number of interval boundary points which are fitted, NPOIN, the values of these points, $(X 1, Y l)_{I}, I=1, N P O I N$, and the series of fitting second degree polynomial coefficients, $\operatorname{COE}_{I J}$, I=1,INT, J=l,3. INT $=$ NPOIN-1 is the number of fitted intervals.

073-077: Write the identification label, ID, and density, RHO, in grams per cubic centimeter at the top of the page on the line printer.
078-085: A loop begins here at card 085 continuing to statement 750 (card 176) in which DLD $=\log _{10}$ (diameter in micrometers) is used as the independent variable to find the resulting dependent variable, $P P P=\log _{10}$ (cumulative mass loading in milligrams per actual cubic meter). The interval NINT containing DLD is first found.

Then the DLD value is used as the independent variable in the second degree polynomial fitting this range of $\log _{10}$ (cumulative mass loading) vs. $\log _{10}$ (diameter). Changes of variable are made for plotting and printing. PPP is converted to cumulative fractional mass loading. DPLOT is defined as DLD $=\log _{10}$ (diameter). These are the plotting variables. At previously defined intervals there is another change of variable for printing. PPP is converted to cumulative percent mass loading and DPLOT is converted to diameter. The variable $\mathrm{Dl}=\log _{10}$ (diameter) is incremented each time through the loop when there is line printer output. The independent variable DLD = $\log _{10}$ (diameter) is incremented each time through the loop. The process is repeated until DLD \geq DLDF.
086-094: The "DO 510" loop here takes the diameter variable DLD and compares it to ever increasing X-coordinate values of the interval boundary points, (Xl,Yl) fitted in program SPLINl, to find the interval, NINT, containing DLD.

095-100: The second degree polynomial curve fitting coefficients over the NINT interval, $\mathrm{COE}_{\text {NINT, }}{ }^{\prime}$ $J=1,3$ are used here to calculate $P P P=\log _{10}$ (cumulative mass loading less than indicated diameter in milligrams per actual cubic meter): $\operatorname{PPP}=\mathrm{COE}_{\mathrm{NINT}, 1}+\mathrm{COE}_{\mathrm{NINT}, 2} \mathrm{DLD}$

$$
\begin{equation*}
+\mathrm{COE}_{\mathrm{NINT}, 3}(\mathrm{DLD})^{2} \tag{109}
\end{equation*}
$$

101-106: Convert PPP from $\log _{10}$ (cumulative mass loading less than indicated diameter in milligrams per actual cubic meter) to cumulative fractional mass loading less than indicated diameter. First
convert PPP to cumulative mass loading less than indicated diameter in milligrams per actual cubic meter, and then divide this quantity by the total mass loading in the same units, GRNAM:
$\operatorname{PPP}=10.0^{\mathrm{PPP}} / \mathrm{GRNAM}$
107-110: Define the plotting abscissa value, DPLOT, to be the same as the independent variable DLD.
lll-115: The call to subroutine NDTRI (PPP, YV, D, IE) returns the ordinate value to be plotted, $Y V$, in terms of the probability scale. This is a subroutine from the IBM 360 Scientific Subroutine Package.
116-125: Two statements check YV to see if it is within the limits of plotting on the probability scale. If $Y V$ is greater than the upper limit, 0.9999 (or 99.99 percent), $Y V$ is given an arbitrary value (here, +4) which is greater than the equivalent upper limit on the probability scale which is +3.719244. If YV is less than the lower limit of 0.0001 (or 00.01 percent), it is given an arbitrary value (here, -4) which is less than the lower limit on the probability scale which is -3.7191244.
126-132: DPLOT and YV are checked by the functions XVAL and YVAL respectively. The functions do not change any value which is within the limits of plotting so that the plotted point (XN, YN) = (DPLOT, YVAL). Any value outside these limits (e.g., $Y V=4$ or -4) is assigned a value which causes the point (XN, YN) to be plotted 0.15 inches beyond the axis limit which it exceeds.
133-140: If this is the first point to be plotted, the loop index $I=1$. In this case, the pen is moved to the first point and lowered by the
plotter subroutine FPLOT ($-2, \mathrm{XN}, \mathrm{YN}$). The pen is in the up position previous to this instruction. On subsequent traverses of the loop, the plotter subroutine FPLOT ($0, \mathrm{XN}, \mathrm{YN}$) is called. This causes the pen to be moved to the new (XN, YN) position without raising or lowering the pen. Here the pen is already down, causing a solid curve to be drawn from point to point.
141-146: Compare the diameter variable Dl with the value of the diameter variable DLD. After a sufficient number of loop traverses where DLD is incremented each time, DLD $\geq \mathrm{Dl}$. This is the signal for line printer output of the plotted values. Otherwise this printing section (cards 147-165) is skipped.
147-156: When $D L D \geq D 1$, there is a change of variable for the line printer output. DPLOT is converted from the plotted form $\log _{10}$ (diameter) to diameter:

$$
\begin{equation*}
\mathrm{DPLOT}=10.0^{\mathrm{DPLOT}} \tag{111}
\end{equation*}
$$

The variable PPP is converted from cumulative fractional mass loading to cumulative percent mass loading:

$$
\begin{equation*}
P P P=100 \times P P P \tag{112}
\end{equation*}
$$

The line printer point index number J is incremented with each new printing:

$$
\begin{equation*}
J=J+1 \tag{113}
\end{equation*}
$$

157-161: Write the point index number, J, the diameter in micrometers, DPLOT, and the cumulative percent mass loading, PPP, on the line printer. Thus, the result of many traverses of the loop is a table of diameter values and corresponding cumulative percent mass loadings of particulate less than this indicated diameter. The diameters
range from 0.25 micrometers up to approximately the antilog of the x-axis maxmimum limit, 10.0^{XMAX}.
162-169: After each printing, the diameter variable Dl is incremented by DINC (as defined at card 037). The diameter variable DLD is incremented only by the value equivalent to one one-hundredth of an inch movement along the $\log _{10}$ diameter axis. This is a much smaller increment than DINC. Thus Dl continues to be greater than DLD until several traverses of the loop have taken place. When DLD again is $\geq \mathrm{Dl}$, there is another printing of values.
170-176: The value of DLD is compared to the maximum desired plotted value, DLDF. If DLD \geq DLDF, the program exits this "DO 750" loop which began at card 084. If DLD < DLDF, the loop is repeated.
177-183: After all plotting and printing is completed, raise the pen and move it to the base line of the plotter 4.5 inches beyond the maximum x-axis limit, XMAX. The pen is now ready for the next plotting subroutine. Return to the calling mainline program GRAPH.

Subroutine WALLY2--

This subroutine plots the $\Delta M / \Delta \log D$ distribution values in milligrams per dry normal cubic meter vs. the geometric mean diameter of particles on each stage in micrometers.

024-025: Define the angle π in radians as PI $=3.1415$.
026-029: Define the output device for the subroutine as $M=7$, where 7 designates the output device as the plotter.

030-036: The code variable N indicates the assumed density. If the assumed density is the physical density, then $\mathrm{N}=1$, and the data input to WALLY2 is taken
from an odd numbered record. If the assumed density is unit density, then $N=2$, and the data input to WALLY2 is taken from an even numbered record.
037-042: When ISIG $=1$, graphing is not completed when WALLY2 plots the $\triangle M / \Delta l o g D ~ d i s t r i b u t i o n ~ i n ~ m i l l i-~$ grams per dry normal cubic meter vs. the geometric mean diameter of particles on each stage in micrometers. This is done in preparation for JOE2 to plot the $d M / d l o g D$ distribution as calculated from the derivative of the fitted cumulative mass loading equation. A new grid must be drawn for each new set of data. Therefore the program goes immediately to the section of WALLY2 which draws this grid without checking MPLOT.
043: In the case where ISIG $=0$, there is the possibility of superimposing $2-10$ sets of data on one grid. MPLOT is checked here to see if superimposition of these data on the previous graph is desired. In that case MPLOT is non-positive (usually MPLOT=0). The subroutine skips the section for drawing a new grid and proceeds to plot. If a new grid is desired, MPLOT >0, and the subroutine continues by drawing the grid.
044-050: A new grid is to be drawn and the counter for the nth set of data drawn on that grid, KNT, is reset to 0 at statement 20 (card 048). Define the length XIN of the horizontal x-axis or particle diameter axis in inches:

$$
X I N=4.5
$$

Define the length YIN of the perpendicular y axis or mass size distribution axis in inches: YIN $=6.5$

051-057: If the code variable ISIZ2 $\neq 1$ (usually ISIZ2 $=$

0 in this case), standard number and range of cycles for each axis is desired. The program defines the standard maximum and minimum x-axis values and y-axis values for the mass size distribution graph to follow. If the code variable ISIZ2 $=$ l, it is desired that the number and range of cycles for each axis be regulated according to the range of the data for all runs.

058-068: The maximum and minimum limits for the ordinate and abscissa are defined as standard values here. XMAX and XMIN are the maximum and minimum x-axis values to be plotted. The standard values for XMAX and XMIN are the same regardless of the impactor used. They are:

$$
\begin{align*}
& \mathrm{XMAX}=\log _{10}(100.0)=2.0 \tag{114}\\
& \mathrm{XMIN}=\log _{10}(0.1)=-1.0 \tag{115}
\end{align*}
$$

YMAX and YMIN are the maximum and minimum y-axis values to be plotted. The standard YMAX and YMIN values are dependent on the impactor used. For both the Andersen (IMPAC = l), the University of Washington Mark III (IMPAC $=3$), and the Meteorology Research, Inc., cascade impactors, these values are:

$$
\begin{align*}
& \operatorname{YMAX}=\log _{10}\left(10^{4}\right)=4.0 \tag{116}\\
& \operatorname{YMIN}=\log _{10}\left(10^{-2}\right)=-2.0 \tag{117}
\end{align*}
$$

For the Brink cascade impactor (IMPAC $=2$), these values are:

$$
\begin{align*}
& \text { YMAX }=\log _{10}\left(10^{6}\right)=6.0 \tag{118}\\
& \text { YMIN }=\log _{10}(1.0)=0.0 \tag{119}
\end{align*}
$$

069-072: ISIZ2 $=1$ and the program skips to statement 25 (card 069). The maximum and minimum axis values and therefore the number and range of cycles are regulated according to the range of the data for all runs. In this case, XMIN is the common log value of the minimum geometric mean diameter
sizes for all runs in micrometers. YMAX and YMIN are the common logs of the maximum and minimum values for all runs of the mass size distribution in milligrams per dry normal cubic meter. Note that the value of XMAX is still standard. The function SLIM (MAXMIN, ALIMIT) rounds ALIMIT to the next higher integer when MAXMIN=1, SLIM truncates ALIMIT to the next lower integer when MAXMIN=0. Thus:

$$
\begin{align*}
& \text { XMAX }=\log _{10}(100.0)=2.0 \tag{120}\\
& \text { YMAX }=\operatorname{SLIM}\left(1, \log _{10}\left(\operatorname{DMAX}_{N}\right)\right) \tag{121}\\
& \text { XMIN }=\operatorname{SLIM}\left(0, \log _{10}\left(\operatorname{GEMIN}_{N}\right)\right) \tag{122}\\
& Y M I N=\operatorname{SLIM}\left(0, \log _{10}\left(\operatorname{DMMIN}_{N}\right)\right) \tag{123}
\end{align*}
$$

where DMMAX $_{N}=$ the maximum value of the $\Delta M / \Delta l o g D$ distribution in milligrams per dry normal cubic meter for all runs of the same density, as indicated by the value of N. GEMIN $_{N}=$ the minimum geometric mean diameter in micrometers for all runs of the same density, as indicated by the value of N. $\operatorname{DMMIN}_{N}=$ the minimum value of the $\Delta M / \Delta \log D$ distribution in milligrams per dry normal cubic meter for all runs of the same density as indicated by the value of N.
073-077: Calculate the x - and y-axes scale factors, XS and Ys respectively, in inches per user's unit (i.e., inches per power of 10 on a natural logarithmic scale): $X S=X I N /(X M A X-X M I N)$ $Y S=Y I N /(Y M A X-Y M I N)$
where XIN $=x$-axis length in inches

$$
\begin{align*}
\text { YIN }= & y \text {-axis length in inches } \tag{126}\\
\text { XMAX }- & \text { XMIN }= \\
& \text { difference in maximum and minimum } \\
& \text { x-axis values }=\text { number of user's } \tag{127}\\
& \text { units along x-axis } \\
\text { YMAX - YMIN }= & \text { difference in maximum and minimum } \\
& \text { y-axis values }=\text { number of user's } \\
& \text { units along y-axis } \tag{128}
\end{align*}
$$

078: When WALLY2 is called, define the Y -coordinate location of the pen, YORIG, in terms of the minimum y-axis value YMIN (Y-value at the origin) and the y-axis scale factor, $Y S$, in inches per user's unit:

$$
\begin{equation*}
\text { YORIG }=\text { YMIN }-(2 / \mathrm{YS}) \tag{129}
\end{equation*}
$$

The pen location should always be on the base line of the graphing paper when any plotting subroutine is called. Therefore, the user's origin, (XMIN, YMIN), is 2 inches, (2/YS), above the original location of the pen, (XMIN, YORIG).

079: The call to plotter subroutine SCALF (XS, YS, YMIN, YORIG) stores $x-$ and y-axes scale factors $X S$ and YS in inches per user's unit, and the original location of the pen (XMIN, YORIG), in user's units for later reference by the plotter.
080-086: This begins the section which draws the x-axis using a common log scale. Find the number of x-axis cycles, IXRAN, by calculating the difference of the x-axis limits XMAX and XMIN:

$$
\begin{equation*}
\text { IXRAN }=\text { XMAX }- \text { XMIN } \tag{130}
\end{equation*}
$$

087: The call to plotter subroutine XSLBL (XS, YS, XMIN, YMIN, IXRAN, XMIN) labels the x-axis for $\log _{10}$ scale.
088: The call to plotter subroutine XLOG (XS, YS, XMAX, YMIN, -1, IXRAN) draws the x-axis for $\log _{10}$ scale.

089-093: This begins the section which labels the x-axis cycles. Define the desired width and length of written characters in inches, XCS and YCS, for labeling the x-axis:

$$
\mathrm{XCS}=0.15
$$

$$
\mathrm{YCS}=0.15
$$

094-095: Define the point (X, Y) in user's units at which the labeling of the x-axis is to begin. This location should be at the lower left-hand corner of the position at which the first character is to be drawn. In order to center the label below the x-axis, first define the x-coordinate of the beginning pen position by placing the pen at the center of the x-axis length, i.e., XMIN + (XMAX -XMIN)/2.0. Multiply $1 / 2$ the total number of characters to be written (including spaces) by the number of inches for each character, XCS. The label to be written is "PARTICLE DIAMETER (MICROMETERS)" which contains 32 characters. Therefore, the number of inches to be backspaced from the center is $16 \cdot \mathrm{XCS}$. Dividing this by the inches per user's unit along the x-axis $X S$, one obtains the number of user's units to be backspaced from the center point. Therefore:

$$
\begin{equation*}
X=X M I N+[(X M A X-X M I N) / 2]-[(16 \cdot X C S) / X S] \tag{131}
\end{equation*}
$$

The Y-coordinate is defined far enough below the x-axis so that there is room enough to draw characters (0.15 inches) without interfering with the drawn x-axis. The Y-coordinate is therefore 0.7 inches below the x-axis which allows 0.55 inches between the top of the characters and the y-axis:

$$
\begin{equation*}
Y=Y M I N-(0.7 / Y S) \tag{132}
\end{equation*}
$$

096: Call the plotter subroutine, FCHAR (X,Y,XCS, YCS,0.0), to initialize the annotation subroutine by establishing the starting location for the pen, (X, Y) in user's units, the width and height of the characters in inches, XCS and YCS, and the angle of writing in radians relative to the x-axis, here 0.0 .
097: Write the x-axis label, "PARTICLE DIAMETER (MICROMETERS)".
098-102: This begins the section which writes above the graph the identification label, ID, and assumed density, RHO, in grams per cubic centimeter. Redefine the width and height of written characters in inches, XCS and YCS, for writing the identification label ID:

$$
\begin{aligned}
\mathrm{XCS} & =0.056 \\
\mathrm{YCS} & =0.100
\end{aligned}
$$

103-104: Define the point (X,Y) at which writing will begin for the run identification label ID as being in line with the y-axis at $X=X M I N$ and 0.5 inch above the grid at $Y=$ YMAX $+(0.15 / Y S)$.

105-109: This DO-loop searches for the last character of the identification label ${I D_{J}}$. This prevents any unnecessary movement of the pen for identification labels of less than 80 characters.
110: The call to plotter subroutine FCHAR (X,Y,XCS, YCS, 0.0) initializes the annotation subroutine by establishing the starting location for the pen (X, Y) in user's units, the width and height of the characters in inches, XCS and YCS, and the angle of writing in radians, 0.0 .
111: Write the identification label, ID, for the run. 112-113: Redefine the beginning pen location (X, Y) in user's units for writing the density, RHO. The
beginning X -coordinate is defined so that the first character is in line with the y-axis, as is the case for writing ID above. The beginning Y -coordinate is 0.25 inches above the maximum y-axis value so that with characters 0.1 inch in height, there is a 0.15 inch margin between the writing for RHO and ID:

$$
\begin{aligned}
& X=X M I N \\
& Y=Y M A X+(0.25 / Y S)
\end{aligned}
$$

114: Call the plotter subroutine FCHAR (X,Y,XCS,YCS, 0.0) to initialize the annotation subroutine by establishing the starting location for the pen (X, Y) in user's units, the width and height of the characters in inches, XCS and YCS, and the angle of writing in radians, with respect to the x-axis, here 0.0 .
115: Write the assumed density "RHO = \qquad " 116-12l: This begins the section for drawing the y-axis on the left side of the graph using a common log scale. Calculate the number of y-axis cycles, IYRAN, by taking the difference of the y-axis limits YMAX and YMIN:

$$
\begin{equation*}
\text { IYRAN }=\text { YMAX-YMIN } \tag{133}
\end{equation*}
$$

122: The call to plotter subroutine YLOG (XS,YS, XMIN, YMAX,-l,IYRAN) draws the y-axis on the left of the graph for a common log scale.
123: The call to plotter subroutine LGLBL (XS,YS, XMIN,YMIN,IYRAN,YMIN,l) labels the y-axis on the left for a common log scale.
124-128: This begins the section for labeling the y-axis with powers of ten. Redefine the width and height in inches of written characters XCS and YCS for labeling the y-axis:

$$
\mathrm{XCS}=0.15
$$

$$
\mathrm{YCS}=0.15
$$

129-130: The pen position in user's units, (X,Y) is defined for the beginning of the y-axis label. The Y-coordinate is defined so that the writing is centered on the midpoint of the y-axis. The X-coordinate is defined so that the base of the characters does not interfere with the drawn y-axis. See the discussion of cards 094-095 for a detailed example of how these coordinates are calculated:

$$
\begin{align*}
& \mathrm{X}=\mathrm{XMIN}-(0.7 / \mathrm{XS}) \\
& \mathrm{Y}=\mathrm{YMIN}+[(\mathrm{YMAX}-\mathrm{YMIN}) / 2.0]-[16 \cdot \mathrm{XCS}) / \mathrm{YS}] \tag{135}
\end{align*}
$$

131: The call to plotter subroutine FCHAR (X,Y,XCS, YCS, PI/2) initializes the annotation subroutine by establishing the starting location of the pen (X, Y), in user's units, the width and height of the characters in inches, XCS and YCS, and the angle of writing in radians, here $\pi / 2$.

132: Write the y-axis label "DM/DLOGD (MG/DNM3)".

Note: The plotting grid and labeling have been drawn. Cards 137-146 are concerned with the plotting of X and Y values for the $d M / d l o g D$ distribution $v s$. the geometric mean diameter of the particles at each of these stages, in micrometers.

133-137: The variable KNT is a code value for the number of sets of data plotted on one graph up to this point. For example KNT=4 indicates that this is the 4 th set of data to be plotted on this grid, and a special symbol for the 4 th set is to be used to plot the points. Each time a new grid is drawn, KNT is reset to zero and the first set of data has the KNT value $K N T+l=0+1=1$.

138: The number of points to be plotted on this graph of mass size loading vs. geometric mean diameter, IV, is one more than that plotted for the total mass loading vs. maximum particle diameter plus the number of cumulative mass loading vs. D50 points, VV. This is because a value of the mass size distribution and corresponding geometric mean diameter can be expressed for the particulate matter collected on the back up filter. However, there is no cumulative mass loading which escapes the back up filter and no lower size limit for the back up filter since it captures all remaining particulate. IV=8 for both the University of Washington and Meteorology Research, Inc. cascade impactors, and IV=9 for both the Andersen and Brink cascade impactors.
139-146: The program enters a loop to plot the $\log _{10}$ of all non-zero values of the $\Delta M / \Delta \log D$ distribution, $\mathrm{DMDLD}_{J}, \mathrm{~J}=1, \mathrm{IV}$ in milligrams per dry normal cubic meter vs. the $\log _{10}$ of all nonzero values of the geometric mean diameter of the particles at each stage in micrometers, GEOMD ${ }_{J}$, $J=1$, IV. If the values at a given stage are zero, the point cannot be represented on the plot since $\log _{10}(0.0)$ is undefined. Each common log value is checked by XVAL or YVAL to see if the point is within the grid boundaries. If one of the points'coordinates exceeds a boundary, it is given a value which will cause the point to be plotted 0.15 inch outside the boundary. Subroutine PIONT (KNT,XN,YN,XS,YS) actually plots the point with a symbol determined by the value of KNT.

147-169: Subroutine WALLY2 may be called only to plot the
values of the $\Delta M / \Delta \log D$ distribution vs. the geometric mean diameter based on the mass captured on each stage. In this case, ISIG=0, and the program then continues by calling subroutine LABEL (KNT,XS,YS,YMAX,YMIN) to write the number of this set of data plotted on the graph and the symbol used to plot the $n^{\text {th }}$ set of data. For example, if this is the 6 th set of data plotted on one graph, LABEL causes "TEST 6-*" to be printed above the graph indicating that the symbol * used for each point of this 6 th superimposed set of data points. The pen is then returned in the up position to the base line of the plotter and 4.5 inches beyond the maximum x-axis limit. It is now prepared for the next plot. WALLY2 returns to mainline GRAPH to seek instructions for the next graph. If ISIG=1, the program now calls subroutine JOE2 (instead of LABEL and PIONT) to plot the points for $d M / d l o g D$ distribution vs. geometric mean diameter as calculated from the derivative of the cumulative mass loading curve fit. Only one set of data is represented on a plot for these calls to WALLY2 where ISIG=1. After these points are plotted and the pen returned in readiness for the next plot, JOE2 returns to WALLY2. WALLY2 then returns to mainline GRAPH to seek instructions for the next plot.

Subroutine WALLY3--
This subroutine plots the $\Delta N / \Delta \log D$ distribution values in number of particles per dry normal cubic meter vs. the geometric mean diameter of the stages in micrometers.

024: Define the radian angle π as $P I=3.1415$.
025: Define the output device for the subroutine as $M=7$ where 7 designates the output as the plotter.
026-027: The code variable N indicates the assumed density. If the assumed density is physical density, then $\mathrm{N}=1$ and the data input to WALLY3 is from an odd numbered record. If the assumed density is unit density, then $N=2$ and the data input to WALLY3 is from an even numbered record.

028-032: When ISIG > 0 (ISIG=6 in this subroutine), graphing is not completed when WALLY3 plots the $\Delta N / \Delta-$ logD distribution in number of particles per dry normal cubic meter vs. the geometric mean diameter of particles on each stage in micrometers. This is done in preparation for JOE2 to plot the $\mathrm{dN} / \mathrm{dlog} \mathrm{D}$ distribution as calculated from the derivative of the cumulative mass loading fitted equation. A new grid must be drawn for each new set of data. Therefore the program goes immediately to the section of WALLY3 (statement 20 , card 034) which draws this grid without checking MPLOT.
033: In the case where ISIG ≤ 0, there is the possibility of superimposing from $2-10$ sets of data on one graph. MPLOT is checked here to see if superimposition of these data on the previous graph is desired. In that case MPLOT is non-positive (usually MPLOT $=0$). The subroutine skips the section for drawing a new grid and proceeds to plot. If a new grid is desired, MPLOT > 0 , and the subroutine continues by drawing the grid.
034: A new grid is to be drawn and the counter for the $n^{\text {th }}$ set of data drawn on that grid, KNT, is reset to 0 at XIN, statement 20.

035-040: Define the length of the horizontal x-axis or particle diameter axis in inches.

$$
\mathrm{XIN}=4.5
$$

Define the length YIN of the perpendicular y axis or number size distribution axis in inches:

$$
\text { YIN }=6.5
$$

041-047: If the code variable ISIZ3キ1, a standard number and range of cycles for each axis is desired. The program keeps the standard maximum and minimum x-axis values and y-axis values for the $\Delta N / \Delta l o g D$ or $d N / d \log D$ distribution graph to follow. If the code variable ISIZ3=1, the number and range of cycles for each axis will be regulated according to the range of the data for all runs.
048-058: The maximum and minimum axis values, and therefore the number and range of cycles are defined as standard values. XMAX and XMIN are the maximum and minimum x-axis values to be plotted. The standard values for XMAX and XMIN are the same regardless of the impactor used. They are:

$$
\begin{align*}
& \text { XMAX }=\log _{10}(100.0)=2.0 \tag{136}\\
& \text { XMIN }=\log _{10}(0.1)=-1.0 \tag{137}
\end{align*}
$$

YMAX and YMIN are the maximum and minimum y-axis values to be plotted. These standard YMAX and YMIN values are dependent on the impactor used. For the Andersen (IMPAC = l), the University of Washington Mark III (IMPAC $=3$), and the Meteorology Research, Inc., cascade impactors, these values are:

$$
\begin{align*}
& \mathrm{YMAX}=\log _{10}\left(10^{15}\right)=15 \tag{138}\\
& \mathrm{YMIN}=\log _{10}\left(10^{6}\right)=6 \tag{139}
\end{align*}
$$

For the Brink cascade impactor (IMPAC $=2$) these values are:

$$
\begin{equation*}
\operatorname{YMAX}=\log _{10}\left(10^{14}\right)=14 \tag{140}
\end{equation*}
$$

$$
\text { YMIN }=\log _{10}\left(10^{5}\right)=5
$$

ISIZ3 = 1 and the program goes to statement 25 (card 59). The maximum and minimum axis values, and therefore the number of range of cycles, are regulated according to the range of the data for all runs. XMIN is the common log value of the minimum geometric mean diameter for all runs in micrometers. YMAX and YMIN are the common logs of the maximum and minimum values for all runs of the $\Delta N / \Delta \log D$ or $d N / d l o g D$ distribution in number of particles per dry normal cubic meter. Note that XMAX is still set to the standard value. The function SLIM (MAXMIN, ALIMIT) rounds the variable ALIMIT to the next higher integer when MAXMIN $=$ l. SLIM truncates ALIMIT to the next lower integer when MAXMIN $=0$. Thus: $\operatorname{XMAX}=\log _{10}(100.0)=2.0$
YMAX $=\operatorname{SLIM}\left(1, \log _{10}\left(\operatorname{DNMAX}_{\mathrm{N}}\right)\right)$
$\operatorname{XMIN}=\operatorname{SLIM}\left(0, \log _{10}\left(\operatorname{GEMIN}_{N}\right)\right)$
YMIN $=\operatorname{SLIM}\left(0, \log _{10}\left(\operatorname{DMMIN}_{N}\right)\right)$
 distribution in number of particles per dry normal cubic meter for all runs of the same density, as indicated by the value of N .
GEMIN $_{\mathrm{N}}=$ the minimum geometric mean diameter in micrometers for all runs of the same density as indicated by the value of N.
$\operatorname{DNMIN}_{\mathrm{N}}=$ the minimum value of the $\mathrm{dN} / \mathrm{dlog} \mathrm{D}$ distribution in number of particles per dry normal cubic meter for all runs of the same density, as indicated by the value of N.

063-067: Calculate the x and y axis scale factors, x s and YS, in inches per user's unit (i.e., inches per power of 10 on a common logarithmic scale): $X S=X I N /(X M A X-X M I N)$
YS $=\mathrm{YIN} /(\mathrm{YMAX}-\mathrm{YMIN})$
where XIN $=x$-axis length in inches
YIN $=y$-axis length in inches

$$
\begin{align*}
\text { XMAX-XMIN }= & \text { difference in maximum and minimum } \tag{148}\\
& y \text {-axis values = number of user's } \\
& \text { units along } y \text {-axis. }
\end{align*}
$$

068: When WALLY3 is called, define the Y-coordinate location of the pen, YORIG, in terms of the minimum y-axis value, YMIN, (i.e., Y-value at the graph origin) and the y-axis scale factor, YS, inches per user's units:

$$
\begin{equation*}
\text { YORIG }=\text { YMIN }-(2 . / \mathrm{YS}) \tag{150}
\end{equation*}
$$

The location should always be on the base line of graphing paper when any plotting subroutine is called. Therefore, the user's origin, (XMIN,YMIN) is 2 inches, i.e. (2/YS), above the original location of the pen, (XMIN, YORIG).
069: The call to plotter subroutine SCALF (XS,YS,YMIN, YORIG) stores x and y axis scale factors, $X S$ and YS, in inches per user's unit, and the original location of the pen (XMIN,YORIG) in user's units, for later reference by the plotter.
070-076: This begins the section for drawing the x-axis using a common log scale. Calculate the number of x-axis cycles, IXRAN, by calculating the difference of the x-axis limits XMAX and XMIN:

$$
\begin{equation*}
\text { IXRAN }=\mathrm{XMAX}-X M I N \tag{151}
\end{equation*}
$$

077: The call to plotter subroutine, XSLBL (XS,YS, XMIN, YMIN, IXRAN,YMIN) labels the x-axis for the $\log _{10}$ scale.

078: The call to plotter subroutine XLOG (XS,YS, XMAX,YMIN,-1,IXRAN) draws the x-axis for the $\log _{10}$ scale.
079-083: This begins the section for labeling the x-axis cycles. Define the desired width and height of written characters in inches, XCS and YCS:

$$
\begin{aligned}
\mathrm{XCS} & =0.15 \\
\mathrm{YCS} & =0.15
\end{aligned}
$$

Define the point (X, Y) in user's units at which the labeling of the x-axis is to begin. This location should be at the lower left-hand corner of the position where the first character is to be drawn. In order to center the label below the x-axis, first define the X -coordinate of the beginning pen position by placing the pen at the center of the x-axis length, i.e. XMIN + [(XMAXXMIN)/2]. Multiply $1 / 2$ the total number of characters to be written, including spaces, by the number of inches for each character, XCS. The label to be written in "PARTICLE DIAMETER (MICROMETERS)" which contains 32 characters. Therefore, the number of inches to be "backspaced" from the center is l6•XCS. Dividing this by the inches per user's unit along the x-axis, XS, gives the number of user's units to be backspaced from the center point. Therefore:

$$
\begin{equation*}
X=X M I N+[(X M A X-X M I N) / 2]-[(16 \cdot X C S) / X S] \tag{152}
\end{equation*}
$$

The Y-coordinate is defined low enough below the x-axis so that there is room enough to draw the characters (0.15 inches) without interfering with the drawn x-axis. The Y-coordinate is therefore defined as 0.7 inches below the x-axis allowing 0.55 inches between the top of the characters and the y-axis.

$$
\begin{equation*}
Y=Y M I N-(0.7 / Y S) \tag{153}
\end{equation*}
$$

086: Call the plotter subroutine FCHAR (X,Y,XCS,YCS, $0.0)$ to initialize the annotation subroutine by establishing the starting location for the pen, (X, Y) , in user's units, the width and height of the characters in inches, XCS and YCS respectively, and the angle of writing relative to the x-axis, here 0.0 radians.
087: Write the x-axis label "PARTICLE DIAMETER (MICROMETERS)".

088-092: This begins the section for writing the identification label, ID, and the assumed density, RHO, above the graph. Redefine the width and height of written characters in inches, XCS and YCS, for writing the run identification label, ID: $\mathrm{XCS}=0.056$ $\mathrm{YCS}=0.100$
093-094: Define the point (X,Y) at which writing will begin for the run identification label, ID, as being in line with the Y-axis at $X=X M I N$ and $1 / 2$ inch above the top of the grid at $Y=Y M A X+$ (0.5/YS).

095-099: This DO-loop searches for the last character of the identification label, $I D_{J}$. This prevents any unnecessary movement of the pen for identification labels of less than 80 characters.
100: The call to plotter subroutine FCHAR (X,Y,XCS, YCS,0.0) initializes the annotation subroutine by establishing the starting location for the pen, (X, Y), in user's units, the width and height of the characters in inches, XCS and YCS respectively, and the angle of writing, here 0.0 radians.
101: Write the identification label, ID, for the run.

102-103: Redefine the beginning pen location, (X,Y), in user's units for writing the density, RHO. The beginning X -coordinate is defined so that the first character is in line with the y-axis, as is the case for writing ID above. The beginning Y-coordinate is 0.25 inches above the maximum y-axis value so that with characters 0.10 inches in height, there is a 0.15 inch margin between the writing for RHO and ID:

$$
\begin{align*}
& \mathrm{X}=\mathrm{XMIN} \tag{154}\\
& \mathrm{Y}=\mathrm{YMAX}+(0.25 / \mathrm{YS}) \tag{155}
\end{align*}
$$

104: Call the plotter subroutine FCHAR (X,Y,XCS,YCS, $0.0)$ to initialize the starting location for the pen, (X, Y) in user's units, the width and height of characters in inches, XCS and YCS, and the angle of writing, here 0.0 radians.
105: Write the assumed density "RHO = \qquad " 106-111: This begins the section for drawing the y-axis on the left side of the graph using a common log scale. Calculate the number of y-axis cycles, IYRAN, by taking the difference of the y-axis limits YMAX and YMIN:

$$
\begin{equation*}
\text { IYRAN }=\text { YMAX-YMIN } \tag{156}
\end{equation*}
$$

112: The call to plotter subroutine YLOG (XS,YS,XMIN, YMAX,-l,IYRAN) draws the y-axis on the left of the graph for common log scale.
113: The call to plotter subroutine LGLBL (XS,YS,XMIN, YMIN, IYRAN, YMIN,l) labels the y-axis on the left for common log scale.
114-118: This begins the section for labeling the y-axis on the left side of the graph with cycles. Redefine the width and height of written characters in inches, XCS and YCS, for labeling the y-axis:

$$
\begin{aligned}
\mathrm{XCS} & =0.15 \\
\mathrm{YCS} & =0.15
\end{aligned}
$$

119-120: The pen position in user's units, (X,Y), is defined for the beginning of the y-axis label. The Y-coordinate is defined so that the writing will be centered on the midpoint of the y-axis. The X-coordinate is defined so that the base of the characters does not interfere with the drawn y-axis. See the discussion of cards 084-085 for a detailed example of how these coordinates are calculated:

$$
\begin{array}{lc}
\mathrm{X}=\mathrm{XMIN}-(0.7 / \mathrm{XS}) & (157) \\
\mathrm{Y}=\mathrm{YMIN}+[(\mathrm{YMAX}-\mathrm{YMIN}) / 2.0]-[16 \cdot \mathrm{XCS}) / \mathrm{YS}] \tag{158}
\end{array}
$$

121: The call to plotter subroutine FCHAR (X,Y,XCS, YCS,PI/2) initializes the annotation subroutine by establishing the starting location of the pen (X, Y) in user's units, the width and height of the characters in inches, XCS and YCS and the angle of writing, here $\pi / 2$ radians.
122: Write the y-axis label "DN/DLOGD (NO. PARTICLES/ DNM3)".

Note: The plotting grid and labeling have been drawn. Cards 123-135 are concerned with the plotting of X and Y values for the $\Delta N / \Delta l o g D$ distribution vs. the geometric mean diameter of the particles at each of these stages in micrometers.

123-126: The variable KNT is a code value for the number of sets of data plotted on one graph up to this point. For example, KNT $=4$ indicates that this is the 4 th set of data to be plotted on this grid, and a special symbol for the 4 th set will be used to plot the points. Each time a new grid is drawn, $K N T=0$, and the first set of data has the KNT value, $\mathrm{KNT}+1=0+1=1$.

127: The number of points, IV, to be plotted on this graph of $\Delta N / \Delta \log D$ vs. geometric mean diameter is defined here. It is one more than VV which is the number of possible cumulative mass loadings at each D50 plus one for total mass loading at the maximum particle diameter. This is because a value of the $\Delta N / \Delta \log D$ distribution and corresponding geometric mean diameter can be expressed for particulate matter collected on the back up filter. However, there is no mass which escapes the back up filter since it captures all remaining particles. IV $=8$ for both the University of Washington Mark III and the Meteorology Research, Inc., cascade impactors, and.IV $=9$ for both the Andersen and Brink cascade impactors.
128-135: The program enters a loop to plot the common log of all non-zero values of the number size distribution, $\mathrm{DNDLD}_{J}, J=1, I V$, in number of particles per dry normal cubic meter vs. the common log of all non-zero values of the geometric mean diameter of the particles at each stage in micrometers, GEOMD $_{J}, J=1, I V$. If the values at a given stage are zero, the point cannot be represented on the plot since $\log _{10}(0.0)$ is negative infinity. Each common log value is checked by XVAL or YVAL to see if the point is within the grid boundaries. If one of the point's coordinates exceeds a boundary, it is given a value which will cause the point to be plotted at 0.15 inches outside the boundary. Subroutine PIONT (KNT,XN,YN,XS,YS) actually plots the point with a symbol determined by the value of KNT.
136-146: Subroutine WALLY3 may have been called to plot the values of the $\Delta N / \Delta \log D$ distribution vs. the
geometric mean diameter based on the mass captured at each stage exclusively. In this case ISIG $=0$, and WALLY 3 calls subroutine LABEL (KNT, XS,YS,YMAX,YMIN) to write the number of this set of data plotted on this graph and the symbol used to plot this nth set of data. For example, if this is the 6th set of data plotted on this one graph, LABEL causes "TEST 6-*" to be printed anove the graph indicating that the symbol * is used for each point of this 6 th superimposed set of data points. The pen is then returned in the up position to the baseline of the plotter, 4.5 inches beyond the maximum x-axis limit. It is now ready for the next plot. WALLY3 returns to mainline GRAPH to seek instructions for the next graph. If ISIG $=6$, the program calls subroutine JOE2 (instead of LABEL and PIONT) to plot the points for the $d N / d l o g D$ size distribution vs. geometric mean diameter as calculated from the derivative of the cumulative mass loading curve fit. Recall that JOE2 is also the subroutine called by WALLY2 to plot a similar mass size distribution based on this derivative of the cumulative mass loading curve fit. The value of ISIG is the code input to JOE2 which allows this subroutine to distinguish which plot is desired - ISIG $=1$ for $d M / d \log D$ distribution and ISIG $=6$ for $d N / d l o g D$ distribution. Only one set of data is represented on a plot for these calls to WALLY3 when ISIG $=6$. After these points are plotted and the pen returned in readiness for the next plot, JOE2 returns to WALLY3. WALLY3 returns to mainline GRAPH to seek instructions for the next plot.

Subroutine JOE2--
This subroutine makes a plot of points from the $d M / d l o g D$ (if ISIG $=1$) or $d N / d \log D(i f$ ISIS $=6$) distribution in milligrams or number of particles per dry normal cubic meter vs. particle diameter in micrometers. This plot is based on the derivative of the fitted curve to cumulative mass loading vs. stage D_{50} for the given run and given assumed density. It also makes a listing on the line printer of diameter values in micrometers along with the corresponding differential size distribution value at that size.

028-038: Write the column headings at the top of the page on the line printer. These headings are "INTERVAL", "DIAMETER", and "CHANGE IN MASS CONCENTRATION (MG/DMN3)" or "CHANGE IN NUMBER CONCENTRATION (NO./DNM3)". The choice between the last two column headings is determined by the value of ISIG received by subroutine JOE2. If ISIG = 1, this subroutine plots points of the $d M / d l o g D$ distribution, and the former heading is printed. If ISIG $=6$, this subroutine plots points of the dN/dlogD distribution, and the latter heading is printed.
039-050: A $\log _{10}$ diameter increment DINC is defined here. This is the amount by which the common log of the diameter is increased on each traverse of the loop in which the dM/dlogD or dN/dlogD distribution values are calculated. DINC is defined by dividing the difference in the common logs of 100.0 and 0.25 microns into 35 equal parts: DINC $=\left[\log _{10}(100.0)-\log _{10}(0.25)\right] / 35$
051: The first value of the independent variable, Dl, to be used in calculating the size distribution value is defined here as the common log of an arbitrarily small particle size in micrometers.

Thus, the Dl value is initially defined as:

$$
\begin{equation*}
D 1=\log _{10}(0.25) \tag{159}
\end{equation*}
$$

052-053: Define the last value of the independent variable DLDF to be the maximum x-axis limit, XMAX. Recall that the x-axis (diameter) is a common log scale so that DLDF $=$ XMAX is already in common log form.
054-057: Read record IS from file ll (file FILSPL) containing the information for fitting logio (cumulative mass loading) vs. $\log _{10}\left(\mathrm{D}_{50}\right)$ for this run and assumed density. These variables are the number of interval boundary points which are fitted NPOIN, the values of these points $(\mathrm{Xl}, \mathrm{Yl})_{\mathrm{I}}, \mathrm{I}=1$, NPOIN, and the series of fitting second degree polynomial coefficients $\operatorname{COE}_{I, J^{\prime}} I=1, I N T, J=1,3$, where INT is the number of fitted intervals, NPOIN-1.
058: A loop begins here and continues through statement 100 (card 145). The loop calculates the mass size distribution value or number size distribution value (depending on ISIG) at a given diameter. This is calculated according to the derivative of the second degree polynomial curve fit to the cumulative mass loading vs. diameter at this diameter as found in SPLINl. Both graph and line printer output are produced in this loop.
059-063: DPLOT is the actual diameter in micrometers. This is the value output to the line printer. It is the result of taking the antilog of Dl, the independent variable used in fitting:

$$
\begin{equation*}
\mathrm{DPLOT}=10.0^{\mathrm{D} 1} \tag{160}
\end{equation*}
$$

064-073: The "DO 320" loop here takes the diameter variable Dl and compares it to ever increasing X -coordinate values of the interval boundary
points, (X1,Yl), fitted in program SPLIN1 to find the interval, NINT, containing Dl.
074-082: The value of DELM, the mass size concentration at diameter DPLOT, is found here in milligrams per actual cubic meter. Mathematically this is:

$$
\begin{equation*}
\text { DELM }=\frac{d M}{d\left(\log _{10} \text { DPLOT }\right)} \tag{161}
\end{equation*}
$$

where $M=$ mass concentration in milligrams per actual cubic meter.
PPP, the cumulative mass loading fitting polynomial over a specified interval, NINT, is the common log of mass concentration as a function of Dl, the common log of the diameter DPLOT:

$$
\begin{aligned}
\mathrm{PPP} & =\log _{10} \mathrm{M}=\mathrm{f}(\mathrm{Dl})=\mathrm{f}\left(\log _{10} \mathrm{DPLOT}\right) \\
& =\operatorname{COE}_{\mathrm{NINT}}, 1^{+\mathrm{COE}_{\mathrm{NINT}}, 2^{\mathrm{D} . \mathrm{C}+\mathrm{COE}_{\mathrm{NINT}}, 3}(\mathrm{DI})^{2}}
\end{aligned}
$$

where $\operatorname{COE}_{\text {NINT, }}, J=1,3=$ fitting coefficients for
for interval NINT which contains diameter DPLOT

This calculation of PPP is made at cards 079-081. Card 078 expresses DELL, the derivative of this common log of cumulative mass concentration with respect to the common log of the diameter DPLOT:

$$
\begin{align*}
\text { DEL1 } & =\frac{d \text { PPP }}{d\left(\log _{10 \text { DPLOT }}\right)} \tag{163}\\
& =\frac{d\left(\log _{10} M\right)}{d\left(\log _{10 \text { DPLOT }}\right)} \\
\text { DELI } & =\text { COE }_{\text {NINT }, 2}+2 \mathrm{COE}_{\text {NINT }}, 3{ }^{\mathrm{Dl}}
\end{align*}
$$

Using the following logic, DELM may be expressed in terms of PPP and DELI:

$$
\begin{align*}
\text { DLLI } & =\frac{d \text { PPP }}{d\left(\log _{10} D P L O T\right)} \tag{164}\\
& =\frac{d\left(\log _{10} M\right)}{d\left(\log _{10} D P L O T\right)} \\
& =\frac{d\left(\log _{10} 0 M\right)}{d M} \times \quad \text { d(log } 10 \text { DPLOTT) }
\end{align*}
$$

Then it follows that :

$$
\begin{equation*}
\text { DELM }=\frac{\mathrm{dM}}{\mathrm{~d}\left(\log _{10} \mathrm{DPLOT}\right)}=\mathrm{DELI} \times \frac{\mathrm{dM}}{\mathrm{~d}\left(\log _{10} \mathrm{M}\right)} \tag{165}
\end{equation*}
$$

To find $\frac{d M}{d\left(\log _{10} M\right)}$

$$
\begin{align*}
M & =\exp \left(\log _{e} M\right) \\
& =\exp \left(\log _{e} 10 \times \log _{10} M\right) \tag{166}\\
& =\exp \left(2.30258 \log _{10} M\right) \\
\frac{d M}{d\left(\log _{10} M\right)} & =\frac{d}{d\left(\log _{10} M\right)}\left[\exp \left(2.302585 \log _{10} M\right)\right] \tag{167}\\
& =2.302585 \exp \left(2.302585 \log _{10} M\right) \tag{168}\\
\frac{d M}{d\left(\log _{10} M\right)} & =2.302585 \mathrm{M} \tag{169}
\end{align*}
$$

Then

$$
\begin{align*}
\text { DELM } & =\text { DEL1 } \times 2.302585 \times 10^{\log _{10} M} \tag{170}\\
\text { or } \quad \text { DELM } & =\text { DELI } \times 2.302585 \times 10^{\mathrm{PPP}} \tag{171}
\end{align*}
$$

This is the expression for DEJM, the mass size concentration in milligrams per actual cubic meter, as calculated at card 082 .
083-087: DELM as found above is in units of milligrams per actual cubic meter. The conversion of the differential mass size distribution to units of milligrams per dry normal cubic meter is dependent on the ambient pressure at the impactor inlet in atmospheres. POA, the temperature of the stack in degrees Kelvin, TKS, and the percent water content of the gas, FG_{5} : The conversion is calculated by:

$$
\begin{equation*}
\mathrm{DELM}=\operatorname{DELM} \frac{[(\mathrm{TKS} / 294)(1 / \mathrm{POA})]}{\left[\left(100-\mathrm{FG}_{5}\right) / 100\right]} \tag{172}
\end{equation*}
$$

088-092: The value of the dN/dlogD distribution at a given diameter in number of particles per dry normal cubic meter, DELN, can be expressed as a function of the value of the dM/dlogD distribu-
tion in milligrams per dry normal cubic meter, DELM, the density of the particles in grams per cubic centimeter, RHO, and the given particle diameter in micrometers, DPLOT. To show the development of this function, define the following variables:
$\mathrm{v}=$ volume of one particle in cubic micrometers,
$\mathrm{m}=$ mass of one particle in milligrams,
$\rho=$ density of the particles in grams per cubic centimeter,
$M=$ total mass of particles in one cubic meter in grams,
$\mathrm{N}=$ total number of parțicles in one cubic meter, and,

DPLOT = particle dianleter in micrometers. The mathematical expressions for v, m, and M are:

$$
\begin{aligned}
\mathrm{v}= & \frac{\pi(\mathrm{DPLOT})^{3}}{6}\left(\mu \mathrm{~m}^{3}\right) \\
\mathrm{m}= & \rho\left(\frac{\mathrm{gm}}{\mathrm{~cm}}{ }^{3}\right) \times 10^{3}\left(\frac{\mathrm{mg}}{\mathrm{gm}}\right) \times \frac{\pi(\mathrm{DPLOT})^{3}}{6}\left(\mu \mathrm{~m}^{3}\right) \times \\
& \left(10^{-4} \frac{\mathrm{~cm}_{\mathrm{l}}}{\mu \mathrm{~m}}\right)^{3} \\
\mathrm{~m}= & \frac{\rho \pi(\mathrm{DPLOT})^{3}}{6} \times 10^{-9}(\mathrm{mg} .) \\
M= & \operatorname{Nm}(\mathrm{mg} .)
\end{aligned}
$$

Then DELN or $\frac{d N}{d\left(\log _{10 \text { DPLOT }}\right)}$ may be expressed as
a function of DELL, ρ, and DPLOT:

$$
\begin{align*}
\text { DELM } & =\frac{d M}{d\left(\log _{10} \text { DPLOT }\right)}=\frac{d(N m)}{d\left(\log _{10} D P L O T\right)} \tag{173}\\
& =\mathrm{m}_{\mathrm{d}\left(\log _{10} \mathrm{DPLOT}\right)}^{\mathrm{d}} \tag{174}\\
\text { Then } \frac{\mathrm{dN}}{\mathrm{~d}\left(\log _{10} \mathrm{DPLOT}\right)} & =\frac{\mathrm{dM}}{\mathrm{~d}\left(\log _{10 \mathrm{DPLOT}}\right.} \times \frac{1}{\mathrm{~m}} \tag{175}\\
& =\frac{\mathrm{DELM}}{\mathrm{~m}} \tag{176}
\end{align*}
$$

or $\frac{d i J}{\mathrm{~d}\left(\log _{10} \mathrm{DPLOT}\right)}=\operatorname{DELM}_{\rho \pi(\mathrm{DPLOT})^{3}} \times 10^{9}$ (number
of particles per dry normal cubic meter)
which is the expression used in defining dN/dlogD at card 102, where the program name is DELN.
093-098: Define the change in concentration as DEL. If ISIG $=1$ this refers to dM/dlogD, DELM, in milligrams per dry normal cubic meter. If ISIG $=6$ this refers to dN/dlogD, DELN, in number of particles per dry normal cubic meter.
099-1ll: If the cumulative mass loading fitting function is always increasing, as it should, the change in concentration, DEL, will be positive. Then the common log of DEL can be taken at statement 65 (card lll). If, however, there are some points within the plotting range where the function is non-increasing, the $\log _{10}$ of the resulting zero or negative DEL value cannot be taken. In this case, instead of taking the true $\log _{10}$ value of DEL, it is given the arbitrary extremely low $\log _{10}$ value of -50.0 at statement 60 (card l06). This will later be seen as a signal of undesirable function behavior in the line printer output.
112-120: This section uses the functions XVAL and YVAL to check the values of the $\log _{10}$ of diameter, Dl, and the $\log _{10}$ of change in concentration, DEL, for values which would cause the plotter to plot outside the limits of the graph (e.g., if DEL = -50.0). It assigns to any such extreme coordinate a value which causes the point to be plotted 0.15 inches beyond the exceeded boundary. The call to
plotter subroutine FPLOT ($-2, \mathrm{XN}, \mathrm{YN}$) moves the pen to the new point location (XN, YN) and lowers it. The pen is in the up position when this is called. The call to plotter subroutine SYMBOL ($9,0.04$) causes the symbol of a solid circle 0.04 inches in diameter to be drawn. Finally the pen is raised in preparation for the next pen movement by FPLOT ($+1, \mathrm{XN}, \mathrm{YN}$).
121: This statement causes the program to omit converting the $\log _{10}$ of the change in concentration if the former value $=-50.0$. Finding the antilog here would serve no purpose since -50.0 has no true meaning except as a signal to mark undesirable function behavior.
122-125: For proper values of $\log _{10}$ of change in concentration, the antilog is taken. This yields the original change in concentration value, DEL, which will be printed:

$$
D E L=10.0^{D E L}
$$

126-131: Write under the proper column heading the "slot number" I which is a diameter index or point index, the diameter in micrometers, DPLOT, and the change in mass concentration (if ISIG = 1) or the change in number concentration (if ISIG = 6), DEL.
132-137: If the function shows non-increasing change in concentration, this write statement takes the place of the one at card 130. The program writes under the proper column heading the diameter index, the diameter in micrometers, DPLOT, and "NON-INCREASING."
138-145: The common log diameter value is compared with XMAX which is the maximum x-axis limit, a common \log of the scale value. If Dl is larger than
this value, the plotting diameter range has been covered, and the program exits the loop. If Dl is not greater than XMAX, it is incremented by DINC. Recall that Dl is the independent variable for the fitting equation, $\log _{10}$ (diameter). The program then returns to the top of the loop at card 058 to calculate $\log _{10}(\mathrm{dM} / \mathrm{d} \log \mathrm{D})$ or $\log _{10}$ ($\mathrm{dN} / \mathrm{d} \log \mathrm{D}$) for this next Dl .
146-154: The pen is returned to the base line in the up position, 4.5 inches beyond the maximum x-axis limit, XMAX, so that it is now ready for the rext plot. The subroutine now returns to the calling subroutine WALLY2 (if ISIG = 1) or WALLY3 (if ISIG = 6) .

Input and Output for the Mainline Program GRAPH

Card Input and Resulting Output--
Card A--Data punched on this card determine whether the cycles shown on the $\log _{10}$ axes of each plot will be of a standard range and number or if this range and number will be regulated by the span of the data. This coding has no bearing, however, on the 'cycles' shown on normal probability axes used in the graph of cumulative percent mass loading vs. particle diameter in micrometers. Also, this card coding indicates whether plotting code values (see cards D and C below) are to be read once and used for all data sets, or whether new plotting code values are to be read for each run.

Column 1: Punch "0" or leave blank if the standard range and number of cycles are desired for all plots of cumulative mass loading in milligrams per actual cubic meter vs. particle diameter in micrometers. The standard maximum and minimum cumulative mass loading (Y) and particle dianeter (X)
axis limits are as follows:

$$
\begin{align*}
& \operatorname{XMAX}=\log _{10}(100)=2 \tag{178}\\
& \operatorname{YMAX}=\log _{10}\left(10^{4}\right)=4 \tag{179}\\
& \text { XMIN }=\log _{10}\left(10^{-1}\right)=-1 \tag{180}\\
& \text { YMIN }=\log _{10}\left(10^{-1}\right)=-1 \tag{181}
\end{align*}
$$

Punch a "l" here if it is desired to regulate the range and number of cycles of cumulative mass loading plots according to the data. The maximum axis limit for particle diameter is still standard:

$$
\begin{equation*}
X M A X=\log _{10}(100)=2 \tag{182}
\end{equation*}
$$

The other axis limits are found by the function SLIM (MAXMIN,ALIMIT). SLIM truncates ALIMIT to the next smaller integer value if MAXMIN $=0$. SLIM rounds up ALIMIT to the next higher integer if MAXMIN $=1$. Thus:

$$
\begin{equation*}
\text { XMIN }=\operatorname{SLIM}\left(0, \log _{10} \operatorname{DPMIN}_{N}\right) \tag{183}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{YMAX}=\operatorname{SLIM}\left(1, \log _{10} \operatorname{CUMAX}_{N}\right) \tag{184}
\end{equation*}
$$

$$
\begin{equation*}
\text { YMIN }=\operatorname{SLIM}\left(0, \log _{10} \mathrm{CUMIIJ}_{\mathrm{N}}\right) \tag{185}
\end{equation*}
$$

DPMIN $_{\mathrm{N}}$ is the smallest lower size limit diameter, in micrometers, of all the runs at the desired density. When $N=1$, DPMIN 1 is this lower limit assuming physical density. When $N=2$, DPMIN $_{2}$ is this minirum assuming unit density. CUMAX $_{\mathrm{N}}$ is the largest total mass loading value, in milligrams per actual cubic meter, of all the runs at the density indicated by the value of if, as described above.
CUMIIN $_{N}$ is the smallest cumulative mass loading value, in milligrams per actual neter, of all the runs at the density indicated by the value of N as described above.
Column 2: Punch "0" or leave blank if the standard range
and number of cycles are desired for all plots of $\Delta M / \Delta \log D$ or $d M / d \log D$ in milligrams per dry normal cubic meter vs. geometric mean diameter of particles at that stage in micrometers. The standard maximum and minimum size distribution on mass basis (X) and geometric mean diameter (X) axis limits depend upon the impactor used. For the Andersen, University of Washington Mark III (Pilat), and Meteorology Research, Inc., impactors, these standard limits are:

$$
\begin{align*}
& \operatorname{XMAX}=\log _{10}\left(10^{2}\right)=2 \tag{186}\\
& \operatorname{YMAX}=\log _{10}\left(10^{4}\right)=4 \tag{187}\\
& \text { XMIN }=\log _{10}\left(10^{-1}\right)=-1 \tag{188}\\
& \text { YMIN }=\log _{10}\left(10^{-2}\right)=-2 \tag{189}
\end{align*}
$$

For the Frink impactor, these limits are:

$$
\begin{align*}
& \operatorname{XMAX}=\log _{10}\left(10^{2}\right)=2 \tag{190}\\
& \operatorname{YMAX}=\log _{10}\left(10^{6}\right)=6 \tag{191}\\
& X M I N=\log _{10}\left(10^{-1}\right)=-1 \tag{192}\\
& \operatorname{YMIN}=\log _{10}(1)=0 \tag{193}
\end{align*}
$$

Punch a "l" here if it is desired to regulate the range and number of cycles for plots of $\Delta M / \Delta \log D$ or $d M / d \log D$ according to the data. The maximum axis limit for geometric mean diameter is still standard.

$$
\begin{equation*}
X M A X=\log _{10}\left(10^{2}\right)=2 \tag{194}
\end{equation*}
$$

The other axis limits are found by the function SLIM (MAXMIN, ALIMIT). SLIM truncates the value of ALIMIT to the next lower integer if MAXMIN = 0 . SLIM rounds up the value of ALIMIT to the next higher integer if MAXMIN = l. Thus: $\mathrm{XMIN}=\operatorname{SLIM}\left(0, \log _{10} \operatorname{GDHIN}_{\mathrm{N}}\right)$
YIMAX $=\operatorname{SLIM}\left(1, \log _{10}\right.$ DMMAX $\left._{N}\right)$

$$
\begin{equation*}
\text { YMIN }=\operatorname{SLIM}^{\left(0, \log _{10} \mathrm{DMMIN}_{N}\right)} \tag{196}
\end{equation*}
$$

GDMIN $_{N}$ is the smallest geometric mean diameter, in micrometers, of all the runs at the desired density. When $N=1$, GDMIN $_{1}$ is this minimum geometric mean diameter assuming, physical density. When $N=2$, GDMIN 2 is this minimum, assuming unit density. DMMAX $_{N}$ is the largest $\triangle M / \triangle \log D$ or $d M / d l o g D$ value in milligrams per dry normal cubic meter of all the runs at the desired density (indicated by the value of N as described above). $D_{M M I N}^{N}$ is the smallest $\triangle M / \triangle l o g D$ or dM/dlogD value in milligrams per dry normal cubic meter of all the runs at the desired density (indicated by the value of N as described above). Punch "0" or leave blank if the standard range and number of cycles are desired for all plots of $\Delta N / \Delta \log D$ or $d N / C l o g D$ in number of particles per dry normal cubic meter vs. geometric mean diameter of particles at that stage in micrometers. The standard maximum and minimum $\Delta N /$ $\triangle \log D$ or $d N / d \log D(Y)$ and geometric mean diameter (X) axes limits depend upon the impactor used. For the Andersen, University of Washington Mark III (Pilat), and Meteorology Research, Inc., impactors, these standard limits are:

$$
\begin{align*}
& \operatorname{XMAX}=\log _{10}(100)=2 \tag{198}\\
& \operatorname{YMAX}=\log _{10}\left(10^{15}\right)=15 \tag{199}\\
& \operatorname{XMIN}=\log _{10}\left(10^{-1}\right)=-1 \tag{200}\\
& \operatorname{YMTN}=\log _{10}\left(10^{6}\right)=6 \tag{201}
\end{align*}
$$

For the Prink impactor, these limits are:

$$
\begin{align*}
& \operatorname{XMAX}=\log _{10}(100)=2 \tag{202}\\
& \text { YMAX }=\log _{10}\left(10^{14}\right)=14 \tag{203}\\
& \text { XMIN }=\log _{10}\left(10^{-1}\right)=-1 \tag{204}\\
& \text { YMIIT }=\log _{10}\left(10^{5}\right)=5 \tag{205}
\end{align*}
$$

Punch a "l" here if it is desired to regulate
the range and number of cycles for plots of $\Delta N /$ $\Delta \log D$ or $d N / d \log D$ according to the data. XMAX and XMIN are based on the maximum and minimum geometric mean diameter values in micrometers, GDMAX $_{N}$ and GDMIN $_{N}$. They are the same as described in the section for "Column 2" above. The vertical axis limits are as follows:

YMAX $=\operatorname{SLIM}\left(1, \log _{10} \operatorname{DNMAX}_{N}\right)$
YMIN $=\operatorname{SLIM}\left(0, \log _{10} \operatorname{DNMIN}_{N}\right)$
$D_{N M A X}$ is the largest $\triangle N / \Delta \log D$ or $d N / d l o g D$ value in number of particles per dry normal cubic meter of all the runs at the desired density. When N $=1$, DNMAX ${ }_{1}$ is this maximum assuming physical density. When $\mathrm{J}=2$, DNMAX_{2}. is this maximum, assuming unit density. DNMIN $_{N}$ is the smallest $\Delta N / \Delta l o g D$ or $d V / d l o g D$ value in number of particles per dry normal cubic meter of all the runs at the desired density (indicated by the value of N as described above).
Column 4: Punch "0" here or leave blank if plotting code values (see cards 3 and C below) are to be read once. In this case the plotting instructions for all runs are read fron a single card B and a single card C. Punch "l" here if plotting code values are to be read for each set of data. In this case there would be as many B and C cards as there are number of impactor runs for which there are sets of data, NRUN.

Card B--This card contains the values of plotting code variables for the "raw data" plots. These are referred to as "raw data" plots because they are based on the mass captured at each stage. There is a code variable providing the option to superimpose two or more data sets on one graph or to show each set of
data on a separate graph. The plotting choices are:
a) cumulative mass loading less than each stage D_{50}, in milligrams per actual cubic meter CUMG $_{I}, I=1,8$ (and the total mass loading in the same units, GRNAM) vs. the lower size limit of particles on that stage, in micrometers, DMAX
b) $\triangle M / \triangle \log D$ in milligrams per dry normal cubic meter, $\mathrm{DMDLD}_{\mathrm{I}}, \mathrm{I}=1,9, \mathrm{vs}$. geometric mean diameter of all particles on the stage in micrometers, $\operatorname{GEOMD}_{I}, I=1,9$
c) $\Delta N / \Delta \log D$ in number of particles per dry normal cubic meter DNDLD $_{I}, I=1,9$, vs. the geometric mean diameter of all particles on the stage in micrometers, GEOMD $_{I}, I=1,9$. There are actually two possible plots for each of the three described above since separate calculations are made for physical density and unit density.

The plots which may be obtained are discussed below. Note that a value of "0" produces the plot desired while a value of "l" suppresses the plot.

Column l: Leave this column blank or punch a "0" if it is desired to superimpose the raw data points of this run on the same grid as that used by the previous run. Up to a maximum of 9 sets of data may be superimposed on one grid, each set of data plotted with a different symbol. Punch a positive number in this field, e.g. "l", to draw a new grid for each plot requested for this run. The first card in card position B must have a positive number punched in this field since there is no grid available from a "previous" plot.
Column 2: Punch "0" to receive a graph of cumulative mass loading below each stage in milligrams per actual cubic meter, CUMG, and the total mass loading in the same units, GRNAM, vs. the lower size limit of particles on that stage in micrometers, DPC,
and the maximum particle diameter in the same units, DMAX. Unit density, 1.0 gram per cubic centimeter is assumed. The graph also shows a secondary vertical axis to the right with cumulative mass loading in grams per actual cubic foot. Punch "l" in column 2 to suppress the graph.
Column 3: Punch "0" to receive a graph of $\triangle M / \Delta l o g D$ in milligrams per dry normal cubic meter, DidDD, vs. the geometric mean dianeter of particles captured on the $I^{\text {th }}$ stage GEOMD D_{I} assuming unit density, 1.0 gram per cubic centimeter. Punch "l" in column 3 to suppress the graph.
Column 4: Funch "O" to receive a graph of $\triangle i J / \Delta l o g D$ in number of particles per dry normal cubic meter DNDLD vs. geometric mean diameter of particles captured on the $I^{\text {th }}$ stage, GLOMD I^{\prime}, assuning unit density, 1.0 gram per cubic centimeter. Punch "l" in column 4 to suppress the graph.
Column 5: Punch "0" to receive the same graph as described for Column 2 of this card except here the plotted point values are found by assuning physical density. Punch "l" to suppress the graph.
Column 6: Punch "0" to receive the same graph as described for Column 3 of this card except here the plotted point values are found by assuming physical density. Punch "l" to suppress the graph.
Column 7: Punch "0" to receive the same graph as described for Column 4 of this card except here the plotted point values are found by assuming physical density. Punch "l" to suppress the graph.

Card C--This card contains the values of plotting code variables to obtain plots for fitted data plots. For each plot
required, there must be a record of the series of fitting polynomials for these data present on file FILSPL (file ll). Therefore, mainline program SPLINl, in addition to mainline program MPPROG, must be run previously before any of the following plots can be obtained. The plot choices showing the results of curve fitting are:
a) cumulative mass loading of particulate less than indicated diameter in milligrams per actual cubic meter vs. particle diameter in micrometers
b) cumulative percent mass loading of particulate less than indicated diameter vs. particle diameter in micrometers
c) $d M / d l o g D$ in milligrams per dry normal cubic meter vs. geometric mean diameter of the size interval in micrometers
d) di/dlogD in number of particles per dry normal meter vs. geometric mean dianeter of the size interval in micrometers.

There are, again, two possible plots for each of the four described above since there are separate calculations made for physical density and unit density. Except for the cumulative percent plots, each of the plots described above show the "raw data" points (as described for Card B) superimposed on the fitted data. To show more than one run of data on any one of these graphs would create a cluttered and confusing plot. Therefore, there is no optinn to superimpose more than one set of data on a graph, as there was for those plots controlled by Card B.

For each plot of the type b, c, or d described above, there is other output in addition to the graph. This consists of a line printer table of plotted values. The plots which can be selected on card C are discussed below. Again, note that "0" produces the plot while "l" suppresses the plot.

Column 1: Punch "0" to receive the curve of cumulative mass loading of particulate less than indicated diameter, in milligrams per actual cubic meter,
vs. particle diameter, in micrometers, according to the predetermined fitting equation where unit density is assumed. The graph also shows the points on which the curve fit was based. These latter points are the sane data as plotted according to Card 5, Column 2. Punch "l" to suppress the graph.
Column 2: Punch "0" to receive the line printer table and graph of cumulative percent of total mass loading for particulate less than the indicated diameter vs. particle diameter in micrometers where unit density is assumed. Punch "l" to suppress the graph.
Column 3: Punch "0" to receive the line printer table and graph of $\mathrm{aM} / \mathrm{dlog} \mathrm{D}$ in milligrams per dry normal cubic meter vs. particle dianeter in micrometers as determined fron the derivative of the predetermined fitting equation assuming unit density. The graph also shows the $\Delta M / \Delta l o g D$ distribution obtained from the particulate matter collected at each stage. These latter points are the same data as plotted according to Card E, Column 3. Punch "l" to suppress the graph. Column 4: Punch "0" to get the line printer table and graph of $d N / d l o g D$ in number of particles per dry normal cubic meter vs. particle diameter in micrometers as determined from the derivative of the predetermined fitting equation assuming unit density. The graph also shows the $\Delta N / \Delta l o g D$ distribution obtained from the particulate matter collected at each stage. These latter points are the sane data as plotted according to Card E, Column 4. Punch "1" to suppress the graph.

> Column 5: Punch "0" to receive the same graph as described for Column l of this card except here the plotted values are found by assuming physical density. Punch "l" to suppress the graph.
> Column 6: Punch "0" to receive the sane table and graph as described for column 2 of this card except here the values are found by assuming physical density. Punch "l" to suppress the table and graph.
> Column 7: Punch "0" to receive the same table and graph as described for Column 3 of this card except here the values are found by assuming physical density. Punch "l" to suppress the table and graph.
> Column 8: Punch "0" to receive the same table and grapi as described for Column 4 of this card except here the values are found by assuming physical density. Punch "l" to suppress the table and graph.

File Input and Output--
Frogram GRAPII uses three random access files. One of these, file number 8 under the file name "GRAPHO", is used exclusively within this program. All input into this file is made within this progran and the only reading of file 8 takes place within this program. This file is discussed in further detail below. File lo, under the file name "KMCOOl", carries needed information for programs SPLIN2 and GRAPH from the running of the impactor program MPPROG. File 10 is only a source of input data for program GRAPH. No additional values are added to it by this program. The third file is file number ll with the file name "FILSPL". It carries the fitting coefficients for fits made to $\log _{10}$ (cumulative mass loading) vs. $\log _{10}\left(D_{50}\right)$ for each run and assumed density. Two records are kept for each run as in file 10: one for assumed physical density and one for unit density.

File number 8, referenced as "FGRAPH" under the file name "GRAPH", is used to store the plotting code values for each run
as input from cards. There are a total of 50 records, each allocated 15 words. Each of these records contains the plotting code values for one impactor run. These include the values for obtaining both physical density plots and unit density plots. This is unlike files 10 and 11 where there are two records for each inpactor run: one for data obtained assuming physical density and one for data obtained assuming unit density. Each variable is an integer requiring one word. The variables and their definitions are as follows:

MPLOT: The value is 0 if a new grid is desired for plotting data from this impactor run. The value is i if data from this impactor run are to be superimposed on the graph of a previous run(s).
J1: The value is 0 if the plot of cumulative mass loading less than stage D_{50} in milligrams per actual cubic meter vs. stage $D_{5} 0$ in micrometers is desired for assumed unit density. The value is 1 if this plot is to be suppressed.
J2: The value is 0 if the plot of $\Delta M / \Delta \log D$ in milligrams per dry normal cubic meter vs. geometric mean diameter in micrometers of each stage in micrometers is desired for assumed unit density. The value is 1 if this plot is to be suppressed.
J3: The value is 0 if the plot of $\Delta N / \Delta \log D$ in number of particles per dry normal cubic meter vs. geonetric mean dianeter in micrometers of each stage in micrometers is desired for assumed density. The value is 1 if this plot is to be suppressed.
J4: The value is 0 to obtain the same plot as given for $\mathrm{Jl}=0$ except that physical density is assumed. The value is l if this plot is to be suppressed.
J5: The value is 0 to ottain the same plot as given
for $\mathrm{J} 2=0$ except that physical density is assumed. The value is l if this plot is to be suppressed.

J6: The value is 0 to obtain the same plot as given for $\mathrm{J} 3=0$ except that physical density is assurned. The value is 1 if this plot is to be suppressed.

JPl: The value is 0 to obtain the same plot as for Jl $=0$ with the fitted curve to these data superimposed. The value is 1 if this plot is to be suppressed.

JPCNTI:

JP2:

JP 3 :

JP4: The value is 0 to obtain the same plot as for Jl $=0$ except that physical density is assumed and. the fitted curve to this data is also superimposed. The value is 1 if this plot is to be suppressed.

JPCNT4: The value is 0 to obtain the curve of cumulative percent mass loading vs. particle diameter, in micrometers, for assumed physical density as determined from the cumulative mass loading vs. D_{50} curve fit. The value is 1 if this plot is to be suppressed.
JP5: The value is 0 to obtain the same plot as for $J 2=0$ ercept that physical density is assumed and the points of the $d M / d l o g D$ distribution are superimposed. This $d M / d \log D$ distrilution is obtained from the derivative with respect to $\log _{10}$ diameter of the cumulative mass loading vs. D_{50} curve fit. The value is 1 if this plot is to be suppressed.
JP6: The value is 0 to obtain the same plot as for $J 3=0$ except that physical density is assumed and the points of the dN/dlogD distribution are superimposed. Again this is obtained from the derivative of the cumulative mass loading curve fit. The value is 1 if this plot is to be suppressed.

The program STATIS is designed to make statistical analyses of the data taken during a number of impactor runs for a given test situation.

The user may obtain the following results in both tabular and graphical form:
a. average cumulative mass loading less than indicated diameter in milligrams per actual cubic meter
b. average percent cumulative mass loading less than indicated diameter
c. average differential particle-size distribution on a mass basis in milligrams per dry normal cubic meter (dM/dlogD)
d. average differential particle-size distribution on a number basis in number of particles per dry normal cubic meter (dN/dlogD).

Also calculated for each of these are the 50% confidence limits. (Note: These may be changed to 90% confidence limits by replacing the equations as indicated in this write-up.) Averages and confidence limits are based on the exclusion of outliers. Outliers are defined as any data not within a certain interval of the original average (including all data). See the discussion of subroutine AVCON for the specific definition of outlying data used in this program. Each of the four types of analysis discussed here is made for data where physical particle density is assumed and where unit density is assumed.

The programs which must be run before the execution of STATIS are the impactor program MPPROG and the cumulative mass loading vs. diameter fitting program, SPLINl. The impactor program stores the data points for cumulative mass loading vs. stage D_{50} for each of the impactor runs, and the fitting program fits each of these sets of data with a series of overlapping, continuous, second
degree polynomials. The parameters for each curve fit (number of intervals, interval boundaries, and coefficient values) must be on file so that they may be used in program STATIS to regenerate the cumulative mass loading vs. diameter curve fit for each impactor run. From this, one may generate a cumulative percent loading curve. With the original fitting equation and its derivative, the dM/dlogD and dN/dlogD graphs may also be generated. Thus, all calculations to obtain averages in STATIS are based on information derived from cumulative mass loading vs. D_{50} curve fits for individual impactor runs stored by the fitting program SPLINl.

The execution of program STATIS is also essential to the execution of program PENTRA which is used to calculate the penetration and efficiency of the gas cleaning device versus particle size. PENTRA uses the magnitude of average dM/dlogD values at the indicated diameters, and standard deviation about the average stored on file by STATIS, in order to make the penetration and efficiency calculations. STATIS must actually be executed twiceonce each for the inlet and outlet data sets.

It should be noted that in the Breakdown of Program STATIS below, physical density is assumed to have been input to program MPPROG. This results in calculations based on physical density and unit density (definition of aerodynamic diameter user specified) being listed alternately in output files. The user may instead desire to input only unit density to MPPROG yielding calculations based on the two different definitions of aerodynamic diameter (Mercer's ${ }^{2}$ and Task Group on Lung Dynamics ${ }^{1}$).

Breakdown of Program STATIS

038-046: Read coding to indicate whether the data to be used are inlet or outlet information. Consequently, the proper sequential file is established for output from this program. If statistical calculations are being made for inlet data, the information is
stored in file l6; if statistical calculations are being made for outlet data, the information is stored in file 17.
047-073: Read coding to indicate whether even or odd numbered records are to be used for averaging (i.e., whether records for physical density, respectively, are to be used, which plots are desired, the plotting range for these plots, and whether a constant of integration is to be added to calculation of average cumulative mass loading. The coding NOFILE $=1$ is the indication that there have been no fits made to the cumulative mass loading vs. D_{50} for this density. Thus, no statistical calculations are to be made for the data of this assumed density. The program enters "flag" variable values which will indicate that penetration-efficiency calculations cannot be made for this density when read in program PENTRA. These dM/dlogD values are "0"'s where the assumed density and number of diameter points examined would have been entered. For example, if $N=1$ and NOFILE $=1$, the assumed density is physical, and the program returns to statement number 1 (card 067) to read in information concerning unit density ($\mathrm{N}=2$). If N is 2 and NOFILE $=1$, the program ends with the STOP command.
074-087: A desired maximum plotted diameter may be read into the program. Otherwise, the maximum plotted diameter is 8.0 micrometers (PSTOP) for physical density and 10.0 micrometers (ASTOP) for unit density.
088-118: Read the general information record (record 101) from file l0. This includes the number of impactor runs, NRUN, coding for the type of impactor, IMPAC, the general identification label, IDALL, physical density, RHOl, and grid limits for all
plots according to the range of the data, GEMAX through CUMIN.

119-124: The assumed particle density for these statistical calculations is saved as RHOX. This is the physical density RHOl read from the general information record lol if $N=1$. RHOX is the unit density l. 0 gram per cubic centimeter if $N=2$.

125-129: The last record containing run data for the assumed density is defined here as ISFIN according to the assumed density as indicated by coding N and according to the number of impactor runs to be statistically evaluated, NRUN. (Recall, there are two records for each impactor run-odd records for assumed physical density, even records for assumed unit density.
130: The average total mass (grain) loading for this assumed density, $A T G L_{N}$, is given an initial value of 0.0 milligram per actual cubic meter before its calculation.

131-137: In a loop, the total mass loading, $T G L$ IS in milligrams per actual cubic meter, is read from file 10 for each run.
138-150: IAVLD is coding in subroutine AVCON to indicate whether confidence limits are to be found for averages. It is set equal to 0 here so that confidence limits are not calculated for the average total mass loading, ATGL ${ }_{I S}$. The subroutine AVCON ($\mathrm{N}, \mathrm{IAVLD}, \mathrm{NDK}, \mathrm{NOCON}_{1}, \mathrm{ISFIN}, \mathrm{TGL}, \mathrm{ATGL}_{\mathrm{N}}$, AVDM1, CUM2D1, CUM2LD, CISUM, SIGMA, CLU $1, C L L_{1}$, DINC) takes the total mass loading values, TGL, to calculate a preliminary standard deviation SIGMA. A new final average $A T G L_{N}$ is then calculated where any outlying $T G L$ IS values are excluded. The variables NOCON 1 and AVDM1 through DINC are dummy variables in this case. No confidence limits are taken.

151-158: CUM2D D_{1} is the cumulative mass loading less than the specified diameter in milligrams per actual cubic meter; CUM2LD is this same quantity up to the previous diameter. CISUM is the sum of the squares of the confidence intervals of all the dM/dlogD values up to the specified diameter in milligrams per actual cubic meter. AVDML is the average $d M / d l o g D$ value at the previous specified diameter in milligrams per actual cubic meter. At this time, before entering the loop at card 153 , there are no "specified" diameters. Thus, CUM2D ${ }_{1}$, CUM2LD, CISUM, and AVDMI, are given initial values of 0.0 here.
159-627: The program begins a large loop here through statement 254 (card 627). The index MDK (or NDK $=\mathrm{MDK}$ 2) specifies the type of calculations and output to be made on each passage through the loop: MDK $=1$ or $N D K=-1$ yields graph and line printer output for average cumulative mass loading less than specified diameter in milligrams per actual cubic meter vs. specified diameter in micrometers. Also on this same traverse NDKl is changed from 0 to 1 to obtain the same output for cumulative percent mass loading less than specified diameter vs. specified diameter in micrometers.
$M D K=2$ or $N D K=0$ yields graph, line printer, and file output for average dM/dlogD in milligrams per dry normal cubic meter vs. specified diameter in micrometers. MDK $=3$ or $N D K=1$ yields graph and line printer output for average dN/dlogD in number of particles per dry normal cubic meter vs. specified diameter in micrometers.

All of the output discussed here also includes upper and lower 50% confidence limits. (Note: 90% confidence limits may be obtained by substituting the formulas as specified in the discussion of subroutine AVCON.) Also, a list of outlying values is printed with each type of calculation.
188: NDKl is a code variable whose value determines the type of vertical scale desired for plotting. NDKl $=0$ yields a common log vertical scale. NDKl = l yields a log probability scale (used only for plotting of average cumulative percent mass loading).
189-245: According to the type of calculations to be made, i.e., according to the value of MDK, various headings are written at the top of the page on the line printer. The heading always includes the general identification label IDALL and assumed density RHOX. For MDK $=1$ there are column headings for diameter index number, diameter in micrometers, mean cumulative mass concentration less than specified diameter in milligrams per actual cubic meter, and upper and lower 50% confidence limits in the same units. For $M D K=2$ there are column headings for diameter index number, diameter (micrometers), mean $d M / d l o g D$ in milligrams per dry normal cubic meter, standard deviation, and upper and lower 50% confidence limits all in the same units. Likewise, for $M D K=3$ there are the same headings for $d N / d l o g D$ in number of particles per dry normal cubic meter. Also if a plot is desired (when IPLTl, IPLT2, or IPLT3 $=0$ for MDK $=1,2$, or 3 , respectively) a plotting grid is drawn on the plotter by subroutine STPLOT along with labeling of axes.

246-255: Define the common log increment of the diameter to be added on each traverse of the loop, DINC. For calculations of cumulative mass loading, DINC is defined such that there are 28 points per common log cycle:

$$
\begin{equation*}
\text { DINC }=0.0357142857 \tag{208}
\end{equation*}
$$

For calculation of $d M / d l o g D$ and $d N / d l o g D, D I N C$ is defined such that there are 14 points per common \log cycle:

$$
\begin{equation*}
D I N C=0.0714285714 \tag{209}
\end{equation*}
$$

The number of points per log cycle is arbitrary; however, the number of points for cumulative mass loading is twice that of the differential size distributions in order to construct a more accurate cumulative mass loading curve. (The ultimate would be an infinite number of changes in mass concentration summed over infinitely small $\log _{10}$ diameter intervals.)

256-261: Dl is the variable used in the derivative fitting equation and is defined as the common logarithm of the true particle diameter in micrometers. The curve fit starts at 0.25 micrometers diameter.
This is an arbitrarily chosen size with which to begin the fitting loop. The user should take appropriate caution in evaluating extrapolated data if the D_{50} or geometric mean diameter of the last stage is greater than this beginning particle size of 0.25 micrometers. The initial value of Dl is:

$$
\begin{equation*}
\mathrm{Dl}=\log _{10}(0.25) \tag{210}
\end{equation*}
$$

262-272: The maximum diameter at which calculations cease, DSTOP, is defined in micrometers according to the assumed particle density. (Recall discussion of cards 074-087 that this maximum diameter is ASTOP for assumed unit physical density.)

273-274: The number of points (diameters) at which calculations are to be made, PLAS, is defined by dividing the plotting range by the common log increment DINC:

$$
\begin{equation*}
\text { PLAS }=\left[\log _{10} 0(D S T O P)-D 1\right] / D I N C \tag{211}
\end{equation*}
$$

This real variable PLAS is changed to an integer variable LAS with one point added for the initial point Dl :

$$
\begin{equation*}
\text { LAS }=\text { PLAS }+1 \tag{212}
\end{equation*}
$$

275-279: If calculations are being made for the mean dM/dlogD size distribution ($N D K=0$), the first entry into a sequential file MPACFL is made here. MPACFL $=16$ if the data here is from inlet testing. MPACFL $=17$ if this data is from outlet testing. (See discussion on cards 038-046). The information from this file along with information from the companion inlet or outlet file will be used in program PENTRA to calculate penetration and efficiency of the gas cleaning device. This first entry consists of assumed particle density, RHOX, in grams per cubic centimeter, and the number of tested diameter points, LAS.

280-485: A loop begins here which contains all calculations to obtain average cumulative mass loading (NDK = -l), average dM/dlogD (NDK = 0), or average dN/dlogD (NDK = -l) vs. particle diameter with 50\% confidence limits. Output to the line printer, plotter, and file MPACFL (for NDK = 0) are also made in this loop. The value of NSLOT is the diameter index number and MSLOT $=$ NSLOT -l is the diameter index number of the previous diameter. Note that the average percent cumulative mass concentration vs. particle diameter is calculated outside the loop.

291-295: DPLOT is the actual diameter in micrometers, and is a function of the curve fitting diameter variable Dl:

$$
\begin{equation*}
\text { DPLOT }=10.0^{\mathrm{Dl}} \tag{213}
\end{equation*}
$$

296-303: A sum of changes in particle concentration, SUM, is calculated over all runs at the indicated diameter, DPLOT. This is the sum of changes on a mass basis in milligrams per actual cubic meter if NDK $=-1$, or the sum of changes on a mass basis in milligrams per dry normal cubic meter if NDK $=0$, or the sum of changes on a number basis in number of particles per dry normal cubic meter if $N D K=1$. SUM is given the initial value of 0.0 , and the number of runs contributing a quantity to this sum, NUPTS, is also given an initial value of 0 .
304-377: The loop begins here which sums the increments as discussed above. Note that the index IAV is incremented by 2 on each traverse of the loop so that only those records having the same assumed density provide data to be summed.
305-311: The record of each run for the assumed density is read to obtain the stack temperature in degrees Kelvin, TKS, the impactor inlet pressure in atmospheres, POA, and the percent water-vapor content of the gas, FGH2O. These are used to convert average mass size distribution values from milligram per actual cubic meter to milligrams per dry normal cubic meter. (See cards 357-364.) Variables NFIT, GRNAM, ID, and RHO are dummy variables here.
312-321: At the appropriate record IS, the number of interval boundary points generated for the cumulative mass loading fit, NPOIN, is read. The number of intervals which these points bound, INT, is
defined as NPOIN -l. From this record, the program also reads the actual boundary point values, $\mathrm{XI}_{\mathrm{I}}(\mathrm{I}=1, \mathrm{NPOIN})$ and $\mathrm{Y} \mathrm{I}_{\mathrm{I}}(\mathrm{I}=1, \mathrm{NPOIN})$, and the second degree polynomial coefficients which yield the curve fit to the cumulative mass loading vs. D_{50} data for the run, $\operatorname{COE}_{I J}(I=1, I N T ; J=1,3)$.
322-330: The diameter variable Dl is tested in a loop to find the interval in which it lies. Starting at the second smallest boundary diameter variable Xl_{2}, Dl is compared to the boundary diameter variable values until $\mathrm{Dl} \leq \mathrm{Xl}_{J}$. Then the interval, NINT, in which $D l$ lies is equal to $J-1$. If there are Dl values $<\mathrm{Xl}_{1}$ (which is $\log _{10}\left(\mathrm{D}_{50}\right)$ of the smallest stage cutpoint), they are defined as being in the first interval NINT $=1$. If there are Dl values > $\mathrm{Xl}_{\text {NPOIN }}$, which is $\log _{10}$ (maximum particle diameter), they are defined as being in the last interval NINT.
331-343: If average cumulative mass loading is being calculated ($N D K=-1$), and if this is the first traverse of the loop (NSLCT=1, i.e.., finding the cumulative mass loading of particulate <0.25 micrometers), and if a cumulative mass loading constant of integration is desired (NCUCON=0), this constant is calculated for each run of this assumed density, CUCONl IS, as a function of the diameter variable with a value one increment smaller (DINC) than the first value of $\mathrm{Dl}=\log _{10}(0.25)$:

$$
\begin{equation*}
\mathrm{CUCON}_{\mathrm{IS}}=C_{1}+C_{2}(D 1-D I N C)+C_{3}(D 1-D I N C)^{2} \tag{214}
\end{equation*}
$$

The value CUCON_{1} found here is in the form of the $\log _{10}$ (cumulative mass loading). The antilog is taken so that CUCONl is actual cumulative mass loading up to but not including 0.25 micrometers. Note also that if this "initial" cumulative mass loading is < 10^{-5} milligrams per actual cubic
meter, it is given that value anyway. This is to prevent such a large range of scale for the average cumulative mass loading grid.
344-357: The program calculates the change in mass concentration with respect to logio (diameter), dM/dlogD, in milligrams per actual cubic meter at the given diameter. This requires both the value of $\log _{10}$ (cumulative mass concentration), PPP, as determined by the second degree polynomial fitting coefficints of the interval, C_{1}, C_{2}, and C_{3}, and the $\log _{10}$ (diameter), Dl:

$$
\begin{align*}
\mathrm{PPP} & =\log M \tag{215}\\
& =C_{1}+C_{2}(\mathrm{Dl})+C_{3}(\mathrm{Dl})^{2}
\end{align*}
$$

and the value of the derivative of $P P P$ with respect to Dl, DELMBC, as determined by C_{2}, C_{3}, and $D l$:

$$
\begin{align*}
\mathrm{DELMBC} & =\mathrm{dlog} M / \mathrm{d} \log \mathrm{D} \\
& =\mathrm{C}_{2}+2 \mathrm{C}_{3}(\mathrm{Dl}) \tag{216}
\end{align*}
$$

The change in cumulative mass concentration dM/dlogD is also named DELMBC. Thus, DELMBC is redefined:

$$
\begin{align*}
\mathrm{DELMBC} & =\mathrm{dM} / \mathrm{dlogD} \tag{217}\\
& =2.302585 \text { DELMBC }(10.0)^{\mathrm{PPP}}
\end{align*}
$$

(See the discussion of JOE2 where it is shown that:

$$
\begin{equation*}
\left.\frac{d M}{d(10 g D)}=2.302585 \frac{\mathrm{~d}(\mathrm{PPP})}{\mathrm{d}(\mathrm{D} 1)}(10.0)^{\mathrm{PPP}}\right) . \tag{218}
\end{equation*}
$$

358-372: $\mathrm{dM} / \mathrm{dlog} \mathrm{D}$ is in units of milligrams per actual cubic meter if $N D K=-1$. It is in milligrams per dry normal cubic meter, DELM, if $N D K=0$. To make the conversion, DELMBC is divided by the factor CONVRT:

$$
\begin{aligned}
& \text { CONVRT }=(294 / \mathrm{TKS}) \text { POA }[(100.0-\mathrm{FGH} 20) / 100.0] \\
& \text { where } T K S=\text { temperature of stack }\left({ }^{\circ} \mathrm{K}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { POA }= \text { gas pressure at the impactor } \\
& \text { inlet (atmosphere) } \\
& \text { FGH2O }= \text { percent water content of the gas } \\
& \text { dM/dlogD may be converted to dN/dlogD, DELN, if } \\
& \text { NDK }=1, \text { by dividing by particle density and }
\end{aligned}
$$ volume:

$$
\begin{aligned}
\text { DELN }= & \left(6.0 / \rho \pi D^{3}\right) \text { DELM } \times 10^{9} \\
\text { where } P= & \text { assumed particle density } \\
& \left(\mathrm{gm} / \mathrm{cm}^{3}\right) \\
D= & \text { particle diameter }(\mu \mathrm{m}) \\
\text { DELM }= & \mathrm{dM} / \mathrm{dlogD}(\mathrm{mg} / \mathrm{ACM})
\end{aligned}
$$

The variable $\mathrm{DEL}_{\mathrm{IS}}$ is defined as the change in concentration at the given diameter DPLOT in one of three systems of units, depending on the value of NDK as discussed here.
373: The loop which began at card 304 ends here. The loop returns to calculate $\mathrm{DEL}_{\text {IS }}$ at the same diameter DPLOT and same assumed particle density, ρ, for the next run until $\mathrm{DEL}_{\text {IS }}$ has been calculated for all like density runs at the same diameter.
374-375: The code variable IAVLD is to be used in the call to subroutine AVCON. By setting IAVLD = l, AVCON will calculate 50% confidence limits if there are enough data to calculate these, i.e., two or more values.

376-387: If average cumulative mass loading is being calculated NDK = -1.
388-389: The value of code variable NOCON ${ }_{\text {NSLOT }}$ signals, upon return from AVCON, whether there were enough data to calculate confidence limits. It is input to AVCON as 0 and remains this value if confidence limits are calculated. It is set equal to l if the confidence limits are not calculated. Also, the average change in particle concentration, AVD (units depend on value of NDK), is initialized as 0.0 .

390-426: Subroutine AVCON, ($\mathrm{N}, \mathrm{IAVLD}, \mathrm{NDK}, \mathrm{NOCON}_{\text {NSLOT }}{ }^{\prime}$ ISFIN, DEL, AVD, AVDM1, CUM2D ${ }_{\text {NSLOT }}, ~ C U M 2 L D, ~ C I S U M, ~$ SIGMA, CLU ${ }_{\text {SNLOT' }} \mathrm{CLL}_{\text {NSLOT' }}$ DINC) is called to calculate the average, AVD, of all suitable values of DEL. "Suitable values" refers to the exclusion of any negative $D_{\text {IS }}$ value and the exclusion of any ${ }^{D E L} I_{\text {IS }}$ value determined to be an outlier (such DEL $I S$ values are set $=-50.0$ in subroutine AVCON as an arbitrary negative "flag" value). An average of the cumulative mass concentration, CUM2D, is also calculated for each increment in $\log _{10} D$ if $N D K=1$. CUM2D represents this average cumulative mass loading less than the specified diameter in milligrams per actual cubic meter. If there is a sufficient number of data values, the upper and lower 50\% confidence limits, CLU ${ }_{\text {NSLOT }}$ and CLL $_{\text {NSLOT }}$, respectively, are also calculated. The method of calculating these limits depends on the value of NDK.

427: NSETS is a code variable which is a simple function of $\operatorname{NOCON}_{\text {NSLOT }}$:

$$
\begin{equation*}
\text { NSETS }=\text { NOCON }_{\text {INSLOT }}+1 \tag{221}
\end{equation*}
$$

NSETS $=1$ is equivalent to NOCON $_{\text {NSLOT }}=0$ and indicates that confidence limits are calculated in subroutine AVCON. NSETS $=2$ is equivalent to NOCON $_{\text {NSLOT }}=1$ and indicates that there is insufficient data for calculation of 50% confidence limits in subroutine AVCON.
428-455: The output of the line printer is dependent on both NDK and NSETS, i.e., the type of average to be calculated and whether confidence limits could be calculated. The diameter index number NSLOT, the diameter DPLOT, and the average (AVD = average
differential concentration for $N D K=0$ or 1 , or CUM2D = average cumulative mass loading less than indicated diameter for $N D K=-1$) are printed regardless of the value of NSETS. If NSETS $=1$, the value of the standard deviations, SIGMA, and the upper and lower 50% confidence limits CLU ${ }_{\text {NSLOT }}$ and CLL ${ }_{\text {NSLOT }}$ are printed for $N D K=0$ or 1 . The upper and lower 50% confidence limits only are printed for NDK $=-1$. If NSETS $=2$, "INSUFFICIENT DATA" is printed in each of these positions.
456-465: A loop occurs here which saves values excluded in calculating averages and confidence limits at this diameter (íe., any $D E L_{I S}$ value < 0.0). The number of values excluded at a given diameter is NOUT NSLOT. The record numbers of any excluded values at the given diameter are also saved in a two-dimensional matrix, THROUT ${ }_{\text {NSLOT, NT' }}$ where NSLOT is the diameter index and NT is an index for the number thrown out. These values are saved so that excluded records may be printed out with the table of averages and confidence limits for each value of NDK. The number of values to be used in calculating averages and confidence limits is saved as NIN.

466: The output device used next depends upon the value of NDK. If the averages and confidence intervals for cumulative mass loading less than indicated diameter (NDK $=-1$), or for $d N / d l o g D ~(N D K=1)$ are calculated here, the program checks directly to see if plotting is desired at statement 117 (card 467) or 119 (card 477), respectively. If the averages and confidence intervals for $d M / d \log D$ (NDK=0) are calculated here, the program goes to statement 118 (card 475) to first write values
into file MPACFL (for use in program PENTRA) before checking to see if plotting is desired.
467-474: The program comes to statement 117 (card 468) for plotting the cumulative mass loading, CUM2D, less than the indicated diameter, DPLOT, along with upper and lower confidence limits CLU $_{\text {NSLOT }}$ and $\mathrm{CLL}_{\text {NSLOT' }}$ respectively, if $\operatorname{NOCON}_{\text {NSLOT }}=0$. The confidence limits will not be calculated or plotted if $\operatorname{NOCON}_{\text {NSLOT }}=1$. Recall that twice as many diameters are being examined for the average cumulative mass distribution than are examined for either $d M / d l o g D$ or $d N / d l o g D$. It is not desirable to plot all these points on the graph, therefore, a test is made so that only every other point is plotted. Only when IPLOT is negative is a point plotted. IPLOT is calculated as:

$$
\begin{equation*}
\text { IPLOT }=(-1)^{\text {NSLOT }} \tag{222}
\end{equation*}
$$

Plotting is done by calling subroutine STATPT (NDKl,
 XMAX, XMIN, YMAX, YMIN, XS, YS) if IPLOT =-l. Since NDK $=0$ when this subroutine is called, the plotting will be done on a log-log grid. The maximum and minimum axis values XMAX, XMIN, YMAX, and YMIN along with scale factors $X S$ and YS are also input to STATPT. These are calculated in subroutine STPLOT. If cumulative mass loading less than indicated diameter is calculated (NDK=-1), the average $d M / d \log D$ at the indicated diameter in milligrams per actual cubic meter, AVD, is redefined as AVDMl, the average $d M / d l o g D$ at the previous diameter in the same units. Likewise, the cumulative mass loading less than the indicated diameter in milligrams per actual cubic meter, CUM2D, is
redefined as AVDMI, the average $d M / d l o g D$ at the previous diameter in the same units. Likewise, the cumulative mass loading less than the indicated diameter in milligrams per actual cubic meter, CUM2D, is redefined in a similar fashion as CUM2LD, the cumulative mass loading less than the previous diameter. The program then goes to statement 150 (card 480) where Dl is incremented by DINC and calculations are repeated for the new diameter.

475-476: The program comes to statement 118 (card 475) if calculation of average $d M / d l o g D$ is made (i.e.., if NDK $=0$). Here, an entry is made into the sequential access file MPACFL (file 16 if making statistical calculations for inlet data, file 17 if for outlet data) for use in the penetration-efficiency program PENTRA. The values written into this record are the diameter in micrometers at which the average dM/dlogD value is being calculated, DPLOT, the average $d M / d l o g D$ value in milligrams per normal dry cubic meter, AVD, the standard deviation of this average in the same units, SIGMA, and the number of $d M / d l o g D$ values used to find this average and standard deviation, NIN. The program then checks plot coding IPLT2. If a plot of average $d M / d \log D$ vs. diameter, DPLOT, is desired, IPLT2 ≤ 0 (usually IPLT2=0), and the program goes to statement 140 (card 478) for plotting. Otherwise, the program goes to statement 150 (card 480) to increment the $\log _{10}$ (diameter) and traverse again the loop ending at statement 200 (card 481) for the new diameter variable, Dl.
477: Plot coding IPLT3 for plotting average dN/dlogD vs. diameter DPLOT is checked here. If the plot is desired, $1 P L T \leq(u s u a l l y$ IPLT $3=0$), and the program
goes to statement 140 (card 478) for plotting. Otherwise, the program goes to statement 150 (card 480) to increment the $\log _{10}$ (diameter) and traverse again the loop ending at statement 200 (card 481) for the new diameter variable, Dl.
478-479: The program comes to statement 140 (card 478) for plotting the average $d M / d l o g D$ or $d N / d l o g D$ value at the indicated diameter, DPLOT, along with upper and lower 50% confidence intervals CLU ${ }_{\text {NSLOT }}$ and $\mathrm{CLL}_{\text {NSLOT' }}{ }^{\prime}$ if $\mathrm{NOCON}_{\text {NSLOT }}=0$. Again, there are no confidence limits plotted if $\mathrm{NOCON}_{\text {NSLOT }}=1$. The subroutine STATPT is called with the same result as at statement 2117 (cards 470-471) except that an average differential size distribution value, AVD, is plotted instead of an average cumulative mass loading less than indicated diameter, CUM2D.
480-481 The diameter variable $\mathrm{Dl}=\log _{10}$ (diameter) is incremented here and the program returns to the beginning of this loop (card 289) to make calculations at the new diameter.
482-498: A table of records whose outlying values were excluded from averaging at each diameter is printed out here. The table shows a heading of the general identification label IDALL and assumed density RHOX. Such a table is printed for each value of NDK, i.e., one each for mean cumulative mass concentration less than particle diameter (NDK= -l), mean $d M / d \log D(N D K=0)$, and mean $d N / d l o g D$ ($N D K-1$). Such a table is not printed out for mean cumulative percent concentration less than particle diameter. However, the table would be the same as that for mean cumulative concentration.
499-508: The value of NDK is checked here. If values of average cumulative mass loading less than the
indicated diameter have been calculated (NDK= -1), or if values of average dN/dlogD at the indicated diameter have been calculated ($N D K=1$), the program goes directly to check if a plot has been made (to statement 255 at card 513 or to statement 252 at card 618, respectively) so that the pen can be put back in its "home position" at the base of the plotter paper 2 inches beyond the maximum x-axis. If values of average $d M / d l o g D$ at the indicated diameter have been calculated ($N D K=0$) the program goes to statement 251 (card 606) to make the final entry into the file MPACFL for the density which is a series of 5 asterisks, DAST, in place of diameter, mean $d M / d l o g D$, and standard deviation. Then a check is made to see if the plotter is being used as above.
509-525: The program comes to statement 255 (card 513) for NDK $=-1$ to check if a plot of cumulative mass loading less than indicated is being made. If so, IPLTl $=0$, and the program goes to statement 304 (card 619) to put the pen in its "home position" after plotting. If not (IPLTl=1), the program goes to statement 253 (card 525) to write the headings for average cumulative percent mass loading less than indicated diameter. As before, this includes the general identification label IDALL and the assumed particle density RHOX. Also, column headings are printed for diameter index number, indicated diameter, average cumulative percent mass loading less than indicated diameter, upper 50% confidence limit, and lower 50% confidence limit.
526-539: If a plot of average cumulative percent mass loading vs. diameter is desired, IPLT4 $=0$. In this
case, the program goes to statement 257 (card 535) to call subroutine CPPLOT (IDALL, RHOX, XMAX, XMIN, YMAX, YMIN, XS, YS) which draws a log probability vs. common log grid, labels the axes for cumulative percent mass loading vs. particle diameter, and writes the general identification label IDALL and density RHOX above the grid. If the plot is not desired (IPLT4=1), the call to CPPLOT is skipped, and the program goes to statement 258 (card 539) where the first diameter variable for calculating average cumulative percent mass loading, Dl, is defined:

$$
\begin{equation*}
\mathrm{D} 1=\log _{10}(0.25) \tag{223}
\end{equation*}
$$

540: The code variable NKDl is set equal to a -1 as an indication to the plotting subroutine STPLOT that these points are to be plotted on a grid with a log probability vertical axis (rather than a common log axis as for previous plotting where NDK1 = 0).

541-456: A loop begins here continuing to statement 270 (card 599) which plots average cumulative percent mass loading less than indicated diameter vs. diameter with 50% confidence limits. The loop also gives a tabular line printer output of these values. The common log of the indicated diameter is incremented on each traverse of the loop.
547-550: The antilog of the plotted diameter variable Dl is taken, yielding the output value for the line printer, DPLOT:

$$
\begin{equation*}
\text { DPLOT }=10.0^{\mathrm{Dl}} \tag{224}
\end{equation*}
$$

551-560: The cumulative mass loading in milligrams per actual cubic meter less than indicated diameter CUM2D ${ }_{\text {NSLOT' }}$ along with its upper and lower 50%
confidence limits with the same units $C L U_{\text {NSLOT }}$ and CLL ${ }_{\text {NSLOT' }}$ respectively, have been calculated. These values are now converted to the cumulative fraction of mass loading less than indicated diameter with fractional upper and lower confidence limits by dividing by the average total mass loading in milligrams per actual cubic meter, ATGL ${ }_{N}$:

$$
\begin{align*}
& \text { CUM2D }_{\text {NSLOT }}=C^{C U M 2 D_{N S L O T}} / A T G L_{N} \tag{225}\\
& \text { CLU }_{\text {NSLOT }}=C L U_{\text {NSLOT }} / A T G L_{N} \tag{226}\\
& \text { CLL }_{\text {NSLOT }}=C L L_{N S L O T ~} / A T G L_{N} \tag{227}
\end{align*}
$$

561: The code variable IPLOT is calculated so that odd values of the diameter index number, NSLOT, yield IPLOT $=-1$, while even NSLOT values yield IPLOT $=1$. Recall that there are twice as many values of cumulative mass loading values as there are values of $d M / d \log D$ or $d N / d \log D$ and, therefore, twice as many cumulative percent mass loading values. To keep the graph from being too crowded with points, only those diameters for which IPLOT $=-1$ are plotted.

562: If a graph of cumulative percent mass loading less than indicated diameter vs. diameter is not desired (IPLT4=1), or if a particular point is not one which is to be plotted (IPLOTf -1), the call to subroutine STATPT which would have plotted the point is skipped.
563-569: The program calls subroutine STATPT (NDKl, NOCON NSLOT' D1, CUM2D ${ }_{\text {NSLOT' }}{ }^{\text {CLU }}{ }_{\text {NSLOT' }} \mathrm{CLL}_{\text {NSLOT }}{ }^{\prime}$ XMAX, XMIN, YMAX, YMIN, XS, YS) to plot the cumulative percent mass loading less than indicated diameter CUM2D ${ }_{\text {NSLOT }}$ along with its 50% confidence limits, $\mathrm{CLU}_{\text {NSLOT }}$ and $\mathrm{CLL}_{\text {NSLOT }}$ vs. the indicated diameter

DPLOT. Since NDKl is input to the subroutine as 1 , the variables CUM2D ${ }_{\text {NSLOT }}$ CLU $_{\text {NSLOT }}$, and $\mathrm{CLL}_{\text {NSLOT }}$ are used to find plotting variables in terms of the log probability scale for the vertical axis. (Recall that for NDKI $=0$, these arguments would be used to find plotting variables in terms of a common log scale). Note that CUM2D ${ }_{\text {NSLOT' }}{ }^{\prime}$ $\mathrm{CLU}_{\text {NSLOT' }}$ and $\mathrm{CLL}_{\text {NSLOT }}$ are input as fractions although the log probability scale used for the plot shows these values as percentages. Also, when NDKl $=1$, the indicated diameter Dl is input already in terms of the common log scale. Recall that for NDKl $=0$, this argument is input as the literal diameter DPLOT and must be converted to a common log variable within subroutine STATPT. The upper and lower 50% confidence limits are not plotted if $\mathrm{NOCON}_{\text {NSLOT }}$ is input as 1 . This indicates insufficient data for calculation of the confidence limits and CLU ${ }_{\text {NSLOT }}$ and $C L L_{\text {NSLOT }}$ in this case are only dummy arguments. For $\mathrm{NOCON}_{\text {NSLOT }}=0$, the confidence limits are plotted. The maximum and minimum axis limits, XMAX, XMIN, YMAX, AND YMIN, and the scale factors, $X S$ and $Y S$, are input as calculated from CPPLOT.

570-576: CUM2 $_{\text {NSLOT }}{ }^{\text {CLU }}{ }_{\text {NSLOT }}$, and CLL $_{\text {NSLOT }}$ were input to subroutine STATPT above as cumulative fraction of mass loading less than indicated diameter and as fractional upper and lower 50% confidence limits. These are converted to percentages for line printer output:

$$
\begin{align*}
& {\mathrm{CUM} 2 \mathrm{D}_{\text {NSLOT }}}=100{\mathrm{CUM} 2 \mathrm{D}_{\text {NSLOT }}} \tag{228}\\
& \mathrm{CLU}_{\text {NSLOT }}=100 \mathrm{CLU}_{\text {NSLOT }} \tag{229}\\
& \text { CLL }_{\text {NSLOT }}=100 \mathrm{CLL}_{\text {NSLOT }} \tag{230}
\end{align*}
$$

577-593: There are two line printer output forms which may be used. If the confidence limits are calculated $\left(\right.$ NOCON $\left._{\text {NSLOT }}=0\right)$, the program uses the write statement at card 585 to print values of the diameter index number NSLOT, the diameter in micrometers DPLOT, the cumulative percent mass loading CUM2D ${ }_{\text {NSLOT }}$, the upper 50% confidence limit CLU ${ }_{\text {NSLOT' }}$ and the lower 50% confidence limit CLL $_{\text {NSLOT' }}$ in their respective columns. If the confidence limits are not calculated ($\mathrm{NOCON}_{\mathrm{NSLOT}}=1$), the program skips to statement 261 (card 593) to write NSLOT, DPLOT, and CUM2D ${ }_{\text {NSLOT }}$ as above. However, in the columns for CLU ${ }_{\text {NSLOT }}$ and CLL ${ }_{\text {NSLOT' }}$ "INSUFFICIENT DATA" is written. This indicates that there are less than three values of cumulative percent mass loading less than the indicated diameter within the allowed deviation from the average; (see subroutine AVCON) and therefore insufficient data for calculating confidence limits.
594-599: The diameter variable $\mathrm{Dl}=\log _{10}$ (diameter) is incremented, and the loop is repeated at card 546 using this new value of the diameter variable.
600-605: If cumulative percent mass loading less than indicated diameter vs. diameter has been plotted (IPLT4:0), the program goes to statement 304 (card 619) where the pen is put back at its "home position." Otherwise, the program goes directly to statement 254 (card 623). This is the end of the loop with MDK as index. The program returns to the top of the loop at card 180 where MDK $=2$ and NDK $=0$. Calculations are now made for dM/dlogD vs. diameter.

606-612: When all calculations have been completed for $d M / d \log D$ vs. diameter, the program comes to state-
ment 251. Here the last entry, DAST, is made into file MPACFL for this particle density. DAST is defined in a data statement as 5 asterisks. This will be a signal in program PENTRA that all data for this density has been processed to find penetration and efficiency. Program STATIS now checks to see if plotting was done for the $d M / d l o g D$ vs. diameter graph. If so, IPLT2 $=0$, and the program goes to statement 304 (card 619) to place the pen back in its "home position." Otherwise, the program goes directly to statement 254 (card 623) which is the end of the loop where MDK is the index. The program returns to the top of the loop at card 180 where MDK now $=3$ and NDK $=1$. Calculations are now made for $d N / d l o g D$ vs. diameter.
613-618: When all calculations have been completed for dN/dlogD vs. diameter, the program comes to statement 252 (card 618). Here the program checks to see if plotting was done for $d N / d l o g D$ at indicated diameter vs. diameter. If so, IPLT3 $=0$, and the program goes to statement 304 (card 619) to place the pen back in its "home position." Otherwise, the program goes to statement 254 (card 623) which is the end of the loop where MDK is the index. The range of MDK is from l to 3 . On this traverse, MDK $=3$, and all calculations of this loop from card 180 to card 574 have been completed for the assumed particle density.
623-624: Recall that the assumed particle density is indicated by the code variable $N=1$ for physical and $\mathrm{N}=2$ for unit density. If all functions have been completed for physical density (i.e., if $\mathrm{N}=1$), the program returns to statement 1 (card 68) to read in the required information for carrying
out all of these same functions where the assumed density is aerodynamic density ($\mathrm{N}=2$). If this has already been done, the program stops.

Functions of the Called Subroutines

Subroutine AVCON (N, IAVLD, NDK, NOCON, ISFIN, VAR, AVG, AVGMI, CUM2D, CUM2LD, CISUM, SIGMA, CLU, CLL, DINC)--

Subroutine AVCON flags outliers and then, for remaining values finds the average, AVG, standard deviation, SIGMA, and (if desired) upper and lower 50% confidence limits, CLU and CLL, for a list of input values,VAR.

VAR is an array containing similar values for two different assumed particle densities. Every other value of VAR is used to find the average so that this average represents values based on only one density. The value of N determines the values to be averaged. $N=1$ causes odd values (where physical density is assumed) to be averaged. $N=2$ causes even values (where unit density is assumed) to be averaged.

The values of VAR are tested for outliers so that any such values may be excluded from the final calculation of the average, standard deviation, and confidence limits. As defined in the Quality Assurance Handbook For Air Pollution Measurement Systems, Vol. 1 Principles (EPA-600/9-76-005, January 1976, Section No. F, pp. 5-9), outliers are defined as a function of the standard deviation (before exclusion):

$$
\begin{equation*}
\left[\left(v_{I}-\bar{v}\right) / s\right]-T_{C} \geq 0.0 \tag{231}
\end{equation*}
$$

where $V_{I}=$ VAR value being tested
$\overline{\mathrm{V}}=$ average of the VAR values

$$
\begin{aligned}
\mathbf{s} & =\text { standard deviation of VAR values }=\left(\frac{\sum_{\sum}^{\operatorname{ISFIN}, 2}\left(\mathrm{~V}_{I}-\overline{\mathrm{V}}\right)^{2}}{n-1}\right)^{\frac{1}{2}} \\
\mathbf{N} & =1 \text { for evaluation if physical density is assumed } \\
& =2 \text { for evaluation if unit density is assumed }
\end{aligned}
$$

The values of T_{C} are determined for an upper 5% significance level (i.e. There is only a 5% chance that data outside the range of the critical fraction of σ would be excluded from the statistical analysis in error.) In order to avoid storing the lengthy table of n vs. T_{c} values in the program, functional forms are fitted to this table with the following results:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{C}}=1.53, \mathrm{n} \leq 3 \\
& \mathrm{~T}_{\mathrm{C}}=0.102705+2.22946 \log _{10}(\mathrm{n}), 3<\mathrm{n}<7 \\
& \mathrm{~T}_{\mathrm{C}}=1.938, \mathrm{n}=7 \\
& \mathrm{~T}_{\mathrm{C}}=0.86552+1.308037 \log _{10}(\mathrm{n}), \mathrm{n}>7 .
\end{aligned}
$$

A second average and standard deviation are calculated excluding the defined outliers. The test is then made a second time, possibly excluding more outliers.

The final average, standard deviation, and confidence limits of the remaining VAR values may now be calculated. The value of IAVLD determines whether 50% confidence limits, CLU and CLL, are desired for the average. If IAVLD $=1$, the upper and lower confidence limits are desired and are calculated if there is sufficient data (at least two averaged data values). If there is insufficient data for calculating confidence limits, or if they are otherwise not to be calculated (e.g., for average total mass loading), the subroutine returns to STATIS with NOCON = 1. Assuming that the confidence limits are desired and there is sufficient data, the method of calculation is determined by the NDK value. Recall that $N D K=-1$ for calculation of average cumulative mass loading, $N D K=0$ for calculation of average dM/dlogD, and NDK = l for calculation of average dN/dlogD. The method for calculation of confidence limits for the cumulative size distribution involves calculating root mean square values for the increments up to the point of interest.

It might be noted here that the user may wish to use other than 50% confidence limits. If so, change card 128 which defines the confidence interval coNIN. For example, for 90% confidence limits, this card would be changed as follows:

$$
\text { CONIN }=\left[\text { SIGMA }\left(1.645+2.6048(\text { NUPTS }-1)^{-1.18553}\right)\right] /(\text { NUPTS })^{\frac{1}{2}}
$$

A detailed description of the programming is given here: 015-017: The sum of all tested VAR values, SUM, the number of values in this sum, NUPTS, and the standard deviation of the VAR values, SIGMA, are initialized as 0 here.
018-022: A running sum of the VAR values, SUM, is incremented on each traverse of the loop here along with the number of points in the sum NUPTS. Any VAR value having a negative value is a 'bad data point' and is skipped in this loop.
023-025: If there are three or more 'good values' (i..e.. nonnegative, the program finds the average of these, AVG, and continues to make the test for outliers. The value of code variable LL, which indicates the number of times the input values VAR have been tested for outliers, is set equal to 1 for the first test. If there are less than three values, none would be thrown out. In this case the program skips the outlier test and goes to statement 190 (card 083).

026-036: A loop here calculates the sum of the squares of the difference of the odd or even (depending on the value of N) VAR values from the average AVG, to obtain SIGPA. It is not yet standard deviation. NUPTS, initialized as 0 , is incremented by one for each value in this sum. Only positive VAR values are included in this sum, which serves to exclude any undesirable values as input from mainline STATIS. Also, for the second calculation of SIGPA, outlier values, which have been set $=-50.0$, are excluded.

037-042: The standard deviation, SIGMA, of the input VAR values is found here:

$$
\begin{equation*}
\text { SIGMA }=(\text { SIGPA } / \text { NUPTS }-1)^{\frac{1}{2}} \tag{233}
\end{equation*}
$$

where SIGPA and NIPTS are as defined above.
043-057: The critical multiplier of SIGMA, TCRIT, which determines the boundaries for the outlier test is found here. The function defining TCRIT is dependent on the number of values being tested (see introductory discussion of subroutine AVCON).

```
    TCRIT = l.l53, for NUPTS<3
    TCRIT = 0.102705 + 2.22946 年迤(NUPTS),
    for 3<NUPTS<7
    TCRIT = l.938, for NUPTS = 7
or TCRIT = 0.86552 + 1.308037 log 10 (NUPTS),
    for NUPTS>7
```

058-072: Each value VAR_{I} is some multiple T of the standard deviation SIGMA away from the average of the VAR values, AVG:

$$
T=\mid\left(\text { VAR }_{I}-\text { AVG }\right) / \text { SIGMA } \mid
$$

A loop here finds this T value for each $V A R_{I}$ and tests it to see if $V A R_{I}$ is an outlier, i.e., if T>TCRIT. If T>TCRIT, VAR is "tagged" as an outlier by setting it equal to -50.0 . This loop also keeps a running sum of all good $V A R_{I}$ values and the number of values in the sum NUPTS. Using these, the program can find a second standard deviation, SIGMA, and repeat the test for outliers using the new AVG and SIGMA.

073-081: If this is the first execution of the outlier test (LL=l), and if there are at least three good values remaining on which to test (NUPTSㄹ3), the second average, AVG, is calculated, LL is set equal to $L L+l=2$, and the program returns to
statement 120 (card 025) where SIGPA and NUPTS are reinitialized to 0.0 and 0 , respectively. A second standard deviation, SIGMA, is calculated and a second test for outliers is made.
082-094: The program comes to statement 190 (card 083) after all testing for outliers has been conducted. All outlier $V A R_{I}$ values have a negative value. After initializing SUM, NUPTS, and AVG as 0.0, a running sum, SUM, of the "good" VAR values is kept along with the number of values in this sum, NUPTS.
095-117: The average of these remaining $V A R_{I}$'s is calculated:

$$
\begin{equation*}
\mathrm{AVG}=\mathrm{SUM} / \mathrm{NUPTS} \tag{234}
\end{equation*}
$$

The standard deviation SIGMA is initialized as 0.0. If the 50% confidence limits are desired (IAVLD=l), and if there are at least two good values from which to calculate the confidence limits (NUPTS ≥ 2), the program proceeds to statement 1195 (card 121) to calculate SIGMA and the confidence limits CLL and CLU. If IAVLD $=0$, subroutine AVCON calculates the average of total mass loading values. In this case, SIGMA, CLL, and CLU are not calculated, NOCON is set equal to 1 , and the program returns to the mainline STATIS. Also, if there is only one value of VAR ${ }_{I}$, then SIGMA, CLU, and CLL cannot be calculated, and, therefore, NOCON is again set equal to 1 . The program returns with only the average $d M / d \log D, A V G$, and, for $N D K=-1$, the average cumulative mass concentration less than the indicated diameter CUM2D:

$$
\begin{equation*}
\text { CUM2D }=\text { CUM2LD }+\left[(A V G) \quad(A V G M 1]^{\frac{1}{2}}\right. \text { (DINC) } \tag{235}
\end{equation*}
$$

where CUM2LD $=$ average cumulative mass concentration less than the previous indicated diameter

$$
\begin{aligned}
\text { AVG }= & \text { average value of } d M / \text { dlogD at the } \\
& \text { indicated diameter } \\
\text { AVGM1 }= & \text { average value of } d M / \text { dlogD at the } \\
& \text { previous diameter, and } \\
\text { DINC }= & l o g \text { difference of this and the pre- } \\
& \text { vious diameter }
\end{aligned}
$$

118-126: This loop iteratively calculates the sum of the squares of the deviation of good VAR values from the average to obtain a precursory value of SIGMA. The final standard deviation SIGMA is then:

$$
\begin{equation*}
\text { SIGMA }=[\text { SIGMA } /(\text { NUPTS-1 })]^{\frac{1}{2}} \tag{236}
\end{equation*}
$$

127-128: The 50\% confidence interval for change in size concentration CONIN is calculated here as a function of the standard deviation, SIGMA, and the number of values averaged, NUPTS. For NUPTS ≥ 2 :

CONIN $=$ SIGMA $\left(0.674+0.32(\text { NUPTS }-1)^{-1.072}\right) /(\text { NUPTS })^{\frac{1}{2}}$
CONIN is the 50% confidence interval for dM/dlogD, in milligrams per actual cubic meter if $N D K=-1$, dM/dlogD in milligrams per dry normal cubic meter if $N D K=0$, or $d N / d l o g D$ in number of particles per dry normal cubic meter if NDK = l. (See the introduction to this description of AVCON for 90% confidence limits.)
129-160: The method of finding upper and lower 50% confidence intervals, CLU and CLL, respectively, is dependent on the type of calculations being made. If finding the average and confidence limits for cumulative mass loading (NDK = -l), the program comes to statement 150 (card 149), and a running sum of the average $d M / d l o g D ' s ~ u p ~ t o ~ t h e ~ p r e v i o u s ~$ diameter, CUM2LD, is brought into the subroutine. CUM2LD represents the area under the curve for
average $\mathrm{dM} / \mathrm{dlog} \mathrm{D}$ vs. diameter (on log-log scale) up to the previous diameter. Also, the value of the average $d M / d l o g D$ at the previous diameter, AVGMI, is one of AVCON's arguments. In order to calculate the average cumulative mass concentration up to this diameter, CUM2D, another increment must be added:

$$
\begin{aligned}
& \text { CUM2D }=\text { CUM2LD }+[(\text { AVG })(\text { AVGMI })]^{\frac{3}{2}} \text { (DINC) } \\
& \text { where CUM2LD }=\text { sum of average } d M / d l o g D \text {, or cumula- } \\
& \text { tive mass concentration less than } \\
& \text { the previous diameter } \\
& \text { AVG = average } d M / d \log D \text { at this diameter } \\
& \text { AVGMI = average } d M / d \log D \text { at the previous } \\
& \text { diameter, and } \\
& \text { DINC }=\text { difference in the common logarithms } \\
& \text { of this diameter and the previous } \\
& \text { diameter. }
\end{aligned}
$$

The upper and lower confidence limits for the average cumulative mass concentration, CLU and CLL, respectively, are found by using the root mean square of the confidence intervals for average $d M / d l o g D$ up to the indicated diameter, (CISUM) ${ }^{\frac{1}{2}}$. This value multiplied by the differential logarithms of this and the previous diameter, yields the confidence interval for average mass size concentration at the indicated diameter. Thus, the average mass size concentration confidence limits are expressed as:

$$
\begin{aligned}
& C L U=\text { CUM2D }+(\text { CISUM })^{\frac{1}{2}}(\text { DINC }), \text { and } \\
& C L L=C U M 2 D-(C I S U M)^{\frac{1}{2}}(D I N C)
\end{aligned}
$$

For finding these 50% confidence limits for average dM/dlogD (where $N D K=0$) or for average $d N / d l o g D$ (where $N D K=-1$), the confidence interval calculated at card l28, CONIN, is added to or subtracted from the average:

$$
\begin{aligned}
& \text { CLU }=\text { AVG }+ \text { CONIN, and } \\
& \text { CLL }=\text { AVG }- \text { CONIN }
\end{aligned}
$$

The program now returns to mainline program STATIS.

Subroutine STPLOT (IDALL, RHO, IMPAC, NDK, PDMIN, DXMAX, DXMIN, ISIZ, XS, YS, XMAX, XMIN, YMAX, YMIN)--

Subroutine STPLOT draws a common log vs. common log plotting grid, labels the axes appropriately for the type of plotting to be done according to NDK, and writes the general identification label IDALL and the assumed particle density RHO above the grid. If $N D K=-1$, the grid is for average cumulative mass loading less than indicated diameter in milligrams per actual cubic meter vs. diameter in micrometers. If $N D K=0$, the grid is for average value of $d M / d l o g D$ in milligrams per dry normal cubic meter vs. diameter in micrometers. If NDK $=1$, the grid is for average $d N / d l o g D$ in number of particles per dry normal cubic meter vs. diameter in micrometers. The range and number of plotting cycles is dependent on ISIZ. If ISIZ $=0$, there is a standard range and number of cycles depending on the type of plotting to be done (as determined by NDK as above) and on the impactor used which is determined by the code value IMPAC. If $I S I Z=1$, the range and number of cycles are regulated according to the data. For data regulated plotting limits, 100 micrometers and DXMIN are the maximum and minimum horizontal axis limits, respectively, and PDMAX and PDMIN are the maximum and minimum vertical axis limits, respectively.

The scale factors $X S$ and $Y S$ which are in inches per user's unit for each axis and the common log of the axes limits XMAX, XMIN, YMAX, and YMIN are calculated for use in the subroutine STPLOT. These variable values are returned as arguments to mainline STATIS for use in plotting the individual points in subroutine STATPT.

Subroutine STPLOT incorporates several subroutines adapted for use with the DEC PDP-15/76 computer system. These subroutines are defined in the Appendix. Users of the subroutine STPLOT will probably have to reprogram this subroutine for use with their particular computing system.

A detailed description of the programming is given here:
022: Define $\mathrm{PI}=3.1415$.
023: The output device to be used for writing in this subroutine has the code name M and is defined here as 7 which is the device number for the plotter.
024-025: The value of N is determined by the assumed particle density RHO. If the grid is to be drawn to plot data where physical density is assumed, $\mathrm{N}=1$. If the grid is to be drawn to plot data where unit density (RHO $=1.0$ gram per cubic centimeter) is used, $\mathrm{N}=2$.

026-031: The length of the horizontal and vertical axes, XIN and YIN, respectively, are defined in inches:

$$
\begin{aligned}
& \mathrm{XIN}=4.5, \text { and } \\
& \mathrm{YIN}=6.5
\end{aligned}
$$

032-050: If ISIZ = l, the maximum and minimum limits of the graph are regulated according to the data. This is done beginning at statement 25 (card 073). Otherwise, $\operatorname{ISIZ}=0$, and the program continues to define the maximum and minimum limits according to the type of plotting done and the impactor used to obtain the data.

051-067: If the grid being drawn is for average cumulative mass loading vs. diameter ($N D K=-1$), the maximum and minimum vertical axis limits, YMAX and YMIN, respectively, are as follows:

$$
\begin{aligned}
& \text { YMAX }=10^{4}, \text { and } \\
& \text { YMIN }=10^{-1}
\end{aligned}
$$

If the grid is for either average $d M / d l o g D$ ($\mathrm{NDK}=0$) or $\mathrm{dN} / \mathrm{dlog} \mathrm{D}(\mathrm{NDK}=1$), these limits are also determined by the impactor used. For NDK $=0$, if the Andersen Mark III (IMPAC = l) University of Washington (IMPAC = 3), or Meteorology Research, Inc., (IMPAC $=4$) cascade impactors, these limits are:

$$
\begin{aligned}
& \operatorname{YMAX}=10^{4}, \text { and } \\
& \text { YMIN }=10^{-2}
\end{aligned}
$$

For NDK $=0$, if the Brink cascade impactor is used, these limits are:

$$
\begin{aligned}
& \operatorname{YMAX}=10^{6}, \text { and } \\
& \text { YMIN }=10^{\circ}
\end{aligned}
$$

For NDK = l, if the Andersen Mark III (IMPAC = l), University of Washington (IMPAC $=3$), or Meteorology Research, Inc., (IMPAC $=4$) cascade impactor is used, these limits are:

$$
\begin{aligned}
& \text { YMAX }=10^{15}, \text { and } \\
& \text { YMIN }=10^{6}
\end{aligned}
$$

If $N D K=1$, and the Brink cascade impactor is used,

$$
\begin{aligned}
& \text { YMAX }=10^{14}, \text { and } \\
& \text { YMIN }=10^{5}
\end{aligned}
$$

068-072: The limits actually used by the plotter are the common logarithms of the standard values and are defined as such here. The horizontal maximum and minimum axis limits, XMAX and XMIN, are also defined here as common logs. XMAX and XMIN are the same values regardless of the type of grid being drawn or the impactor used. The final form
of the axes limits are:

$$
\begin{aligned}
& \operatorname{XMAX}=\log _{10}(100.0)=1 \\
& \operatorname{YMAX}=\log _{10}(\text { YMAX }) \\
& \text { XMIN }=\log _{10}(0.1)=-1, \text { and } \\
& \text { YMIN }=\log _{10}(\text { YMIN })
\end{aligned}
$$

073-076: If the axes limits are to be regulated according to the data rather than defined as standard values, i.e., if ISIZ $=1$, the program uses the function SLIM (MAXMIN, ALIMIT) to find these common log limits. If MAXMIN $=1$, SLIM returns a maximum axis limit which is a function of ALIMIT. If MAXMIN $=0$, SLIM returns a minimum axis limit which is a function of ALIMIT. The limits, therefore, for ISIZ = l are:

$$
\begin{aligned}
\operatorname{XMAX} & =\operatorname{SLIM}\left(1, \log _{10}(100.0)\right) \\
& =\operatorname{SLIM}(1,1.0)=1.0 \\
\operatorname{YMAX} & =\operatorname{SLIM}\left(1, \log _{10}\left(\operatorname{DXMAX}_{N}\right)\right) \\
\text { XMIN } & =\operatorname{SLIM}\left(0, \log _{10}\left(\operatorname{PDMIN}_{N}\right)\right) \text { and } \\
\text { YMIN } & =\operatorname{SLIM}\left(0, \log _{10}\left(\operatorname{DXMIN}_{N}\right)\right)
\end{aligned}
$$

$\operatorname{DXMAX}_{\mathrm{N}}$ is the average total mass loading of all runs where the same particle density is assumed if NDK $=-1$ or $N D K=0$, or is the average maximum value of all the number size distributions of the same assumed density if NDK $=1 . \operatorname{PDMIN}_{N}$ is the average minimum D_{50} for all runs of the same assumed particle density if $N D K=-1$, and is the average minimum geometric mean diameter if NDK $=0$ or NDK $=1 . \quad \operatorname{DXMIN}_{\mathrm{N}}$ is the average cumulative mass loading at the last impactor stage for all runs of the same assumed density if $N D K=1$ or 0 , or is the average minimum value of all the number size distributions of the same assumed particle density
if $N D K=1$. The value of XMAX is a standard value $=2.0$ even though ISIZ $=1$.
077-081: The horizontal and vertical axis scale factors, $X S$ and YS, are calculated here in inches per user's unit (inches per common log scale). XS is a function of the length of the horizontal axis in inches XIN, the maximum limit of the axis XMAX, and the minimum limit of the axis XMIN:

$$
\begin{equation*}
X S=X I N /(X M A X-X M I N) \tag{238}
\end{equation*}
$$

Likewise YS is a function of the length of the vertical axis in inches YIN, the maximum limit of the axis YMAX, and the minimum limit of the axis YMIN:

$$
\begin{equation*}
Y S=Y I N /(Y M A X-Y M I N) \tag{239}
\end{equation*}
$$

082: Define the Y-coordinate of the pen, YO, in its original position, i.e., when subroutine STPLOT is called, in terms of the Y-coordinate of the user's origin, YMIN, and the Y-axis scale factor, YS. The pen should be on the lower baseline of the plotting paper when any plotting subroutine is called. The user's origin should be placed 2 inches above this point in order to make room below for the labeling of the horizontal X -axis. (Also, this allows room for figure captions if the plot is to be placed on $8-1 / 2 \times 11 "$ paper.) Thus, YO is defined as:

$$
\begin{equation*}
\mathrm{YO}=\mathrm{YMIN}-(2 . / \mathrm{YS}) \tag{240}
\end{equation*}
$$

083: The call to plotter subroutine SCALF (XS, YS, XMIN, YO) stores X - and Y-axis scale factors $X S$ and $Y S$, in inches per user's unit, and the original location of the pen (XMIN, Y) in user's units for later reference by the plotter.

084-088: Calculate the number of X-axis cycles IXRAN by calculating the difference of the X-axis limits XMAX and XMIN:

$$
\text { IXRAN }=\text { XMAX-XMIN }
$$

089: The call to plotter subroutine XSLBL (XS, YS, XMIN, YMIN, IXRAN, XMIN) labels the X-axis for $\log _{10}$ scale.

090: The call to plotter subroutine XLOG (XS, YS, XMAX, YMIN, -l, IXRAN) draws the X-axis for $\log _{10}$ scale.

091-096: Define the desired width and height of written characters in inches, XCS and YCS, respectively, for labeling the X -axis:

$$
\begin{aligned}
\mathrm{XCS} & =0.15 \\
\mathrm{YCS} & =0.15
\end{aligned}
$$

097-098: Define the point (X,Y) in user's units at which the labeling of the X-axis is to begin. This position should be at the lower left-hand corner of the position at which the first character is to be drawn. In order to center the label below the X-axis, first define the X-coordinate of the beginning pen position by placing the pen at the center of the X-axis length, i.e., XMIN $+(X M A X-X M I N) / 2.0$. Multiply one-half the total number of characters to be written (including spaces) by the number of inches for each character, XCS. The label to be written is "PARTICLE DIAMETER (MICROMETERS)" which contains 32 characters. Therefore, the number of inches to be "backspaced" from the center is 16 XCS. Dividing XCS by the inches per user's unit along the X-axis $X S$, one obtains the number of user's units to be backspaced for the center point.

Therefore:

$$
\begin{equation*}
\mathrm{X}=\mathrm{MIN}+[(\mathrm{XMAX}-\mathrm{XMIN}) / 2]-(16 \mathrm{XCS} / \mathrm{XS}) \tag{241}
\end{equation*}
$$

The Y-coordinate is defined low enough below the X -axis so that there is space to draw the height of the characters (0.15 inch) without interfering with the drawn X-axis. The Y-coordinate is therefore defined as 0.7 inch below the X-axis allowing 0.55 inch between the top of the characters and the Y-axis:

$$
Y=Y M I N-0.7 / Y S
$$

099: Call the plotter subroutine FCHAR(X, Y, XCS, YCS, $0.0)$ to initialize the annotation subroutine by establishing the starting location for the pen (X, Y) in user's units, the width and height of the characters in inches, XCS and YCS, respectively, and the angle of writing in radians relative to the X -axis, here 0.0 .

100-103: Write the X-axis label "PARTICLE DIAMETER (MICROMETERS)".

104-108: Redefine the width and height of written characters in inches, XCS and YCS, respectively, for writing the general identification label IDALL above the grid:

$$
\begin{aligned}
\mathrm{XCS} & =0.056, \text { and } \\
\mathrm{YCS} & =0.100
\end{aligned}
$$

109-110: Define the point (X,Y) at which writing will begin for the general identification label IDALL as being in line with the Y-axis at $X=X M I N$ and onehalf inch above the grid at $Y=$ YMAX $+(0.5 / Y S)$.
lll-ll9: A DO-loop searches for the last character of the identification label IDALL(J) to prevent any unnecessary movement of the pen for an identifica-

tion label of less than 80 characters.

120: The call to plotter subroutine FCHAR (X, Y, XCS, YCS, 0.0) initializes the annotation subroutine by establishing the starting location for the pen (X,Y) in user's units, the width and height of the characters in inches, SCS and YCS, respectively, and the angle of writing in radians, 0.0 .

121-124: Write the general identification label IDALI_{I}.
125-126: Redefine the beginning pen location (X, Y) in user's units for writing the particle density RHO. The beginning X -coordinate is located so that the first character is in line with the Y-axis. The beginning Y-coordinate is 0.25 inch above the maximum Y-axis value so that with characters 0.12 inch in height, there is approximately a 0.12 inch margin between the writing of RHO and IDALL:

$$
\begin{aligned}
& \mathrm{X}=\mathrm{XMIN}, \text { and } \\
& \mathrm{Y}=\mathrm{YMAX}+(0.25 / \mathrm{YS})
\end{aligned}
$$

127: Call the plotter subroutine FCHAR (X, Y, XCS, YCS, 0.0) to initialize the annotation subroutine by establishing the starting location for the pen (X, Y) in user's units, the width and height of the characters in inches, XCS and YCS, respectively, and the angle of writing in radians with respect to the X -axis, 0.0 .

128-131: Write the assumed particle density "RHO =
132-137: Calculate the number of Y-axis cycles IYRAN by taking the difference of the Y-axis limits IYMAX and IYMIN:

$$
\begin{equation*}
\text { IYRAN }=\text { IYMAX }- \text { IYMIN } \tag{242}
\end{equation*}
$$

138: The call to plotter subroutine YLOG (XS, YS, XMIN, YMAX, -1, IYRAN) draws the Y-axis on the left of the graph for common log scale.

139: The call to plotter subroutine LGLBL (XS, YS, XMIN, YMIN, IYRAN, YMIN, l) labels the Y-axis on the left of the axis for common log scale.
140-144: Redefine the width and height of written characters, XCS and YCS, respectively, in inches for labeling the Y-axis:

$$
\begin{aligned}
& \mathrm{XCS}=0.15, \text { and } \\
& \mathrm{YCS}=0.15
\end{aligned}
$$

145-146: The pen position in user's units (X, Y) is defined for the beginning of the X-axis label. The Y coordinate is such that the writing is centered along the length of the Y-axis. The X-coordinate is such that the base of the characters does not interfere with the drawn Y-axis. See the discussion of cards 097-098 for a detailed example of how these coordinates are calculated:

$$
\begin{align*}
& \mathrm{X}=\mathrm{XMIN}-(0.7 / \mathrm{XS}), \text { and } \tag{243}\\
& \mathrm{Y}=\mathrm{YMIN}+[(\mathrm{YMAX}-\mathrm{YMIN}) / 2]-[(17)(\mathrm{XCS}) / \mathrm{YS}] \tag{244}
\end{align*}
$$

147: The call to plotter subroutine FCHAR (X, Y, XCS, YCS, PI/2.) initializes the annotation subroutine by establishing the starting location of the pen (X, Y) in user's units, the width and height of the characters in inches, XCS and YCS, and the angle of writing in radians with respect to the X-axis, $\pi / 2$.

148-157: The labeling of the Y-axis depends on the type of graphing being done, i.e., on the value of NDK. If NDK $=-1$, cumulative mass loading less than indicated diameter vs. diameter is being plotted, and the program goes to statement 41 (card 158). The section not only labels this left Y-axis appropriately, but also draws a Y-axis on the right for English units, and labels it appropri-
ately. If $N D K=0$, average $d M / d l o g D$ vs. diameter is being plotted, and the program goes to statement 42 (card 174) for labeling. If $N D K=1$, average dN/dlogD vs. diameter is being plotted, the program goes to statement 43 (card 176) for labeling.
158: The write statement here labels this left Y-axis as "CUMULATIVE MASS LOADING (MG/ACM)".
159-163: The program continues here for $N D K=-1$ to draw a Y-axis on the right side of the graph for cumulative mass loading less than indicated diameter in grains per actual cubic foot. One milligram per actual cubic meter converts to 4.37×10^{-4} grains per actual cubic foot. In terms of common logs, a value of 0 on the milligrams per actual cubic meter scale is parallel to a value of -3.3595 on the scale of grams per actual cubic foot; a value of l on the former scale is equivalent to -2.3595 on the latter scale, etc. If one wishes to begin the Y-axis on the right (in English units) at an integral value, a fraction of a scale equal to 0.3595 must be added to the left Y-axis origin position YMIN. Thus, the vertical pen position for the beginning of the right Y-axis in terms of the left Y-axis metric units is:

$$
\mathrm{YO}=\mathrm{YMIN}+0.3595
$$

This begins the left Y-axis at a position which has an integral value in English units. To arrive at this integral value YLEF, one must subtract the remainder of the common log conversion factor (which is 3) from the left Y-axis origin YMIN:

$$
\text { YLEF }=\text { YMIN }-3
$$

164: The call to plotter subroutine LGLBL (XS, YS, XMAX, YO, IYRAN, YLEF, O) labels this right-hand Y-axis
on the right of the axis for common log scale.
165: The call to plotter subroutine YLOG (XS, YS, XMAX, YMAX +0.3595, -l, IYRAN) draws the Y-axis on the right side of the graph for common log scale.
166-170: The pen position in user's units (X, Y) is defined for the beginning of the right Y-axis label. The Y-coordinate is such that the writing is centered along the length of the left Y-axis. The coordinate is such the height of the characters does not interfere with the right Y-axis. See the discussion of cards 097-098 for a detailed example of how these coordinates are calculated:

$$
\begin{aligned}
& \mathrm{X}=\mathrm{XMAX}+(0.8 / \mathrm{XS}), \text { and } \\
& \mathrm{Y}=\mathrm{YMIN}+[(\mathrm{YMAX}+0.3595)-\mathrm{YMIN}] / 2.0-[(16 \mathrm{XCS} / \mathrm{YS})]
\end{aligned}
$$

171: The call to plotter subroutine FCHAR (X, Y, XCS, YCS, PI/2.) initializes the annotation subroutine by establishing the starting location of the pen (X, Y) in user's units, the width and height of the characters in inches, XCS and YCS, respectivel_{y}, and the angle of writing in radians with respect to the X-axis, $\pi / 2$.
172-173 Write "CUMULATIVE MASS LOADING (GR/ACF)" along the right side of the right Y-axis. Go to statement 60 (card 177) where the program returns to mainline STATIS.
174-175: The program comes to this write statement when NDK $=0$ and appropriately writes "DM/DLOGD (MG/DNM3)" along the Y-axis. Go to statement 60 (card 177) where the program returns to mainline STATIS.

176-177: The program comes to this write statement when NDK $=1$ and appropriately writes "DN/DLOGD (NO.

PARTICLES/DNM3)" along the Y-axis. The program then returns to mainline STATIS.

Subroutine STATPT (NDKl, NOCON, DPLOT, BVD, DLU, DLL, XMAX, XMIN, YMAX, YMIN, XS, YS)--

Subroutine STATPT is called from the mainline program STATIS to plot a point BVD and its upper and lower confidence limits, DLU and DLL, respectively, along a vertical common log scale if NDKl $=0$ (for plotting of cumulative or differential size distribution) or along a vertical probability scale if NDKl = 1 (for plotting of cumulative percent mass loading). The diameter is plotted along the horizontal common log scale. The average value only is plotted if $N O C O N=1$. In this case, there is insufficient data for calculation of confidence limits, and DLL and DLU are only dummy arguments. In order to properly locate a point, the horizontal limits, XMAX and XMIN, the vertical limits, YMAX and YMIN, and the number of inches per user's unit along each scale, XS and YS, are also brought into the subroutine as calling arguments from the mainline program STATIS. A detailed description of the programming is given here:

013-016: The average, upper confidence limit, and lower confidence limit are brought into subroutine STATPT as the arguments BVD, DLU, and DLL, respectively. Their names are changed in these first steps to AVD, CLU, and CLL in order that they will be returned as the original values to the mainline program STATIS.
017-025: If NDKl = l, this subroutine is plotting percent cumulative mass loading less than particle diameter vs. diameter.

026: If there was insufficient data for the calculation of confidence limits, the argument NOCON comes into STATPT as l. In this case, the program skips
to statement 108 (card 039) omitting the section which converts confidence limits to their common log values.
029-043: The average, AVD, upper and lower confidence limits, CLU and CLL, respectively, and diameter, DPLOT, are converted to common log values for plotting (except for plotting percent cumulative mass loading as noted above). AVD, CLU, and CLL must each be checked for a zero or negative value before taking the common log. If this occurs, the variable is given a "flag value" of -50.0.

044-049: The horizontal pen position for the lower confidence limit is found here as XN. The function XVAL gives the plotted variable, here DPLOT, a value just oustide the plot grid if it exceeds the plotting limits. Otherwise, the value is unchanged.
050-054: If confidence limits could not be calculated, NOCON $=1$. Then CLU and CLL (or DLU and DLL) are only dummy variables and the subroutine omits plotting the confidence limit bars. It skips to statement 408 (card 087) to plot only the average value.

055-059: This begins the section for drawing the lower confidence limit bar. If cumulative mass loading, dM/dlogD, or $d N / d l o g D$ is being plotted (i.e., NDKI $=0$), the lower confidence limit is already in the common log form to be plotted. The subroutine then goes directly to check this value to see if it is within the plotting grid. This is statement 405 (card 074). Otherwise, NDKl $=1$, and percent cumulative mass concentration is being plotted. The program continues to find the lower confidence limit value in terms of the probability scale.

060-073: The lower confidence limit value CLL is tested to see that it is within the range of 0.001 to 0.9999 . If it is above this range, the probability variable YV which represents the lower confidence limit is given the value 4.0. This could be any arbitrary value greater than the normal probability conversion of 0.9999 which is 3.71912. If CLL is below this range, $Y V$ is given the value -4.0. This could be any arbitrary value less than the normal probability conversion of 0.0001 which is -3.71912 . If CLL is within the 0.0001 to 0.9999 range, its normal probability conversion value $Y V$ is determined by the subroutine NDTRI (CLL, YV, D, IE).
074-075: The lower confidence limit value YV (which may be in terms of a probability scale or common log scale as discussed above) is checked by the function YVAL (YV, YMAX, YMIN, YS). If YV is within the plotting limits YMAX and YMIN, its value is not changed. If it does exceed one of these limits, $Y V$ is given a value 0.25 inch outside the exceeded limit (i.e., YMAX $+0.25 / Y S$ or YMIN $-0.25 /$ YS where YS is the scale factor in inches per user's unit).
076-080: The lower confidence limit bar is drawn here. The beginning horizontal position is 0.03 inch less than the common log of the plotted diameter. The pen draws 0.06 inch across and then back to the original position. The plotter subroutine which moves the pen to each new position (XN, YN) is FPLOT (I, XN, YN). The value of I determines the sequence of raising, lowering, and relocation of the pen.
081-097: This section finds the average in terms of the normal probability scale if NDKl = 1 (for percent cumulative mass concentration), just as for the
lower 50\% confidence limit CLL at cards 060-073. Recall that if confidence limits are not to be drawn, the subroutine comes directly to statement 408 (card 087) to draw the average value point without drawing a lower confidence limit bar.
098-099: The pen draws the bar at the common log diameter value from the lower 50% confidence limit to the average by calling the pen control subroutine FPLOT (I, XN, YN). At that point the subroutine SYMBOL (J, R) is called to draw a solid circle (obtained when $J=9$) of 0.04 inch in diameter ($\mathrm{R}=0.04$) .
100: If confidence limits are not calculated, $N O C O N=1$, and the following section for drawing the upper confidence limit bar is omitted. The subroutine goes directly to statement 417 (card l23) where the pen is raised and the program returns to the mainline program STATIS.
10l-116: This section finds the lower confidence limit in terms of the normal probability scale if NDKl $=1$ (for percent cumulative mass concentration) just as for the lower 50% confidence limit CLL at cards 060-073 and for the average AVD at cards 081-097.
117-120: The pen draws the bar at the common log diameter value from the average to the upper 50% confidence limit by a call to the pen control subroutine FPLOT (I, XN, YN). There it also draws a small 0.06 -inch horizontal upper limit bar by calls to the pen control subroutine FPLOT (I, XN, YN).
12i-125: The pen is raised here in preparation for the next call to subroutine STATPT (which will plot the average and upper and lower confidence limits at the next diameter examined). If all points have been drawn, STATPT is not called again, but the
pen is in position to be moved to the base of the plotter paper upon return to mainline program STATIS.

Input for Mainline Program

Card Input--

Card A. This card has a code value which indicates whether the data to be analyzed by this execution of program STATIS are inlet data or outlet data.

Column 1: Punch a "l" in column 1 if this execution of STATIS is for analysis of inlet data. Punch a "2" in column 1 if it is for analysis of outlet data.

Card B. This card has a code value which indicates the assumed particle density; a code value which indicates whether statistical calculations are desired for this assumed density; code values to indicate if average cumulative mass loading, aver-
 mass loading, respectively, are to be plotted; and code values for each of these to indicate whether the range and number of plotting cycles is to be standard or to be regulated according to the data.

Column 1: Punch a "l" here in order to make calculations for data where the assumed density is physical density.
Column 2: Punch a "l" here if statistical calculations and plots are not desired for data where physical density is assumed. Punch a "0" here to make these calculations and plots.
Column 3: Punch a "0" here if the plot of average cumulative mass loading less than indicated particle diameter vs. particle diameter for assumed physical density is desired. Punch a "l" here to suppress the plot.

Column 4: Punch a "0" here if the plot of average dM/dlogD vs. particle diameter for assumed physical density is desired. Punch a "l" here to suppress the plot.
Column 5: Punch a "0" here if the plot of average dN/dlogD vs. particle diameter for assumed physical density is desired. Punch a "l" here to suppress the plot.

Column 6: Punch a "0" here if the plot of average cumulative percent mass loading less than indicated particle diameter vs. particle diameter for assumed physical density is desired. Punch a "l" here to suppress the plot.

Column 7: Punch a "0" here for standard range and number of cycles for both axes of the plot of average cumulative mass loading less than indicated diameter vs. particle diameter where physical density is assumed and for the horizontal (diameter) axis of cumulative percent mass loading less than indicated diameter vs. particle diameter where physical density is assumed. Punch a "l" here to regulate the range and number of cycles according to the data.

Column 8: Punch a "0" here for standard range and number of cycles for both axes of the plot of average dM/dlogD vs. particle diameter for assumed physical density. Punch a "l" here to regulate the range and number of cycles according to the data.

Column 9: Punch a "0" here for standard range and number of cycles for both axes of the plot of average dN/dlogD vs. particle diameter for assumed physical density. Punch a "l" here to regulate the range and number of cycles according to the data.
Column 10: Punch a "l" here to calculate a constant of integration for average cumulative mass loading < 0.25 micrometers. Punch a "O" here if the constant of integration is not desired.

Card C. This card contains the maximum particle diameter to be averaged and plotted in micrometers for physical density plots if 8.0 micrometers is not satisfactory. The decimal point must be included since an F5.l format is used. This card is omitted if column 2 of card B is punched as " 1 ".

> Columns $1-5:$ Punch the maximum desired particle diameter in micrometers for all plots where physical density is assumed if other than 8.0 micrometers. If 8.0 is satisfactory, this card may be left blank. This number cannot be greater than the maximum particle size collected, DMAX. Note $:$ This card is completely omitted if column 2 of card B is punched as "l"

Cards D and E. Repeat as in cards B and C, respectively, with all values punched pertaining to data where unit density (aerodynamic diameters) is assumed. Column 1 of card D must be punched as "2" to indicate that unit density is assumed for all values to follow. As for card C, card E is to be omitted if there is a "l" punched in column 2 of card D. If card E is left blank, this will cause the maximum particle diameter for unit density plots to be 10.0 micrometers rather than 8.0 micrometers, as is the case for physical density plots.

File Input--

The random access file number 10 which has the name "KMC 001" is used for input into program STATIS. It is necessary that first the impactor program MPPROG be executed in order to record information on this file which is needed in STATIS. This includes the number of impactor runs for which there is recorded data, NRUN, the code for type of impactor used, IMPAC, general identification label, IDALL, physical density, RHOl, and the maximum and minimum data limits for geometric mean diameter (GEMAX,

GEMIN), dM/dlogD (DMMAX, DMMIN), dN/dlogD (DNMAX, DNMIN), and cumulative mass distribution (CUMAX, CUMIN), the maximum collected particle size, DPMAX, and the minimum stage diameter cut point, DPMIN. Some information pertaining to each individual run is also used from this file. These values are the record number, IS, total mass loading, TGL, stack temperature, TKS, pressure at the impactor inlet, POA, and percent water-vapor content of the gas, FGH20.

The random access file number 11 which has the name "FILSPL" is also used for input into program STATIS. The program which fits curves to the cumulative mass loading less than stage D_{50} vs. D_{50}, called SPLINl must be executed before STATIS (and following execution of MPPROG) in order to have the necessary data on file. For each run, these data are the total number of interval boundary points over the $\log _{10}$ (cumulative mass loading) vs. $\log _{10}$ (D_{50}) range, NPOIN, the values of these points $\mathrm{XI}_{\mathrm{I}}, \mathrm{I}=1$, NPOIN and Yl_{I}, NPOIN, and the coefficient values which fit a second degree polynomial over each of these intervals, $\operatorname{COE}_{I J} I^{\prime}=1, I N T$, $J=1,3$ (INT = number of fitted intervals $=$ NPOIN -l).

Output for Mainline Program STATIS

Line Printer Output--
Pages 1-2: The general identification label is printed on the first line followed on the second line by the assumed physical density. Written next are column headings for diameter index number, diameter in micrometers, average cumulative mass loading less than this indicated diameter in milligrams per actual cubic meter, upper 50% confidence limit of this average in the same units, and lower 50% confidence limit of this average in the same units. This is followed by a listing of these values for diameters ranging from 0.25
micrometer to 8.0 micrometers (unless otherwise indicated on card C). The increment between diameters here is such that there are 28 diameters over each common log cycle. The lineprinter output on pages 1 and 2 is not made if "l" is punched in column 2 of card B.
Pages 3-4: After the general identification label IDALL and assumed physical density RHOX are written, column headings for interval index number, diameter in micrometers, and records excluded from mean cumulative mass concentration are written. A table is then given showing at each diameter from 0.25 micrometer to 8.0 micrometers (unless otherwise specified on card C), the record numbers of any runs for which an outlier value of cumulative mass concentration was calculated. Since the records used in averaging here contain data for assumed physical density, any record numbers shown are odd. For example, if record numbers 5, ll, and 21 are listed at a diameter of 3.27 micrometers, this indicates that the cumulative mass concentration values calculated at 3.27 micrometers where physical density is assumed for runs 3, 6, and 11 are excluded from calculation of the average standard deviation and 50% confidence limits. If no records are excluded at a given diameter, "NONE" is printed. The line printer output on pages 3 and 4 is not made if "l" is punched in column 2 of card B.

Pages 5-6: The first two lines give the general identification label IDALL and the assumed physical density RHOX. Written next are column headings for diamieter index number, diameter in micrometers, average cumulative percent mass loading less
than the indicated diameter, upper 50% confidence limit of this average, and lower 50% confidence limit of this average. The latter three headings have no units. This is followed by a listing of these values for diameters ranging from 0.25 micrometer to 8.0 micrometers (unless otherwise indicated on card C). There are 28 diameters indicated over each common log cycle. The line printer output of pages 5 and 6 is not made if "l" is punched in column 2 of card B. Note that a table of outliers is not given here for mean cumulative percent mass concentration. This would be the same as given on pages 3 and 4 .
Page 7: The first lines give the general identification label IDALL and assumed physical density RHOX. The column headings are then written for diameter index number, diameter in micrometers, average value of $d M / d l o g D$ at the indicated diameter in milligrams per dry normal cubic meter, the standard deviation of this average in the same units, the upper 50\% confidence limit of the average in the same units, and the lower 50% confidence limits of the average in the same units. This is followed by a listing of these values for diameters ranging from 0.25 micrometer to 8.0 micrometers (unless otherwise indicated on card C). There are 14 diameters indicated over each common log cycle. The line printer output on page 7 is not made if a "l" is punched in column 2 of card B.

Page 8: After the general identification label IDALL and assumed physical density RHOX are written, column headings for interval index number, diameter in micrometers and records excluded from the mean
dM/dlogD distribution are written. A table is then given showing, at diameters from 0.25 micrometer to 8.0 micrometers (unless otherwise specified on card C), the record numbers of any runs for which an outlier value of $d M / d l o g D$ was calculated. Any record numbers listed here are odd. (See discussion of pages 3 and 4 for example.) "NONE" is printed at each diameter where there are no outlier values found. The line printer output on these pages is not made if "l" is punched in column 2 of card B.
Page 9: The first two lines show the general identification label IDALL and assumed physical density RHOX. Written next are column headings for diameter index number, diameter in micrometers, average value of $d N / d l o g D$ at the indicated diameter in number of particles per dry standard cubic meter, the standard deviation of this average in the same units, the upper 50% confidence limit of the average in the same units, and the lower 50% confidence limit of the average in the same units. A listing of these values follows for diameters ranging from 0.25 micrometer to 8.0 micrometers (unless otherwise indicated on card C). Over each common log cycle, there are 14 diameters indicated. If a "l" is punched in column 2 of card B, the line printer output on page 9 is omitted.
Page 10: After the general identification label IDALL, and the assumed physical particle density RHOX are written, column headings for interval index number, diameter in micrometers, and records excluded from mean change in number size concentration are written. A table is then given showing, at diam-
eters from 0.25 micrometer to 8.0 micrometers (unless otherwise specified on card C), the record numbers of any runs for which an outlier value of $d N / d l o g D$ was calculated. Any record numbers listed here are odd. (See discussion of pages 3 and 4 for example). "NONE" is printed at each diameter where there are no outlier values found. The line printer output is not made if "l" is punched in column 2 of card B.

Pages l1-20: Print out is given exactly as on pages l-lo except that the assumed particle density is 1.0 gram per cubic centimeter. All averages, standard deviations, 50% confidence limits and outliers are found by making calculations on the even numbered records of files 10 and 11 ("KMC001" and "FILSPL", respectively). The listings of outliers would, of course, show even numbered records if any are excluded. For example, suppose that records 4,10 , and 16 are listed as outliers at diameter 3.27 micrometers for calculation of mean $d M / d l o g D$ (listed on page 18 of line printer output). This indicates that $d M / d l o g D$ values calculated at this diameter where unit density is assumed for runs 2, 5, and 8 are excluded from calculation of the average standard deviation, and confidence limits. If no records are excluded at a given diameter, "NONE" is printed. All statistical values (i.e., all tables of averages, standard deviations, 50\% confidence limits and outliers) for assumed unit density are excluded if "l" is punched in column 2 of card D.

Graph Output--
There are 8 possible graphs which may be output from program STATIS. Each shows the averaged results as described in the discussion of line printer output. For each tabular output listed in that section (except listings of outliers) there is a corresponding graph of these values. Only the diameter index number and the standard deviations are not shown on the plots. All axes have a common log scale, except for those plots of average cumulative percent mass loading less than indicated diameter vs. diameter, where the horizontal diameter axis has a common log scale and the vertical axis has a normal probability scale which shows a range of 0.01 percent up to 99.99 percent.

The plotting of results listed on pages l-l0 is controlled by code values punched on card C. A " 0 " punched in the proper column produces a certain plot while a "l" suppresses the plot. On card C the value punched in column 3 controls plotting of results on pages $1,2,5$, and 6; the value punched in column 4 controls plotting of results on page 7; the value punched in column 5 controls plotting of results on page 9.

Likewise, the plotting of results listed on pages $11-20$ is controlled by code values punched card E. "0" produces a graph, while "l" suppresses it. On card E the value punched in column 3 controls plotting of results on pages $11,12,15$, and 16 ; the value punched in column 4 controls plotting of results on page 17; the value punched in column 5 controls plotting of results on page 19.

File Output--

One of two sequential files is used for output from program STATIS. If the program is to analyze data taken at the inlet of a gas cleaning device, i.e., if "l" is punched in column lof
card A, file number 16 , which has the name "JWJ 001 " is the file used. If the program is to analyze data taken at the outlet of the gas cleaning device, i.e., if "2" is punched in column 1 of card A, file number 17, which has the name "JWJ 002", is the file used.

The first group of entries made into the file are for assumed physical density. The first two of these are general information:

RHOX: This is a one-dimensional real variable requiring two words. It is the assumed particle density for the first group of entries, which is the physical density in grams per cubic centimeter.
LAS: This is a one-dimensional integer variable requiring one word. It is the number of diameter points at which average change in mass concentration is calculated.

NOTE: If statistical calculations are not desired where physical density is assumed, i.e., if "l" is punched in column 2 of card B, zeroes are written in the file "MPACFL" where RHOX and LAS are normally written. The values to be written following this begin the section of the file pertaining to unit density. (The diameter, average and standard deviation values as described below are omitted.) These zeroes are a series of "signal values" to the penetration-efficiency program PENTRA that penetrationefficiency values for assumed physical density are not to be calculated.

If RHOX and LAS are nonzero values, the entries following them are the diameter, average value of $d M / d l o g D$ at that diameter, and the standard deviation about this average. These three entries are made for each diameter analyzed. This number of diameters is LAS. The variables and number of words taken by each are as follows:

DPLOT: This is a one-dimensional real variable requiring two words. It is the diameter in micrometers at which the average $d M / d l o g D$ is being analyzed.
AVD: This is a one-dimensional real variable requiring two words. It is, in this case, the average dM/dlogD in milligrams per dry normal cubic meter, at diameter DPLOT.

SIGMA: This is a one-dimensional real variable requiring two words. It is, in this case, the standard deviation about the mean $d M / d l o g D$ in milligrams per dry normal cubic meter at diameter DPLOT.

NIN: This is a one dimensional integer variable requiring one word. It is the number of $d M / d l o g D$ values used to calculate the mean.

After the above four entries are repeated for the number of diameter sizes analyzed (LAS), a final entry is made for this assumed physical particle density:

DAST: This is a one-dimensional real variable array requiring two words. It is defined as five asterisks (*****). It is written three times and integer zero is written once as the last entry for this assumed physical density. These asterisks serve as "signal values" in the program PENTRA to indicate that all values of average dM/dlogD on record for this density have been examined.

The program now repeats the above entries beginning with assumed density RHOX (here-unit density), and number of diameters examined, LAS, for calculations. Zeroes are written in the file "MPACFL" here where RHOX and LAS are normally written if statistical calculations are not desired for assumed unit density; i.e., if "l" is punched in column 2 of card D. In this case, no further entries are made into file "MPACFL". If statistical calculations are desired ("0" punched in column 2 of card D), the values of DPLOT, AVD, SIGMA, and NIN are entered for each of the LAS
diameters examined just as in the case for assumed physical particle density above. Again, the last entries are three asterisk variables, DAST, and one integer zero.

The purpose of mainline program PENTRA is to compare the differential particle size distribution ($\mathrm{dM} / \mathrm{dlog}$) calculated at the inlet of a gas cleaning device to those calculated at the device outlet in order to find its penetration and efficiency at various specified particle sizes.

In order to execute this program, the impactor program MPPROG, the cumulative mass concentration curve fitting program SPLINl, and the averaging program STATIS must all have been executed for both inlet and outlet data. MPPROG establishes the values of cumulative mass concentration less than stage $\mathrm{D}_{5} 0$ vs. D_{50} for each run. SPLINl fits a curve to these values for each run. STATIS finds the derivative of each of these curves (dM/dlogD) at specified diameters and calculates the average and standard deviation of the differential mass size distribution at these specified diameters. STATIS then records these results on the appropriate (inlet or outlet) sequential file to be used by PENTRA. PENTRA makes a "parallel" reading of both inlet and outlet sequential files (in order to read information pertaining to the same particle size). Calculations yield both a printout and a plot of the control device's efficiency (\%) for the specified particle sizes.

It should be noted that in the Breakdown of Program PENTRA below, physical density is assumed to have been input to program MPPROG. This results in calculations besed on physical density and unit density (definition of aerodynamic diameter user specified) being listed alternately in output files. The user may instead desire to input only unit density to MPPROG yielding calculations based on the two different definitions of aerodynamic diameter (Mercer's ${ }^{2}$ and Task Group on Lung Dynamics ${ }^{1}$).

Breakdown of Program PENTRA

026-050: Information is input here by means of the card reader. The general identification label is read
in as IDGEN and contains general information concerning all runs, e.g., plant site, testing dates, running condition of control device, etc. Unless otherwise specified by input here, the efficiency plot covers a range of 80.0% to 99.99%. This range is controlled by the values of YMINFR, IMIN, and IMAX. IMIN $=16$ is the code value which yields a minimum limit of 80.0% on the percent efficiency grid. This requires that the minimum fractional efficiency value YMINFR $=0.800$. IMAX $=25$ is the code value which yields a maximum limit of 99.99% on the percent efficiency grid. Other ranges may be used if the code value ICHANGE is input as being not equal to 0 .
051-060: The "Call Seek" gains access here to the two sequential files containing the inlet and outlet information to be compared for efficiency calculation. File 16 contains inlet average $d M / d l o g D$ values at specified diameters for both assumed physical density and assumed unit density. File 17 contains the same information as calculated from outlet data.

061-070: A DO-loop begins here which covers the entire program. Each pass of the loop yields a printout and plot of the penetration-efficiency characteristics at specified diameters for different assumed particle densities. In the first pass, MDEX = 1, and calculations are made for physical density. In the second pass; MDEX $=2$, and calculations are made for assumed unit density.
071-088: This section checks to see if there are "complete" files of both inlet and outlet information for the assumed particle density. For example, when program STATIS is executed on outlet information, assume only aerodynamic average dM/dlogD values are calculated. This is known when, for MDEX $=1$, the command to "READ (17)RHO, LAS2" yields LAS2 $=0$. MDEX $=1$ indicates that data for assumed physical diameter is being read. Reading file 17 indicates that outlet data is being read. LAS2 is the
number of diameters examined for $d M / d \log D$ values at the outlet. In this case, penetration-efficiency calculations cannot be made for assumed physical density. The next reading in file 17 would yield RHO and LAS2 for assumed unit density (RHO $=1.0$ gram per cubic centimeter). Therefore, no further reading in file 17 should be made until $\operatorname{MDEX}=2$. Since both files 16 and 17 are sequential files, file 16 must be read to obtain all entries pertaining to physical density for inlet information. In this case, the values are read LASl times as dummy variables XXX, XXX, XXX, and IXX in order to keep files 16 and 17 "parallel" with one another. (If the values read are to be used, they are DPLOT, AVIN, SIGIN, AND NIN. See the discussion of cards 202-221.
089-94: NDTRI is a subroutine from the IBM 360 Scientific Subroutine Package. It takes the first argument in a fractional form and returns it in terms of the probability scale as the second argument to be used as the vertical scale for penetration-efficiency. Here, the maximum and minimum plotting limits are found. The maximum and minimum fractional limits given are 0.9999 and YMINFR (usually $=0.800$), respectively. The returned probability scale equivalents are YMAX and YMIN, respectively.
095-100: The horizontal maximum and minimum plotting limits, XMAX AND XMIN, are found here in terms of the common log scale. The maximum particle diameter to be plotted is 100.0 micrometers. Thus, $X M A X=\log _{10}(100.0)=2$. The minimum particle diameter to be plotted is 0.1 micrometer. Thus, $X M I N=\log _{10}(0.1)=-1$.

101-105: The lengths of the horizontal and vertical axes XINCH and YINCH, respectively, are established here as XINCH $=4.5$ inches and YINCH $=6.5$ inches. These dimensions leave adequate room for legends and a caption on an 8-1/2 inch format.

106-110: The horizontal and vertical scale factors, XS and YS, are established here in inches/user's unit:

$$
\begin{aligned}
& \mathrm{XS}=\mathrm{XINCH} /(X M A X-X M I N), \text { and } \\
& Y S=Y I N C H /(Y M A X-Y M I N)
\end{aligned}
$$

111-119: When program PENTRA begins execution, the plotter pen should be in its "home position", i.e., on the base line of the plotter paper. This position must be defined in terms of the user's origin and stored as a reference point for the plotter. The user's origin is (XMIN, YMIN) and has values as defined above (at cards 097 and 091). The pen's "home position" is (XMIN, YO). The horizontal coordinate is the same as for the user's origin. The vertical coordinate is defined such that the user's origin is placed two inches above the "home position":

$$
\begin{equation*}
\text { YO }=\text { YMIN-2/YS } \tag{247}
\end{equation*}
$$

120-123: This section draws the Y-axis on the left. The call to subroutine FPLOT ($0, \mathrm{XMIN}, \mathrm{YMIN}$) moves the pen to the left side of the plot. The call to subroutine YPROB (XS, YS, XMIN, 0, IMIN, IMAX) causes the Y -axis to be drawn here beginning with the maximum efficiency to be plotted (usually 99.99\% obtained by code IMAX $=25$). Tick marks are drawn downward along the vertical axis to the minimum efficiency to be plotted (usually 80.0\% obtained by code IMIN $=16$). $X S$ and YS are the horizontal and vertical scale factors as previously
defined. XMIN is the horizontal position (on a probability scale) of the Y-axis. The fourth argument KODE $=0$ indicates that the axis is to be labeled to the left of the axis.

124-131: This section labels the left Y-axis as percent efficiency. The character width and height, XCS and YCS, respectively, are each defined as 0.15 inch. The initial horizontal pen position (at base of first character) is one inch to the left of XMIN:

$$
\begin{equation*}
\mathrm{X}=\mathrm{XMIN}-1 / \mathrm{XS} \tag{247a}
\end{equation*}
$$

The initial vertical pen position is such that the label is centered along the vertical axis:

$$
\begin{equation*}
\mathrm{Y}=\mathrm{YMIN}+(\mathrm{YMAX}-\mathrm{YMIN}) / 2-(9)(\mathrm{XCS}) / \mathrm{YS} \tag{248}
\end{equation*}
$$

The angle of writing is $P I / 2$ where $P I=3.1415$. The plotter is prepared for writing the label by the call to FCHAR ($\mathrm{X}, \mathrm{Y}, \mathrm{XCS}, \mathrm{YCS}, \mathrm{PI} / 2$.), and the write command prints "PERCENT EFFICIENCY" along the left vertical axis.
132-137: This section draws the X -axis. This axis is drawn as a common log scale. The call to plotter subroutine XSLBL (XS, YS, XMIN, YMIN, IXRAN, XMIN) labels the X-axis for the $\log _{10}$ scale. The call to plotter subroutine XLOG (XS, YS, XMAX, YMIN, -1, IXRAN) drawn the X-axis scale. (It is drawn from (XMAX, YMIN) to the left since the fifth argument $=-1$.$) .$

138-142: This section labels the X-axis as "PARTICLE DIAMETER (MICROMETERS)". The initial horizontal pen position, X , for describing the horizontal axis is defined so that the writing is centered along the horizontal axis:

$$
\begin{equation*}
\mathrm{X}=\mathrm{XMIN}+(\mathrm{XMAX}-X M I N) / 2-(16)(X C S) / X S \tag{249}
\end{equation*}
$$

The initial vertical pen position Y is located far enough below the x-axis (0.7 inch) that the height of written characters does not interfere with the drawn axis:

$$
\begin{equation*}
\mathrm{Y}=\mathrm{YMIN}-0.7 / \mathrm{YS} \tag{250}
\end{equation*}
$$

The call to plotter subroutine FCHAR (X,Y,XCS,YCS, 0.) gives the initial pen coordinates (X, Y) and the character width and height, XCS and YCS, and the angle for writing in radians, 0.0. This prepares the plotter for the command to write "PARTICLE DIAMETER (MICROMETERS)" along the horizontal axis.
143-151: This section draws the Y-axis on the right of the plot using a probability scale and labels it "PERCENT PENETRATION". The commands here are very similar to those at cards 120-131 except that the axis labelling is made to the right of the axis (fourth argument of YPROB is nonzero, here $=1$). The range of the plot is usually 0.01 at YMAX to 20.0 at YMIN. This is the result if code variables IMIN and IMAX are input as 16 and 25 , respectively. The range may be altered by different input for IMIN and IMAX.
152-160: A general heading of "PENETRATION-EFFICIENCY" is written above the graph in this section. The character width and height, XCS and YCS, are each defined as 0.12 inch. The beginning horizontal pen position X is such that the heading is centered over the graph:

$$
\begin{equation*}
X=X M I N+(X M A X-X M I N) / 2-(11)(X C S) / X S \tag{251}
\end{equation*}
$$

The beginning vertical pen position Y causes the heading to be written 0.75 inch above the graph:

$$
\begin{equation*}
Y=Y M A X+0.75 / Y S \tag{252}
\end{equation*}
$$

The writing is to be made at an angle of 0.0 radians. The call to plotter subroutine FCHAR (X,Y,XCS,YCS,0.) prepares the plotter for the command to write "PENETRATION-EFFICIENCY".

161-178: This section writes the general identification label IDGEN and density RHO above the plot (beneath "PENETRATION-EFFICIENCY"). IDGEN is written with an initial pen position (X,Y) such that $X=X M I N$ (in line with the left vertical axis) and $Y=$ YMAX $+0.5 / Y S$ or 0.5 inch above the plot. This is low enough not to interfere with the "PENE-TRATION-EFFICIENCY" heading since the characters are small. They have a width and height in inches of:

$$
\begin{aligned}
& \mathrm{XCS}=0.056, \text { and } \\
& \mathrm{YCS}=0.100
\end{aligned}
$$

The DO-loop at cards 166-169 finds the last character of the IDGEN array and labels it as IDGEN (J). This prevents undue pen movement in writing the identification label. The initial pen position (X, Y) for writing the density is, again, in line with the left vertical axis and 0.25 inches above the graph:

$$
\begin{aligned}
& \mathrm{X}=\mathrm{XMIN}, \text { and } \\
& \mathrm{Y}=\mathrm{YMAX}+0.25 / \mathrm{YS}
\end{aligned}
$$

Character width, height and angle of writing are the same as for writing IDGEN.

179-181: These statements write the general identification label IDGEN and assumed density RHO at the top of a page on the line printer. (Percent efficiency characteristics will follow on that same page.)

182-186: A statement here writes the column headings "INTERVAL", "DIAMETER", "AVERAGE EFFICIENCY", "UPPER CONFIDENCE LIMIT OF EFFICIENCY", and "LOWER CONFIDENCE LIMIT OF EFFICIENCY" on the same page as above.
187-189: ISIG is a code variable whose value indicates when the end of entries pertaining to the given assumed particle density for inlet data has been reached. ISIG is initialized as 0 here. ISIG $=1$ when all entries pertaining to the given assumed density for inlet data have been read. KSIG is this same code variable as applied to the reading of outlet data entries.

190-201: The loop begins here which calculates the percent efficiency and confidence limits for each specified diameter. The index of the loop, NSLOT, is the diameter index number. RSLOT is this same index as a real number. For the diameter indicated by NSLOT, the average efficiency, AVEFF, upper confidence limit of efficiency, CLUE, and lower confidence limit of efficiency. CLLE, are all initialized as 0.0. Also, the average penetration, AVPEN, upper confidence limit of penetration, CLUP, and lower confidence limit of penetration, CLLP, are all initialized as l.0. NCON is a code variable whose value indicates whether or not limits are to be calculated and drawn. It is initialized here as 0. If the average inlet change in mass size concentration $=0$, confidence limits cannot be calculated and the value of NCON is changed to 1 .
202-221: Parallel entries of the inlet file (file l6) and outlet file (file 17) are read. By "parallel" here is meant that the entry read from each file concerns the same diameter. From file 16 is read
the diameter, DPLOT, average $d M / d \log D$ at the inlet for this diameter, AVIN, the standard deviation about the average SIGIN, and number of $d M / d \log D$ values used in calculating AVIN and SIGIN, NIN. From file 17 is read the diameter, DPLOT, dM/dlogD at the outlet for this diameter, AVOUT, the standard deviation about this average, SIGOUT, and number of $d M / d l o g D$ values used in calculating AVOUT and SIGOUT, NOUT. When the end of the file has been reached for entries for this assumed density, the value of DPLOT is DAST, which is five asterisks. With this "flag", the code variable for this file which signals the end of entries for this assumed density (ISIG for file 16, KSIG for file 17) is set equal to 1 . If this end is reached for one file before the other, reading of the longer file continues without calculation of efficiency for these larger diameters.
222-242: If entries are read for both inlet (DPLOT, AVIN, SIGIN, and NIN) and outlet (DPLOT, AVOUT, SIGOUT, and NOUT), the program comes to statement 210 (card 222). All penetration-efficiency and confidence limits calculations are made here. If the average inlet dM/dlogD at this diameter AVIN is nonpositive, or if the number of inlet $d M / d l o g D$ values, NIN, or the number of outlet $d M / d l o g D$ values for this diameter is zero, no calculations are made in this section. The variables keep their initialized values (see discussion of cards 190201), the code variable NCON is set equal to 1 to indicate that there are no confidence limits, and the program skips out of this section to statement 50 (card 246). Otherwise, the average fractional penetration, AVPEN, at this diameter is calculated
as a function of the average inlet $d M / d l o g D$ at this diameter, AVIN, and the average outlet $d M / d \log D$ at this diameter, AVOUT:

$$
\text { AVPEN }=\text { AVOUT }
$$

The average fractional efficiency, AVEFF, is then:

$$
\text { AVEFF }=1.0-\operatorname{AVPEN}
$$

In order to calculate 50% confidence intervals, the Student's t-distribution multiplier must be determined for the number of samples taken at the outlet, NOUT, and inlet, NIN. These t-distribution values are calculated at card 230 for the outlet and card 231 for the inlet. The square of the confidence interval, SIGIO, is calculated at cards 232-233. SIGIO is a function of the standard deviation of the outlet dM/dlogD at this diameter, SIGOUT; the average inlet dM/dlogD at this diameter, AVIN; the average fractional penetration at this diameter (as found above), AVPEN; the standard deviation of the inlet $d M / d \operatorname{logD}$ at this diameter, SIGIN; the number of outlet $d M / d l o g D$ values used to calculate AVOUT and SIGOUT, NOUT; the number of inlet dM/dlogD values used to calculate AVIN and SIGIN, NIN; and the t-distribution values for the outlet and inlet, TOUT and TIN:

SIGIO $=(\text { AVPEN })^{2}\left\{\frac{\left[\text { TOUT } \frac{\text { SIGOUT }}{\text { AVOUT }}\right]^{2}}{\text { NOUT }}+\frac{\left[\text { TIN } \frac{\text { SIGIN }}{\text { AVIN }}\right]^{2}}{\text { NIN }}\right\}$
If SIGIO is a positive number, the square root is taken and confidence limits determined.
The upper and lower confidence limits of the fractional penetration, CLUP and CLLP, respectively, may be calculated as:

$$
\begin{aligned}
& \text { CLUP }=\text { AVPEN }+(\text { SIGIO })^{\frac{1}{2}} \\
& \text { CLLP }=\text { AVPEN }-(\text { SIGIO })^{\frac{1}{2}}
\end{aligned}
$$

The upper and lower limits for fractional efficiency, CLUE and CLLE, respectively, are then:

$$
\text { CLUE }=1.0-\mathrm{CLLP}
$$

243-254: This begins the section for plotting percent penetration and percent efficiency vs. $\log _{10}$ diameter. The diameter DPLOT is first converted to its plotted common log form. The subroutine XVAL (DPLOT, XMAX, XMIN, XS) checks the variable DPLOT to see if it lies between the horizontal plotting bounds XMAX and XMIN. If so, its value is not changed, and XVAL = DPLOT. If DPLOT falls beyond one of these bounds:

```
XVAL = DPLOT + 0.I5/XS DPLOT > XMAX
```

or

$$
\text { XVAL }=\text { DPLOT }-0.15 / X S \quad \text { DPLOT }<\text { XMIN }
$$

In such a case, the diameter coordinate has a value 0.15 inch beyond the exceeded bound. The horizontal coordinate variable to be plotted, $X N$, is set equal to the result of function XVAL.
254-284: If confidence limits have been calculated, i.e., NCON $\neq 1$, the plotted probability YV, which corresponds to the lower confidence limit of fractional efficiency, CLLE, is calculated in this section. First, CLLE is checked to see if it falls within the range of 0.0001 to 0.0000 . If CLLE < 0.0001 , YV is given an arbitrary value of -4 . (This might be any number < -3.7191244 which is the probability equivalent for a fractional efficiency of 0.000l.) If CLLE > 0.9999, YV is given an arbitrary value of +4. (This might be any number > +3.7191244 which is the probability equivalent for a frac-
tional efficiency of 0.9999.) Unless CLLE lies outside the bounds 0.0001 to 0.9999 , the value of its equivalent probability variable, YU is found by the subroutine NDTRI (CLLE, YV, D, IE). The probability variable $Y V$ is then checked by the function YVAL (YV, YMAX, YMIN, YS) to see if it is within the vertical plotting limits, YMAX and YMIN. If YMAX $\leq Y V \leq Y M I N, ~ Y V A L ~=~ Y V . ~ I f ~ Y V ~<~ Y M I N, ~ Y V A L ~$ is given a value which falls 0.15 inch to the left of the minimum boundary, or YVAL $=Y V-0.15 / Y S$. If $Y V$ > YMAX, YVAL is given a value which falls 0.15 inch to the right of the maximum boundary, or YVAL $=\mathrm{YV}+0.15 / Y S$. The vertical coordinate variable to be plotted, $Y N$, is set equal to the result of function YVAL. Recall that the horizontal coordinate variable XN is the result of a similar testing function XVAL. See discussion of cards 243-253.
284-288: This section draws a horizontal tick mark 0.06 inch long for the lower 50% confidence limit at the indicated diameter. The plotter subroutine FPLOT (I, XN, YN) controls movement of the pen.
289-303: The value of the probability variable YV is found here for the average fractional efficiency at this diameter, AVEFF, in the same manner as for the lower 50% confidence limit of efficiency, CLLE, as discussed for cards 254-283. The variable to be plotted, Y, is again the result of the testing function YVAL.
304-306: The pen is moved by the plotter subroutine FPLOT ($0, \mathrm{XN}, \mathrm{YN}$) to the average efficiency value on the probability scale. If the lower 50% confidence limit has been drawn, this movement draws the bar from this point to the average. Otherwise, the
pen is in the up position when moved to the average (no bar drawn) and the pen must be lowered by calling FPLOT (2, XN, YN).
307-311: The call to subroutine $\operatorname{SYMBOL}(9,0.04)$ draws a solid circle 0.04 inch in diameter for average fractional efficiency at this diameter.
312-330: If 50\% confidence limits have not been calculated and therefore are not to be shown on the plot, i.e., if NCON is positive, the pen is raised by the call FPLOT (l, XN, YN). In this case the program skips to statement 55 (card 342) and omits the plotting of the upper 50% confidence limit of efficiency, CLUE. Otherwise, the value of the probability variable $Y V$ is found here for the upper 50% confidence limit of fractional efficiency at this diameter, CLUE, in the same manner as for the lower 50\% confidence limit of efficiency, CLLE, as discussed for cards 254-283. The variable to be plotted, YN, is the result of the testing function YVAL.
331-336: The pen is moved from the point of average fractional efficiency to the upper 50% confidence limit. There it makes a horizontal tick mark 0.06 inch long. The pen is then raised so that it is ready for plotting the average efficiency and confidence limits at the next diameter. All pen movement is controlled by the plotter subroutine FPLOT.
337-345: The diameter index number RSLOT, the particle diameter DPLOT, the average fractional efficiency at this diameter AVEFF, the upper 50% confidence limit of this average, CLUE, and the lower 50% confidence limit of this average CLLE were set equal to $\mathrm{RBUF}_{1}, \mathrm{RBUF}_{2}, \mathrm{RBUF}_{3}, \mathrm{RBUF}_{4}$, and RBUF_{5}, respectively, by an equivalence statement. Here a

DO-loop converts average fractional efficiency and upper and lower 50% confidence limits of fractional efficiency at this diameter to percentages. Any of these values $>100 \%$ is given a value of 100%. Any of these values < 0% is given a value of 0%.
346-349: For printing purposes, the $\log _{10}$ diameter variable DPLOT (used for plotting diameter) is converted back to its original antilog value. DPLOT is now the diameter.
350-354: The diameter index number NSLOT (or RBUF ${ }_{1}$), the diameter in micrometers DPLOT (or RBUF_{2}), the average percent efficiency at this diameter AVEFF (or RBUF $_{3}$), the upper 50% confidence limit of the percent efficiency (or RBUF_{4}), and the lower 50% confidence limit of the percent efficiency (or RBUF ${ }_{5}$) is output on the line printer here. The program then returns to the top of the loop at card 193 to repeat all calculations and output for the next diameter.
355-362: When the average efficiency and confidence limits have been found for all specified diameters for this assumed density (physical when $M D K=1$, unit when MDK $=2$), the plotter pen is returned to its "home position" on the baseline of the plotter paper 4.5 inches beyond the maximum horizontal axis limit XMAX. The pen is now in the proper position for any future plots. Statement 200 (card 362) ends the large loop which began at card 061 which makes all efficiency calculations for one assumed density. If this is the end of the first traverse of the loop, i.e., MDK = 1 for efficiency calculations where physical density is assumed, then the program returns to the top of the loop, MDK $=2$, and all efficiency calculations are made for an
assumed unit density. If this is the end of the second traverse of the loop, the program ends.

Functions of the Called Subroutines

Subroutine NDTRI ($\mathrm{P}, \mathrm{X}, \mathrm{D}, \mathrm{IE}$)--
This is an IBM 360 Scientific Subroutine Package subroutine. Its first argument P is given as a fraction ideally between 0.001 and 0.9999. A value based on a conversion to the probability scale is returned as the second argument X. Since this subroutine is called by more than one program, details of NDTRI may be found in the section on "General Subroutines and Functions".

Subroutine YPROB (XS, YS, XLIM, KODE, IMIN, IMAX)--
This is a subroutine written by R. W. Gaston, 1975, which draws and labels left (for $K O D E=0$), or right (for $K O D E=1$) Y-axes for normal probability scale. This subroutine also is called by more than one program. Details of YPROB may be found in the section on "General Subroutines and Functions".

Input to Mainline Program PENTRA

Card Input--

A general identification is input to the program which heads both graph and line printer output. Also, the plotting range is input according to code values.

Card A: This card gives the general identification label in columns 1-80. It is read by an 80Al format and may contain such information as testing location, dates, conditions of control device operation, etc.
Card B: A code value in columns 1 and 2 indicates whether the internally determined probability plotting range is to be used or whether further cards are to be read to specify a different range.

File Input--

The two random access files 16 and 17 under the names "JWJOOlBIN" and "JWJ002BIN", respectively, are used by program PENTRA. Both of these files are the result of the execution of program STATIS. File 16 contains the results of inlet data reduction, and file 17 contains the results of outlet data reduction. The first record of each of these files contains the following entries:

RHO: This is a real variable requiring two words. It is the physical density in grams per cubic centimeter. It is the assumed density for the data to follow.

TABLE 14. RELATIONSHIP BETWEEN IMIN AND THE CORRESPONDING MINIMUM FRACTIONAL EFFICIENCY

IMIN	Corresponding fractional eff
2	0.0001
3	0.0005
4	0.0010
5	0.0020
6	0.0050
7	0.0100
8	0.0200
9	0.0500
10	0.1000
11	0.2000
12	0.3000
13	0.4000
14	0.5000
15	0.6000
16	0.7000
17	0.8000
18	0.9000
19	0.9500
20	0.9800
21	0.9900
22	0.9950
23	0.9990
24	

LASl (if read from inlet file l6) or
LAS2: (if read from outlet file 17) - This is an integer requiring one word. It is the number of diameters at which the average dM/dlogD has been calculated. This is then also the number of records to be read where physical density is assumed.

LAS1 or LAS2 records follow this first record with the following entries:

DPLOT: This is a real variable requiring two words. It is the diameter at which the average dM/dlogD was calculated for this record.
AVIN (if read from inlet file l6) or
AVOUT: (if read from outlet file 17) - This is a real variable requiring two words. It is the average change in $d M / d l o g$ at diameter DPLOT.
SIGIN (if read from inlet file l6) or
SIGOUT: (if read from outlet file l7) - This is a real variable requiring two words. It is the standard deviation about the specified average change in dM/dlogD.
NIN (if read from inlet file l6) or
NOUT :
(if read from outlet file l7) - this is an integer variable requiring one word. It is the number of dM/dlogD values used in finding the average and standard deviation.
The final record for this assumed density (unless LASl $=0$, if read from inlet file 16 or LAS2 $=0$, if read from outlet file l7) is three groups of five asterisks followed by 0 or DAST, DAST, DAST, IBLAK where DAST $=$ ***** and IBLAK $=0$. These values have been written instead of DPLOT, AVIN (AVOUT), SIGIN (SIGOUT), and NIN (NOUT) to flag the end of records for assumed physical density for the inlet (outlet).

Abstract

The second half of files 16 and 17 consists of the same entries as in the first half except that RHO is now 1.0 gram per cubic centimeter. All values loaded in the records to follow are the results of data reduction where unit density is assumed.

Output from Mainline Program PENTRA

Line Printer Output--
Two pages of output are given by program PENTRA. The first page shows the general identification label (as input to the program by card read) and the assumed physical density. This is followed by a table listing the diameter index number, the diameter in micrometers, the average percent efficiency, the upper 50% confidence limit of this efficiency, and the lower 50% confidence limit of this efficiency. The second page shows the general identification label and the assumed unit density, l.O gram per cubic centimeter. A table follows giving the same type of listings as for physical diameter calculations.

Graph Output--

Two graphs are output by this program-the first for assumed physical density, the second for assumed unit density. Each is a plot of percent efficiency for the gas cleaning device vs. particle diameter in micrometers. The grid is a probability scale vs. common log scale. Each plot also has a vertical probability scale on the right side for percent penetration.

[^3]
PROGRAM PENLOG

The purpose of mainline program PENLOG is the same as that of mainline program PENTRA, i.e., to compare differential size distributions calculated for the inlet and outlet of a control device in order to obtain penetration-efficiency information for various particle sizes. As with program PENTRA, the execution of mainline programs MPPROG, SPLINl, and STATIS is required for both inlet and outlet data before PENLOG may be executed.

PENLOG differs from PENTRA in input and output format. The set range for efficiency is from 90% to 99.99% and therefore 0.01% to 10.0% for penetration. Thus, there is no option to read in a minimum value for the efficiency axis. The graphical output of PENLOG yields a common log scale for both penetration and efficiency, rather than the log probability scale produced by PENTRA. Line printer output is the same for both programs.

Since the PENLOG and PENTRA programs are so nearly alike, the reader should refer to the Breakdown of Program PENTRA for explanation of PENLOG, except for the points noted here.

1. Variables IMIN, IMAX, and YMINFR are not initialized.
2. The option to change the range of the penetrationefficiency graph has been omitted, i.e., code variable ICHRAN is not read in and consequently values for IMIN and YMINFR are also not read into the program. The option to plot or suppress confidence limits is preserved. Therefore, NSPCON is still read in an Il format.
3. The maximum and minimum penetration values are set at $\log _{10}(10.0)$ for 10% and $\log _{10}(0.01)$ for 0.01%. Thus, subroutine NDTRI is not called to find maximum and minimum efficiency values.
4. The y-axes for penetration and efficiency are interchanged. Penetration is on the right, efficiency is on the left.
5. The penetration and efficiency axes are obtained by plotter subroutines YLOG and LGLBL to set up a common log scale, rather than using subroutine YPROB, as in PENTRA, to set up a log probability scale.
6. Logarithms of the average penetration and the associated confidence intervals are plotted at each diameter. This differs from PENTRA where a log probability scale is used. Penetration values are checked to determine if they lie in the range of 0.0001 to 0.10 . Values not in this range are plotted slightly above or slightly below the set maximum or minimum values.

The following subroutines and functions are called by more than one of the mainline programs discussed in this section.

Subroutine SYMBOL (KODE, SIZE)

Subroutine SYMBOL (KODE, SIZE) draws a symbol whose shape is determined by the value of the variable KODE and whose size is determined by the value of the variable SIZE. The eleven symbols drawn are listed here with respect to the value of KODE:

KODE	Symbol drawn
1	Square
2	Triangle
3	Circle
4	+
5	X
6	* (+ over X)
7	Solid square
8	Solid triangle
9	Solid circle
10	Diamond
11	Solid diamond

Of course, various other symbols are possible by calling this subroutine more than once to superimpose symbols. SIZE is the length in inches of the side of a square which would enclose the symbol. Subroutine SYMBOL leaves the pen in the same position as when the subroutine is called.

Breakdown of Subroutine SYMBOL--
036-037: The arithmetic function RND (XX) is defined so that the argument $X X$ is rounded to a higher value
by adding 0.5 to the value of XX if XX is positive, or $X X$ is rounded to a lower value by subtracting 0.5 from the value of $X X$ if $X X$ is negative.

038-039: IXZ2 is defined here as an integer equal to half the length of one side of the enclosing square in hundredths of an inch. The rounding function has the effect of rounding to the next higher size in hundredths of an inch in case SIZE is specified more exactly than hundredths of an inch. (The smallest pen movement is $1 / 100$ inch.)
040: SIZEl (real value) and ISZ (interger value) are bcth the length of the enclosing square in hundredths of an inch (SIZE, on the other hand, is in inches).
041-043: These three logic tests check for out of range values of KODE, SIZE, and ISZ2. If an out of range value is found, SYMBOL returns to the calling program without plotting.
044: ISTRT is the initial value of the DO-loop index which draws the symbols (except the circle) beginning at statement 550 (card ll8). It is initialized here as 1 . ISTRT remains $=1$ for the drawing of + , X, or x. Other symbols begin the 550 DOloop with ISTRT $=2$.
045-047: (IX1, IY1) is the beginning pen location for the drawing of,$+ X$, and E and is defined as (0,0). (IX6, IY6) is the beginning pen position, relative to $(0,0)$ for the drawing of the square and the triangle. It is defined as (ISZ2, -ISZ2). Figure 3 shows these pen locations relative to the initial pen position and the enclosing square.
048-049: The read statement to the plotter (device 7) defines the previous pen position, the absolute position of the pen when SYMBOL is called, as

Pen position to begin drawing of a square or triangle

Figure 3. Beginning pen position for drawing of figures relative to pen position at call to SYMBOL. The enclosing square is shown with dashed lines.
(LASTX,LASTY), the last character sizes IX2 and IX3 (dummy variables here, not used), the last sine and cosine of the character sizes IX2 and IX3 (dummy variables here, not used), the last sine and cosine of the character angle IX3 and IX4 (dummy variables here, not used), and the pen position code IPEN. If the pen is up IPEN $=0$, if down IPEN $=100000$. These are octal numbers.
050-053: Except for the symbols,$+ X$, and x, the pen must begin the drawing in a position other than its original position, and the starting code value for the drawing loop index is defined as ISTRT $=2$. If a square or triangle is to be drawn (KODE $=1$, 2,7 , or 8), the beginning pen position, (IX6, IY6), is as defined above at (ISZ2, -ISZ2). This is in the lower right-hand corner of the enclosing square. If a circle or a diamond is to be drawn (KODE $=3,9,10$, or 11), the beginning pen position, (IX6, IY6), is defined as (ISZ2, 0) so that the pen is in the middle of the right side of the square. These relationships are shown in Figure 3. The pen is then moved by the write statement to the plotter (device 7) using mode 4 which has the function of moving the pen in the up position to a new set of coordinates. The change in coordinates here is (IX6, IY6) as defined above according to the value of KODE.

054: Each change in coordinates must be defined for the pen movements which produce the indicated symbol. Therefore, the program skips to the proper section depending on the value of KODE. Note that KODE = 4, 5, and 6 are dummy directions since the program would have already proceeded to statement 400 or 500 to draw a + , X, or .

055-063: The drawing of a square is discussed here. Four pen movements are needed to draw the square. Since the beginning loop index has been defined as ISTRT $=2$, the ending loop index is defined as IEND $=5$. The pen begins at (ISZ2,-ISZ2) relative to the original pen position when SYMBOL is called. (IX2, IY2) through (IX5, IY5) are defined as the changes in coordinates at each pen movement. These are not absolute coordinate values, but changes relative to last pen position. Figure 4 shows the four pen movements and the change in coordinates for each movement. The program goes to statement 550 (card 118) to draw the square.
064-073: The drawing of a triangle is discussed here. Three pen movements are needed to draw the triangle. Since the beginning loop index has been defined as ISTRT $=2$, the ending loop index is defined as IEND $=4$. Changes in pen coordinates (IX2, IY2) through (IX4, IY4) are defined here. These are not absolute coordinate values, but changes relative to last pen position. Figure 5 shows the three pen movements and the change in coordinates for each movement.
074-091: This section draws the circle symbol. Other symbols are drawn at the Do-loop beginning at statement 550, card 118. The circle begins at the point ISZ2 which is half the width of the enclosing square. Initial movement is horizontal from the point at which subroutine SYMBOL is called, LASTX, LASTY). The angle here, THETA, is initiallized as 0.0 radians. The last angle to which the pen will move, THLAST, is defined as 2π radians $=6.283185$ radians. The angle increment through which the pen moves at each WRITE state-

Figure 4. Pen position changes to draw a square.

Figure 5. Pen position changes to draw a triangle.
ment, THINC, is defined as $2.0 /$ SIZEl radians. Note that this is inversely proportional to the dimension of the square, SIZEl. Thus, even for a large circle, each pen movement is small so that the result appears as a circle rather than a polygon. Statement 325 (card 82) begins an implied DO-loop which sets up the coordinate increments, IX1 and IY1, the new coordinates, (IX2, IY2), and moves the pen from point to point at each traverse, thus, drawing the circle. Note that the increments IXl and IYl are defined as changes relative to the original position of the pen, (LASTX, LASTY). The original pen location is the point around which the circle is being drawn. IX2 and IY2 are absolute coordinates and not changes in coordinates. Figure 6 shows the pen positions and changes in coordinates. Since the coordinates are absolute values, the write statement to the plotter uses mode 3 , as opposed to mode 5 , which moves by changes in delta coordinates. Delta coordinates are coordinates referred to the last pen location. These options are explained in Appendix A, DEC PDP - 15/76 Plotter Subroutines in the section entitled "Unichannel XY Plotter Handler". After each pen movement, the angle THETA is incremented by THINC and tested to see if the circle has been completed (THETA > THLAST). If not, the subroutine returns to statement 325 (card 82) to continue drawing. If the circle has been completed and only a "hollow" circle is desired (KODE $=3$), the subroutine skips to statement 750 where the pen is raised and moved to the center of the circle (LASTX, LASTY). There the original pen position (when subroutine SYMBOL was called) is checked,

Figure 6. Pen positions for drawing of a circle are defined as functions of the pen position when SYMBOL is called. These are (LASTX,LASTY) and the circle radius, SIZE2.
and the pen is put back into this position, up or down, before returning to the calling program. If a solid circle is desired (KODE = 9), the dimension of the enclosing square SIZEl is decreased by $2 / 100$ inch and a slightly smaller circle is drawn inside the first. This process continues until the original circle is filled in. The subroutine then skips to statement 800 (card 146) where the pen is placed into the same up or down position as when SYMBOL was called. Then SYMBOL returns to the calling program. Note that the pen is already in the center of the circle at (LASTX, LASTY) and it is not necessary to go to statement 750 to move it there.

092-100: The series of changes in position for the drawing of a diamond is discussed here. Only four pen movements are needed to draw a diamond. However, since all pen movements are in $1 / 100$-inch vertical and horizontal pen movements, a small diamond does not have smoothly drawn sides. Therefore, a diamond is drawn again superimposed over the first to "smooth" the diamond. Eight pen movements are then needed. The loop at statement 550 (card ll8) has a beginning index value ISTRT $=2$. Therefore, the last index value is defined here as $\operatorname{IEND}=9$. The pen begins at (ISZ2,0) relative to the original pen position when SYMBOL is called. (IX2, IY2) through (IX9, IY9) are defined as the changes in coordinates for each pen movement (not absolute coordinate values). Figure 7 shows the eight pen movements and the change in coordinates for each movement. The program then goes to statement 550 to draw the diamond.

Figure 7. Pen position changes to draw a diamond for: al a loop index of 2 (ISTRT) through 5; b) a loop index of 6 through 9 (IEND).

101-108: The series of pen changes for drawing the symbol + is discussed here. Eight pen movements are used to draw this symbol. Since the beginning loop index value has been defined as ISTRT $=1$, the ending loop index value is defined as IEND $=8$. The drawing begins with the pen in its original position when subroutine SYMBOL is called. (IXI, IY1) through (IX8, IY8) are defined here as the changes in coordinates at each pen movement. These are not absolute coordinate values, but are the "Delta" coordinate values mentioned above. Figure 8 shows the eight pen movements and the change in coordinates for each movement. The program goes to statement 550 (card 118) to draw the + .

109-114: The series of pen changes for drawing the symbol X is discussed here. Eight pen movements are used to draw this symbol. Since the beginning loop index value has been defined as ISTRT $=1$, the ending loop index is defined as IEND $=8$. Drawing begins with the pen in its original position when subroutine SYMBOL is called. (IXI, IYI) through (IX8, IY8) are defined as the changes in coordinates at each pen movement. These are not absolute coordinate values, but "Delta" coordinate values mentioned above. Figure 9 shows the eight pen movements and the change in coordinates for each movement. The program goes to statement 550 (card 118) to draw the X .

115-120: The DO-loop here draws all symbols except the circle. (See cards 074-091 for drawing a circle.) Coordinate changes have been defined previously for each possible symbol. The beginning and ending loop index values ISTRT and IEND, have also

Figure 8. Pen position changes to draw a plus for: al a loop index of 1 (ISTRT) through 4; b) a loop index of 5 through 8 (IEND).

Figure 9. Pen position changes to draw an X for: al a loop index of 1 (ISTRT) through 4; b) a loop index of 5 through 8 (IEND).
been defined for each symbol to set up the proper number of pen movements (one movement for each traverse of the loop). Note that the WRITE statement to the plotter (device 7) uses mode 5 for pen movement. This has the function of moving the pen by the change in coordinates defined, IX(I) and IY(I), with the pen down. The use of different modes is explained in the Appendix.
121: The computed GO TO statement transfers to statement 750 (card 144) for those "hollow" symbols (square, triangle, diamond) to put the pen back in its original position (including up or down position) when subroutine SYMBOL was called and then return to the calling program. The GO TO 750 for the hollow circle is a dummy instruction since the program skips to statement 800 before reaching this GO TO statement when KODE $=3$. For the + and X symbols, the program skips to statement 800 where only the original up or down position of the pen is checked and reset before returning. The pen is at the starting point after drawing + or X. The other symbols require more drawing. For the symbol w^{*} the + is drawn first and them X is superimposed on top of this. For this the program skips to statement 625 (card 126) to see if X has been superimposed. For the other solid figures (square, triangle, diamond), the program skips to statement 640 (card 129) or statement 645 (card 133) to decrement the size parameter for drawing smaller and smaller figures, thus, "filling in" the original figure. The GO TO 800 statement for the solid circle is a dummy instruction, since the program does not reach this statement when KODE $=9$.

122-127: Here the subroutine checks to see if the symbol X has been superimposed over the + for drawing the symbol x. If + has just been drawn, the last vertical pen change, IY8, is 0 and the symbol X is still to be drawn. In this case the subroutine goes to statement 500 (card ll2) to perform the superposition. If this has been done, IY8 = ISZ2, and the subroutine goes to statement 800 (card 146) to reset the pen to its original position when subroutine SYMBOL was called.
128-139: This section decrements the size parameters for the drawing of a solid square, a solid triangle, or a solid diamond, depending on the value of KODE. The new enclosing square has each dimension, ISZ, $1 / 100$ inch shorter for the smaller diamond and $2 / 100$ inch shorter for the smaller square or triangle. The pen first must move in within the previous symbol $1 / 100$ inch to begin. Therefore, IX1 $=-1$. IYl must also be redefined to bring the pen in for drawing the square or triangle. Therefore, in each of these two sections, IYl = - IX1 $=1$ or $1 / 100$ inch. The length of half the enclosing square, ISZ2, is also reduced by $1 / 100$ inch. The pen must move to the point where the drawing of the new smaller symbol is to start. Therefore, the drawing loop index is given a beginning value ISTRT $=1$, rather than 2 . The subroutine uses the computed GO TO statement to go to the appropriate section for defining pen movement coordinates according to KODE. Smaller and smaller symbols are drawn filling in the original until the pen is in the center of the symbol at the original point around which the symbol is being drawn. Then the subroutine skips to state-
ment 800 (card 146) to reset the pen to an up or down position, as it was when subroutine SYMBOL was called.
140-148: If not already at the original location when SYMBOL was called (for the "hollow" square, triangle, circle, or diamond), the subroutine skips to statement 750 (card l44) to define the writing mode as mode 2. Next, using the write statement 775 (card 145), the pen is carried to the original point (LASTX, LASTY) with the pen up. If the pen is at the original point (for + , $\mathrm{X}, \mathrm{*}$, solid square, solid triangle, solid circle, or solid diamond), the subroutine comes directly to statement 800 (card 146) to check the original up or down position of the pen. IPEN $=0$ if the pen was up, or IPEN $=100000$ (octal) if the pen was down. If IPEN is negative, it is a "flag" that the pen has been placed back in the original "called position." If IPEN $=0$, the subroutine goes to statement 725 (card 143) where the writing mode is set equal to 2 to raise the pen at the write statement 775 (card l45). IPEN is set equal to -1 to indicate that the pen is properly set and the subroutine returns to the calling program. If IPEN > 0 (i.e.., IPEN $=100000$), the subroutine goes to statement 700 (card 140) where the writing mode is set equal to 3 . This lowers the pen at write statement 775. IPEN is set equal to -1 to indicate that the pen has been properly set and the subroutine returns to the calling program. These writing modes are more fully explained in the appendix.

This function, SLIM (MAXMIN, ALIMIT), finds the maximum or minimum axis limit given the largest or smallest value to be plotted, ALIMIT. A minimum limit is found if MAXMIN ≤ 0. In this case the value of ALIMIT is the smallest value to be plotted with respect to some axis. A maximum value is found if MAXMIN>0. Then the value of ALIMIT is the greatest value to be plotted with respect to this axis.

Breakdown of Function SLIM--
016: Define the truncated integer LIMIT as the value which is to determine the maximum or minimum plotting limit:

$$
\text { LIMIT }=A L I M I T
$$

017: Define the difference of these two values as DIFF:

$$
\text { DIFF }=\text { ALIMIT-LIMIT }
$$

018-019: The value of MAXMIN indicates whether SLIM is called to find a maximum plotting limit or a minimum plotting limit. If MAXMIN ≤ 0, this function goes to statement 1 (card 020) to return a minimum. If MAXMIN>0, this function goes to statement 2 (card 021) to return a maximum.
020: The program reaches statement 1 when a minimum is desired. If DIFF is negative, the value of ALIMIT is a negative real number (i.e., the common antilog of ALIMIT is a value < 1.0 but greater than zero), and the program goes to statement 3 (card 026). If DIFF is zero, this indicates that the value of ALIMIT is an integer (i.e., the common antilog of ALIMIT is a value which is an integral power of 10) and the program goes to statement 4
(card 031). If DIFF is positive, this indicates that the value of ALIMIT is a positive real number (i.e., the common antilog of ALIMIT is a value $>$ l.0, not an integral power of lo.) and the program goes to statement 4 (card 031).
021: The program reaches statement 2 when a maximum is desired. The various values of DIFF (negative real number, zero, or positive real number) have the same meaning for ALIMIT as in the description of card 020 above. However, the value of DIFF causes the program to proceed to different statements than above in order to find a maximum. The program goes to statement 5 (card 038) if DIFF is either a negative real number or zero. The program goes to statement 4 (card 031) if DIFF is a positive real number.
022-027: The program reaches statement 3 only when ALIMIT is a negative real number and SLIM is called to find a minimum limit (MAXMIN=0). In this case the returned limit value SLIM is:

$$
\begin{equation*}
S L I M=\text { LIMIT }-1 \tag{254}
\end{equation*}
$$

For example, suppose the program searches for the minimum diameter axis value where the smallest diameter is 0.3 micrometers:

$$
\begin{align*}
& \operatorname{SLIM}(\text { MAXMIN }, \operatorname{ALIMIT}) \tag{255}\\
= & \operatorname{SLIM}\left(0, \log _{10}(0.3)\right) \tag{256}\\
= & \operatorname{SLIM}(0,-1.523) \tag{257}
\end{align*}
$$

In this case LIMIT $=-1$ so that

$$
\begin{equation*}
\text { SLIM }=-1-1=-2 \tag{258}
\end{equation*}
$$

With SLIM returned as -2 , the minimum limit for the diameter axis is 10^{-2} or 0.01 . Therefore, even the smallest diameter value, 0.03 , can be plotted on the resulting grid.

028-032: The program reaches statement 4 only when ALIMIT is a positive real number and the search is for a maximum grid limit (MAXMIN = l). In this case the returned limit value, SLIM, is:

$$
\begin{equation*}
\text { SLIM }=\text { LIMIT }+1 \tag{259}
\end{equation*}
$$

For example, suppose the program searches for the maximum cumulative mass loading axis limit when the largest value of the data is 8.6×10^{4} milligrams per actual cubic meter:

$$
\begin{align*}
& \operatorname{SLIM}(\text { MAXMIN, ALIMIT }) \tag{260}\\
= & \operatorname{SLIM}\left(1, \log _{10}\left(8.6 \times 10^{4}\right)\right) \tag{261}\\
= & \operatorname{SLIM}(1,4.934) \tag{262}
\end{align*}
$$

In this case, LIMIT $=4$ so that

$$
\begin{equation*}
\text { SLIM }=\text { LIMIT }+1=5.0 \tag{263}
\end{equation*}
$$

With SLIM returned as 5.0, the maximum limit for the cumulative mass loading axis is $1.0^{5} \cdot{ }^{\circ}$. Therefore, even the largest cumulative mass loading value, 8.6×10^{4}, can be plotted on the resulting grid.
033-039: The three conditions for reaching statement 5 (card 038) and the resulting value of SLIM are discussed below. In each case SLIM = LIMIT.
1.) ALIMIT is a negative real number and the search is for a maximum grid limit (MAXMIN=1). Suppose the program is searching for the maximum cumulative mass loading axis limit when the largest value of the data is $0.8 \mathrm{milli}-$ grams per actual cubic meter:

$$
\begin{align*}
& \operatorname{SLIM}(\text { MAXMIN }, \operatorname{ALIMIT}) \tag{264}\\
= & \operatorname{SLIM}\left(1, \log _{10}(0.8)\right) \tag{265}\\
= & \operatorname{SLIM}(1,-0.0969) \tag{266}
\end{align*}
$$

$$
\begin{gather*}
\text { In this case, LIMIT }=0 \text { so that } \\
\text { SLIM }=\text { LIMIT }=0.0 \tag{267}
\end{gather*}
$$

With SLIM returned as 0.0 , the maximum limit for the cumulative mass loading axis is $10^{\circ} \cdot{ }^{\circ}=1$. Therefore, even the largest cumulative mass loading value, 0.8 , can be plotted on the resulting grid.
2.) ALIMIT is an integer. The search may be for either a maximum (MAXMIN=l) or a minimum (MAXMIN=0). Suppose the program searches for the maximum axis limit for the $d M / d \log D$ values is 1.0×10^{6} milligrams per dry normal cubic meter:

$$
\begin{align*}
& \operatorname{SLIM}(\text { MAXMIN, ALIMIT }) \tag{268}\\
&= \operatorname{SLIM}\left(1, \log _{10}\left(1.0 \times 10^{6}\right)\right) \tag{269}\\
&= \operatorname{SLIM}(1.6) \tag{270}\\
& \operatorname{LIMIT}=6 \text { so that } \tag{271}\\
& \operatorname{SLIM}=\operatorname{LIMIT}=6.0
\end{align*}
$$

In this case, LIMIT $=6$ so that

With SLIM returned as 6.0 , the maximum axis limit for the $d M / d l o g D_{D}$ values is $10^{6.0}$. The largest value of the $d M / d \log D$ distribution, 1.0×10^{6}, can be plotted on the resulting grid.
3.) ALIMIT is a positive real number and the search is for a minimum grid limit (MAXMIN=0). Suppose the program searches for the minimum diameter axis value where the smallest diameter is 1.2 micrometers:

$$
\begin{align*}
& \operatorname{SLIM}(\text { MAXMIN }, \operatorname{ALIMIT}) \tag{272}\\
= & \operatorname{SLIM}\left(0, \log _{10}(1.2)\right) \tag{273}\\
= & \operatorname{SLIM}(0.0 .0792) \tag{274}
\end{align*}
$$

In this case, LIMIT $=0$ so that

$$
\begin{equation*}
\text { SLIM }=\text { LIMIT }=0 \tag{275}
\end{equation*}
$$

With SLIM returned as 0.0 , the minimum limit for the diameter axis is $10^{\circ} .0=1.0$. There, fore, the smallest diameter value, 1.2 , can be plotted on the resulting grid.
040: Statement 6 returns the function value SLIM to the plotting subroutine which called it.
041: End.

Function XVAL (XIF, AMAX,AMIN, AS)

Function XVAL (XIF,AMAX,AMIN,AS) compares the value XlF to the given maximum and minimum grid values, AMAX and AMIN. If XIF is within the range of these two values, XVAL is set equal to XlF and returned. However, if XIF>AMAX, XVAL is returned as a value which would be plotted 0.15 inch outside the maximum grid limit, AMAX. Similarly, if XlF<AMIN, XVAL is returned as a value which would be plotted 0.15 inch outside the minimum grid limit, AMIN. Thus, the call to this function prevents disorientation of the plotter if trying to plot an extreme value beyond plotting limits.

Breakdown of Function XVAL--
09-011: XlF is checked here to see if it is greater than the maximum grid value, AMAX. If so, the routine goes to statement 86 (card 010) where the variable XVAL is set equal to a value beyond the maximum grid value, AMAX.

$$
\begin{equation*}
\text { XVAL }=\text { AMAX }+0.15 / \text { AS } \tag{276}
\end{equation*}
$$

where AS is the number of inches per grid unit. The function then returns this value of XVAL to the calling routine.
012-014: The routine comes to statement 87 (card 012) if the value of XlF is less than AMAX. XlF is checked here to see if it is less than the minimum grid value, AMIN. If so, the routine goes to
statement 88 (card 013) where the variable XVAL is set equal to a value less than the minimum grid value, AMIN:

$$
\begin{equation*}
X V A L=A M I N-0.15 / A S \tag{277}
\end{equation*}
$$

The function returns this value of XVAL to the calling subroutine.
015-017: The function routine goes to statement 89 (card 015) only if AMIN $\leq X 1 F \leq A M A X, ~ i . e ., ~ o n l y$ if the value of XlF is within the plotting limits. In this case, XVAL is returned equal to XIF. Thus, XVAL is set equal to $X 1 F$ and returned.

Function YVAL(YlF, BMAX,BMIN,BS)

This function is the same as XVAL (XlF, AMAX,AMIN,AS). See the description of this function above.

Subroutine CPPLOT(IDGEN, RHO, XMAX, XMIN, YMAX,YMIN,XS,YS)

This subroutine is called by subroutine CUMPCT or by mainline program STATIS to draw the grid for cumulative percent mass loading less than particle diameter vs. indicated particle diameter. It draws an ordinate probability scale axis labeling it "CUMULATIVE PERCENT" and an abscissa common log scale labeling it "PARTICLE DIAMETER (MICROMETERS)". The grid is labeled with the identification label, IDGEN, and density in grams per cubic centimeter, RHO. XMAX, XMIN, YMAX, and YMIN are the abscissa and ordinate axis limits while $X S$ and $Y S$ are the abscissa and ordinate scale factors in inches per user's unit.

Breakdown of Subroutine CPPLOT--
011-018: Subroutine NDTRI(P,X,D,IE) is a subroutine from
the IBM 360 Scientific Subroutine Package-Version III. It takes the first argument, P, in a fractional form and returns it in terms of the probability scale as the second argument, x. Here, NDTRI is used to find the maximum and minimum plotting limits for the vertical cumulative percent axis which is to use a probability scale. The maximum and minimum fractional limits used here for the first argument, P, are 0.9999 and 0.0001 , respectively. The probability equivalent values returned as the second argument, X, are YMAX $=$ +3.7191244 and YMIN $=3.7191244$, respectively.
019-026: The lengths of the horizontal and vertical axes, XINCH and YINCH, are established here. XINCH = 4.5 inches and YINCH $=6.5$ inches. These dimensions leave adequate room for legends and a caption on an 8-1/2 x ll-inch format.
027-033: The horizontal maximum and minimum plotting limits, XMAX and XMIN, are defined here in terms of the common log scale. The maximum particle diameter to be plotted is 100.0 micrometers. Thus, $X M A X=$ $\log _{10}(100.0)=2.0$. The minimum particle diameter to be plotted is 0.1 micrometer. Thus, $\mathrm{XMIN}=\log _{10}(0.1)=-1.0$.

034-038: The horizontal and vertical scale factors, XS and YS, are established here in inches/user's unit:

$$
\begin{align*}
X S & =X I N C H /(X M A X-X M I N) \tag{278}\\
Y S & =Y I N C H /(Y M A X-Y M I N) \tag{279}
\end{align*}
$$

039-042: When subroutine CPPLOT begins execution, the plotter pen should be in its "home position", that is, on the base line of the plotter paper. This position must be defined in terms of the user's origin and stored as a reference point for the plotter. The user's origin is (XMIN, YMIN)
and has values as defined above at card 018 and card 033. The pen's "home position" is (XMIN,Y0). The horizontal coordinate is the same as for the user's origin. The vertical coordinate is defined so that the user's origin is placed two inches above the "home position":

$$
\begin{equation*}
\mathrm{YO}=\mathrm{YMIN}-2.0 / \mathrm{YS} \tag{280}
\end{equation*}
$$

043-047: Subroutine SCALF (XS,YS,XMIN,Y0) stores the X and Y axis scale factors, $X S$ and $Y S$, and also the original pen position at the call of subroutine CPPLOT, (XMIN, Y0), for use by the plotter.
048-061: This section draws the Y-axis on the left side of the graph. The call to subroutine FPLOT (0, XMIN, YMAX) moves the pen to the left side of the plot without up or down pen movement. (The pen is in the up position at this call to FPLOT.) Code variables IMIN $=1$ and IMAX $=25$ are defined here for use by subroutine YPROB. IMIN is the code value which determines the minimum cumulative fraction limit for the graph. \quad IMIN $=1$ causes this minimum limit to be 0.0001 . IMAX is the code which determines the maximum fraction limit for the graph. IMAX $=25$ causes this maximum limit to be 0.9999. The call to subroutine YPROB (XS, YS, XMIN, 0 , IMIN, IMAX) causes the Y-axis to be drawn beginning with the maximum cumulative percent to be plotted, 99.99\%. Tick marks are drawn downward along the vertical axis to the minimum cumulative percent to be plotted, 0.01%. XS and YS are the horizontal and vertical scale factors previously defined. XMIN is the horizontal position of the Y-axis. The fourth argument, $\mathrm{KODE}=0$, indicates that the axis is to be labeled to the left of the axis.

062-071: This section labels the left Y-axis as cumulative percent. The character width and height, XCS and YCS, are each defined as 0.15 inch. The initial horizontal pen position (at base of first character) is one inch to the left of XMIN, that is, one inch to the left of the Y-axis:

$$
\begin{equation*}
X=X M I N-1.0 / X S \tag{281}
\end{equation*}
$$

The initial vertical pen position os defined so that the label is centered along the Y-axis:

$$
\begin{equation*}
Y=Y M I N+(Y M A X-Y M I N) / 2 .-9 .(Y C S / Y S) \tag{282}
\end{equation*}
$$

The angle of writing is PI/2. where PI $=3.1415$. The plotter is prepared for writing the label by the call to FCHAR (X,Y,SCS,YCS,PI/2.), and the write command prints "CUMULATIVE PERCENT" along the left vertical axis.

072-077: This section draws the X-axis. This axis is drawn as a common log scale. The number of common log cycles to be drawn, IXRAN, is defined as the difference in the maximum and minimum X-axis limits:

$$
\begin{equation*}
\text { IXRAN }=\text { XMAX }-X M I N \tag{283}
\end{equation*}
$$

The call to plotter subroutine XSLBL(XS, YS, XMIN, YMIN, IXRAN, XMIN) labels the X-axis for the common \log scale. The call to plotter subroutine XLOG (XS, YS, XMAX, YMIN, -l, IXRAN) draws the X-axis scale. It is drawn from (XMAX,YMIN) to the left since the fifth argument is -1.

078-084: This section labels the X-axis as "PARTICLE DIAMETER (MICROMETERS)". The initial horizontal pen position, X, for describing the horizontal axis is defined so that the writing is centered along the horizontal axis:

$$
\begin{equation*}
X=\text { XMIN }+(\text { XMAX-XMIN }) / 2 .-16 .(X C S / X S) \tag{284}
\end{equation*}
$$

The initial vertical pen position, Y, is located far enough below the X -axis (0.7 inch) that the height of written characters does not interfere with the drawn axis:

$$
\begin{equation*}
\mathrm{Y}=\mathrm{YMIN}-0.7 / \mathrm{YS} \tag{285}
\end{equation*}
$$

The call to plotter subroutine $\operatorname{FCHAR}(\mathrm{X}, \mathrm{Y}, \mathrm{XCS}, \mathrm{YCS}$, 0.) gives the initial pen coordinates (X, Y) and the character width and height, XCS and YCS, and the angle for writing in radians, 0.0. This prepares the plotter for the next to command which is to write "PARTICLE DIAMETER (MICROMETERS)" along the horizontal axis.
085-099: This section writes the general identification label IDGEN above the plotting grid. IDGEN is written with an initial pen position (X, Y) so that $\mathrm{X}=\mathrm{XMIN}$, in line with the vertical axis, and $Y=$ YMAX $+0.5 / Y S, 0.5$ inch above the plot. The width and height of these characters in inches are:

$$
\begin{align*}
\mathrm{XCS} & =0.056 \tag{286}\\
\mathrm{YCS} & =0.100 \tag{287}
\end{align*}
$$

The DO-loop at cards 093-097 finds the last character of the IDGEN array and labels it as IDGEN $_{J}$. This prevents undue pen movement in writing the identification label.
100-104: This section writes the density, RHO, above the plotting grid beneath IDGEN. The initial pen position (X, Y) for writing the density is, again, in line with the vertical axis and 0.25 inch above the graph:

$$
\begin{align*}
& X=\text { XMIN } \tag{288}\\
& Y=Y M A X+0.25 / Y S \tag{289}
\end{align*}
$$

Character width, height, and angle of writing are the same as for writing IDGEN.
104: Subroutine CPPLOT returns to the calling program; either subroutine CUMPCT or mainline program STATIS.

Subroutine YPROB(XS,YS,X,KODE,IMIN,IMAX)

This subroutine, $Y P R O B(X S, Y S, X, K O D E, I M I N, I M A X)$, draws the 10 g probability ordinate used in graphing cumulative percent concentration and penetration-efficiency.

Before calling YPROB, the calling arguments must be defined. $X S$ and $Y S$ are the horizontal and vertical scale factors in inches per unit. X is the position on the X-axis at which the Y-axis is to be located. KODE determines whether labeling of the axis is to the left $(K O D E=0)$ or to the right (KODE $=1$) of the Y-axis. For example, when drawing the grid for cumulative percent concentration or percent efficiency, this Y-axis is drawn on the left side of the graph. KODE is set equal to zero to write percentages to the left of the tick marks, beginning at the top with 99.99% and descending to the desired minimum value. When drawing the grid for percent penetration, this Y-axis is drawn on the right of the graph. KODE is set equal to one to write percentages to the right of the tick marks. The percentages begin with 0.01% at the top and ascend in value downward to the desired maximum. IMIN and IMAX are code values for the minimum and maximum cumulative percent or percent efficiency to be shown on the plot. The fractional value corresponding to each value of IMIN or IMAX is given in Table 15 along with fractional big tick mark values, number of small tick marks between this and the next large tick mark, and the fractional increment between each of these small tick marks. The position of each tick mark on the grid, and the vertical position of each plotted fraction, is

TABLE 15 GUIDE TO YPROB SUBROUTINE

	Big tick values (BTV)	Small tick increments (STI)	Number of small ticks (NST)	$\begin{aligned} & \text { IMIN } \\ & \text { (or) } \\ & \text { IMAX } \end{aligned}$	Fractional efficiency number
YMIN	0.0001	0.0001	3	1	0.01
	0.0005	0.0001	4	2	0.05
	0.001	0.0005	1	3	0.1
	0.002	0.001	2	4	0.2
	0.005	0.001	4	5	0.5
	0.01	0.002	4	6	1.0
	0.02	0.01	2	7	2.0
	0.05	0.01	4	8	5.0
	0.1	0.01	9	9	10.0
	0.2	0.02	4	10	20.0
	0.3	0.02	4	11	30.0
	0.4	0.02	4	12	40.0
	0.5	0.02	4	13	50.0
	0.6	0.02	4	14	60.0
	0.7	0.02	4	15	70.0
	0.80	0.01	4	16	80.0
	0.9	0.01	4	17	90.0
	0.95	0.01	2	18	95.0
	0.98	0.002	4	19	98.0
	0.97	0.001	4	20	99.0
	0.995	0.001	2	21	99.5
	0.998	0.0005	1	22	99.8
	0.999	0.0001	4	23	99.9
	0.9995	0.0001	3	24	99.95
YMAX	0.9999	0.0	0	25	99.99

determined by taking the inverse of the normally distributed probability function. This is done in the subroutine NDTRI from the IBM 360 Scientific Subroutine Package - Version III.

Subroutine YPROB was written at Southern Research Institute. However, its only function, like YLOG, LGLBL, XLOG, and XLBL, is to draw an axis according to a functional form, and is, therefore, not discussed here in a line by line breakdown.

USER INSTRUCTIONS

This section is a user's guide for each of the mainline programs and should provide enough information for the user to execute the mainline programs easily. Refer to Section 3 if any programming changes are to be made. For each mainline program, requirements for program execution are given (e.g., maximum number of runs for one execution, cards which may be omitted under certain circumstances, etc.). Also, a table of card formats is included for each of the mainline programs. It should be noted that the job streams listed are for the PDP $15 / 76$ computer system. They are presented here to show the file names and numbers which must be assigned and also to show the ordering of data cards. Necessary changes in the Job Control Language (JCL) must be made for other computer systems. File reference information, and a table listing which subprograms and functions are called by mainline programs and other subroutines are included at the end of this section.

MAINLINE PROGRAM MPPROG

Requirements for Program Execution

The following is a list of implied user instructions for execution of mainline program MPPROG:

1. Only one type of impactor data (e.g., Andersen, Brink, etc.) can be run under one MPPROG XCT.
2. A maximum number of impactor data sets is 50 under one MPPROG XCT.
3. Cards l-2 apply to one test (a test being made up of runs where one type of impactor is used). These cards may not be repeated.
4. Cards 3-8 make up one impactor run. These cards may be repeated.
5. Card 3 stops the program if MPACNO $=0$ (i.e., 0 punched in column 1 of card 3).
6. The user should make the appropriate changes in subroutine CUT and the COMMON BLOCK routine for Common Block 2 in order to load calibration constants (values of $\sqrt{\psi}$) and hole diameter sizes for the impactors used. The calibration values listed in program MPPROG are those used by Southern Research Institute and are here for purposes of illustration only.

Card Format

Table 16 gives the variables to be punched on each card for MPPROG, columns in which to punch them and format used. A description of the variables, and any options available are also given.

Sample Job Stream

The following is a listing of a sample job stream for 10 impactor runs as would be required for the PDP 15/76 computer system:

SJOB ENAME
\$D DP1 <KMC> KMCOO1
\$ASG 12:DP1 (KMC)
\$XCT MPPROG:DP1 (KMC)
CARD 1
CARD 2
CARDS 3-8
CARDS 3-8

TABLE 16. MPPROG INPUT CARD FORMZT

CARDS 3-8
CARD 3 (Last card blank or nonpositive integer.)
SEND
\$SPOOLER END-OF-DECK CARD

MAINLINE PROGRAM SPLIN1

Requirements for Program Execution

The following is a list of user instructions for the execution of mainline program SPLINI:
l. Mainline program MPPROG must be executed prior to execution of mainline program SPLINl since all data used by SPLINI are stored on file by MPPROG.
2. Unless otherwise specified on card l, curve fits are made for all data sets (for both Stokes diameter and aerodynamic diameter where physical density was input to IIPPROG or for both definitions of aerodynamic diameter where unit density was input to ViPPROG).
3. Card 2 is omitted if all data sets are to be curve fit. Card 2 is repeated for each set of data to be curve fit and left blank to end program.

Card Format

Table 17 gives the variables to be punched on each card for SFLINl, columns in which to punch them and format used, a description of the variables, and any options.
'IABLE 17. SPLIN1 INPUT CARD FORMAT

It should be noted that comments regarding the sample job streams listed here refer to the case in which the physical particle density is input to program MPPROG.

The following is a listing of a sample job stream for 10 impactor runs as would be required by the PDP 15/76 computer system. This job stream would make cumulative mass loading vs. D_{50} curve fits to runs $1,4,5,7$, and 8 assuming physical density (Stokes diameter) and runs $2,3,4,6,9$, and 10 assuming unit density (aerodynamic diameter):
\$JOB ENAME
\$D DPI <KMC> FILSPL
\$ASG 12:DPI (KMC)
\$ASG 13:DPl (KMC)
\$XCT SPLIN1:DPl (KMC)
CARD 1 (Reads integer >0 in columns l-2)
CARD 2 (Reads 01)
CARD 2 (Reads 07)
CARD 2 (Reads 09)
CARD 2 (Reads 13)
CARD 2 (Reads 15)
CARD 2 (Reads 04)
CARD 2 (Reads 06)
CARD 2 (Reads 08)
CARD 2 (Reads 12)
CARD 2 (Reads 18)
CARD 2 (Reads 20)
\$END
\$SPOOLER END-OF-DECK CARD

The following is a listing of a sample job stream for 10 impactor runs, and yields cumulative mass loading vs. D_{50} curve fits to all runs for both physical and aerodynamic diameter:
\$JOB ENAME
\$D DPI <KMC> FILSPL
\$ASG 12:DPl (KMC)
\$ASG 13:DPl (KMC)
\$XCT SPLINL:DPl (KMC)
CARD 1 (Reads blank or nonpositive integer in columns 1-2) SEND
\$SPOOLER END-OF-DECK CARD

MAINLINE PROGRAM GRAPH

Requirements for Program Execution

The following is a list of user instructions for execution of the mainline program GRAPH:
l. Mainline program MPPROG must be executed prior to execution of mainline program GRAPH. If any plots derived from and including cumulative mass loading fits are called for, mainline program SPLINl must also be executed before GRAPH.
2. Card l applies to one test and may not be repeated.
3. Cards 2-3 are not repeated if the types of graphs desired are the same for every run.
4. Cards 2-3 apply to one impactor run and are repeated if the types of graphs desired are different for different impactor runs. In this case the variable IREPET is set equal to l. Refer to Table 18 for more specific information.
5. Up to 10 sets of raw data can be plotted on one graph. Only one set of fitted data can be plotted on one graph.

Card Format

Table 18 gives the variables to be punched on each card, columns in which to punch them, the format used, a description of the variables, and any options. Descriptions/options/units are discussed under the assumption that physical density is input to program MPPROG. The results based on physical density and unit density (definition of aerodynamic diameter user specified) are stored in alternating records of the output file from MPPROG.

TABLE 18. GRAPH INPJT CARD FORMAT

Card no.	$\begin{gathered} \text { Card } \\ \text { columin } \\ \hline \end{gathered}$	Format	Variable name	18. GRAPH INP'JT CARD FORMAT
1	1	I 1	1S121	ISIZl = 0 for cumulative mass loading and cumulative graphs to have standard grids; ISIZl $=1$ for data regulated grids
	2	11	ISIZ2	ISIZ2 $=0$ for mass size concentration to have standard grids; ISIZ2 $=1$ for data regulated grids
	3	I1	ISIz3	ISIZ3 $=0$ for number size concentration to have standard grids;
				ISIZ $3=1$ for data regulated grids
	4	11	IREPET	IREPET $=0$ for plot variables to be the same for all runs. If this is the case, then only one set of plotting control variables is read into the program. IREPET $=1$ for plot variables to be different for each run. In this case, as many card sets as there are impactor runs are read in.
2	1	I 1	MPLOT	MPLOT $=1$ to make new grid for all of the raw data graphs of cumulative mass loading, mass size concentration, and number size concentration. This applies to both aerodynamic and Stokes diameter graphs. For the first data set this value must be greater than zero. If MPLOT $=0$ for each data get after the first, more than one run of the same type will be plotted on the same graph. (That is, if six runs of cumulative mass ioadings are desired on the same grid, use MPLOT $=1$ for the first data set and MPLOT $=0$ for the remaining 5 data sets.) This variable only applies to the raw data point graphs.
	2	I 1	J1	$J 1=0$, make a cumulative mass loading plot for unit density; Jl $=1$, suppress plot
	3	I1	J2	$J 2=0$, make mass size distribution plot for unit density; $J 2=1$, suppress plot
	4	11	J3	$J 3=0$, make a number size distribution plot for unit density; $\mathbf{J} 3=1$, suppress plot
	5	11	J4	J4 $=0$, make a cumulative mass loading plot for physical density; J4 = 1, suppress plot
	6	I1	J5	J5 $=0$, make a mass size distribution plot for physical density; J5 = I, suppress plot
	7	I1	56	```J6 = 0, make a number size distribution plot for physical density; J6 = 1, suppress plot```
3	1	I1	JP1	$J P 1=0$, make fitted cumulative mass loading graph for unit density superimposed on plot of raw data; JP1 $=1$, suppress plot
	2	I1	JPCNT1	JPCNTI $=0$, make fitted cumulative of mass loading distribution for unit density; JPCNT1 $=1$, suppress plot plot
	3	I1	JP2	$J P 2=0$, make fitted mass size distribution for unit density superimposed on plot of raw data; JP2 $=1$, suppress plot
	4	11	JP3	$J P 3=0$, make fitted number size distribution for unit density superimposed on plot of raw data; JP3 $=1$, suppress plot
	5	I 1	JP4	JP4 $=0$, make cumulative mass loading for physical density superimposed on plot of raw data; JP4 $=1$, suppress plot
	6	11	JPCNT4	```JPCNT4 = 0, make cumulative mass loading for physical density; JPCNT4 = l, suppress plot```
	7	I 1	JP5	JP5 = 0, make mass size distribution for physical density superimposed on plot of raw data; JP5 = 1, suppress plot
	8	11	JP6	JP6 $=0$, make number size distribution for physical density superimposed on plot of raw data; JP6 $=1$, suppress plot

Sample Job Streams

```
    The following is a sample job stream for impactor runs where
different graphs are desired for particular impactor runs:
    $JOB ENAME
    $ASG 12:DPI (KMC)
    $ASG 10:DPl (KMC)
    $ASG 13:DP1(KMC)
    $XCT GRAPH:DPI (KMC)
    CARD I
    CARDS 2-3
    $END
    $SPOOLER END-OF-DECK CARD
    The following listing is a sample job stream for l0 impactor
runs, but this job stream yields the same graphs for all runs as
instructed by coding on cards 2-3:
    $JOB ENAME
    $ASG 12:DPl(KMC)
    $ASG 10:DPI(KMC)
    $ASG 13:DP1(KMC)
    $XCT GRAPH:DPl (KMC)
    CARD 1
    CARDS 2-3
    $END
    $SPOOLER END-OF-DECK CARD
```

The user may instead desire to input only unit density to MPPROG yielding calculations based on the two different definitions of aerodynamic diameter (Mercer' s^{2} and Task Group on Lung Dynamics').

MAINLINE PROGRAM STATIS

Requirements for Program Execution

The following is a list of user instructions for execution of mainline program STATIS:

1. Mainline programs MPPROG and SPLINl must be executed prior to the execution of STATIS.
2. No statistical information can be calculated unless SPLINl has processed the cumulative mass versus particle diameter data and made curve fits.
3. Card 1 applies to a test where all runs (either inlet or outlet) are to be statistically combined. Card lis not repeated.
4. Input data cards 2-3 apply to calculations for a pl.vsical density. Cards 4-5 apply to unit density calculations. All four cards are included if statistical analysis for both densities is desired. When statistical results are desired for one density and not the other, one card is deleted. For example, if statistical analysis of only physical density data are desired, card 5 is omitted since this card specifies the maximum plotting diameter for statistical results where a unit density is assumed.
5. This program processes control device inlet or outlet information separately. Care must be taken not to delete an "inlet DM/DLOGD file" when executing STATIS on control device outlet results.

Card Format

Table 19 gives the variables to be punched on each card, columns in which to punch them, the format used, a description of the variable, and any options available to the user.

Descriptions/options/units are discussed under the assumption that physical density is input to program MPPROG. The results based on physical density and unit density (a definition of aerodynamic diameter user specified) are stored in alternating records of the output file from MPPROG. The user may instead desire to input only unit density to MPPROG yielding calculations based on the two different definitions of aerodynamic diameter (Mercer's ${ }^{2}$ and Task Group on Lung Dynamics ${ }^{1}$).

Sample Job Streams

The following is a sample job stream for statistical analysis of assumed Stokes diameter data (inlet or outlet) assuming physical density input to MPPROG:
\$JOB ENAME
\$D DPl <KMC> JWJOOl (for inlet analysis)
or
\$D DPl <KMC> JWJ002 (for outlet analysis)
\$ASG 12:DPl (KMC)
\$ASG 13:DPl (KMC)
\$ASG 20:DPl(KMC) (for inlet analysis)
or
\$ASG 21:DPl(KMC) (for outlet analysis)
\$XCT STATIS:DPl (KMC)
CARD 1
CARDS 2-3 ($\mathrm{N}=1$ and NOFILE $=0$ on card 2)
CARD $4 \quad(\mathrm{~N}=2$ and NOFILE $=1)$
\$END
\$SPOOLER END-OF-DECK CARD
The following is also a sample job stream for statistical analysis of data. This job stream yields statistical analysis for both Stokes diameter data and aerodynamic diameter data assuming physical density input to MPPROG:
\$JOB ENAME
\$D DPl <KMC> JWJOOl (for inlet analysis)
or
\$D DP1 <KMC> JWJ002 (for outlet analysis)
\$ASG 12:DPl (KMC)
\$ASG 13:DPl (KMC)

```
$ASG 20:DPl(KMC) (for inlet analysis)
    or
$ASG 2l:DPl(KMC) (for outlet analysis)
$XCT STATIS:DPI (KMC)
CARD l
CARDS 2-5
$END
```

MAINLINE PROGRAM PENTRA

Requirements for Program Execution

The following is a list of user instructions for execution of mainline program PENTRA:

1. Mainline programs MPPROG, SPLINl, and STATIS must be executed in this order twice before PENTRA can be executed: once for inlet and once for outlet statistical analysis.
2. Card 1 is a general identification label for the test (site, date, etc.) and is not repeated.
3. Card 2 indicates whether the operator wishes to use the internally defined minimum limit of the fractional efficiency graph (0.800 or 80%). If so, card 2 is left blank and cards 3-4 are omitted. Cards 3-4 are included if ICHRAN does not $=0$. Card 3 then gives coding for this minimum limit, IMIN; card 4 specifies this limit as a fraction, YMINFR. See Table 20 for values of IMIN and the corresponding minimum fractional efficiency.

Card Format

Table 21 gives the variables to be punched on each card, columns in which to punch them, the format used, a description of the variable, and any options available to the user.

TABLE 20. MINIMUM FRACTIONAL EFFICIENCY CORRESPONDING TO A CHOSEN VALUE OF IMIN

IMIN	Minimum fractional efficiency, YMINFR
1	0.01
2	0.05
3	0.1
4	0.2
5	0.5
6	1.0
7	2.0
8	5.0
9	10.0
10	20.0
11	30.0
12	40.0
13	50.0
14	60.0
15	70.0
16	80.0
17	90.0
18	95.0
19	98.0
20	99.0
21	99.5
25	99.8
	99.9
24	

TABLE 21. PENTRA INPUT CARD FORMAT

Card no.	$\begin{gathered} \text { Card } \\ \text { column } \end{gathered}$	Format	$\begin{gathered} \text { Variable } \\ \text { name } \end{gathered}$	Description/options/units
1	80	80A1	IDGEN	General identification label that is output to lineprinter, and written at the top of the efficiency graph
2	1	I1	ICHRAN	ICHRAN $=0$, determines the standard output for the efficiency plot, which is 99.99-80 percent efficiency and 20-0.01 percent penetration for the probability axis. The $\log -\log$ axis standard output is 100-0.01 percent penetration and 99.99-0.0 percent efficiency. ICHRAN $=1$ gives the option of changing the axis on the y scale of the efficiency plots by card input.
	2	Il	NSPCON	NSPCON $=0$, plot confidence limit if possible; NSPCON $=1$ suppresses confidence limits.
3	1-2	I2	IMIN	Coding to correspond to minimum value on y axis. See Table 19 for IMIN coding corresponding to YMINFR values. This card is omitted if ICHRAN $=0$ on card 2.
4	1-5	F5. 4	YMINFR	Minimum fractional efficiency on plot. This card is omitted if ICHRAN $=0$ on card 2 .

The following is a listing of a sample job stream for pene-tration-efficiency analysis which yields the minimum graph limit, 80\% efficiency, defined in PENTRA:
\$JOB ENAME
\$ASG 20:DPl (KMC)
\$ASB 21:DPl(KMC)
\$XCT PENTRA:DPl(KMC)
CARD 1
CARD 2 (blank or 0's in columns 1-2)
SEND
\$SPOOLER END-OF-DECK CARD

The following is also a listing of a sample job stream for penetration-efficiency analysis. This job stream yields a minimum graph limit of 95% efficiency:

SJOB ENAME
\$ASG 20:DPl(KMC)
\$ASG 21:DPI(KMC)
\$XCT PENTRA:DPl(KMC)
CARD 1
CARD 2 (nonzero integer in column l-2)
CARD 3 (18 in columns 1-2)
CARD 4 (.9500 in columns 1-5)
SEND
SSPOOLER END-OF-DECK CARD

file reference information

Table 22 shows pertinent information about the files used in all of the main programs which comprise the cascade impactor data reduction system. File names, decimal and octal record numbers, record numbers, type, and program use are included in this table.

TABLE 22. FILE REFERENCE INFORMATION

Table 23 lists the subroutines and function subprograms called by mainline programs and other subroutines in the cascade impactor data reduction system. This list should aid the user when mainline programs or major subprograms are run separately.

CALLED SUBPROGRAMS AND FUNCTIONS

SECTION 5

EXAMPLE CALCULATIONS

In this section we present the results of example calculations which may be used to check the proper functioning of the programs. This section is divided into two parts. The first part results from a series of executions of MPPROG for every allowed configuration of an Andersen, Brink, University of Washington (U of W), and Meteorology Research Incorporated (MRI) impactor. There are other possible configurations for the Brink and MRI impactors, but we have selected those which are most commonly used. Other configurations can be used with program modification. The data decks are given first, then the printouts for physical and unit density follow. Results for all three particle diameter definitions are presented for each configuration of each impactor: Stokes, Task Group on Lung Dynamics (TGLD), and Mercer. Note that all data decks are set up with NAERO=0 so that results with Stokes diameters for physical density and TGLD aerodynamic diameters for unit density will be printed. For aerodynamic diameters based on Mercer's definition, NAERO must be set to 1 or RHO must be set equal to l.0. See Table 16 for further explanation of the input data for MPPROG.

The negative $\Delta M / \Delta \log D$ and $\Delta N / \Delta \log D$ values which occur on the U of W and MRI printouts result from the D_{50} of stage 2 being larger than the D_{50} of stage 1. This occurs because the measured $\sqrt{\psi}$ calibration constant for stage 1 is significantly different from the ideal value of 0.38 predicted by Ranz and Wong. ${ }^{7}$

Stage calibration constants for these impactors were reported by K. Cushing et al., in EPA Report 600/2-76-280, Particulate Sizing Techniques for Control Device Evaluation: Cascade Impactor Calibrations. For this reason, when curve fits are made, stage catches for the first two stages of Andersen, U of W, and MRI impactors are automatically combined. This was discussed earlier in Section 2.

The second part of the example calculations uses the entire cascade impactor data reduction system. Programs MPPROG, SPLIN1, GRAPH, and STATIS are executed for data taken at the inlet and outlet of a control device. These data were taken with Brink and Andersen impactors. Next, programs PENTRA and PENLOG are used to calculate penetration-efficiency information. As with the first part of this section, data decks are included before the results.

Graphs are included along with printouts. These graphs are usually located after the printout containing the data to be plotted. Representative fits are shown for single inlet and outlet impactor runs. In these graphs, raw data are shown as small squares. Two graphs are included in which raw cumulative mass loading information is overlaid to show the grouping of data taken under the same conditions. One graph contains inlet data; the other graph contains outlet data. Other graphs show averaged inlet and outlet data and penetration-efficiency results from PENTRA and PENLOG. Note that in the plot produced by PENLOG that efficiencies less than 90% are plotted slightly off the edge of the plotting grid.

[^4]
nORMAL (ENGINFERING BTANDARD) CONDITIONB ARE 21 DEG C ANO TGOMA HG. aErodynamic diameterb are calculated mere according to merter.

normal (engineering standaro) conditions are 21 dec C and fgomm mg.
aERgoynamic oiamefers are calculated here according to the task group on lung dynampce. STOP 000000

11111111112222222222333333333344444444445555555555666666666677777777778
$12345678901234567890123456789012345678901234567800123456789012345678901234567890\}$

0200
CIDRS VERSION 1 TEST FOR BRINK.
03
$29.50330 .0330 .02 .40 \quad 15.0168 .01161$
01400.0000 .8000 .0600 .0800

| 0.19 | 0.10 | 0.30 | 1.18 | 1.63 | 2.16 | 2.90 | 6.12 | 39.38 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

0.0310

```
HYPOTHETICAL BRINK PEST - CYC, STAGE O - STAGE G, FILTER
```

03
$29.50330 .0330 .02 .40 \quad 15.0168 .01151$
.1400 .0000 .8000 .0600 .0800
$0.19 \quad 0.00 \quad 0.30 \quad 1.18 \quad 1.63 \quad 2.16 \quad 2.90 \quad 6.12 \quad 39.30$
0.0310
hY由OPHETICAL RRINK TEST - CYC, STAGE O - STAGE 5, FILTER
03
$30.00 \quad 300.0300 .02 .40 \quad 15.0168 .01160$
.1400 .0000 .8000 .0600 .0800
$\begin{array}{lllllllll}0.00 & 0.10 & 0.30 & 1.18 & 1.63 & 2.16 & 2.90 & 6.12 & 39.38\end{array}$
0.0310
hYPOTHETICAL ARINK TEST - CYC, STAGE O - STAGE 6. NO FILTER
03
$30.00 \quad 300.0 \quad 300.02 .40 \quad 15.016$ 月.01150
.1400 .0000 .0000 .0600 .0800
$0.00 \quad 0.00 \quad 0.30 \quad 1.18 \quad 1.63 \quad 2.16 \quad 2.90 \quad 6.1239 .38$
0.0310
HYPOTMETICAL BRINK TEST - CYC, STAGE O - STAGE 5. NO FILTER
03
$29.50 \quad 330.0 \quad 330.02 .40 \quad 15.0168 .00161$
.1400 .0000 .8000 .0600 .0800
$\begin{array}{lllllllll}0.19 & 0.10 & 0.30 & 1.18 & 1.63 & 2.16 & 2.90 & 6.12 & 0.00\end{array}$
0.0310
hyPothetical rrink test - stafe o - stage b, filter
03

```
\(30.00 \quad 300.0300 .02 .40 \quad 15.0168 .00151\)
    \(.1400 .0000 .8000=7600.0800\)
    \(0.19 \quad 0.00 \quad 0.30 \quad 1.18 \quad 1.63 \quad 2.16 \quad 2.90 \quad 6.12 \quad 0.00\)
    0.0310
hYPOTHETICAL BRINK TEST - STAGE O - STAGE 5, FILTER
03
\(30.00300 .0 \quad 300.02 .40 \quad 15.0168 .00160\)
    .1400 .0000 .8000 .0600 .0800
    \(0.00 \quad 0.10 \quad 0.30 \quad 1.18 \quad 1.63 \quad 2.16 \quad 2.90 \quad 6.12 \quad 0.00\)
    0.0310
hYPOTNETICAL BRINK TEST - STAGE O - Stage b, NO filter
03
\(30.00 \quad 300.0 \quad 300.02 .40 \quad 15.0168 .00150\)
    .1400 .0000 .8000 .0600 .0800
    \(\begin{array}{llllllll}0.00 & 0.00 & 0.30 & 1.18 & 1.63 & 2.16 & 2.90 & 6.12\end{array} 0.00\)
    0.0310
hYPOTHETICAL RRINK PEST - STAGE O - STAGE 5. NO FILTER
03
\(29.50 \quad 330.0 \quad 330.02 .40 \quad 15.0168 .00061\)
    .1400 .0000 .8000 .0600 .0800
    \(0.19 \quad 0.10 \quad 0.30 \quad 1.18 \quad 1.63 \quad 2.16 \quad 2.90 \quad 0.00 \quad 0.00\)
    0.0310
hYPOTHETICAL RRINK TEST - STAGE 1 = STAGE b, FILTER
03
\(30.00 \quad 300.0300 .02 .4015 .0168 .00051\)
    \(\begin{array}{lllll}.1400 & 0.0000 & 8000 & 0600 & .0800 \\ 0.19 & 0.00 & 0.30 & 1.16 & 1.63\end{array}\)
    0.0310 . 0.30 1. \(1.63 \quad 2.16 \quad 2.90 \quad 0.00 \quad 0.00\)
    0.0310
hYPOTHETICAL RRIMK TEST - STAGE 1 - STAGE 5, FILTER
03
\(30.00 \quad 300.0 \quad 300.02 .40 \quad 15.0168 .00060\)
    .1400 .0000 .8000 .0600 .0800
    \(0.00 \quad 0.10 \quad 0.30 \quad 1.18 \quad 1.63 \quad 2.16 \quad 2.90 \quad 0.00 \quad 0.00\)
    0.0310
HYPOTHETICAL BRINK TEST - STAGE 1-8TAGF 6, NO FILTER
03
\(30.0030 n .0300 .02 .4015 .0168 .00050\)
    .1400 .0000 .8000 .0600 .0800
    \(\begin{array}{lllllllllll}0.00 & 0.00 & 0.30 & 1.18 & 1.63 & 2.16 & 2.90 & 0.00 & 0.00\end{array}\)
    0.0310
HYPOTHETIEAL BRINK TEST STAGE 1 - STAGE 5, NO FILTER
0
```


NORMAL (ENGINEERING STANDARD) CONDITIONS APE $2 t$ DEG C AND 7 GOMM MG.

NORMAL (ENGYNEERING STANDARDI CONDITIONS $\triangle R E 2 I$ DEG C ANO $76 O M M$ HG. AERODYNAMIC DIAMETERS ARE CALCULATED HERE ACCORDING TO MERCER.

HYPOTHETICAL BPINK TEST - CYE, STAGE O - STAGE G. FILTFR

NORMAL (ENGINEERING STANTARDI PONDITIONS ARE $2 I$ DEG C AND $76 O M M$ NG.
AERDDYNAMIC DIAMETERS AHF CALCULATED HERE ACCORDING TO THE TASK GROUP DN LUNG DYNAMICS.

NORMAL (ENGINEERING STANDARDI CONDITIONS ARE 21 DEG C AND 7GOMM HG.

normal (enoineering stanbard) conditions are al oeg e and foomm mg. aerodynamic diameters are calculated here accoroing to mercen.

normal (engineering stanoard) eonditiong are zl deg e and fgomm hg.
afrodynamie diameters are cal.culated here according to the tagk group on lung bynamics.

normal (emginefring atandard) conditions are 21 deg e and fgomm hg.

NORMAL GENGINEERING STANOARDI CONDITIONS ARE $2 I$ DEG C AND TGOMM HG: AEROOYNAMIC DIAMETERS ARE CALCULATED HERE ACCORDING YO MEREER.

[^5]| ImPACTOR FLOWRAPE = 0.031 ACFM IM | | MPACTOR PEMPERATURE $300.0 \mathrm{~F}=148.9 \mathrm{C}$ | | | | | sampling | DURATION = 15.00 MIN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Impactor pressure nrip a 0.4 In. of | | Stack temperature = 300.0 F = 14A.9 C | | | | | | |
| ASSUMED PARTICLE DENSITY : 2:40 GM/C | Sta | Stack pressure a 30.00 in, of he | | | max. particle diameter a 108.0 micrometers | | | |
| GAS COMPOSITIDN (PERCENT) CO | CO2 $=12.88$ | 100 $=0.00$ | | | $N 2=73.00$ | | $02=5.52$ | H20 = 8.00 |
| CALC, Mass LOADING $=1.7 A 12 E+00 \mathrm{GR} / \mathrm{A}$ | | 2.7709E.0 | O GR/ONCF | | a.0760E+ $33 \mathrm{MG} / \mathrm{ACM}$ | | | $6,3407 E+03$ MG/ONCM |
| impactor stage | cre | so | 51 | 82 | 83 | 34 | 55 | filper |
| stage index number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | - |
| 050 (MICROMETERS) | 10.80 | 6. 59 | 3.58 | 2.25 | 1.12 | 0.92 | 0.53 | |
| mass (milligrams | 39.38 | 6.12 | 2.90 | 2.16 | 1.63 | 1.18 | 0.30 | 0.00 |
| MG/DECm/Stage | 4, 65E +03 | 7.23E+02 | 3.43E+02 | 2.55E+02 | 1.93E402 | 1.39E+02 | 3,54E+01 | 0:00E-01 |
| cum. percent of mass smaller than oso | 26.63 | 15.22 | 9.82 | 5.99 | 2.76 | 0.56 | 0.00 | |
| CUM. (mg/atm) smaller than diso | 1, 00E +03 | $6.20 E+02$ | 4.00E402 | 2.30E+02 | 1.12E+02 | 2.20E+01 | 0.00E-01 | |
| EUM. (MG/DNCM) Smaller than oso | $1.69 E+03$ | 9.65E+02 | $6.23 E+02$ | 3.67E+02 | $1.75 \mathrm{E}+02$ | 3.54E+01 | $0.00 E=01$ | |
| Cum. (gr/acF) smaller phan d50 | 4,74E-01 | 2.71E-01 | 1.75E-01 | $1.03 \mathrm{E}=01$ | 4.91E-02 | $9.96 E=03$ | 0.00E-01 | |
| CUM. (GR/DNCF) Smaller than dio | 7,38E-01 | 4.22E=01 | 2:72E-01 | 1.61E-01 | 7.64E-02 | 1.55E-02 | 0.00E=01 | |
| GEO. MEAN DIA. (MTCRDMETERS) | - 27E+01 | $8.45 E+10$ | 4,86E+00 | 2,84E+00 | 1.97E 90 | 1.12E*00 | 6.18E-01 | 1,03E-0! |
| DM/DLOGD (MG/ONCM) | $3.91 E+03$ | 3.35E+03 | 1.30E+03 | 1,26E+03 | 1.64E+03 | 3.71E*02 | 2,50E+02 | 0.00E-01 |
| DN/DLOGD (NO. PARTICLES/ONEM) | 4.00E+07 | 4.41E+09 | B.9AE*OO | 4.39E+10 | 1.72E+11 | 2.13E+11 | 8,65E+11 | $0,008=01$ |

ndRmal (ENGINEEAING BTANOARD) CONOITIONS ARE 21 DEG C AND TGOMM HG'. aERDDYNAMIC diameters are calculated mere according to mercer.

NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEG C AND TGOMM HG.
AERODYNAMIC DIAMETERS ARE CALCILATE HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICG.

NORMAL (ENGINEERING ETANDARD) CONDITIONE ARE 21 DEG C ANO TGOMM HG:, aErodynamic diameteal are calculated here according to mercer.

nogmal (engineering stantard) conditions are el deg c and tgomm hg.
afrodynamic diameterg are calcilater mere acetioning to the task ghoup on lung dynamye.

[^6]
nommal (enginefring standadd) conditions ape 2: deg c ant foomm hg. agmodynamic diamgters are calcillated merf accirding to mercer.

NORMAL (ENGINFERING STANDARD) CONDITIONS ARE 21 DEG G AND 7GOMA HG.
AERODYNAMIC DIAMETERS ARE CALCULATED HERE ACEORDING TO THE TASK GRTIP ON LUNG DYNAMICS.

[^7]

NORMAL (ENEINEERING STANDARD) CONDITIONS APE $2 I$ DEG C AND 7 GOMM MG. aERODYNAMIC DIAMFTERS ARE CALGULATET HERE ACCORDING TO MERCER.

agrdodnamic diametfrs ate calculated here actording to the task group on lung dynamics.

NORMAL (ENGINEERING STANOARDI CONDITIONS ARE 21 DEG C ANO YGOMM HG.

nommal (engineering stantard) fonditions are 21 deg e and tgomm hg. aErodynamic diameters arf calculated mere according to mercer.

NORMAL (ENGTNEERING STANDARDI CONDITIONS ARE 21 DEG C AND TGOMM HG. AERDDYNAMIC DIAMETERS ARE CALEULATED HFRE ACCORDING TO THE TASK gROUP ON LUNG DYNAMICS.

normal (enainering standard conditions are 21 det C and 7gomm he:

normal (engineering standard) conditions are 21 deg e and tgomm hg. amodymamic diametfrs are calculated here aceording to mercer.

NORMAL (ENGGNEERING STANOARDI CONDITIONS ARE 21 DEG C AND TGOMM HG. aemodymamsc diameters are caleulateo here according to phe fask group on lung dynamies.

NORMAL (ENGINEERING STANDARDS CONDITIONS ARE 21 DEG C AND 7GOMM HE.

nommal (engineering standard) conditions are 21 deg c and foomm hg. aEROOYNAMIC DIAMETFRS are calcilated herf aceording io mercer.

NORMAL (ENGINEERING STANDARD) CONDITIONG ARE 21 dEG C AND 9GOMm Hg. aerodymamic diameters are calculated here according io the tagk group on lung dynamici.

NORMAL EENOINEEAING BTANDARDS CONDITIONS ARE 21 DEG C AND $76 O M M$ HG.

ImPactor flewrate $=0.031$ ACFM IMPa	IMPACTOR TEMPERATURE $=300.0 \mathrm{~F}=14 \mathrm{B.9} \mathrm{C}$				SAMPLING	duration	15,00 MIN
	Stack temperature = 300.0 F = 14.9.9 C						
Assumen particle density $=1.00 \mathrm{Gm} / \mathrm{Cu} . \mathrm{Cm}$: sta	stack pressure e 30.00 In. of hg max. par			article diameter =		60.3 MICROMETERS	
GAS COMPOSITION (DFPCENT) COP $=12.80$	$2.88 \quad C O=0.00$		N2 $=73,60$		2 a .52		H2O = 0.00
CALC. MASS LOADING $=2.744 \mathrm{AE}-01 \mathrm{gR/aCF}$	4.2696E-01 GR/ONCF		6. 2807 E	+02 Mg/acm		9.7703 E	+02 MG/ONCM
impactor stage	si	52	33	34	55	36	filiea
stage index number	1	2	3	4	5	6	9
050 (MTCROMETERS)	5.73	3.66	2.84	1.29	0.98	0.56	
MASS (MIL.LIGRAMS)	2.90	2.16	1.63	1.18	0.30	0.10	0.00
Mg/oncm/stage	3.43E+02	2.55E+02	1.93E+02	1.39E+02	3,54E+01	1.18E+01	0.00E=01
CUm. percent of mass smaller than dso	64.93	38.81	19.11	4.84	1.21	0.00	
CUM, (MG/aCM) Smaller than dio	4:08E+02	2,44E+02	1,20E+02	$3.045+01$	7,59E+00	0.008-01	
CUM, (MGIONEM) SMALLER THAN 050	$6.34 \mathrm{E}+02$	3,79E+02	1,87E+02	4.73E+02	1.18E+01	0,00E=01	
CUM, (GR/ACF) SMALLER THAN DSO	1.78E=01	$1.075=01$	5.24E-02	1.33E-02	3.32E-03	0,00E=01	
CUM, (GR/DNEF) Smaller than dso	2.17E-01	1,66E=01	6,16E=02	2.07E-02	3,16E03	0,00E=01	
geo. MEAN OIA. (micrometers)	3, 86E+01	$4.58 E+00$	3.22E+00	1.91E+00	1.12E+00	7.30E.01	$6.93 E-01$
OM/OLOGD (MG/DNCM)	2.01E+0?	1.31E+03	1.73E+03	4.07E+02	2,99E+02	4.81E+0	0.00E001
DN/DLOGD (NO. PARTICLESIONCM)	6, 86E +06	2.61E+10	9.90E+10	1.11E+11	$4.01 E+11$	2.28E+11	0.00E-01

NDRMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEG e and fgomm hg. aerdoynamic diameters are calculateo here according to mercer.

NORMAL (ENEINEEAING STANOARO) CONDITIDNE ARE 21 OEG C AND 9GORM HG.
afrodynamic diameters are calculated here according to the tabk group on lung dynamics.

normal (ENGINEERING stanoard) conditions are 21 deg C and 7gomm he.

HYPDTNETICAL RRINK TEST- STAGE 1-STAGE G, NO FILTER

NORMAL CENGINEERING STANDARDJ CONDITIDNS ARE 21 DEG C ANO 7GOMM HG. AERODYNAMIC DIAMETERS ARE CALCILLATED HERE MCCORDING TO MERCER.

ndrmal fengineering standards conditions are 21 deg e and 7gomm mg:
aerodynamic dgameters are calculated mere according to the task group on lung oynamics.

	impactor flowrate e 0.500 acpm	[MPACTOR PEMPERATURE 213.3 F $=100.7 \mathrm{C}$						SAMPLING OURATION. 30.00 MEN	
	IMPACTOR PREBSURE DPOP $=1.01 \mathrm{~N}$, OF Hg	spack temperature = $213.3 \mathrm{~F}=100.7 \mathrm{C}$							
	asgumed particle density a $2.34 \mathrm{gm} / \mathrm{CU}$.	STACK PRESSURE = 22.96 IN. OF HG				max. paptitle diam		200.0 MICROMETERS	
	GAB Compoititon (PERCENT)	$=11.99$		- 0.00	N2	- 94.34	02	= 5.02	H2O - 0.05
	Calc. mass loading e $2.4030 E-02$ grialf		4:5223E-02	GR/ONCF		5.7068E+0	$1 \mathrm{mg} / \mathrm{ACH}$		$1.0349 E+02$ mG/ONCM
	ghpactor state	\$1	82	33	84	35	36	37	filter
	stage index number	1	2	3	9	5	-	7	8
	DSO (MICROMETERS)	7.90	8.11	3.42	1.45	0.74	0.50	0.16	
	mabs (milligrambs)	5.93	2.61	3.01	5.81	4.01	1.80	0.40	0.67
	mgiosem/stage	2,53E401	1.11E+01	1.296401	2.48E+01	1.71Et01	7.68E400	1.712+00	$2.86 E+00$
\cdots	cum. percent of mass smaller than oso	75.54	64.77	52,35	28.38	11,84	4.41	2.76	
G	CUM, (MG/ACM) smaller fhan ofo	4.31E+01	3,70E+01	2,09E401	1.62E+01	0,76E+00	2,52E+00	1.5AE+00	
	CUM. (MG/ONE*) smaller than dio	9.22E+01	6.70E+01	5.42E401	2.94E+0!	1, 23E+01	4.57E+00	2,66E+00	
	CUM, (GR/aCF) smaller than 050	1.88E-02	1.62E-02	1,31E-02	7.08E=03	2,95E-03	1,108-03	6.89E.04	
	cum, (erionef) smaller than dso	3.42E-02	2.93E-02	2.37E-02	1.2BE-02	5,35E-03	2,00E-03	1,258.03	
	GEO. MEAN OIA. (MICROMETERS)	3.97E+01	B.00E +00	5.27E400	$2.23 E+00$	1,03E*00	6,06E-01	2,81E-01	1.12E=08
	DM/OLOEO (MGIONGM)	1, 80E+01	-9, b0E+02	3.43E+01	6.66E+01	5,82E+01	0.51E+01	3.04E.00	-.50E+00
	DN/DLOED (NO, PARTICLES/ONEM)	2,35E+05	-1.56E+09	1.92E+08	4.92E+09	4.29E+10	1.66E+11	1,26E+11	5.40E+12

NORMAL \&ENGINEERING GYANDARD) EONDITIONS ARE ZI DEG C AND 76OMM MG.

impactine flnwrate a 0.500 acfm	IMPACPOR TEMPERATIIRE E 213.3 F = 100.7e.						SAMPLING OU	SAATION - 30	30.00 MIN
gmpactine pressliof dont a 1.0 in , of he	stack	temperature	PRE $=213.3$	3F:100.7					
assumen particle density $=1.00 \mathrm{gm} / \mathrm{C}$	stack pressure $=22.04 \mathrm{fN}$, of he				X, par	DIAMETER - 305.0 micnometere			
gas compnaipinn (pfrtent)	11.99		- 0.00		74.34	02	- 5.02		O . 0.65
CALC. Mass loaning e $2.4930 E-02$ gh/acF		4,5223F-n2	g GRIDNEF		5,706AF+O	$1 \mathrm{mg} / \mathrm{ACM}$		1.0349E+02	2 MgIonem
tmpactor stage	81	82	33	sa	85	86	87	fitter	
stage intex numater	1	2	3	a	5	6	7	A	
DSO (mycrometers)	12.2A	12.50	5.42	2.41	1.31	0,05	0,42		
mas8 (milligrambl	5.93	2.61	3.01	5.91	4.01	1,80	0.00	0.67	
MGIDSCM/BTAGE	$2.53 \mathrm{E}+01$	1.11E+01	1.29C-01	2.08E+01	1.71E+01	7.68E400	1.71E+00	2, A6E+00	
cum. percent of mabs gmaller than oso	75.54	64.77	52.35	28.38	11.84	4.41	2.76		
CUM. (mg/acms bmaller fhan niso	$4.31 F+01$	3.70E+01	2.09E401	1.62F401	6.762400	2.52E+00	1.58E+00		
CUM. (MG/ONEM) smaller than oso	7.82E+01	6.70E+01	5.a2E409	2,94E401	1.23E+01	4.37E400	2,30E*00		
CUM. (gr/ace) gmalier phan diso	1.88E-02	1.62E-02	1.318.02	7.08E-03	2.95E-03	1,102-03	6,89E004		
CUM. (GA/ONEF) gmaller pman oso	3.42E-02	2,93E-02	2,37E-02	1.2AE-02	5.35E-03	2,00E=03	1.25E03		
GEO. MEAN DIA. (michometers)	$6.13 F+01$	$1.24 E+01$	8.27E00	$3.61 E+00$	1.78E+00	1.12E+00	6.32E-01	2,97E-01	
DM/DLOGD (MG/DNEM)	1.81E+01	-9.96E402	3.51E+01	7.04F+01	6.40E+01	5.46E+01	4.83E+00	9,50E+00	
DN/DLOGT (NO. PARTICLESIONCM)	1.50E405	-9,89E+OA	1.19E408	2.0uE409	2.21E+10	7.50E+10	3.60E+10	6.92E+11	

NORMAL (ENGINEERING STANDARD) CONDITIONE ARE 21 DEG C AND 7GOMM HG. GERDOYNAMPC DIAMFPERS ARE CALCILAPEN HERF ACCOMTNG PO MERCER.

NORMAL (ENEINEEFING BTANDARD) CONDITIONE $\triangle R E$ 2: DEG C AND 7GOMM HG.
AERODYNAMIE DIAMETERS ARE CALCULATEO HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICB,

MATA HFEK FOR DROfPAM MPPROG

 0400
CIDRS VFPSIMA 1 TFST FMD METFOROINGY PFSFARCH, INC.
01
22.96 213.3 213.32.34 30.020n.0nのヘ1

0.500
MYPOTHFTICAL METFMPOLOGY RESFARCH, INC.
00
STOP n@nロOn

NORMAL (ENGINEERING STANDARD) CONDITIONS ARE $2 I$ DEG C ANO TGOMM HG.

NORMAL (ENEINEERINE STANOARO) CONOITIONS ATE $2 I$ OEO C ANO TGOMM HE:
AERODYNAMIC DIAMETEAS ARE CALCULATED HERE ACEORDINE TO MERCER. STOP 000000

normal (engineering standard) conditiong are $2!$ deg e ant 7 gomm he',
aErodynamic diameters are calculated here aceording to the task group on lung oynamics, sTOP 000000

```
                                    CARD COLUMN
                                    NUMBERS
                                    NATA DECK FOR PRNGQAM MPPROG
11111111112 22222222233333333334444444444555555555566666666667777777777814 \(12345678901234567890123456789012345678901234567890123456789012345678901234567890\}\)
```



``` 0200
RIDRS VERSION I TEST FOR ERINK.
03
29.50 330.0 330.02.40 15.016A.01161
    .1400.0000.8000.0600.0800
    0.19 0.10 0.30 1.1B 1.63 2.16 2.90 6.12 39.3月
    0.0310
    COLI-A 1-13076 1450 4UAI
O4
29.50 330.0 330.02.40 15.0160.01161
    .1400.0000.1000.0600.0800
    0.23 0.30 0.43 1.45 1.16 2.83 1.97 2.37 49.15
    0.0310
    COLI-5 1-13-76 1715 2UAI
01
29.50 330.0 330.02.40 15.0168.01161
    .1400.0000.8000.0600.0800
    0.02 0.07 0.2A 1.20 1.04 1.77 2.25 1.78 25.24
    0.0310
    COLI-7 1-13-76 182? LOUAI
01
30.00 340.0 340.02.40 15.0168.01161
    .1400.0000. AnN0.0600.0800
    0.14 0.00 0.16 0.58 0.84 0.48 0.86 0.75 8.21
0.0310
    COLI=10 1=14-76 1520 lUAI
```

```
04
\(30.00345 .0 \quad 345.02 .4015 .0168 .01161\)
    .1400 .0000 .8000 .0600 .0800
    \(\begin{array}{lllllllllll}0.14 & 0.06 & 0.19 & 0.44 & 0.83 & 0.80 & 1.06 & 1.11 & 19.96\end{array}\)
    0.0310
    COLI-12 1=1476 1600 5114I
04
\(29.91315 .0 \quad 315.02 .4015 .0168 .01161\)
    .1400 .0000 .8000 .0600 .0800
    \(\begin{array}{lllllllll}0.21 & 0.0 A & 0.21 & 1.15 & 1.29 & 2.20 & 2.52 & 3.39 & 52.28\end{array}\)
    0.0330
    COLI-13 1-15-76 \(\quad 1135\) BUAI
00
```


normal (engineering standard) conditions are 21 deg c and fgomm ng.

normal (engineering standard) conditions are 21 deg e and tgomm hg.

NORMAL (ENGINEERING BTANDARDI CONDITIONS ARE 21 DEG C AND $76 O M M$ HG.

NORMAL (ENGINEERING STANDARDI CONDITIONS ARE 2: DEG C ANO 76OMM HG.

NORMAL (ENGINEERING STANDARDI CONDITIONS ARE 21 DEG C AND $76 O M M$ HG.

	COLI-13 1-15-76 1135 RUAI									
	IMPACTMR FLOWRATE 0.033 ACFM IM		IMPACTOR TEMPERATURF = 315.0 F 157.2 C					SAMPLING	duratton =	15.00 MIN
	IMPACTOR PRESSGURE DRDP $=1.4 \mathrm{IN}$, OF ME	stac	Stack pemperapure = 315.0 F = 157.2 C							
	A8sumed paritcle density $=2.40 \mathrm{gm} / \mathrm{CL}$	$M^{\text {a }}$, sta	Stack pressure e 29.91 IN. OF HG			13, 0	E DIAMETER = 168.0 MICRO			MESERS
	Gas composition (percent)	$2=12.83$	co $=0.00$		$N 2=13.60$		$02=5.52$		$\mathrm{H} 20=8,00$	
	Calc. mass loading = 1.9432E+OO GR/aCF		3.0919 E +	00 GrIDNCF	4.4468E+03 MG/ACM				9.0754E+03 MG/ONEM	
	Impactor stage	Crc	so	\$1	32	33	34	85	86	Fitfen
	stage index number	1	$?$	3	4	5	6	7	8	9
	050 (MICROMETERS)	10.58	6.17	3.50	2.27	1.53	0.67	0.51	0.15	
	mass (MILLIGRams)	52.28	2.39	2.52	2.20	1.29	1.15	0.21	0.08	0.21
	MG/DNEM/STAGE	5,93E+03	2.71E+02	2,86E+02	2.50E+02	1.46E*02	1,31E+02	2,3AE+01	9.08E+00	2,30E+01
$\begin{aligned} & \omega \\ & \hat{0} \\ & \hat{0} \end{aligned}$	CUM, percent of mass smaller than diso	16.12	12.29	8. 25	4.72	2.65	0,80	0.47	0.34	
	Cum. (mg/acms smalleg than dio	7.17E+02	5.46E+02	3.67E+02	2.10E+02	1.10E+02	3.57E+01	2,07E+01	1.508+01	
	CUM. (MG/ONCM) SHALLER PHAN 050	$1.14 E+03$	6.70E+02	5.83E+02	3.34E+02	1.87E+02	5.68E+01	3.29E+01	2.38E+01	
	CUM, (GR/ACF) Smaller than d50	3.13E-01	2.39E-01	1:60E-01	9.17E-02	5.14E-02	1.56E=02	$9.048=03$	6.55E=03	
	CUM, (GRIDNCF) Smaller than dso	$4.99 E-01$	3.80E-01	2.55E-01	1.46E-01	0.18E-02	2.48E-02	1.44E-02	1.04E-02	
	GEO. MEAN DIA, (MICROMETERS)	$4.22 E+01$	8.08E+00	4.64E+00	2,82E+00	$1.86 E+00$	1.01E+00	5.84E-01	2,80E-01	1,09E=01
	OM/DLOGD (MG/DNEM)	4.94E+03	1.16E+03	1.10E+03	1,33E+03	8,59E+02	3.64E+02	1.90E*02	1,75E401	7,02E401
	ON/DLOGD (NO. PARTICLES/ONEM,	5.25E+07	1.75E+09	$9.23 E+00$	4.74E+10	$1.06 \mathrm{E}+11$	2.98E+11	7,94E+11	6,32E+12	4.04E+13

normal (engineering standard) conditions are 21 deg c and foomm hg. $12345678901234567890123456789012345678901234567890123456789012345678901234567890\}$
$11111111112222222222333333333344444444445555555555666666666677777777778\}^{f}$ $12345678901234567890123456789012345678901234567890123456789012345678909234567890\}$

1111
1111011
11110000
0111011 11110000 0111011 11110000
0111011
11110000
0111011
11110000
0111011
11110000

	30	1.96E+00	3.A2E+00
	31	2.14E+00	4, 36E+ +0
	32	2.32E+00	4. ATE +00
	33	2,50E+00	5.42E+00
	34	2,74E+00	6.14E+00
	35	2,96E*00	6.77E+00
	36	3.25E+00	1.53E400
	37	3.50F+00	A.15E+0n
	30	3.78E+00	-.7TE+00
	30	4.15E+00	9.491400
	40	4.48E*00	1.01E+01
	41	4.84E+00	1.06E+01
	42	5.30E400	1.13E+01
	43	5.73E+00	1.18E+01
ω	44	h.18E+00	1.24E+01
N	45	6.98E+00	1.30E+01
	46	7.32E+00	1.35E+01
	47	-.03E+00	1.41E+01
	48	6.67E+00	1.47E+01
	40	$9.36 E+00$	1.52E+08
	50	1.03E+01	1.60E401
	51	1.11E+01	1.66E+01
	52	1.20E+01	1.74E401
	53	1,31E+01	1.87E+01
	54	1.42E+01	1.99E+ 01
	55	1.53F+01	2.14E*01
	56	$1.008+01$	2.35E+01
	57	1.01E+01	2,54E+01
	58	1.96E+01	2.75E+01
	59	2.14E*01	3.OUE+O1

	60	2.32E+01	3.316401
	61	2.54E+01	3,64F+01
	62	P.74E+01	3.94E+01
	63	2.96E+0:	4.26E401
	64	3.25E+01	4.66E401
	65	3.50E+01	5.01F+01
	66	3.78E+01	5.36F\%01
	67	4.15F+01	5.7BE+01
	68	a.48E+01	6.14E+01
	69	4, 84E +01	6.50E+01
	70	5,30E+01	6.92E+01
	71	5.73E+01	7.26E+01
	72	6,18E+01	7.59E+01
ω	73	6.7AE 01	7.97E+01
जu	74	7.32E+01	-.27E+01
	75	6.03E 01	-61E+01
	76	-6.67E91	8.87E + 01
	77	Q.36E*01	-.11E+01

26	$1.53 E+01$	$3.02 E+03$
27	$1.80 E+01$	$4.27 E+03$
28	$2.12 E+01$	$5.36 E+03$
29	$2.50 E+01$	$6.12 E+03$
30	$2.95 E+01$	$6.92 E+03$
31	$3.47 E+01$	$7.35 E+03$
32	$4.09 E+01$	$7.59 E+03$
33	$4.83 E+01$	$9.51 E+03$
34	$5.69 E+01$	$7.14 E+03$
35	$9.91 E+01$	$5.59 E+03$
36	$9.32 E+01$	$5.04 E+03$
37	$1.10 E+02$	$4.20 E+03$

26	1.53E+01	1.65E+08
27	1.80E+01	5,83E+0日
28	2.12E+01	4, a $7 E+0 \mathrm{~B}$
29	2.50E+01	3.12E+08
30	2.95E+01	2.15E+OB
31	3.47E+01	1, 008 +08
32	$4.09 \mathrm{E}+01$	B, 79E+07
33	$4.83 \mathrm{E}+01$	5,32E+07
34	5.69E+01	3,08E+07
35	6.71E+01	1.74E*07
36	7.91E\$01	- $0.39 E+06$
37	9.32E+01	4.95E+06
38	1.10E+02	2.52E+06

CIDRS VERSION I TEST FOR BRINK.
RHOE Z:4O GM/CC
PNTERVAL DIAMETER RECOROS EXCLUDEO FAOM MEAN CUMULATIVE MASS CONCENTAATION
3
3
3
3
3
$\mathbf{3}$
$\mathbf{3}$
NONE
1

	CIDRS VERSION 1 tEST FOH GRINK. PHO $2.40 \mathrm{GM} / \mathrm{CC}$				
			mean cimulative	UPPER CONFIDENCE	LOWER COnfidence
	inferval	diameter	mass concentration	LIMIT	LIMT
		(MICRONS)	(PERCENT)	(PERCENT)	(PERCENT)
	1	2.50E-01	0,00E-01	$4.89 \mathrm{ECO4}$	-4.89F-04
	2	2,71E-01	1.10E-02	1.20E-02	1.01E-02
	3	2.95E-n!	2,33E-02	2,54E-02	2.12E-02
	4	3.20E-01	3.74E-02	4.03E-02	3.45E-02
	5	3.47E-01	5.52E-02	5.89E-02	5,16E=02
	6	3.7TE-01	7:86E-02	A. 34E=02	7,39E-n2
	7	4.09E=01	1.14E-01	1.23E-01	$1.06 E=01$
	8	4.45E-n1	1:69E-01	1.82E-01	1,56F-01
	9	4.83E-01	2:50E001	2.73E-D1	2.27E-01
	10	5.24E-01	3.68E-01	$4.03 E=n i$	3.33E-01
	11	$5.69 E-01$	5.20E-01	5.67E-01	4,72E-01
	12	6.15E-01	7,06E-01	7.67E-01	$6.46 E-01$
	13	6.71E-01	$9,15 \mathrm{E}=01$	$9.82 E=01$	B.42E-01
	14	7.20E001	1.13E+00	$1.22 \mathrm{E}+00$	$1.05 E+00$
	15	7.91E-01	1, $36 E+00$	1, $45 \mathrm{E}+00$	$1.26 E+00$
	16	$8.58 E-01$	1.59E400	1.69E+00	$1.49 \mathrm{E}+00$
	17	9, 32E=01	1,82E+00	$1.93 E+00$	1.71E*00
	18	$1.01 E+00$	2,06E +00	$2.17 E+00$	1.95E +00
	19	$1.10 E+00$	2,30E+00	2.42E+00	2,18E+no
	20	1.19E+00	2;55E+00	2,67E+00	2,43E+00
	21	$1.29 E+00$	2,80E*00	2,93E+00	$2.68 \mathrm{E}+00$
	22	$1.41 E+00$	3,08E+00	3,21E+00	2.95E+00
${ }_{\infty}^{\infty}$	23	$1.53 E+00$	3.39E400	3,53E+00	3,24E+00
$\underset{\sim}{\infty}$	24	$1.66 E+00$	3, T4E+00	3.89E+00	$3.58 E+00$
\checkmark	25	1. BOE $^{\text {c }}$ (00	4,16E*00	$4.33 E+00$	3.99E+00
	26	$1.95 E+00$	$4.66 E+00$	$4,85 E+00$	$4.48 \mathrm{E}+00$
	27	$2.12 E+00$	$5,26 E+00$	5.46E+0n	$5.05 \mathrm{E}+00$
	28	$2.30 E+00$	5:92E+00	6.15E400	$5.69 \mathrm{E}+00$
	29	2.50E+On	6,64E+00	$6.88 E+00$	6.39E400
	30	2, $91 E+00$	7.4OE+00	7.67E+00	$7.13 \mathrm{E}+00$
	31	2. 95E +00	B.19E+00	$8.48 E+00$	$7.89 \mathrm{E}+00$
	32	3.20E+00	B.9BE+00	$9.29 E+00$	$8,67 E+00$
	33	3.47E +00	9.75E+00	$1.01 E+01$	$9.42 E+0 n$
	34	3.77E +00	$1.05 E+01$	1.0nE+01	$1.02 \mathrm{E}+01$
	35	4.09E +00	1.12E+01	$1.16 E+01$	$1.09 \mathrm{E}+01$
	36	4. $45 \mathrm{E}+100$	$1.19 \mathrm{E}+01$	1.23E+01	$1.16 E+01$
	37	4. $83 \mathrm{E}+00$	$1.26 E+01$	1.30E+01	$1.22 E+01$
	38	5. 24E+00	1,33E+01	$1.37 E+01$	$1.29 \mathrm{E}+01$
	39	5.69E+00	1,4nE+01	$1.44 \mathrm{E}+01$	1, 36E+ ${ }^{1}$!
	40	6.18E40n	$1.47 E+01$	1,51E+01	$1.43 \mathrm{E}+01$
	41	6.91E+00	$1.53 \mathrm{E}+01$	$1.57 E+01$	$1.495+01$
	42	$7.28 E+00$	$1.59 E+01$	$1.63 E+01$	$1.55 \mathrm{E}+01$
	43	7.91E*0n	1,65E+01	1.69E+01	1,60E+01

CIDRS VERSION 1 RHOE $2.40 \mathrm{OM} / \mathrm{CC}$						
			mean change	standard	UPPER CONFIDENEE	LOWER CONF SOENEE
interval	DiAMETER	IN	mass concentration (ME/DNM3)	deviation (MG/DNM3)	LIMTT (MG/DNME)	LIMIT (MG/ONm3)
1	2,50E-01		li.42E-01	1.63E +0 O	1.48E+01	1.36E+01
?	2,95E-01		1, 70E¢01	7, $82 \mathrm{E}+00$	2.02E+01	$1.30 E+01$
3	3.47E-01		2,61E*OI	$9.40 E+00$	$3.135+01$	2,40E+01
4	4,09E-01		6,62E*O1	$3.55 E+01$	7.60E+01	5,57E+01
5	$4.03 E-01$		1.46E402	$0.15 \mathrm{E}+01$	1.73E+02	1,19E+02
6	5.69E-01		2,40E402	$1.53 \mathrm{E}+02$	2, AGE+02	1.95E+02
7	- 71E-01		3,00E+n2	1,92E*02	3.57E+02	2.43E402
0	7.91E-01		3. 2 UE 0 ?	2.00E402	3. B 3f+02	2.64F402
\bigcirc	9.32E-01		3,305*02	1.06E+02	3.AOE +02	2,60E*02
10	1.10E+00		3.41E402	1.37E+02	3,AIE+02	3.00E+02
11	1.29E+00		3.73E+02	$1.68 \mathrm{E}+02$	4.23E+02	$3.23 E+02$
12	1.53E+00		4.52E402	2,53E+02	$5.265+02$	3,77E+02
13	1.00E 900		6.49E+02	3.21E+02	7.45E402	5.53E+02
14	2.18E+00		6,89E+02	4,10E+02	1,01E+03	7.67E +02
15	2,50E400		1,04E-03	4, $64 E+02$	$1.105+03$	9,04E+02
16	2.95E +00		1,13E+03	5. $49 \mathrm{E}+02$	1.29E+03	-.62E+02
17	3.47E +00		1.07E+03	4, $94 \mathrm{E}+02$	$1.21 e+03$	9.1aE+02
18	4.09E +00		9 P96E+02	$4.21 E+02$	$1.12 E+03$	8.70E+02
19	4.03E +00		9.502402	3,07E+08	1.07E+03	0.44E+02
20	$5.69 E+00$		9 P72E02	$4.61 E+02$	1.11E+03	B, 35E+02
21	6.TIE400		-,05E+02	3.14E+02	$9.09 E+$ C2	7.00E+02
22	7.P1E+00		0.29E402	3.29E+02	$9.30 E+02$	Y.19E402

11111111119222222222333333333344444444445555555555666666666677777777778 (f $12345678901234567890123456789012345678901234567890123456789012345678901234567890\}$
0100
CIDRS VERSION I TEST FOR ANDERSEN.
03
$29.42280 .0280 .02 .40120 .50 . \quad 1$
$.14 .00 .80 \quad .06 \quad .08$
$\begin{array}{llllllllllll}0.58 & 0.37 & 1.82 & 3.13 & 1.60 & 1.69 & 2.57 & 2.87 & 5.50\end{array}$
.401
1COLO.19 1-13.76 1630 PORTS 1.2 .3
02
29.45300 .0300 .02 .4090 .50 .1
$.14 \quad .00 \quad .80 \quad .06 \quad .08$
$2.31 \quad 1.24 \quad 2.81 \quad 4.73 \quad 2.97 \quad 3.79 \quad 3.19 \quad 2.83 \quad 4.13$
415
1COLO-31 1-16.76 1336 PORTS 4.5.6
04
30.06285 .0285 .02 .40 84. 50. 1
$.14 \quad .00 \quad .80 \quad .06 \quad .08$
$1.08 \quad 2.01 \quad 3.52 \quad 5.93 \quad 3.2 .7 \quad 2.61 \quad 2.95 \quad 2.32 \quad 5.40$
.396
1COLO- 37 1-19.76 1544 PORTS $4.5,6$
04
30.00280 .0280 .02 .40120 . 50. 1
$.14 \cdot 00 \quad .80 \quad .06 \quad .08$

.410
1COLO-39 1-20-76 0943 PORTS 1.2.3
05.
30.00280 .0280 .02 .40120 . 50. 1

.381
1COLO-40 1.20.76 0945 PORTS 4.5.6
00

NORMAL (ENGINEERING STANDARDS CONDITIONS ARE 21 DEE C AND TGOMM HG;

IMPACTOR FLOWAATE E 0,415 ACFM IM		mpactor temperature a 300.0 F lar.9 C					gampling	dURATION	90.00 mIN
ImPacton pressure drop a 0.3 In, of he									
ABSUMED PARTICLE DENSIPY $=2.40 \mathrm{Gm} / \mathrm{CU}, \mathrm{Cm:}$		taek pressune a 29.45 IN , of he			max, panticle o		IAMEPEA	30.0 Micrometere	
GA: COMPOBITION (PERCENT)	2. 12.88		- 0.00		N2 $=73.60$		2-5,91		H2O-8.00
		1.8333	02 GR/ONCF		2.649	08 me/acm		M.1933E	OS MG/DNEM
smpactor stage	81	82	83	84	35	16	19	80	pilper
etage index mumber	1	2	3	4	5	-	\dagger	-	-
DSO (MICROMETERS)	6.29	7.85	4.89	3.18	1.77	0.02	0.51	0.80	
mase (mylligramas	4.13	2.63	3.19	3.99	2.99	4.73	2.81	1.24	2.31
MEIONCM/ETAGE	6.19E400	4.24E + 00	4.708+00	5.602400	4.45E400	P.00E+00	4.21E+00	1.80E+00	3.06E+00
CUM, DEREENT Of mass smallen than oso	85,25	75,14	63.75	50.21	39.01	22.71	12.68	8.85	
CUM, (mo/acms emallen phan oso	2,20E+01	1,99E+01	8.69E+01	1.33E+01	1.05E+01	6,01E+00	3.36E400	2,18E+00	
CUM, (mg/DNCM) mallen than dso	3,5EE401	3.15E408	2.67E+01	2.11E01	1.662401	-.53E+00	5.32E400	3.40E400	
CUM. (GR/ACF) gmaller than dSo	-, 66E-03	8.6 9E-03	T. 382-03	5.01E=03	4.5AE-03	$2.63 \mathrm{E}=03$	1,47E-03	$9.54 E-04$	
cum. (GRIDNEP) smaller than oso	1.56E-02	1.38E-02	1.178-02	-.21e-03	T.26E-03	0.16E03	2,325003	1.518.08	
QEO. MEAN DIA. (MICROME TERS)	2,04E*O1	6.07E+00	-20E+00	3.95E400	2.37E400	1, 20E+00	6,aseod	3,64E001	1.45E00
OH/OLOOD (ME/ONCH)	7.03E400	1.02E+02	2,33E+01	3,04E401	1.75E401	2.11E402	2,04E401	6.4sE400	1.18400
ON/OLOSD (NO. PARTICLEBIONEM)	9.48E405	2.76E408	7.97E007	3,94E408	1.04E409	-.67E*09	-102010	1.06E411	1.45E+12

NORMAL (ENGINEERING BPANDAROS CONDITIONE ARE 21 DEE C AND TGOMM HE.

NORMAL CENGINEERING 8TANDARDS CONDITIONS ARE $2 I$ DEG C AND 76OMM HG.

NOTMAL (ENGINEETING ETANDARD) CONDITIONA ARE 21 DEG C AND TGOMM HG.

NORMAL (ENGINEERING STANDARD) CONDITIONS ARE ZI DEG C AND $76 O M M$ KG.

MAYA DFCK FOR PROGRAM SPLYNI

$11111111112222222222333333333344444444445555555555666666666677777777778)^{\prime \prime}$ 12345678901234567 A90123456789012345678901234567890123456789012345678901234567890\}
 00

CARD COLUMN NUMBERS

MATA DFCK FOR PROGRAM GRAPH
11111111112222222227333333333344444444445555555555666666九6九677777777778) f $123456789 n 1234567800123456789012345678901234567890123456789 n 12345678901234567890\}$
 1111
1111011

TEST 1-ロ TEST 2- \triangle TEST $3-0$ NEST 4-+ TEST $5-x$

	$\begin{aligned} & \text { COLO-37 } 1 \text {-19-76 } 1544 \text { PORTS } 4.5 .6 \\ & \text { RHOR } 2,40 \end{aligned}$		
	Interval	oiameter (MICRONS)	cumulative pereent concentration
	5	2,508-01	4.04E+00
	6	2.74E-01	4.60E*00
	7	2.96E-01	5.11E+00
	8	3.25E-01	5. $80 E+00$
	9	3.50E-01	6. $44 E+00$
	10	3.78E-01	7.14E+00
	11	4.15E-01	B.09E+00
	12	4.48E-01	8.96E + 00
	13	4.84E-09	9, $93 E+00$
	14	5.30E-01	$1.12 \mathrm{E}+01$
-	15	5.73E-01	1,24E+01
\bigcirc	16	$6.18 E-01$	1,31E+01
	19	$6.78 \mathrm{E}=01$	1.54E+01
	1 A	7.32E.01	1.70E*01
	19	0.03E-01	1.89E401
	20	0.67E-01	2.07E+01
	21	9,36E-01	2.26f+01
	22	1.03E400	2.50E+01
	23	1.11E+00	2.70E401
	24	1.20E+00	2.91E+01
	23	1,31E+00	3.17E+01
	26	1.42E*00	3.39E+01
	29	1.53E400	3.61E+01
	28	$1.68 E+00$	3,07E*01
	29	1,81E400	4.07E+01
	30	1.96E+00	$4.27 E+01$

	31	2．14E400	4．49E＋01
	32	2．32E＋no	a，67E＊01
	13	2，50E400	4．85E＋01
	34	2．74E＋00	5，05E＋01
	35	2．968＋00	5．20E＋01
	36	3．25E＋00	5．39E＋08
	37	3，50E400	5．54E＋08
	38	3．98E－00	5．70E＋01
	30	4．15E＋00	5．90E＋O！
	40	4．4EE＋00	6．08E＋01
	41	4．0日E＋00	6，2日E－01
	42	5．30E＋00	6．55E＊01
	43	5．93E400	6．80E＋01
	44	6．10E＋00	P．05E＋01
$\begin{aligned} & \text { 合 } \\ & \hline \end{aligned}$	45	6．TEE＋00	7，37E＋01
	46	9，32E＋00	7．63E＋01
	4.	B．03E－00	9．05E＋01
	48	0．695＊00	$0.218+01$
	49	－30E＋00	0．4aE＋01
	50	$1.03 \mathrm{E}+01$	6．69E401
	51	1，11E401	8．86E＋01
	52	1．20E＋01	－．01E＋01
	53	1．31E＋01	9．17E＋01
	54	1．42E401	－．28E＋08
	55	1．53E＋01	9，37E＋01
	56	1．68E＊01	－．46E401
	57	1．81E001	9．53E＋01
	58	1．96E＋01	9．59E＋01
	59	2．14E＋01	－．65E＋01
	60	2．32E＋01	－，70E＋ 01

61	$2.54 E+01$	$9.75 E+01$
62	$2.74 E+01$	$0.78 E+01$
63	$2.96 E+01$	$9.82 E+01$
64	$3.25 E+01$	$9.86 E+01$
65	$3.50 E+01$	$9.89 E+01$
66	$3.7 B E+01$	$9.92 E+01$
69	$4.15 E+01$	$9.95 E+01$
68	$4.48 E+01$	$9.98 E+01$
69	$4.84 E+01$	$1.00 E+02$

InTERVAL	diameter (MICRONA)	change in mass concentration (MGONNMB)
1	2.50E.01	$6.10 E+00$
2	2,95E-01	9.53E40
3	3.97E01	- 26E*00
4	0.09E-01	1.15E+01
5	4,03E-01	1.42E401
-	5.69E=01	1.73E+01
,	6.715008	2.03E+0:
0	P.91E00	2.3RE+08
-	-, 32E-01	2,60E+01
10	1.10E+00	2.92E+01
11	$1.20 E+00$	3,06E+01
12	1.538400	3.03e+01
13	1.008+00	2.84E+01
14	2.12E+00	2.58E+01
15	$2.500+00$	2.38E+02
16	2.95E*00	$2.208+01$
19	3.47E+00	2.15E.01
14	4.09E+00	2,37E01
19	4.33E400	3.008001
20	$5.69 t+00$	$3.48 E+01$
21	-.73E+00	$3.708+01$
22	7.91E+00	$3.69 E+01$
23	-,32E+00	3.12E+01
24	$1,108+01$	2.31E+01
25	1.20E+01	1.65E+01
26	1.33E+D1	1.72E001

29	$1.80 E+01$	$0.09 E+00$
28	$2.12 E+01$	$6.99 E+00$
29	$2.50 E+01$	$5.51 E+00$
30	$2.95 E+01$	$4.78 E+00$
31	$3.47 E+01$	$4.28 E+00$
32	$4.09 E+01$	$3.93 E+00$
33	$4.83 E+01$	$3.64 E+00$
34	$5.69 E+01$	$3.35 E+00$

INYERYAL	OIAMEPER (MICRON8)	CHANGE IN NUMBER CONCENTRATION (NO/DNM3)
1	2.50E-01	3.11E+11
2	2.95E-01	$2,34 E+11$
3	3.47E-01	1.76E+11
4	4.09E-01	1.33E+11
3	4.83E-01	1.01E+11
6	3.64E-01	T.4TE40
\dagger	6.71E-01	5.42E ${ }^{\text {1 }} 0$
0	P.9tE01	3.83E+10
-	- 32E-01	$2.03 E+10$
10	1.10E+00	$1.95 E+10$
11	1.20E+00	$1.82 E+80$
12	1.53E+00	$6.78 E+09$
13	1.80E+00	3.872+09
14	2.12E-00	2.15e+09
15	2.502+00	1.21E+09
16	$2.95 \mathrm{c}+00$	-.44E 08
17	3.47E+00	4.09E*08
18	$4.09 E+00$	2.95E408
19	$0.83 E+00$	2.12E+08
20	$5.69 E+00$	1.51E+08
21	$6.71 E+O n$	-.TTE+09
22	T.91E400	$5.95 E+07$
23	9.32E+00	$3.07 E+07$
24	1.10E401	1.30E407
25	1.29E401	$6.06 E+06$
26	1.53E* 0	2,73E+06

27	$1.00 E+01$	$1.23 E+06$
28	$2.12 E+01$	$5.66 E+05$
29	$2.50 E+01$	$2.61 E+05$
30	$2.95 E+01$	$1.40 E+05$
31	$3.47 E+01$	$8.13 E+04$
32	$4.09 E+01$	$4.55 E+04$
33	$4.83 E+01$	$2.58 E+04$
34	$3.69 E+01$	$1.45 E+04$

111:111111 2 222222222333333333344A44444445555555555666666666677777777778) $123456789012345678901234567 R 9012345678901734567800123456789012345678901234567890\}$
 2
1000001111
0.000

21

	CIDRS VERSICNRHOU $2.40 \mathrm{GH/CC}$TEST TOR ANOERSEN.				
			mean cumulative	upper confidence	LONER CONFIDENCE
	interval	Diameter (MICAONS)	MASS CONCENTRATION (MG/ACM)	$\begin{aligned} & \text { (IMIPI } \\ & (M G / A C M) \end{aligned}$	$\begin{gathered} \operatorname{LIMIT} \\ (M G / A C M) \end{gathered}$
	1	2.50E-01	0,00E-01	7.89E-03	-7.89E-03
	2	2.71E-01	3.46E-02	5.71E02	1.22E.02
	3	2.95E-01	$9.35 \mathrm{E}=02$	1.26E-01	-.12E-02
	4	3.20E-01	1.62E-01	2.04E-01	$1.20 E=01$
	5	3.47E-01	2, 41E=01	2.91E-0!	1.90E-01
	6	3.77E-0\%	3,325-01	3,92E=O1	2.72E-01
	7	4.09 E 01	$4.40 \mathrm{~F}=01$	5.10E-01	3.69E-01
	8	4. 4 SE-01	5.66 E-01	6,48E-01	4.05E-0,
	9	$4.01 E-01$	P. 10E-0!	8.09E-01	6.23E-01
	10	5.24E-01	O. 93E-01	$9.98 \mathrm{E}=01$	P.8SE-0i
	11	5.69E-BI	1.10E400	1,22E+00	9. ASEOI
	12	6.18E-01	1.34E+00	1.47E400	1,22E+00
	13	6.71E-01	1,62E+00	$1.96 E+00$	1, ABE+00
	14	$9.28 E-01$	1.94E+00	2,09E+00	1.79E400
	15	7.91E-01	2, 29E+00	2.44E+00	2:13E+00
	16	6.5EE-01	2,66E+00	$2.82 E+00$	2.49E+00
	19	9, 32E-01	3,06E+00	$3.23 E+00$	2.88E+00
	18	$1.01 \mathrm{E}+00$	3.47E +80	3.65E+00	3,28E+00
	19	1.10k+00	3,0BE+00	4.08E+00	3.69E+00
	20	1.19E400	4, 30E+00	0.51E+00	$4.108+00$
-	21	1.29E+00	$4.92 E+00$	4,93E+00	4.51E400
$\stackrel{\square}{\square}$	22	1.41E+00	G. $12 \mathrm{E}+00$	5,34E+00	4,90E+00
\checkmark	23	$1.53 \mathrm{E}+00$	5,50E+00	$5.74 E+00$	$5.26 E+00$
	24	1.66E+00	5.86E +00	$6.10 E+00$	$5.61 E+00$
	25	1.80E+00	6,20E+00	$6.45 \mathrm{C}+00$	5.94E+00
	26	1.95E+00	6.51E+00	6,78E+00	6,25E+00
	29	2.12E400	6.82E+00	7.09E+00	6.54E+00
	28	$2.30 \mathrm{E}+00$	7.11E*00	$7.308+00$	$6.838+00$
	29	?.50E+00	7.41E+00	1, 70E+00	7,13E+00
	30	2.71E+00	T.92E+00	B.01E 0 (00	$7.42 \mathrm{E}+00$
	31	2.95E+00	8,03E+00	$0.33 E+00$	7.73E400
	38	3.20E+00	A.36E+00	$8.60 E+00$	$8.06 E+00$
	33	$3.47 E+00$	$8.71 E+00$	$9.02 \mathrm{C}+00$	-.40E+On
	34	3, $176+00$	$9.09 E 400$	$9.40 \mathrm{C}+00$	8.71E+00
	35	4.09E 400	$9.50 E+00$	$0.82 E+00$	$9.18 \mathrm{E}+00$
	36	$4.45 E+00$	$9.95 E+00$	$1.03 \mathrm{E}+01$	$9.62 E+00$
	37	A, $83 \mathrm{E}+00$	$1.05 E+01$	$1.08 \mathrm{E}+01$	1.01E+01
	30	$5.24 E+00$ $5.69 E * 00$	1.10E 101	1.13E+01	1.078 .01
	30	3.69E*00	1.10E+01	$1.19 E+01$	$1.12 \mathrm{E}+01$
	40	6.10E+00	1:22E+01	$1.26 E+01$	1.10E+01
	41 42	$6.71 E+00$ $7.2 B E+00$	1.28E+01	$1.32 E+01$ $1.3 \mathrm{EE}+01$	$1.25 E+01$ $1.312+01$
	${ }_{43}$	P. $28 E+00$ $7.91 E+00$	$1.35 E+02$ $1.41 E+01$	$1.38 E+01$ $1.45 E+01$	$1.31 E+01$ $1.37 E+01$

CIDRS VERSION 1

	$\begin{aligned} & \text { CIORS VE } \\ & \text { RMOE } 2.4 \end{aligned}$	$\begin{aligned} & \text { GM/CC } \\ & \text { GM TERT } \\ & \hline \end{aligned}$	or andergen.		
			mean cumulative	UPPER CONFIDENCE	Lower confioence
	inferval	diameter	mass concentration	LIMIT	LIMIT
		(MICRENG)	(PERCENT)	(PERCENT)	(PERCENT)
	1	2.50E-0!	$0.00 \mathrm{E}-01$	4.14E-0?	-4, 14E-nz
	2	2.7EEO1	1.82E=01	2.99E=01	$6.38 E=02$
	3	2,95E-0!	$4,90 E=01$	$6.60 E=01$	3,2tE-01
	4	3,20E=01	8.49E-01	1, $07 E+00$	6,31E-01
	5	3.47E-01	1.26E+00	$1.53 \mathrm{E}+00$	9,97E=01
		3.77E=01	$1.74 \mathrm{E}+00$	$2.06 E+00$	1.438 .00
	1	4.09 CO 1	2,30E*00	2.67E400	1.94E*00
	6	4.45E-01	2.97E+00	3.30E400	2,54E+00
	-	$4,83 E=01$	3,75E+00	4, 24E+00	3,29E+00
	10	$3.24 E-01$	$4.68 E+00$	3.23E+00	4.13E+00
	11	5.69E-01	5,78E+00	$6.39 E+00$	5.16E 400
	12	6.1 AEPOI	7.05E+00	7.12E+00	6,37E+00
	13	6.71E=01	S,51E+00	$9.24 E+00$	7.79E*00
	14	7.28E-01	1,02E+01	1.09E+01	9,39E*00
	15	$9.91 E-01$	1.20E+01	1.28E+01	1.12E+01
	16	A, SBE-01	$1.30 E+01$	1.48E+01	1.31E+01
	19	Q, J2E-01	1.60E+ 01	1.69E+01	1.51E+01
	18	1.01E+00	1,82E+01	$1.91 E+01$	1.72E+01
	19	$1.10 E+00$	2,04E+01	2.14E+01	$1.94 \mathrm{E}+01$
	20	1.19E+00	2.26E+01	2.36E+01	2.15E+01
	21	1.29E+00	2.47E+01	2.59E+01	$2.36 E+01$
	22	1.41E+00	2.6AE+01	2, $00 \mathrm{E}+01$	2.57E+01
$\stackrel{\sim}{\bullet}$	23	1,535400	2,88E+01	3.01E+01	2.76E+01
$\stackrel{\rightharpoonup}{6}$	24	$1.66 E+00$	3,07E+01	3,20E*O1	2, 9 HE + O
	25	1.00E+00	3.25E+01	3,38E+01	3.11E+01
	26	1. 95 E+00	3.41E+01	3.55E+01	3, $286+01$
	27	2.12E+00	3. $578+01$	3.72E+01	3,43E+01
	20	2. 30E+00	3.73E+01	3,ABE+01	3.58E+01
	29	2.50E+00	3.AaE+0:	4.04E+01	$3.74 E+01$
	30	2,71E+00	4.05E+01	$4.20 E+01$	3.49E+01
	31	2.95E+00	4.2IE+01	4.37E+01	$4.05 \mathrm{E}+01$
	32	3. $20 \mathrm{E}+00$	$4.305+01$	$4.54 \mathrm{E}+01$	$4.22 E+01$
	33	3.47E 400	$4.57 E+01$	$4.73 E+01$	$4.41 E+01$
	34	3.77E+00	4,76E+01	$4.93 \mathrm{E}+01$	4.60 EPO
	35	$4.09 E+00$	4.98E+01	$5.15 E+01$	$4.81 E+01$
	36	$4.45 E+00$	5.22E+01	5,30E+01	5.05E40!
	37	4.83E 400	5.48E+01	5.66E+01	3.31E+01
	38	5. $24 \mathrm{E}+00$	5,17E+01	5.95E+01	$5.59 \mathrm{E}+01$
	39	$5.69 \mathrm{E}+10$	6, 07E+01	6,26E+01	$5.89 \mathrm{E}+01$
	40	6.18E+00	$6.40 E+01$	$6,58 \mathrm{E}+01$	$6.21 E+01$
	41	6.71E+09	6.73E+01	6,92E+01	$6.53 \mathrm{E}+01$
	42	$7.28 E+00$	$7.06 E+0!$	$7,26 E+01$ $7,00 E+01$	
	43	7.91E+00	7.40E+0	7.60E+01	7.20 CaI

	CIDRS VER interval	$\operatorname{sion}_{\text {GM/Ce }}^{1} \text { TEBT }$ oinmeter	por andrasen. recoros exeludeo prom mean change in mass contration
	1	2.50E-01	5
	2	2,93E-0. 1	NONE
	3	$3.49 E=01$ $4.09 E=01$	NONE NONE
	5	4,83E-01	NONE
	6	5.69E-01	none
	'	6,91E-01	Nove
	9	9,32E-01	NONE
	10	1.10E+00	NONE
	11	${ }^{1.295}$	NONE
	12	$1,53 E+100$ $1,80 E+00$	NONE
	14	2.12E+00	None
	15	2.50E+00	NONE
	16	2,95E+00	none
	19	3,47E+00	NoNE
	18	$4.009 E+00$ $4.83 E+00$	NONE
$\stackrel{\text { N }}{\sim}$	20	5,69E+00	NONE
$\stackrel{\sim}{\sim}$	21	$6,71 E+00$ 9.91800	None
	22	1.918400	none

	$\begin{aligned} & \text { CIORS VE } \\ & \text { RHO } 2.4 \end{aligned}$	$\begin{aligned} & \operatorname{ION}: \\ & G M / C C \end{aligned}$		andersen.			
	interval	DIAMETER	IN	mean change number concentration	standard deviation	UPPER CONFIDENCE LアMIT	LOWER GONFIDENCE LIMIT
				(NO/DNM3)	(Nolonm3)	(NDIDNMS)	($\mathrm{NO} / \mathrm{ONM} 3$)
	!	$2.50 \mathrm{E}=01$		$4.80 E+10$	4,60E410	6.65E+10	3.10E+10
	$?$	2,95E-01		A,53E+10	9.29E410	1.16E+11	5.43t+10
	5	3.47E-01		$6.92 E+10$	7.08E+10	9.28E+10	$4.56 E+10$
	4	4.09E-01		5, B4E+10	5,44E+10	7.66E+10	$4,03 E+10$
	5	4.83 EOO		4,99E40	4.13E+10	6.37E+10	3.61E+10
	6	5,69E-n1		4.22E+10	2,94E+10	$5.20 \mathrm{E}+10$	3.2aE+10
	7	6.71E-01		3.40E +10	1.82E+10	4.01E+10	2,74E+10
	-	7.91E-01		2,51E+10	1.0AE+10	2,ATE+10	2.15E+10
	9	9,32E=01		$1.72 \mathrm{E}+10$	6.99E+09	1,95E+10	1.49E+10
	10	1.10E+00		1,09E+10	$4.65 \mathrm{E}+09$	1.2ae+10	$9.33 E+09$
	11	1.29E\$00		$6.45 E 409$	$3.13 E+09$	7.50E+09	5.41E400
	12	1,53E+00		$3.56 E+09$	2,06E+09	a.25E+09	2,67E409
	13	1.80E¢00		1.92E+09	1.25E+09	2.33E+09	$1.50 E+09$
	14	2.12E+00		1.07E409	P.10E+08	1.31E409	$8.36 E+08$
	15	2.50E.00		$6,50 E+08$	$3.94 E+08$	7.89 P +08	S. 268 +08
	16	2,95E*00		$4.30 E+08$	$2.26 E+08$	5.05E+08	3, 5aE+04
	19	3. 4 TE +00		$2.97 E+08$	1.43E+08	$3.45 E+08$	2.4PE 088
	18	4.09E+00		2,14E+00	9,64E+07	2.46E*08	1,62E+0A
	19	4,83E*00		1.61E+08	$6.06 E+07$	1.84E 408	1. 30E+08
	20	$5.69 E+00$		1.12E+08	4.46E+07	1.27E408	-. $76 E+07$
$\stackrel{\sim}{N}$	21	6.71E+00		9,20E+07	2,01E.07	A.21E407	6,34E+07
N	22	T.91E+00		4.44E+09	1.68E407	5.00E*07	3, $80 \pm+07$

	CIDRE VER RHOE 2,40 INTERVAL	$\begin{aligned} & \text { SION I TEBT } \\ & \text { GMCC } \\ & \text { DIAMETER } \end{aligned}$	$\begin{aligned} & \text { FOR ANDER } \\ & \text { PECORDS } \\ & \text { CMANGE IN } \end{aligned}$	BEN. excluded from mean number coneentration
	1	2,50e-01	5	
	2	2,95E-01	NONE	
	3	3.47E001	NONE	
	4	$0.09 E=01$	NONE	
	5	4,03E-0)	NONE	
	6	5,69E=01	NONE	
	7	6,71E001	NONE	
	8	$7.91 E=01$	NONE	
	-	0,32E-01	NONE	
		1.10E400	NONE	
	11	1.29E+00	none	
	12	1,53E+00	none	
	13	1,00E +00	NONE	
	14	2.12E+00	NONE	
	15	2,50E400	NONE	
	16	2,95E+00	NONE	
	17	3.4TE +00	NONE	
	18	4.09E +00	NONE	
	10	$4.83 \mathrm{t}+00$	NONE	
	20	$5.60 \mathrm{t}+00$	NONE	
$\stackrel{\sim}{\sim}$	21	- T1E+00	NONE	
$\stackrel{\sim}{\omega}$	22	7,9IE+00	NONE	

DATA DECK FOR PROGRAM PENTRA

11111111192222222222333333333344444444445555555555666666666677777777778) $12345678901234567890123456789012345678901234567890123456789012345678901234567890\}$ CIDRS VERSION 1 TEST FOR PENFTRATION-FFFICIENCY. PENTRA 00

PERETRATIIN-EFFICIENCY

COS Y Y
H
 12345678901234567890123456789012345678901234567890123456789012345678901234567890 (CIDRS VERSIIN 1 TEST FOR PENETRATIONGFFFICIENCY. PENLOG

	INTEPVAL.	DiAMFTER	AVERAGE effictrney	UPDER CONFIDENCF LIM! OF EfFICPENCY	LOWFH CONFTOENCE LIMIT OF EFFICIENCY
	1.	0.2500	93.240n	91.4870	92.0127
	2.	0.2947	64.4259	67.1595	81.6923
	3.	0.3474	07.0272	99,1122	84,9423
	4.	0.4095	02.3000	-3,5582	01.2217
	5.	0.4827	95,1072	95, 0692	94.4651
	6.	0.5690	95.937	96,4654	95.0102
	7.	0.6707	95,7093	90,1038	95.2269
	${ }^{\prime \prime}$	0.7906	95.1794	95,6560	94.7024
	$0 \cdot$	0.9319	94.7063	95,1633	94.2093
	10.	1,0985	94.6757	95.1040	94.2474
	11.	1.2949	95.2842	95,7126	94.0550
	12.	1.5260	96.4848	90.8712	96,0984
	13.	1.7992	97.8405	9B,OAR2	97.5928
	14.	2.1209	98.5539	9A, 7183	98, 3895
	15.	2.5000	98.7609	98.8906	98.6313
	10°	2.9469	98,7121	98,8930	98.6512
	17.	3.4737	98.5311	98,6656	96, 3466
	18.	4.0947	98.1473	98, 3042	97.9904
	19.	0.8267	97.6214	97, 0088	97.4340
	70.	5.6896	97.3225	97p5439	97.1011
	21.	6.7067	96.5711	96,8522	96.2899
$\stackrel{\text { t }}{ }$	22.	7.9057	96.6940	96.9464	96.4015
N					

FEEETRATIUN EFFICIENCY

 ROE 2.0 OUT

SECTION 6

PROGRAM LISTINGS

A source listing of each program in the cascade impactor data reduction system follows. The six mainline programs are first, arranged in alphabetical order. Before each of these programs is a simplified flowchart. Next are the subroutines and function subroutines, also arranged in alphabetical order. No flowcharts are provided for these.

MAIN PROGRAM GRAPH 1
 2
C THIS MAINLINE IS USED AS A TRAFFIC DIRECTOR". THE INDIVIDUAL 3
E* DATA RECORDS ARE READ SUPPLYING IDENTIFIEATION COOING. 4
C. EXPERIMENTAL DATA POINTS, AND COEFFICIENT VALUES FOR FITTING 5
C• CUMULATIVE MASS LOADING DISTRIBUTION CODES FOR PLOTTING 6
C* INSTRUCTIONS ARE READ IN AND SUBROUTINES ARE CALLED TO PLOT 7
C. ACCORDING TO THESE. 8
 9
C 10
INTEGER VV 11
DOUBLE PRECISION XNDPEN(10), YO(10) 12
DIMENSION FILNAM(2), FGRAPH(2) 13
DIMENSION IDALL (BO), GEMAX(2),GEMIN(2), DMMAX(2), DMMIN(2),DNMAX(2) 14
DIMENSION ONMIN(2), DPHAX(2), DPMIN(2),CUMAX(2),CUMIN(2),ID(BO) 15
DIMENSION DPC(A), CUMG(B), DMDLD(9), GEOMD(Q), DNDLD(9) 16
COMMON IMPAC,IDALL,RHOI, GEMAX, GEMIN, OMMAX, OMMIN, DNMAX, ONMIN 17
COMMON DPMAX, OPMIN, CUMAX, CUMIN,ISIZI, ISIZZ, ISIZS 18
CDMMON I8, NFIT,ID,RHO, DMIN,TKS,POA,FG(5), DMAX, DPC, CUMG, DMDLD 19
COMMON GEOMD, DNDLO,GRNAM,MPLOT,DSMA, VV 20
COMMON ISIG, XHAX,XMIN, YMAX, YMIN,XS, YS 21
COMMON CYCS, MCS,MOO,MS 22
COMMON XNDPEN 23
DATA FILNAM/*KMCOO**1日IN*/ 24
DATA FGRAPH/*GRAPH**OEIN*/ 25
DATA IBLN/O/ 26
CALL DEFINE $(10,251,101, F I L N A M, 110,0,0,0)$ 27
CALL DEFINE (B, 15,50,FGRAPM,I10.0.0.0) 2829
C NRUN NUMEER OF RUNS 30
IMPACEI - ANDERSEN IMPACTOR USED. 31
E2 - BRINK IMPACTOR USED. 32
E 3 - UNIVERSITY OF WASNINGTON MARK III IMPACTOR USED. 33
Ba - MRI IMPACTOR USED. 34
IDALL GENERAL IDENTIFICATION LABEL USUALLY INCLUDES PLACE 35
AND DATE DF RUNS, INLET OR OUTLET ANNOTATION, AND RUN NUMBERS. 36
RHOI - PHYSICAL DENSITY OF PARTICLES (GM/CC) 37
THE FOLLDWING ARE MAXIMUM AND MINUM VALUES DF ALL RUNSE38
GEMAX, GEMIN MAXIMUM, MINIMUM GEOMETRIC MEAN DIAMETER (MICRONS) 40 41
DMMAX, DMMIN - MAXIMUM,MINIMUM CHANGE IN MASS LOADING (MG/DNMS)
DNMAX, DNMIN - MAXIMUM,MINIMUM CHANGE IN NUMBER LOADING (NG./DNMS) 2 2 43
DPMAX, DPMIN - MAXIMUM, MINIMUM CUT POINT DIAMETER (MICRONS)
CUMAX, CUMIN - MAXIMUM,MINIMUM CUMULAYIVE MASS LOADING (MG/ACM) 45
READ(10'IOI)NRUN,IMPAC, IDALL, RHOI, GEMAX, GEMIN, DMMAX, DMMIN, DNMAX, 4746
IDNMIN, DPMAX, DPMIN, CUMAX, CUMIN
49C
THE ISIZI VAPIABLE IS CODING TO INDICATE WHETHER CUMULATIVE MASS50
LDADING AND CUMULATIVE X MASS LOADING PLOTS ARE TO HAVE A STANDARD 51
52
RANGE AND NUMRER DF CYCLES (ISIZI O OR WHETHER THESE ARE TO RE 53
DATA REGULATED (ISIZI IJ. ISIZZ IS SIMILAR CODING FOR MASS SIZE 54
CONCENTRATIDN GRAPHI ISIZ3 IS SIMILAR CODING FOR NUMBER SIZE 55
CONCENTRATION GRAPH. 56
IREPET CODING FOR READING IN GRAPH CODING VALUES MPLOTOJI,J2...... 58
JPG (SEE 日ELOW). IREPET E O DEAD IN THESE VALUES ONCE AND LEY 59
These values be the same for all auns to be plotied. irepet not a 60
O - READ IN GRAPH CODING FOR EACH RUN (NRUN SETS OF GRAPH CODING). 61
READ(2,900)ISIZ1,ISIZ2,ISIZ3.IREPET 63
MPLOT >0 - MAKE NEW GRID FOR EACH PRAW DATA' PLOT CCONTROLLED64
66
MPLOT -0 OR 0 - PLOT SIMILAR TYPES OF PRAW DATA' ON SAME GRIDAS PREVIOUS GRAPH.
FOR ALL GRAPH CODING LISTED BELOW: 0 - MAKE PLOT INDICATED 69
NOT O - SUPPRESS PLOT 70
71
J1 - J3 APPLY TO GRAPHS WHERE AERODYNAMIC DENSITY IS ASSUMED: 72
J1 - •RAW DATA. CUMULATIVE MASS LOADING VS. DSO 73
J2 - •RAW DATA. MASS SIZE CONCENTRATION VS. GEOM. MEAN DTAMETER TA
J3 - •RAW DATAF NJMBER SIZE CONCENTRATION VS. GEDH. MEAN DIAMETER 75
J4 - J6 A8 FOR J! O 33 RESPECTIVELY FOR ASSUMED PHYSICAL DENSITY
78
JPI = JP3 ARE FOR GRAPHS WHERE AERONYNAHIC DENSITY IS ASSUMEN: 79
JPI - FITPED CUMULATIVE MASS LOADING DISTRIBUTION SUPERIMPOSED RO
ON A GRAPH OF THIS "RAW DATA". 81
JPCNTI - FITTED CUMULATIVE x mASS LOADTNG DISTRIBUTION GRAPN B2
JPR - MASS SIZE DISTRIBUTION FROM CUM. FIT SUPERIMPOSED ON A GRAPH B3
OF THIS 'RAW DATA" 84
JP3 - NUMBER SIZE DISTRIRUTION FROM CUM. FIT SUPERIMPOSED ON GRAPH
OF THIS ORAW OATA:
JP3 - NUMAER SIZE DISTRIRUTION FROM CUM. FIT SUPERIMPOSED ON GRAPH
OF THIS ORAW OATA.
JP3 - NUMAER SIZE DISTRIRUTION FROM CUM. FIT SUPERIMPOSED ON GRAPH
OF THIS ORAW OATA.
JPG = JPG - AS FOR JPI - JPI RESPECTIVELY FOR ASSUMED PHYSICAL EB
DENSITY. 89
DENSITV. 90
IF IREPET $=0$, READ GRAPH CODING WHICH WILL APPLY TO ALL RUNS. 91
600 IF(IPEPET)602.601.602 93
601 READ (2,902)MPLOT,J1,.J2.J3,J4,J5,36 94
PEAD (2,902)JP1,JPCNT1.JP2,JP3,JPA,JPCNTA.JP5,JP6 95
C THIS LOOP READS GRAPH CODING FOR EACH RUN (IF IREPET NOT E O) ANDIOR96
THIS LOOP READS GRAPH CDDING FOR EACH RUN (IF IREPET NOT E O) AND/OR 97
SYORES CODING FOR EACH RUN ON FILE. 98
602 DO 650 LE1, NRUN 10099
IF (IREPET)605,615,605 101
605 READ (2,902)MPLNT,J1,J2,J3,J4, J5,J6 102
READ (2,902)JP1,JPCNT1,JP2,JP3,JPG,JPCNTA,JP5,JP6 103
615 WRITE($8^{\circ} L$ JMPLOT,J1,J2,J3.J4,J5,J6,JP1,JPCNT1,JP2.JP3. 104
1JPA, JPENTA,JP5,JPG 105
650 CONTINUE
107cISIGEO - GIVES PLOTS OF PRAW DATA POINTS.
108
ISIG>O - GIVES PLOTS OF FITTED CURVE ON TOP OF 'RAW DATA" POINTS. C 109
5600 ISIGEO
5600 ISIGEO 110c111
EVEN RECORDS ARE READ (DENSITYEI.O GM/CC) FOR INDEXEI-S AND 7. 113112
ODD RECORDS ARE READCDENSITY E PHYSICAL DENSITY) FOR INDEX $=4.6$ 114
AND 8. THUS: 115
18TRT - FIRST RECORD = 1 FOR ODD RECORDS, 2 FOR EVEN RECORDS 116
IEND - LAST RECORD117
DO 799 INDEX=1.8 118 119

c					240
C					241
C	*	*	*	*	242
C 7	* 1 Wallyi	- JPI	- cumulative mass	*AERO.	243
C	* J JEI	*	*	*	244
C	* *	-	*	*	245
C***					246
c	* *	*	*	*	247
C 7	* 1 * CUMPCT	* JPCNT!	- cumulative percent	-AERO.	24 A
C	* *	*	- Mass	*	249
C	* *	*	*	*	250
C***					251
c	* *	*	*	*	252
C 7	* 1 * WALLYZ	* JP2	* DM/OLOGD	* AERO.	253
c	* JNEz	*	*	*	254
c	* *	*	*	*	255
C***					256
C	* *	*	*	*	259
C 7	-6 Wallv3	* JP3	- DN/OLOGD	*AERO.	258
C	* Jnez	*	*	-	259
C	* *	*	*	*	260
C***					261
C	*	*	*	*	262
	* 1 * WALLV1	- 304	* cinmulativemass	*PHYSICAL	263
C	* JoEI	*	*	*	264
C	* *	*	*	*	265
C***					266
C	* *	*	*	*	267
$c \quad 8$	- 1 * cumpct	- JPCNTA	* cumulative percent	*PHYSICAL	268
C	* *	*	- MAS3	*	269
C	* *	*	*	*	270
C***					271
C	* *	*	*	*	272
C 8	* 1 * wallyz	- JP5	- DM/OLOGD	*PHYSICAL	273
C	* * jnez	*	*	*	274
c	* *	*	*	*	275
C***					276
c	* *	*	*	*	279
C 8	- 6 Wally3	* JP6	* DN/DLOGD	*PHYSICAL	278
C	* JoEz	*	*	*	279
C	* *	*	*	*	280
C					281
					282
$\begin{aligned} & 810 \\ & 731 \end{aligned}$	G0 10 (731,732,733	3,734,735,93	,737.7389, INDEX		283
	IF (S1.NE. IBLAK) G0	10 790			284
	CALL WALLYI				285
	GO TO 790				286
732	IF(JZ.NE.IBLAK)GO	10790			287
	CALL WALLYZ				288
	G0 10790				289
733	IF(J3.NE.IBLAK)GO	10790			290
	CALL WALLY3				291
	G0 0790				292
730	IF (Ja, NE, IBLAK)GO	90790			293
	CALL WALLY!				294
	G\% 10790				295
735	IF (J5.NE. IBLAK) 60	10900			296
	CALL WALLYZ				297
	60 10 790				298
136	IF(J6.NE.IBLAK)GO	10790			299

CALL WALLY3 300
60 TD 790
301
301
737 131691 302
IF(JPi.NE.IBLAK)GO TO 740 303
CALL WALLYI 304
740 IF (JPCNTI, NE.IBLAKIGO TO 750 305
CALL CUMPCT 306
150 [F(JPZ.NE.IBLAK)60 TO 751 307
CALL WALLYz 308
751 IF(JP3.NE,IBLAK)GO TO 790
309
309
TSIG: 6 310
CALL WALLY3 311
13IGEI 312
6070790
6070790
313
313
738 IF (JPA,NE,IBLAK)60 TO 755
314
314
CALL WALLY 315
755 IF (JPCNTA. NE.TRLAK)GO TO 760 316
CALL CUMPCT 317
760 IF (JP5.NE, IBLAK)GO 10761 318
CALI WALLYZ 319
761 IF(JPG.NE.IBLAK)GO 10790 320
ISIGE6
321
321
call wallys 322
ISIGE!
323
323
790 CONTINUE 324
799 CONTINUE 325
900 FORMAT(4II) 326
902 FORMAT(AII) 327
1000 STOP
1000 STOP 328 329
END
END

C HAIN PROGRAM MPPROG 1
C． $?$
C． 3
C．TMISIS A FORTRAN IV DROGRAM FOR CALCULATING GTAGE CUT POIVTS， 4
$\begin{array}{ll}C * & \text { CDSO＇S ANO THE PARTICLE SIZE DISTRYPLTINN OF MATERIAL COLO } \\ C \text { LECTEN RY CASCADE IMPACTOR．COMMENT CAROS DESCRIRE THF INPIT }\end{array}$ 5
AAO GIIPRIT DATA AND THE IMPORTANT CALCUIATIOMS．THE PROTRAM 7
HANDLES AMJERSEN，BRINK．UNIVEPSITY CF WISHINGTON．AND MRI
HANDLES AMJERSEN，BRINK．UNIVEPSITY CF WISHINGTON．AND MRI 8 8
$\begin{array}{ll}\text { C．HANDLES AMDERS } \\ \text { C．} & \text { HMPACTOR DATA．}\end{array}$ 10

C*
11
c 12
YATEGFR X（A，$H), V V$ 13
REAL IMASS（Q）．I（IIMM（9），MASS（9）．MM．MU．L（A） 14
DCIPLE PRECISION XNDPEN（1O），YO（10），VARD（10），VARCRIO） 15
OIMFNSION FIL NAM（Z），DPCON（5） 16
 17DPCF（50），DMAXX（50）．CUMGF（50），CUMG！（50），GOMIN（50）
2GOMAX（50），OAMN（50），DMMY（50），DHMN（50），חNMX（50），DDMIN（2），חDMAX（2）， 19
3CHM！N（Z），CHMAX（Z），GEMIN（2），GEMAX（2），ПMMIN（2），DMMAX（Z），DNMTN（？）． 20
GDNMAX（2）．TDALL（RO） 71
 22
 23
COMMON／RL OCK3／MASS，F，HUR，TKS，CUMM（Q），PFRCU（9）， 24
IGRNA，GRAS，DRNAM，GRNSM 25
 24
1のMnLП（9），DNDLD（9），GEONก（9） 27
CПMUOU／RL DCKE／NCIIM，MPACTY，MPACNO，NMASS，NIERO PA
DATA NPCON／1．2A7．3．7A3EO2．3．92日．1．093E03．9．3751 20
CATA FILNAMJEKMCOOE，IRIN：／ 30
CALL．IEFINE（IM．251，101，FILNAH，IJO，0，0，0） 3132
READ CODE FTR THPACTOR TYPE MPACTY AND CODE FOR AEROOYNAMIC33
CFNSITY DEEYAITIOA TO RE USED MAERCI 35
MDACTY $=1$－ANDEFSEA 36
＝ 2 －ARINK 37
－ 3 －IINYV． $2 F$ MASHINGTON（PILAT） 18
＝ 4 －METEOROLOGY RESEARCH，INC．（NRIJ 39
MAERO＝O CLASSIC DEFINTTION OF AERODYNAMIC DEMSITY 40
： 1 －MERCER＇S DEFINITION
： 1 －MERCER＇S DEFINITION 41 41
READ（2．99）MPACTY，MAERO 43
NMASS z AO．CF MASSES TD BF REAC g NO．OF STAGFS＋I FORFILTFR 4－f FOR PYCLONE（IF $\triangle P Q L I C A R L E)$.
NMASS工O
IF（MPACTY．GE．3）NMASSEANCUM E NO．CF CUM．MASS LOADINTSS © DSO．404740
51
NCUME 752
IF（MPACTY．EO．I）NCUMEB 54
REAN GFNERAI IDEATIFICATION LABEL IDALL．INFORMATION ON THIS55
CAPC PERTAINS TO ALL RIINS．MAY INCLUDE TEST SITE．DATF（S）． 57
RIINNTNG CORDITIONS，FTC．THIS WILL AE KEAOING OF STATISTICAI． 58
DRINT OIT ANO GRAPHS IF DROGRAM STATYS IS RUN． 50

6	READ(2,1004)IDALL	60
C		62
C	EACH RUN HAS THE THE CARD DATA SET TO FOLLOW: THERE ARE 6	63
e	CAROS FOR EACH RUN.	64
5		65
c		66
C	READ CODE FOR IMPACTOR NUMBER, MPACNO. EACN IMPACYOR IS	67
6	ABEIGNED NUMBER 80 THAT CALIBRATION CONSTANTS FOR	68
c	THIS IMPACTOR CAN BE ETORED IN BLOCK DATA BUBROUTINEE	69
C	COMBK1 AND COMBK2.	70
C		71
c		72
c		73
c		74
C		75
12	REAO (2,99)MPACNO	76
	IF(MPACNO)93.93,14	77
c		78
c	PO - GAS PRES\$URE AT IMPACTOR INLET'. JNCHES OF MEREURY.	79
e	TFS - ${ }^{\text {P PEMPEMATURE OF STACK, DEGREES FAHRENHEIT. }}$	00
c	TFI -0 TEMPEAAPURE OF IMPACTOR. DEEREES PAMRENHEIR.	A 1
c	RHO - PARTICLE DENSITY. GRAMB/CUEIC CENTIMETER.	82
C	DUR =® DURATION OF IMPACTOR SAMPLING. MINUTES,	-3
c	DMAX - MAXIMUM DIAMETEA OF MATERIAL COLLECTED. MICRONE.	14
C		85
C	IF 80 USED, MOOF11 OTHERNIAE, MOOEO.	86
c		89
C	IF BACK=UP FILPER UBED, MPEI, OTMERWPAE, MPEO.	88
C		89
10	READC2,300)PO, PFE, TFI,RHO, DUR, DMAX,MC3, MOO,M8, MF	90
c		91
c	READ IN OAS COMPOSITIDN IN PHIS ORDEAE-COZ(DRY) CO\&DQY)	92
6	N2(DRY) O2(DRY) H20	93
C		90
	$\operatorname{READ}(2,102)$ (FG(1).101.5)	95
C		96
C	READ IN STAGE COLLECTIONS IN MILLIGRAMS IN THIS ORDERI	99
C	FILTER STAGES(6,5,4.3.2.1.0) C3 OR C2	98
c		99
	READ(2.106) (MASS(I).IEI,NMASS)	100
	DO 299 IEI.NMAS8	101
	MAss(I)mmassel)/1000.0	102
209	CONTINUE	103
c		104
C	READ IN IMPACTOR SAMPLINS FLOW RATE IN ACFM.	105
C		106
	READ(2.310) F	107
C		108
6	READ IN PEAT JMFORMATIONCOATE, TIME,ETC.J BETWEEN COLUMNS	109
c	2 TO51. PUT 1 I IN COLUMN 1.	110
C		111
	READ(2,1004)10	112
C		113
c	NRUN 18 INDEX FOR NUMBER OF RUNS READ,	114
C		115
	NRUNGNRUN +1	110
C		117
c	IF CALCULATIONS FOR BOTM DEFINITIONS OF AERODYNAMXC DIAMEPER ARE	118
c	DESIRED, INPUT DENAITY RHO 1.0 AND NAERO 18 SET 0.80 PHAY	119

$\begin{aligned} & \text { C } \\ & \text { C } \end{aligned}$	-TGLD DEFINITION OF AERO, DIAMFTER IS USED FOR IST COMPUTAC TION OF OSO'S, CUM. MASS LOAOINGS, ETC'. (MERCER'S DEFINITION OF	120 121
c	AERO. DIAMETER IS USED FOR 2ND COMPUTION. PHYSICAL DENSITY	122
c	COMPUTIONS NET MADE.)	123
	NAERO=MAERO	124
	IF (RHO.EQ.1.) NAEROE0	125
C		126
C	Change dry gas edmposition to wet.	127
C		128
	D0 251 1a1,4	129
	FG(I) 5 FG(I)*(1.0-FG(5))	130
251	CONTINUE	131
C		132
c		133
c		134
C		135
C		136
c	wh is the average molecilar weight df the flue gas.	137
C		138
		139
C		100
c	Change the temperature df gas in the tmpactor to degrees centigrade.	141
C		142
	TCI $=5.0$ (7 FI-32.0)/9.0	143
C		104
c	Change thf femperature of gas in the tmpactor to degrees kelvin.	105
C		146
	TKI $=273.0+(5.0 *$ (TF (-32.0)/9.0)	147
E		108
c	change the temperature of gas in the jmpactor to degrees rankine.	149
c		150
	TRIETFI+460.n	151
c		152
C	change the temperature of gas in the stack to degrees centigrane.	153
C		154
	TCS $=5.0$ * (TFS-32.0)/9.0	155
c		156
C	Change the temperature of gas in thf stack to degrees kelvin.	157
c		158
	TKS $=273.0+(5.0 \pm$ (TF5-32.01/9.0)	159
c		160
c	Calculate the flow rate for impactor conditions in acFm.	161
C		162
	DEF*(TKI/TKS)	163
C		164
C	Change po to atmospheres.	165
C		166
	POA=P0/29.9?	167
C		168
c	CALCULATE DROP IN PRESSURE ACROSS THE IMPACTOR IN INCHES OF	169
e	MERCURY.	170
C		171
	JFMPACTY	172
	IF(J.EQ.4)J=5	173
	IF (J.EQ.2.AND, MS.E日.6)J=a	174
	$D P=D P C D N(J) *(B * Q * P B) / T R I * M M / R A$	175
c		176
c	Change di to atmospheres.	177
C		178
	DPAEDP/29.92	179

${ }^{C}$ 180
THIS 8UBROUTINE CALCULATES THE LOCAL PREBSURE AT EACH ITAGE. c
c 181 181 182
CALL siage
CALL siage 183
184
C THIS SUBROUTINE CALCULATES TNE GAS VISCOSITY. 185
CALL VI8 186 187
C This subroutine calculates the molecular mean free path. 188 189
CALL MEAN 191190
RHOIEI.O
2010 CONTINUE 192 193
18=18+1 194
IF (AHO-1,0)2002,2002.2008 195
2002 DMAX=DMAX*8ORT(RHO1) 196
c 197
C THIS SUBROUTINE CALCULAPES THE DSO OF EACH STAGE. 198
c
2008 CALL CUY 199
C 201200
C THIS SUBROUTINE CALCULATES THE CUMULATIVE MASS ANO CUMULATIVE
PERCENT DIBTRIBUTION. 203
204
call cum 205
206
C THIS LOOP CHANEES THE FLUE GAS COMPOBITION TO PEREENT. 207
C 204
20110010 Imi.5 209
FG(I) $=$ FG(I) 100.0 210
10 CONTINUE 211
c 212
C THIS LOOP INVERTS THE OROER OF THE MASS, CUMULATIVE MASS LOADING 213
© DSO. AND CUMULATIVE PERCENT MASS LOADINO - DSO. 214
c 215
NMABEIENMASB+1
DO 30 Ind.NMASS 217216
JoNMASSI-I 218
TMAB8(J):MASS(I) 219
PRCU(J)aPERCU(I) 220
ICUMM(J) =CUMM(I) 221
30 CONTINUE 222E
C THIS LOOP CHANEES MASS/STAGE FROM GRAMS TO MILLIGRAMS. 224
00 22a I=1.NMAS8 225
IMASS(I)EIMASS(I) 1000,0 226 227
ICUMM(I)EICUMM(I)*1000.0 228
224 CONTINUE 229
IF(MPACPY-2)501.502,501 230
501 MLEancum 231
MMMES 232
6090503 233
502 MLEEMC3+MOO 06 234
MMAB3-(MC 3+MOO) 235
236
THIS LOOP CALCULATES CUMULATIVE MASS LOADING 3 SAGE DSO IN 237
MILLIGRAMB PER ACTUAL CUBIC METER(CUMG), GRAINE PER ACTUAL 238
CUBIC FOOY (CUMH), GRAINS PER DRY NORMAL CUBIC FDOT (EUMI'. 239
c AND MILLIGRAMS PER DRY NORMAL CUBIC METEA (EUMJ). 240 241
50300504 IE1.MLS 242
In 4 MMM 243
FCopRCU(J)/100.0 244
CUME (I) ERRNAMGFC 245
CUMH(I) ERRNA B C 246
 247
CUMSIIS ERREMHPC 248
504 CONFINUE 249
TMES LOOP CALEULATES THE MILLIGRAMS PER DRY NOAMAL CUBIC METER250
PER STAGE. 252
00505 IGI,NMAS8 254253
 255
10 (F) (5))/100.0) $2286.34 / 1000.0$
505 CDNTINUE 257
THIE ETATEMENT WRITEE PME PEET INPORMATEON.258
260
WRITE(3.1008)ID 261
THIS STATMENT WRITER PHE IMPACFOR FLOW RATE , TEMPERATURE, SAMPLING 263$26 ?$
DURATION, PARTICLE DENSITY, ATACK OREBSURE, AND MAXIMUM PARTIELE
OIAMETER 265 266

WGITE(3,201)F,TFI, PEI,DUR, DP, PFB,TCB,RHO,PO,DMAX

WGITE(3,201)F,TFI, PEI,DUR, DP, PFB,TCB,RHO,PO,DMAX 267
26A
THIS 8TATEMENT WRITES THE FLUE GAS COMPOBITION, GRAINS PER ACYUAL 269
CUBIC FOOT, PME GRAINS PER NORMAL ORY CUSIC FOOT PHE 270
MILLIORAMS PER ACPUAL CUBIC METER, PHE MILLIGRAMS PER NORMAL 271
ORY CUBIC METER. 272
WRIPE(3,202) FE(1),FB(2),FG(3),FG(4) OFG(5).EANA,GRNS,GRNAM,GRNSM 27427
STABE COLUMN HEADINGS, OSO ${ }^{\circ}$, MABS/STAGE, MASS LOADING/ETAEE, 7275
\% TOYAL MASS/8TABE AND CUMULATIVE MASS DISTRIBUTION ARE WRITPEN.
FORMAT U8ED DEPENDE ON TYPE OF IMPACFOR. 278
00 PO (3001, $3100,3200,3200)$, MPACTY279
281
THIS SECTION WRITES STAGE COLUMN HEAOINGS, DSOCE, MABSIETAEE 282
MAS8 LOADINGISTAEE. CUMULATIYE PEREENT MASB LDIOING STAGE 283
DSO, AND CUMULATIVE MASE LOADINE \& FAGE DSO FOR ANOERSEN 284
IMPACPOR. 285286
FHIA STATEMENT URITES THE DSO* FOR EACH BTAGE 288280
3001 WITP(3,3203) (OPC(1),IE1,8) 290
PMIB STATMENT MRITES THE MASS COLLECFED PER BTAEE, TME MAS8 LOADING291PER BTAEE, ANO THE PERCENT OF TME TOTAL MAS8 ON EACH ATAEE, 293

PER ACTUAL EUBIE METER, MTLLTEAAMS PER ORY NORMAL EUBIE MEPER, $29 R$
BRAINS PER AETUAL CUBIC FOOT. AND GRAFNS PER DRY NORMAL CUBIC FOOT 299
$\begin{array}{ll}C \\ C & 300 \\ l\end{array}$

$1!(1), 1(1,8) \quad 303$
60 YO 3300
304
3100 ML (W84MOO 305
$\begin{array}{ll}3100 \text { MLEMS } 4 \text { MOO } & 305 \\ M 2 E M S+M C 3+M O O & 306\end{array}$
M3EMR 307
IF(M8-5)3110.3110.3105 30m
3105 MREMZ
3110 CONPINUE
$\begin{array}{ll}3110 \text { CONPINUE } & 310\end{array}$
IF(MES.NE,1)60 TO 260 3il

312

323
325

625 CONTINUE
353
334
$\begin{array}{ll}\text { WRITE(3.220) } & 335\end{array}$
WRIFE(3,2i4) (IMAS8(I).IEI.M2) 336
IF(MZ.EO.7) WRITE(3.227) IMA88(9) $\quad 337$
C THIS GPAPEMENT WRIPES PMP GRATNB PFR NORMAL DRY CU日TC FOOT PER STAGE $3 B O$
THIS APAPEMENT WRIPES PME GRAINS PFR NORMAG DRY CUBIC FOOT PER STAGE 339
IF(M2-7) $512.512 .513 \quad 341$
512 WRITE(3,242) (GERNS(I).IEI,M2),GGRNG(G) IU2
00 PO 514 4, 343
513 WRITE(3.204) (EGRNS(I).IE1.9) 340
E
C
e
514 WRIFE(3.215) (PRCU(It1),I日1,M3)
C
C
C
C
C
329
00
01
303
M3EMR
IP(M8-5) $3110,3110,3105$
309
THIG
MASS LOADING/8TAGE, CUMULATIVE PERCENF MASS LOADING Q BTAGE 314
317
318
318
319
320
400 WRITE(3.233)EYC3.(DPC(I).IEI.MI)
320
342
343
PHIS 8TATEMENT WRITES PHE CUMULATIVE PEREENT OF MASS C OSO. 346
345
346
PHIS STATEMENT WRIPES PHE CUMULATIVE MASE IN MILLIBRAMB CEM ACTUAL 350347340
EUBIC METER SMALLER THAN D50. 351ELBC METER OMALLER YHAN DSO.
WRITE(3,210)352
353WRIPE(3.221) CUMG(1)
350WRIPE(3.223) (EUMG(I*1),IEI,MI)
WRIPE(3.223) (EUMG(I+1),IE\&,MI) 355
THIE BTATHENY WRITES THE CUMULAYIVE MASS IN MILLIGRAMS PER DRY 356
ORY CUBIC METER. $\quad 358$
357
BnतPHIS ATATEMENT WRITES THE CUMULATIVE PERCENT OF MASS $\cos 0$.34526$\stackrel{C}{C}$625 CONTINUE
WRITE(3.2930

413		480
$\begin{aligned} & \mathbf{C} \\ & \mathbf{C} \end{aligned}$		482
c		484
440	WRITE（3，201）（PRCU（I＋3）．I⿴囗十，M3）	485
${ }^{C}$		a86
C	THIS STATEMENT WRITES THE CUMULATIVE MAS8 IN MILLIGRAMS PER ACTIAL	489
C	CUBIC MEPE SMALLER THAN DSO．	488
C		489
	WRITE（3．210）	490
	WRIPE（3，226）（CUMC（1）．IE1，M1）	491
C		492
c		493
c	THIS Statment writes fhe cumulative mass in milligrams per dry	494
c	DRY CUBIC METER．	495
C		496
	WMIPE（3，217）	497
	WRITE（3，226）（CUMJ（I），IE1，M1）	498
$\begin{aligned} & \mathbf{C} \\ & \mathbf{C} \end{aligned}$		490 500
$\begin{aligned} & c \\ & c \end{aligned}$	CUBIC FOOT SMALLER THAN D5O．	500 501
c		502
	WRITE（3．219）	503
	WRIPE（J．226）（CUMH（I）．IE1．mi）	504
c		505
C	THIS STATEMANT WRITES THE CUMULATIVE MASS IN GRAINS PER DRY STANDARD	506
C	chbic font smaller than oso．	507
C		508
	WRIPE（3， 235 ）	509
	WRIPE（3．226）（CUMI（I）．IE1．M1）	510
	00103100	511
c		512
C	THIS BECTION WRITES BTAGE COLUMN HEADINGS，DSO＇S，MASS／STAGE，	513
C	MASS LOADING／8TAGE，CUMULATIVE PERCENT MASS LOADING K STAGE	514
c	OSO，AND CUMULATIVE MASS LOADING ATAGE D50 FOR UNIVEASITY	515
c	Of WASHINEYON（PILATS IMPACTOR OR POR MRI IMPACTOR．	516
e		517
C		518
c	THIS SATEMENP WAIPES THE OSOds Fon each stage．	519
c		520
3200	WhITE（3．6203）（DPC（1），IE1．7）	521
C		522
C	THIS STATMENT WRITES PHE MABS COLLECTED PER STAGE，THE MABS LGADING	523
C	PER STAGE，$A N D$ Phe PERCENT OF THE TOPAL MABS ON EACH STAGE．	524
C		525
		526
c		527
c	this stafement writes phe cumulative mass loanings in mgltigrams	528
c	PER AETUAL CUBIC METER．MILLIGRAMS PER DRY NORMAL CUBIC METER，	529
c	GRAINP PER ACTUAL CUBIC POOT，AND gRAINS PER dry normal cuilc foot	530
c	－FOR EACH BTAGE．	531
		532
	11（1）．1日1，7）	533
c		534
3300	CONTINUE	535
$\begin{aligned} & \mathbf{C} \\ & \mathbf{C} \end{aligned}$		530 537
C		536
	CALL DMONGD	539

c
WRITE NORMAL (EIJGINEERING STAMIARD) CONDITIONS. 540
C 541 541
C 502
WRITE(3.243) 543
C 544
C IF MAKING CALCULATIONS FOR ASSUMED AEROOYNAMIC DENSITY, THIS 545
SECTION WRITES WHETHER TGGL © OR MERCER DEFINITION USED. 546
IF(RHO-1.0)3305,3305.3320 547 548
3305 IF(NAERO)3310,3310.3315 549
3310 WRITE(3.244) 550
GO TO 3320 551
3315 WRITE(3.245) 552
3320 CONTINLE 553
C (FIND MAXIMUM AND MINIMUM CUMULATIVE MASS LOADINGS (CUMGI(IS) 554
555c
AND CUMGF(IS), RESPECTIVELY), MAYIMUM PARTICLE SIZE (DMAXX(IS)). 556
AND MINIMUN R5O (DPCF(TS)) FOR THIS RUN. NC z NO. OF CUM. 557
mass loadings to be checked. ND x No: of o5o's to be checked. 55 B
IF (MPACTY-2)3360, 3370,3360 559 560
3360 NCENCUM 561
NDENCUM 562
GO TO 3400 563
3370 NC $=M 1+M C 3$ 564
NDEMI 565
3000 NCII=NC 41 566
NDI $=$ ND +1 567
IF(MPACTY,FO:Z.AND.MOO.EO.O)NDI=NO $1+1$ 568
DO 3500 Jz1,NC 569
KaNCI-J 570
CUMGF(IS): EIIMG(K) 571
IF(CUMGF (IS) $3 \mathbf{3 5 0 0 , 3 5 0 0 , 3 5 5 0}$ 572
3500 CONTINUE 573
3550 CUMGI(IS)EGRNAM 574
DO $3570 \mathrm{~J}=\Omega$, ND 575
$K=N D 1-J$ 576
DPCF(IS)=DP(k) 577
IF (APCF(IS)) 3570,3570,3575 578
3570 CONTINUF 579
3575 DMAXX(IS)=DMAX 580
c 5月1
C FIND MAXIMLIM AND MINIMUM GFOMETRIC MEAN DIAMETERS (GDMAX(IS), 582
GDMIN(IS)), MASS SIZE DISTRIBUTION VALUES (DMMX(IS),DMMN(IS)), 583
AND NO. SIZE DISTRIBUTION VALUFS (ONMX(IS),DNMN(IS)) FOR THIS 5 -4
RUN. 585
DO 4000 JモT,NMASS 586 587
KINMASS + $1-J$ 588
GDMIN(IS) $=$ OE
GDMIN(IS) $=$ OE
GDMIN(IS) =GEOMN(K) 589
IF(GDMIN(IS):GT.0.0)GO TO 4030 590
aOOO CONTINUE 591
4030 GDMAX(IS)=GEOMD(1) 592
OC 4100 Jal, NMASS 593
DMMN(IS) 5 DMOL.D(J) 594
IF (OMMN(IS).GT.0.0)GO TO 4130 595
4100 CONTINUF 596
4130 LLEJ+1 597
DO also IzLl., NMASS 598
IF(DMDLD(I).LT. $\cap M M N(I S) . A N O, D M D L D(I) . G T .0 .0) O M M N(I S)=O M O L D(I)$ 599
4150 CONTINUE 600
4160 OMMX(18) EDMDLD(1) 601
กO EIT5 LLEZ, NMAS8 602
IF(DMNLD(LL).GY.DHMX(IS))DMMX(IS) BDMDLD(LL) 603
AI75 CONTINUE 604
DO 0200 JEI, NMASS 605
ONMN(I8)EDNDLD(J) 606
JF(ONMNCIS).GT.O.OTGO 104230 607
4200 COMTINUE 608
0250 LLEJ+1 609
DO 4250 IFLL.NMASS 610
IF(DNDLD(I).LT.DNAN(IS), AND.DNDLD(I):GT.O.O)DNMN(IBIEDNDLD(I) 611
4250 CONTINUE 612
4260 DNMX(I8) 4 DNDLD (1) 613
00 4275 LLE2pNMASS 614
IF(OMOLD(LL).ET.DNMX(IE)IDNMX(ISIEDNDLD(LL) 615
4275 CONTINUE 616
C VARD IS BET OF DMAX, CYES (IF BRINK AND CYCLONE UBEDI, DSORIS. 617 618
OSO(2).....DSO(LAST STAGE) IN THTS ORDER. 619
VARE IS BET OF TOTAL MASS LDADING, MASS LOADING \& CYCS IIF BRINK 620
AND EYCLONE USEDY, MASB LDADINE \& DSO(I).MASS LDADING < 621
DSO (LAST BTARES IN THIS ORDER. VV E NUMAER OF VARD AND VARE 622
values. 623
VARD(1)=DMAX624
VARC(1) CR GRAM 626
GO TO (6300,6350.6375,6375), MPACTY 627
C THE OSOOS OF STAGES 1 AND 2 OF THE ANDERSEN. U. OF W. 628
HE SO OH O O O 629
AND MRI IMPACTOR ARE VERY CLOSE THEREFORE, THE FITTING 630
PROGRAM IS SET TO IGNORE OSO MND 631
CUM. MASS LOADING OF SECOND STAEE. 632
6300 00 6320 822. 6 30633
Jt? 635
JF (I.E日, E) JEI 636
VARD(I) $=D P C(J)$ 637
VARC(I) aCUMG(J)
CONE? 638
6320 CONTINUE 639
VY: 8 640
00 TO 6400 641
6350 M01:
IF(MC3-1)6011.6010.6010 643642
6010 VVEP 644
YAD(2) ECYC3 645
GOTO 6017 646
6011 IF (M0001)6016,6012,6012 647
6012 VVEB 648
VARD(2) $\operatorname{BDPC}(1)$ 649
60 106017 650
-016 VVET 651
VARD(2) \quad DPP(2) 652
6017 IF(MSE5)6031.6031.6032 653
6031 VYEVVOI 654
6032 NFEAE (MC3+M00+MO1) 655
VARC(2) ECUMG(1) 656
DO 6035 183,VV 657
VARD(I) \quad DPC(NT) 658
VARE(I) meUMG(I-I) 659
$N T E N T+1$ 660
6035 CONTINTE 661
GO Tn 640n 662
6375 DO 6300 I』2.7 663
JII 664
1F(I.EQ.2) JE1 665
VARO(I)EDPC(J) 666
VARC(I) zCUMG(J) 667
6390 CONTINUE 068
VVE7 h69
C CHECK FOR O VALUES IN VARD AND VARC. SET NON O VALUES E XNOPFM
C
$C$$\quad$ CNE YO VALUES, RESPECTIVELY, FINAL VALUE OF NFYT IS NUMRER OF 671
672
PXNDPEN, YOI POINTS TO RE FITTED IN SPLINI. 673
C
6400 Ja 1 67567
IF (MF.EO.O)VVaVV-I 676
NFITEVV 677
NO 6050 IE I.vV 678
TF (VARD (I)*VARC(I) 16042.6042 .6044 - 79
6042 NFTTaNFIT=1 6R日
GO TO 6050 6R1
6044 XNDPEN(J) $\operatorname{BVARD(I)}$ $6 A 2$
YO(J) =VARC(I) 683
jEJ+1 6R4
6050 CONTINUE 685
C 6 R6
 6RT 688
050. OR9
NO 6070 IEI,NFIT 690
$J=N F I T+1=I$ 691 $69 ?$
VARO(I) =XNDPEN(J) 693
6070 VARC(I)EYO(J)
OU AOBO IEI, NFIT 695
XNDPEN(I) EVARD(I) 696
6080 Yn(I) =VARC(I) 607
C SROER XNDPEN (I.E. OS0'S AND MAX. DARTTCLE SIZES BY MAGNITUDE. 698
C. YO TRDFRING FOLLOWS XNOPEN ORDERING. ORDERING OF (XNDPEN,YO) 090 700
SHOULD REMAIN SAME EXCFPT FOR UNYV. OF WASHINGTON STAGES 1 $7 n 1$
ANO 2 (O5O(2) \rightarrow OSO(1)). 7 72703
NFIT! m NFIT-1 704
DO 6OR2 J=1,NFIT1 705
KENFIT-J 706
Oก GOA2 I $=1, k$ 707
LE $1+1$ 708
IF (XNDPFN(I) $=$ XNDPEN(IL) 6082.0082 .60 BI 709
6081 PEMPEXNDPEN(LL) 710
XNDPEN(LL) aXNDPEN(I) 711
XNOPEN(Y) = TEMP 712
TEMPEYO(L.L) 713
YO(LL) $\begin{aligned} \text { YOCI) }\end{aligned}$ 714
YOC! IETEMP 715
$6 \cap 82$ CONTINUE716
C
C 717
DSMA E SMALLFST OSO FOR THIS RUN.
DSMA E SMALLFST OSO FOR THIS RUN. c 719 719 719

	OSMAEXNDPEN(1)	720
$\begin{aligned} & c \\ & \mathbf{C} \\ & \mathbf{C} \\ & \mathbf{C} \end{aligned}$		721
	JV = NO, OF CUM. MASS LOADING VS. DSO VALUES \& 1 FOR MAX,	722
	PARTICLE DIAMETER VS'. TOTAL MAsS LDADING. (MAY AE > NFIT.)	723
		724
	JVab	725
	IFIMPACTY.EO:3.OR.MPACTY.EQ.E)JVET	726
$C$$C$$C$$e$$e$		727
	THE STATEMENT WRITES THE SEPERATE IMPACTOR RUNS ON OISK UNIT POR	724
	FURTHER MANIPULATION OF DATA IN THE sUBSEQUENT MAINLINE	729
	PROGRAMS SPLINI AND GRAPH.	130
		731
	WRITE(10018)IS,NFIT,GRNAM,10, RHO, TKS,POA,FG(5), DSMA, DMAX,	732
	IDPC, CUMG, DMDLD, GEOMD, DNDLD,CYE3, MC3,MOO,MS.	733
		734
$\begin{aligned} & C \\ & c \\ & c \end{aligned}$		735
	CHANGE PERCENT GAS COMPOSITION TO FRACTIONAL GAS COMPOSITION.	736
		737
	$002030 \quad 1=1.5$	738
	PG(I) $\mathrm{FFG}(\mathrm{I}) / 100.0$	739
c$C$$C$$C$$C$$c$	CONTINUE	740
		741
	Calculate a nen bet of data for rno fouth fo unit density	74?
	ALSO. IF RHO IS 1 AND THE RECORD NUMAER. IS. 15 ODD THEN THE	743
	PROGRAM WILL CALCULATE DSO VALUES ETC. FOR AERODYNAMIC DIAMETFRS	744
	GABED ON MERCER'S DEPINITION IN THE NEXP Pas8. (IS EVEN)	745
	1F((IS+1)/2-18/2)12.12.2020	746
2020	RHOIARHO	747
	IF (RHO.EO.1.)NAEROEI	740
	RHOE1.0	749
	60902010	750
$\begin{array}{ll}C & \\ c & \\ e & \\ & \\ & 93\end{array}$		751
	THIS SECTION PINDS THE MINIMUM (EXCLUDING OJ AND MAXIMUM D50'S	752
	(MAX. E MAX'. PARTICLE OIAMETER), CUMULATIVE MASS LOADING,	753
	GEOMEPRIC MEAN DIAMETERS, MASS SIZF DISTRIBUTION VALUES, AND	754
	NUMBER BIZE DISTRIBUTION VALUES FOR ALL RUNS. THESE ARE USED TI	755
	NAME GRAPMING LIMITS IF Plot gridos are data regulated.	756
		757
	D0 3000 NE1,2	758
	DPMIN(N) DDPCF(N) $^{\text {d }}$	759
		760
	CUMIN(N) CUMGF $^{\text {(N) }}$	761
	CUMAX ${ }^{\text {C }}$) =CUMGI(N)	762
	GEMIN(N) $=\operatorname{COMIN}\left(\begin{array}{l}\text { (}\end{array}\right.$	763
	GEMAX ${ }^{\text {(N) }}$-GOMAX(N)	764
	DMMIN(N)EDMMN(N)	765
	OMMAX(N) EDMMX ${ }^{\text {(N) }}$	7 Ab
	DNMIN(N) EDNMN(N)	767
	DNMAX(N) EDNMX(N)	7HA
	$L L E N+2$	769
	no 300n 1ELL. 18.2	770
		771
		772
	IF (CUMGF(I).LT, CUMIN(N))CUMIN(N) ECUMGP(I)	773
		170
		775
		776
	IF (DMMN(I):LT, DMMIN(N))DMMIN(N) ADMMN(I)	777
		778
	If (ONMN(I).LT. DNMIN(NJ)DNMIN(N)EONMN(I)	774

```
            IF(ONMX(I).GT.DNMAX(N))DNMAX(N)GDNMXCI) TEO
3000 CONTINUE
781
C
    WRITE GENERAL INPORMATION PERTAINING TO ALL RUNS INCLUDING CODE TES
    FOR IMPACTOR TYPE, GENERAL IDENTIFICATION LABEL, PHYSICAL TAS
    DENSITY. AND GRAPHING LIMITS A8 FOUND ABOVE. 785
    WRITE(IO^1OIINRUN,MPACTY,IDALL,RHOI,GEMAX,GEMIN,OMMAX,OMMIN,DNMAX,
    IONMIN, DPMAX,DPMIN,CUMAX,CUMIN
    OO STOP
    09 FORMAT(2(IR))
1008 FORMAT(1H1.//.3x,80A1)
1004 FORMAT(BOAT)
    300 FORMAT(F5.2.2F6.1,F4.2.2F5.1.6I1)
    102 FORMAT(5F6,4)
    106 FORMAT(9F6.2)
    310 FDRMAT(F9.0)
    111 FORMAT(9F6.2)
    112 PORMAT(F6,2,011,P6,2)
    201 FORMATPIHO, 2X, 'IMPACTOR FLONRATE # ',F5.3'' ACFMO,15X, 'IMPACTOR TE
        IMPERATURE = ,F6.1,'FE E,F5.1,' C0.IAX,OGAMPLING DURATINN=,.FG
```



```
        3TACK TEMPERATURE ',FG.1.'F %.FF.1.' C'.//3X.'ASSUMED PARTICLE
```



```
    202 FORMAT(IHO,2X, 'GAS COMPOSITION (PERCENY)D,1IX,'CO2 . F,FS.2,10X, 'C
```



```
        4)
```



```
        3OMETER8)',22X,FS.2,5x,7(F5,2,5X))
204 FORMAT(IHO,2X,OMG/ONCM/STAGE*,26X,9(1PEO.2,1X))
```



```
206 FORMAT(1HO,2X,OMG/DNCM/STAGEP, 36X,B(IPEQ,2.1X))
207 FORMAT(IMO,2X,GMG/DNCM/STAGE:,36X,G(1PEQ,&,IX),11IX,1PEQ,2)
2OR FORMATCIHO.2X, CUM. PERCENT OF MASS SMALLER THAN D50',10X,7CFO.?,4
    (X))
209 FORMAT(0+d,5(X,7(F5,2,5x))
21
210 FORMAT(IHO.2X,'CUM, (ME/ACM) SMALLER THAN D500) 023
2I! FORMAY(IMI.'REYNOLOS NUMBERS AND LINEAR VELOCITY AT EACH STAGE'{) B2"
```



```
213 PORMATIIMO,4X,FB.2,9X,FB.2,10X,F9.2) A26
214 PORMAP(0+i,40X,Q(FG,2,4X))
215 FORMAT(IHO.2X, 'CUM. PERCENT OF MASS SMALLER THAN DSOO.IX,OPF6.2,0X 828
    1))
829
296 FORMAT(IHO.2X,'CUM. (MG/ACM) SMALLER TMAN 050')}83
217 FORMAT(IHO,2X,'CUM. (MG/ONCM) SMALLER THAN D5OO) A31
21A FORMAT(O+i,51X,7(IPEQ,2,1X))
210 FORMAT(IMO.2X,'CUM, (GR/ACF) SMALLER TMAN D50') S33
220 FORMATIIMg.2X,OMABS (MILLIGRAMS)'!) O34
```



```
222 FORMAT(O&d,50x,8(F6,2,4x))
223 FORMAT(', +,.51x.7(1PEQ,2.{x)) 837
225 FORMAT(P+i,00X,7(F6.2,4X))
226 FORMAT(% +i,6!x,6(1PEQ,2.1X)) 839
```

840
230 FORMAT(**i,41X,7(1PE9, 2,2X)) 841
 802
 843
 8443F5,2,5x,6(75,2,5x))

845
846
897
B4A
235 FORMAT(IHO, $2 X$, ${ }^{\circ}$ CUM, (GR/INCF) 8MALLER THAN DS 0°)

 849
238 PORMAT (IMO.2X, ©MG/DNCM/8TAGEP, A6X,6(1PEQ.2.1X).1PE9.2) 852

 $2 x_{0}, 6^{\circ}, 1 / 3 x_{0}{ }^{\circ} 050$ (MICROMETERS) ${ }^{\circ}$)
 855

 (X))
242 PORMAT (1HO, 2X, OMG/OSCM/STAGE', 26X,7(1PEO.2,1X),11X,1PEQ. 2
243 FORMAT(////IX, 'NORMAL (ENGINEERING BYANDARD) CONOITIONB ARE $2 I$ DEG 1 C AND 76OMM MG.")
244 FORMATC/IX, "AERODYNAMIC DIAMETEAE AME CALCULATED HERE \cdot. : $A C C O R D I N G$ TO PHE TABK GROU ON LUNG OYNAMIC8.'
245 FORMATE/IX. "aERODYNAMIC DIAMETERS AmE CALCULATEO HERE \cdot 1'ACCOROING TO MERCER.'

 3METERA), $22 x$, A(F5,2,5x)
856
857
858
A59
8 GO
861
662
863
864
865
866
867

 2\{x, $8($ OPF $6,2,4 x))$

 3ER THAN D50', BX, B(1PE9.2, $1 \times 1)$
B6R
869
370
A 11
873
874
875
076
877
A78
 879

 3METERS)?,2ax,7(F5.2,5x))

 23x,7(OPF6.2,4X))

 3ALLER THAN DS0',10x.7(1PE9.2.1X)) END

880
8 A1
882
883
AB4
885
AB6
ABT
888
RR9
890

C MAIN PROGRAM PFNTRA 1
2
C* PENTRA COMPARES INLET IMPACTOR DATA TO OUTLET IMPACTOR DATA TO FIND 3
C* PEREENT EFFICIENCY. IN DRDER TO EXECUTE THIS PROGRAM THE JMPACTHR 0
C* PROGRAM MPPREG mUST HAVE REEN RUN IN ADDITION YO PROGRAMS 5
C* SPLINI AND STATIS. SPLINI USES DATA RECOROED 6
C* DURING THE IMPACTIR PROGRAM EXECUTION IN ORDER TO MAKE FITS TO DATA. 7
C* STATIS USES TheSE FITTED EOUATTONS TO FIND AVERAGE DM/DLOGD VALUES 8
C* AND STANDAPD DEVIATION AT SPECIFIED PARTICLE 9
C* Sizfs. and stores these values 10
C. IN THE APPROPRIATE IMPACTOR FILE. THFN PROGRAM PENTRA MAKES A PPARALLE 11
READING OF BOTH INLET AND OUTLET SFOUENTIAL FILES. CALCULATIONS 12
C* YIELD PRINT OUT AND PLOT OF THE CONTROL DEVICESS PERCENT FFFICIENCY 13
C* AT SPECIFIED PARTICLE SIZES. 14
C. USE THIS PROGRAM FOR 50% CONFIDENEE LIMITS 15
c* 16
c 17
DIMENSION FILNMI(2),FILNMZ(2) 18
DIMENSION IPROG(2),IDGEN(Bn),RBUF(8) 19
ESUIVALENCE (RAUF(1),RSLOT), (RBUF (2), DPLOT) 20
EQUIVALENCE (RRUF (3), AVEFF), (RBUF (a), CLUE), (RBUF (5), CLLE) 21
EQUIVALENCF (RRUF (6),AVPFN), (RBUF (7),CLUP), (RRUF (B), CLLP) 22
Dara IBLAK/" •1 23
nata filnmi/ejwjoof. 1 IRIN*/ 20
DaTA FILNHZ/OJWJOOC,"2HIN+/ 25
DATA DAST/******* 26
reat the general loentification larel 27
C29
READ(2.12)IDGEN 30
c
c Imin and imax are the code numbers which determine the range of the 32
NORMAL PRORARILITY SCALE TO RE PRINTED AS Y E AXIS FOR PLOT. 33
IMIN = 16 YIELDS MINIMUM 80 PERCENT. IMAX 25 YIELDS MAXIMUM 99.99 30
PERCFNT. FOR OTHER CODE VALUES AND RESULTING PLOT RANGE, SEE 35
SUBROUTINE YPRNR, YMINFR (E BOD FOR BO PERCENTI IS MJNIMUM 36
FRACTIONAL EFFICIENCY ON PLOT. 37
IMIN=16 3038
IMAX=25 0
YMINFRE.AOO
ICHRAN $=0-$ YMINSI6, YMINFRE. 800. ICHRAN NDT $=0$, READ IN THESE, 42
C 43
NSPCON $=0$ - - PLOT CONFIDENCE LIMITS IF POSSIALE. 44
NSPCON NOT $=0-0$ SUPPOESS. 45
READ(2.501)ICHRAN,NSPCON 46 47
IF (ICHRAN)IB,19.18
18 REAC(2.500)TMIN 40
READ(2.510)YMINFR 50
c
FILE 10 CONTAINS INLET INFORMATION. 51
c 52
FILF 17 CONTAINS OUPLET INFORMATION. C 53
19 CALL SEEK(16.FILNA1) 54
CALL SEEK(IT,FILNM2) 56
c
WHEN MDEX 1 SEARCH FILES FOR DATA WHERE RHO = PHYSICAL DENSITY. 57
WHEN MREX 2 SEARCH FILES FOR DATA WHERE RHO 21.0 GM/CE. 59

DO 200 MnEXE1, $\quad 60$		
c		62
C	IF GNE FILE DOES NTT HAVE COMPLETE RECORDS FOR GIVEN DENSITY	63
C	(INDICATED EY LASI OR LAS2 $\mathrm{I}^{\text {O }}$ O), AND THE OTHER FILE DOES.	64
C	THIS LATTER FILE MUST BE READ IN ORDER TO ALWAYS READ -PARALLEL*	65
C	PECORDS FROM EACH FILE. I.E. THE 2 RECORDS READ, 1 FROM EACH FILE,	66
c	MUST REPRESENT DATA AT THE SAME DIAMETER, THIS ORDER IS IMPERATIVE	67
c	SINEE THE FILES ARE SESUENTIAL (AS OPPOSED TO RANDOM FILES).	68
c	LASI AND LASI ARE THE NUMBER OF PECORDS TO be rean.	69
C		70
	READ(16)RHO,LASI	71
	PEAD(17)RHO.LAS2	72
c		73
C	THF -COMPLETEP FILE IS PEAD,ALTHOUGH ARGUMENTS ARE ONLY DUMMY	74
c	ARGUMENTS AND CAN NOT RE USED TO FIND PERCENT EFFICIENCY.	75
C		76
	IFP(AS1*LAS2)126.126.131	71
126	IF(LASI-LAS2)127,200,129	78
127	LEND $=1 / 4 S 2+1$	70
	DO 12A $1=1$ LEND	no
128		81
	G0 10200	82
C		83
129	LENHEIASI+1	84
130	DO 130 IEI.LEND	85
		86
	G0 T0 200	B7
${ }^{\text {c }}$		88
C	NDTRI DETERHINES THE EXTREME Y - AXIS VALUES, YMAX AND YMIN, in	89
c	terms of the normal probarility scale.	90
C		91
131	CALL NDTRI(0.9999, YMAX, D, IE)	92
	CALL NDTRI(YMINFR, YMIN, D, IE)	93
c		94
c	these are the extreme x - axis values, xmax and xmin, in terms of	95
C	THE LOG10 SCALE.	96
C	MHAXALOGIO (100.0)	97
	XMAX $=A L O G 10(100.0)$	98
	XMINEALOGIO(.1)	99
C		100
C	thfse are the lengths of the x and y axes in inches.	101
C		102
	XINT. $\mathrm{H}=4.5$	103
	YINCH=6.5	104
c		105
c	XS AND YS ARE THE SCALE FACTORS (INCHESIUSER'S UNIT).	106
c		107
	XSEXINCH/ $\mathrm{XMAXXOXMIN}^{\text {S }}$	108
	YS = YINCH/(YMAX $-Y M I N$)	109
c		110
c	COOROINATES XMIN and yo define the location of the pen in terms of	111
c	THF USER'S UNITS WHEN THTS PROGRAM REGINS. (XMIN, YMIN) ARE THE	112
c	CORROINATES OF THE USER'S ORIGIN.	113
c	SUBROUTINE SCALF STORES ITS \triangle ghuments for use by ofher plotiting	114
c	SUAROIITINES.	115
C	YOEYMIN=2, MS	116 117
	CALL SCALF (XS,YS, XMIN,YO)	118
c		119

e THIS sECTION DRAWS THE Y AXIS ON THE LEFT AND LABELS IT AS 120
e -PERCENT EFFICIENCY*. 121
CALL YPROB(XS,YS,XMIN, O,IMIN,IMAX) 123122
XCS… 15 124
YCSE. 15
$\mathrm{XEXMIN}=1.0 / \mathrm{XS}$ 126
YZ(YMAX-YMIN)/2.0) +YMINE(CQ.OHYCSI/YS) 127
PIE3.1415 128
CALL FCHAR(X,Y,XCS, YCS,PI/2,) 129
WRITE(7.3) 130
THIS BECTION DRAWS THE X - AXIS AND LABELS IY PPARTICLE 131
c 132
DIAMETER (MICROMETERS)'. 133
IXRANEXMAX-XMIN 135134
CALL XSLBL (XS,YS,XHIN,YMIN,IXRAN,XMIN) 136
CALL XLOG(XS,YS,XMAX,YMIN, OI,IXRAN)
$X=((X M A X=X M\{N) / 2,0)+X M I N=((16.0 * X C S) / X S)$ 138
YEYMINE(.7/YS) 139
CALL FCHAR(X,Y,XCS,YCS, O.) 140
WRITE(7.2) 101142
THIS SECTION DRAMS THE Y - AXIS ON THE RIGHT AND LABELS IT AS 143
-PEREENT PENETRATION*. 104
CALL YPROS(XS, VS,XMAX,I,IMIN,IMAX) 105 146$X=X \operatorname{MAX}+1.0 / X S$
$Y B((Y M A X-Y M] N) / 2,0)+Y M I N=((0.0 * Y(S) / Y S)$ 147 108
CALL FCHAR(X,Y,XCS,YCS,PI/Z, 109
WRITE(T.1)
151
THIS SECTICN WRITES 'PENETRAYIONGEFFICIENCY' ABOVE GRAPM. 152
xCSx. 12 150153
YCSa. 12
$X=((X M \triangle X-X M I N) / 2)+.X H I N=((11 . * X C S) / X 8)$ 156
YEYMAXt. Y5/YS 157
CALL FCHAR (X,Y,XCS,YCS,0,) 158
WRITE(T.4) 159
THIS SECTION WRITES THE GENERAL IDENTIFICATION LABEL IDEEN AND DENSITY 160
c
RHO A ROVE PLOT $A N D$ AT TOP OF PAGE ON LINE PRINTER. 162
$X=X M I N$ 163
164YIVMAXt.5/YS
165
XCS=. 056
YCSE. 100 166
167
0030 181.79 168$\mathrm{JaBO}=1$
169
IFfIDEEN(J).NE.IBLAK)GO TO 40 170
30 CONTINUE 171
$\mathrm{J}=1$ 172
40 CALL FCHAR(X,Y,XCS,YCS,O.) 173
WRITE(7,5)(TDGEN(I),I土1,j) 174
$x=x \ln$ 175
YEYMAXt. 25 YS 176
CALL FCHAR (X,Y,XCS,YCS,O.) 177
WRITE(7,6)RHC 178
WRITE(3,7)(IDGEN(I),IE\{,j) 179
WRITE(3.17)RHO 180
C 181
THIS STATEMENT WRITES COLUMN HEADINGS - 'INTERVAL". DDIAMETER". 182
AVERAGE EFFIC
'LOWER CONFIDENCE LIMIT OF EFFIEIENCY. 183 C
C
C 16
WRITE 3.8)
186
ISIG=0 ISIG=0 187
KSIG:0 186
THIS LODP READS INLET AND OUTLET FILES CALCULATES,PLOTS, AND GIVES 189
190PRINT OUT FOR PERCENT EPFICIENCY.
19
OO 100 NSLOTEI 1.100
RSLOTENSLOT 193
RSLOTENSLOT 199
AVEFF:0.0 195
CLUEEO.0 196
CLLEa0.0 197
AVPEN:I. 0 198
$C L U P=1.0$ 199
CLLP=1.0 200
NCONE 0 201
$\stackrel{c}{c}$$c$
C
C
c
c
RECORNS ARE READ FROM IFILE UNTIL END OF RECORDS FOR THIS DENSITY 203
IS SIGNALED BY 5 ASIERISK8 (DABT). YHEN ISIG SET a 1 UNTIL KFILE 204
READINGS ARE COMPLETED. THIS IS DONE LIKEMIBE FOR KFILE USING 205
KSIG $=1$ IF ifile Should have more recoros than kfile. 206
207IF(ISIG.ER.I)GO IO 4S
TF(ISIG.EA.1)GO FO 208
READ(16)DPLOT,AVIN,SIGIN,NIN 209
IF(DPLOT.EQ.DAST)ISIGEI 210
45 IF (KSIG.E日. I)GO TO 47 211
READ(17)OPLOT, AVOUT, SIGOUT, NOUT 212
IF (DPLOT.EO.DAST)KSIGEI 213
IF END OF RECORDS FOR THIS DENSITY HAS BEEN REACHED IN BOTH FILES. 214
c
ISIG 1 AND KSIG $=1$.
ISIG 1 AND KSIG $=1$. 215 217

IF END OF RECORDS POR THIS DENBITY HAS REEN REACHED IN ONLY ONE

IF END OF RECORDS POR THIS DENBITY HAS REEN REACHED IN ONLY ONE
OF THE FILES, LOOP CONTINUES TO RETURN AND READ THE LONGER PILE.
OF THE FILES, LOOP CONTINUES TO RETURN AND READ THE LONGER PILE. 218 218
c
c
c
c 219 219
47 IF(ISIG+KSIG-1)210,100,150 221
210 IF(AVIN*NIN*NOUT)215,215,220 222
215 NCON:1 223
GO TO 50 224
220 AVPENaAVOUT/AVIN 225
AVEFF:I.O-AVPEN 226
IF(NIN.EQ.1.OR.NOUT.EO.1) GO TO 221 227
ROUTENOUT 228
RINaNIN 229
TOUT=(0.674+(0.32*((ROUT-1.)**(-1.072))))/80RT(ROUT) 230
T1N=(0.674+(0.32*((RIN-1.)**(-1.072))))/SORT(RIN) 231
SIGIO=AVPEN*AVPEN*((TOUT*SIGOUT/AVOUT)**Z/ROUT\&(TIN*SIGIN/AVIN)**2 232
/RIN) 233
IF(SIGIO)221.221.225 234
221 NCONEI 235
GO YO 50 236
225 SIGIOs8QRT(SIGIO) 237
CLUPaAVPEN+SIGIO 238
CLLPE AVPEN-SIGIO 239

48	CLUE』1,0-CLLP CLLE=1.0-CLUP	240 241
c		242
c	THIS SECTION PLOTS TME AVERAGE PERCENT EFFICIENCY WITH UPDER AND	243
C	LOWER CONFIDENCE LIMITS VS. Particle diameter.	244
c		245
50	DPLOTEALOGIO(DPLOT)	206
C		247
c	FUNCTIONS XVAL AND YVAL CHECK FOR VALUES OUTSIDE PLOTTING GRID.	248
c	- VALUE 25 INCHES GUTSIDE OF THE GRID IS GIVEN TO ANY SUCH POINTS.	249
c	otherwise the value is not changed.	250
c		251
	XNEXVAL (DPLOT, XMAX, XMIN, XS)	252
C		253
c	IF LOWER CONFIDENCE LIMIT CLLE IS TO EE DRAWN, FINO ITS VALUE	254
C	IN TERMS OF NORMAL PROBABILITY SCALE.	255
C		256
		257
L		250
C		259
$\begin{aligned} & \mathbf{C} \\ & \mathbf{C} \end{aligned}$	IF CLLE < .0001. SET YV ARBITRARY NUMBER < YMIN.	260 261
	IFICLLE $0.00013305,310,310$	262
305	VVE=4.0	263
	6019325	264
C		265
C	IF CLLE IS > .9999, SET YV EARITRARY NUMBER * YMAX.	266
C		267
310	IF (.9999-CLLE)315,320,320	268
315	$Y V=4.0$	269
	GO TO 325	270
C		271
C	SUBROUTINE NOTRI(P, S, $\mathrm{D}_{\text {, IE }}$ I FINDS THE VALUE OF P IN TERMS OF	272
C	NORMAL PROBABILITY SCALE FOR . 0001 \& P < 9999. THIS RETURNED	273
c	Value is S .	274
C		275
320	CALL NOTRI(CLLE,YV, D, IEJ	276
${ }^{C}$		277
C	CHECK TO SEE TMAT LOWER CONFIDENCE LIMIT IS WITHIN PLOTTING	278
e	LIMITS. DRAW HORIZONTAL LOWER CONFIDENCE LIMIT TICK.	279
C		280
325	YNEYVAL (YV, YMAX,YHIN,YS)	281
	XN=XN-.03/XS	282
	CALL FPLOT $-2, X N, Y N$)	283
	XN=XN+,06/XS	284
	CALL FPLOT (O, XN, YN)	285
	XN=XN0.03/XS	286
	CALL FPLOT (O,XN,YN)	287
c		288
C		289
c	FOR CLLE ABOVE:	290
C		291
327	IF(AVEFF., 0001)330,335,335	292
330	$Y V=-4.0$	293
	$60 \quad 10350$	294
335	IF (.9999-AVEFF) 340.345.345	295
340	YVE4.0	296
	GO TO 350	297
345	CALL NDTRI(AVEFF,YV,D,IE)	298
C		299

C CHECK TO SEF THAT AVERAGE IS WITHIN PLOTTING LIMITB, DRAW 300
C VERTICAL BAR FROM LOWER CONFIDENCE LIMIT TO AVERAGE. 301
350 YNEYVAL(YV,YMAX,YMIN,YS) 302 303
CALL FPLOT(O,XN,YN) 304
IF (NCON, NE, O.OR.NSPCON.NE, O) CALL FPLOT(2,XN,YN) 305
306C SUBROUTINE SYMBOL(I,S) DRAWS A SYMBOL DFTERMINED BY I (HERE I E.
PHEREFORE SYMBRLIS 307
THEREFORE DRAWS SOLID CIRCLES INSIDE A SQUARE OF DIMENSION 8. 308
CALL SYMBOL(0,.04) 309 310
IF UPPER CONFIDENCE LIMIY CLUE IS TO BE DRAWN, FIND IT8 VALUE 312311
IN TERMS OF NORMAL PROBABILITY SCALE:
314
IF(NCON,EO,O.AND.NSPCON,EO.O)GOTO 354 315
CALL FPLOT(I.XN,YN) 353 CALL FPLOT(I, XN, YN) 316
GOTO 55 317
354 IF (CLUE . 0001) $355,360,360$ 318
355 YVE=4.0 319
GO TO 375 320
360 IF(.9999~CLHE) 365,370,370 321
365 YVE4.0 322
GO 10375 323
370 CALL NDTRI(CLUE,YV,D,IE) 324
C 325
CHECK PO SEE THAT UPPER CONFIDENCE LIMIT IS WITHIN PLOTYING 326
LIMITS, DRAW VERTICAL BAR FROM AVERAGE TO UPPER CONFIDENCE LIMIT 327
AND DRAW HORIZONTAL TICK. 328
375 VNEYVAL (YV, YMAX, YMIN, YS) 330329
CALL FPLOT(O,XN,YN) 331
$X N=X N=.03 / X S$ 332
CALL FPLOY (O,XN,YN) 333
XNEXN+, $06 / X S$ 334
CALL FPLOT($=1, X N, Y N)$ 335
C THIS LOOP CHANGES FRACYIONAL EPFIEIENCY TO DERCENT EFFICIENEY FOR 336 337
PRINTING。 338
55 DO $60 \quad I=3.5$ 340339
RBUF(I)=RBUF(I).100.
IF(RRUF(I).GE. 100.0)RBUF(I)=100.0 342341
IF (RBUF (I).LE. O. O)RBUF (I) $=0.0$ 343
60 CONTINUE
CHANGE FROM LOGIO DIAMETER TO DIAMETER FOR PRINTINO. 346345
DPLOT=10.0**DPLOT 347
WRITE DIAMETER INDEX NUMBER, DIAMEPER, EFFICIENCV, UPPER 349
350
350
LIMIT OF EFFICIENCY, AND LOWER LIMIF OF EFFICIENEY. 351
 353352
100 CONTINUE
355C
RETURN PLOTTER PEN TO BASE LINE 3 INEHES BEYOND GRID. PHEN READV 356
FOR NEXT PLOT. 357358
150 XNEXMAX $4.5 / 5 \times 5$ 359
YNEYO 360
CALL FPLOT (O.XN,YN) 361
200 CONTINUF 362
1 FOAMAT(IX. ©PERCENT PENETRATIDN') 363
FORMAT(IX,"PARTICLE DIAMETER (MICQDMETERSJ") 364
FORMATPIX. PPERCENY EFPICIENCY* 365
FORMAT \& IX. OPENETRATIONGEFFICIENCY* 366
FORMAT(ix, DOAI) 367
 368
Fonmar (iHi:IX,Boals
369
369
17 FORMAPIIX. ORHOE "FA.2." GMJEC' 370
 371
 372
 373
3AX. 'EFFICIENCY'O 374
 375
12 FORMAT(BOA1) 376
500 FORMAT(2I2) 377
50: FORMAT(211) 378
510 FORMAT(F5.4) 379
STOP 380
END 381
C maIn program penlog 1
 3
C．PERCENT EFFICIENCY．IN ORDER TO EXECUTE THIS PROGRAM THE IMPACTIR 4
C＊PROGRAM mPPROE mUST HAVE GEEN RUN IN ADOITION TO PROGRAMS 5
C．SPLINI AND STATIS．SPLINI USES DATA RECORDED 6
C．DURING THE IMPACTOR PROGRAM EXECUYION IN ORDER TO MAKE FITS TO DATA． 7
siatis uses fmese fifted egliations to find average om iologd values －

AND STANDARD DEVIATION AT SPECIFIED PARTICLE

AND STANDARD DEVIATION AT SPECIFIED PARTICLE － －
C＊
C＊SIIES，AND STORES THESE VALUES
C＊
C＊SIIES，AND STORES THESE VALUES 10 10
11
C＊IN THE APPROPRIATE IMPACTOR FILE．THEN PROGRAM PENLOG MAKES A PPARALLE
12
12
READING OF BOTH INLET AND OUTLET SEOUENTIAL FILES．CALCULATIONS
READING OF BOTH INLET AND OUTLET SEOUENTIAL FILES．CALCULATIONS
13
13
YIELD PRINT OUT AND PLOT OP THE CONTROL DEVICE＇S PERCENT EFFICIENCY
YIELD PRINT OUT AND PLOT OP THE CONTROL DEVICE＇S PERCENT EFFICIENCY
14
14
C＊AT SPECIFIED PARTICLE BIEE8．
C＊AT SPECIFIED PARTICLE BIEE8． IIBE THIS PROGRAM FOR 50 ：CONFIDENCE LIMITS 15
 16
DIMENBION FILNMI（2），FILNMZ（2） 17
OIMENSION IPROB（2）．IDGEN（BO），RBUF（B） 18 18 19
DIMENSION TV（IO） 20
EQUIVALENCE（RRUF（1），RSLOT），（RBUF（2），DPLOT）
EQUIVALENCE（RBUF（3），AVEFF），（RBUF（4），CLUE），（RBUF（5），CLLE） 2221
EQUIVALENCE（RBUF（6），AVPEN），（RBUF（7），CLUP），（RBUF（B），CLLP）
DATA TY／99．99．99．98，99．95，99．9，99．0．99．5．99．0．98．0．95．0．90．01 23 23
DATA IBfAKI：＂／ 25
DATA FILNMI／OJWJ00＇， 1 IBN＊／ 26
 27
DATA DAST／C＊＊＊＊＊＊ 28
read fhe general ioentification label 29
のカロ 30
READ（2．12）IDGEN 32NSPCON ：O PLOT CONFIDENCE LIMITS IF POSBIBLE．33
34NSPCON NOT $\quad 0$－GUPPRESS：
35
REAO（2．501）NSPCON 36
GEAO（2，501）NEPCON 39
FILE 16 CONTAINS INLEY INFORMATION． 3938
FILE IT CONTAINS OUTLET INPORMATION． 40
CALL SEEK（16，FILNM1）
42CALL SEEK（17．FILNM2）
44
WHEN MDEX ： 1 SEARCH FILES POR OATA WHERE RHO E PHYSICAL DENSITY． 45
WHEN MDEX E 2 SEARCH FILES FOR DATA WHERE RHO LID GM／CC． 46
00200 MDEXE1．247
49
IF ONE FILE DOES NOT HAVE COMPLETE RECORDS FOR GIVEN DENSITY 50
（INOICATED BY LASI OR LASZ O O ，AND THE OTHER FILE DOES． 51
THI 8 LATTER FILE MUST BE READ IN OROER TO ALWAYS READ PPARALLEL＇ 52
RECORDS FROM EACHFILE I．E．THE 2 RECORDS READ，I FROM EACHFILE， 53
MUAT REPRESENT DATA AT THE GAME DIAMETER．THIS ORDER IS IMPERATIVE 54
SINCE THE FILES ARE SEOUENTIAL（AS OPPOSED TO RANDOM FILESJ． 55
Las！and lasz are the number of records to be read． 50
READ（16）RHO．LASI 57 58
READ（17）RHO．LAS2
$\stackrel{C}{0}$ 60
THE COMPLETE＇FILE IS READ，ALTHOUGH ARGUMENTS ARE ONLY DUMMY C APGUMENTS AND CAN NOT BE UEED TO FIND PERCENT EFFICIENCY． 61 62
IF（LAS1＊LAS2）126．126．131 6463
126 IF（LAS1－LA82）127，200，129 65
127 LENDMLAB2＋1 66
DO 128 IE1．LEND 67
128 READ（17）XXX，XXX，XXX，IXX 68129 LENBELA $1+1$
601020069DO 130 IEI．LEND
130 READ（16）XXX，YXX，XXX，IXX 7372
6010200 74
C THESE ARE THE EXTREME Y－AXIS VALUES，YMAX AND YMIN，IN TERMS TF 75 76
C THE LOGIO SCALE： 77
131 YMAXAALOG10（10．0） 7078
YMINEALOGIO（．01） 8
YMINaはOG10アコ1 c
THESE ARE TME EXTREME X © AXIS VALUES，XMAX AND XMIN，IN TEAMS BF 81
THE LOG10 SCALE． A 3
XMAXEALOEIO（100．0）
85KMINEALOG10（：1）
8
THESE ARE THE LENGTHS OF TME X AND Y AXES IN INCNES． AB
YINCHAM． 5 89
YINCN＝6．5 1
92
XS AND Y8 ARE THE SCALE FACTORS（INCHES／USER＇S UNIT）．
XS AND YB ARE THE BEALE FACTORS PINCHESHSEROS UNTT． 93
YSEXINCH／（XMAXOXMIN）0.
YSEYINCH／（YMAX＝YMIN） 96
97COORDINATES XMIN AND YO DEFINE THE LOCATION OF PHE PEN IN TERMS OF
THE USER＇S UNITS WHEN THIS PROGRAM BEGINS．（XMIN，YMIN）ARE THE 99－8
COORDINATES OF THE USER＇S ORIEIN．
SUBROUTINE SCALF STORES ITS $\triangle R G U M E N T S$ FOR USE AY OTHER PLATTING； 100 100
SUBRCUTINES． 101
103YOEYMINER．AYS104
CALL SCALF（XS，YB，XMIN，YO） 105
THIS SECTION ORAWB THE Y－AXIS ON THE RIGHT AND LABELS IT AS 107106
－PERCENT PENETRATION＊．
109108
CALL YLOG（XB，YS，XMIN，YMAX，－1． 39 110
CALL LCLBL（XA，YS，XMIN，YMIN，3，－2，．1） 111
xCSE． 15 112
YCSs． 15
XEXMIN－1．01XS 114113
 115
PIE3．1415 116
CALL FCHAR（X，Y，XCB，YC8，PI／2．） 117
WRITE（7．1） 110
C
5 THIS SECTIDN DRAWS THE X - AXI8 AND LABELS IT PPARTICLE 120
DIAMETER (MICROMETERS)'.
DIAMETER (MICROMETERS)'. 121
IXRANaXMAXOXMIN 122
CALL XSLBL (XB,YB, XMIN,YMIN,IXRAN,XMIN)123
CALL XLOG(XS,YS,XMAX,YMIN, -I,IXRAN) 124 124
$X=((X M A X=X M I N) / 2.0)+X M Y N=(16.0 \star X C S) / X 8)$ 126125YEYMINe(. $9 / Y 8$)
CALL FCHAR (X, Y,XCB,YC8,0.) 127 128WRITE(7,2)
THIS 8ECTION DRAWS THE Y - AXIS ON THE LEFT AND LAAELS IT AS
6 131129
-PERCENT EFFICIENCY'. 132
133CALL YLOG (XE,Y8,XMAX,YMIN, 1,3)
134
XCSE0.15 135
YC8E0. 15 136
Je0 137
DO 27 I:1.10.3 138
J=J +1 139
XEXMAX+YC8/XS 140
YEYMIN+J=1-. $075 / Y \mathrm{~S}$ 181
CALL FCHAR(X,Y,YCS,YCS,O.) 142
IF(1-3)25,25,20 103
20 WRITE(7.21)TV(I) 144
21 FORMAT(1X,F4.1) 1.45
60 TO 27 146
25 WRITE(7,26)TV(I) 147
26 FORMAT(IX.F5.8) 148
27 CONTINUE 149
XEYMAX+1.0/X8 150
YE((YMAX-YMIN)/2,0) \&YMIN-((9:0世YCS)/Y8) 151
PALL FCHAR (X,Y,XCS,YCS,PI/R.) 152
WRITE(7,3) 153
6
e THIS SECTION WRITES PPENETRATIONGEFFICIENCYO ABOVE GRAPH. 154
THIS SECTION WQITES OPENETRATIONREFICIENCYO ABOVE ORAPH. 155 155
xcs=. 12 5156
YCSE. 12
XE((XHAX=XMIN)/2.) ϕ XMIN=((11.*XCS)/XS) 159
YEYMAXt. $75 / Y S$ 180
CALL FCHAR(X,Y,XCS,YCB,O.) 161
WRITE(T, a) 102
THIS BECTION WRITES THE GENERAL IDENTIFICATION LABEL IDGEN AND RENSITY 163
RHO \triangle RDVE PLOT AND AT TOP OF PAGE ON LINE PRINTER. 165
166
XEXMIN 167
YEYMAXP. 5/YS 168
XCSE.056 169
yCSE. 100 170
0030181.90 171
Jaboll 172
IF(IOGEN(S).NE.IBLAK)GO YO 40 173
30 CONTINUE 174
JEI 175
aO CALL FCHAR (X,Y,XCS,YCE, 0°) 176
WRIYE(7,5)(IDGEN(I),IE1,J) 177
$X \in X M$ IN 178
YayMAXt.25/Y8 179
CALL FCHAR(X,Y,XCS,YCS,0.) 180
WRITE (7.6)RHO 181
WRITE(3, Y)(IDEEN(I),IEI,J) 182
WRITE(3.17)RHO 183
THIS STATEMENT WRITES COLUMN HEADINGS - ©INTERVAL', 'DIAMETER•. 185184

- AVERAGE EFFICIENCY. "UPDER CONFIDENCE IIMIT OF EFFICIENCY AND
"LOWER CONFIDENEE LIMIT OF EFFICIENCYP: 187WRITE(3.8)10.
ISIGEO 190189KSIGE0
192
PHIS LOOP READS INLEP ANO OUTLET FILES. CALCULATES, PLOTS, ANO EIVES 193
PRINY OUT FAR PERCENT EFFICIENCY. 194
DO 100 NELOTEI. 100195
196QELOTENSLOT
197$\triangle V E F F=0.0$
CLUF $=0.0$ 198CLLEEO.O109
AVPENEI.O 201200
CLUP=1.0 202
CLLPEI.0 203
NTONEO
205RECNRD ARE READ FROM IFTLE UNTIL END OF RECORDS FOR THIS DFNBITY
206
IS SIGNALEO BY 5 ABTERIBRS (DASY). TNEN ISIG SET a I UNTIL KFILE 207EADINES ARE COMPLETED. THIS IS DONE LIKEWISE FOQ KPILE UEINSK\&IG $\quad 1$ IF IFILE BHOULD HAVE MORE RECORDS THAN KFILE.20 A
210
IP(ISIG. 0.1$) 60$ TO 45 211
IPISIC.EO. 1260 TO MS
IPISIC.EO. 1260 TO MS
READPIGIDPLOT,AVIN,SIGIN,NIN 212
IF (DPLOT.EO.DASTIISIGEI 213
45 JF(KSIG.EO.iJGO TO 47 214
READ(17)OPLOT, AVOUT, SIGOUT, NOUT 215
IF (OPLOT.EO.DASY)KSIGE! 216
IF ENN OF RECORDS POR THIS DENSITY HAS BEEN REACHED IN BOTH FILES, 217 219
ISIG : 1 AND KBIE $: 1$.
220
IF END OF RECOROS POR THIE DENSITY HAS BEEN REACHED IN ONLY ONE 221
OF THE FILES, LOOP CONTINUES TO RETURN AND READ THE LONGEP FILF. 222223
17 IFPIBIO.K810-11210.100.150 224
21n IF(AVIN*NIN*NOUT)215.215.220 225
215 NCONE1 226
GO 1050 227
22n avpenaavout/avin 228
GVEFFE1.0-AVPEN 220
IF (NIN,EO.I.OR.NOUT.EO.1) 60 TO 221 230
ROUTENOUT 231
RINENIN 232
TOUTE(0.674*(0.32*((ROUT-1.)**(-1.072)1))/8ORT(ROUT) 233234
236
237
1/RIN 238
if(sigio)221.221.225 239
221 NCONE 2 240
GO 1050 241
225 SIGIOESORT(SIGIO) 242
CLUPEAVPEN+SIGIO 243
CLGPE AVPEN-8IGIO 244
as CLUEEI.0-CLLP 245
CLLE=1.0-CLUP 206
THIS \&ECTION PLOTS THE AVERAGE PEREENT EPFICIENCY WITM UPPER ANN 247 248
LOWER CONPIDENCE LIMITS VS. PARTICLE DIAMETER. 24950 OPLATEALOE10(DPLOT)250
251C
FUNCTIONS XVAL AND YVAL CHECK FOR VALUES OUTEIDE PLOTTING GRID. 253252
A VALUE 25 INEMES DUTSIDE OF THE GRIO IS GIVEN TO ANY SUCH POINYS.
OTMERWISE THE VALUE IS NOT CHANGED. 255
KNEXVAL(DPLOT, XMAX, XMIN, XS)256
25
25
IF LOWER CONFIDENCE LIMIT CLLE IS TO BE DRAWN, FIND ITS VALUE 258
250
IN TEAMS OF NORMAL PROBABILITY BCALE. 260
IF (NCON, NE O.OR. N8PCON. NE, OY GO TO 327 261
262
IFICLLP..00015305,310,310 263
26460 10 325
265
310 YVEALOG10(100.0.CLLP) 266267
CMECK TO SEE THAT LOWER CONFIDENCE LIMIT IS WITHIN PLOTTING 268
LIMITS. DRAW HORIZONTAL LOWER CONFIDENEE LIMIT TICK. 269270
325 YNEYVAL(YV,YMAX,YMIN,YS) 271
XNEXN=.03/XS 272
CALL FPLOT($-2, X N, Y N$) 273
XNEXN+.06/XS 274
CALL PPLOT(O,XN,YN) 275
XNEXN=,03/XS 276
CALL FPLOTPC,XN,YNS 277
327 IF (AVPEN-.00011330.335.335 298
350 VVE=50,0 279
60 PO 350 280
335 VVEALOO1O(100.OEAVPEN) 281
C 282
CHECK FO SEE TMAT AVERAGE IS WITHIN LLOTYING LIMITS. DRAW 283
VERTICAL BAR FROM LOWER CONFIDENCE LIMIT TO AVERAGE. 284
350 YNaYVAL (YV, YMAX, YMIN, YS)285
CALL FPLDT $(O, X N, Y N)$ 287286
IF (NCON, NE, O, OR, NBPCON:NE,O) CALL PPLOP(Z,XN,YN)
2月9
SUBROUTINE SYMROL (I.S) DRAWS AYMBOL DETERMINED BY I CHERE I \quad • 290
PHEREFORE DRAWS SOLID CIRCLES INSIDE A BOUARE OF DIMENBION S. 291
CALL 8YMROL (0,. 04) 293292
IF UPPER CONFIDENCE LIMIF CLUE IS TO DE DRAWN, FIND ITS VALUE294
IN TERMA OF MORMAL DROBABILITY BCALE. 296297
1P(NCON.E日.O. 1 ND.NSPCON.EO.O)GO TO 354 298
353 CALL FPLOT(I,XN,YN)290
00 TO 55 300
354 IF (CLUP=.OOn1)355,360,360 301
355 YVE-50.0 302
60 Tn 375 303
360 YVaALOG10(100.0*CLUP) 304
c 305
CHECK TO AEE THAT UPPER CONPIOENCE LIMIT IS WITHIN PLOTTING 306
LIMITS. DAAW VERTICAL AAR FROM AVERAGE TO UPPER CONFIDENCE LIMIT 307
GNO ORAW HORIZONTAL TIEK. 308
375 YNEYVAL(YV,YMAX,YMIN,YO) 310309
CALL FPLOT(O.XN,YN)
XNEXN-, 03/XS 11 312
CALL FPIOT (O,XN,YN)
XNEXN+. $06 / \times 8$ 314
CALG FPLOT(-1,XN,YN) 315316
THIS LOOP CMANGES PRACTIONAL EFPICIENCY TO DERCENT EFFICIENEY POR 317
PRINTING.318
55 Dn 60 Ins. 5319
RBUF (I) =ABUF (I) $=100$. 37
IF (RBUF (I)., 6E.100.0)RBUF (I):100.0
IF(RBUF(I).LE. O.0)RBUFII)E0.0 322321
60 CONTINUE 324
325
CHANGE FROM L OGIO DIAMETER TO DIAMEPER FOR PRINTING. 326
APLOTEEXP(2.302585*RPLOT)327
320

WRYTE DIAMETER INDEX NUMAER, DIAMETER, EFFICIENCY, UPPER

WRYTE DIAMETER INDEX NUMAER, DIAMETER, EFFICIENCY, UPPER
LIMIT DF EFFIEIENCY, AND LDWER LIMIT OF EFPICIENCY.
LIMIT DF EFFIEIENCY, AND LDWER LIMIT OF EFPICIENCY. 330 330 331 331
c
c c c
70 WRITE(3.11)(RAUF(I),I=1.5)332
100 CONTINUE 333Cc334
RETURN PLOTTER PEN TO BASE LINE 3 INGMES BEYOND GRID. THEN READY 336FOR NEXP PLOT.
c
150 YNEXMAX $+4.5 / X S$ 339337338
YNaYO 340
CALL FPLOT(O,XN,YN)
20n CONTINUE 342
FORMAT(IX.0PEPCENT PENETRATION*) 343
FORmAY(IX, dPIATICLE DIAMETER (MICROMFTERS)") 344
pommat (ix. opercent epficiencyis 345
FORMAT (IX, -PENETRATION-EFFICIENCY*) 346
Formatilx, soals 347
FORMAT(IX, ORHO ©,F4.2.' GM/CC') 348
Formar (imi.1X.AOA1) 349
17 FORMAT(IX, "RNOE ©, F4.2.0 GM/CC') 350
 351
 352
 353
38X. 'EFFJCIENCYO $/$ 354
11 FORMAT(6X,F3.0. 3X, F8.4.5X,FB.4.7X,F8.4.11X,F0.4) 355
12 FORMAT(80A1) 356
500 FORMAT(212) 357
501 FORMAT(211) 358
510 FORMAT(P5.a) 359
STOP
$36 n$
END

C MAIN PROGRAM SPLINI 1
c*C* PROGRAM SPLINI FITS LNGIO(CUMULATIVE MASS LOADING) VS LOGIO(DSO)2
a
C* with series of nver lapping, continuous znd degree polynomials. 5
C. HOTH THE POLYNOMIALS AND THEIR IST DERIVATIVES ARE CONTINUOUS. 6
C*
C C 6
INTEGER VV
10
DOURLE PRECISION DLOG10,XNDPEN(10), YO(10) 11
DOURLE PRECISION XTNC,YINC 12
OIMFNSICN ID(80), DPC(B),CUMG(B), DMDLD(9),GEOMD(9),ONDLD(9) 13
DIMFNSION Y(51),Y(51), $1(\{6), B(4), C O E(50,3), C O E 1(50,3)$ 10
DIMENSION X1(51),Y1(51) 15
DIMENSION FILSPL(Z),FILNAM(Z) 16
DIMENSION AA(q), BB(3) 17
EDUIVALENCE (X,X1),(Y,Y1),(COE,COE1) 1%DATA FILNAM/OKMCOO:, PIRINO,
10DATA FILSPL/PFILSP!, 'LBIN*/
20CALL DEFINE $10,251,101$. FILNAM, $110,0,0,0)$
21CALL DEFINE $111,507,100, F$ ILSPL, $110,0,0,0)$
3
PEETRD 101 CONTAINS GENERAL INFDRMATION PERTAINING 24
TC ALL RUNS. NRUN\&ND, OF RUNS (2 RECORDS FOR EACN RUN) 25
ISFIN = LAST RECORN NUMBER CONTAINING INDIVIDUAL RUN DATA 26
INFILE 10. 27
PEADITO.101INRUN 28
ISFIN = NRUN*2 29
30
KREAD : O MAKE FIT TO ALL SETS OF CUM. MASS LOADING V8 D50 31
VALUES OF FILF. KREAD NOT : O READ IN SETS TO BE FITTEO. 32
READ(2.1)KREAD33
35
NN = NUMAER OF BUBINTERVALS TO BE SET UP IN LAST INTERVAL 36
AETWFEN DSO OF IST STAGE AND DMAX. 37
N = NUMBER OF SUBINTERVALS TO BE SET UP BETMEEN EACH PAIR OF 38
n50's UP TO D50 OF IST STAGE. 39
307 NNER 4140
$R R=N N$ 4
NEa
$\mathrm{R}=\mathrm{N}$ 43
DO 400 INREXEI.ISFIN 45
IAVEINDEX 46
C 47
E JF KREAD NOT $=0$, READ RECORD NO. IAV FOR DAYA TO BE FITYED. 48
AISO. IF KREAD NOT $=0$, LEAVE LAST CARD BLANK TO STOP. 49
IF (KRFAD)310.310.2 50 51
2 READ(2,1)IAV 52
IFIIAV.EO, DISTOP 53
C 54
VALUES TO RE USED FROM PEADING OF RECORD ARE: c 55
NFIT - NUMBER OF CUMULATIVE MASS LOADING VS. DSO POINTS $(+1$ 56
FOR POTAL MASS LOADING VS. MAXIMUM DIAHETERJ TO BE 57
FITYED. 58
XNOPEN(I),IEI,NFIT - SET OF DSO VALUES AND MAXIMUM DIAMETFR. 59
YO(I).IEI, NFIT - SET OF MASS LOADING VALUES.
other values read here are not used.
310 READ(10:IAV)IS,NFIT,GRNAM,ID,RHN, TKS, PNA,FGH2O, DSHA, DMAX,
1DPC, CUMG, DMDLD,GEOMD, DNDLD, CYC3,MC $3, M O O, H S, V V$,
$2(X N D P E N(I), I=1, N F I T),(Y O(I), I \pm 1, N F I T)$
NFITI $=$ NUABER OF CUMULATTVE MasS LOADING VS. DSO POINTS
(EXCLUDES TOTAL LOADING VS. DMAX).
NPT = TOTAL NUMAER DF POINTS IISED FOR FITYING BETWEEN (AND
INCLUNING) maXIMUM PARTICLE SIZE AND DSO OF LAST STAGE.
NFITI=NFIT-I1NFITI＝NFIT－I
NPT＝（（NFIT1－1）＊N）＋NN＋1
74
NFITZ＝NFITE？75
THIS •ODO 100° LOOP FITS A 2NO DEGREE POLYNOMIAL TO 3 76
LOGio（CUMULATIVE MASS LOADING）VS．LOGio（DSO）POINTS ON EACH 77
traverse．IE． 78
LOGIN TF（XNDPEN（1），YO（1）），（XNDPEN（2），YO（2）），（XNDPEN（3），YD（3））） 79
．．．（XNDPEN（2），YO（2）），（XNDPEN（3），YO（3）），（XNDPEN（4），YO（4））， 80
 B1
（XNDPEN（NFIT），YO（NFIT）） 82 63
IF THE FITTING POLYNOMIAL HAS NON－NEGATIVE SLOPE AY BOTH 84
LOGIO（XNOPEN（Y），YO（I））ANO LOGIO（XNDPEN（I＋I），YO（I＋1）），THF 85
FITTING COEFFICIENTS ARE USED BETWEEN THESE 2 POINTS TO DEFINE
3 INTERMEDIATF POINTS EVENLY SPACED ON LOGIO SCALE，IF THERE IS a 86
89
negative sline at either of these 2 points，a straight line fit 88
RETWEEN THE POINTS IS USED TO DEFINF THE 3 INTERMEDIATE POINTS． 89
THE VEETORS $X I$ ANO YI REPRESENT LOGIO OF ORIGINAL CUM．MASS 90
Lnading vs．OSO points and the farricated intermediate points． 91
the number of points represented by the XI_{I} ．yi vectors is
（NFIT $2 * 4$ ）$+1+2$ ．THERE $A R E$（NFIT $2 * 4$ ）＋1 POINTS BETWEEN POINTS AT 9392
LOGIO（D50）OF LAST STAGE AND LOGIO（D50）OF IST STAGE INCLUSIVE． 95
2 MORE ARE EXTRAPOLATED BEYOND LOGIO（DSO）OF IST STAGE． 96
DO 100 I天1．NFIT2 97 98
JJ＝N－！ 99
IF（NFIT2－I）90．80．80
80 JJ3N＋2 101
$90 \mathrm{M}=(\mathrm{I}=1) * \mathrm{~N}+1$ 102
YI（M）＝DLOG10（XNDPEN（I）） 103
YI（M）＝OLOG10（YO（I）） 104
XINC＝（DLOG10（XNRPEN（I＋1））＝DLOG10（XNDPEN（I）））／R 105
Simo SOLVES n simultaneous linear equations，ax m be merf 106
N＝3．THE MATRIX OF COEFFICIENTS．A，IS DESTROYED IN THE 107
COMPUTATION．THE VECTOR OF ORIGINAL CONSTANTS，B，IS REPLACED 108 109
GY THE FINAL SOLUTION VALUES，VECTOR X：COEFFICIENT MATRIX A AND
CONSTANT VECTOR B ARE DEFINED IN ThIS LOOP． 11！no 1100 II $=1.3$$M M=I-1+I I$112113
A（11）＝DLOG1O（YO（MM）） 115114
K＝3＊（II－1） 116
DO $1100 \mathrm{~J}=1.3$ 119
M3：1－1＋J 118
1100 （K＋J）$=$ DLDG10（XNDPFN（M3））＊＊（II－1） 1100 （K＋J）EDLDG10（XNDPEN（M3））＊＊（II－1） 119
KS=0 120
CALL SIMO (A,A,3,KS) 121
c 122
use stpaight line fit. not poly fit. if negative slope at etther ${ }^{c}$ 123
END RF ORIGINAL INTERVAL. 124
$001119 \mathrm{j}=1 . ?$ 126125
SLOPE天R(2) +2.0*R(3)*OLOGI0(XNDPEN(I+J=1)) 127
IF (SLOPE)1104.1119.1119 128
$1104 \mathrm{~B}(2)=(\mathrm{DLOG} 10(\mathrm{YO}(\mathrm{I}+1) / \mathrm{YO}(\mathrm{I}) \mathrm{)})$ 129
1/(DLOG1O(XNOPEN(I+1)/XNDPEN(T))) 130
B(1)=DLOG10(YO(I))-B(2)*DLDG10(XNDPEN(T)) 131
B(3)=0.0 132
GO TO 1120 133
1119 CONTINUE 134
1120 DO $100 \mathrm{~J}=1 . \mathrm{JJ}$ 135
$K=M+J$ 136
$X 1(K)=D L O G 10(X N \cap P E N(I))+J * X I N C$ 137
$Y 1(K)=\theta(1)+8(2) * X 1(K)+B(3) * X 1(K) *{ }^{2} 2$ 138
100 CONTINUE 139
c 140
FIT THE FIRST 3 (X, Y) POINTS WITH A 2ND DEGREE POLYNOMIAL IN c 141
C OROER TO DEFINE SLOPE AT (X(1),Y(I)). (NOTE - (XI,YI) POINTS ARE 102 102
EQUIVALENT TO (X,V) POINTS\&\&\&) 143
c 140
$10000110 \quad 1=1.3$ 145
K玉3*(1-1) 146
DO $110 \mathrm{~J}=1,3$ 147
$M=1+(J-1) \neq N$ 148
110 A(K+J)EX(M)**(In1) 149
DO 115 IE1.3 150
 151
115 Bf (I) $\mathrm{F}(\mathrm{r})$ 152
$\mathrm{KS}=0$ 153
CALL SIMO (A, R, 3,KS) 154
c CHECK THE SLOPE OF THIS CURVE FIT AT THE FIRST POINT. IF IT IS 155
150
NEGATIVE, ADO A POINT ON THE OTHER SIDE OF POINT I FROM THE 157
ZNO POINT A HISTANCE (X(2)-X(1)) FROM X(1). THE Y COOROTNATE 158
value is set m TO Yeis. THE POLYNOMIAL FIT THROUGM THIS POINT. 159
(x(1),Y(1)), and (X(2),Y(2)) MUST have Positive SLOPE af 167
rx(1).Y(1)). 161162
SLRPF=B(2)+2.0*R(3)*X(1) 163
IF(SLOPE)0.19.19 164

- DO 5 TE1.3$5 A(T)=1$165
$A(4)=x(1)-(x(N+1)-x(1))$ 167166
$A(7)=(A(a)) * * 2$ 168
DO $10 \mathrm{I}=1.2$ 169
$K=3+1$
DO $10 \mathrm{~J}=2.3$ 171
$M=1+((J-2) * N)$ 172
$10(K+J) \equiv X(M) * * 1$ 173
A(1)EY(1) $17 a$
D0 $151=2,3$ 175
$M E 1+(1-2) * N)$ 176
15 B(I) H (M) 177
$\mathrm{kS}=0$ 178
CALL SIMO(A,B,3,KS) 179
89 DO 20 1:1,3 180
20 COE(1,I):B(I) 181182
II E FIRST INYERVAL FOR WHICH FITYING COEFFICIENTS ARE DEFINED. 183
TO FABRI© 184
CATE INTERMEDIATE POINTS, THE UPPER BOUNDARY OF THIS INTERVAL 185
IS LOGIO(XNDPEN(NFITI), YO(NFITI)) HERE: 186
IIsi187INTSIGNPT=NN-I188
189THIO LOOP FINDS
THIS LOOP FINDS THE FITTING COEFFIEIENTS FOR EACH INTERVAL, THE 191190
3 EOIIATIONS ARE SOLVED FDR 3 UNKNOWN COEFFICIENT VALUES FOR THE 192
FITTING 2ND DEGREE POLYNOMIAL. THE EQUATIONS EXPRESS 3
CONDITIONS FOR THE FITS

1. THE FITTING POLYNOMIALS OF THE 2 JOINING INTERVALS ARE 104 195
CONTINUOUS AT THE MUTUAL BOUNDARY POINT. 196
2. THE FIRST DERIVATIVES BAME ARE CONTINUOUS AT THE 197
MUTUAL BOUNDARY POINT. 198
3. THE FITTING POLYNOMIAL OF THIS I TH INTERVAL (FITTING 199
BETWEEN POINTS I AND $I+1$) GOES THROUGH THE (I\&4)TH POINT, 200
I.E. A POINT OUTSIDE THE INTERVAL. FITTING ROUTINE PLOOKS 201
AHEAD: TO LET COMING POINTS INFLUENCE CURVE DIRECTION. 202
23 DO 50 IaII.INTSI 203 204
JJE! 205
$B(1)=0.0$
DO $25 \mathrm{Je} 2,3$ 207
$K=I=1$ 208
IF(I.EO.1)K=1 209
25 B(1)=A(1)+(J-1)*(COE(K,J))*X(I)**(J-2) 210
$B(2)=C O E(k, 1)$ 211
Do 30 Jez 3 212
$30 B(2) E B(2)+\operatorname{COE}(K, J) * x(I) * *(J-1)$ 213
$B(3)=Y(I+3)$ 214
DO $35 \mathrm{~J}=1,3$ 215
$L E 1+(J=1) \neq 3$ 216
35 A(L)E(J-1)*)(I)**(J-2) 217
DO $40 \mathrm{~J}=1,3$ 218
KEJ-I 219
KK=3*K 220
40 A(KK+2)ax(I)**K 221
DO $43 \mathrm{~J}=2,3$ 222
K=J=1 223
KK=3*K 224
$43 A(K K+3)=X(I+3) * * K$ 225
KS=0 226
CALL SIMO(A,B,3,KS) 227
SAVE THE FITTING COEFFICIENT VECTOR B WHICH FITS OVER INTERVAL 228I AS COE.230231
$0045 \mathrm{Jeq}, 3$ 232
COE(I.J) $\operatorname{CB}(J)$ 233
45 CONTINUE $23 a$
50 CONTINUE 235
IF(JJ.EQ.(NPT=1))GO TO 55 236
THF LAST BERIES OF INTERVALS FOR WHICH FITTING COEFFICIENTS ARE 238237TO BE DEFINED LIES BETWEEN LOGIO(XNDPEN(NFITI),YO(NFITI)) AND239

c	LOGIO(XNDPEN(NFIT), YO(NFIT)). THE POINTS ARE DEFINED ALONG	240
C	AN HYPEREOLA RETWEEN THESE 2 POINTS OF THE Forn logiolv) =	241
C	B(1) + $\mathrm{B}(2)$ / $\mathrm{X}_{\text {。 }}$	242
C		203
	HYPLEDLOG10(XNDPEN(NFIT)) -DLOGIO(XNDPFN(NFITI))	244
	XINCEHYPL/RR	245
	ME(NFITI-1)*N \dagger !	246
	XSUBIEI, DO/XNDPEN(NFITI)	249
	YSURIEYi(M)	248
	XSUB2=1. DO/XNDPEN(NFIT)	249
	Y8UB2EDL0G10(YO(NFITJ)	250
	B(2) 2 (Y8UB2-YSUBi)/(X8UB2-X8UB1)	251
	B(1) =YSUBI-A(2)*xSUBi	252
c		253
c	THE NUMBER OF POINTS TO EE USED ALONG The HYPERBOLA IS NN+2 ota.	254
C	THE 2 ADDED POINTS ARE EXTRAPOLATED VALUES BEYOND	255
6	LOG10(XNDPEN(NFIT), YO(NFIT)).	256
C		257
	$\mathrm{NS}=\mathrm{NN}+2$	258
	DO 1150 [=2,N3	259
	$\mathrm{J}=\mathrm{K}+\mathrm{I}$	260
	$\mathrm{X}(\mathrm{P})=\mathrm{XI}(\mathrm{M})+\mathrm{I}$ (XINC	261
		262
1150	continue	263
5		264
c	REDEFINE "DD 50". LOOP INDEX REGINNING AND END. BEGINNING	265
c	INTERVAL II IS FIRST INTERVAL OF HYPERBOLA, BEGINS AT DSO OF 189	266
C	STAGE, LAST INTERVAL, INTSI. ENDS WITH OMAX. REPURN TO TOP OF	267
C	LDEP TO FIND FITTING POLYNOMIAL COEFFICIENTS OVER THESE INTERVALS.	268
c		269
	IIENPT-NN	290
	INTSIENPT-1	271
	G\% TO 23	272
C		273
c	INT : NUMBER OF INTERVALS FOR WhICh Pitting coeeficients have	274
c	BEEN DEFINED.	275
C		276
55	INTaNPT-I	277
\bigcirc		278
c	FILE NUMBER OF FITPED POINTS, THE INTERVAL BOUNDARY POINT	279
e	VALUES, AND FITTING COEFFICIENTS FOR EACH INTERVAL.	280
C		281
	WRITE(II'IAV)NPT,(XI(I),IEI,NPT), (YI(I),IEI,NPT),	282
	1((COEI(I,J), JE1,3),IE1,INT)	283
400	CONTINUE	284
1	FORMAT (352)	285
	END	286

C MAIN PROGRAM STATIS 1

 2
C 3
C. PROGRAM STATIS CALCULATES AVERAGE VALUES FOR CUMULATIVE MASS 4
C. LOADING, CUMULATIVE PERCENT MASS LDADING, MASS SIZE DISTRIBUTION, 5
AND NUMBER SIZE DISTRIBUTION OVER A DIAMETER RANGE OF - 25 MICRONS 6
PO .O MICRONS PFOR PHYSICAL DENSITYJ. 10.0 MICRONS PFOR
PO .O MICRONS PFOR PHYSICAL DENSITYJ. 10.0 MICRONS PFOR 7 7
$\begin{array}{ll}C & \text { PO O MICRONS PFOR PHYSICAL DENSITYJ. IO.O MICRONS (FOR } \\ C & \text { AERODYNAMIE DENSITYJ. OR BOME OTHER SPECIFIED SIZE STAYIS ALSO }\end{array}$ 8
9
CALEULATES 50 PERCENT CONFIDENCE LIMITS FOR THESE PROGRAM
10
10
OUYPUTS TABLES AND GRAPHS (IF DESIREO) ALSO, LISTING IS MADE
OUYPUTS TABLES AND GRAPHS (IF DESIREO) ALSO, LISTING IS MADE
11
11
OF AMY OUTLYING DATA WHICH HAS BEEN EXCLUDED FROM AVERAGING
OF AMY OUTLYING DATA WHICH HAS BEEN EXCLUDED FROM AVERAGING
12
12
AND CALCULATION OF CONFIDENCE LIMITS.
AND CALCULATION OF CONFIDENCE LIMITS. 13
 14C15
INTEGER VV. THROUT $(60,50)$ 16
DOURLE PRECISION XNDPEN(10), YO(10) 17
DIMENSION OPC(A), GEOMD(9), DMDLD(9), DNDLD(9), CUMG(8), ID(BO) 18
DIMENSION IDALL(80), GEMAX(2), GEMIN(2), DMMAX(2), DMMIN(2) 19
DIMENSION DNMAX(2), DNMIN(2), DPMAX(2),DPMIN(2),CUMAX(2),CUMIN(2) 20
DIMENSION DEL (100) 21
DIMENSION TGL (100), GLMIN(50), ATGL(2),CUM2D(60), NOCON(60),CLU(60) 22
DIMENSION CLL(60), AGLMIN(2) 23
DIMENSION NOUY (6O), CUCONI (100), CUCON(2) 24
DIMENSION FILNAM(Z),FILNMI(Z),FILNMZ(Z) 25
DIMENSION IDRLAK(80) 26
DIMENSION FILSPL(2), COE (50,3), XI(51), YI(51) 27
DATA FILNAM/OKMCOO白 18 IN*/ 28
DATA FILNMI/ JWJOO $00^{\circ} 18 I N^{\circ} /$ 29
DATA FILNM2/OJWJ00', 28IN*/ 30
DAPA FILSPL/ ${ }^{\circ} \mathrm{FILSP}$ I' ${ }^{\circ}$ LBIN*/ 31
 32
DATA IDBLAK/80*0/ 33
DATA IBLAK/O/ 34
DATA RLAK/O.O/ 35
CALL DEFINE (10,251,101,FILNAM,110,0,0,0) 36
CALL DEFINE ($11.507,100$, FILSPL, $110,0,0,0)$ 37
INOUT -IFOR INLET DATA, 2 FOR DUTLET DAT 38
C 39
READ(2,800)INOUT40
MPACFLEI MPACFLEINOUT +15 42
GO TO (705.710), INOUT 43
705 CALL ENTER (16,FILNMI) 44
60 TO 1 45
710 CALL ENTER(17,FILNM2) 46
N : 1 FOR PHYSICAL OENSITY, 2 FOR UNIT DENSITYE 4847
NOFILE $\quad 0$ - CONTINUE
1 - STAYISTICAL CALCULATIONS ARE NOY TO BE MADE FOR 50
THIS DENSITY. 51
IPLTI - O PLOT THE CUMULATIVE GRAPMS; 52

- 1 กO NOT PLOY THE GRAPHS. 53
IPLTZ - O PLOT THE DM/DLOGD GRAPHSI 54
- 1 DO NOT PLOY THE GRAPHS. 55
IPLT3 - O PLOT THE DN/OLOGD GRAPH8I 56
- 1 DO NOY PLOT THE GRAPHS. 57
IPLTA O PLOT THE CUMULATIVE PERCENT GRAPMSS 58
- 1 DN NOT PLOT THE GRAPHS. 59

	DO 254 MDKE1.3	180
c		181
C	NDK "PARALLELS MOK. USED INSTEAD OF MDK For logical "IF"	182
c	STATEMENTS.	183
C	NDKIEOEETHIS IS ALWAYS PRUE EXCEPT WHEN FINDING	184
C	AVG. PERCENT CUMULATIVE MASS LOADING WHERE NDKI E 1.	185
C		186
	NDKEMDKE?	187
	NOK $1=0$	188
	G0 90 (922,915.13),MDK	189
c	WRITE GENERAL HEADING FOR CUM. MASS LOADING OUPPUY.	190
C	INCLUDES GENERAL ID, DENSITY, COLUMN HEADINGS FOR	191
C	-SLOT*. DIAMETER (MICRONS), MEAN CUMULATIVE MASS CONCENTRATION	192
c	(MG/ACM), UPPER CONFIDENCE LIMIT (MG/ACM), AND LOWER CONFIDENCE	193
C	LIMIT (MG/ACM):	194
C		195
922	WRITE(3,700)IDALL, ${ }^{\text {aHOX }}$	196
C		197
C	IPLTIEO - STPLOT IS CALLED TO DRAW GRID FOR CUM, MASS LOADING	198
C	PARTICLE DIAMETER.	199
C		200
C	IF ISIZIEI Find max (XMAX) AND MIN. (XMIN) X VALUES OF GRID	201
C	GIVEN DPMAX AND DPMIN RESPECTIVELY. IF ISIZIEI FIND MAX. (YMAX)	202
C	AND MIN. (YMIN) Y VALUES OF GRID GIVEN CUMAX AND CUMIN	203
c	RESPECTIVLY, if isizao, ThESE WILL have Premet values,	204
C		205
	IF(IPLT1)2.2.32	206
2	ISI2EISİ1	207
c		208
c	FIND PHE X AND Y SCALE FACTORS. $X 8$ AND YS, RESPECTIVLY	209
C	(INCHES/USER'S UNIT). DRAW GRID FOR AVG. CUMULAYIVE MABS LOADING	210
C	VS. PARTICLE DIAMETER AND LABEL WITH GENERAL IDENTIFICATION IDALL	211
c	AND DENSITY RHOX(GM/CC).	212
c		213
	CALL STPLOT (IDALL, RHOX, IMPAC, NDK, DPMAX, DPMIN,CUMAX, CUMIN, ISIZ,	214
	(XS, YS, XMAX, XMIN, YMAX, YMIN)	215
	GO TO 32	216
C		217
c	WRIPE GENERAL HEADING FOR OM/DLOGD OUTPUT. INCLUDES GENERAL	218
C	ID, DENSITY, COLUMN HEADINGS FOR 'SLOT', DIAMETER (MICRONS).	219
C	MEAN CHANGE IN MASS CONCENTRATION (MG/DNM3), 8TANOARD	220
c	DEVIATION (MGIONM3): UPPER CONFIDENEE LIMIT (MG/DNM3),	221
c	AND LOWER CONFIDENCE LIMIT (MGSDNM3).	222
C		223
915	WRITE(3,500) IDALL, RHOX	224
C		225
C	IF IPLT2E0mSTPLOT WILL BE CALLED. AGAIN, STPLOT FINDS	226
C	MAX. $A N D$ MIN VALUES FOR GRID THIS TIME USING GEMAX,	227
C	GEMIN, DMMAX, AND DMMIN IF ISIZ2EI. USES PRE-SET VALUES	228
e	FOR ISIZ2̇0. SCALE FACTORS XS AND Y $A R E$ CALCULATED.	229
c	GRID IS DRAWN FOR AVG. DM/OLOGD V8. GEDMETRIC MEAN	230
C	OIAMETER.	231
C		232
	IF(1PLT2)3.3.32	233
	- ISIzeI8Iz2	234
	CALL STPLOT (IDALL, RHOX, IMPAC, NDK, GEMAX, GEMIN, DMMAX, DMMIN,	235
	IISIZ,XS, YS, XMAX, XMIN, YMAX, YMINS	236
	GO T0 32	237
c		238
c	AS ABOVE FOR DN/DLOGD PLOT.	239

C	NDK = 10-DN/OLOGD(NO./DNM 3)	300
C		301
	NUPTSx 0	302
	SUME0.0	303
	DO 75 IAVEN,ISFIN, 2	304
C		305
C	READ RECORD OF EACH RUN TO GET TEMPERATURE OF	306
C	STACK IN DEG. KELVIN (TKS). PRESSURE AT IMPACTOR	307
C	INLET IN ATMOSPHERE (POA). PERCENT WATER CONTENT	308
${ }_{6}^{6}$	OF GAS (FGH2O).	309
C		310
	READ(100IAV)IS, NFIT, GRNAM, ID, RHO, TKS, POA, FGH20	311
C		312
C	READ PHE NUMBER OF FITPED POINTS NPOIN. THE VALUES OF ThE Points	313
C	USED FOR FITTING XI(I),İI,NPOIN AND YI(I),IEI,NPOIN, AND	314
C		315
${ }_{6}$	AND Jim.3.	316
C		317
	READ (11-ISINPDIN	318
	INTENPOIN=1	319
	READ(11.IS)NPOIN, (XI(I),ImI,NPOIN), (YI(I),IEI,NPOIN),	320
	$1((C O E(I, J), J=1,3), I=1, I N T)$	321
c		322
C	OETERMINE WHICH INTERVAL OF CURVE FIT NINT FOR THE DIAMETER	323
C	VARIABLE DI.	324
C		325
	DO 128 IE2.NPOIN	326
	Jal	327
	IFPD:LT.XICI) 60 TO 132	328
128	CONTINUE	329
132	NINTEJ-I	330
${ }^{-}$		331
C	FOR THE FIRST DIAMETER (NSLOT a 1 J IN AVG. CUMULATIVE MAS8	332
C	LOADING CALCULATIONS (NDK - -1). AN INTEGERATION CONSTANT (AN	333
c	INITIAL Value of cumulative mass loading a the diameter epreviousi	334
c	TO . 25 MICROMETERS), CUCONI (IS). IS CALCULATED FOR EACH RUN IF	335
C	DESIRED (NCIICON INPUT ${ }^{\text {a }}$)	336
C		337
		338
	IF (NCUCON) $1133,1132.1133$	339
1132		340
	1(DI-DINC)**2	341
		342
	CUCONI(IS) $=10.0 * *$ CUCONI (IS)	343
c		344
C	Calculate the derivative of the mass coneentration, delmbe.	345
C	THE FIRST CALCULATION OF DELMBC HERE IS DERIVATIVE OF LOGIOfMAss	346
C	CONCENTRATION) WITH RESPECT TO LOGIO(DIAMETER), USING THIS,	347
C	REDEFINF DELMRC AS DERIVATIVE OF MASS CONCENTRATION WITH RESPECT	348
c	TO LOGIO(DIAMETER). PPP IS THE LOGIO(MASS CONCENTRATION)	349
C	CALCULATED FROM THE CURVF Fitting polynomial found in mainline	350
c	PROGRAM SPLINI.	351
c		352
1133	OELMBEECOE(NINT, 2) ¢COE(NTNT, 3)*2*DI	353
	PPPECOE (NINT,1)	354
	00131 LE2.3	355
131	PPPAPPP + COE (NINT,L)*DI** (L=1)	356
	DELMBC\#DELMBC*(10.0**PPP)*2.302585	357
c		358
c	CONVRT IS THE CONVERSION FACTOR TO GO FROM MG/ACM TO MGIDNMS	359

THEREFORESDELMBC=HAS UNITS MG/ACM 360
DELM-eoHAS UNITS MGIDNAS 361
DELN.-®HAS UNITS NO./DNM3 362
363CONVRTE(($294.0 \# P O A) / T K S * 1.0) *((100.00 F G H 20) / 100.0))$
DELMADELMBC/CONVRT 364 365
DELNE ($6.0 *$ NELM $) /(R H O X * 3.141592 * D P L O T * * 3)) * 1.0 E$.
DELNE ($6.0 *$ NELM $) /(R H O X * 3.141592 * D P L O T * * 3)) * 1.0 E$.
IF(NDK)451.51.52 366 366 367
451 DEL(IS)=DELMBC 368
G 1075 369
51 DEL(IS)IDELM 390
601075 371
52 DEL(IS)EDELN 372
75 CONTINUE 373
80 CONTINUE 374
IAVLD: 1 375
FOR THE FIRST DIAMETER (NSLOT : 1) IN AVG. CUMULATIVE MASS 397376LOADING CALCULATIONS (NDK : -1), AN AVERAGE INTEGRATION CONSTANT
cthe average initial value of cumulative mass loading a e 25 microe 378
379meters), CUCON(N), IS CALCULATED FOR THIS ASSUMED DENSITY IF
380
DESIRED (NCUCON INPUT a 0). 381
IF(NSLOT.NE.1.OR.NDK.NE,-1) G TO 82 383382
IF(NCUCON) B2.81.82-1 CALL AVCON (N,IAVLD,NOK,NOCON(NSLOT),ISFIN,CUCONI,CUCON(N), AVDMI.385
ICUM2D(NSLOT), CUMZLO,CISUM, SIGNA, CLU(NSLOT), CLL (NSLOT), DINC) 386
CUMZLD=CUCON(N) 387
82 NOCON(NSLOT):0 388
$A V D=0.0$ 389
aveon uses the following variabless 391390
N - AS DESCRIBEO PREVIOUSLY 392
IAVLD $=1$ - FIND 90 PERCENT CONFIDENCE INTERVALS PROVIDED 393
THERE IS SUFFICIENT DATA. 394
IAVLD 3 - CONFIDENCE INTERVALS NOT DESIRED. 395
NDK - AS DESCRIBED PREVIOUBLY 396
NOCON(NSLOT) - INDICATES, UPON RETURN FROM SUBROUTINE AVCON, 397
WHETHER OR NOT CONFIDENCE LIMITS WERE TAKEN. 398
PHERE MUST BE AT LEAST 3 PIECES OF DATA FOR THESE 199
CALCULATIONS. NOCON(NSLOT) RETURNED : I 400
IF THERE WAS INSUPFICIENT DATA 401
AND NO CONFIDENEE LIMITS WERE TAKEN. 402
ISFIN - AS DESCRIAED PREVIOUSLY 403
DEL - SET OF ALL CHANGES PER CHANGE IN LOGIO DIAMETER AT 404
THE INDICATED DIAMETER cACTUALLY PHESE ARE THE OERIVATIVE 405
LIMITS OF TME CHANGES.) 406
aVD - PRELIMINARY AVERAGE OF ThESE CHANGES. 007
SIGMA - STANDARD DEVIATION OF THE SET DEL. 408
CLU(NSLOT) - UPPER $9 O$ PERCENT CONFIDENCE LIMIT OF DEL $A T$ 409
THE INDICATED DIAMETER 410
CLL (NSLOT) - LOWER 9O PERCENT CDNFIDENCE LIMIT OF THE SET DEL 411
AT THE INOICATED OIAMETER. 412
FOR NOK E - 1 AVCON WILL ALSO U8E THE FOLLOWING VARIABLES: 413
AVDM1 - AVERAGE OF CHANGES AT PREVIOUS DIAMETER 414
CUmzd(NSLOT) - AVERAGE CUMULATIVE mass LOAD Of Particles Smaller 415
THAN INDICATED DIAMETER (MG/ACM). 416
CUMZLD - AVERAGE CUMULATIVE MAS8 LOAD POR PARTICLEs BMALLER 417
THAN LABT OIAMETER (HG/ACM) 418
CISUM - THE SUM OF THE SOUARES OF THE DMIDLOGD CONFIDENCE 419
INTERVALS（MG／ACH）FOR Particles smaller than the 420 421
LAST OIAMETER．
LAST OIAMETER．
DINE－LNGIO DIAMETER INCREMENY（MICRONS）． 422
CALL AVCON（N，IAVLO，NOK，NOCON（NSLOTJ，ISFIN，DEL， 423 424
1AVD，AVDMI，CUM2D（NSLOT），CUM2LD，CISUM，SIGMA，CLU（NSLOT）． 425
2CIL（NSLOT），DINC） 426
NSETSENOCON（NSLOT） 1 427
IF NDCON（NSLOT）IS RETURNED $=1$ ，A SPECIAL FORMAT IS USED FOR 029428
PRINT OUT NOTING－INSUFFICIENT GATA＂PTHIS IS FORMAY503 FDR AVG．CUM．MASS LOAO．ANO FORMAT 5OI FOR AVG．DMIDLOGD430OR AVG．DN／DLOGD），OTHERWISE，AVG．CUM．MASS LOADING431
CALCULATIONS GIVE OUTPUT ACCORDING TO FORMAY SOA LISTING 432THE＂SLOT＇，PARTICLE DIAMETER（DPLOT IN MICRONSI，AVG．CUM．433MASS LOADING（CUM2D IN MGIACM），UPPFR 90 PERCENT CINFIDENCE434LIMIT，ANO LOWER 90 PERCENT CONFIDENEE LIMIT CCLU AND CLL435
436
RESPECTIVLY IN MG／ACM）．A SIMILAR OUP－PUT FOR AVG．DM／OLOGD
AND AVG．ON／DLDGD CALCULATION IS LISTED USING FORMAT 502 437
OIAMETER UNITS LRE ALAIN MICRONS STHER VARIGOLESARE 438
OIAMENE UNITS ARE AGAIN，MICRONS OTHER VARIABLES ARE IN 439
MG／DNM3（DM／DLOGD CALEULATIONS）OR NO／DNMS（DN／DLDGD 440
CALCULATIONS）．NOTE ALSO TMAT THE STANDARD DEVIATION，SIGMA， 401
IS LISTED FOR THE DM／DLOGD AND ON／DLOGO CALCULATIONS． 402
GO TO（85，90），NSETS 443
85 IF（NDK）87，97．98 445a4d
90 IF（NDK）86，96，96 446
86 WRITE（3．503）NSLOT，OPLOT，CUM2D（NSLOT） 447
GO TO 110 448
96 WRITE（3，501）NSLOT，OPLOT，AVD
GO TO 110 450
87 WRITE（3，504）NSLOT，OPLOT，CUM2D（NSLOT），CLU（NSLOT），CLL（NSLOT） 450
GO 70110 452
97 WRITE（3，502）NSLOT，DPLOT，AVD，SIGMA，ELU（NSLOT），CLL（NSLOT） 453
GO TO 110
9R WRITE（3，505）NSLOT，OPLOT，AVD，SIGMA，CLU（NSLOT），CLL（NSLOT） 454
110 NOUT（NSLOT）$=0$ 456455
NIN＝0 457
DO 116 IAVEN，ISFIN， 2 458
IF（DEL（IAV））I13，115，115
113 NOUT（NSLOT）mNOUT（NSLOT）＋1 460
NTョNOUT（NSLOT） 461
THRNUT（NSLOT，NT）EIAV 462
GO in 116 463
115 NINENTN＋1 464
116 CONTINUE 465
IF（NDK）117．118．119 466
117 1F（1PLT1）1117：1117．2118 467
1117 IPLOTE（－1）＊＊NSLOT 468
IF（1PLOT）2117，2117，2118
2117 CALL STATPT（NDKI，NOCON（NSLOT），OPLOT，CUMZO（NSLOT），CLU（N8LOT）， 470469
ICLL（NSLOT），XMAX，XMIN，YMAX，YMIN，XS，YS） 471
2118 AVDMIEAVO 072
CUMZLDECUNZD（NSLOT） 073
GO 10150 474
118 WRITE（MPACFLIDPLOT，AVD，SIGMA，NIN 475
IF（1PLT2）140．140．150 496
119 IF（IPLT3）140，140：150 477
140 CALL STATPT（NDKI，NOCON（NSLOT），OPLOT，AVO，CLU（NSLOT），CLL（NSLOT）， 478
IXMAX，XHIN，YMAX，YMIN，XS，YS） 479

```
    150 DIFDIODINC URO
    2OA CONTINUE
        |AI
        WRTTE(3,7n?)INALL.QHOX UR2
        IF(NOK)202.203.204 UR3
    202 WRTTE(3,7n4) 4RU
        G0 IT 205
    GO TO 20S
    203 WRTTE(3.7n6)
    200 WRITF(3.7nA)
    20501=ALOG10(.25)
        OO
        DO 22, *SLOTzI.LAS
        DPLOT=1^.0**O1
        NTENOHT(NSLDT)
        4 0 ?
        IF(NT)207.207.211 403
    207 WRTTE{3.71TYNSLCT,OPLOT 40A
    G0 TO 2Z0
405
    211 WRITE(3,712)NSLOT,NPLOT,(THROUT(NSLOT,T),I=1,NT) 406
    2ZO DIENI+DINC 407
    221 CONTINIE
C 409
C TF NNK = I. CHECK TO SEE IF PLOT WAS MADE ISO THAT PEN CAN AE SOO
    READIED FAR NEXT PLOT,I SNI
    TF NDK E O WRITE 5 ASTERISKS (DASTY JN FILE MPACFL. THIS 5N?
    WILL RE ANTO INOICATION IN PROGRAM OENTRA THAT SET OF SO3
    RFPORIS ALL WGVING SAME OENSITY HAS OEFN REACNED. SOU
    IF MINK E 1, EMFCK TO SEE IF PLOT WAS MANE ISO THAT PEN CAN AE SOS
    REANTEN FTR NEMT PLOT.) 5\cap6
    IF(NDK)255.25!.252 50A
C 500
    IF PI_OT WAS MGNE, REAOY DEN FOR NFXY PLOT, IF PLOT WAS NOT MAMF, SIO
    HAKE CALCIILAYPONS FOR AVFRAGE CUMULITIVE PERCENP. SI!
```



```
C % 514
    STATEMENTS 253 PHROIGH 270 MAKE CALCULATTONS AND GTVE OUTPIIT SIG
    FOR GVERAGE C!MIUATIVE PERCENT.
    THIS STATEMENT WRITES THF GENERAL INENTJFICATION LABEL SIQ
        51月
    IOALL, THE OFNSITY. RHOX IN GMICC, AND THE EOLIIMN HEADINGS 5?O
```



```
    MASS CONRENTRATION (PERCENT)' UPPER CONFINENCE I.IMGT (PEREENT)*, 5?2
    ANO 'LOWER CORFIDENCE LIMIT (DERCFNTI* 5?3
```



```
    IF(IPLTA)257,257,258
    520
    427
    SIGRROHTINE CPDINT TAKES AS VARIABLES THE GENERAL ID,IDALLA S?A
    ANR THE DENSITY RHOX. IT DRAWS THE GRID FOR AVG. CIJM. PGRCFNY 520
    MASS LDADING, LARELS THE AXES, AND WRIPES A GENERAL NEAOINGGS
    CONSISTING OF IDALL ANO RHOX. THE MAXIMUMAND MINIMIIM VALUES SII
    MLOUG EACH AXISOXMAX, YMIN,YMAX,AND YMINALONG WITH THE SCALF 5%2
    FACTORS=XS AND YS= ARE RETURNED. 533
```



```
257 CALL CPPLOY(IDALL,DHOX,XMAX,XMIN,YMAX,YMIN,XS,YSI
C 536
E DI = ALOGIO NTAMETEQ
5 53A
25A DI:ALNGIO(.25) 539
```

$c$$c$$c$$c$	NOK $1=1$	540
	NOTE - PLOT BEGINS WITH SAME DI AS TN AVERAGE CUMULATIVE MASS PLOT	541
	NOTE - PLOT BEGINS WITH SAME DI AS IN AVERAGE CUMULATIVE MASS PLOT.	542
	ALSO, NUMBER OF POINTS, LAS, IS THE SAME ONLY EVERY OTHER POINT	543
	IS PLOTTED I.E. WHEN IPLOT - -1.	544
	DO 270 NSLOTEI.LAS	545
c		547
C	DPLOT = DIAMETER	548
c		549
	DPLOTE10.0**D1	550
C		551
C	AVG. CUM, MASS LOAD, UPPER CONFIDENCE LIMIT, AND LOWER	552
c	CONFIDENCE LIMIT ARE CHANGED TO FRACTIONS OF THE AVG. TOTAL	553
C	Mass loading. CONLY AVG. CUM. Mass load. makes this change	554
C	OF VARIABLE IF NOT ENOUGH DATA FOR CONFIDENCE LIMIT8 IE.	555
C	NOCON 1.1	556
c		557
		558
	CLU(NSLOT) ECLU(NSLOT)/ATGL(N)	559
	CLL(NSLOT) =CLL(NSLOT)/ATGL(N)	560
	IPLOT $=(-1) * * N 8 L O T$	561
	IFPIPLTA.E日. 1.0 , IPLOT.NE.-1) 60 TO 260	562
c		563
C	8UbROUTINE STATPT TAKES SAME VARIABLES AS IN Statement iloo	564
c	RUT WITH NDKIEI. POINT IS PLOTPED ACCORDING TO LOG NORMAL	565
C	prorability scale rather than logio scale.	566
C		567
	CALL STATPT (NDK1, NOCON(NSLOT), DI, CUM2D(NSLOT), CLU(NSLOT),	568
	1CLL(NSLOT), XMAX, XMIN, YMAX, YMIN, XS, YS)	569
c		570
c	VARIARLES ARE CHANGED FROM PRACTION TO PERCENT FOR LINE	571
${ }^{\text {c }}$	PRINTER OUTPUT.	572
C 260		573
	CUM2D(NSLOT) =CUM2D(NSLOT) 100.0	574
	CLU(NSLOT) $=C L U(N S L O T) * 100.0$	575
	CLL(NSLOT) =CLL (NSLOT) 1000	576
c		577
c	PHIS WRIte Statement uses format 504 TO PRINT out the	578
C	INTERVAL NSLOT, THE DIAMETER DPLOT IN MICRONS, THE	579
C	MEAN CIJM. MASS LOAD CUMZD (NSLOT), UPPER 90 PERCENT	580
C	CONFIDENCE LIMIT CLU (NSLOT) AND LOWER 90 PERCENT CONFIDENCE	581
C	LIMIT CLL (NSLOT) ALL IN PERCENT.	582
c		583
	IF(NDCON(NSLOT), EQ, 1)GO TO 261	584
	WRITE(3,504)NSLOT, DPLOT, CUM2D(NSLOT), CLU ${ }^{\text {(NSLOT), CLL }}$ (N8LOT)	585
	GO TO 265 (586
C		587
C	IF THERE IS NOT ENOUGH DATA AT THIS DIAMETER FOR CONFIDENCE	588
C	LIMITS, ONLY THE INTERVAL, DIAMETER, AND AVG. ARE PRINTED	589
c	WITH 'INSUFFICIENT DATA* PRINTED FOR BOTH CONFIDENCE LIMITS	590
C	USING FROMAT 503	591
C		592
261	WPITE (3,503)NSLOT, DPLOT, CUM2D(NSLOT)	593
${ }^{C}$		594
C	THE DIAMETEP IS INCREMENTED AND LOOP RETURNS FOR CALCULATIONS	595
C	AT THIS NEW POINT.	596
C		597
265	DIEDItDINC	598
270	CONTINUE	509


```
    IF PLOT WAS MADE READY PEN FOR NEXY PLOT. IF PLOT HAS NOT MADE,
    INCRENENT NOK AND RETURN TO STATEMENT QIS FOR CALCULATIONG OF
    AVERAGE NM/OLOGD.
    IF(IPLTE)304,304,254
    251 WRITE(MPACFLJDAST,DAST,DAST,IBLAK
    IF PLOT WAS MADE, READY PEN FOR NEYT PLOT. IF PLOT WAS NOT MADE,
    INCREMENY NDK AND RETURN TO STATEMENT 13 FOR CALCULATIONS OF
    AVEPAGE DN/DLOGD.
    IF(IPLT2)304,304,254
    IF PLOT WAS MADE READY PEN FOR NEXT PLOT IF PLOT WAS NDT MADE.
    INCREMENT NNK AND RETURN TO STATEMENT I FOP REPEAT OF ALL
    CALEULATIONS USING THE AERODYNAMIC DENSITY.
252 IF(IPLI3)304,300.254
304 XNaXMAX+4.5/XS
    YNEYMIN-2./YS
    CALL FPLOT\O,XN,YNY
        IF(NDK.EO.-1.ANO,NDKI,EQ.0)GOTO 253
25a CONTINUE
    IF(N.ED.1)GOTO 1
1000 STOP
```



```
                                    2BX, 'MEAN CMANGE*,8X, STAN
        IDARD UPPER CONFIDENCE LOWER CONFIDENEE*/OIX, OINTERVAL DIAMET
        2ER IN MASS CONCENTRATION DEVIATION',TX, "LIMIT',I4X, "LIMIT'/,Z
        39x.*(MG/DNH3)*,9X,*(MG/ONM3)*.5X,2(*(MG/DNM3)*.10X))
501 FORMAT(4X,I2,5X,2(IPEQ.2,10X),6X,00-00-0% INSUFFICIENT DATA
    1-*)
502 FORMAT(4X,12,5x,2(1PEQ,2,9x),2(1PEQ,2,5x),5X,1PEQ,2)
```



```
1)
504 FORMAT(4x,12,5x,1PE9,2,7x,1PE9,2,9x,1PE9,2,10x,1PE9,2)
505 FORMAP(4X,I2,5X,2(1PE9,2,10X),2(1PE9,2,5x),5X, (PEQ, 2)
600 FORMAY(IHI,//,IX,80AI/.1X, "RHOE 0,F4.2.0 GM/CCO/.
    g 29X, 'MEAN CHANGEO, OX, 'ETAN
    IDARD UPPER CONFIDENEE LOWER CONFIDENCE*/,IX, 'INTERVAL DIAMET
    2ER IN NUMBER CONCENYRATION DEVIATION',7X,OLIMIT',IGX,OLIMITO/,
    330x, "(NO/ONH3)',10X,2('(NO/DNM3)',5x).5X,*(NO/ONM3)')
700 FORMAT(IHI,//,IX, BOAI/,IX,ORHOE O,FQ,2.'GM/CC*/.
    & 2AX,0MEAN CUMULATIVE UPP 6AG
    IER CONFIDENCE LOWER CONFIDENCE'/OIX,OINTERVAL DIAMETER MASS GO5
```



```
    3)*,10X,*(MG/ACM)*,11X,*(MG/ACM)*/)
701 FORMAT(IMI.//.IX,8OAI/.IX,ORHOE .FFG.2.'GM/CC*/.
    2. 24X,0MEAN CUMULATIVE UPP 649
    IER CONFIDENCE LOWER CONFIOENCEO/FIX, INTERVAL DIAMETER MASS 650
```



```
    3T)*,9X.2(*(PERCENT)',10X))}65
```



```
    & IX,GINTERVALO,3X,ODIAMETER
654
    1*,AX,*RECORDS EXCLUDED FROM MEAN')
704 FORMAT(23X, 'CUMULATIVE MASS CONCENTAATTON*/\) 656
655
706 FORMAT(2SX, 'CHANGE IN MASS CONTRATION•/)}65
656
700 FORMAT(22X, 'CHANGE IN NUMRER CONCENYAATIONO/1) 658
T11 FORMAT(4X,12.5x, &PEQ.2.6x, 'NONEP)
```

600
601
602
603
604
605
606
607
608
609
610
611
612
613
619
615
616
617
618
619
620
621
622
623
624

625
1 2BX. 1 MEAN CMANGE*, BX, 8 SAN 627 IDARD UPPER CONFIDENCE LOWER CONFIDENEE*/,IX, OINFERVAL DIAMEY 628 EER IN MASS CONCENTRATION

502 FORMAT (4X,12,5x,2(1PE9,2,9X),2(1PEQ,2,5X),5X,1PEQ,2)
632
 1)

504 FORMAT $4 x, 12,5 x, 1$ PE9,2,7X,1PE9.2,9X,1PE9,2,10X,1PE9,2)
63
634
635
505 FORMAT($4 x, 12,5 x, 2(1 P E 9,2,10 X), 2(1 P E 9,2,5 x), 5 x,(P E 9.2)$

636
637
638
639
640
641
642

6 24X, 6 MEAN CUMULATIVE UPP 644
IER CONFIDENEE LOWER CDNFIDENCE'/OIX, GITERVAL DIAMETER MASS GAS

646
647

648
649
650
651
652

1 I $I X$, INTERVAL•, 3X, ODIAMETER
654
655

TOB FORMAT(22X, CHANGE IN NUMBER CONCENTAATION•/)
658
T11 FORMAT(4X,I2.5x, 1PE9. $2.6 x,{ }^{\circ}$ ©NONE*)
112 FORMAT(4X,12,5x,1PE9,2,5x,25(1x,12))

SOO FORMAT(10(11))

661
805 FORMAT(F5.1) 662
END 663
SUBROUTINE AVCON(N,IAVLD,NDK,NOCON,ISFIN,VAR,AVG, 1
1AVGH1,CUM2D,CUM2LD,CISUM,SIGMA,CLU,CLL,DINC) 2
 3
C* 4
C* SUBROUTINE AVEON TAKES A LIST OF VARIARLES VAR AND FINDS THEIR 5
C* aVERAGE AVG. IT CALCULATES THE STANOARD DEVIATION 6
C* OF THE VARIABLES SIGMA. CALCULATES A NEW AVERAGE AVG 7
C. BY EXCLUDING ANY OUTLYING DATA. A NEW GTANDARD DEVIATION EIGMA Ω
IS CALCULATED BASED ON THE NEW AVERAGE AND THE REMAINING DATA. 9
C. IS CALCULATED BASED ON THE NEW AVERAGE AND THE R
C. USE THIS PROGRAM FOR SO Y CONFIOENEF LIMITS 10
C 11 12
C
C
C 13
DIMENSION VAR(50) 14
SUMEO.O 15
NUPTSEO 16
SIGMABO.O 17
DO 50 IEN, ISFIN, 2 18
IF(VAR(I))50.40.40 19
40 SUMESUM 4 VAR(I) 20
NUPTS:NUP TS $\$ 1$ 21
50 CONTINUE 22
IF(NUPT8-3)190,65,65 23
65 AVGESUM/NUPTS 24
LLE! 25
120 SIGPAEO.0 26
NUPTSEO 27
C THIS LOOP CALCULATES BUM OF THE SQUARES OF THE DEVIATION 28
C FROM THE AVERAGE. 30
C 31
DO 125 ImN,I $3 F I N, 2$ 32
1F(VAR(1))125.122.122 33
122 SIGPAESIGPA+((VAR(I)-AVG)**2) 34
NUPTSะNUPTS+1 35
125 CONTINUE 36
C STANDARD DEVIATION SIGMA IS CALCULATED AS SQUARE ROOT 37 38
OF PREVIDUS SUM DIVIDEO RY 1 LESS THAN NUABER OF VALUES SUMED.
40REALENUPTS-141
SIGMAESORT(SIGPA/REAL) 42
C 43
C SUBROUTINE CHECKS FOR CONFIDENCE LIMITS IF AVG AND SIGMA HAVE 44
REEN CALCULATED PHE SECOND TIME. 45
C47
RNPTSENUPTS 48
IF(RNPTS-7)205,210.215 49
205 IF (RNPYS-3)206,206,207 50
206 TCRITE1.153 51
6010220 52
207 PCRIT:0.102705+2.22946*ALOG10(PNPTS) 53
GO TO 220 54
210 FCEIT $=1.938$ 55
6010220 56
215 PCAITE0.86552+1.308037*ALOG10(RNDTS) 57
220 8UM 20.0 58
NUPTS=0 59
DO 140 IEN, ISFIN, 2 60
TEARS((VAR(I)=AVG)/SIGMA) 61
62

```
C
```

ANY VALUE OUTSIDE OF THE ALLOWED DEVIATION FQOM AVERAGE IS •TAGGED' 63

```BY SETTING IT EQUAL TO THE ARAITRARY VALUE -50.0. THESE VALUES ARE
```

NOT INCLUDED IN SECDND CALCULATION OF AVG AND BIGMA.

```64
```

IF(T-ICRIT)137,135,135 66

```\(135 \operatorname{VAR}(I)=-50.0\)67
```

68

```137 IF(VAR(I))140.136.138138 SUMASUM+VAR(I)
```

```69
```

NUPTS:NUPTS +1 70
140 CONTINUE

```71
```

IF (LL-2)146,190,190 73
146 IF(NUPTS-3) 190.148 .148 74
148 IVGeSUM/NUPTS 75
LLELL 1 76
C 77
C SIIPROUTINE RETURNS TO STATEMENT 120 FOR SECOND CALCULATION OF SIGMA 78
BASED ON NEW AVG ANO EXCLUSION OF 'EXTREME' DATA. 79
6010120
c

```80A
```

190 SUME 0.0 83
NUPTS = 0 A
AVGE0.0 85
c 86
c sum values and sum number of values to calculate new average 89
hithout "extreme" data. 88
00192 ImN:I5FIN,Z 90

```89
```

IF(VAR(I))192.191,191
SUMESUM*VAR(I) 92
NUPTSaNUPT8 + 1 93
19 Z CONTINUE 94
C taxe average. 95
96
IF(NUPTS.GE.1)AVGBSUM/NUPTI 98
SIGMA:O.0 99
C IF MORE THAN I GOOD' VALUES, FIND NEW STANDARD DEVIATION AND 100
101
CDNFIDENCE LIMITS (GO YO 1195). IF NOT. RETURN NOCDN : 1. 102

```ONETOENCELIMTS IGO 119S).
```

IF(NUPTS.GT.1.AND,IAVLD.EQ.1)G0 TO 1195 103
NOCONA! 105
c 106
keEp RUNNING gUm OF Changes in mass loading up to this diameter 107
IF NOK $=-1$. 108

[F(NDK) $1191,1194,1194$

[F(NDK) $1191,1194,1194$ 110

```109
```

1191 IF(AVG*AVGM1)1192.1192.1193 111
1192 CUM2D=CUMZLD 112
GO TO 119 a 113
1193 CUM2D=CUM2LD+SORT(AVG*AVGMI)*OINC 114
1194 ClUa0.0 115
CLLEO.O 116
RETURN 117
c FIND NEW STANDARD DEVIATION AND CONFIDENCE INTERVAL. 118
C 119
C 120
1195 DO 195 IEN，18FIN， 2 121
IF（VAR（I））195，194，194 122
19a SIGMA日SIGMA＋（（AVG－VAR（I））＊由己） 123
195 CONTINUE 124
REALENUPTS－1 125
SIGMAESORT（SIGMA／REAL） 126
REAL BNUPTS 127
CONINE（SIGMA＊（0．67a＋（0．32＊（（REAL－1．0）＊＊（－1．072）））））／80RT（REAL） 128
C 129
NOK a－I－CONFIDENCE LIMITS ARE POUND FOR AVG，CUMULATIVE 130
MASS LOADING．THIS AVERAGE IS DENOTED AS CUM2D CTO BE 131
DISTINGUISHED FROM AVGI．CUMZD IS FIUND BY ADOING THE AVERAGE
CHANGES IN MASS LDADING OVER AOCIO DIAMETER ONCPEMENT DINC 132
CHANGES IN MASS LDADING OVER A LOGIO DIAMETER INCREMENT，DINC，UP TO TH 133
SPECIFIED DIAMETER，THE CUMULATIVE MASS LOADING UPPER AND LOWER 134
50 PERCENT CONFIDENEE LIMITS ARE FOUND GY ADOING AND SUBTRACTING． 135
RESPECTIVELY，THE ROOT MEAN SQUARE OF ALL DM／OLOGD CONFIDENCE 136
INTERVALS UP TO AND INCLUDING THAT INTERVAL AT THE SPECIFIED 137
DIAMETER． 138
NDK＝ 0 －CONFIDENCE LIMITS $\triangle R E$ FOUND FOR AVG．DMIOLOGD．THESE 130
UPPER AND LOWER 50 PERCENT LIMITE ARE FOUND BY ADDING AND SURTRACTING， 140
RESPECTIVELY．THE CONFIDENCE INTERVAL CONIN TO THE AVERAGE 142
dm／Dlogd value at that diameter，avo． 143
NDK $: 1$－CONFIDENCE LIMITS ARE FOUND FOR AVG．DN／DLOGD IN 144
THE SAME MANNER AS FOR AVG．DM／DLOGD． 145
THE SAME MANNER MS FOR AVO．OMADLOG． 146 147
IF（NDKJ150．160．160
IF（NDKJ150．160．160 148
150 （F（AVG＊AVGM1）152．152．153 149
152 CUMZDECUMZLD 150
GO TO 155 151
153 CUM2DECIMM2LO＋SORT（AVG＊AVGMI）＊DINC 152
155 CISUMaCI8UM＊CCONIN＊＊2．0） 153
CLUaCUM2D＋（SORT（CISUM）＊DINC） 154
CLLECUM2D－（8ORT（CISIM）＊DINC） 155
RETURN 156
160 CLUEAVG＋CONIN 157
CLLEAVG－CONIN 158
RETURN 159
END 160
BLOCK DATA I
REAL MU
COMMON/BLOCKI/PS(8), MU, POA,DPA, TCI,FG(5),DELP(8, a)
DATA DELP/0,0,0.0,0,0,0.0,0.0,.176.,294,1.0.
$10.000,004, .008 .014, .045, .143 .1 .000,0.000$,
$20,000,0,000,0,000,0,000,0,057,0,366,1,000,0,000$.
$30.0,0,0,0,0,0,0,0.045,0.216,1,000,0.0001$
ENO
clock data 1
INTEGER X (8.4) 2
QEAL MM, 1 (8) 3
COMMNN/BLOCK2,TKI,MM.L.RHO, O, DPC(8),CYC3,X,OC(8,6,4) a
ANDERSEN IMPACTOR NUMBER OF HOLEE PER BTAGE. 6
DATA X/264.264.264.264.264.264.264.156.BRINK IMPACTOR NIIMBER OF HOLES PER BTAGE.$\stackrel{7}{7}$0
11
11.1.1.1.1.1.1.0. 12
U. OF . m. IMPACTOR NUMBER OF HOLES DER SPAGE. 1413
$21.6 .12 .90 .110 .110 .90,0$. 615
MRI IMPACTOR NUMBER OF MOLES PER GTAGE 19
36.12.24.24.24.20.12.01 19 20
ANDERSEN IMPACTOR PLATE SET- $1:$ 21 22
23
DATA DC/. $1632, .1233, .0954, .0702, .0597, .0368 . .0254, .0255$. 24
25 26

ANOERSEN IMPACTOR LATE SET- 2 :

ANOERSEN IMPACTOR LATE SET- 2 : 27 27
1.1632..1253..0949..0749..0569..0369..0250..0257. 28
30
ANDERAEN IMPACTOR PLATE SET- 3: 31
2.1671...1281,.0953.,0780,.0547,.0359,.0269.,0253, 32
34
ANOEREEN IMPAETOR PLATE SET. B. 35
3.1621..1263. .0946..0759..0581..0355,.0258,.0245, 36 37
ANDERSEN IMPACTOR PLATE 8ET. 7. 38
4.16?1,.1240,.0935,.0751,.0563,.0350..0264..0250, 40 4
ANDFRSEN IMPACTOR PLATE BET: 6, 43
5.1651...1240,.0951..0974..0565..0346..0266..0245,44
gRINX IMPACTOR STAGE SET. A. 46 47
0.3554,.2422..1979..1364,.0884, 0705,.0523,.0000. 45 49
HRINK IMPACTOR STAGE SEY - B. 5150
7.3618,.2410,.1737,.1366,.0918,.0719,.0566,.0000, 53
BRINK IMPACTOR STAGE SET © C. 55
C
$9.3560,2061, .1778, .1368,0937, .0739,0550,0000$, 61
, 0000, $00000,00000,00000,0000,00000,0000,00000$, 62
$8.0000,0000,0000, .0000,00000,0000, .0000,00000,63$
$U_{\text {. OF }} \mathrm{W}_{\text {. PILAT IMPACTOR STAGE SET }}$ = A. 65

C $1.82372, .5768, .2501, .0808, .0524, .0333, .0245, .0000$.
U. OF W. pilat impactor stage bet - B.
02. $82372, .5822, .2458, .0802, .05040 .0340, .0323, .0000$,
U. OF W. PILAT IMPACTOR BTAGE SET = C. 73
70
E1.82372.,5874., 2459,.0807.,0532..0376..0260.,0000, 75
U. OF W. PILAT TMPACTOR STAGE SET - D. 77
$59.82372543,2512,079300950330.0229000,10$
$6.0000,0000,00000,00000,0000,0000,00000,00000$, An

MRI IMPACPAR
1090) 84

$K .000 .000,000,000, .000,000,0000,000, \quad 57$

M. $000, .000,000,000,0000.000, .000,000, \quad 89$
$N .000 .000,000.000, .000 .000 .0000 .0001$
END 91

	SUBROIITINE CPPLOT (INGEN, RHO, XMAX, XMIN, YMAX, YMIN, XS, YS)
[*	SURROUTINE CPOLOT DRAWS THE GRID FOR CUMULATIVE PEREENT MASS
C*	LOADING VS. PARTICLE DIAMETER. IT DRAMS AN ORDINATE NORMAL
[*	PROBARILITY SCALE LABELING IT 'CIJMLLATIVE PERCENTP AND AN ABSCISSA
c*	LDGIo SCALE LABELING IT 'PARTICLE DIAMETER (MICROMETERS)*.
E*	THE GRID IS LABELED WITM THE IDENTIFICATION LABEL ID AND DENSITY
c*	RHO.
DIMENSION IDGEN(BO)	
C	
C	THE MINIMUM AND MAXIMUM Y VALUES Shown on the grid mill be . 01
C	AND 99.99 Blit must call NDTRI IN ORDER TO ESTABLISH THE MINIMUM
C	AND MAXIMUM Y Values, ymin and ymax. in terms of the normal
C	PROAABILITY SCALE.
C	
	CALL NDTRI(0.9099, YMAX, D, IE)
	CALL NDTRI(0.0001, YMIN, D, IE)
c	
C	LENGTH IF X - \triangle XIS (IN INCHES).
c	
	XINCH=4.5
c	
C	LENGTHIF Y - AXIS (IN INCHES).
C	
	VINCHE6.5
c	
C	XMAX AND XMIN ARE THE MAXIMUM AND MINIMUM X VALUES IN TERMS OF THE
c	LOGIO SCALE. ALSO XMIN IS Phe X Value of pen location when this
C	Subrouline is called.
c	
	XMAXEALOG10(100.)
	MMINEALOG10(.1)
c	
c	YS AND YS ARE THE X AND Y SCALE FACTORS (IN INGHES/USER'S UNIT).
C	
	XSEXINCH/(XMAX-XMIN)
	YSEYINCH/ (YMAXOYMIN)
c	
c	Yo is the y value of pen location when this subroutine called.
ε	
	YOEYMIN-2./Y8
c	
c	SUGROUTINE SCALF STORES THE SCALE FACTORS AND PEN LOCATION
c	COORDINATE VALUES FOR USE BY the plotter.
C	
	CALL SCALFEXS,YS,XMIN,YO)
ccc	fhis section draws fhe y axis and labels it.
C	
	CALL FPLOT(O, XMAX,YMIN)
	IMINEI
	IMAXE25
C	
c	SUBROUTINE YPROB DRAWS TME Y AXIS ANS LABELS IT USING A NORMAL
c	PRORABILITY SCALE. THE RANGE IS DETERMINED BY IMIN AND IMAX
C	WHICH ARE INTEGER CODES FOR DESIRED VALUES OF MINIMUM AND MAXIMUM
c	
c	the ath argument e o is code to label axis to the left.

C
CALL YPROR (XS,YS,XMIN, O,IMIN,IMAX) 60
XCS=. 15 61
YCSE. 15 62
XEXMIN-1.0/Xs63
YE($\mathrm{YMAX-YMIN)/2.0)+YMIN-((9.0*YCS)/YS)}$ 64 65
PI=3.1015
CALL FCHAR(X,Y,XCS,YCS,PI/Z,) 66
WRITE 'Cumulative percent. along y axis. 68
C
C 69
WRITE(7,3) 70
CCC PHIS SECTION DRAHS THE X - AXIS AND LARELS IT. 72 72
C 74IXRANEXMAXIXMINCALL XSLBL(XS,YS,XMIN,YMIN,IXRAN,XMIN)75
CALL XLOG(XS,YS,XMAX,YMIN, -1, IXRAN) 76
$X=((X M A X=X M I N) / 2,0)+X M I N=((16,0 * X C S) / X 8)$ 7877
YaYMINe(.7/YS)
CALL FCHAR(X,Y,XCS,YCS.0.)79
WRITE PPARTICLE DIAMETER (MICROMETERS). BELOW X - AXIS. 81
C
C 82
WRITE(7,2)A 3
This section writes the identification label io and the particle 85 85
c A6
DENSITY RHO (IN GM/CC). CC 87
c 8
XEXMIN 89
YEYMAXt. $5 / Y S$ 90
XCSE. 056 91
YC8 $=100$ 92
DO 30 I=1.79 93
Ja 80 - I 94
IF(IDGEN(J).NE.IBLAK)GO TO 40 95
30 CONTINUE 96
JE 1 97
40 CALL FCHAR $(X, Y, X C S, Y C S, 0$, 98
WRITE(7,5)(IDGEN(I),IE1, J) 99
XEXMIN 100
YEYMAXt. $25 / \mathrm{YS}$ 101
CALL FCHAR(X,Y,XCS,YCS,O.) 102
WRITE(7.6)RHO 103
RETIJRN 104
3 FORMAT(IX, ©CUMULATIVE PERCENT") 105
2 FORMAT(IX, "PARTICLE DIAMETER (MICROMETERS)") 106
5 FORMAT(IX,BOAI) 107
6 FORMAT(IX.'RHOE P,FA.2.'GM/CC') 108
END 109
SUBROUTIME CUM 1
C THIS SUBROUTINE CALCULATES THE CUMMULATIVE MASS AND CUMMULATIVE 3 percent distribution at each stage. 4
REAL MASS(9),MU 6
COMMON/BLOCKI/PS(8), MU, PDA,DPA,TCI,FG(5) 7
COMMON/BLOCK3/MASS,F,DUR,TKS, CUMM(9), PERCU(9), 9
IGRNA, GRNS, GRNAM,GRNSM 10
COMMON/BLOCKS/NCUM, MPACTY, MPACNO, NMASS 11
SUMEO.0 12
0050 IEI, NMASS 13
SUMESIJM+MASS(I) 10
CUMM(I)ESUM 15
50 CONTINUE 16
DO 60 IEI, NMASS 17
PERCU(I) (CUMM(I)/SUM) 1000 18
60 ETNTINUE 19
grna is fhe total mass loading in grains per actual cubic foot. 21
GRNA $=\left(3 U^{\prime} * 15.4324\right) /(F \# D U R)$ 22
GRNS IS THE TOTAL MASS LOADING IN GRAINS PER NORAAL DRY CUBIC FOOT. 20
GRNS = ((SUM*15.4324)/((F.DUR*294.0*POA)/(TKS*1.0)))/(8.0-FG(5)) 26
gRNaM IS ThE TOTAL MASS LOADING IN MILLIGRAMS PER ACTIAL CUBIC 26
METER. 30
GRNAMEGRNA*2288.34 31
c
GRNSM IS THE TOTAL MASS LOAOING IN MILLIGRAMS PER NORMAL DRY 33
CUBIC METER. 35
GRNSMAGRNS*228A.34 37
c
NORMAL (ENGINEERING STANDARDI CONDITIONS ARE 21 DEG C AND $76 O M M$ HG, 39
RETURN 41
END 42

C AND THE SCALE FACTORS XS AND YS (IN INCHESIUSER'S UNITI. 60
61
CALL CPPLOT(ID,RHO, XMAX, XMIN, YMAX,YMIN, X8,YS) 62
C
READ NUMBER OF INTERVAL BOUNDARY POINTS NINT (USED IN MAKING63
FIT TO LOGIO(CUM. MASS LOADING) DISTRIGUTION IN SPLINI), THE
6564POINT VALUES (XI,Y1), AND THE FITTING 2ND OEGREE POLYNOMIAL
66COEFFICIENTS QVER THE INTERVALS COE.
READ(11.IS)NPOTN 6867
INYENPOIN-I 70
READ(II-IS)NPOIN, (XI(I),I®I,NPOIN), (YI(I),IEI,NPOIN), 71
$1((\operatorname{COE}(I, J), J=1,3), I=1, I N T)$ 72 73
WRITE THE IOENTIFICATION CODE IO ANO THE DENSITY RHO ON LINE
WRITE THE IOENTIFICATION CODE IO ANO THE DENSITY RHO ON LINE
PRINTER.
PRINTER. 74 74
C
C
C
C 75 75
WRITE(3,901)ID,RHO76
78
IN THIS LOOP. CALCULATIONS FOR CUM. X START AT LOGIOR. 25 g MICRONS 79

 AND ARE made at Every oi INEH along the axis up to maximun x 80
axis limit. points are plotted for all of these caleulations 81
(RESULTING IN A SMODTH SOLID CURVE). AT CALCULATED INTERVALS A 82
POINT IS LISTED DN THE LINE PRINTER. 83
DO 750 1: 1.601 85
DETERMINE THE INTERVAL OF FITTING, NINT. IN WHICH THE DIAMETER 86 87LIES.
DN 510 KEZ.NPOIN 988
LEK 91
IF(OLD.LT.XI(K))GO 10520 92
510 CONTINUE 93
520 NINTEL-1 94
PPP=COE(NINT,I) 95
PPDALOGIO(CUMULATIVE MASS LOADING) 979698
00530 LE2.3 99
530 PDPEPPP+COE(NINT,L)*OLD**(L-1) 100
PDP HERE 15 CHANGED BACK TO CUM. MASS LOADING AND DIVIDED BY 101 102MAXIMIM MASS LOAOING GRNAM TO YIELD PPP E CUM. FRACTIONAL MASS
LOADING WHIEH IS THE PLOTTING ORDINATE VALUE.103105
PPP=(10.0.APPR) AGRNAM PPPa(10.0**PP日)/GRNAM 106DPLOT E ALOGIo(DIAMETERJ WHICH IS THE PLOTTING ABSEISAA VALUE107
109
DPLOTEOLD grotaolo 110
SURROUTINE NDTRI TAKES THE FRACTION PPP AND RETURNS ITS NORAAL 1) 2111
pronarility equivalent value yv. 113
114CALL NDYRI(PPPP, YV,D,IE)
116115
IF PPP , 9990 , YV IS SET E TO AN AREITRARY NUMBER $>$ THE NORMAL 117
PROBABILITY VALUE FOR .9999 WHICH IS +5.719124a. 118

	IFPPPP.GT. 9 9999)YVE4.0	120
C		121
c	IF PPP \& $0001 . \mathrm{YV}$ IS SET \quad PO AN ARPITRARY NUMBER \& PHE NORMAL	122
c	PRCRABILITY VALUE FOR . 0001 Which IS -3.7191244.	123
c		124
	IF (PPP.LT..0001)YVE=4.0	125
C		126
c	CHECK DPLOT AND YV TO SEE IF PHEY ARE WITHIN PLOTTING LIMITS. IF	127
C	NOT, XVAL (OR YVAL) SETS THE [NPUT VARIABLEE TO A VALUE WHICH	128
C	LIES . 15 INCH OUTSIDE GRID.	129
C		130
	YN=YVAL (YV, YMAX, YMIN, YS)	131
	XNEXVAL (DPLOT, XMAX, XMIN, XS)	132
c		133
C	FPLOT MOVES PEN TO (XN, YN) ON EACH TRAVERSE OF PDO 750° LOOP	130
c	draming Smonim curve for cum. x Mass loading vs. diameter.	135
C		136
	IFI.EQ.1) 60 TO 725	137
	CALL FPLOT ($0, X N, Y N$)	138
	GO TO 730	139
725	CALI. FPLOY($=2, X N, Y N$)	140
C		141
c	AT DI = DLD, DIAMETER AND CUMULATIVE PERCENT ARE PRINTED.	142
C	THEN DI WILL BE INCREMENTED BY dinc so that no values will be printed	143
C		144
C		145
730	IF(DI-DLD)735.735,740	146
C		149
c	DPLOT IS CHANEEO FROM LOGIO(OIAMETER) TO DIAMETER FOR PRINT OUT.	148
c		149
735	DPLOT=10.0**DPLOT	150
c		151
C	PPP IS CHANGFD from cumg fractional mass loading to cum. percent	152
C	MASS LOADING FOR PRINT DUl\|	153
C		154
	PPPEPPP +100.0	155
	$J=J+1$	156
c		157 158
C	WRITE ON LINE PRINTER POINT INOEX NUMAER, DIAMETER, ANO CUM, PERCENT	158
C	Mass loading less fhan this diameter.	159
	WRITE(3,905) J, DPLOT, PPP	161
c		162
c	INCREMENT Dit	163
C		164
	O1501+DINC	165
C		166
C	INCREMENT DLD	167
c		168
740	OLD=DLD $+01 / \times 5$	169
c		170
e	UNLESS THIS DIAMETER VALUE IS a DR \rightarrow MAXIMUM SPECIFIED PLOTIING	171
e	DIAMETER VARIABLE DLDF. CONTINUE WITH CALCULATIONS FOR NEXT	172
c	DIAMETER.	173
c		174
	IF(DLCOLDF)750,795,795	175
750	CONTINUE	176
c		177
c	at enn of plotting, raise pen ano move it to base of plotter a. 5	178
C	INCHES REYOND GRID - READY FOR NEXT PLOT.	179

 181
YNEVMIN-2./VS 182
CALL FPLOT (\$1, XN, YN) 183
 184
1.RX. 'INTERVAL". 14X."DIAMETER". BX. PPERCENT CONCENTRATION"/. 185
$230 x .{ }^{\circ}($ MICRONS $\left.) \cdot / 1\right)$

186
905 FORMAT(11x.12,ax,2(13x,1PEQ.2)/) 187
RETURN 188
ENT 189

c 120
c ThIS ITERATIVE LOOP CONTINUES UNTYL CONVERGENCE WITHIN O.IT. 121
C 122
C 123
DO 30 IaI,NCUM 124
$C=0.0$ 125
DPC(I) ms('Bel.MPACTY) 126
4 DPCI=DPCCI) 127
IFPNAERO.NE.I.OR.RHO.GT.1.0J00 TO 5 128
CEI. 0 129
GO 106 130
5 131
1/L(I)) 132
6 DPC(I)=1.43E04*ERPSI(I,MPACNO,MPACTY)/.36*(SQRT(MU*X(I,MPACTY) 133
1*(DC(I.MPACNO, NPACTY)**3)*P8(I)/(RHO*Q*AT2.0*POA*C)) 134
[F(AB8(1.0=(DPC(I) IOPCI))=0.001) 30.30.4 135
30 CONTINUE 136
IF(MPACTY.NE.2)RETURN 137
CYC3E(199.5*80RT(MU/(RHO*O))) 130
RETURN 139
END 140
SURROUTINE DMDNGD 1
This subroititne caleulates the size oistribution on a mass basis a2
ANI ON A NIMRER BASIS．ALSO，GEOM．MEAN DIAMETERS ARE FOUND． 5（
REAL MMAL（A）6
OIMENSION DIFF（9） 7
COMMON／ALOCKZ／PKI．MM，L．RHO．O．DPC（8），CYCS 9
COMMON／BL OCKA／RA，REYN1（7），REYNZ（7），FD（7），MC 3，YS．DMAX，GGRNS（9），MOO． 10
InMOLD（Q），DNDL $\cap(9)$ ，GEOMD（ 9 ） 11
COMMON／RLOCKS／NCIM，MPACTV 12
 13
 14
 15
 16
 17
2E8／DN（N） $.10 \mathrm{X}, \mathrm{Q}(1$ PEQ．2．IX）$)$
 18 19
 20
2＇DN／DLOGD（NO．PARTICLESIONCN）＇，20x．6（1PEQ．2．1x）．11x．1PEQ．2） 21
SOA FORMAT（INO，2X，GEO．MEAN DIA．（MICROMETERS）$, 21 X, B(1 P E Q, 2,1 X), 1 / 3 X$ 22
 23
2ESIDNEM）：，20X，A（1PEQ，2，1X）） 24
 25

 27
 2 月
 29
2ES／DN（4） $.30 \mathrm{X}, \mathrm{T}(1 \mathrm{PEQ}, 2,1 \mathrm{X})$ ） 30
3115 FORMAT（IHO，PX，＂GEO．MEAN OIA．（MICROMETERS）O，11X，O（IPFQ，2，1X），1／3X 11
 $3 ?$
（ES／ON（M）＇， $10 x, 0(1$ PEQ，2．1X））
 34
 35
 36
GO TO（260，10，360，360），MPACTY 37GOR A BRINK INPACTOR USED IN A CONFIGURATION OF CVCLINE，SO，BI，：．S5，39
STATEMENTS 10 THIR 70 APPLY TO THE CALCULATIONS OF OMOLD（I），TFOMDPI）39
ANO DNDLC（I）． 41
10 IF（MC3）50．50．60 4302
60 NS $-49+3$ 44
NSIENS：！
DIFF（I）IS THE DIFFERENCE IV THE COMMON LOGS OF THE SPAGE OSO०S． 06
c 47 4 4
OIFF（1）EALOG1O（OMAX）＝ALOGIO（CYC3） 49
OIFF（2）：ALCGIO（CYC3）＝ALOG10（DPC（1）） 50
0071 I\＆ $1 . \mathrm{ms}$
71 DIFF（I＋2）aALOG10（DPC（I））－ALOG10（OPC（I＋IJ） 51
DIFF（NS）$=0.30103$ 53
ののの54
DMDID（Y）IS A DIFFERENTIAL SIZE DISTRIHUTION ON A MASS BASIS． 55
DO 72 I $=1$ NS 1 56
72 DMDLD（I）\quad GGRNS（T）／DIFF（I） 5 R
DMDLO（NS）＝GGRNS（9）／DIFF（NS） 59

131 DIFF(I+1) =ALOG1OPDP(I+1))=ALOG10(NPC(I+2)) 120
DIFF(AS)=0.3n103 121
DO 132 IE1.MS 172
132 DMOLD(I) BGGRNS(I +2)/OIFF(I) 133
DMDLD(NS)EGGRNS(9)/OIFF(NS) 124
GEOMD (1) =SART (DMAX*חPC(2)) 125
00 133 IE2.MS 126
133 GEOMD(I)ESORT(DPC(1)*DPC(I+1\}) 127
GENMO(NS) 20.707107 EDPC(NS) 17 A
DO $134 \mathrm{I}=1 . \mathrm{NS}$ 129
 130
C WRITE THE GFOMD(I), DMPID(I). AND ONDLD(I). 131 132
1F(4S-5)135,135,136 133 134
135 WRITF(3.509) (GEOMD(I).IE1.6), (OMDLD(I).IE1,6).(DNDLN(I),IEt.6) 135
60 TR 150 136
 137
GOTO 150 13 A
260 NSEA 139
GO 10270 140
360 NS:7 141
270 NS 1 ENS + 1 142
NSMIENS: 1 143
DIFF(I) =ALOGIO(OMAX)-ALOGIO(DPC(1)) 144
DO 27! 18!.NSM! 145
271 DJFF(Iti)sALngin(DPC(I))=ALOG10(APC(T+1)) 146
DIFF(NSI): 1.30103 107
DN ? 72 IEI.NSI 148
272 DMnI. D(I)EGGANS(I)/חIFF(I) 149
GERMD(1) =SART(DMAX*RPC(1)) 150
On 273 1E2.NS 151
273 GEOMCPI)ESORT(NDC(IEI)*OPC(I)) $15 ?$
GERMN(NS1):0.707107EnPC(NS) 153
OC 274 JE1. NSI 154
 155
Gก P (275.275.375.375),MPACTY 156
c 157
C WFITE THE GEOMD(I).DMDLD(I). AND DNDI.N(I). 158
 160150
GO Tח 150161
375 1ん?
150 CONTINIE 163
RETUIEN 1ヵ4
ENS 165
180 CAROS ON TAPF
STOP OOONOO
SUBROIITINE FPLOT（I，X，Y） 1
C
DATA $3 \times / 100 . / .3 Y / 100.1 / R I N C / 100.1 / L O T S / 7 /$ 2 3
C 4
RND $(X X)=X X+$ SIGN（．5．$X X)$
c 5
Jモ！ 7
MODEER 8
IF（J） 60.60 .50 9
50 MODEE3－（Si＝2＊（J／2）） 10
60 IXERND $(8 X * X)$ 11
IYERND（SY＊Y） 12
WRITE（LOTS）MDDE．IX．IY 13
Jew J 14
IF（J） 70.70 .65 15
65 MNDE円1－（J－2＊（J／2）） 16
WRITE（LOYS）MODE 17
70 RETIIRN 18
ENTRY SCALF（XS，YS，XZ，YZ） 19 20
MODE＝ 7
SXIRINC＊XS 22
SYERINC＊YS 23
IXERNO（SX＊XZ） 24
IYERND（SY：YZ） 25
WRITE（LDTS）MODE，IX，IY 26
RETIURN 27
C
ENTRY FCHAR（XB，YB，W，H，TH） 28
IXERND（RINC＊W） 29
IYERND（RINCHH） 31
IF（IX，LE，O）IXE 10 32
IF（IY．LE．O）IYEIO 33
JSINE65536＊（SIN（TH）） 34
JCOSE65536＊（COS（TH）） 35
MODE $=10$ 36
WRITE（LOTS）MODE，IX，IY．JSIN，JCOS 37
IXERND（SX＊XB） 38
$I Y=R N D(S Y * Y R)$ 39
MODE＝？ 40
WRITE（LUTS）MODE，IX，IY 41
RETURN 42
C 43
C 44
EHTRY FGRIO（I，X，Y，U，M） 45
MODE E？ 46
IXOERND（SX＊X） 47
IYO＝RND（SY由Y） 48
WRITE（LOTS）MODE，IXO，IYO 49
MODE＝？ 50
WRITE（LOTS）MODE 51
MODE＝9 52
MODE B＝ 8 53
LIMITEM＋1 54
IF（I．ED．2＊（1／2））GO 10100 55
$M Y Z=0$ 56
$M Y 1=0$ 57
$m \times 1=5$ 58
$M \times 2=-10$
$M \times 2=-10$ 59 59
IXEIXO 60
60 TO 150 61
100 MYias 62
MY2E=10 63
MXI=0 64
MX2=0 65
IYEIYN 66
150 DO 20n INDEXER.LIMIT 67
UIEINDEX:U 68
IF(I.EQ.2*(I/2)) G TO 160 69
IYERND(SY\&UI) 70
IF(I.EO.3) IYE=IY 71
IYEIYO+IY 72
6010170 73
160 IXERND(SX*UI) 74
IF(I.EQ,2) IX:-IX 75
IXEIXO+IX 76
170 WRITE(LOTS) MODE,MXI,MYI 77
WRITE (LOTS) MODE,MXZ,MYZ 78
WRITE (LOTS) MODE,MXI,MYI 79
IF (INDEX.ED.LIMIT) GO TO 200 80
WRITE(LOTS) MODEB,IX.IY 81
200 CONTINUE 82
MODE EO 83
WRITE (LOTS) MODE 84
RE TURN 85
END 86

SUBROUTINE JOEI		
C*	SUAROIITINE JOEI PLOTS THE FITTED CURVE FOR THE CUMULATIVE MASS	a
[*	LOADING (MG/ACM) VS, DIAMETER (MICRONS) . THE GRID HAS ALREADY	5
C*	BEEN DRAWN BY WALLYI.	6
C*		7
C**		
INTEGER VV		
OOURLE PRECISION XNDPEN(10), YO(10) 10		
DOURLE PRECISION OLOG10 11		
DIMENSION IDALL (80),GEMAX(2),GEMIN(2), DMMAX(2),DMMIN(2),DNMAX(2) 12		
DIMENSION DNMIN(2),OPMAX(2), DPMIN(2),CUMAX(2),CUMIN(2),ID(80) 13		
DIMENSION DPC(8).CUMG(8).DMDLD(9),GEOMD(9).DNDLD(9) 14		
DIMENSION FILSPL(2),COE(50,3) 15		
DIMENSION XI(51),YI(51) 16		
COMMON IMPAC, IDALL, RHOI, GEMAX, GEMIN, DMMAX, DMMIN, DNMAX, DNHIN 17		
COMMON DPMAX, DPMIN, CUMAX, CUMIN,ISIZI,ISIZ2,I8IZ3 18		
COMMON IS,NFIT,ID,RHO, DMIN,TKS,POA,FG(5), DMAX, DPC, CUMG, DMALD		
COMMON GEOMO. ONDL		
COMMON ISIG, XMAX,XMIN,YMAX,YMIN,XS,YS 21		
COMMON CYC3,MC3,MOO,MS 22		
COMMON XNDPEN 23		
	CALL DEFINE (11,507,100, FIL8PL, $110,0,0,0)$	25
C 26		
C	NPOIN - NO. DF INTERVAL ROUNDARY POINTS DEFINED FOR CURVE FIT	27
c	TO LOGIO(CUMULATIVE MASS LOADING) VS. LOGIO(D50).	28
C	($\mathrm{XI}_{1, Y 1 \text {) - BOUNDARY POINT VALUES }}$	29
c	CoE - Fitting sfcond degree polynomial coeeficients for each of	30
c	THE INT INTERVALB.	31
C C 32		
	READ(11'IS)NPOIN	33
	INTENPOINEI	30
	READ(IIPIS)NPOIN, (XICI),IEI,NPOIN), (YI (I),IEI,NPOIN),	35
	1((COE(I,J), J=1,3),181,INT)	36
C ${ }^{\text {c }}$		
${ }^{\text {c }}$	OSMA - SMALLEST DIAMETER PLOTTED FDR THIS RUN. FIRST VALUE OF	38
c	OIAMETER VARIABLE OLD IS SET HERE.	39
c	dLof - Lasy value for which cumulative mass loading value is	40
C	FOUND. HERE IT IS SET a TO THE MAXIMUM X LIMIT OF PLOT.	41
C		42
C	NOTE: THE EQUATION USES LOGIO(ORIGINAL VALUE) SINCE THIS IS	43
e	FORM OF VARIARLE IJSED TO OBTAIN FIT, (İE, BOTH DIAMETER AND	44
c	CUM, MASS LOADING $A R E$ PUT IN THIS FORM FOR FITTING.)	45
C 46		
	DLDaALOG10 (DSma)	47
	DLOF =XMAX	48
	IF (Dmax.LT, 100.) DLOFEALOGIO(OMAX)	49
C THIS 50		
C	THIS LDOP CALCULATES A LOGIO(CUM. MASS LOADING) FOR EACH	51
c	LOGIO(DIAMETER) AND PLOTS LOGIOCCUM. MASS LOADING) VS.	52
C	LOGIO(DIAMETER).	53
e		54
	$00750 \mathrm{I}=1.601$	55
c		56
c	Thts lnop finns the interval nint which contains the oiameter	57
c	VARIARLE VALUE OLD.	58
c		59

DO 20 KE2,NPOIN 60
JEK 61
IF(DLD.LY.XI(K))GO TO 25 62
20 CONTINUE 63
25 NINTEJーI 6465
CALCULATE LOGIOCCUMULATIVE MASB LOADING) PPP USING APPROPRIATE ZND 66
DEGREE POLY. COEEFICIENTS, COE(NINT,J).IEI.J. 6768
PPPaCOE(NINT.1) 70
DO 30 LE2. 3 71
PPPEPPP*COE(NINT,L)*OLD**(L-I) 72
30 CONTINUE 73
C LOGIO(CUM. MASS LOAD.) VS. LOG10(DIAMETER) IS PLOTTED. 74C
75
75XNEXEXN UNLESS XNEX FALLS OUTSIDE BOUNDARIES OF GRID. THEN
FUNCTION XVAL ASSIGNS A VALUE TO XNEX JUST OUTSIDE AXIS. 76
77VVAL IS A SIMILAR FUNCTION FOR YNEX.
79XNEXEDLD
80
XNEXVAL (XNEX, XMAX, XMIN, XS) 81
YNEXEPPP 82
YNEYVAL(YNEX, YMAX,YMIN,YS) 63
IF (I.EQ.1)GO TO 725 80
CALL FPLOT(O,XN,YN) 85
GO 10730 86
725 CALL FPLOT(-2.XN, YN) 87
C
LOG10 DIAMETER IS INCREMENTED TO THE VALUE CORRESPONDING TO 1/100 88$\stackrel{C}{c}$INCH FURTHER ALONG THE AXIS (SMALLEST INEREMENT POSSIBLE) AND CHECK90
made for last desired diameter. plotting continues until old ${ }^{\text {OLDF. }}$ 91
730 OLDEDLD*.0s/xs92
e94
IF(DLD-OLDF)750.795,795 95
750 CONTINUE 96
795 CALL FPLOT ($+1, X N, Y N$) 97
c
C MOVE PEN TO RASE LINE OF PLOT PAPER AND G.SNCHES BEYOND XMAX. 98 99
c Leave pen up, ready for next plot called. 100
900 XNEXMAX+4.5/XS 102101
VNEYMIN-Z./VS
CALL FPLOT(O,XN,YN) 103
104
RETURN 105
ENO 106
SIJRROUTINE JOE？ 1
 2
C由 SUBROUTINE JOER CALCULATES AND PLOTS CHANGE IN MASS CONCENTRATION， 3
C由 DM／DLOG（MG／DNMS）VS PARTICLE DIAMETER（MICRONS）USING THE 4
CH DERIVATIVE EOIJATION FOR CUMUALTIVE MASS LOADING FIT POINTS ARE 5
C＊PLOTTED ON GRID MADE BY WALLYZ．A LINE PRINT OUT OF THE POINT 6
C由 VALUES IS MADE．A SIMILAR PLOT AND PRINT OUTPUT ARE MADE FOR 7
C＊CHANGE IN NO．CONCENTRATIDN，DN／OLOGD（NO／DNM3）．THE GRID USED HERE IS 8
C由 PRODUCED IN WALLY3． 9
 10
INTEGER VV 11
DOURLE PRECISION XNDPEN（IO），YO（10） 12
DOURLE PRECISION DLOGIO 13
OIMENSION IOALL（BO），GEMAX（2），GEMIN（2），DMMAX（2），DMMIN（2），DNMAX（2） 14
DIMENSION DNMIN（2），OPMAX（2），DPMIN（2），CUMAX（2），CLMIN（2），ID（80） 15
DIMENSION DPC（8），CUMG（8），DHDLD（9），GEOMD（9），ONDLD（9） 16DIMENSION X1（51），YI（51）
OIMENSION FILSPL（2），COE（50，3） 17
COMMON IMPAC，IDALL，RHOI，GEMAX，GEMIN，DMMAX，DMMIN，DNMAX，DNMIN 18
COMMON DPMAX，DPMIN，CUMAX，CUMIN，ISIZI，ISIZZ，ISIZ319
COMMON IS，NFIT，ID，RHO，DMIN，TKS，POA，FG（5），DMAX，DPC，CUMG，DMDLD 20 20
COMMON GEOMO，DNDLD，GRNAM，MPLOT，OSMA，VV 22 2221COMMON ISIG，XMAX，XMIN，YMAX，YMIN，XS，YS
COMMON CYC3．MC3．MOO，MS 23 24
COMMON XNDPEN
DATA FILSPL／EFILSPO．$L B I N * /$ 25
26
CALL DEFINE（11．507，100，FILSPL，I10，0，0，0） 27
c
c ISIGEI FINDING CHANGE IN MASS CONCENTRATION，DM／DLOGD 28 29
ISIGEG FINDING CHANGE IN NUMBER CONEENTRATION，DN／DLOGO 30
WRITE COLUMN MEAOINGS AT TOP OF PAGE ON LINE PRINTERI 2 33
＂INTERVAL＂，＇OIAMETER＂．AND＇CHANGE IN MASS CONCENTRATION（MG／DNMS）＂ 34
OR＇CHANGE IN NUMBER COMCENTRATION（NO：IDNM3）＂． 35
IF（ISIG．ER．1）WRITE（3．140）ID，RHO 36
IF（ISIG，EQ．6）WRITE（3，240）ID，RHO 38
39DIVIDE THE X AXIS BETWEEN 25 MICRONS AND 100 MICRONS INTO 35
40LOGIO INCREMENTS．EACH OF THESE INCREMENT LOGIO DIAMETER OSLOTS＊WOGIO INCREMENTS EACH OF THESE INCREMENT LOGIO DIAMETER GSLOTS
WILL HE CORRESPONDING CHANGES IN MASS AND NUMBER CONCENTRATIONS
41
42
HERE，DINC a（LOG10（100．0） $\operatorname{LOG} 10(.25)) / 35: .0714285714$ ANO 43
IS THE INCREMENT BETWEEN VALUES OF THE INDEPENDENT VARIABLE DI 44
＝LOGIO（DIAMETER）． 45
ACTUALLY THE CALCULATIONS HERE USE PHE DERIVATIVE EGUATION
（ZND DELM BELOW）WHICH GIVES THE LIMYT OF THIS CHANGE AT THE 46 47DINCE．0714285714
INOICATED DIAMETER． 48DIョALOG10（．25）49
51DLDF＝XMAX
IF（DMAX．LT．100．）DLDF aLOGIO（DMAX） 52 53
READ（11＇IS）NPOIN
INTENPOIN－I 55
READ（II＊IS）NPOIN，（XI（I），IEI，NPOIN），（YI（I），I：I，NPOIN）， 56
$1((C O E(I, J), J=1,33, I=1, I N T)$ 57
D0 $100 \quad 1=1,50$ 58
c 60
DETERMINE THE INTERVAL OF FITTING, NINT, IN WHICH THE DIAMETER
DPLOTEDIAMETER (MICRONS). THIS IS PRINTED VALUE. 61 62
DPLOTE10.0**O1
DPLOTE10.0**O1 63
$00320 \mathrm{~J}=2, \mathrm{NPOIN}$6465
LIES. 6766IF (N1.LT.XI(K))GOTO 32568
320 CONTINUE
325 NINTEK-I 72

calculate derivative of fitten polynomial. delm.

 7475(NOTE: THIS IS DERIVATIVE WITH RESPECT TO LOGIOCOIAMETER.)76
DELIECOE(NTNT,2)+COE(NINT,3)*2*D1 78
303 PPPECRE(NINT.1) 79
DO 34A LEZ.3 80
340 PPP=PPP + COE (NJNT,L)*D1**(L-1) 81
DELMENELI*(10.0**PPP)*2.302585 82
FIT was mane to cum. mass points in mgiacm. This step converts 83
TO MG/DNM3. 85
45 DELME(DELM/((204.0*POA)/(TKS*1.0)))/((100.0*PG(5))/100.0) 87
gIVEN DENSITY OF PARTICLES AND CHANGE IN MASS CONCENTRATION, 89
CHANGE IN NO. CONCENTRATION IS CALCULATED. 90
DELNE ($(6 . * D E(M) /(R H 0 * 3.141592 *(D P L O T * * 3)) / * 1.0 E 09$ 92
DEL CAN REPRESENT EITHER CHANGE IN MASS CONCENTRATION (ISIGEI) 94
OR CHANGE IN NO. CONCENTRATION (ISIGE6I. 95
IF(ISIG.EQ.1)DELEDELM 97
IF(ISIG.EO.6)DELIDELN 98
IF(DEL) $60.60,65$99
101
AN EXTREMELY LOW LOW ARBITRARY LOGIO VALUE IS ASSIGNED TO ANY CHANGE 102
WHICH IS O חR NEGATIVE ACCORDING TO THE FUNCTION. (NOT POSSIBLE 103
PHYSICALLY) 104
60 DELE=50.0 106105
GO TO 70
LOGIO(DEL) is ThE PLOTPED V VARIABLE FOR A WELL BEHAVED FUNCTION. 108 109
65 DELEALOGIO(DEL) 111XVAL AND YVAL CHECK FOR VALUES OUTSIDE LIMIT8 OF THE PLOT AND112
113GIVE ANY
the grin. 115110
T0 XNaXVAL(D1, XMAX,XHIN,XS)116
YNaYVAL(DEL, YMAX, YHIN,YS) 118
CALL FPLOT (O,XN,YN) 119
CALL SYMBOL(9,.04) 120
IFRDEL.LE.-50.0)G0 TO 72 121
C
the change is converteo from logio value for printing. 122123
DELE10.0**DEL
124
26
WRITE OUT ©SLOT MUMBERQ DIAMETER PMICRONSI, AND CMANGE IN 127
MASS POR NUMBER CONCENTRATION IN MGIDNMS OR IN NOA IN IN
MASS POR NUMBER CONCENTRATION IN MGIDNMS OR IN NOA IN IN MAS (OR NUMBER) CONCENTRATION IN MGIDNM3 (OR IN NO.IDNM3I. 128
WRITE(3.145)I, DPLOT,DEL 129
60 TO 73130
131
131
OTTE c 132
WRITE OUT THE SLOT NUMBER, DIAMETER (MICRONS), AND ONONIINCREASING* C 133If FUNCTION INDICATES SUCH. PHIS IS A PLAG' TO SHOW UNOESIRABLE
BEHAVIOR OF THE FIPTING FUNCTION. 134
72 WRITE(3.148)I.OPLOY 136 139 138
ITERATION CONTINUES USING LARGER AND LARGER DIAMETER vALUES
ITERATION CONTINUES USING LARGER AND LARGER DIAMETER vALUES
(INCREASE LOGIO(IOOOHOIAMETER) BY DINEI UNTIL DIAMETER IS LARGER 139 140
THAN DIAMETER CUT POINT OF $15 T$ STAGE (OR CUT POINT OF CYCLONE). 141
73 JF(DI.GT.DLDF)f0 TO 101 142
75 DIEDI+DINC 143
100 CONTINUE 145
Cc
c
c146
RETURN PEN IN IIP POSITION TO BASE Y LINE OF PLOTTER, AND 2 INCHES
BEYOND XMAX PO BE READY FOR NEXT PLOT. 149 149 148
101 CONTINUE 149 150
XNEXMAX+4.5/XS 151
YNEYMINER.IYS 152
CALL FPLOT(O,XN,YN) 153
RETURN
 154
155
 156
$\left.230 x,{ }^{\circ}(M I C R O N S) \cdot .13 x,{ }^{\circ}(H G / D N M 3) " / 1\right)$ 157
 158
1.8X, 'INTERVAL',IAX,'DIAMETER', $8 X$.'NUMBER CONCENTRATION"/. 159
 160
105 FORMAT(11X,I2,4X,2(13x,1PEQ,2)/) 161
14 f FORMAT(IIX.I2.17X,1PEQ.2.10X, "NON-INCREASING*/) 162
END 163
SUAROUTINE LABEL (KNT,XS,YS,YMAX, YMPN) 1
 2
C. 3
C* SUBROUTINE LABEL IDENTIFIES THE ORDER DF DATA SETS PLOTTED KNT 4
C. WITH THE SYMROL USED TO DRAW THOSE POINTS. THIS SUBROUTINE IS 5
C. CALLED AND THE ILAREL. WRITTEN ABOVE GRAPH WHERE MORE THAN I SET 6
C* OF DATA MAY BE PLOTTED, CNOTE, KNT IS NOT NECESSARILY THE SAME AS 7
C* THE RUN NUMBER OR FILE NUMAER IS AS GIVEN IN THE CALLING 8
C. SUBROUTINES WALLYI, WALLYZ, AND WALLY3: 9
C. 10
 11
C 12
c 13
C KNT TEST NUMBER CURRENTLY BEING PLQTPED. 14
$C \quad K S$ - X SCALE. 15
$C \quad Y S$ - Y SCALE. 16
YMAX MAXIMUM VALUE OF THE Y AXIB. 17
XMIN - MINIMUM VALUE OF THE X AXIS. 18
XCSE. 12 19
xCsa. 12 20
YCSE. 12 21
LNTEKNT 22
IF (KNT-5) 20.20.10 23
10 LNTEKNT=S 24
$Y N=Y M A X+(.75 / Y 8)$ 25
GO TO 30 26
20 YN:YMAX+(1.0/VS) 27
30 XN:XMIN+(LNT-1)*(1,25/XS) 28
 29
WRITECT,1) KNT 30
 31
XNEXN+(1.0/XS) 32
$Y N E Y N+(0.05 / Y S)$ 33
C34
C THIS SURROUTINE DRAWS THE SYMBOL USED FOR POINTS ACCORDING TO 35
CODE KNT AT (XN,YN) 36
CALL PIONT (KNT,XN,YN) 3837
RETURN
END 39 40
SUBROUTINE LGLBL(XS,Y8,XO,YO,L,E,K)
1
1
c
(XO,YO) ARE THE CDOROINATES CORRESPONDING TO THE FIRST LOG CYCLE TO 2
C BE IDENTIFIED. 3
C PEN MAY BE UP OR DOWN
C THE IDENTIFICATION IS TO THE LEFT OF THE Y-AXIS 5
C $X S=X$-SCALE FACTOR, INCHESNUSER'S UNTTE 7
C YS E YOSCALE FACTOR, INCHESNUSER'S UNITS $-$
C $X O$ E INITIAL X-VALUE. 10
c YOE INITIAL YoVALUE. 11
L : NUMBER OF LOGIO CYCLES 12
C E EXPONENT OF FIRST CYCLE $+, 0,-$ 13
$C K$. \quad FOR LABELING ON RIGHY SIDE OF Y AXIS 14
$C \quad K=1$ FOR LARELTNG ON LEPT SIOE OF Y AXIS 15
1 FORMAT(10 .) 16
2 FORMAT(IX.I3) 18
$x K=x 0+0,1 / x 3$ 19
$x \times R=\times 0=0.4 / x 8$ 21
$L E L+1$ 22
YYOYO=0.075/YS 23
$X=I=1$ 25
$Y N=X+Y Y$ 26
$X=E+X$ 27
IYNaX 28
C
IF(ABS (X)=10.0)20,10,10 29
c
$10 \mathrm{~F}=0.2$ 31
609030 32
20 F=0.1 34
C
30 IF(IYN) 40.50 .50 35
C
40 FaF +0.1 37
50 IF(K) 35,60,55 38
$55 \times K=\times 0=(0.44 F) / X S$ 40
60 CALL FCHARCXK,YN,0.15,0.15.0.01 41
WRTTE(T.1) 42
$Y N E=Y N+0.1 / Y S$ 43
IF(K)A0, 70.80 44
$70 X X K=X K+F / X S$ 45
8 CALL FCHAR $(X X K, Y N E, 0,1,0,1,0,0)$ 46
WRITE(7,Z) IYN 47
100 CONTINUE 48
L:L-I 49
RETURN 51

 ENT

 52

 60 CARDS ON TAPE
 STOP 000000
sUBRDUTINE MEAN 1
C
C
This subroutine calculates the molecular mean pree path at each 2 2
c 3
STAGE JET IN CENTIMETERS. 45
REAL MM, MU.L(S) 7
COMMON/BLOCK\&/Ps(8), MU 8
COMMON/BLOCK2/TKI,HM,L 9
COMMON/BLOCXS/NCUM 10
B2:1.38E-16*3.14159 11
DO 30 I电1.NCUM 12
 13
30 CONFINUE 14
REPIRN 15
END 16
SURROIITINE NDTRI（ $P, X, D, I E$ ）
C COPIED FROM IBM 360 SCIENTIFIC IUBROUTINE PACKAGE 1
2
IE＝ 0 3
$x=.9099 E+7 a$ Δ
0 © X5
IF（P） 1.4 .2 6

```1 IE＝－ 17
```

60 TO 128
2 IF（P－1．0）7．5．19
$4 X=0.99999 E+76$ 10

```\(50=0.0\)11
```

```60 T0 1212
```

70 E13
IF $(0=0,5) 9,9,8$ 14
$8 D=1.000$ 15
$9 \quad 12=A \operatorname{OG}(1.0 /(0 由 D))$ 16
T I 8日RT（T2） 17
$x=T-12.515517+0.802853+7+0.010328+72) /(1.0+1.432788+T+0.189269$. 18
1 T240．001308＊T由T2） 19
IF（P－0．5） $10,10,11$ 20
$10 x=-x$ 21
$11 D=0.3989423+E X P(-x \oplus X / 2.0)$ 22
12 RETURN 23
END 24
SUPROUTINE PIONT (KNT,XN,YN) 1
 2
C* SUBROUTINE PIONT DRAWS DIFFERENT POINTS FOR EAEH RUN OF AN 3
C. IMPACTOR, IT CAN DRAW 10 DIFFERENT POINT BYMBOLS. I.E. O KNT 11.
C 5 54
 7
8
C KNT IS THE TEST NUMBER THAT IS BEING RUN. 9
XN IS THE X POSITION OF THE POINT BEING PLOTED 10
YN IS THE Y POSITION OF YHE PDINT BEING PLOTED. 11
MOVE PEN TO POINY (XN,YN) AND LOWER PEN WITH THIS CALL TO 1412
CALL FPLOT (O,YN,YN) CALL FPLOT (O,XN,YN) 15
GO TO THE LOCATION FOR DESIRED SYMBOL. EACH LDCATION USES A CALL 16
17TO PLOTTER SURROUTINE POINTENI WHICH EAN DRAW + X, SQUARE, OR
18CIRCLE FOR N O.I.2. OR 3 RESPECTIVELY. COMBINATIONS OF THESE ARE
19
ALSO USED ALONG WITH OTHER PEN MOVEMENT COMMANDS TO DRAW 10 20
OIFFERENT BYMBOLB.60 TO (1,2,3,4,5,6,7,8,9,10),KNT21
22
C THE FIRST RUN HAS THE SYMBOL DF A SQUARE. 24 25
C 26
1 CALL SYMAOL (1..10) 27
REPURN 28
C 29
C THE SECONO RUN HAS THE 8YHBOL OF A TRYAGLE. 30
2 CALL SYMBOL (2..10) 31 32
RETURN
C THE THIRD RUN HAS THE SYMROL OF A EYRELE. 54 35
C 36
3 CALL SYMBOL(3.,10) 37
RETURN 38
39E THE FOURTH RUN HAS THE SYMBOL OF -
40
4 CALL SYMAOL (0., :0) 4241
RETURN 44
C

PHE FIFTH RUN HAS THE SYMBOL OF X.

PHE FIFTH RUN HAS THE SYMBOL OF X. 05 05
C 46
5 CALL SYMBOL (5..10) 47
RETURN 48
c 49
C THE SIXTM RUN HAS THE SYMBOL DF. 50
C 51
6 CALL SYMAOL(0., 10) 52
RFTURN 53
C 50
C THE SEVENTH RUN HAS THE SYMBOL OF A BOUARE WITH A X. 55
C 56
7 CALL 8YMBOL (1..10) 57
CALL 8YMBOL (5., 10) 58
RETURN 59
C
c 60
 C 61

- CALL SYMROL(1,.,10) 62 63
CALL SYMBOL(0..10) 6
RETURN
c 66
THE NINTH RUN HAS THE SYMBOL OF A EIRCLE WITH A x. ${ }^{6}$ 67
9 CALL SYMAOL (3..10) 68
CALL GYMBOL(5,.10) 70
RETURN 71
C THE TENTH RUN HAS THE SYMBOL OF A CIRCLE WITH $4+$. 72
c 73
10 CALL SYMBOL(3,.10) 75
CALL BYMBOL(4,.10) 76
RETIJRN 71
C ANY NUMBER OF SYMBOL OF THE ABOVE CAN BE USED FOR DATA POINTS. 78
C ALSO $\triangle N Y$ SYMBOL FROM THE CARD DUNCH CAN ALSO BE USED TO SHOW 79
80
DATA PDINT. 81
C 8
END 63

```
    BURROUTINE BIMO(A,B,N,KS) &IMQ I
    DIMENSION A(I),B(I) SIMG
C
FORWARD 8OLUTION
SIMO
    TOL=0.0 8IMO
    KSEO 8IMO
    JJAON SIMG
    0065 J=1,N 8IMO
    JY的! SIMO
    J=JJ&N+1 8IMQ
    AIGAEO SIMO
    IT:JJ=J
    DO 30 IEJ,N
        SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN
    IJEIT+I
    IF(ABS(BIGA)-ARS(A(IJY)) 20.30.30
    20 BIGAEA(IJ)
    IMAX:I
    30 CONTINUE
            TEST FOP PIVOT LESS THAN TOLERANEE (SINGULAR MATRIX)
        IF(ABS(BIGA)OTOL) 35,35,40
    35 K8E1
    RETURN
            INTEREHANGE ROWS IF NECESSARY
    40 IIEJ+N*(J*2)
    ITEIMAXOJ
    DO 50 K:J,N
    II=11+N
    I2:II+IT
    SAVE#A(II)
    A(II)=A(I2)
    A(I2)msAVE
C
    50 (II):A(II)/8IGA
    SaVEEA(IMAX)
    B(IMAX) EB(J)
    R(J)ESAVE/RIGA
            ELIMINATE NFXT VARIABLE
    IF(JON) 55,70.55
    55 [DS_N*(J=1)
    OO;5 JXEJY,N
    IX: =10S+IX
    ITsj=IX
    DO 60 JXEJY,N
    IXJX:N*(JX*I)+IX
    JJxaIXJX+II
    60 A(IXJX)|A(IXJX)=(A(IXJ)舟(JJX))
    65 B(IX)=8(IX)=(B(J)*A(IXJ))
            RACK SOLUTION
    70 NYEN-1
    IT:N*N
    OO RO JelgNV
    IA*ITEJ
    IB#N-J
    ICBN
    0080 k:1.J
    B(IA)=B(IR)=A(IA)*A(IC) SIMQ 56
SIMQ
SIMO 5B
    OO ICEIC-I
    RETURN
SIMO 50
```

FUNCTION SLIM(MAXAYN:ALIMIY) 1
 2
c* 3
C. FUNCTION SLIM FINDS THE MAXIMIMM OR MINIMUM LIMITS OF A GRID. 4
c. 5
C. MAXMIN a O IF SLIM IS TO FIND THE MINIMUM LIMIT. 6
c* MAXMIN : I IF SLIM IS TO FIND THE MAXIMUM LIMIT. 7
c*
ALIMIT a THE SMALLEST VALUE TO BE PLOTTED IF MAXMIN = 0 , 9
C* ALIMIT C : THE LARGEST VALUE TO BE PLOTTED IF MAXMIN: 10
C. 11
C* FOR EXAMPLE SLIM(0, -1.2) WOULD RETURN SLIM = - 2.0. 12
C* SLJM(1.3.0) WOULD RETURN SLJM a.0. 13
C 14
 15
LIMITAALIMIT 16
DIFFEALIMIT-LIMIT 17
C 18
IF(MAXMIN)1,1,2 19
1 IF(DIFF)3,5,5 20
2 IF (DIFF)5,5,4 21
c
e 22
C ALIMIT IS A NEGATIVE REAL AND LOOKING FOR A MINJMUM. 23 23 24
C
3 SLIMALIMIT=1 26
GO 106 27
C
C
C ALIMIT I8 A POSITIVE REAL ANO LOOKING FOR A MAXIMUM. 28 29
4 SLIMELIMIT+I 31
GO TO 6 32
c 33
LIIHIT IS AN INTEGER AND LOOKING FOR EITHER A MAXIMUM OR A MINIMUMI c 34
ALIMIT IS NEGATIVE REAL AND LOOKING FOR A MAXIMUMI 35
OR ALIMIT IS A POSITIVE REAL AND LOOKING FOR A HINIMUH. 36
5 BLIMELIMIT 38
c 39
U REMURA.
ENN 40 41
SUBROLITINE STAGE 1
Cc
c
c3
THIS SUBROUTYNE CALCULATES THE PRESSURE AT EACH BTAGE. 4
C
C
REAL MU 75COMMON/BLOCK1/PS(8),MU,POA,DPA,TCI,FG(5).DELP(8, 4$)$
8COMMON/BLOCKS/NEUM, MPACTY
DO 10 IEI,NCUM10
PS(1)IMPA=DELP(I,MPACTY) \#DPA 11
10 CONTINUE 12
RETURN 13
END 1415
BURROUTINE STATPTCNDKI,NOCON,DPLOT, BVD,DLU,DLL, XMAX,XMIN, YMAY, IVMIN,XS,YSI 1
3
C*3
5
C* 5
C* SUBRDUTINE STATPT PLOTS A POINT AVD ALONG WITH ITS CONFIDENCE 6
C. LIMITS CLU AND CLL VS. DPLOT ON LOEIO SCALE IF NDKI = O 7
C* OR ON NORMAL PROBABILITY SCALE IF NDKI = I. IT PLOTS AVD 8
9
9

* ONLY IF NOCON a 1.
* ONLY IF NOCON a 1. 10
C. 11
C 12
C 13
$A \cup D=R \cup D$ 14CLUsDLU
15
CLLEDLL 16
C 17
IF NDK: $\quad 0$, LOGIO OF DPLOP, CLU. AVD, aND CLL ARE TAKEN $\begin{array}{ll}\mathrm{c} & \text { IF NDKI } 0 \text {, LOGI } \\ \mathrm{c} & \text { IN ORNER TO PLOY. }\end{array}$ 18 19
IF NDKI $=1$, DPLOT COHES INTO SUBROUTINE STATPT ALREADY AS 20
LOGIO DF DIAMETER. THE PLOTTED Y VALUES AT PHIS DIAMETER CCLI, 21
AVD, AND CLL) MUST BE FDUND GY SUBROUTINE NDTRI WHICH CHANGES 22
THE VALUE TO ITS NORMAL PROBABILITY BCALE EOUIVALENT, YV. 23
IF (NDKI.EQ.1)60 10 11224 25
F(Nox1.E0.1360 10 112
F(Nox1.E0.1360 10 112
IF (NDCON,EO.1)GOTO 108 26
C 29
C IF DPLOT, CLL. AVO, AND OR CLU \& OQ = O.O. THAT VARIABLECSS SET 24
= -50.0 INBPEAD OF TAKING LOGIO. 29
IF (CLU)101.101.102 30 31
101 CLUEE50.0 32
GC 10105 33
102 CLUEALOG10(CLU) 34
105 JF(CLL)106.106.107 35
106 CLLEOSO. 0 36
GO PO 108 37
107 CLLBALOG10(CLL) 38
10A IF(AVD)109,109.111 39
109 AVD=-50.0 40
GO TO 1111 01
111 avDealogio(avD) 42
1111 DPLOTEALOG10(DPLOT) 43
c FIJNCTIONS XVAL AND YVAL GIVE THE PLOTTED VARIABLE A 44
VALIE JUST OUTSIDE THE PLOT GRID IF IT EXCEEDS 46
PLOTIING LIMITS. otmerwise the value is unchanged. 09
112 XNEXVAL(DPLOT,XHAX,XNIN,XS)=,03/XS 48 49
IF NOCON = O. PLDT AVERAGE AND CONFIDENCE LIMITS CLL AND CLU.50
IF NOCON = i. PLOT DNLY aVERAGE VALUE AVD. 52
IF (NOCON,EO. 1)GO TO 408 53 50 55

THIS SECTION FINOS VALUE OF UPPER CONFIDENCE LIMIT

THIS SECTION FINOS VALUE OF UPPER CONFIDENCE LIMIT
CLI ACCDRDING TO SCALE USED AND DRAW8 A BAR.
CLI ACCDRDING TO SCALE USED AND DRAW8 A BAR. 56 56
nonの
nonの 57 57
IF(NDK1.EO.0)GO TO 405 59
c IF CLL $>.9999$. SET YV = ARBITRARY NUMBER • YMAX. 60
${ }^{c}$ 62
IF (CLL -.9999)510,510,505 63
505 YVa4.0 64
GO TO 406 65
e
C IF CLL \& .0001. SET YV E ARBITRARY NUMBER \& .0001. 66 66 67
68
510 IF(.0001~CLL)520.520.515 69
515 YVE=4.0 70
GO 10406 71
520 CALL NDTRI(CLL,YV,D.IE) 72
GO TO 0 O6 73
005 YVECLL 74
006 YNEYVAL (YV, YMAX, YMPN, YB) 75
CALL FPLOT (-2, XN,YN) 76
XNEXN+. $06 / X S$ 77
CALL FPLDT ($0, X N, Y N$) 76
XNEXN=,03/X8 79
CALL FPLOT (O,XN,YN) 80
C THIS SEETION FINDS VALUE OF aVERAGE ACCORDING TO 81 82
SCALE USED. DRAWS LINE FROM CLL DOWN TO THAT POINT.
AND DRAWS CIRCLE. NOTE IF NOCON E 1. ONLY THIS 83
CIRCLE IS DRAWN (WITHOLT CONFIDENCE LIMITS). 85
406 IFPNDKI.EO.OSGO TO 410 86
IF (AVD-. 9999)560,560,555 88
$555 Y V=4.0$ n9
60 10411 90
560 IF (. 0001-AVD)570.570.565 91
565 YVF-4.0 92
GO TO 411 93
570 CALL NDTRI(AVD,YV,D,IE) 94
GO TO 4il 95
$4: \quad Y V=A V O$ 96
411 YNBYVAL(YV,YMAX,YMIN,YS) 97
CALL FPLOT $(O, X N, Y N)$ 98
CALL SYMBOL(9,.04) 99
IF (NOCON.EQ.1)GO YO 417 100
e
c THIS SECTION FINDS VALUE OF LOWER CONFIDENCE LIMIT 101 102
CLL ACCERDING TO SCALE USED. DRAWS LINE PROM AVD PO THAT POINT. 103
AND DRAWS ABA. 104
IF (NOK1.EQ.0)60 TO 415 105 06
IF (CLIJ..9999)580.580.575
575 YVEU.O 108
GO 90416 109
580 IF $\mathrm{C} .0001=\mathrm{CLU} 1590.590 .585$ 110
585 YVI=. 4.0 111
GO TO 4ib 112
590 CALL NDTRI(CLU,YV,D,IE) 113
GO TO 416 114
415 YVECLU115
416 YNEYVAL(YV, YMAX,YMIN,Y8) 116
CALL FPLOY(O,XN,YN) 117
XNEXN=.03/XS 118
CALL FPLDT (O,XN,YN) 129
XNEXN+0.06/XS 120
C RAIBE THE PEN 121
NEXT SIZE DIAMETER. C 122
aI7 CALL FPLOT(-i,YN, YN) 123
RETURN 124
END 125
SUBROIITINE STPLOTIIDALL,RHO,IMPAC, NDK, PDMAX, PDMIN, DXMAX, OXMIN, 1ISIZ,XS,YS, XMAX,XMIN, YMAX,YMIN) 1
3
C*
SIJRROUTINE STPLOT MAKEB THE FOLLOWING GRID FOR GIVEN
SIJRROUTINE STPLOT MAKEB THE FOLLOWING GRID FOR GIVEN
C* Value of NDKi 5 5 6
NDK =-1 - AVG. CUMULATIVE MASS LOADING IIN MG/ACM
NOK LEFT AXIS, IN GR/ACF ON RIGHT AXISJ 8
NDK $\quad 0$ - AVG. DM/DLOGD (IN MG/DNM3) 9
NDK $=1$ - AVG. DN/DLOGD (IN NOIDNM3) 10
ALL OF THE ABOVE PLOTS SHOW PARTICLE DIAMETER (MICRONS) 11
ALONG THE ABCISSA. 12
PHE GENERAL IDENTIFICATION LAREL ID AND DENSITY RHO 13
$\triangle R E$ PRINTED ABOVE THE GRID. 14
C. 15
 16
C 17
DIMENSION IDALL(80), PDMAX(2), PDMIN(2), DXMAX(2), DXMIN(2) 18
OATA IBLK/E 19
$P I=3.1415$ 22
20
C 21ME 7
$N=1$23
IF (RHO.EQ. I.O)NE2 25
C
c 26
XIN - LENGTH OF THE X AXIS IN INCHES,
YIN - LENGTH OF THE Y AXIS IN INCHES. 27
29
$X I N=4,5$ 30
$Y I N=6.5$ 31
C
C 32
THIS SECTION FINDS XMAX,YMAX,YMIN,AND YMIN WHERE: 34
XMAX = MAXIMUM X VALUE PLOTPED. 35
YMAX - MAXIMUM Y VALUE PLOTFED. 36
XHIN MINIMUM X VALUE PLOTTED 37
YMIN - MINIMUM Y VALUE PLOTTED. 38
IF ISI2 1 - THE MAXIMIJM AND MINIMUM DIAMETERS, GEMAX AND 39
GEMIN, ARE USED TO GET XMAX AND XMIN. ALSO MAXIMUM AND MINIMUM 41
ORDINATE VALUES, DXMAX $A N D$ DXMIN, ARE UBED TO GET YMAX AND YMIN. 42
IF ISIZ $=0$ - XMAX $=$ LOGIO(100 MICRONS) 43
XMIN = LOGIOC. 25 MICRONSI 44
YMAX,YMIN DEPEND ON IMPACTOR USED (I.E. IMPAC) 45
IMPAC = 1 - ANDERSEN 46

- 2 - BRINK 47
E 3 - PILAT 48
E 4 - MRI 49
IF(ISIZ.E0.1)60 1025 50
IF(NOK)21,22:20 51
21 YMAXE10000. 52
YMINE. 1 53
60 FO 23 54
22 GO 70 (221.222.221.221),IMPAC 55
221 YMAXI.OEOU 56
YMIN:I.OE=02 57
GO PO 23 58
222 YMAXE1.OEO6 59
YMINEI.O 60
601023 61
24 6n TO (240.241.240.240),IMPAC 62
240 YMAXE1.0E15 63
YMINE1.0EO6 64
GO TO 23 65
241 YMaXE1.0E10 66
YMINEI.OEOS 67
23 XMAXAALOG10(100.0) 68
YMAXEALOGIO(YMAX) 69
XMINEALOGIO(.1) 70
YMINEALOGIO(YMIN) 71
601028 72
25 YMAXESLIM(1.ALOG10(100.0)) 73
YMAXESLIM(1,ALDG10(OXMAX(N))) 74
XMINESLIM(O.ALOGIO(PDMIN(N))) 75
YMINESLIM(O,ALOGIO(DXMIN(N))) 76
C $\quad x$ and y scale factors calculated here. 77 78
28 XSEXIN/(XMAX-XMIN) 80
YSEYIN/(YMAX-YMIN) 81
YOEYMIN-Z.IYS 82
CALL SCALF (XS,Y8,XMIN,YO) 63
C
c
C DRAW THE X-AXIS. 84 85 85
YMINIEYMIN86
IXRANEXMAX-XMIN 88
CALL XSLBLIXS,YS,XHIN,YMINI,IXRAN,XMINS 89
CALL XLOG(XS,YS,XMAX,YMINI, تI, IXRAN) 90
LABEL THE X - AXIS.91
92
92XCS AND YES ARE THE DIMENSIONS OF WRITTEN CHARACTERS IN INCHES.
94
$x \in S=.15$ 95
YCSE. 15 96
X $=($ (XMAX-XMIN)/2.0) + XNIN-(16.0*XCS)/XS 97
YEYMINI=(.7/Y8) 98
CALL FCHAR (X,Y,XCS,YCS,O.) 99
c 100
WRITE CPARTICLE DIAMETER (MICROMETERS)" BELOW ABSCISSA. c 101
WRITE (M,1) 103102
cWRITE THE ID LABELS.105
106$X C S=.056$
107
YCSE. 100 108XEXMIN
YEYMAXt. 5/YS 110109
C 111
THIS DO LOOP FINDS LAST CHARACTER IN IOENTIFICATION c 112
LABEL, (SAVES PEN MOVEMENT IF LESS THAN 80 CHARACTERS) 113
DO 30 I=1.79 115114
Ja80-1
IF(IOALL(J).NE.IBLK)GO PO AO116
30 CONTINUE 118
J:! 119
40 CALL FCHAR（X，Y，XCS，YCS，O．） 120
WRITE THE IDENTIFICATION LABEL ABOVE GRAPH 121
WRITE（M，2）（IOALL（1），I：1，J） 124123
XEXMIN
YEYMAXt．25／YS 125
CALL FCHAR（X，Y，XCS，YES，O，）126
128WRITE PHE DENSITY RHO（GM／CC）ABOVE THE GRAPH．129
WRITE（M，5）RHO 130
132
DRAW YHE Y－AXIS ON THE LEFT BIOE OF THE GRAPH． 133
IYMAXBYMAX 134
IYMINEYMIN 136135
IYRANEIYMAXGIYMIN 37
CALL YLOG（XS，YS，XMIN，YMAX，＝1，IYRAN） 138
CALL LGLBL（XB，YB，XMIN，YMIN，IYRAN，YMIN，I）
140
LABEL THE Y－AXIS ON THE LEFT 8 IDE OF THE GRAPH． 141LABEL THE Y AXIS ON THE LEEY BIOE OF THE GRAPM．
xC8＝． 15 142
YCSE． 15 143
XEXMIN©． $7 / X S$ 145144
YE（YMAX－YMIN）／2，0＋YMIN－（16．0由XCS）／YS
CALL FCHAR（X，Y，XES，YCS，PY／Z，$)$ 147
LAREL OROINATE WITH FOLLOWING ACCOROING TO VALUE OF NOKg 148 149
NDK－－＂CUMULATIVE MASS LOADING（MG／ACM）＂ 150
－ 0 －DM／DLOGN（MG／DNM3）． 151
$=1$－DDN／OLOGD（NO．PARTICLES／ONM3）＂ 152
ALSO JF NDK－－I，AN ORDINATE AXIS IS DRAWN ON RIGHT SIDE 153
OF GRaph For＇cumulative mass（gr／acfio．note o last variable 154
OF LGLAL IS 0 SO PHAT NUMEERS WILL BE PRINTED TO RIGHT OF AXIS． 155
IF（NDK）41．42．43 157156
41 WRITE（M，12） 158
IF（IYPAN：EQ．I）GO PO 60 159
DRAW PHE Y－AXIS ON THE RIGHT SIDE OF THE GRAPH． 160
YOFYMIN＋． 3595 162161
YOEFMIN＋35の
YOEFMIN＋35の
YLEFEYMIN－3． 163
CALL LGLBL（XS，YS，XMAX，YO，IYRAN，YLEF，O） 164
CALL YLOG（XS，Y8，XMAX，YMAX＋．3595，－1，IYRAN） 165
label the y axis on the right side of the graph． 167166
$X=X M A X+, 8 / X S$ 169168
YE（ $(Y$ MAX +.3595$)-Y M I N) / 2,0+Y M I N=(16, \# X C S) / Y 8$ 170
CALL FCHAR（X，Y，XCS，YCS，PI／Z．）
WRITE（M，13） 172171
60 TO 60 173
42 WRITE（M，4） 174
GO TO 60 175
43 WRITE（M．14）
60 REPURN 177
1 FORMAT（IX，＇PARTICLE OIAMETER（MICROMETERS）＇） 178
2 FORMAT（IX，80A1） 179
FORMAT(IX. OM/DLOGD (MG/DNMS) - 180
5 FORMATCIX., RRHO = •,FG.Z.' GM/CC') 181
12 FDRMAT(IX, "CUMULATIVE MASS LOADING (MG/ACM)") 182
13 Formariax. ©CUMULATIVE masS LOADING (GR/ACF)') 183
14 FDRMAT (1X.。 ON/DLOGD (NO. PARTICLEB/ONMS)') 180
END 185
C 1
SUBRDUTINE SYMAOL(KODE,SIZE)
WRITTEN BY HENRY FINCH FOR CHEMOTHERAPY OIVISION AT SOUTMERN 2
RESEARCH INSTITUTE - NOVEMAER, 1976. 45
SUB. SYMBOL DRAWS THE FOLLOWING SYMBOL WITH RESPECT TO THE KODE:
KODE 1 A SOUARE 7
KODE 2 a PRIANGLE 8
KODE 3 . A CIRCLE 10
KODE 4 a 11
KODE $5=A x$ 12
KODE 6 - (A + OVER AN X) 13
KODE 7 : A SOLID SOUARE 14
KODE 8 a SOLID TRIANGLE 15
KODE 9 a SOLID CIRCLE 16
KODE 10 a DIAMOND 17
KODE 11 : A SOLID DIAMONO 18
IF KODE < O OR KODE >9 SUB, IS RETURNED WITH NO SYMBOL DRAWN 19
THIS SUB LEAVES THE PEN IN SAME POSITION AS WHEN IT WAS CALLED ALSO --0 21
PEN IS LEFT UP IF PEN WAS UP H PEN LEFT DOWN IF PEN WAS DOWN 22
SIZE $=$ SIDE (IN TNCHES) OF SQUARE INSCRIBING SYMBOL DRAWN 23 24
c 25C
DIMENSION MODE(5),IX(9),IY(9) 26
EQUIVALENCE (MODE(1), MODE1),(MODE(2), MODE2),(MODE(3),MODE3), 28
5 (MODE(4), MODEA), (MODE (5), MODES) 29
EQUIVALENCE (IX(1),IXI),(IX(2),IX2),(IX(3),IX3),(IX(4),IX4), 30
3 (IX(5),IX5),(IX(6),IX6),(IX(7),IX7),(IX(B),IXB),(IY(1),IYI)。 31
S (IY(2),IY2),(IY(3),IY3), (IY(4),IY4), (IY(5),IY5), (IY(6),IY6), 32
S (IY(7),IY7),(IY(8),IYB),(IY(Q:,IYQ),(IX(9),IXQ) 33
DATA MODE/1.2,3,4,5/ 34
DATA CON8T/0.707107/ 35
C 36
$\operatorname{RND}(x x)=x x+\operatorname{SIGN}(0,5, x x)$ 37
C 38
ISZ2ERNDCSIZE*100.0/2.0) 39
SIZE1aIsZaIsZ2*2 40
IF(KODE.LE.O) RETURN 41
IF(KDOE.GT.11) RETURN 42
IF(ISZZ.LE.O) RETURN 43
ISTRTAI 44
IXIEIYI=0 45
IX6EISZ2 06
IY6=1822 49
C
READ(9)LASTX,LASTY, IX2, IX3, IX4, IX5, IPEN 48
GO TO ($50,50,40,400,500,400,50,50,40,40,40), \mathrm{KODE}$9
40 IYbeo 51
50 ISTRTA2 52
WRITE(7)MODE4.IX6.IY6 53
GO PO ($100,200,300,800,800,800,100,200,300,350,350), K O D E$ 54
C
THIS SECTION SETS UP FOR THE DRAWING OG A BOUARE 55
C 56
100 IEND=5 58
IYI=-IXI 59
IY2:IX5:IS2 60
IX3EIY4E-182 61
IX2aIV3aIX4EIYSno 62
6010550 63
C 64
THIS SECTION SETS UP FOR THE DRAWIMG OF A PRIANGLE C 65
C
200 IENDAA 66
IYI $=\mathbf{I X I}$ 67
IY4: 1X2世-182 68 6
IVSEISZ
IY2:0 71
$1 \times 3=1 \times 4=1822$ 72
GOTO 550 73
C 74
C THIS SECTION SETS UP 2 DRAHS A CIRCLE 75
C A SOLID CIRCLE IS ALSO DRAWN IN THIS SECTION 76
C 77
300 THETAEO,O 78
SIZEZ=SIZEI/Z.0 79
THLASTE6. 2831854THEYA 80
THINCE2.00/SIZEI 81
325 IXI:RND(8IZE2*COS(THETA)) 82
IYIaRND(SIZE2*SIN(THETA)) 83
IX2EIXI+LASTX 84
IYZEIYIHLASTY 85
WRITE(T) MOOES.IXZ.IYZ 86
THETAETHETA + THINC 89
IF (THETA.LE.THLAST) GO PO 325 88
IF (KODE, EO, 3) 60 TO 150 9
SI2EI=SIZES-2.0 90
IF(SI2E1) $500,800,300$ 91
6 92
C THIS SECTION IS FOR DRAWING A DIAMOND 93
C 94350 IENDE9
IX2:IX3:IX6:IX7=152295
IXAaIXSaIX83IX9:ISZ2 96 96
IYZ=IY5EIY7EIYREEISZZ 97 98
IYSEIY4EIYGEIYOEISZट
GOTO 550 100
C
THIS SEETION SETS UP FOR THE DRAWING OF A 101
c 102
4OO IENDEB 103 104
 105
IYIEIY4EIX5: $1 \times 8=1522$ 106
IY2EIY3EIX6:IXTEISZ2 107
60 10 550 108
C 109
THIS SECTION SETS UP FOR THE DRAWING OF MN X C 110
500 IENDE8 112111
 113
 119
C
THIB SECTION ACTUALLY DRAWS ANY DESIGNATED BYMBOL EXCEPT A CIRCLE 115
C 117
550 DO 600 IFISTRT,IEND 118
WRITE(T) MODES.IX(I),IY(I) 119
600 CONTINUE 120
GO TO (750,750,750,800,800,625,640,640,800,750,645),KODE 121
C 122
C THIS SECTION TESTS IYB TO CHECK IF THE PROG IS THROUGH SUPER IMPOSING A 123
OVER AN X ***** BE CAREFUL WITH THIS KEY IN CASE OF MOOIFICATION *** 124
625 IFPIYB.EO.03 GO TO 500 125 126
6010800 127
c C THIS SECTION IS FOR DECREMENTING SIZE PARAMETERS FOR THE DRAWING OF 128 129
4 SOLID SOUARE, SOLID TRIANGLE, OR A SOLID DIAMOND DEPENDING 130
ON KODE. 131
C ONKODE. 132
640 ISZEISZ-1 133
645 IS2=Is2-1 134
1×1玉"! 135
IS22:IS22-1 136
ISTRTEI 137
IF (ISZ.LE.0) GO 10800 138
GOTO ($800,800,800,800,800,800,100,200,800,800,350)$, KODE 139
700 IEMODES 140
IPENE-I 141
GO TO 775 102
725 IPENE-1 143
750 IEMODE? 144
775 WRITE (7)I,LASTX,LASTY 145
800 IF(IPEN)850,725,700 146
850 RETIIRN 147
END 148
SUBROUTINE VIS 1
THIS BUBROUTINE CALCULATES THE VISCOSITY OF THE GAS USING
THIS BUBROUTINE CALCULATES THE VISCOSITY OF THE GAS USING
THIS BUBROUTINE CALCULATES THE VISCOSITY OF THE GAS USING
THIS BUBROUTINE CALCULATES THE VISCOSITY OF THE GAS USING 2 2 2 2
A HETHOD PRESENTED BY C. R. WILKE IN A PAPER ENTITLEO
A HETHOD PRESENTED BY C. R. WILKE IN A PAPER ENTITLEO
A HETHOD PRESENTED BY C. R. WILKE IN A PAPER ENTITLEO
A HETHOD PRESENTED BY C. R. WILKE IN A PAPER ENTITLEO 3 3 3 3
- VISCOSITY EOUATION FOR GAS MIXTURESE IN THE JOURNAL OF
- VISCOSITY EOUATION FOR GAS MIXTURESE IN THE JOURNAL OF
- VISCOSITY EOUATION FOR GAS MIXTURESE IN THE JOURNAL OF
- VISCOSITY EOUATION FOR GAS MIXTURESE IN THE JOURNAL OF 4 4 4 4 CHEMICAL PHYSICS VOLUME 8. NUMBER 4. APRIL 1950, PAGE SI7. CHEMICAL PHYSICS VOLUME 8. NUMBER 4. APRIL 1950, PAGE SI7. CHEMICAL PHYSICS VOLUME 8. NUMBER 4. APRIL 1950, PAGE SI7. CHEMICAL PHYSICS VOLUME 8. NUMBER 4. APRIL 1950, PAGE SI7. 5 5 5 5
C
C
C
C6REAL MU
9
DIMENSION WT(5),VS(5) 11
COMMON/BLOCKI/PS(8),MU,POA,DPA,TCI,FG(5) 12
C
WT(I) ARE THE MOLECULAR WEIGHTS OF COZ.CO,N2.O2,H2O, 13 14
DATA WT/44.10.28.01.28.02.32.00.18.02/ 1615
17
VSII ARE THE PURE GAS VISCOSITIES OF CO2,CO,N2,O2,H2O. 18

VS(2) $=165.763+0.442 * T C I-0.213 E=03 * T C J$ TCI 2019
VS(3) : 167.086+0.417*TCI-0.139E-03*TCIATCI2
 23
VS(5) $587.800+0.374$ ©TCI $+0.238 E=04$ TCI TRI 24
DO 10 I皆1.5 25
10 VS(I)EVS(I)*1.0E006 26
MUEO. 0 27
00200 In 1.5 28
IF(FG(1)-0.0) 200.199.200 29
199 FG(I)EI OE=ZO 30
200 CONTINUE 31
00300 IE1.5 32
XPHEEIEO.O 33
XPHEE=O.O 34
PHEE EO. 0 35
DO 400 JE1,5 36
 37
1/1.410) (SORT(1.0+(WY(I)/WT(J)J))) 38
XPHEEIEFG(J) AXPHEE 39
IF(J®I) 399.400.399 40
399 PHEEEPHEE \& XPNEEI 41
400 CONTTNUE 42
PHEE:PHEE/FG(I) +1.0 43
MUEMU\&VS(I)/PHEE 40
300 CONTINUE 05
C
THE FINAL VISCOSITY MU IS IN POISE. 46
C 48 48RETURN
END 50

gURROUTINE WALLY!		1
C***		2
C*		3
C*	THIS SUBROUTINE DRAWS NEW GRID (IF MPLOT $\geqslant 0$) AND MAKES A PLOT OF	4
C*	CUMULATIVE MASS LOADING (MG/ACM) VS. DSO (MICRONS) ON A LOGIO VS.	5
C*	LOGIO GRID. ALSO WALLYI CALLS SUBROUTINE JOEI TO SUPERIMPOSE FIT IF	6
C*	ISIG $\mathrm{P}^{(0) ~(N E W ~ G R I D ~ A L W A Y S ~ D R A W N ~ I N ~ T H I S ~ C A S E) . ~}$	7
C*		8
		9
c		10
	INTEGER VV	11
	OOUBLE PRECISION XNDPEN(10), YO(10)	12
	DIMENSION IDALL (80), GEMAX (2),GEMIN(2), DMMAX (2), DMMIN(2), DNMAX(2)	13
	DIMENSION DNMIN(2), DPMAX (2), DPMIN(2), CUMAX (2), CUMIN(2),ID(B0)	14
	DIMENSION DPC(8), CUMG(8), DMOLD (9),GEOMD(9), DNOLD(9)	15
	COMMON IMPAC,IDALL, RHO1, GEMAX, GEMIN, DMMAX, DMMIN, DNMAX, ONMIN	16
	COMMON DPMAX, DPMIN, CUMAX, CUMIN,ISIZ1, ISI22,ISIZ3	17
	COMMON IS,NFIT, ID, RHO, DMIN, TKS, POA,FG(5), DMAX, DPC, CUMG, OMDLD	18
	COMMON GEOMD, DNDLD, GRNAM, MPLOT, OSMA, VV	19
	COMMON ISIG, XMAX, XMIN, YMAX, YMIN, XS, YS	20
	COMMON CYE3, ME3, MOO,MS	21
	COMMON XNDPEN	22
	DATA IBLK/' $/$	23
C		24
	PI $=3.1415$	25
c		26
c	M IS CODING FOR OUTPUT DEVICE. HEREM 7 F 7 OR PLOTTER,	27
c		28
	Hat	29
c		30
C	FOR ASSUMED PHYSICAL DENSITY, $N=1$ TO READ FROM ODD NUMBERED	31
C	RECORD8. FOR ASSUMED AERODYNAMIC DENSITY, N (2 TO READ FROM EVEN	32
C	NUMBERED RECORDS.	33
c		34
	$\mathrm{N}=1$	35
	IF (RHO.EQ.1.0)Ne2	36
C		37
C	THE SAME GRID AS PREVIOUS PLOT. NEW GRID ALWAYS DRAWN IF ISIG = 0	38
C	(JOE 1 TO be CALLED.).	39
c		40
	IFISIGEO.1)G0 1020	41
	IF(MPLOT) B0,80,20	42
C		43
c	XIN - LENGTH OF THE X AXIS IN INCHES.	44
c	YIN - LENGTH OF THE Y AXIS IN INCHES.	45
20		46
	KNT $=0$	47
	XINEA.5	48
	VIN=6.5	49
c		50
c	Xhax = maximum x Value plotted,	51
C	ymax - maximum y value plotited.	52
C	XMIN - MINIMUM X VALUE PLOTTED	53
C	YMIN - MINIMUM Y Value plotied.	54
${ }^{c}$		55
C		56
	$\begin{aligned} & \text { IF(ISIZ1,E日, 1)GO TO } 25 \\ & \text { XMAXALOGIO(100.0) } \end{aligned}$	57 58
	XMAXDALOG10(100.0) YMAXEALOG10(10000:0)	58 59

XMINEALUG10(.1) 60
YMINEALOGIO(.1) 61
60 ro 28 62
25 63
YMAXESLIM(1, ALOGIO(CUMAX(N))) 64
XINESLIM(O,ALOGIO(OPMIN(N)) 65
YMINESLIM(O, ALOGIO(CUMIN(N))) 66
E X AND Y 8CALE FACTORS CALCULATED HERE. 67
C 68
26 XSEXIN/(XMAX=XNIN) 69
YSIRIN/(YMAXOYMIN) 70
YORIGEYMIN-2./YS 71
CALL SCALF(XS,VS,XMIN,YORIG) 72
C 73
C DRAW THE X - $\triangle X I S$. 74
YMINIEYMIN 7675
IXMAXEXMAX
IXMINAXMIN 77
IXRANEIXMAX-IXMIN 70
CALL XSLBL (XS,YS,XMIN,YMINI, IXRAN,XMIN) 80
CALL XLOG(XS,YS,XMAX,YMIN1, -I,IXRAN) 81
LABEL THE X - AXIS. 82
C 83
xesa. 1584
yesa. 15 86
$X=((X M A X-X M I N) / 2.0)+X M I N-(16.0 * X C S) / X S$ 87
YZYMINI-(,7/YS) 88
CALL FCHAR (X,Y,XCS,YCS,O.) 89
WRITE(H, 1) 90
CDRAW THE Y - AXIS ON THE RIGHT SIDE OF THE GRAPH.92
YOEYMINI + 3505 93
IYMAXEYMAX 90
IYMINaYMIN 95
IYRANEIYMAX-IYMIN 96
IF(IYRAN.EQ.1)G TO 29 97
YLEFIEYMINI-3.0 98
CALL LGLEL(XS,YS,XMAX,YO, IYRAN, YLEFI,0) 99
CALL YLOG(XS,YS,XMAX,YMAX+, 3595, =1,IYRAN) 100
LABEL THE Y - AXIS ON THE RIGHY SIDE OF PHE GRAPH. 102
103
$X=X M A X+B / X S$ 104
105CALL FCHAR (X,Y,XCS,YCS,PI/Z.)
106WRITE(A, 3)
wRITE The id larels.
wRITE The id larels. 108 108 109 109
c
c
c
c 110 110
$29 \times \operatorname{CSc} .056$ 111
YCSA. 100 112
$x=X M I N$ 113
YEMMAXt.5/Y8 114
DO 30 I $=1.79$ 115
$\mathrm{J}=80 \mathrm{ol}$ 116
IF(IO(J).NE.IBLK) GO TO aO 117
30 CONTINUE 118
J=! 119
40 CALL FCHAR (X,Y,XCS,YCS,O.) 120
WRITE(M,Z) (ID(I).IEI,J) 121
XEXMIN 122
YEYMAX*. $25 / Y \mathrm{~S}$ 123
CALL FCHAR (X,Y,XCS,YCS,O,) 124
WRITE (M,5) RHO 125
c 126
DRAW THE Y - AXIS ON THE LEFT SIDE OF THE GRAPH. C 127
CALL YLOG(XS,YS,XMIN,YMAX, $=1, I$ YRAN) 129
CALL LGLBL(XS,YS,XMIN, YMIN,IYRAN,YMIN,1) 130
c 131
label the Y - axis on the lefy side of fhe graph. c 132
XCS=. 15 133
YCSE. 15134
XEXMIN©, 7 IXS 135 135
YE(YMAX=YMIN)/2.04YMIN=(16.0شXCS)/YS 136
CALL FCHAR(X,Y,XCS,YCS,PI/2.) 138
WRITE(M,4) 139 140

PLOT x AND V VALUES FOR CUMULATIVE MASS LOADING (MG/ACM) VS. DSO

PLOT x AND V VALUES FOR CUMULATIVE MASS LOADING (MG/ACM) VS. DSO
PLOT X AND V V
C
(MICROMETERS).
PLOT X AND V V
C
(MICROMETERS). 141 141 142 142
144FIRST PLOT TOTAL MASS LOADING VS. maXImUM PARTICLE DIAMETER.143
145146
80 KNTEKNT* 1 147
XI $\quad A L \cap G 10(D M A X)$ 148
XNEXVAL(XI, XMAX,XMIN, XSS 149
YIEALOGIO(GRNAM) 150
YN:YVAL(YI,YMAX,YHIN,YS) 151
CALL PIONT (KNT,XN,YN) 152
153
PLOTTING FOR BRINK IMPACTOR HANDLED SEPERATELY DUE TO VARIATION 154
IN TNF FOR BRINK IMPACTAR HANDLED SEPERATELY OUE TO VARIATION
IN TNF FOR BRINK IMPACTAR HANDLED SEPERATELY OUE TO VARIATION IN CONFIGURATION USED. STATEMENTS $80-200$ APPLY TO THE BRINK 155
IMPACTOR (IMPAC $x 2$). 156
GO TO (200.181,200.200),IMPAC159
181 IF(MC3)82, A2, A1 158 158 159
81 X2FALOG10(CYC3) 160
XNEXVAL (X2, XMAX,XMIN, XS) 161
Y2EALOGIO(CUMG(1)) 162
YNEYVAL(Y2,YMAX,YMIN,YS) 163
CALL PIONT (KNT,XN,YN) 164
M=9 165
IF(MS.LT,6)Mab 166
DO $70 \mathrm{~J}=1, \mathrm{M}$ 167
1F(DPC(J)*CUMG(J\&1))70,70,90 168
90 XNEXEALOG10(DPC(J)) 169
XNEXVAL (XNEX, XMAX, XMIN,XS) 170
YNEXEALOGIO(CUMG(J+1)) 171
YNEYVAL(YNEX, YMAX, YMIN,YSS 172
CALL PIONT (KNT,XN,YN) 173
70 CONTIAUE 174
60 TO 77175
82 IF(MOO)84,84.83 176
83 Ma7 177
IF (MS.LT.6)Mab 178
DO $75 \mathrm{Jal}, \mathrm{M}$ 179
IF(DPC(J)*CUMG(J))75.75.191 180
191 XNEXEALOGIO(DPC(J)) 181
XNEXVAL (XNEX, XMAX, XMIN,XS) 182
YNEX=ALDG10(CUMG(J)) 183
YNEYVAL (YNEX, YMAX,YMIN,YS) 1 A4
CALL PIONT (KNT,XN,YN) 1 1月5
75 CONTINUE 186
601077 187
84 Mab 188
IF(MS.LT.6)M=5 189
DO $77 \mathrm{Jri}, \mathrm{M}$ 190
IF(DPC(J+1)*CUMG(J))77.77.92 191
92 XNEXEALOS10(DPC(J+1)) 192
XNEXVAL (XNEX, XMAX, XMIN, XS) 193
YNEXEALDG10(CUMG(J)) 194
YNEYVAL (YNEX, YMAX,YMIN,YS) 195
CALL PIONT (KNT,XN,YN) 196
77 CONTINUE 197
GO TO 300 198
C C THIS LOOP PLOTS CUMULATIVE MASS LOADING VS. DSO FOR ANDERSEN 199 200
 201
200 DO $175 \mathrm{Jes}, \mathrm{VV}$ 202 203
IF (DPC(J) ACUMG(J))175.175.91
Q1 XNEXEALOG10(OPC(J)) 205
XNEXVAL(XNEX, XMAX, XMIN, XS) 206
YNEXGALOGIO(CUMG(J)) 207
YNEYVAL(YNEX, YMAX,YMIN,YS) 208
CALL PIONY(KNT,XN,YN) 209
175 CONTINUE 210
300 IF(ISIG)130.130.150 211
c 212
CALL sUBROUTINE JDEI TO SUPERIMPOSE FITTED CURVE IF DESIRED (ISIG c
c - 0). 213c
215
150 CALL JOEI 216
RETURN 217
C 218
130 CONTINUE 219
ThIS SURROUTINE IOENTIFIES THE SET OF OATA PLOTTED WITM The 220 221
SYMROL USED TO DRAW POINTS. IIMPORTANT IF MORE THAN ONE BET OF 222
DATA IS SUPERIMPOSED ON ONE GRID. 223
CALL LABEL (KNT,XS,YS,YHAX,XMIN)
CaLL LABEL (KNT, XG,Yタ,YMAX,XMIN) 225224
RETURN PEN TO PHOME POBITION' AT BASE OF PLOTTER 4.5 INCHES FROM226
the maximum value of the x axis.. pen in the up position. 228
229
$x=x \ln x+4.5 / X S$ 230YEYMIN-2, YY
231CALL FPLOT(+1, $x, Y)$
232
RETURN RETUN 233
1 PORMAT(IX, ©PARTICLE OIAMETER (MICROMETERS)') 234
FORMAT($1 \times, 80$ A1) 235
FORMAT(IX. ©CUMIJLATIVE maSS LOADING (GR/ACF)') 236
FORMAT(IX, 'CUMULATIVE MASS LOADING (MG/ACM)') 237
 238
ENO 239

240 CAROS ON TAPE

STOP 000000
SURROUTINE WALLYZ 1
C* 3
C. SURROITINE WALLYZ DRAWS NEW GRID (IF MPLOT \rightarrow O) AND MAKES A PLOT OF 4
C. CHANGE IN MABS SIZE CONCENTRATION (MG/DNMS) VS. GEOMETRIC MEAN 5
C* DIAMFTER (MICRONS) ON A LOGIO VS. LOGIO GRID: ALSO, WALLYZ CALLS 6
C* SUBROUTINE JOEZ TO SUPERIMPOSE POINTS BASED ON CURVE FITTING IF 9
C* ISIG $>$ O (NEW GRID ALWAYS DRAWN IN THIS CASE.) 8
C* 9
C* 10
e11
INTEGER VV
DOURLF PRECISION XNDPEN(10), YO(10) 12
DIMENSION IDALL(80), GEMAX(2),GEMIN(2), DMMAX(2), DMMIN(2), DNMAX(2) 14
DIMENSION DNMIN(2),DPMAX(2), DPMIN(2),CIMMX(2),CUMIN(2),ID(BO) 15
DIMENSIDN DPC(B),CUMG(8), DMOLO(9),GECMD(9), DNDLD(9) 16
COMMON IMPAC, IDALL,RHOI, GEMAX,GEMIN, DMMAX, DMMIN, DNMAX, DNMIN 17
COMMON DPMAX, DPMIN,CUMAX,CUMIN,ISIZ1,ISIZ2,ISIZ3 18
COMMON IS,NFIT,ID,RHO,DMIN,TKS,POA,FG(F),DMAX,DPC,CUMG,DHDLD 19
COMMEN GEOMD, OHDLD, GRNAM, MPLOT, DSMA, VV 20
COMMON ISIG,XMAX,XMIN,YMAX,YMIN,XS,YS 21
COMMON CYC3,MC3, MOO,MS 22
CDMAON XNDPEN 23
C 24
PI=3.1415 25
c 26
M IS CODING FOR OUTPIIT DEVICE. HEPE M 7 FOR PLOTTER. c 27
Ma 7 20
c
FOR ASSUMED PHYSICAL DENSITY, N a 1 TO READ FROM ODD NUMAFRED 30
RECORDS FOR ASSUMED AERODYNAMIC DENSITY, N E 2 TO READ FROM EVEN 32
NUMRERED RECORDS. 33
$\mathrm{N}=1$ 35
IF(RHO.ER.1.0)NE2 36
IF MPLOTE! PLOT NEW GRIO ON EACH PASS ThROUGH PROGRAM, IF MPLOTEO 38
PHE SAME GRIN AS PREVIOUS PLOT. NEW GRID ALWAYS DRAWN IF ISIG $\rightarrow 0$ 39
(JOEZ TO BE CALLED.). 40
IF(ISIG.GT.0)GOTO 2041
IF(MP(OT) 80.80 .20 43
XIN = LENGYH OF THE X AXIS IN INCHES. 45
YIN - LENGTH TF THE Y AXIS IN INCHES. 46
20 KNY:0 48
XIN:4.5 49
YINE6.5 50
C 51
xmax - maximum x value plotien. 52
YMAX - MAXIMUM Y VALUE PLOTIED. 53
XMIN - MINIMUM X VALUE PLOTTEC 54
YMIN - MiNIMUM Y VALUE PLOTTED. 55
IF(ISIZ2.EO.1)GO TO 25 59
GO Pח (221.222.221.221).1MPAC 58
221 YMAXE1,0EOA 59
YMINE．OI 60
GO 1023
61
222 YMAXEI．OE06 62
YMINE1．0 63
23 YMAXE2，0 64
YMAXEALOGIO（YMAX） 65
XHIN＝ALOG10（．1） 66
YMINEALOG1O（YMIN） 67
Gח 1ח 28 68
25 Xmaxazeo 69
YMAX＝SLIM（1，ALOG10（DMMAX（N））） 70
XHINESLIM（O．ALOGIO（GEMIN（N））） 71
YMINESLIM（O，ALOGIO（DMMIN（N））） 72
e
x and y scale factors calculated here． 73
C75
28 XSEXIN／（XMAX－XMIN） 76
YSEYIN／（YMAXGYMIN） 77
YORIGEYMIN－Z．／YS 78
CALL SCALF（XB，YS，XMIN，YORIG） 79
e 80
DRAW THE X－AXIS． 81
YAINIZYMIN82
IXMAX $=X$ MAX 83 83
IXMINEXMIN 85
IXRANAIXMAX－IXMIN 86
CALL XSLBLIXS，YS，XMIN，YMINI，IXRAN，XMIN） 87
CALL XLOG（XS，YS，XMAX，YMINI，－I，IXRAN） 88
c 89
LABEL PHE x－AXIS． 90
x C8＝． 1591
YCS＝． 1593
$X=((X H A X-X M Y N) / 2,0)+X M I N=(16,0 * X C S) / X 8$ 94
YEYMINI＝（．T／YS） 95
CALL FCHAR（X，Y，XCS，YCS，O．） 96
WRITE（M，1） 97
e 98
wRITE THE ID LARELS． 99XCS＝． 056100
101YCSE． 100
$x=X M I N$ 102
YEYMAX＋．5／YS 103
DO 30 I＝1．79 105104
JEAO－I 106
IF（ID（J）．NE．IELK）GO TO 40 107
30 CONTINUE 108
Jal
40 CALL FCHAR（X，Y，XCS，YCS，0，0） 110
WRITE（M，Z）（ID（I），Iz1．J） 111
XEXMIN 112
Yaymaxt． $25 / \mathrm{YS}$ 113
CALL FCHAR（X，Y，XCS，YCS，0．） 114
WRITE（M，5）RHO 115
DRAW THE Y－AXI8 ON THE LEFT BIDE OF THE GRAPH． 116
のロロ 117
IYMAXEYMAX 119
IYMINaYMIN 120
IYRANaIYMAXGIYMIN 121
CALL YLOG(XS,YS,XMIN,YMAX,-1,IYRAN) 122
CALI. LGLBL(XS,YS,XMIN,YMIN,IYRAN,YMIN, I) 123129
LABEL THE Y - aXIS ON THE LEFT SIDE OF THE GRAPH. 125
xes. 15 127126YC8E. 15
XaXMINe.7/XS 128 129
Ya(YMAX-YMIN)/2.0+YMIN-(16.0*XCS)/YS 130
CALL FCHAR(X,Y,XCS,YCS,PI/2.)
WRITE(M, 4)131
133PLOT THE x AND Y VALUES FOR CHANGE IN MASS SIZE CONCENTRATION
134
(MGIDNMS) VS. GEOMETRIC MEAN DIAMETER (MICROMETERS). 135
80 KNTEKNT+1 137136
IVEVV+I
0070 Jal.iv 138
130
IF(MMNLD(J)*GEOMO(J)) $70.70,90$ 140
90 XNEXEALOG10(GEOMD(J)) 141
XN:XVAL (XNEX, XMAX, XMIN, XS) 142
YNEXAALOG1O (DMOLO(J)) 103
YNEYVAL (YNEX, YMAX, YMIN,YS) 144
CALL PIONT (KNT,XN,YN) 145
70 CONTINUE 106
IFIISIG.EQ.O)GO TO 150 147
CALL SURROUTINE JOEZ TO SUPERIMPOSE MASS BIZE DISTRIBUTION AS 149148
FOUND FROM DERIVATIVE OF CUMULATIVE MASS LOADING CURVE FIT IF
ISIG NOT $=0$ HERE. 150
152CALL JOEZ153
RETURN 154
150 CONTINUE155
157
THIS SUBROUTINE IDENTIFIES THE SET OF DATA PLOTTED WITH THE 158
SYMADL USEA TO DRAW POINTS TEMPORTANT IF MORE THAN ONE SET SYMRDL USEN YO ORAW POINTS. GIMPORTANT IF MORE THAN ONE SET OF 159
DATA IS SUPERIMPOSED ON ONE GRID. 160
CALL LABEL (KNT,XS,YS,YMAX,XMIN) 162161
RETURN PEN TO HOME POSITION' AT BASE OF PLOTTER a.5 INCHES FROM163
the maximum value of the x axis.. PEN in the up position. 165
$X=X M A X+4.5 / X S$ 166
167
167YEYMIN-2./YS
168
CALL FPLOT $+1, X, Y$) CALL FPLOT (+1, X,Y) 169
FORMAT(IX, ©PARTICLE DIAMETER (MICROMETERS)') 170
2 Format (1x, Boal) 171
FORMAY(IX, OM/DLOGD (HG/DNM3) 172
FORHAT(IX.'RMO = *F4. $2 .{ }^{\circ}$ GM/CC*) 173
RETIUR 174
ENT 175
SUBROUTINE WALLY3 1
INTEGFR VV 2
DOURLE PRECISION XNDPEN(10), YO(10) 3
DIMENSION IDALL(B0), GEMAX(2), GEMIN(2), DMMAX(2), DMMIN(2), DNMAX(2) Δ
DIMENSION DNHIN(2), DPMAX(2),DPMIN(2),CUMAX(2),CUMIN(2),ID(80) 5
DIMENSION DPC(8), CUMG(8), DMDLD(9),GEOMD(9), DNDLD(9) 6
COMMON IMPAC, IDALL, RHOI, GEMAX, GEMIN, DMMAX, OMMIN, DNMAX, DNMIN 7
COMMON DPMAX, DPMIN, CUMAX,CUMIN,ISIZI,ISIZ2,ISIZ3 B
COMMON IS,NFIT,ID,RHO, DMIN,TKS, POA,FG(5), DMAX,OPC,CUMG, OMDLD 9
COMMON GEOMD, DNDLD,GRNAM, MPLOT,DSMA, VV 10
COMMON ISIG, XMAX,XMIN, YMAX,YMIN,XB, Y8 11
COMMON CYC3,MCS,MOO,MS 12
COMMON XNDPEN 13
DATA IBLK/e e, 10
THE FOLLOWING VARIABLES ARE READ INTO WALLY: 15 16
CG - DN/DLOGD (NO. PARTICLESIOSCM)
CH - CUMMULATIVE (GR/AEF). 17 17
DP - GEOMETRIC MEAN DIAMETER (MICROMETERS) 18
TD - IDENTIFICATION LABEL. 20
RHO - DENSITY 21
MPLOT - CONTROLS THE GRAPHING. 22
PI $=3.1415$ 23
ME 7 25
$\mathrm{N}=1$ NE 1 26
IF(RHO.EO.1.O)NE2 27
IF MPLOTEI PLDT NEW GRID ON EACH PASS THROUGH PROGRAMG IF MPLOTEO PLOT 2928
THE SAME GRID AS PRIVIOUS PLOY.
31IF(ISIG.GT.O)GO TO 20
32
IF(HPLOT) AO, BO,20 33
$20 K N T=0$ 34
XIN - LENGTH OF THE X AXIS IN INCHES. 3635
YIN - LENGTH OF THE Y AXIS IN INCHES.XIN=4.53839
YINEG.5 40
XMAX - MAXIMUM X VALUE PLOTTED. 4241
YHAX - MAXIMUM Y VALUE PLOTPED. 43
XMIN - MINIMUM X VALUE PLOTTED
YMIN - MINIMUM Y VALUE PLOTPED. 4546
IFCISI23.E日, 1) GO 1025
IFCISI23.E日, 1) GO 1025
GO TO (2a0.241,240,240).IMPAC 47 47 48
240 YMAXEIBOE15 49
YMINE1.OEO6 50
GO TO 124 51
241 YMAXE1,OE10 52
$Y M I N=1,0 E 05$ 53
124 MAXBALOG10(100.0) 54
YMAX 55
XMINEALOGIO(.1) 56
YMINEALOGIO (YMIN) 57
607028 58
25 XMAXEALOG10(100.0) 59
YMAXESLIM(1, ALOG10(DNMAX(N))) 60
XMINESLIM(O,ALOG10(GEMIN(N))) 61
YMINESLIM(O,ALOGIO(DNHIN(N))) 62
C
x and y scale factors calculated here. 63
C 64
28 XSEXIN/(XMAX-XMIN) 66
YSEYIN/(YMAX-YMIN) 67
YORIGEYMIN-2./YS 68
CALL SCALF(XS,YS,XMIN,YORIG) 69
DRAW THE X - AXIS. 70 71
YMINIEYMIN72
73IXMAXEXMAX
74IXMINEXMIN
IXRANEIXMAXGIXMIN75
CALL XSLBL(XS, YS, XHIN,YMINI, IXRAN,XMIN)76
CALL XLOG(XS,YS, XMAX,YMINI, -I,IXRAN) 7879
LABEL THE X - $\triangle X I 8$. 80
xCs:. 1581
YCSE. 15 63
$X=((X H A X=X M I N) / 2.0)+X M I N=(16.0 * X C S) / X 8$ 84
YEYMINI-(.7/YS) 85
CALL FCHAR (X,Y,XCS,YCS,O.) A6
WRITE(M, 1) 87
WRITE ThE ID LABELS. 88
C 19
C 90
xC8:.056 91
rese. 100 92
XEXMIN 93
YEYMAX+.5/Y8 94
DO 30 IE1. 79 95
J380-I 96
IF(ID(J).NE.IB(K) GO 1040 97
30 CONTINUE 98
j=1 99
40 CALL FCHAR(X,Y,XCS,YCS,0.0) 100
WRITE(M,2)(IO(I),IE1,J) 101
XEXMIN 102
YEYMAXt.25/YS 103
CALL FCHAR (X,Y,XCS,YES,O.) 104
WRITE(M,5) RHO 105
${ }^{e}$ 106
DRAW THE Y aXIS ON THE LEFT IIDE OF THE GRAPH. 107
IYMAXEYMAX 109108IYNINEYMIN110
IYRANEIYMAXOIYMIN 111
CALL YLOG(XS,YS,XMIN,YMAX,=1,IYRAN) 112
CALL LGLBL(XB,YS,XHIN,YMIN,IYRAN,YMIN,I) 113
label the y a axis on the lefy side of the graph. 114
c 115
$x C 8=.15$ 117116
YC8=. 15 118
XEXM1Ne. $7 / \times 8$ 119
$Y=((Y M A X-Y M I N) / 2.0)+Y M I N-(16.0 * X C 8) / Y S$ 120
CALL FCHAR(X,Y,XCS,YCS,PI/Z.) 121
WRITE(M,4) 122
C
C 123
PLOT X AND Y VALUES FOR CUMMULATIVETMG/ACM V8 050'8. c 124
80 KNTEKNT+1 125
IVEVV+I 126
DO 70 Jai.IV
IF(DNDLD(J) \&GERMD(J))70,70,90 128 128127
90 XNEXEALOG10(GEOMD(J)) 130129
XNEXVAL (XNEX,XMAX,XMIN,XS)
XNEXVAL (XNEX,XMAX,XMIN,XS)
YNEXEALOG1O(DNDLD(J)) 131
YNaYVAL(YNEX, YMAX,YMIN,YB) 132
CALL PIONT (KNT,XN,YN) 133 133
70 CONTINUE 135
IF(ISIG.EQ.0)GO PO 150 136
138CALL JOEZ
139
RETURN 140
C 141
150 CONTINUE 142
CALL LABEL(KNT,XS,YS,YMAX,YMIN) 143
XㅍXMAX $+4.4 / X 8$ $14 a$
YaYMIN-Z./YS 145
CALL FPLOT $(+1, X, Y)$ 146
60 RETURN 147
1 FORMAT(IX,APARTICLE DIAMETER (MICROMETERS)") 148
2 Format ($1 \times, 80$ il) 149
4 FORMAT(IX. D DN/DLOGD NO'PARTICLESIONM3) ? 150
 151
END 152
SUBROUTINE XLOG(XS,YS,XO,YO,K,L) 1
C PEN MAY RE UP DR DOWN. 2
$C X S$ E X-SCALE FACTOR, INCHESAUSER'S UNIT 3
C YS $=$ Y-SCALE FACTOR. INCHESIUSER'S UNIT 4
C YO = STARTING YoVALUE WITH RESPECT TO ORIGIN. 5
C $X O$ E STARTING XOVALIIE WITH RESPECT TO ORIGIN, 6
$C K=+1$. FDR POSITIVE $X=D I R E C T I O N$ 7
C $K=-1$. FOR NEGATIVE X=OIRECTION 8
$C L$ NUMBER OF LOG10 CYCLES 9
$P=0.05 / \mathrm{YS}$ 10
$0=0.075 / \mathrm{Ys}$ 11
XKEFLOAT (K) 12
TEST $=X O+X K$ *FLOAT(L) 13
LIMITEL+1 14
CALL FPLOT (-Z, XO,YO) 15
DO 300 JEI.LIMIT 16
$X I=X 0+X K$ FFLOAT (J-i) 17
CALL FPLOT(O,XI,YO) 18
CALL FPLOT ($0, X I, Y 0=0$) 19
CALL FPLOT ($0, X I, Y 0+0$) 20
CALL FPLOT(O,XI,YO) 21
CALL FPLOT (O,XI, YO) 22
23
1F(XI-TEST)250,300,250 23
250 DO 300 IE1.A 24
1F(K)260.300.270 25
260 Y1:10-1 26
6010280 27
270 YI=1 20
280 YiE1.0 $0+1.0 / \mathrm{YI}$ 29
XIEXI+XK*ALDGIO(YI) 30
CALL FPLOT $0, X 1, Y 0)$ 31
CALL FPLOT (O,XI,YOOP) 32
CALL FPLOT(O.XI,YO\&P) 33
CALL FPLOT(O,XY, YO) 34
CALL FPLOT(O,XI,YO) 35
300 CONTINUE 36
CALL FPLOT(1,XI,YO) 37
RETURN 38
END 39
SUBROUTINE XSLRL(XS,YS,XO,YO,L,E) 1
C CAN ONLY LABEL FROM -9 TO +9 2
C (XO,YO) ARE THE COOROINATES CORRESPONDING TO THE FIRST LOG CYCLE TO 3
C BE IDENTIFIED. 4
C PEN MAY bE UP OR DOWN 5
C THE IOENTIFICATION IS HELOW THE X-AXIS
C XS x X-SCALE FACTOR, INCHESIUSER•S UNITS 7
C YS $=$ YOSCALE FACTOR, INCHESAUSEROS UNITS 8$C \quad x_{0}=$ INITIAL X OVALUE.
C $Y O$ E NITIAL Y OVAL 9
C L Number of lngio creles 10
C E EXPONENT OF FIRST CYCLE +0.0 .0 11
1 FORMAT(${ }^{\circ}$ 10\%)12
2 FORMAT(1X,I2) 14
LIMITEL+1 15
DN 100 I=1.LIMIT 16
XN: XO F FLOAT(I-I) 17
IXNEE+FLOAT(I-1) 18
XNEXN-O.2/XS 19
YNEYO=0.3/YS 20
CALL FCHAR (XN, YN. 0.15 .0 .15 .0 .01 21
YNaYO-0.2/YS 22
WRITE (7,1) 23
XNE $=X N+0.2 / X S$ 24
IF(IXN) 50.60.60 25
50 XNE $=X N+0.3 / X S$ 26
60 CALL FCHAREXNE, YN, $0.1 .0 .1,0.09$ 27
WRITE(7,2) IXN 28
100 CONTINUE 29
RE TURN 30
END 31
FUNCTION XVALCXIF，AMAX，AMIN，A8） 12
THIS FUNCTION GIVES A VALUE TO OPC（I．E．XN） 35
GRAPH BOUNDARY IF $>$ XHAX OR \mathcal{A} XMIN． 6
8
IF（XIF＝AMAX）87，07，86 9
86 XVALEAMAX4．15／AS 10
RETURN 11
87 IF（AMIN－XIF）89，89，88 12
88 XVALEAMINO． $15 / 48$ 13
RETURN 14
89 XVALEXIF 15
RETURN 16
END 17
SUBROUTINE YLOG（XS，YS，XO，YO，K，L） 1
C
PEN MAY RE UP OR DOWN
YS＝YOSCALE FACTOR，INCHES／USER＇8 UNIT2
4XS E XOSCALE FACTOR．INCHES／USER＇S UNIT
5YO E STARTING YGVALUE WITH RESPECT TO ORIGTN
xo s starting xevalue with respect to origing 6
$K=+1$ ．FOR POSTTIVE YOOIRECTION 8
K－1．FOR NEGATIVE YODIRECTION 9
L NUMEER OF LOGIO CYCLES 10
Pa0．05／x8 11
$0=0.075 / \times 3$ 12
XKC＝0．4342944819＊FLOAT（K）13
LEしゃ 15
CALL FPLOT（ $=2, \times 0, Y 0)$ 16
00300 JEI．L 17
YIEYO＋FLOAT（K\＆（J＝1）） 19
NE 1 20
$x=0$ 21
20000250 I $=1, N$ 22
IF（N＝1）210，240，210 23
210 IF（K）220．300．230 24
220 X1是10．1 25
6010235 26
230 MIII 27
235 YIEYItXKC＊ALOG（1．0\＆1．0／XT） 28
240 CALL FPLOT（O．XO，YI） 29
CALL FPLOT $(0, X 0-X, Y I)$ 30
CALL FPLOT $(0, X O+X, Y I)$ 31
CALL FPLOT $(0, X 0, Y I)$ 32
250 CALL FPLOT（O，XO，YI） 33
IF（J－L）255，300，300 34
255 IF $(N=1) 300,260,300$ 35
$260 \mathrm{~N}=8$ 36
$x \in p$ 37
GO 70200 30
300 CONTINUE 39
LEL－1 40
c 41
RETURN 42
END 43
SUBROUTIME YPROB(XS,YS,X,KDOE,IMIN,IMAX) 1
PLOT AND LABEL Y AXIS FOR NORMAL PROBABILITY SCALE2
GASTONG19DEC1975. 4\checkmark AXIS AT XMIN IS LABELLED DOWN FROM YMAX - 99.995
PO YMIN = O.OI ON THE LEFT OF THE AXIS. 7
Y axis ar xmax is labelled donn from ymax $=0.01$ TO8
YMIN $=99.99$ ON THE RIGHT OF THE AXIS. 10
XS : X SCALE FACTOR IN INCHESIUNIT 11
$\forall S$: Y SCALE FACTOR IN INCHESIUNIY 12 12
X. Y AXIS X VALUE INDICATED BY KODE 1413
KODE = O FOR $X=X M I N$, LABEL TO LEFT OF AXIS
KODE NON-O FOR X E XMAX, LABEL TO RIGHT OF AXIS 16
17DO THE FOLLOWING SEQUENEE IN MAIN PROG TO SET UP
18
SCALE FACTOR FOR Y PRORABILITY AXIS. 19
NDTRI COMPUTES A Y VALUE FOR a GIVEN PROBABILITY 2120
CALL NOTRI(0,9999,YMAX,D,IE) NDTRI FROM 360 88P. 22
CALL NOTRI(0,0001, YMIN, D,IE)
YS $=$ YINCH/(YMAX-YMIN) 23
XS = WHATEVER X SCALE USED 25
CALL SCALF (XB,YS,XMIN,YMIN) 26
MOVE PEN TO XMIN OR XMAX, YMIN BEFORE CALLING YPROB 27 28
DIMENSION BTV(25), STI(25),NST(25)29
31
giv is array of big fick mark y probability values 32
DATA GTV/0.0001., 0005,.001.,002,.005..01.,02.33
2 .05..1..2..3..4..5..6..7..8...9..95. 35
3 .98..99..995..998..999..9995..9999/ 36
STI IS ARRAY OF SMALL TICK MARK PROBABILITY INCREMENTS 36CATA STIC0.0n01..0001..0005..001..001.002..01..01.39
$2 \quad 01.02, .02, .02, .02, .02 ., 02, .01 .01 .0101$. 40
$3 \quad .002 .001,001, .0005, .0001,0001,0,1$ 42
43
NST IS ARRAY DF NUMBER OF SMALL TICK8 BETWEEN BIG TICKS 05
DATA NST/3,4,1,2,4,4,2,4,9,4,4.4.4.4.4.9,4.46
2 2.4,4.2.1.4.3.01 08
aIG AND SMALL TICK MARK LENGTHS 49
51
BTL $=0.075 / \times 5$ 52
STL $=0.05 / \times 5$ 53
PLOT Y AXIS WITH BIG AND SMALL TICK MARKS GOING UP 54
FROM XMIN OR XMAX TO YMAX. 56
DO 50 IEIMIN,IMAX 5857
YI 2 APV(I) 59
CALL NOTRI(YI,Y,D,IE) 60
CALL FPLOT $(-2, x, Y)$ 61
CALL FPLOT $(0, X+B T L, Y)$ 62
CALL FPLOT ($0, X=B T L, Y$) 63
CALL FPLOT $(0, x, y)$ 64
K = NST(I) 65
IF(I.EQ.IMAX)gO TO 60 66
DO $50 \mathrm{~J}=1, \mathrm{~K}$ 67
$Y 2=Y I+J * S T I(I)$ 68
CALL NOTRI(YZ,Y,D,IE) 69
CALL FPLOT(n, X, Y) 70
CALL FPLOT (O.X C STL, Y) 71
CALL FPLOT ($0, X=S T L, Y$) 72
CALL FPLOT $(0, x, y)$ 73
So CONTINUE 74
C
C
C X WIOTH AND Y HEIGHT OF LARELLING CHARACTERS 75 76
$60 \mathrm{xCS}=0.15$ 77 78
YCS $=0.15$
$\begin{array}{ll}C \\ C & \text { START LABELLING LOOP }\end{array}$ 月0 81
LABELLING IS DOWN THE AXIS TO THE LEFT IF KODE IS 0 82
AND TO THE RIGHT IF KODE IS NON=O. 83
L $=0$ 858
DO 200 IEIMIN,IMAX
$L=L+1$ 87
JaIMAX-L+1 88
PeBTV(J) 89
CALL NOTRI(P,Y,D,IE) 90
Y = Y - (YCS/2.)/YS 91
IFP KODE J 85.80.85 92
$80 \mathrm{P}=\mathrm{P}_{1} 100$. 93
1F(J-24) 100,90,90 94
$85 \mathrm{XP}=\mathrm{X}+(\mathrm{XCS} 1 \times 8)$ 95
$P E B T V(L) * 100$. 96
IF(L-2) 185,185,105 97
c 98
99.99.90.95 99C
C100
$90 \quad X P=X=(6 . * X C S) / X S$ 101
95 CALL FCHAR(XP,Y,XCS,YCS,O.) 102
WRITE 7,1) P 103
1 FORMAT(1X.F5.2) 104
GO TO 200 105
${ }^{c}$ 106
99.9.99.R.99.5 107
C 108100 1F (J = 21, 120.110.110
105 IF ($L=5$) $175,175,125$ 109
$110 \times P=X=(5, * X C B) / X S$110
115 CALL FCHAR(XP,Y,XCS,YCS,0.) 112111
WRITE(7,2) P
2 FORMAT(IX,F4.1) 113
114
6070200 115
C
c
c 99-10 116 117
120 IF J J O 140.130 .130 119
125 IF L L © $155,155,145$ 120
130 XP $=x=(3 . * X C S) / X S$ 121
135 IP $=P+0.5$ 122
CALL FCHAR(XP,Y,XCS,YCS,O.) 123
WRITE (7.3) IP 129
3 FORMAT(IX,I2) 125
GO TO 200 126
C 127
C 5.2 .1 128
140 IF J J 6 , 160.150 .150 129 130145 JF $L=20$, $135,135,165$
$150 \mathrm{XP}=\mathrm{x}=(2 . * \times(3) / \mathrm{xs}$ 131
155 IP = 132
CALL FCHAR(XP,Y,XCS,YCS,O.) 133
WRITE(7.4) IP 135
135
4 FORMAT(IX,II) 136
GO 10200 137
c 138
c 0.5.0.2.0.1 139
C 140
160 [F(J - 3 J 180.170.170 141
65
65 165 IF L L 23) 115.115,95 142
170 XP $=X$ (4.*XCS)/XS 143
175 CALL FCHAR(XP,Y,XCS,YES,0.) 14 a
WRITE(7.5) P 145
5 FORMAT(IX.F3.1) 140
GO TO 200 101
C 148
C 0.05 .0 .01 140
C 150
$180 \times P=x-(5 . \pi x(S) / x S$ 151
185 CALL FCHAR(XP,Y,XCS,YCS,O.) 152
WRITE(T,6) 153
6 FORMAT(ix,Fa.2) 150
200 CONTINUE 155
RETURN 156
END 157
FUNCTION YVAL(YIF,BMAX,BMIN,BS)1
C
C
C
C
C
C
C
C
THIS FUNCTION GIVES A VALUE TO CUMG (I':E. YN) 43
such that it will be plotted just beyond the
such that it will be plotted just beyond the5
GRAPH BOUNDARY IF \rightarrow YMAX OR \& YMIN. 6
IF(YIF-BMAX)97,97.96 98
96 YVALERMAX+. $15 / 89$ 10
RETURN 11
97 IF(BMIN=YIF) 99,99,98 12
98 YVALEBMIN-.15/RS 13
RETURN 14
99 YVALEYIF 15
RETIUR 16
END 17

REFERENCES

1. Morrow, P. E. (Chairman, Task Group on Lung Dynamics). Deposition and Retention Models for Internal Dosimetry of the Human Respiratory Tract. Health Physics, l2: l73208, 1966.
2. Mercer, T. T., M. I. Tillery, and H. Y. Chow. Operating Characteristics of Some Compressed Air Nebulizers. Am. Ind. Hyg. Assoc. J. 29: 66-78, 1968.
3. Brink, J. A., Jr. Cascade Impactor for Adiabatic Measurements. Ind. and Eng. Chem., 50 (4): 645-648, 1958.
4. Wilke, C. R. A Viscosity Equation for Gas Mixtures. J. Chem. Physics, 18 (4): 517-519, 1950.
5. Foust, A., et al. Principles of Unit Operations. John Wiley and Sons., Inc., New York, l960. pp. 403-411.
6. Beers, Y. Introduction to the Theory of Error. 2nd Edition. Addison-Wesley, Inc., Reading, Mass. 1957.
7. Ranz, W. E., and J. B. Wong. Impaction of Dust and Smoke Particles. Ind. and Eng. Chem. 44 (6): 1952.
8. Calvert, S., and C. Lake. Cascade Impactor Calibration Guidelines. A.P.T., Inc., EPA, Research Triangle Park, N.C. 1976. 43 pp . EPA-600/2-76-118.
9. Cushing, K. M., G. E. Lacey, J. D. McCain, and W. B. Smith. Particulate Sizing Techniques for Control Device Evaluation: Cascade Impactor Calibrations. Southern Research Institute, EPA, Research Triangle Park, N.C., 1976, 94 pp. EPA-600/2-76-280.

PLOTTING SOFTWARE FOR THE

 DIGITAL EQUIPMENT CORPORATION PDP-15/76
Digital Equipment Corporation, (DEC) PDP-15/76 Plotter Subroutines

This Appendix describes relocatable plotter subroutines for the DEC PDP-15/76 computer system. These subroutines can be used to draw and scale grid lines, to draw special point characters, to draw alphameric characters at various angles, and to plot curves, graphs, charts, and maps. The subroutines can be used in FORTRAN language programs.

The unichannel XY plotter handler is also included. This document explains the responses of the plotter (an IBM 1627) to WRITE and READ commands of the DEC Input Output Programming System (IOPS) and IOPS American Standard Code Information Interchange (ASCII) modes.

GENERAL

When connected to a DEC PDP-15/76 computing system, the IBM 1627 plotter can be programmed to produce bar charts, organization charts, engineering drawings, maps, or special curves. This Appendix describes a set of subroutines, written in assembler language, used to control the plotter. These subroutines can also be called from a FORTRAN language program.

PLOTTER CHARACTERISTICS

Chart paper width Plotting width Chart paper length plotting length Incremental step size Step speed Pen status change

12 inches
11 inches
120 feet
120 feet
1/100 inch
up to 18,000 steps/min
600 operations/min

X-axis movement is produced by rotating the chart paper on the drum under the pen. Rotating the drum down causes the pen to draw a line, effectively, in the up direction; this movement is the positive X-axis motion. Rotating the chart paper up produces the negative X-axis motion. X-axis movement is caused by moving the pen parallel to the drum axis. When looked at from the front of the plotter, the positive Y-axis motion is to the left; the negative, to the right.

Thus, the length of the X-axis is limited by the length of the roll of chart paper, and the length of the Y-axis is determined by the paper's width. Various combinations of paper and pen movement with the pen up or down are utilized to produce the desired drawings.

PLOTTER CAPABILITIES

The plotter generates all lines by using a series of incremental straight line segments. The increment length is 0.01 inch, drawn in either a positive or negative direction, parallel to either the X-axis of the Y-axis. Also, the paper and pen can be moved simultaneously to produce line increments at a 45° angle to either axis in either direction. This results in a diagonal line connecting opposite corners of an $X-Y$ square. Combinations of increments at various angles can closely approximate any desired curve.

Preciseness of lines and characters depends on the size of the pen point and the scale selected by the programmer.

Graphs, curves, charts, etc., can be developed by programming the appropriate instructions to the plotter.

Because of the relative slowness of the plotter, compared with the computer, the piotter system has a buffering scheme which holds plotter instructions until they are executed. This leaves the computer free to do other jobs while the actual plotting is being completed.

SUBROUTINE FUNCTIONS

There are six primary functions of the plotter subroutines described in this manual.

SCALE: Accepts and stores scaling information required by the grid, plot, and character functions.

GRID: Draws a line with scaled grid marks.
PLOT: Moves the pen from its present position to a new position. It can also raise or lower the pen either before or after the traverse movement.

POINT: Draws a special point character at the present location of the pen, if the pen is down. The point characters available are +, $\mathrm{x}, \mathrm{O}, \mathrm{O}$, and blank. All point characters are fixed in size.

CHARACTER: Positions the pen for annotation and provides character size and angle information.

ANNOTATION: Forms the characters to be plotted from computer output data. Characters available are those in the FORTRAN character set.

INPUT FORMAT

The input data to the subroutines can be either in double or standard precision format, but different subroutines are required for each precision, with the exception of the point subroutine. For example, to perform the plot function in standard precision, the FPLOT subroutine is used; for double precision, the EPLOT subroutine is used. Standard precision uses two l8-bit words to form a constant or variable, while double precision uses three l8-bit words for the same constant or variable.

SCALE

The scale subroutine accepts and stores scaling information required by the grid, plot, and character functions.

If the scale subroutine is not called, the plot subroutine assumes initial scale values of one inch per unit along both axes and establishes the origin (intersection of the x-axis and the Y-axis) at the present pen position. However, the scale subroutine must be called to define other scale factors and to establish the origin at other points. The scale subroutine can be called as often as required to redefine the scaling values and the origin position.

Each time the scale subroutine is called, the origin established is based on the physical location of the pen. Therefore, the pen must be moved to the position assumed by the subroutine before the subroutine is called. Also, the pen position cannot be moved more than 163.83 inches in either X direction from its physical location at the time the origin was last established.

Scale values are given in inches per unit of the using program. For example, to indicate a scale of $1 / 4$ inch equal to 1 foot, the scale value would be 0.25. To indicate a scale of

1 inch equal to 10 years, the scale would be 0.l. Different scale values can be assigned to the X axis and the Y axis.

The pen is usually aligned by reticle adjustment to some point on the chart paper. The scale subroutine establishes the origin at any desired point relative to the physical location of the pen when the subroutine is called. Therefore, or until the origin is moved, all measurements are calculated from this origin to prevent an accumulation of errors which would result from measuring from point to point with calculated values that have been rounded off or truncated.

The values inserted by this subroutine are positive or negative as measured perpendicularly from each desired axis to the present location of the pen.

FORTRAN

Standard precision: CALL SCALF ($\mathrm{X}_{\mathrm{S}}, \mathrm{Y}_{\mathrm{S}}, \mathrm{X}_{\mathrm{O}}, \mathrm{Y}_{\mathrm{O}}$)
Double precision: CALL SCALE ($\mathrm{X}_{\mathrm{s}}, \mathrm{Y}_{\mathrm{s}}, \mathrm{X}_{\mathrm{O}}, \mathrm{Y}_{\mathrm{O}}$)
X_{S} is a real constant or variable that defines the number of inches per user's unit to be used along the X-axis.
Y_{s} is a real constant or variable that defines the number of inches per user's unit to be used along the Y-axis.
X_{o} is a signed real constant or variable that specifies the X value of the present position of the pen relative to the desired origin, measured in user's units.
Y_{o} is a signed real constant or variable that specifies the Y value of the present position of the pen relative to the desired origin, measured in user's units.

The grid subroutine plots a straight line parallel to either the X - or the Y-axis in a positive or a negative direction with tick marks at regularly spaced intervals. The tick marks are 0.l0-inch long, with one-half the mark on each side of, and perpendicular to, the grid line. The programmer must specify the starting point, the direction to be plotted, how far to go, and the distance between tick marks.

It is not required to know either the location of the pen or whether it is up or down when this subroutine is called. At the end of the subroutine, the pen is left in the up position.

FORTRAN

Standard precision: CALL FGRID (I, X, Y, U, N)
Double precision: CALL EGRID (I, X, Y, U, N)

I is an integer constant or variable that specifies the direction the grid line is to be generated as follows:
$I=0$ specifies the $+X$ direction
$I=1$ specifies the $+Y$ direction
$I=2$ specifies the $-X$ direction
$I=3$ specifies the $-Y$ direction
X is a signed real constant or variable that specifies the X value of the grid line starting point, measured in the user's units.
Y is a signed real constant or variable that specifies the Y value of the grid line starting point, measured in the user's units.

U is a real constant or variable that specifies the distance between tick marks, measured in the user's units.

N is an integer constant or variable that defines the length of the grid line. N is equal to the number of tick marks minus one, and must be less than 131,072.

PLOT

This subroutine is called to move the pen from its present position to a new position. It is the user's responsibility to check that the coordinates of the new position are within limits. The pen can also be raised or lowered before or after the traverse movement, as a part of this subroutine.

FORTRAN

Standard precision: CALL FPLOT (I, X, Y)
Double precision: CALL EPLOT (I, X, Y)

I is an integer expression controlling the pen as follows:
$I=0$ no change
I is positive, control pen before movement
I is negative, control pen after movement
I is odd, raise pen
I is even, lower pen
X is a signed real constant or variable defining the X value of the new position, measured in the user's unit.
Y is a signed real constant or variable defining the Y value of the new position, measured in the user's units.

The point subroutine draws special point characters at the present position of the pen. The pen must be down when this subroutine is called.

This subroutine assumes the pen is down and leaves the pen down when finished. Each point character is inscribed within a 0.10 -inch square.

FORTRAN

CALL POINT (I)

I is an integer expression that defines the character to be drawn as follows:

$I<0$	blank
$I=0$	+
$I=1$	x
$I=2$	\square
$I=3$	0

CHARACTER

This subroutine is used to initialize the annotation subroutine by establishing the height and width of characters, the angle (relative to the X-axis) they are drawn, and the starting location. Calling this subroutine also raises the pen (if down) and moves the pen to the specified starting location. The height and width parameters determine a rectangle inside of which each character is drawn. The annotation subroutine remains initialized by the call to this subroutine until a new call supersedes the old one.

Standard precision: CALL FCHAR ($X_{n}, Y_{n}, X_{S}, Y_{S}, T H E T A$)
Double precision: CALL ECHAR ($\left.X_{n}, Y_{n}, X_{s}, Y_{s}, T H E T A\right)$
X_{n} is a signed real variable or constant defining the X value (user's units) of the starting location.
Y_{n} is a signed real variable or constant defining the Y value (user's units) of the starting location.
X_{s} is an unsigned real variable or constant defining the width of the character, expressed in inches. A value exceeding two decimal places will be rounded off to the nearest 0.01.
Y_{s} is an unsigned real variable or constant defining the height of the character, expressed in inches. A value exceeding two decimal places will be rounded off to the nearest 0.01.

THETA is a signed real variable or constant defining the angle at which the character (or line of characters) is to be drawn, expressed in radians. Theta is measured by rotating a line parallel to the X -axis about the starting location. Positive values produce counterclockwise rotation; negative values, the opposite.

Due to the physical resolution limitation of the plotter, it is impossible to rotate a character through all angles. The possible angles are discrete and are a function of the particular character being rotated and the angle of rotation. Thus, there may be a discrepancy between Theta and the actual plotted angle of rotation, which will be most significant for small character sizes. The same phenomenon will also cause distortion of the character shape in many cases.

When using the annotation routine to plot a string of rotated characters, the rotational inaccuracies in each character will accumulate and may produce distorted lines. The accumulative effect may be overcome by drawing the line one character at a time and using ECHAR or FCHAR to position each character in its proper location.

ANNOTATION

This subroutine forms the characters specified by computer output data to the parameters established by the character subroutine. These parameters determine a rectangle inside of which each character is drawn. The starting location is the lower left corner of the rectangle. In a continuous row of characters, the starting location is the lower left corner of the first character. When the last character is completed, this subroutine stops the pen in the up position over the lower left corner of the next character position in sequence. Repetitive lines are plotted end to end. The character set available is the FORTRAN character set.

FORTRAN

WRITE (I, FORMAT) list

I is an integer that specifies the logical unit number of the I/O unit (plotter) to be used for output data. I must be 7.

FORMAT is a statement number of the FORMAT statement describing the type of data conversion to be performed between the internal and external representation of each quantity in the list. Each FORMAT statement must contain a carriage control indicator (1X).

LIST is a list of variable names, separated by commas, which represent the output data.

This subroutine draws the X-axis for $\log _{10}$ scale. The pen may be up or down when the subroutine is called.

FORTRAN

CALL XLOG (XS, YS, XO, YO, K, L)

$$
\begin{aligned}
& \mathrm{XS} \text { is a real, standard precision constant or variable which } \\
& \text { defines the X-scale factor in inches per user's unit. } \\
& Y S \text { is a real, standard precision constant or variable which } \\
& \text { defines the y-scale factor in inches per user's unit. } \\
& X 0 \text { is a real, standard precision constant or variable which } \\
& \text { defines the starting X-value with respect to the origir. } \\
& Y 0 \text { is a real, standard precision constant or variable which } \\
& \text { defines the starting Y-value with respect to the origin. } \\
& K=+1 \text { for the positive } X \text { direction; } Y=-1 \text { for the negative } \\
& \quad X \text { direction. } \\
& L \quad \text { is the number of logic cycles. }
\end{aligned}
$$

XSLBL

This subroutine labels the X-axis for log: scale. The pen may be up or down when the subroutine is called.

FORTRAN

CALL XSLBL (XS, YS, XO, YO, L, E)
$X S$ is a real, standard precision constant or variable which defines the X-scale factor in inches per user's unit.

YS is a real, standard precision constant or variable which defines the Y-scale factor in inches per user's unit.

XO is a real, standard precision constant or variable which defines the initial X value.

YO is a real, standard precision constant or variable which defines the initial Y value.
L is the number of $\log _{10}$ cycles.
E is the exponent of the first cycle.

YLOG

This subroutine draws the Y-axis for $\log _{10}$ scale. The pen may be up or down when the subroutine is called. All real variables must be standard precision.

FORTRAN

CALL YLOG (XS, YX, X0, YO, K, L)
$X S$ is the X-scale factor in inches per user's unit.
YS is the Y-scale factor in inches per user's unit.
X0 is the starting X value with respect to the origin.
Y0 is the starting Y value with respect to the origin.
$K=+1$ for positive Y direction; $K=-1$ for negative Y direction.

L is the number of $\log _{10}$ cycles.

LGLBL

This subroutine labels the Y-axis for $\log _{10}$ scale. The pen
may be up or down when the subroutine is called. All real variables must be standard precision.

FORTRAN

CALL LGLBL (XS, YS, X0, YO, L, E, K)
$X S$ defines the X-scale factor in inches per user's unit. YS defines the Y-scale factor in inches per user's unit. XO is the initial X value. Yo is the initial Y value. L is the number of $\log _{10}$ cycles. E is the exponent of the first cycle. $K=0$ for labeling on the right side of the Y-axis; $K=1$ for labeling on the left side of the Y-axis.

NOTES:

1. IX is required as first character in format of formatted writes to plotter.
2. Must have a CALL CLOSE (7) after the last plotter instruction in the program to get the last few plot commands to the plotter. No CALL CLOSE (7) is required if there are no plot commands in the job.
3. Turning the plotter off results in lost plots.

CALL SCALE
CALL SCALF

$\left.\frac{(X S, Y S}{Y}, X 0, Y 0\right)$	Initial position
Scale factor in inches per user's unit	in user's units

CALL EGRID
CALL FGRID

CALL EPLOT
CALL FPLOT

+ Control before steps
- Control after steps

Odd Raise pen
Even Lower pen

CALL ECHAR
CALL FCHAR

WRITE (I, FORMAT) LIST

$$
I=7
$$

CALL POINT (I)

$I<0$	blank
$I=0$	+
$I=1$	x
$I=2$	\square
$I=3$	0

UNICHANNEL XY PLOTTER HANDLER

The XY Plotter responds to WRITE commands of the IOPS Binary and IOPS ASCII modes. The IOPS Binary mode is used for initializing the handler, drawing lines or drawing characters, while the IOPS ASCII mode is used only to draw characters.

The terms "absolute" coordinates and "delta" coordinates are used below. Absolute coordinates are coordinates determined by a READ (7) operation, (LASTX, LASTY). When one moves to some new set of coordinates, (LASTX $+\Delta X, \operatorname{LASTY}+\Delta Y$), the ordinate and abscissa of the shift ($\Delta X, \Delta Y$) are the "delta" coordinates.

FORMAT OF IOPS BINARY WRITES (FROM FORTRAN):

WRITE (7) mode (followed by optional variables, depending on the value of mode).

Mode		Additional variables
0	Pick up the pen	None
1	Put down the pen	None
2	Move to absolute coordinates. Address with pen up	IX, IY
3	Move to absolute coordinates. Address with pen down	IX, IY
4	Move to delta coordinates. Address with pen up	IX, IY
5	Move to delta coordinates. Address with pen down	IX, IY
6	Draw character (see note below)	ICNT, DATA
7	Set coordinate address	IX, IY
8	Move to absolute coordinate address (no pen change)	IX, IY
9	Move to delta coordinate address (no pen change)	IX, IY
10	Set character attributes	IXSIZ, IYSIZ, ISIN, ICOS

FORMAT OF IOPS ASCII WRITES (FORTRAN): Normal FORMAT statements, see Note 12. Characters can be written from IOPS Binary.

NOTES:

1. The pen actions (explicit or implicit) check to see if the pen is currently up or down, and suppresses redundant moves.
2. When the handler is first called (i.e., start of program), the pen is up; the coordinates address is $(0,0)$; the character scale is 20×20 plotter steps; and the characters are not rotated.
3. Characters are drawn on a 9Xll matrix with 2 spaces between characters giving a basic character box size of l0xlo.
4. IXSIZ and IYSIZ are plotter steps for the desired character size. The minimum value of IXSIZ or IYSIZ is 0.01 inch.
5. The character may be rotated by specifying the sin and cos of the angle of rotation. The values must be integer and scaled by 65536 (i.e., ISIN $=65536 *(S I N(T H E T A))$.
6. Character writes use the values of the last scale and rotation values.
7. "Interface Routines" may be written in FORTRAN to emulate any plotter package. Consider a routine which draws a line with the pen down by specifying delta X and Y values. One would write a FORTRAN subroutine, such as this one to replace the old one:

SUBROUTINE LINE (IX,IY)
DATA MODE/5/
WRITE (7) MODE, IX,IY
RETURN
END
8. Only the IBM 1130 FORTRAN 48 character set is presently implemented. No percent symbol (\%) is available.
9. Only rectangular characters may be obtained.
10. Powering down the plotter does not cause an error, but plots will be lost.
11. READ (7) LASTX, LASTY, ISX, ISY, ISIN, ICOS, IPEN LASTX and LASTY are previous pen position (absolute coordinates).
ISX and ISY are last character sizes. ISN and ICOS are last sin and cos of character angle. $\cos 0^{\circ}=65536$.
IPEN $=0$ if pen is up, 10000 (octal) if pen is down.
12. The first character in a FORMAT statement is not plotted. One should use 1 x or leave one blank space.
13. Binary characters for a mode 6 WRITE should be A5 ASCII.

TECHNICAL REPORT DATA (Please read Instructions on the reverse before completing)					
$\begin{aligned} & \text { 1. REPORTNO. } \\ & \text { EPA-600/7-78-042 } \end{aligned}$	${ }^{2}$.		3. RECIPIENT'S ACCESSIO NO.		
A Computer-based Cascade Impactor Data Reduction System			5. REPORT DATEMarch 1978		
J. W. Johnson, G. I. Clinard, L. G. Felix, and J.D. McCain			8. PERFORMING ORGANIZATION REPORT NOSORI-EAS-78-422		
9. PERFORMING OROANIZATION NAME AND ADDRESSSouthern Research Institute2000 Ninth Avenue, SouthBirmingham, Alabama 35205			10. PRGGRAM ELEMENT NO.E HE 62411. CONTRACT GRANT NO.68-02-2131, T.D. 10101		
```12. SPONSORIVG AGENCY NAME AND ADDRESS EPA, Office of Research and Development Industrial Environmental Research Laboratory Research Triangle Park, NC 277ll```			13. TYPE OF REPORT ANDPER/OO COVEREDTaSK Final; $777-1 / 78$14. SPONSORING AGENCY CODEEPA $/ 600 / 13$		
15. SUPPLEMENTARY NOTES IERL-RTP project officer is D. Bruce Harris, Mail Drop 62 , 919/541-2557.					
16. ABSTRACT The report describes a cascade impactor data reduction system written in the FORTRAN IV language. The overall system incorporates six programs: MPPROG, SPLIN1, GRAPH, STATIS, PENTRA, and PENLOG. Impactor design, particulate catch information, and sampling conditions from single impactor runs are used to calculate particle size distributions. MPPROG and SPLINl perform Aata analyses and make curve fits. GRAPH is totally devoted to various forms of uphical presentation of the calculated distributions. The particle size distribuas can be output in several forms. STATIS averages data from multiple impactor runs under a common condition. PENTRA or PENLOG calculates the control device penetration and/or efficiency. The plotting routines have been written for a PDP15/76 computer and are not compatible with other computing systems without modification.					
KEY WORDS AND Documevt Analys!					
OESCAIPTORS		E.IDENTIFIERS OPEN ENOED TERMS Cosatilicid Group			
Pollution   Dust Control   Impactors   Computer Programs   Data Reduction   FORTRAN	Sampling Measurement Concentration	Pollution Control   Stationary Sources   Particulates   Cas cade Impactors		$\begin{aligned} & 13 \mathrm{~B} \\ & 13 \mathrm{I} \\ & 09 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 14 \mathrm{~B} \\ & 07 \mathrm{D} \end{aligned}$
Unlimited		19. SE CURITY CLASS This ReportUnclassified		21. NO.OFPAGES601	


[^0]:    * These values are taken from the chart "Tables for Use in Aerosol Physics" printed by BGI Incorporated, copyright 1971.

[^1]:    *The DELP values are used as a part of common block BLOCKl. Variable values in a data statement must be initialized in a block data subprogram for any information to be carried in the specified common block as required by the DEC PDP 15/76 computer system used by Southern Research Institute.
    **The $X$ and DC values are used as a part of common block BLOCK2. Variable values in a data statement must be initialized in a block data subprogram for any information to be carried in the specified common block as required by the DEC PDP 15/76 computer system used by Southern Research Institute.

[^2]:    a. A maximum of 6 impactors of this type can be used.

[^3]:    File Output--
    None.

[^4]:    NORMAL (ENGINEERING STANDAROJ CONDITIONS ARE $2!$ DEG C AND TGOMM HG.

[^5]:    NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEG C AND $76 O M M$ NG.
    AERODYNAMIC DIAMETERA ARE GALCULATED HERE ACETROING TO YHE TABK GROUP DN LUNG DYNAMICS.

[^6]:    normal (engineering standard) conditions are zi deg c and 760 mm hg.

[^7]:    normal (engineering standardi conditions are 21 deg e and tgomm he.

