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EXECUTIVE SUMMARY

This pilot study seeks to develop statistical models to predict risk of childhood lead poisoning
within specified geographic areas based on a combination of demographic, environmental, and
programmatic information sources. Exposure factors associated with childhood lead poisoning
were investigated within census tracts for a community-focused set of models in Massachusetts,
as well as within counties across the United States in a series of national models. Aggregated
summary measures of the proportion of children screened at or above 5, 10, 15 and 25 pg/dL
within defined geographic areas (census tracts and counties) were used as the response variable
in the statistical models. These summary measures were constructed at 3-month (quarterly)
intervals from 1995 through 2005, in counties across the nation using data from CDC’s National
Surveillance Database, and from 2000-2006 in census tracts within the Commonwealth of
Massachusetts based on data provided by the Massachusetts Department of Public Health.

The results of this study suggest that longitudinal predictive models can be developed at the
county level across the nation, based on the use of quarterly summary information from CDC’s
National Surveillance Database, and at the census-tract level within states that have a long
history of universal screening and reporting, such as Massachusetts. These models can be used
to describe how risk of childhood lead poisoning changes over time within different regions of
the country, as well as within small geographic areas within states (e.g., counties) and even
smaller geographic areas within counties (e.g., census tracts). They can be used to predict the
risk of childhood lead poisoning in counties (or census tracts) with little or no surveillance data,
and also can be used to identify those counties (or census tracts) that are at highest risk at the end
of the period of observation.

The statistical model chosen (a random effects model with separate intercepts and slopes
estimated within each county or census tract) also allows ranking of geographic areas based on
the rate of decline over time after accounting for the fixed-effects variables of the model
(although only among those areas that provided adequate surveillance data). These random-
effects models were fit to the exceedance proportions within the context of a logistic regression
model. Within the context of the Broad-Based National Model, these random effects allow EPA
to identify those counties that are experiencing a more rapid reduction in risk of childhood lead
poisoning over time (to identify best practices) and those counties that are experiencing a
significantly less rapid decline over time (to identify areas in need of additional attention and
resources for combating lead poisoning), after already accounting for the demographic,
programmatic, and environmental factors included in the multivariate model.

Within the series of national models at the county level of geographic specificity, the data
suggest that there are significant differences in the distribution of childhood blood-lead
concentrations among the different regions of the country, and that the manner in which these
distributions change over time and are impacted by seasonality also is regionally specific. The
risk of childhood lead poisoning had a statistically significant downward trend over time in all
areas of the country.

After accounting for these regional differences, a number of demographic, environmental, and
programmatic variables were found to be highly predictive of childhood blood-lead



concentrations among the different response variables modeled within this project. The specific
variables that were found to be predictive within the multivariate models varied based on the
response variable; however, there were certainly some variables that were found to be predictive
in multiple models. In addition to various census demographic variables that were identified in
previous risk modeling efforts (e.g., age of housing, percent single parent families,
race/ethnicity), air modeling data, variables constructed from EPA’s Safe Drinking Water
Information System, and programmatic funding information from HUD and CDC were found to
be highly predictive in the multivariate models.

Within the context of the high-resolution model developed using data from the Commonwealth
of Massachusetts, a highly significant downward trend in the risk of childhood lead poisoning
also was identified among the five models developed. Due to a very small number of children
observed at or above 25 pg/dL within Massachusetts over the 2000-2006 period of observation,
we were unable to fit this sixth model. After accounting for the long-term reduction over time
and seasonality using similar methods that were employed in the Broad-Based National Model,
only the demographic and programmatic variables were included in the multivariate models for
risk of childhood lead poisoning at the census-tract level. Of particular interest were the
variables that described the proportion of housing units within each census tract that were found
to be in compliance and out of compliance with the Massachusetts Standard of Care. In all five
of the multivariate models, the risk of childhood lead poisoning was significantly reduced as the
proportion of housing units in compliance increased within a census tract. In addition, for the
last two models (which predicted proportion of children at or above 10 and 15 pg/dL), the risk of
childhood lead poisoning increased significantly as the proportion of housing units out of
compliance increased within a census tract.

The observed and predicted values from the multivariate models (including predicted values
where there were no observed surveillance data) were used to generate static maps using Arc-
View software, and were loaded into a customized dynamic visualization tool that allows users
to interact with the modeling results to assess how risk of childhood lead poisoning changes over
time within specific regions of the country. This tool will help EPA and others identify areas
that remain at risk for childhood lead poisoning as we approach the 2010 goal of elimination of
this preventable adverse health outcome.

Vi



1.0 INTRODUCTION

1.1 Background and Purpose of Study

Over the past 15 years, various childhood lead poisoning prevention programs (CLPPPs)
throughout the United States have conducted analyses of their screening data to develop “risk
indices,” or mathematical models for predicting the prevalence of childhood lead poisoning in
different geographic areas within their regions of concern. These modeling efforts generally are
intended to characterize the extent of the prevalence of childhood lead poisoning within their
geographic areas and to support the development of targeted screening and outreach plans in
order to reach the 2010 goal of eliminating childhood lead poisoning throughout the United
States.

To date, the majority of modeling efforts have focused on combining blood-lead testing
information and demographic data available from the U.S. Census. Previous studies have
combined childhood surveillance data (aggregated at the zip-code or census-tract level) with
demographic predictor variables from the Census Bureau for the purposes of targeting
geographic areas at higher risk of childhood lead poisoning (Miranda, Dolinoy, and Overstreet
2002; Miranda et al. 2005; Strauss et al. 2001a). These studies have led to recommendations for
using age of housing and percent of population below the poverty line for targeting
neighborhoods that may be of increased risk for childhood lead poisoning (CDC 1997).
Numerous studies also have been used to document the relationship between children’s blood-
lead concentrations and measures of lead in residential environmental media (dust, soil, air,
water, and food) (HUD 1995; Lanphear et al. 1998; Strauss et al. 2001b). These studies have
contributed to EPA and HUD regulations and policies for identifying and reducing residential
childhood lead exposures (24 CFR Part 35; 40 CFR Part 745; 40 CFR Part 745; U.S. Department
of Housing and Urban Development September 15, 1999). Other studies have combined blood-
lead surveillance data with programmatic information on housing units treated to determine the
positive impact of housing-based intervention programs (Strauss et al. 2006).

The goal of this study is to explore models based on a hierarchical combination of demographic,
environmental, and programmatic information sources in order to predict the number of children
at risk of elevated blood-lead levels for a given geographic area. While the models are highly
dependent on available data, this study provides a statistical methodology that combines each
data source in an appropriate manner, adjusting for global and local trends over time. In doing
so, the models build upon concepts of hierarchical modeling and longitudinal data analysis.

As EPA, CDC, and other federal and state agencies prepare to meet the 2010 goal of eliminating
childhood lead poisoning, this pilot study of integrating several different types of data sources
hopefully improves the predictive power of models that rely on a single information source. This
allows for more efficient targeting of those geographic areas that need the most help in
eliminating childhood lead poisoning.



1.2 Study Objectives

1.2.1 Obijective 1 — Combine and Manage Multiple Data Sources

The first objective of the study was to combine multiple sources of information in order to assess
the impacts of various factors on children’s blood-lead levels. The study had to obtain and
manage data relating to blood-lead levels, environmental exposure, demographic characteristics,
and programmatic support to state and local childhood lead-poisoning prevention efforts.
Missing, incomplete, or error-prone data were identified for each data source and steps were
taken to resolve data problems. Databases were developed to store and later combine each data
source in a manner that supported the development of predictive models. Master databases that
integrated multiple data sources were developed to enable efficient access to data required for
statistical analyses. A data dictionary was prepared to document the various study databases.

1.2.2 Obijective 2 — Conduct Analyses to Identify Predictive Variables and Model
Children’s Blood-Lead Levels

The second study objective was to conduct statistical analyses in order to develop models that
are predictive of risk of childhood lead poisoning within defined geographic areas as a function
of various different environmental, programmatic, and demographic factors. As part of this
objective, a National model was developed for predicting risk at the county level based on
surveillance data from the U.S. Centers for Disease Control and Prevention (CDC), and a local
model was developed at the census-tract level using blood-lead surveillance data from within the
Commonwealth of Massachusetts. As part of the model building process at both the national and
local levels, the various data sources underwent exploratory analyses to investigate data
distributions, identify relationships between variables, and determine appropriate variables to
include in subsequent statistical models. Part of the exploratory analyses included an effort to
identify which environmental, programmatic, and demographic factors were most predictive of
risk of childhood lead poisoning. Multivariate statistical models then were developed using
appropriate statistical software to combine the various data sources within a single model that
accounted for trends in risk of childhood lead poisoning over time within defined geographic
areas. Model diagnostics were reviewed, and models with the best fit were identified.

1.2.3 Objective 3 — Develop Visualization Tool to Graphically Model Predicted Blood-
Lead Levels

The third study objective was to develop an appropriate visualization tool that allows users to
interact with the results of the statistical model predicting children’s blood-lead levels across the
United States. This tool provides the user with the flexibility to visually compare the predicted
blood-lead levels across areas of the country and also to drill down into individual counties or
census tracts to assess the input data that generated the predicted value.



2.0 STUDY METHODOLOGY

2.1 General Approach

This pilot study sought to develop models to predict the number of children at risk of elevated
blood-lead levels for a given geographic area based on a hierarchical combination of
demographic, environmental, and programmatic information sources. Doing so required looking
at both the mechanisms of childhood lead risk assessment and control activities at the local level
as well as at broad trends across the United States. The two main analysis goals correspond to
developing predictive models at two different levels of geographic specificity, and appear as
follows:

1. Broad Coverage (Low-Resolution) Model: This type of model is intended to be able
to characterize broad trends over time in the prevalence of childhood lead poisoning
at the county level across the entire United States. This model was based on quarterly
county-level aggregated surveillance data from the CDC and augmented with
environmental data from a variety of sources, demographic data from the U.S.
Census, and programmatic (level of federal funding) information.

2. High-Resolution Model: This type of model represents the effort to assess the
relative contribution of various exposure sources associated with elevated blood-lead
concentrations within select communities. This type of model certainly reflects the
idea that exposures that contribute to childhood lead poisoning are likely to be
community specific. This analysis goal was met through modeling census-tract level
surveillance data within Massachusetts as well as housing unit lead assessment and/or
control activities. These data sources were augmented with all of the environmental,
demographic, and programmatic information used in the national model with the
addition of state programmatic funding levels.

The primary objective of this pilot study was to utilize combined information from different
sources at various levels of geographic and temporal specificity to more accurately target
geographic areas at high risk for not meeting the 2010 goal of eliminating childhood
lead-poisoning. As such, the study required careful integration of a variety of data sources with
various characteristics and documentation. Data to support this study were gathered from
multiple sources, including federal, state and local lead poisoning prevention programs, as well
as publicly available data that were downloaded from the internet (e.g., census data, EPA’s
Toxics Release Inventory).

2.2 Data Management

When each data source was received, the data and supporting documentation were reviewed to
gain knowledge on the structure, relationship, and quality of the data. Database managers
worked with the project team to determine the final format for each database, the desired uses of
the databases; as well as the requirements for maintaining the databases. Based on this
information, master databases were constructed in SQL server for both the national low-
resolution model and for the high-resolution model based on Massachusetts data that integrated
the various environmental, demographic, and programmatic variables, and facilitated statistical



analyses of the combined data. These datasets were translated directly to SAS datasets for
statistical analysis, and also were transferred to Microsoft Access for delivery to EPA. The
Microsoft Access database includes a compact version of each database utilized in the statistical
analysis, with any extraneous variables removed. In addition, the Microsoft Access database
includes a copy of the integrated longitudinal dataset used to support the final multivariate
models developed within this project.

Throughout the development process, checks for completeness were conducted on all study
databases, and the project team worked with data-sharing collaborators and EPA to attempt to
complete missing data as necessary to complete the proposed statistical analyses. Any changes
to the databases (corrections, additions, deletions, etc.) were documented in appropriate meta-
data files, and reported to EPA within the data dictionary attached to this report as Appendix H.
As part of constructing and maintaining these databases, the project team will develop
appropriate documentation of the combined master databases.

Standard Operating Procedures (SOPs) were followed to ensure the proper storage, backup, and
retrieval of datasets created and analyzed for this study. Additional details of these SOPs can be
found in the Quality Management Plan prepared for this project (Battelle 2007).

2.3 Descriptive Data Analyses

The analysis began with an assessment of the study sample, i.e., the proportion of counties and
census tracts in the sample with complete data for both the response variable and the explanatory
variables. Prior to the fitting of any descriptive statistics to assess the predictive ability of any of
the explanatory variables, the blood-lead response variables needed to be constructed based on
the CDC and Massachusetts blood-lead surveillance data. These data sources contain
information on individual blood-lead testing results on children, and were aggregated into
quarterly summary statistics (number of children observed, arithmetic and/or geometric mean',
and number of children observed at or above 5, 10, 15, and 25 pg/dL) at the county level (for the
CDC data) and the census-tract level (for the Massachusetts data). An executable was developed
to extract these quarterly summary statistics from each county from CDC’s SQL server database
for children aged 6-36 months, and a similar executable was deployed to create parallel summary
statistics at the census-tract level for the Massachusetts surveillance data. Because of
confidentiality restrictions, county/quarter (or census tract/quarter) combinations with fewer than
5 observations were automatically eliminated from the dataset. Data reported prior to 1995 also
were eliminated from the analysis database prior to statistical analysis.

Once the aggregated summary datasets were constructed, they were reviewed for possible
problems associated with childhood lead poisoning prevention programs not following universal
reporting protocols (for some localities, data were only transmitted to the CDC National
Surveillance Database for children with elevated blood-lead concentrations over certain periods
of time). A screening algorithm was developed to remove these suspect data from the analysis
dataset — resulting in the elimination of less than 3 percent of the aggregate summary records
from the National database. The screening algorithm also was applied to the Massachusetts data
— however no records were eliminated, as Massachusetts was following universal screening and

' The CDC reported only the arithmetic mean, while Massachusetts reported both arithmetic and geometric means.



reporting guidelines over the 2000-2006 time period for which they provided data. Additional
detail on the manner in which the blood-lead response variables were constructed can be found
in Section 3.1.

In preparation for developing longitudinal statistical models, univariate summaries of each
variable as a function of time were generated and comparisons were made of these distributions
using side-by-side box-plots for continuous data or bar-charts for categorical data. This helped
verify that the data were clean and ready for analysis and identified cells with sparse data. Such
descriptive analyses were conducted on each database, to characterize the distributions of all
observed variables using frequency distributions for categorical variables, and simple summary
statistics (mean, median, mode, minimum, maximum, and select percentiles) for continuous
variables. Distributional assumptions also were explored for certain variables, as appropriate, in
preparation for more sophisticated models. For example, some environmental concentration data
may depart from normality, and follow a log-normal distribution. In these cases, we additionally
reported the geometric mean and geometric standard deviation as part of the simple descriptive
summary.

The univariate descriptions then were followed by fitting a series of cross-sectional bivariate
relationships between the blood-lead response variable(s) and each candidate explanatory
variable. These cross-sectional relationships were explored as a function of time to better
understand the stability of these relationships, and whether they change over time, so that they
can be modeled appropriately in the more sophisticated longitudinal analyses. These analyses
also will help identify which explanatory variables are most predictive of the blood-lead
response variable.

In preparation for more sophisticated statistical analyses, such as the Generalized Linear Mixed
Logistical Regression Model outlined below, relevant stratified analyses were performed to
investigate interactions discussed in the data analysis plan. For example, the population density
variable was investigated in this manner, as density may serve as a surrogate to differentiate
between rural and urban geographic areas in the analyses — and exposure variables may be
different in these types of areas. Similarly, EPA regions were investigated as a potential
stratification variable. If variation in the measure of effect is not observed (e.g., odds ratios)
across the levels of a third variable; however, the third variable can likely be treated as a
potential confounder in the multivariate model, rather than as an effect modifier. If the odds
ratios differ markedly—e.g., the effect appears to be protective in one subgroup and hazardous in
another subgroup—the third variable must be considered as an effect modifier.

Specific variables within each type were explored using four general approaches — (1)
histograms or side-by-side box-plots of the candidate explanatory variable, (2) simple regression
line plots exploring the relationship between predicted risk of lead poisoning and the explanatory
variable for each of the four specified time periods, (3) distributional summaries of the
explanatory variable across the three time periods, and (4) statistical modeling of the relationship
between the explanatory variable and various blood-lead response variables after adjusting for
the effects of time and seasonality within different regions of the country for the National (Low-
Resolution) model and for the effects of time in the Massachusetts (High-Resolution) Model.



Histograms or Side-by-Side Box-Plots of Potential Explanatory Variables

Using one record for each quarterly county- or census-tract -level data point, a histogram
illustrating the distribution of the explanatory variable is presented. A fitted line assists with
assessing the distribution of each potential explanatory variable (e.g., whether the data are
approximately normally distributed). Histograms were plotted for potential predictor variables
that were time invariant. For predictor variables that varied over time within the analysis dataset,
side-by-side box-plots were used to characterize the distribution over the time periods, using an
average of the predictor variable across the quarters in which blood-lead concentrations were
observed within each time-period and area.

Logit Probability Plots for each Explanatory Variable

The county-level quarterly proportion of screened children exceeding 10 pg/dL reported by the
CDC were modeled as a function of each candidate explanatory variable, with separate logit
curves used to represent each of the time periods. This analysis allows comparison of the
relationship between the explanatory variable and predicted blood-lead level trends across time
periods. If the relationship is stable across time, roughly parallel curves are evident. If the effect
of the variable on blood-lead varies over time, non-parallel (and perhaps intersecting) curves are
observed. In this case, the longitudinal analyses may need to be adjusted to allow for the effect
of the covariate to change over time.

Plots of Predicted GM Blood-Lead Levels and Explanatory Variables

The census-tract-level quarterly blood-lead data available from Massachusetts were fit to each
explanatory variable to generate predicted GM blood-lead levels across the range of the
explanatory variable for each of the time periods. A simple linear regression line plot
summarizes this analysis with one line for each time period. This analysis allows comparison of
the relationship between the explanatory variable and predicted blood-lead level trends across
time periods. If the relationship is stable across time, roughly parallel lines are evident. Ifthe
effect of the variable on blood lead varies over time, non-parallel (and perhaps intersecting) lines
are observed. In this case, separate slopes may need to be fit for these variables over different
periods of time in the more sophisticated longitudinal analyses.

Distributional Summaries

The first table presented for each explanatory variable contains a series of summary statistics for
each of the time periods including sample size, number missing, mean, and standard error. The
sample size is relative to the number of quarters represented in the analysis dataset; therefore,
these distributions correspond to the analysis dataset (and not necessarily to the distribution of
the variable across the nation or state). The distribution of the data for each time period also is
presented (minimum, median, and maximum and 10", 25", 75® and 90™ percentiles).
Comparing the summary data across time allows assessment of changes in the explanatory
variable over time for the groups of tracts included in the analysis for each time period.
Generally, the mix of counties and Massachusetts census tracts included in each of the time
periods is similar, so that the distribution of the data from each period also is similar.



Statistical Modeling of Relationship between Explanatory Variables and Exceedance of
Blood-Lead Thresholds for the National (Low-Resolution) Model:

For each candidate predictor variable being considered for the National (Low-Resolution)
Model, the following generalized linear mixed models approach was used to model the
proportion of children exceeding certain thresholds as a function of the predictor variable after
adjusting for Region-specific intercepts, slopes over time and effects of seasonality:

logit(E[Y;; / ;1) = Re giony, - (Boy + Biy -t + Boy - Seasony;) + B X + Sgi + 6y

Where (i indexes county, j indexes time, and k indexes the region of the country), Yj;
represents the number of children observed above the blood-lead threshold in the i
county at time j, n;j represents the number of children tested in the i county at time j,
t;; and Season;; are fixed effects variables corresponding to a time-trend (in years) and
seasonality, Xj; is the candidate predictor variable being investigated, the beta
parameters () represent a vector of fixed effects, and the delta parameters ()
represent random effects that allow each county to have its own trend over time. The
Xi; predictor variable is mean centered in this series of models, allowing the intercept
term to be relatively stable across the multiple predictor variables being investigated.
In this model, it can be assumed that 6¢; and 9;; jointly follow a multivariate normal
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* Model 1 follows the above approach — where Yj; represents the number of children
observed with blood-lead concentrations at or above 5 ng/dL, and nj; represents the
total number of children screened within each record (county/quarter).

= Model 2 follows the above approach — where Yj; represents the number of children
observed with blood-lead concentrations at or above 10 pg/dL, and nj; represents the
total number of children screened within each record (county/quarter).

* Model 3 follows the above approach — where Yj; represents the number of children
observed with blood-lead concentrations at or above 15 pg/dL, and n;; represents the
total number of children screened within each record (county/quarter).

= Model 4 follows the above approach — where Yj; represents the number of children
observed with blood-lead concentrations at or above 25 ng/dL, and nj; represents the
total number of children screened within each record (county/quarter).

In addition to the above models, the project team explored whether the effect of each candidate
predictor variable on the exceedence proportions varied over time. This was done by exploring
the interaction between each candidate predictor variable and (1) a linear effect of time, (2) a
quadratic effect of time, and (3) a 4-level categorical effect of time.



Statistical Modeling of Relationship between Explanatory Variables and Exceedance of
Blood-Lead Thresholds for the Regional (High-Resolution) Model:

The Regional (High-Resolution) Models developed for the Massachusetts data at the census-tract
level of geographic specificity included models for both continuous data (geometric mean) and
binomial data (exceedence proportions). Therefore, each explanatory variable being considered
for these models were explored using models for both continuous and binomial data as described

below:

Continuous Data: The following mixed models analysis of variance (i.e., a random-effects
model for continuous data) was used to model the geometric mean (GM) blood-lead
concentration as a function of a candidate predictor variable:

Gy = By +B, -3y +Py X, +8, +8, -4+,

Where (i indexes census tract, j 1ndexes time), GM;j; represents the geometric mean
blood-lead concentration in the i™ census tract at time J, tij 1s a fixed-effects variable
corresponding to a time-trend (in years), X is the candidate predictor variable being
investigated, the beta parameters () represent a vector of fixed effects, and the delta
parameters (0) represent random-effects that allow each county or census tract to have
their own trend over time. The Xj; variable typically is mean centered in this series of
models, allowing the intercept term to be relatively stable across the multiple
predictor variables being investigated. In this model, it can be assumed that 6¢; and
d1i jointly follow a multivariate normal distribution with mean zero and covariance

o g 1

2 2

2

. O
matrix ¥ ={ 00
O Ot

} , and the residual error also is assumed to follow a normal

distribution with mean zero and variance 0’..'

Model 1 follows the above approach — where the responses are weighted equally.
Model 2 follows the above approach — where the responses (GM) are weighted by the
number of children observed (screened) within each record (census tract/quarter).

Binomial Data: The following generalized linear mixed model (i.e., a random-effects model for
binomial data) was used to model the proportion of children exceeding certain thresholds as a
function of a candidate predictor variable:

logit(E[Y; /ny D) = Bo + B -t +5,- Season;j; + S5 Xjj + ¢ + 0 -t

Where (i indexes census tract and j indexes time), Yj; represents the number of
children observed above the blood-lead threshold in the i™ census tract at time J» Djj
represents the number of children tested in the i' i"™ census tract at time J, tij 1s a fixed
effects variable corresponding to a time-trend (in years), Xj; is the candidate predictor
variable being investigated, the beta parameters () represent a vector of fixed effects,
and the delta parameters (0) represent random effects that allow each census tract to
have its own trend over time. The Xj; variable also is mean centered in this series of



models, allowing the intercept term to be relatively stable across the multiple
predictor variables being investigated. In this model, it can be assumed that d¢; and
d1i jointly follow a multivariate normal distribution with mean zero and covariance
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= Model 3 follows the above approach — where Yj; represents the number of children
observed with blood-lead concentrations at or above 5 pg/dL, and nj; represents the
total number of children screened within each record (census tract/quarter).

* Model 4 follows the above approach — where Yj; represents the number of children
observed with blood-lead concentrations at or above 10 pg/dL, and n;; represents the
total number of children screened within each record (census tract /quarter).

= Model 5 follows the above approach — where Yj; represents the number of children
observed with blood-lead concentrations at or above 15 ng/dL, and nj; represents the
total number of children screened within each record (census tract /quarter).

* Model 6 follows the above approach — where Yj; represents the number of children
observed with blood-lead concentrations at or above 25 pg/dL, and n;; represents the
total number of children screened within each record (census tract /quarter).

To allow comparison of the different variables explored within each variable type, tables are
included in Section 4 that present the log-likelihood statistic from each model run and presented
in Appendices A and B. Within each variable category, the variable that provided the best fit for
each of the six models is highlighted in yellow. To ensure compatibility in the likelihood-based
statistics being used to make comparisons among the different candidate predictor variables,
missing values for predictor variables were imputed using the mean of the distribution. The
number of imputed values that were necessary is provided by the nmiss column in the table of
distributional summaries described above. The project team choose whether to adjust for
changes in the slope for a candidate predictor variable over time based on a comparison of the
likelihood statistics after adjusting for the number of degrees of freedom used in the model for
the effects of the explanatory variable (over time) on the response. Those variables highlighted
in yellow have the largest likelihood statistic after adjusting for differences in the degrees of
freedom, and were considered as strong candidate predictors for the multivariate statistical
models.

Due to the iterative nature and complexity of the Mixed Models Analysis of Variance and
Generalized Linear Mixed Modeling Approaches, these models did not always converge.

Models that failed to converge for a particular predictor variable are discussed in the results
sections within Appendices D and E, and also are indicated in Tables 4-1 and 4-2, as well as in
the summary pages of Appendices A and B by blank cells. Cases in which model convergence is
not attained likely will translate to exclusion of that particular variable when building the
multivariate model. Note that because of the sparseness of data for children with blood-lead
levels at or above 25 pg/dL within the Massachusetts data, Model 6 failed to converge across all
variables. Thus, Model 6 results are not presented or discussed for the Massachusetts models.



2.4 Development of Multivariate Statistical Models

2.4.1 Statistical Models for the Broad Coverage — Low-Resolution Model

This model is being used to characterize broad trends over time in the prevalence of childhood
lead poisoning across the entire United States. The various surveillance, environmental sources,
demographic characteristics, and programmatic support data sources were aggregated to the
county level for all localities with universal screening and reporting. Quarterly estimates of each
candidate predictor variable were created for each county within the United States, including
those county/quarter combinations that did not include observed blood-lead response variable
information (allowing for the extrapolation of the model predictions to geographic areas and
time-points that were not represented within CDC’s National Surveillance Database).

In addition to investigating the predictive ability of each potential environmental, programmatic
and demographic variable as described earlier, various different stratification variables (region of
the country, population density) and covariates (time trend and seasonality) were investigated.
As a result, all four multivariate statistical models adjust for a categorical variable that
differentiates among the risk of childhood lead poisoning within the 10 EPA regions. Within
each EPA region, a separate intercept, trend over time, and seasonality term (based on fitting
intercepts for each quarter of time) was included in the multivariate statistical model. For the
purposes of discussion, it was assumed that the modeling approach will focus on a logistic
regression model for the proportion of children that have elevated blood-lead concentrations
(>10 pg/dL). The temporal nature of declining childhood lead poisoning will be addressed via
classic concepts of longitudinal data modeling of the low resolution data. Let

Yij represent the number of children that were detected with blood-lead concentration above
10 pg/dL from the i™ county and j"™ point in time (quarter),

n;; represent the number of children that had their blood-lead concentration tested from within
the i county and j™ point in time (quarter),

Please note that we expect that n;j<N;;, where N;j; represents the total population of children
in the i™ county and j™ point in time.

t;; represent time (in years) corresponding to the Y;; response variable,

Regiony represents the region of the country that the ith county is located within (where
k==1,...,10 and is representative of the 10 established EPA regions),

Season;; represents a series of 4 indicator variables that differentiate between the 4 different
quarters captured by the j-index, and

Xijj represent a series of predictor variables associated with the Y;; response variable. These
predictor variables may represent air monitoring data, drinking water data, census
demographic data, programmatic data on federal financial support for lead poisoning
prevention, and other related information as detailed above that can potentially help predict
the prevalence of lead poisoning at the county level.
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We introduce the following as a potential baseline model:
logit(E[Y; /n; 1) = Re giony, - (Boy + Bix -t + Boy - Seasonyy) + B X + Sgi + 6y -

Where the beta parameters (B) represent a vector of fixed effects, and the delta parameters ()
represent random effects that allow each county to have their own trend over time. In this
model, it can be assumed that do; and d;; jointly follow a multivariate normal distribution with
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Counties with larger 6; parameters estimates represent areas where lead-poisoning has not
significantly decreased over time. Similarly, the parameter estimates can be used to identify
those counties with the highest predicted prevalence of childhood lead poisoning at various time
points in the future.

In building the multivariate statistical model for the Broad-Based Modeling Objective, the
project team first evaluated the predictive ability of each candidate predictor variable that was
considered within the exploratory analyses. For the environmental predictor variables, in
particular (information from EPA’s 1999 National Air Toxics Assessment, Safe Drinking Water
Information System, and Toxics Release Inventory), the data were largely concentrated at zero.
Therefore, a series of zero/one indicator variables that represent county/quarter combinations at
or above the 95™ and 99" percentile of observed values of these environmental predictor
variables within the analysis dataset also were investigated.

Once the predictive ability of each candidate variable was established within the exploratory
analyses described earlier, candidate predictor variables were classified into groups (e.g.,
housing age, income, education, air modeling, programmatic financial support) and then the
single best predictor variable within each group was selected for possible inclusion within each
of the six multivariate statistical models being developed. If the selected variable demonstrated a
relationship with risk of lead poisoning that changes over time (as evidenced by intersecting lines
in the plots generated in the exploratory analyses), then this interaction was taken into
consideration within the evaluation of the predictive ability of the candidate variable(s).

The approach to determining which environmental, programmatic, and demographic variables
were included in the model followed a backward elimination process — in which each variable
group’s best predictor variable identified earlier was included in the first model — with variables
being eliminated from the model when they were not deemed to be highly significant. This
model building process also was aided by investigation of the selected environmental,
programmatic, and demographic variables for issues of potential colinearity via investigation of
correlation matrices and principal components analysis. The resulting multivariate statistical
models were parsimonious — and in most cases only included variables that were highly
statistically significant. In a few cases, a variable was left in the model without being highly
significant — because its elimination caused a large drop in the model log-likelihood (suggesting
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that the model is significantly improved with the addition of a variable whose slope is not
significantly different from zero).

After the multivariate statistical models were developed, model fit diagnostics were evaluated
and documented.

The parameter estimates for the four National Multivariate Statistical Models are provided in the
results section. The results of these models also were explored in multiple ways. Maps were
generated to demonstrate observed and predicted proportion of children at or above 10 pg/dL
within each EPA region for the Years 2000 and 2005 (data were appropriately averaged across
the four quarters in each of these years prior to mapping). Lists also were generated to identify
the 150 highest risk counties across the United States at the end of the observation period (2006)
as predicted by each of the six models, as well as the 10 highest risk counties within each state.

Finally, the predicted values from these multivariate statistical models (extrapolated to
county/quarter combinations not represented in the CDC surveillance database) were integrated
in a unique data visualization tool. The product of this effort is a time-series of maps (or a
movie) that spatially interpolates risk of childhood lead poisoning as a function of various
appropriate predictor variables. The visualization tool allows users to interact with the modeling
results at different levels of temporal and geographic specificity. The tool allows the user to
select an appropriate response variable (e.g., proportion of children with blood-lead
concentrations above 5 pg/dL) and play a movie that displays a time-series of maps that displays
how the predicted (or observed) risk changes over time across the various counties within a
selected state. The user can zoom in on a rectangular area, to see these results with a higher
degree of geographic specificity. The user also can stop the movie (or rewind, or fast-forward)
to isolate specific points in time. By using the mouse, the user also can select a specific county
and the tool will display the observed and predicted data for that particular county in a separate
window. The visualization tool was written in C++, and was built in a manner that will allow
EPA to modify the model and for the project team to quickly import the resulting data from a
modification into the tool.

2.4.2 Statistical Models for the High-Resolution Model within Massachusetts

High-resolution models will be utilized to identify the relative contribution of various types of
exposure sources in elevated risk for childhood lead poisoning within select communities within
the Commonwealth of Massachusetts. These types of sources include housing factors, broader
environmental exposure, demographic composition, and programmatic resources. While this
type of model reflects the idea that exposures contributing to childhood lead poisoning likely are
community-specific, analysis of the high-resolution models may have certain limitations
including selection bias and generalizability to other geographic areas.

The Massachusetts Department of Public Health (MDPH) entered into a limited use data sharing
agreement with the project team, allowing them to provide blood-lead testing results on
individual children (aged 6-36 months) and housing inspection data in a format that preserves
linkages through a housing unit identification variable. These data will be utilized in two
different modeling approaches. The first modeling approach will seek to develop census tract
quarterly summary measures similar to the National Model for blood-lead (e.g., exceedance
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proportions and geometric means), as well as summary measures for the proportion of housing
units in each census tract that are known to be in (or out of) compliance with the Massachusetts
standard of care (for use as a potential explanatory variable). MDPH also has provided the
project team with summary information regarding HUD and state funding of residential housing
interventions (lead hazard control and abatement) — which will be used to develop a longitudinal
summary of current and cumulative per-capita spending on residential intervention within each
census tract (using various assumptions on the allocation of such dollars). Other explanatory
variables, such as the U.S. Census, EPA Toxics Release Inventory, 1999 National Air Toxics
Assessment, and water quality data will be available for use in these models.

These census-tract level summary data (both response variable and explanatory variables) were

modeled using a similar approach to what is being proposed for the National (Low-Resolution)
Model — only the unit of clustering was census tract rather than county.
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3.0 DATA SOURCES AND DATABASE DEVELOPMENT

The main goal of the statistical analysis were to develop a series of predictive models that help
provide a better understanding of (1) the relative importance of various exposure sources in
addition to leaded paint in housing and (2) the geographic areas across the United States that
remain at increased risk for childhood lead poisoning. To do so, blood-lead data were combined
with various environmental, demographic, and programmatic datasets at different levels of
geographic specificity and coverage. A description of each of these data sources, as well as
discussion of how they were combined, is included in this section.

3.1 Children’s Blood-Lead Measurements

The statistical models are based upon blood-lead levels of children corresponding to the various
geographic areas studied. To enable national analyses, CDC’s Lead Poisoning Prevention
Branch provided quarterly summary data from their national surveillance database for children
aged 6-36 months within each county that had submitted data. These summary measures
included the number of children screened, percentage of children who exceeded certain blood-
lead thresholds, and arithmetic mean blood-lead concentration for state/local grantees with a
history of universal reporting.

The intention was to have the models reflect the annual prevalence of childhood lead poisoning
over time. Thus, the data were summarized so that each child could only be reported once a
year. An algorithm was developed to select representative screening test(s) for children with
multiple results with an objective of having children represented in the analysis dataset
maximally once a year. For a given patient with multiple testing results, the algorithm
preferentially selected tests confirming elevated blood-lead levels and then selected follow-up
tests taken beyond nine months of the previously selected test. Screening tests were selected
when no confirming record was available.

The response variable consists of quarterly summary statistics from 1995-2005 on the
distribution of observed blood-lead concentrations in counties across the nation, based on
information from CDC’s national surveillance database. It should be noted that there likely
exists significant variation and differences in the sampling and analytical methodologies
employed in performing childhood blood-lead testing among the different counties that
contributed to the CDC dataset, and within counties over time. Sampling methods include both
capillary and venous tests, and different laboratory methods likely are represented within the data
with varying reporting limits or limits of detection. Variation in reporting limits and limits of
detection could introduce significant biases into statistical models of any continuous measures of
blood-lead concentration that could be used in statistical models, such as the geometric or
arithmetic mean blood-lead concentration. Alternatively, there was agreement among the
research team and the CDC that measures whether a testing result was found above or below
certain threshold values (5, 10, 15, and 25 pg/dL) would be more robust to these potential
reporting and detection biases. Therefore, the National (Low-Resolution) Models focus on the
proportion of screened children found above these threshold values using a logistic regression
modeling approach.
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After summarizing the test-level data by year, quarter, and county, counties that contained less
than five test records in a quarter were excluded for confidentiality reasons. The time series of
summary statistics within select counties were initially investigated to determine appropriate
exclusion criteria to ensure that the data retained for analysis represented blood-lead
concentrations that were universally reported (i.e., there were periods of time in which some
state or local childhood lead poisoning prevention programs only reported elevated blood-lead
concentrations — and these data needed to be eliminated from the analysis). Thus, the number of
quarterly summary statistics varied from county to county within the analysis dataset.

As a prelude to developing the screening algorithm for elimination of data from counties that
were not following universal reporting protocols, a subset of data from counties with obvious
non-universal reporting was identified from within the National quarterly aggregate summary
database. The algorithm was developed based on application to this subset of data prior to being
utilized on the remainder of the National Surveillance database. The algorithm is based on the
following:

Let

e n; represent the number of children observed in the i"™ county during the j"™ quarter

e P90(m;) represent the 90" percentile of observed n;j within the i"™ county

e AM; represent the arithmetic mean blood-lead concentration observed in the i"™ county
during the j"™ quarter

e P50(AM;) represent the 5 o percentile of observed AM;; within the i county

e P10; represent the proportion of children with blood-lead concentration observed at or
above 10 pg/dL in the i™ county during the j"™ quarter.

Then the following 3 exclusion/inclusion criteria are applied sequentially:

Criterion #1: If njj < Max(P90(n;)/5, 15) and (AM;; > 2* P50(AM;) or P10;> 0.75), then
exclude the data from the i county during the j™ quarter. This exclusion criterion
essentially eliminates county/quarter combinations with relatively lower screening
penetration (compared to when peak screening was achieved) and high blood-lead
concentrations. The rationale for this exclusion criterion is that the periods of time in
which a lead poisoning prevention program is not conducting universal reporting will
involve fewer reported testing results that have higher blood-lead concentrations.

Criterion #2: If n;j > 100 and AM;; <7, then include the data from the i county during the
j™ quarter. This criterion was added to include a small number of county/quarter
combinations within the testing subset of data that were eliminated by the first exclusion
criteria but did not appear to be inconsistent with the remainder of data that would be
included in the analyses. This second criteria was inspected carefully upon application to
the entire set of quarterly county summary statistics from CDC’s National Surveillance
database, to ensure that it was reintroducing data into the analysis in a manner consistent
with the data analysis goals.
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Criterion #3: If njj < 100 and AM;;>10, then exclude the data from the i"™ county during
the jth quarter. This third criteria was established to exclude a small amount of data that
was not captured by the first exclusion criteria (mostly representing counties with a
median observed blood-lead concentration slightly above 5 pg/dL)

Within the quarterly county summary statistics from CDC’s National Surveillance database,
there were 72,466 county/quarter combination-level records. Application of Criterion 1-3 above
eliminated an total of 2,351 records (3.25%) from the final analysis dataset.

To enable analyses at a finer level of geographic detail than the county level, the MDPH
provided blood-lead surveillance data on specific testing results for individual children (with
confidential identification information excluded) so that data could be summarized and reported
by census tract. The Massachusetts blood-lead surveillance data represents all children aged 6-
36 months tested from the period 2000-2006. As with the national data, quarterly census-tract-
level records were created for analysis.

Due to selection bias, it is expected that the CDC National Surveillance dataset as well as the
Massachusetts surveillance data may show higher proportions of elevated blood-lead
concentrations than found in the general population. For this reason, the proportion of children
with elevated blood-lead concentrations as well as the distribution of the potential continuous
summary measure derived from the surveillance data were compared with those reported by the
most recent six years of available CDC National Health and Nutrition Examination Survey
(NHANES). Results of this comparison are presented in Section 7.2. In the future, to account
for differences between the surveillance and NHANES data, modifications could be made to the
models to calibrate the surveillance data to better match the national distribution of childhood
blood-lead concentrations as appropriate (Strauss, 2001a).

3.2 Demographic Data

Demographic information from the 2000 U.S. Census was utilized in both the high- and low-
resolution models, with data being acquired at the county level for the entire nation and at the
census-tract level for Massachusetts. The Census 2000 data gathered by the Census Bureau
includes over 1,000 variables. To narrow the scope of the project, 43 variables within 9 general
categories were selected and explored, most of which had been used previously by the project
team in a CDC-sponsored study to predict risk of elevated blood-lead concentrations at the
census tract level (Strauss, 2001b). In many cases, the census variables are constructed from
counts or summary statistics published in the detailed Census 2000 tables. For example, within
each geographic area, the Census Bureau reported the number of houses that were built before
1950 and the median income of all households. In order for the analysis to draw comparisons
from tract to tract and/or county to county, however, the Census variables needed to be
manipulated in a fashion that depended upon the format of the variable. For example, count
variables, such as the number of housing units built before 1950, were changed to percentages.
Summary statistic variables describing income on the other hand, may be standardized within
state to adjust for between-state differences in the cost of living. Table 3-1 supplies the list of
the variables investigated within the nine categories and notes how they were calculated.
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Table 3-1. Initial Variables for Analysis Created From the 2000 Census
VGa ::)aprle Census Variable* Format Calculation Analyzed Variable
Persons Count | Land Area Population Density
. (Units = .001 km®)
Density - : : :
Housing units Count | Land Area Housing Density
(Units = .001 km?
White population Count | Persons Pct White
Black population Count | Persons Pct Black
Indian, Eskimo, and Aleut Count | Persons Pct American Indian and
population Alaskan Native
Race Asian Pacific population Count | Persons Pct Asian
Other Race population Count | Persons Pct Other Race
Native Hawaiian and Other Count | Persons Pct Native Hawaiian and
Pacific Islander population Other Pacific Islander
Multiple Race population Count | Persons Pct Multiple Race
Hispanic population Count | Persons Pct Hispanic
Children Less than or Equal Count | Persons Pct le 6 years
to 6 Years Old
Age Median Age* Statistic Median age of persons
Median Age of Children Less | Statistic Median age of persons LE
than or Equal to 6 Years Old* 6 years
Single Parent* = Single Male Count | Household with Pct Single Parent
with Children + Single Children Less than or
. Female with Children equal to 18 years old =
Family . .
Structure Mgrrwd Coqple with
children + Single Male
with Children + Single
Female with Children
Less than a 9th grade Count | Persons 18 years old Pct less than 9th grade
Education and over
Less than high school* = #13 Count | Persons 18 years old Pct no HS degree
+ persons with 9th to 12th and over
grade education without
obtaining a high school
diploma
Education | Less than college* = #14 + Count | Persons 18 years old Pct no college
persons with high school and over
diploma, but no college
experience
Less than college degree* = Count | Persons 18 years old Pct no college degree
#15 + persons that attended and over
college without obtaining a
college diploma
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Table 3-1. (continued)
Variable
Group Census Variable* Format Calculation Analyzed Variable
Household Median Income Statistic Standardized Median
Income for Households
Family Median Income Statistic Standardized Median
Income of Families
Per Capita Income Statistic Standardized per capita
Income .
income of persons
Households without earnings Count | Households Pct No Earnings
Households without wages Count | Households Pct No Wage or Salary
Hogseholds that obtain public Count | Households Pct With Public Assistance
assistance
Persons for whom
Persons below poverty level Count | poverty status is Pct Persons Below Poverty
determined
Persons who are less
Persons who are less than or than or equal to five Pet Persons Below Poverty
equal to five years old that are Count | years old for whom of Age LE 5 Below
Poverty | below poverty level* poverty status is &
Level determined
Families with total income - o
Count | Families Pct Families Below Poverty
below the poverty level
Families with total income
below the poverty level that Count Families with children | Pct Poverty of Families
have children under 5 years under five years old with Children LT 5
old.
Vacant Count | Housing Units Pct Vacant
11{9(215 ing Units Built before Count | Housing Units Pct Pre 1940 Housing
?90 Su OS ing Units Built before Count | Housing Units Pct Pre 1950 Housing
?90 6uos ing Units Built before Count | Housing Units Pct Pre 1960 Housing
Housing | Housing Units Built before . . .
Units 1970 Count | Housing Units Pct Pre 1970 Housing
?9(); OS ing Units Built before Count | Housing Units Pct Pre 1980 Housing
Mgd ian Year that Housing Statistic Median Year Built
Units were Built
Median Year that Housing .
Units were Built - Calculated Statistic g{alli(lztulated Median Year

by the Project Team
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Table 3-1. (continued)
Variable
Group Census Variable* Format Calculation Analyzed Variable
Housing Units that are rented Count | Occupied Housing Units | Pct Renter Occupied
Occupied Housing Units Built . . . Pct Pre 1940 Occupied
before 1940 Count | Occupied Housing Units Housing
Occupied Housing Units Built . . . Pct Pre 1950 Occupied
before 1950 Count | Occupied Housing Units Housing
Occupied | Occupied Housing Units Built . . . Pct Pre 1960 Occupied
Housing | before 1960 Count | Occupied Housing Units Housing
Units Occupied Housing Units Built . . . Pct Pre 1970 Occupied
before 1970 Count | Occupied Housing Units Housing
Occupied Housing Units Built . . . Pct Pre 1980 Occupied
before 1980 Count | Occupied Housing Units Housing
Median Year that Occupied Statistic Median Year Built -
Housing Units were Built Occupied Only
. . Standardized Median
Housing Median Rent Statistic Gross Rent
Value Value of Owner Occupied Statistic Standardized Median
Housing Units Housing Unit Value

*Variables that were created by combining different pieces of information from the 2000 Census

Income and Poverty

Median income per household, family, and person were calculated. Additionally, the proportion
of households that do not receive any wages, do not receive any earnings, and do receive public
assistance were investigated. The census defines earnings and wages as follows:

e “Earnings” represent the amount of income received regularly before deductions for
personal income taxes, Social Security, bond purchases, union dues, Medicare
deductions, etc.

e “Wages” include total money earnings received for work performed as an employee
during the calendar year 1999. It includes wages, salary, Armed Forces pay,
commissions, tips, piece-rate payments, and cash bonuses earned before deductions were

made for taxes, bonds, pensions, union dues, etc.

Similar to the income variables described above, the poverty level of individuals and families
within each county were summarized as the variables Percent Persons and Percent Families
Below the Poverty Level. In order to focus on the poverty level of the children within each
county, however, Percent Persons Five Years and Under and Percent Families with Children
Under Five Years Below Poverty Level variables were created. Note that in calculating the
various percentages for each of the variables, the denominator changes. Also note that for some
of the multivariate models presented later in the report, some of the income variables may have
been rescaled to represent income in thousands of dollars, to allow the parameter estimates for
the regression models to be discernable within the first 3 significant digits.
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Race

The Census Bureau presents five general race groups; (1) White, (2) Black, (3) Indian, Eskimo,
and Aleut, (4) Asian Pacific and (5) Other, each of which was included and explored separately.
Additional variables were included on percent of Native Hawaiians and Other Pacific Islanders,
percent of the population reporting multiple races (Percent Multiple Races), and percent of the
population reporting that they are Hispanic (Percent Hispanic).

Housing Cost

Two variables were constructed to investigate housing cost — Median Rent and Median Housing
Value. Median Housing Value includes the value of all housing units (owned and rented). Both
of these variables were standardized to account for state-to-state differences in the cost of living.
Note that for some of the multivariate models presented later in the report, some of the housing
cost variables may have been rescaled to represent housing costs in thousands of dollars, to allow
the parameter estimates for the regression models to be discernable within the first 3 significant
digits.

Occupancy

Occupied housing units are more likely to have lead paint removed than vacant homes. Thus, the
percent of housing units that are vacant potentially indicates the level of care taken to maintain
buildings within the area. Buildings that are not occupied are more likely to accumulate dust or
debris to which the children of an area may be exposed upon reoccupancy. Percent of vacant
housing units was explored for those reasons. Similarly, the standard of care could be different
between rental properties and owner-occupied properties. Thus, the percent of rental units in an
area also was explored. The percent of occupied housing units that are rented, rather than
owned, was calculated by dividing the number of rented occupied housing units within an area
by the total number of occupied housing units.

Family Structure
The Census Bureau does not supply a unique variable that indicates the number of single parent
households within an area. Therefore, this variable was created by combining Census variables
as follows:
M = Number of Households with a male householder (no wife present) whose own
children are under 18 years old
F = Number of Households with a female householder (no husband present) whose own
children are under 18 years old
T =M + F + Number of married couples with own children under 18 years.

The Percent of Single Parent Households variable used represented (M+F)/T.

Housing Age

During the 1950s, as the United States started to become aware of the consequences associated
with the exposure of lead in paint, the use of lead paint within homes began to decrease. In
1977, however, the use of lead paint in homes became illegal. Thus, the years during which the
housing units were built within each area is important to characterize; older homes are more
likely to contain lead paint than newer homes. A number of variables related to housing age by
county were investigated to identify those that best predict children’s blood-lead levels. Census
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data on the full population of housing units as well as the population of occupied housing units
were investigated. Note that for some of the multivariate models presented later in the report, the
median age of house variable was centered at 1950 to provide stability to the intercept term in
the models.

Children’s Age

The Census Bureau does not report all data by single years of age. More typically the agency
reports the total number of people that fall into various age categories. The variable, “Pct LE 6
years” was created to identify the number of children within each geographic area less than or
equal to six years of age at the time of the 2000 Census. Additionally, the median age of the
total population and of those less than or equal to six years old was calculated by taking a
weighted average of the midpoint of each age category (the counts are used as the weights).

Education
A series of variables pertaining to the proportion of adults with various levels of education were
created as follows:
L9 = Number of people older than 18, that have less than a 9th grade education
L12 = Number of people older than 18, that have 9th though 12th grade experience, but
do not have a high school diploma
12 =Number of people older than 18, that obtained a high school diploma or GED

C = Number of people older than 18, that have some college experience but did not
receive a college degree
T = Number of People that are over than 18 years old

Percentage variables were created from the L9 through C variables by dividing them by the total
number of people over 18 years old. Exploratory analyses were conducted upon the four
percentage variables.

Population Variables

Because both counties and census tracts vary with respect to spatial area and population, and
previous work suggests that risk of childhood lead poisoning differs between rural and urban
areas, a population density variable was used as a potential explanatory variable or effect
modifier in the statistical models. Population density was explored in two ways. The first
divides the number of people within the tract by the amount of land area measured in .001 square
kilometers. The second divides the number of housing units by the amount of land area
measured in .001 square kilometers. Housing units include the following: a house, an apartment,
a mobile home, a group of rooms, or single room that is occupied as separate living quarters.

3.3 Environmental Data

Environmental data acquired for this project include air and groundwater monitoring data
aggregated at the county level for the low-resolution model and at higher resolutions for the
Massachusetts analyses. In cases where the data were available for a limited number of air-
monitoring stations or drinking water samples available for the region(s) being investigated, geo-
spatial modeling techniques might be used as appropriate to develop predictions across the entire
region. Existence of industrial sources of lead within each county and census tract, as indicated
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by the Toxics Release Inventory (TRI), also were included as an environmental data source.
Each of theses data sources are discussed in further detail below.

3.3.1 Concentrations of Lead in Air

EPA maintains a number of ongoing air monitoring programs that collect data over time on
concentrations of various criteria air pollutants, air toxics, constituents of particulate matter, and
other airborne chemicals. Each of these monitoring programs have multiple air monitoring
stations that are deployed throughout the country to meet various goals associated with the Clean
Air Act and other federal and state regulations and programs. For example, some of the
monitoring stations are placed in close proximity to industrial sources of pollution and major
populations centers, while other stations are placed in remote areas to assess background
chemical concentrations. While many of these monitoring sites provide information on the
concentration of lead in air over time, a quick assessment of the spatial coverage of these
monitoring networks suggested that making use of these data would be problematic for this study
due to time and resource constraints. Lead concentrations in air from the monitoring networks
are not available in the majority of counties that will be covered in the low-resolution model, or
the census tracts that will be covered in the high-resolution models — as shown at the following
EPA Website (http://www.epa.gov/airtrends/lead.html).

Rather than using air monitoring data as described above, the study used modeled predictions of
concentrations of lead in air from EPA’s 1999 National Scale Air Toxics Assessment — in which
county and census-tract-level predictions are available throughout the entire country based on the
use of predictive models. Documentation for the 1999 National Scale Air Toxics Assessment, as
well as the predicted air concentration data can be found at

http://www.epa.gov/ttn/atw/natal 999/tables.html. The predictions were generated using the
Assessment System for Population Exposure Nationwide, or ASPEN. This model is based on
the EPA’s Industrial Source Complex Long Term model (ISCLT), which simulates the behavior
of the pollutants after they are emitted into the atmosphere. ASPEN uses estimates of toxic air
pollutant emissions and meteorological data from National Weather Service Stations to estimate
air toxics concentrations nationwide.

The ASPEN model takes into account important determinants of pollutant concentrations, such
as:

« rate of release

« location of release

« the height from which the pollutants are released

« wind speeds and directions from the meteorological stations nearest to the release

« breakdown of the pollutants in the atmosphere after being released (i.e., reactive decay)

. settling of pollutants out of the atmosphere (i.e., deposition)

« transformation of one pollutant into another (i.e., secondary formation).

The model estimates toxic air pollutant concentrations for every county and census tract in the
continental United States; however, these data are only available for 1999. Both the Broad-
Based National Model and the High-Resolution Model within Massachusetts considered the
integration of information from the ASPEN Model. The National Model investigated the
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median, average, and 95" percentile predicted air lead concentration within each county, while
the High-Resolution Model only considered the average predicted air lead concentration within
each census tract. Within the National Model, the median, average and 95" percentile predicted
air-lead concentrations were mostly distributed near zero. For this reason, zero/one indicator
variables were created to indicate that the observed value of these ASPEN Model predictions
were observed at or above the 95™ and 99" percentile within the analysis dataset for potential use
within the predictive models. In addition, EPA collaborators identified a subset of 20 counties
with observed elevated air-lead concentrations, and an indicator variable was used to assess
whether these 20 counties had higher risk of childhood lead poisoning in the predictive models.

The second air-lead variable investigated is based on predictions from the HAPEMS5 (Hazardous
Air Pollutants Exposure Model, Version 5) model. According to the EPA website, “the
HAPEMS model has been designed to predict the ‘apparent’ inhalation exposure for specified
population groups and air toxics. Through a series of calculation routines, the model makes use
of census data, human activity patterns, ambient air quality levels, climate data, and
indoor/outdoor concentration relationships to estimate an expected range of ‘apparent’ inhalation
exposure concentrations for groups of individuals.”* Because air quality concentrations in
indoor environments can be quite different than those in the outdoor environment, an exposure
model generally is employed to predict the apparent inhalation exposure. The Air Exposure
(HAPEMS) model variable captures the predicted exposure data from this model.

The third air-lead variable considered, Air Hazard Quotient (HQ), is derived from the 1999
National Scale Air Toxics Assessment data. This variable represents lifetime exposure for
children at the centroids of each census tract or county. Lifetime exposure is calculated based on
considering annual exposures and yearly activity patterns. The HAPEMS and HQ air-lead
variables were only considered within the context of the High-Resolution Model within
Massachusetts.

3.3.2 Toxic Release Inventory Variables

EPA’s Toxics Release Inventory (TRI) catalogs various sources of lead, based on information
provided by industrial facilities. This data source was used to generate county- and census-tract-
level estimates of the total amount of lead and/or lead-containing compounds that are released by
industrial facilities into the environment via air, surface water, or underwater injection.

Although the above-described ASPEN modeling results are based on the (airborne) emissions
data and how they would theoretically translate into average ambient air-lead concentrations, the
data from the TRI are available for multiple years and for other types of emissions (such as
surface water). Thus, this information has the potential to add predictive power to the models.

Three types of TRI variables were utilized — total compounds, lead only, and total lead. Within

each type, five pollution variables were explored — total lead in the air, lead in fugitive air, lead

from smokestacks, lead in surface water, and lead in water by injection. Thus, 15 total TRI data
variables were evaluated.

2 http://epa.gov/ttn/atw/natal999/ted/teddraft.html
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Within the National Model, the distributions of the TRI emissions variables were mostly
concentrated near zero. For this reason, additional zero/one indicator variables were created to
indicate that the observed value of these TRI emissions were observed at or above the 95™ and
99™ percentile within the analysis dataset for potential use within the predictive models.

3.3.3 Water Quality Data

The plumbing system inside a home and the service line from the street to the home may contain
lead and can contribute to drinking water contamination. To address this potential source, EPA
obtained data from their Safe Drinking Water Information System that includes the 90"
percentile result of tap water lead levels for public water systems. Public water suppliers must
monitor at customer’s taps every 6 months. Public water systems can reduce monitoring to
annually, triennially, or every 9 years (if granted a monitoring waiver) if the 90™ percentile value
from previous monitoring is at or below the action level of 15 parts per billion. The number of
customer’s taps, or monitoring sites, that a system is required to sample is based on the
population served by the system. Further, systems are required to select sites that are most likely
to have the highest lead levels (i.e., older homes, homes with copper pipes with lead solder or
homes served by a lead service line). Therefore, the 90" percentile value of samples collected
during a monitoring period is not reflective of individual exposure to lead in drinking water.
Data available from this monitoring program include 90" percentile water lead values for public
drinking water systems serving greater than 3,300 persons (systems serving less than 3,300
persons are required to report the 90™ percentile level only if they exceed the action level), the
population size served by each facility, the start and end date for the monitoring period, and the
county in which the facility is located. These data were used to construct a population-size
weighted average 90" percentile water-lead concentration variable within each county/quarter
combination. However, it is important to note that most public water systems do not remain
within county lines. Large water systems may serve multiple counties or a county may be served
by several small public water systems.

Because there were some county/quarter combinations with no observed data from EPA’s Safe
Drinking Water Information System, an indicator variable was developed to indicate whether the
county/quarter included a monitored facility (or not) — allowing an intercept to be fit among
those county/quarters with no drinking water monitoring, and a slope estimate to be fit for the
effect of the weighted average 90" percentile drinking water-lead concentration among reported
facilities.

EPA’s Safe Drinking Water Information System data were not geocoded to the census-tract
level, and therefore these data were only available for use in supporting the Broad-Based

National Model at this time.

34 Programmatic Data

Most of the explanatory variables being explored in this project are considered risk factors for
childhood lead poisoning. Among factors that might mitigate these risks, it was anticipated that
the level and characteristics of programmatic support from either federal, state, or local sponsors
may contribute toward meaningful reductions in the prevalence of childhood lead poisoning.
The level of financial support available within each county served as a proxy for programmatic
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support in the low-resolution (National) models. In the high-resolution models run for
Massachusetts, information from housing inspections also were explored within the statistical
models. The following sections detail the specific characteristics of the variables used within the
models.

3.4.1 Programmatic Funding Variables

The goal of this variable is to construct a longitudinal history of current and cumulative
per-capita dollars allocated to each county and census tract to combat childhood lead poisoning.
For use in both the national and state models, data were obtained from HUD’s Office of Healthy
Homes and Lead Hazard Control on grants funded since the inception of the Lead-Based Paint
Hazard Control Grant Program in 1992. Data also were obtained from CDC’s Lead Poisoning
Prevention Branch on their program’s grant funding approximately three weeks prior to the end
of this project, and therefore these data were only able to be integrated into the Massachusetts
models due to time constraints.

Four variables were generated from these data and analyzed — current and cumulative funding
allocated to each county or census tract to combat childhood lead poisoning, both Standardized
by number of children per tract and Not Standardized. The Standardized variable is a funding
per child variable while the Not Standardized versions are funding for geographic area variables.
For the high-resolution model in the Commonwealth of Massachusetts, information on within-
state funding levels was obtained and analyzed. Within-state funding data were available down
to the township level. The state, HUD, and CDC funding data also were combined to create
Total Funding variables, including both current and cumulative levels and both Standardized and
Not Standardized versions. The total funding variables also were only investigated as part of the
Massachusetts analyses.

Becuase there may be delays in the effects of programmatic funding on risk of lead poisoning,
time-lagged versions (at 6-, 12-, 18-, 24-, 30-, and 36-months) of the programmatic funding
variables in the National Model also were investigated.

3.4.2 EPA Region

The EPA region was investigated as a potential predictor of children’s blood-lead levels to
determine if that high-level geographic indicator should be included as a stratification variable in
the national multivariate models.

3.4.3 Housing Inspection Data (Massachusetts)

The Commonwealth of Massachusetts maintains an extensive database on all lead-based paint
inspections conducted over time (dating back to the early 1990s). The MDPH provided a
database that contains a single record for each inspection, with the following information:
housing-unit id, census tract, date of inspection, and result of inspection (whether the housing
unit was found to be in compliance with Massachusetts standards). The database contains
records on over 200,000 housing units — with many housing units having multiple inspections
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over time. Note that for units with multiple records, time periods in which the units were both in
and out of compliance with the Massachusetts standards were identified.

These data can be used in the Massachusetts high-resolution models in two ways. First, a
longitudinal summary measure of the proportion of housing within each census tract that was
known to be in compliance with the Massachusetts standards was developed. It was anticipated
that within a census tract, as this proportion increases over time, the risk of childhood lead
poisoning will decrease. Second, due to the fact that individual blood-lead records from
Massachusetts with linkable housing-unit identification variables were available, a determination
could be made regarding whether a housing unit was in compliance at the time of the blood-lead
test for each child in the database (with potential outcomes of the determination being yes, no,
and unknown).

The first approach described above is consistent with the methods for exploring aggregated
summary blood-lead information over time within each census tract. The second approach
allows utilization of some predictive information at the individual child level. This information
may help improve prediction, and also may help assess what information might be lost when
transitioning from individual-level data to aggregate summary data in the analyses.
Unfortunately, due to time and resource constraints, only the first method was explored within
this project. Thus, the three measures listed below were calculated using four different methods.
The three measures are:

e P - represents the Proportion of Housing Units within a census tract that are assumed to
Meet the Massachusetts Standard of Care at any given time

e F - represents the Proportion of Housing Units within a census tract that are assumed to
Not Meet the Massachusetts Standard of Care at any given time

e N - represents the Proportion of Housing Units within a census tract with Housing
Inspection Information at any given time.

As noted, the measures were generated in four different ways, each handling the longitudinal
information in a slightly different manner. The four measures, numbered in the model results
from 1 to 4, are listed below.

1. Naive Method 1 — Create a longitudinal history for each housing unit inspected, and
treat the first inspection observation as being representative for time periods
preceding that inspection.

2. Naive Method 2 — Create a longitudinal history for each housing unit inspected, and
assume missing information for time period preceding the first test on each unit.

3. Naive Method 3 — Create a longitudinal history for each housing unit inspected, and
treat the first inspection observation as being representative for time periods
preceding that inspection if the housing unit failed, and assume missing information
for time period preceding the first test if the unit passed.

4. MDPH Approved Method — Create a longitudinal history for each housing unit, with
different rules for the treatment of the time-period preceding the first test based on (a)
the housing inspection result and (b) the reason for ordering the inspection.
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Note that for housing units with multiple inspections, each housing inspection result is assumed
to be representative of the house (either pass or fail) until the next result. The last result is
carried forward over time (e.g., if the last observed inspection on a house passed in November of
1998 — that particular house is assumed to be meeting the Massachusetts standard of care over all
subsequent time periods in the dataset). If multiple inspections occur on the same house within a
particular quarter (3-month interval), the maximum result (with pass being coded as a 1, and fail
being coded as zero) is used to represent the house. The 0/1 results are then summed across all
observed housing units within each census tract over time (quarters). The summed results are
then divided by the number of housing units reported within each census tract from the 2000
Census.

While all of the above described housing inspection variables were investigated in the
exploratory data analyses, only the P4, F4, and N4 variables associated with the MDPH-
approved method of constructing the longitudinal history within each housing unit observed was
considered within the context of the multivariate models.

3.5 Data Linkages

The primary objective of this pilot study was to utilize combined information from different
sources at various levels of geographic and temporal specificity to more accurately target
geographic areas at high risk for not meeting the 2010 goal of eliminating childhood lead
poisoning. As such, work on the study required careful integration of a variety of data sources
with various characteristics and documentation. Data to support this study were gathered from a
variety of sources, including federal, state, and local lead poisoning prevention programs, as well
as publicly available data downloaded from the internet (e.g., Census data, EPA’s Toxics
Release Inventory), as detailed in the previous sections.

Upon receipt of each data source, the data and supporting documentation was reviewed to gain
knowledge on the structure, relationship, and quality of the data. Database managers worked
with the project team (including collaborators providing data to the project, as well as EPA) to
determine the final format for each database, desired uses of the databases, as well as the
requirements for maintaining the databases. Based on this information, separate master
databases were constructed for the national model and for the high-resolution Massachusetts
model that integrate the various environmental, demographic, and programmatic variables, and
facilitate statistical analyses of the combined data. These databases were constructed by
combining data from a variety of formats including MS SQL Server, MS Access, Excel, ACSII,
Access, ArcView, and SAS® electronic databases. In order to combine the various data sets,
they were merged on key fields, including state, county, census tract, and time period. The data
being used for analyses of a particular geographic level (e.g., county) are comparable because
they are representative of that geographic area.

Throughout the development process, checks for completeness were conducted on all study
databases, and the project team worked with data-sharing collaborators and EPA to attempt to
complete missing data as necessary to support the proposed statistical analyses. Any changes to
the databases (corrections, additions, deletions, etc.) were documented in appropriate metadata
files. Documentation of the combined master databases is included in Appendix H.
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Standard Operating Procedures (SOPs) were followed to ensure the proper storage, backup, and
retrieval of datasets created and analyzed for this study. The various databases were backed up
to tape nightly via automated backup routines, and were only accessible to members of the
project team. CD-ROM backups were made on a regular basis to serve as a safeguard in case the
backup system failed for any reason.

Microsoft Access and SQL server were the primary software tools used for data management.
The SAS® System was the primary statistical data analysis tool used on this project. ArcView
software was used to translate results into maps, as seen in Appendices F and G.

The data utilized for the study were maintained in a manner that preserved the confidentiality of
all the data and prevented its unauthorized release. As data files were received from EPA, the
original data (e.g., data with personal identifiers) were handled as though they were classified as
confidential business information (CBI) under the Toxic Substances Control Act (TSCA), even
though EPA may not specifically classify these data as “CBIL.” The data files were not shared
with anyone outside of the project team.
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4.0 EXPLORATORY DATA ANALYSES

Because the goal of this study was to develop a series of statistical models that predict the risk of
childhood lead poisoning at the geographic level across multiple response variables (proportion
of children screened at or above 5, 10, 15 and 25 ug/dL), all potential predictor variables first
were explored individually to determine their predictive ability. Results from these bivariate
analyses were assessed to identify the set of variables to include in the multivariate model that
predicts how the risk of childhood lead poisoning changes over time among the various census
tracts and counties included in the analysis.

This section of the report provides the results of the series of exploratory analyses described in
Section 2.2, which were performed to assess the potential predictive power of various candidate
demographic, environmental, and programmatic variables for potential use in the multivariate
models. These exploratory analyses initiated with an assessment of the study sample, i.e., the
proportion of counties in the sample with complete and reliable data for both the response
variable and the explanatory variables.

Each candidate predictor variable was reviewed with particular attention focusing on the manner
in which the county-level predictor variables would be merged with the quarterly summary
blood-lead information prior to fitting the statistical models. In preparation for developing
longitudinal statistical models, univariate summaries of each predictor variable as a function of
time were produced. Comparisons of these distributions were made using side-by-side box-plots
for continuous data or bar-charts for categorical data. This helps verify that the data are clean
and ready for analysis and helps identify cells with sparse data. Such descriptive analyses were
conducted on each predictor variable database to characterize the distributions of all observed
variables using frequency distributions for categorical variables, and simple summary statistics
(mean, median, mode, minimum, maximum, and select percentiles) for continuous variables.

The univariate descriptions then were followed by fitting a series of cross-sectional bivariate
relationships between the blood-lead response variable(s) and each candidate explanatory
variable. These cross-sectional relationships were explored as a function of time to better
understand the stability of these relationships, and whether they change over time, so that they
can be modeled appropriately in the more sophisticated longitudinal analyses. These analyses
also help identify which explanatory variables are most predictive of the blood-lead response
variable.

4.1 Relationship between National Blood-Lead Data and Explanatory Variables

The response variable for the national data analysis consisted of quarterly summary statistics
from 1995-2005 on the distribution of observed blood-lead concentrations in counties across the
nation, based on information from CDC’s National Childhood Lead Poisoning Surveillance
Database. The time series of summary statistics within select counties were initially investigated
to determine appropriate exclusion criteria to ensure that the data retained for analysis
represented blood-lead concentrations that were universally reported (i.e., there were periods of
time in which some state or local childhood lead poisoning prevention programs only reported
elevated blood-lead concentrations — and these data needed to be eliminated from the analysis).
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Thus, the number of quarterly summary statistics varied from county to county within the
analysis dataset.

The national blood-lead data were categorized into four time periods — (1) January 1, 1995 to
December 31, 1999; (2) January 1, 2000 to December 31, 2001; (3) January 1, 2002 to December
31, 2003, and (4) January 1, 2004 to December 31, 2005 — so that change over time could be
evaluated. Using the specified four time periods split the dataset of quarterly county-level
records into roughly similar sizes. Presented below are the exploratory analysis results for the
demographic, environmental, and programmatic variables investigated. Detailed figures and
tables containing results are included in Appendix A. A detailed discussion of the results seen in
Appendix A is contained in Appendix D.

To allow comparison of the different variables explored within each variable type, Tables 4-1
through 4-4 present the log-likelihood statistic from each single covariate model presented in
Appendix A for each of the four blood-lead threshold values, respectively. Each explanatory
variable was investigated in four different ways with respect to how the effect of the variable
might vary over time within the longitudinal analysis dataset:

1. Investigate the explanatory variable on its own, assuming that the effect remains stable
over time.

2. Investigate the explanatory variable with a linear interaction with time, assuming that the
effect of the variable on risk of childhood lead poisoning either increases or decreases
linearly over time (on the logit scale).

3. Investigate the explanatory variable with a quadratic interaction with time, assuming that
the effect of the variable on risk of childhood lead poisoning either increases or decreases
as a quadratic function in time (on the logit scale).

4. Investigate the interaction between the explanatory variable and four select time periods,
which is helpful for diagnosing whether the effect remains stable (or changes) over time —
but is not particularly useful for the final multivariate model where the application of the
model might be to forecast how risk of lead poisoning might extend into future years.

Within each variable category, the variable that provided the best fit across the four time
variables is indicated with a double asterisk (**). For example, within the income category, the
Categorical time variable achieved the best fit for seven of the eight income variables in the
model of proportion of children with blood-lead levels above 5 pg/dL. Within that category,
Percent No Household Wage achieved the best model fit across the 8 income variables. Those
variables (indicated with the double asterisk) were the most likely to become candidate
predictors for the multivariate statistical models.
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Table 4-1. Summary of Exploratory Analysis Fit as shown by -2 Log Likelihoods for
Pr(PbB >= 5 ug/dL) Models
Pérameter Variable Name X Only Linear Qua_dratic Categorical
ategory Time Time Time
Median_Family Income 235522.9 233514.6
Median HH Income 235495.9 233439
Median Per Capita Income 235600.3 234626.6 233735.4
Income Pct HH No Earnings 235611.3 235601.3 234404.8 233260.3
Pct HH No Wage 235579.7 235567.8 234323.0%* 233183.8%*
Pct LT Poverty 235763.3 234363.2 233608.5
Pct Family Income LT Poverty 235761.5 235744.8 234446.2 233751.1
Pct LE 5Yrs LT Poverty 235794.2 234373.9
Pct_Asian 235769 235681.3 234627.7 234511.6
Pct Black 235867.4 234612.0**
Pct White 235915.1 235259.3 233688.1
Race Pct NHOPI 235888.9 235536.9 235918.5
Pct Other Race 235862.1 235848.1 235559.1 235250.1
Pct Multi Race 235817.2 234679.6 234595
Pct Hispanic 235851.8 233502.6*
Housing Median_Rent 235265.4 235189.1 234046.8** 233401.0*
Cost Housing Value 235571.9 235562.9 235128.2 234857.9
Ocoupancy Pct_Rented 235913.4 235887.7
Pct Vacant 235884.8 235872.2 235427.2%* 234479 .4%*
i;‘ﬁi Pct_Single_Parent 235878.1 235884 234527.9%* | 233660.7*
Median Yr Built 235421.5 235483.4 234415.3
Median Yr Occ Built 235412.7 235432.6 234214.3 233119.1
Pct Built Pre 1940 235268.9 2352773 233803.4 233243.7
Pct_Built Pre 1950 235241.8 233574.5 232990.3
Pct Built Pre 1960 235344.5 235357.7 233484.5%* 232839.7*
Home Age Pct Built Pre 1970 235449 235463.1 233650.7 232904.6
Pct Built Pre 1980 235487.1 235503 233834.3 232946.2
Pct Occ Built Pre 1940 235277.5 235285.1 233834 233291
Pct Occ_Built Pre 1950 2352333 235245.1 233601.1 233030.9
Pct Occ_Built Pre 1960 235359.2 233499.6 232866.4
Pct Occ Built Pre 1970 235458.6 235471.3 233666 232928.4
Pct Occ Built Pre 1980 235495.4 235510.7 233840.8 232959.7
Children Pct LE Six 235827.7 235829.8 234448 .4%* 233449.9
Num LE Six 235905.5 235924.2 227590.8*
Pct LT 9th Grade 235850.1 235848.4 234398.6 233744
. Pct No HS Degree 235715.8 234321.2 233411.6
Education
Pct No College 235509.4 234237.9
Pct No College Degree 235556.5 235505.7 234226.0%* 233106.0*
Total Housing_ Units 235906.3** 235922.2
Population Total Pop 235908.5 235928.6 228102.6*
Housing_Density 235920.4 235925.8 235699.2
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Parameter Variable Name X Only Linear Qua_dratic Categorical
Category Time Time Time
air avg 235905.9 235906.7 235836
air_ med 235905 235905.5 235921
air_p95 235907.6 235909.8 235815.6** 235735.7*
air_avg p95 235906.4 235909.6 233727.0*
Air Lead air_med p95 235907.2 235135.4*%* | air_med p95 235914.4
air_ p95 p95 235911.9 235918.5 236090.1 235244.7
air_avg p99 235906.2
air med p99 235903.5 235766.3%* 235718.3
air p95 p99 235905.8 235695.8
TRI TRI Compounds air_fug 235943.8 235684.6 235325.2
TRI Compounds air_tot 235922.9 235940.6 235199.3
TRI Compounds air_stk 235921.5 235940.7 235406.7 235355.6
TRI Compounds under inj 235925.3 235968.5 235986.4
TRI Compounds water_surf 235921.3 235942.9 235910.3 235912.1
TRI Lead Only air fug 235927.2 235312.9 235155.4
TRI Lead Only air_tot 235929.4 235955.8 235385.1 235169.4
TRI Lead Only air_stk 235928.7 235955.2 235437.5
TRI Lead Only under_inj 235928.5 235985.8 235997.1
TRI Lead Only water surf 235926.6 2359523 235942.9
TRI Lead Total air_fug 235927.3 235950.7 235244.9%%* 234850.4*
TRI Lead Total air_tot 235930 235957.3 235036
TRI Lead Total air_stk 235955.9 235478.1 235321.1
TRI Lead Total under _inj 235928.4 235956.1 235984.3 235999.2
TRI Lead Total water surf 235926.7 235933
tri_asl_p95 235909 234966.5 235011.7
tri_as2 p95 235912.6 235917.9 234262.7
tri_as3 p95 235907.5 235910.7
tri_afl p95 235914 235919.2 235132.3 235125.1
tri_af2 p95 235910.9 235916.8 234837.1 233669.7
tri_af3 p95 235915.8 234396.5 233058.4
tri_atl_p95 234716.4 234606.5
tri_at2 p95 235911.7 235915.7 233993.9 232572.7
tri_at3 p95 235910.2 233685.3%* 232564.5*
tri_wsl p95 235919.1 235370.9 235422
tri_ws2_p95 235908.1 235915.4 233861.9 233253.8
tri_ws3_p95 235908
tri_uil p95 235904.1 235904.1 234661.9 233559.3
tri_ui2 p95 235904.1 235904.1 234661.9 233559.3
tri_ui3 p95 235904.1 235904.1 234661.9 233559.3
tri_as1 p99 235908.5 235519.5
tri_as2 p99 235908.3 235914.4 235104.8
tri_as3 p99 235906.6 235912
tri_afl p99 235906.1 235735.5
tri_af2 p99 235907.5 235912.6 234680 234116.8
tri_af3 p99 235905.7 235128.3 234668.4
tri_atl p99 235909.1 235711.7 235364.2
tri_at2 p99 235915.6 234704.6
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Parameter Variable Name X Only Linear Qua_dratic Categorical
Category Time Time Time
tri_at3 p99 235907.7 235913.8 235213.9 234780.2
tri_wsl _p99 235907 235912.3 235863.4 235847.8
tri_ws2_p99 235907.6 235913 235667.2 235712.8
tri_ws3_p99 235907.6 235913.9 235706.5 235748.5
tri_ui2_p99 235904.1 235904.1 234661.9 233559.3
tri_ui3_p99 235905 235910.1 235921.5 235887.1
CDC cur lag6 235415.6 234816.9 234090.5
CDC cur lagl2 235427.3 235275.1 234678.5 233854.6
CDC _cur lagl8 235270.6 234599.8 233781.8*
CDC _cur lag24 235847 235039.4 234566.7
CDC cur lag30 235897.1 235246
CDC cur lag36 235727.6 235050.5 234702.5 234162.9
HUD cur lag6 235914 235833.5 235432.4 235494.8
HUD cur lagl2 235761.9 235691.3 235358.3 235381.6
HUD cur lagl8 235762.7 235673.8 235437.5 235352.7
HUD cur lag24 235707.6 235525.1 235434.3 235211.7
HUD _cur lag30 235672.8 235487.1 2354454 235175.9
HUD cur lag36 235626.3 235273 234912.4
CDC_cum_lagb 235611.1 234603.5 234200.7 233952.6
CDC_cum_lagl2 235762.8 234668.8 234304.8
CDC _cum lagl8 235859.9 234760.3 234472.7 234162.5
CDC _cum_lag24 235898.2 234851.6 234646.1
CDC_cum_lag30 234933.1 234793.8 234433.2
CDC_cum_lag36 235883 234920.4 234824.7 234466.2
Funding HUD_ cum lag6 235908.5 234878.9 2347253 234382.8
HUD cum _lagl2 235924.3 234413.4
HUD cum lagl8 235961.9 235051 234650.3
HUD cum_lag24 235952.8 235099.6 234558.3 234503.5
HUD cum_lag30 235897.3 235132.9 234450.4 234499.3
HUD_ cum lag36 235794 235148.6 234334.5
tot_cur_lag6 235918.7 235841.5 235210 235306.5
tot_cur_lagl2 235727.4 235169.7 235194.9
tot_cur_lagl8 235799.2 235654.7 235245.5 235101.6
tot_cur_lag24 235742.9 235439.1 235226.8 234897.9
tot_cur_lag30 235657.8 235355.1 235216.4 234839.7
tot_cur_lag36 235546.3 235043.1 235054.3 234518.3
tot_cum_lag6 235928.9 234463
tot_cum_lagl?2 234735 234380.2 234067.2
tot_ cum lagl8 235958 234825.3 234340.7 234123.9
tot_cum_lag24 235944.2 234876.7 234168.7
tot_cum_lag30 235888.1 234190.6 234192.1
tot_cum_lag36 235774.3 234937.9 234115.8** 234217.6
HUD cur 252824.5 252845.5 252876.3
HUD_cum 252864.5 252670.1 252673.7 252679.3
CDC_cur 252679.7 252170.2 251830.5 251799.9
CDC_cum 252586.4 252213.5 252226.6 252202.3
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Parameter Variable Name X Only Linear Qua_dratic Categorical
Category Time Time Time
Funding Current — HUD+CDC 235788 235296.1 235214.1
Cumulative - HUD+CDC 235940.8 234583.8 234050.2
Screening screen_penetration 232188 232220.8 231442.3** 230769.8*
ok Variable factor(s) showed best fit when adjusted for degrees of freedom and were thus chosen to represent
parameter category in multivariate analysis.
* Variable factors showed best fit; however, were not included in multivariate analysis because the time

categorical variable had less than ideal prediction properties.

Table 4-2. Summary of Exploratory Analysis Fit as shown by -2 Log Likelihoods for
Pr(PbB >= 10 ug/dL) Models
Parameter . Linear uadratic | Categorical
Category VEWELS N A il Time ° Time T?me
Median Family Income 252403.4 252372.3 251685 251406
Median HH Income 252382.8 251605.3 251222.3
Median_Per Capita Income 252486.2 252425 251792.5 251439.9
Pct HH No Earnings 252446.7 252444 251506.4 251091
Income Pct HH No Wage 252363.4 252336.2 | 251373.8** | 250935.7
Pct HH Public Assist 252779.8 252806.7 251403.6 250521.9
Pct LT Poverty 252743.7 252763.4 251392.3 250602.3
Pct Family Income LT Poverty 252715.7 252736.5 250516
Pct LE 5Yrs LT Poverty 252839.5 252848.3 250483.1*
Pct_Asian 252668.4 252569.2 252369.5 250374.8
Pct Black 253025.3 253012.9 252123.9 251966.4
Pct White 252930.5 252888 252285.1
Race Pct NHOPI 252837.9 253276.4 252846.7
Pct Other Race 252775.6 252727.4 252540.6 252403.1
Pct Multi Race 252788.2 2527454 | 251886.2**
Pct_Hispanic 252813.9 248350.1*
. Median Rent 252008.3 251790.4 | 251043.0%* | 250455.8%*
Housing Cost .
Housing Value 252392.2 252324.9 252139.5
Oceupancy Pct Rented 253049.2 | 252943.3** 251135.1%*
Pct Vacant 252968.6 252990.6 252368.7
Single Parent Pct Single Parent 253124 253084.3 251927.9%* | 251596.8*
Median Yr Built 252361 252361 252263.4 252227.6
Median Yr Occ Built 252391.1 252391.8 251439.8 250974.6
Pct Built Pre 1940 252030 251996.7 251206.9
Pct Built Pre 1950 252006.6 251977.8 251082.9 250788.7
Pct Built Pre 1960 252250.6 252241.6 | 251073.7** | 250590.1*
Pct Built Pre 1970 252433 .4 252431.3 251254.4 250672.3
Home Age B Ere——
Pct Built Pre 1980 252481.8 251344.2 250756.3
Pct Occ_Built Pre 1940 252035.3 252001.6 251398
Pct Occ Built Pre 1950 252020.3 251992 251106 250805.4
Pct Occ Built Pre 1960 252267.3 251103.2 250611.8
Pct Occ_Built Pre 1970 252477.8 252477.2 250713.2
Pct Occ Built Pre 1980 252508.2 252502 251371.5 250782.6
. Pct LE Six 252767 2527259 | 251597.1** | 251003.9*
Children =
Num LE Six 252881.3 252835.7
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Pétrameter Variable Name X Only Lipear Qua_dratic Categorical
ategory Time Time Time
Pct LT 9th Grade 252734.3 252691.3 251568.3 249792.4*
Education Pct No HS Degree 252574.1 252551.1 251197.8 250216.7
Pct No College 252279.4 252216.7 | 251090.4** | 250602.5
Pct No College Degree 252237.3 251142.9 250091.1
Total Housing Units 252895.2 252818.7 251937 243207.7
Population Total Pop 252890.7 252834.7 | 251907.9%* | 242397.1*
Housing Density 252854.6 252838.1 252786.9 252547.2
air_avg 252880.2 252861.4 252906.8 252015.3
air_med 252884.8 252867.1 253026.4 251966.2*
air p95 252876.9 252863.8 | 252740.9** | 252187.9
air_avg p95 252912.5 252878.3 249593.0*
Air Lead air_med p95 252910 | 252728.4%* 252883.7
air_p95 _p95 252885 253156.2
air_avg p99 252841.7 252844 252840.5 252814.5
air med p99 252839.7 252842.6 252819.6 252786.5
air p95 p99 252848.7 252852.6 252832.5
Tri TRI Compounds air fug 252867.9 252889.1 252914 252314.2
TRI Compounds air_tot 252889.4 252901.7 252880.6 252313.3
TRI Compounds air_stk 252884.9 252894.2 252815.7 252454 .4
TRI Compounds under _inj 252862.5 252885.6 252919.1
TRI Compounds water_surf 252864.1 252885.1 252884.7
TRI Lead Only air fug 252869.4 252894.4 252747.2 252624.6
TRI Lead Only air_tot 252884.3 252905.2 | 252653.5%*% | 252138.6
TRI Lead Only air stk 252882.2 252900.4 252707.7 252298.7
TRI Lead Only under inj 252866.5 252889.9 252907.5 252931.1
TRI Lead Only water_ surf 252866.8 252892.3 252900.6
TRI Lead Total air fug 252871.7 252896.1 252798.3 252475
TRI Lead Total air_tot 252891.5 252909.9 252702.6 252031.8*
TRI Lead Total air_stk 252890.3 252905.6 252699.8 252203.4
TRI Lead Total under_inj 252867.1 252889.4 252904.5 252929.7
TRI Lead Total water surf 252868.4 252893.9 252897.6
tri_asl_p95 252887.8 252864.5 252435.7
tri_as2 p95 252886.8 247577.4
tri_as3 p95 252922.4 252903.3 251601.7 248106.4
tri_afl_p95 252923.9 252910.9 252833 252941.9
tri_af2 p95 252864.3 252862.8 252237.8 248140.5
tri_af3 p95 252883.1 252872.3 251998.1 248650.8
tri_atl p95 252886.9 252855.8 252210.2
tri_at2 p95 252911.6 251677.1 247510.1*
tri_at3_p95 252893.2 251553.2 248305.6
tri_wsl_p95 252904.6 252880.2 253019.4 252996.8
tri_ws2 p95 252885.1 251407.9%*
tri_ws3 p95 252892.3 252895.8 2514229 248164.1
tri_uil p95 252840.1 252840.1 251871.5 251377.4
tri_ui2_p95 252840.1 252840.1 251871.5 251377.4
tri_ui3_p95 252840.1 252840.1 251871.5 251377.4
tri_asl p99 252856.4
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Pélrameter Variable Name X Only Lipear Qua_dratic Categorical
ategory Time Time Time
tri_as2 p99 252864.7 252768.7 252011.1
tri_as3 p99 252867.3 252867.6 252781.5
tri_afl_p99 252855.1 252872.8
tri_af2 p99 252866.8 252862.5 252719 251667.2
tri_af3 p99 252851.4 | 252852.6 252743.1 251999.2
tri_atl p99 252844.8 252850.4 252865.3 252235.8
tri_at2 p99 252869.5 252869.6 252035.9
tri_at3 p99 252863.2 252860.2 252780.2 252047.7
tri_wsl _p99 252864.6 | 252865.7 252817.4 252839.7
tri_ws2_p99 252853.8 252857.9 252679.5 252740.5
tri_ws3_p99 252858.5 252859.9 252756.3
tri_uil_p99 252840.1 252840.1 251871.5 251377.4
tri_ui2_p99 252840.1 252840.1 251871.5 251377.4
tri_ui3_p99 252842.9 252851.7 252822.1 252824.4
CDC cur lag6 2525934 252079 251795.6
CDC cur lagl2 252468.6 251799 251576.9%* 251723.5
CDC cur lagl8 252652.5 252011.3 251869.8
CDC _cur lag24 252698.2 252155.7 251983.6 251948.3
CDC _cur lag30 252579.9 252298.4 252201.5
CDC cur lag36 252861.4 | 252659.6
HUD cur lag6 2528489 | 252867.7 252599.3 252883.1
HUD _ cur lagl2 252836 252839.2 252674.2 252823
HUD _cur lagl8 252857.7 252873.7 252693.1 252856.3
HUD cur lag24 252847.7 252847.4 252785.4 252804.8
HUD cur_lag30 252821.7 | 252849.1 252709.2
HUD cur lag36 252800.2 252769.4 252762.3 252713.8
CDC_cum _lagb 252638.8 252230.7 252255.1
CDC cum lagl?2 252277.9 252311.3 252258.1
CDC_cum lagl8 252387.7 252319.1
CDC_cum_lag24 252817.8 252422.6 252451.6 252377.5
Funding CDC cum lag30 252840.3 252479.6 252498.3 252424.6
CDC cum lag36 252836.1 252501 252515.7 252446.4
HUD_cum_lag6 252859.8 252650.4 252640.5
HUD cum_lagl2 252856.9 252607.7 252639.5 252615.3
HUD cum lag18 252856.7 252636 252602.2
HUD_cum_lag24 252852.4 | 252583.7 252612.3 252582.4
HUD_cum_lag30 252853.1 252570.4 252586.8 252559.1
HUD_cum_lag36 252556.3 252544.6 252520.3
tot_cur_lag6 252840.8 252857 252532.5 252837.6
tot_cur_lagl2 252848.3 252826.7 252615.3 252765.8
tot_cur lagl8 252863.6 252859.5 252627.1 252788.9
tot_cur lag24 252855.8 252803.6 252686.2 252715.8
tot_cur lag30 252838.7 252608.6 252773.5
tot_cur lag36 252796.7 252732.3 252677.3 252653.3
tot_cum_lag6 252863.1 | 252551.2 252577.9 252560.4
tot_ cum_lagl2 252861 252531.9 252565.2
tot_ cum_lagl8 252858.7 252530.3 252565.1 252537.4
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Pétrameter Variable Name X Only Lipear Qua_dratic Categorical
ategory Time Time Time
tot_cum_lag24 2525184 252551.1 252528.4
tot_cum_lag30 252854.9 252510.3 252535.2 252515.6
tot_cum_lag36 252855.1 252503 252491.2
HUD_cur 252824.5 252845.5 252876.3
Funding HUD_cum 252864.5 252670.1 252673.7 252679.3
CDC cur 252679.7 252170.2 251830.5 251799.9
CDC_cum 252586.4 252213.5 252226.6 252202.3
Current — HUD+CDC 252812.9 252831.6 252573.5 252837
Cumulative —- HUD+CDC 252861.2 252590.5 252602.3 252591.5
Screening screen_penetration 243704.7 | 243043.2%* 243416.3
Hok Variable factor(s) showed best fit when adjusted for degrees of freedom and were thus chosen to represent
parameter category in multivariate analysis.
* Variable factors showed best fit; however, were not included in multivariate analysis because the time

categorical variable had less than ideal prediction properties.

Table 4-3. Summary of Exploratory Analysis Fit as shown by -2 Log Likelihoods for
Pr(PbB >= 15 ug/dL) Models

Parameter . Linear uadratic | Categorical
Category VEWELS N 2SIy Time ° Time T?me
Median Family Income 292772.5 2927443 292659.9 292689.4
Median HH Income 292732.9 292590.8 292579.8
Median Per Capita Income 292812.2 292732.2 292766.8
Pct HH No Earnings 292772.9 292756 292428.7
Income Pct HH No Wage 292673.9 292612.3 | 292449.8** | 292310.0*
Pct HH Public Assist 293171.5 293226 292889.5 292588
Pct LT Poverty 293148.6 293226.2 292933.3 292609.9
Pct Family Income LT Poverty 293112.9 292898.4 292547.8
Pct LE 5Yrs LT Poverty 293290.6 293338.3 292997.4 292700.3
Pct_Asian 292966.2%* | 293176.7 292343.9
Pct_Black 293610.6 293556.2 293324.7 293411.1
Pct White 293448.5 293343.9 293334.4 293311.7
Race Pct NHOPI 293217.4 293230 293216.3
Pct Other Race 293165.6 293130.1 293088.7 293085.7
Pct Multi Race 293181.3 293035.3 292946.7
Pct Hispanic 293237.8 293524.2 292091.3*
Housing Median Rent 292358.3 292076.9 | 291971.3** | 292091.4
Cost Housing Value 292727.1 292691.2 292732.6 292573.7
Occupancy Pct Rented 293905.5 293533.3%*
Pct Vacant 293703.2 293721.5 293765 293491.3*
Single Pct_Single Parent 293863 | 293781.9%*
Parent
Median Yr Built 292980.6 292980.6 293008.9 292998.6
Median Yr Occ Built 292999.8 293001.5 292856.3 292749.7
Home Age Pct Built Pre 1940 292381.9 292335.9 292195.2 292161
Pct Built Pre 1950 292404.2 292364.6 292078.8
Pct Built Pre 1960 292815.6 292525.3 292400.7
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Pélrameter Variable Name X Only Lipear Qua_dratic Categorical
ategory Time Time Time
Pct Built Pre 1970 293100 293103.4 292826.6 292669
Pct Built Pre 1980 293086.5 293089.8 292851.2 292684.6
Pct Occ Built Pre 1940 292356.8 292313.7 292177 292138.7
Home Age Pct Occ Built Pre 1950 292357.3 292139.4%* | 292071.1*
Pct Occ_Built Pre 1960 292842.2 292546.1 292418.1
Pct Occ Built Pre 1970 293160.9 292884 292725.2
Pct Occ Built Pre 1980 293111.9 292711
Children Pct LE Six 293214.5 292911.5%* | 292859.9
Num LE Six 293389 293281.3 293584.6 290311.1*
Pct LT 9th Grade 293199.4 293131.7 293000.2 292491.7
Education Pct No HS Degree 292960 292951 292701.2 292376
Pct No College 292557.4 2924344 | 292260.2** | 292152.4*
Pct No College Degree 292613.7 292501.1 292328.1 292254.9
Total Housing_ Units 293444.1 293298.7 293466.2
Population Total Pop 293417.4 293297.9 293561.7 290521.5*
Housing_Density 293273.5 293267.2*%* | 2932323
air_avg 293392.7 293361.7 293366.1
air med 293410.8 293382.5 293418.4 292995.5*
air_p95 293378.4 293353.2 | 293316.8** | 293112.1
air_avg p95 293522.6 293462.9 293467.7 292547.1*
Air Lead ai~r_med_p95 293524.1 | 293509.8** | 292580.3*
air_ p95 p95 293421.4 293566.7 292731.7
air_med p99 293289.2%*| 293293.8 293304.7 293262.7
air_avg_p99 293312.1 293284.2
air med p99 293289.2%* | 2932938 293304.7 293262.7
air_p95 p99 293307 293306.7
Tri TRI Compounds air_fug 293312 293329.5 293358.7
TRI Compounds air_tot 293391.4 293416.4
TRI Compounds air_stk 293379.4 293373.4 293382.6 293324
TRI Compounds under _inj 293280.9** 293325.9
TRI Compounds water_surf 293302.9 293322.7 293339.6
TRI Lead Only air fug 293303.9 293327.8 293305.4 293302.9
TRI Lead Only air tot 293317.6 293193.9*
TRI Lead Only air stk 293339.1 293351.3 293337.7 293240.5
TRI Lead Only under inj 293317.4 293358.1
TRI Lead Only water surf 293295.9 293321.1 293362.7
TRI Lead Total air fug 293334.7 293331
TRI Lead Total air_tot 293361.2 293369.8 293351.5 293196.7
TRI Lead Total air_stk 293364.2 293370.5 293355.6 293251.3
TRI Lead Total under _inj 293315.8 293344.4 293356.7
TRI Lead Total water_surf 293300.6 293326 293350.3 293369
tri_asl_p95 293431.9 293374.3 293326.2 293354.1
tri_as2 p95 293447.9
tri_as3 p95 293468.1 293184.4 292325.9
tri_afl p95 293511.4 293486.3 293488.2 293535.3
tri_af2 p95 293346.9 293341.6 292046.2%*
tri_af3 p95 293406.8 293388.9 293217 292195.8
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Pélrameter Variable Name X Only Lipear Qua_dratic Categorical
ategory Time Time Time
tri_atl p95 293445.5 293386 293309.2
tri_at2 p95 293490.2 293434 .4 293188.8
tri_at3 p95 293524.3 293473.4 293159 292314
tri_wsl_p95 293384.9 293682.5
tri_ws2_p95 293397.5 293388.1 | 293081.1** | 292172.3
tri_ws3_p95 293449.3 293433.9 293122.9 292238.7
tri_uil_p95 293260.7 293260.7 293101.5
tri_ui2 p95 293260.7 293260.7 293101.5
tri_ui3_p95 293260.7 293260.7 293101.5
tri_asl p99 293300.7 293299.9 293278.9
tri_as2 p99 293334.1 293325.5
tri_as3 p99 293352.7 293342.5 293339.9 293153
tri_afl p99 293317.7 293328.2 293169
tri_af2 p99 293341.5 293329 293303.8 293016
tri_af3 p99 293319.2 293311.8 293303.8 293101.5
tri_atl p99 293295.1 293296.7 293129.5
tri_at2 p99 293359.2 293347.3 293169.3
tri_at3 _p99 293332.6 293315.4 293315.4 293153.9
tri_wsl p99 293338.4 293329.3 2933452
tri_ws2_p99 293304.9 293222.9 293282
tri_ws3_p99 293308.9
tri_uil p99 293260.7 293260.7 293101.5
tri_ui2_p99 293260.7 293260.7 293101.5
tri_ui3_p99 293269.5 293293 .4 293282.9
CDC cur lag6 293205.3 2929717.5 292865.8 292890.8
CDC _cur lagl2 293218.4 292865.8 | 292774.0%* | 292863.8
CDC cur lagl8 293255.1 292878.1 292799.5 292857.9
CDC cur lag24 293274.7 292961.8 292890.1 292900.2
CDC _cur lag30 293176.8 293015.4 293003.6
CDC _cur lag36 293290.1 293206.1 293076.1 293048.7
HUD cur lag6 293284.6 293128.1 293287.2
HUD _ cur lagl2 293253.2 293249.9 293149.3 293242.7
HUD _cur lagl8 293258.5 293268.9 293117.4
Funding HUD cur lag24 293253.7 293257.1 293203.1 293251.9
HUD cur_lag30 293238.4 293251.9 293106.6 293268.9
HUD cur lag36 293208.4 293194.5 293190.6 293186.5
CDC_cum _lagb 293422.1 293214.4 293231.5 293238
CDC cum lagl?2 293393 .4 293207.1
CDC_cum lagl8 293368.7 293212.7 293218.9
CDC_cum_lag24 293218.2 293214.6
CDC cum lag30 293218 293228.4 293207.6
CDC cum lag36 293310.8 293205.4 293218.2 293193.2
HUD cum lag6 293239.4 293145.3
HUD cum_lagl2 293234.4 293120.8 293146.5 293150.1
HUD cum_lagl8 293243.7 293134.7 293163.9 293150.3
HUD_ cum_lag24 293257.1 293145.3 293148.9
HUD_cum_lag30 293267.1 293164.4 293133.9
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Pgrameter Variable Name X Only Lipear Qua_dratic Categorical
ategory Time Time Time
HUD cum lag36 293278.3 293149.3 293146.1 293110.8
tot_cur_lagb 293267.9 293280.2 293102.1 293268.2
tot_cur_lagl2 293260.9 293241.6 293127.1 293218.6
tot_cur_lagl8 293262.4 293261.9 293237.1
tot_cur_lag24 293257.8 293239.6 293160.8 293215.4
tot_cur_lag30 293245.2 293258.1 293049.9 293252.3
tot_cur_lag36 293206.8 293151.9 293164.7
tot_cum_lagb 293257.7 293107.8 293124.1
tot_cum_lagl2 293100 293123.9 293133.9
Funding tot_cum_lagl8 293257.7 293114.6 293142.1 293138.5
tot_cum_lag24 293267.9 293154.5 293141.8
tot_cum_lag30 293275.4 293128.8 293153.2
tot_cum_lag36 293284.2 293130.5 293142.3 293117.5
HUD_cur 293269.1 293287.6 293172.6 293293
HUD_cum 293156.9 293156.8 293193.2
CDC cur 293240.8 292881.8 292906.9
CDC _cum 293450.7 293231.1 293246.3 293256.8
Current — HUD+CDC 293267.6 293284.9
Cumulative —- HUD+CDC 293135.6 293170.4
Screening screen_penetration 286744.8%*
*ok Variable factor(s) showed best fit when adjusted for degrees of freedom and were thus chosen to represent
parameter category in multivariate analysis.
* Variable factors showed best fit; however, were not included in multivariate analysis because the time

categorical variable had less than ideal prediction properties.

Table 4-4. Summary of Exploratory Analysis Fit as shown by -2 Log Likelihoods for
Pr(PbB >= 25 ug/dL) Models

PRIl Variable Name X Only | Linear Time Qua_dratic Categorical
Category Time Time
Median_Family Income 364225.4 364192.5 364302.8 364426
Median HH Income 364098.6 364048 364139.1 364252.5
Median_Per Capita Income 364504.4 364426.7 364532.3 364681.7
Pct HH No Earnings 363967.7 | 363893.9%* 364071.9 364002.6
Income Pct HH No Wage 363920.7 363960.8 363949.4
Pct HH Public Assist 364638.9 364705.3 364637.4
Pct LT Poverty 364611.6 364741.3 364847.1 364616.8
Pct Family Income LT Poverty 364541.7 364696 364777.3 364527.4
Pct LE 5Yrs LT Poverty 364863.6 364929.7
Pct Asian 364527.2 | 364399.3** 364394.5*
Pct Black 365490.4 365511.8
Pct White 365248.9 365038.9 365365.2
Race Pct NHOPI 364794.8 364856 364770.1
Pct Other Race 364698 364678.7
Pct Multi Race 364801.9 364772.8 364831.2 364838.6
Pct_Hispanic 364789.2 364703.1
Housing Median_Rent 363769.6 363524.9%* | 363876.3
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Pé rameter Variable Name X Only | Linear Time Qua_dratic Categorical
ategory Time Time
Cost Housing_Value 364228.4 364217.5 364266.9 364326.7
Oceupancy Pct Rented 366003.6%* 366069.6 366361.5
Pct Vacant 366381.1 366351.7 366647.4 366332.7
1S>$§r1§ Pct_Single_Parent 365919.4 | 365878.4%* | 3659933 | 366022.9
Median_Yr Built 364858.6 364893.4 364874.1 364997.8
Median_Yr Occ Built 364890.1 364927.1 365077.9 365041.9
Pct_Built Pre 1940 363573.4 363524.8 363636.7 363617.9
Pct Built Pre 1950 363716.9 363694.8 363795.8 363754.9
Pct Built Pre 1960 364677.4 364715.4 364720.3
Home Age Pct_Built Pre 1970 365255 365322.4 365404.2 365310.9
Pct_Built Pre 1980 365157.7 365231.3 365333.9 365231.9
Pct Occ Built Pre 1940 363502.8%* 363615.6 363591.1
Pct Occ Built Pre 1950 363710.5 363694.8 363795.4
Pct Occ Built Pre 1960 364710.4 364754.6
Pct Occ Built Pre 1970 365363.2 365429.2 365509.7 365420.4
Pct Occ_Built Pre 1980 365200.7 365373.4 365276
. Pct LE Six 364874.1 364787.6%* | 365003.5
Children =
Num LE Six 365297.1
Pct LT 9th Grade 364694.7 364636.7 364676.4 364634.3
. Pct No HS Degree 364365.8 364490.3 364359.9
Education
Pct No_College 363888.4 | 363710.1** 363897.3 363941.3
Pct No College Degree 364172.5 363983.5 364160.7
Total Housing Units 365469.1 365116.6
Population Total Pop 365377.3 365172.2
Housing Density 364890.0%* |  364908.1 364921.6 364925.2
air_avg 365109.3 365098.9 365098.8 365022.8*
air_med 365149.3 365142.8
air_p95 365066.7 | 365050.9%** 365053.1 365028.1
air_avg_p95 365506.4 365342.9
air med p95 365605.6%* 365444.5*
air p95 p9s 365231.4 365186.4 365205.3
air med p99 364910.2%* 364934.1 364912.5%
air_avg p99 364950.2 364949.7 364959 364957.4
air p95 p99 364974.5 364974.2 364984.1
TRI Compounds air_fug 365029.5 365019.8 365019.4
TRI Compounds air_tot 365254.2 365215.5 365259.6
TRI Compounds air_stk 365170.3 365147.7 365176.2 365183.3
TRI Compounds under_inj 364946 364964.8 365107.4
TRI Compounds water_surf 364940.3 364958 364980.3 364994
Tri TRI Lead Only air_fug 364920.3 365037.8
TRI Lead Only air_tot 364918.4 364960.3 364976.7
TRI Lead Only air stk 364950.5 364975.5 364992.6 365001.8
TRI Lead Only under inj 364931.6 364947.7 364984.2 364995.3
TRI Lead Only water surf 364934.6 364960.9 365008.7
TRI Lead Total air_fug 364905.3** | 364928.5 364977.9
TRI Lead Total air_tot 364996.6 365013.8 365014.8
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Parameter Variable Name X Only | Linear Time Qua_dratic Categorical
Category Time Time
TRI Lead Total air_stk 365012.9 365029.9 365049.1 365054.7
TRI Lead Total under_inj 364926.7 364942.8 364980 364990.4
TRI Lead Total water surf 364946.9 364973.4 365004.6 365022.5
tri_asl p95 365325.7 365249.4 365249.7
tri_as2 p95 365223.1 365193.4 365152.7
tri_as3_p95 365559.3 365489.7 365459.1 365423.2
tri_afl_p95 365498 365506.5 365620
tri_af2 p95 365113.2 365113.5 365005.7
tri_af3 p95 365283.2 365267 365225.7 365145.6
tri_atl p95 365406.5 365320.9 365306.8 365423.7
tri_at2 p95 365435.5 365358.5 3653194 365270.2
tri_wsl p95 365307.8 365270.9 365266.6
tri_ws2 p95 365239.4 365230.3 365195
tri_ws3_p95 365338.3 365316.1 365285.3
Tri tri_uil_p95 364871.7 364871.7 365011.6 364990
tri_ui2_p95 364871.7 364871.7 365011.6 364990
tri_ui3_p95 364871.7 364871.7 365011.6 364990
tri_asl p99 364965.4 364961.3 364961.2 364964.3
tri_as2_p99 365027.6 365021.2 365024.1 364974.7
tri_as3_p99 365079.1 365059.8 365067.5 365020.9
tri_afl_p99 365068 365051.1
tri_af2 p99 365053.7 365042.3 365038.6 364985.1
tri_af3 p99 365022.6 365006.5 365010.2 364974
tri_atl p99 365048.8 365036.8 365050 364994.8
tri_at2 p99 365034.9 365011.9 365019.8 365005.5
tri_at3 p99 364999.7 364972.1 364983
tri_wsl p99 364994.9 364977.9 364985.8 364990.4
tri_ws2 p99 364991.4 364981.6 364976.5
tri_ws3_p99 364951.1 364993.6
tri_uil_p99 364871.7 364871.7 365011.6 364990
tri_ui2_p99 364871.7 364871.7 365011.6 364990
tri_ui3_p99 364867.2 | 364864.5%* | 364857.2%
CDC cur lag6 365029.5 364956.9 364956.9 364945.6
CDC cur lagl2 365008.6 364858.7 364871.8 364857.2
CDC cur lagl8 364967 364840.3 364881.1 364852
CDC _cur_lag24 364989 364897 364960.1
CDC_cur_lag30 364937.9 364919.4 364963.5 364906.9
CDC_cur_lag36 364893.3 364894.9 364991.3 364904.2
HUD cur lag6 364916 364927.7 364808.6 364920
Funding HUD cur lagl2 364889.1 364804.6 364900.9
HUD cur lagl8 364869.8 | 364768.1%*
HUD cur lag24 364850.4 364863.1 364824 364891.8
HUD cur lag30 364824.3 364841.4 364789.4
HUD cur lag36 364796.1 364782.8 364802.3 364768.8*
CDC_cum_lagb 365040.7 365009.7 365084.8 365040
CDC_cum_lagl2 365006.7 365000.8 365059.1 365027.3
CDC _cum_lagl8 364981.8 365047.7 365021.5
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Pé rameter Variable Name X Only | Linear Time Qua_dratic Categorical
ategory Time Time
CDC cum_lag24 364957 364993.3 365033.1 365011.9
CDC _cum_lag30 364934 .4 364984.2 365017.3
CDC _cum_lag36 364920.3 364978 365004.7
HUD cum_lag6 364860.6 364793.5 364808.3 364816.4
HUD cum lagl2 364850.7 364788 364807.5
HUD_cum_lagl8 364851.8 364791.1 364810.2 364794.2
HUD cum_lag24 364867.1 364816.1 364790.5
HUD_ cum_lag30 364877.2 364807.6 364803.6 364772.6
HUD cum lag36 364892.6 364826.6 364809.5 364775.8
tot_cur lagb 364930.2 364941.5 364842.7 364926.8
tot_cur lagl2 364840.7 364900
tot_cur_lagl8 364862.5 364872.6 364795.3 364887.3
Funding tot_cur_lag24 364862 364873 364853.4
tot_cur_lag30 364830.9 364848.9 364794.7 364868.3
tot_cur_lag36 364793.7 364783.3 364816.2 364776.2
tot_cum_lag6 364890.4 364819.5 364839.4 364845.2
tot_cum_lagl2 364876.1 364814 364833.9 364836.1
tot_cum_lagl8 364873.5 364819 364837.1 364830.7
tot_cum_lag24 364884.2 364833.1 364846 364832.5
tot_cum_lag30 364889.6 364839.5 364821.7
tot_cum_lag36 364902.3 364849.2 364829.3
HUD_cur 364930.7 364948 364886.1 364936.8
HUD_cum 364883.2 364815.7 364835.9
CDC cur 365027.8 364962.7 364969.9 364980.6
CDC _cum 365081.4 365028.2 365131.3 365060.7
Current — HUD+CDC 364946.5 364966.1 364919.2
Cumulative —- HUD+CDC 364843 364865.1 364864.6
Screening screen_penetration 360376 360256.7** 360321.8
Hok Variable factor(s) showed best fit when adjusted for degrees of freedom and were thus chosen to represent
parameter category in multivariate analysis.
* Variable factors showed best fit; however, were not included in multivariate analysis because the time

categorical variable had less than ideal prediction properties.

4.2 Relationship between Local Blood-Lead Data and Explanatory Variables

Many of the variables investigated for the National (Low Resolution) model also were explored
for the local modeling using Massachusetts data. All of the census data were used in both
models, although at the census-tract level rather than at the county level. The various
demographic, environmental, and programmatic variables were explored using the same
techniques as the national data, which were described in Section 2.2. Detailed figures and tables
containing exploratory results are included in Appendix B. A detailed discussion of the results
seen in Appendix B is contained in Appendix E. Table 4-5 presents the log-likelihood statistics
that resulted from the bivariate modeling. Variables presenting the best model fit within each
variable category are highlighted in yellow.
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Table 4-5. Summary of Log-likelihood Ratios from each Model Fit to all Potential Explanatory Variables, Massachusetts Data

Variable Category | Variable Model 1 Model 2 Model 3 Model 4 Model 5
Income Median Family Income ($) 51727.2 48154.7 86501.8 139627.0 178071.4
Median Household Income ($) 51689.2 48114.6 86375.5 139433.1 177919.9
Median Per Capita Income ($) 51917.2 48345.5 86812.3 140036.2 178467.2
Percent No Household Earnings 52020.1 48445.8 86853.4 139531.9 177346.7
Percent No Household Wage 52039.6 48467.3 86858.3 139459.8 177184.8
Percent Household on Public Assistance 51963.8 48385.7 86854.4 139836.6 178218.1
Percent Below Poverty Line 51974.1 48389.9 86778.4 139558.4 177838.6
Percent Family Income Below Poverty Line 51991.3 48412.1 86847.5 139686.4 177952.4
Percent Less than 5 Years in Poverty 52025.2 48446.0 86924.8 | . 178034.4
Race Percent Amer. Indian and Alaskan Native Alone 52259.2 48692.5 87120.6 139739.5 177392.1
Percent Asian Alone 52264.2 48699.0 87139.8 | . 177384.8
Percent Black Alone 52170.1 48599.1 87051.0 139781.5 177691.4
Percent White Alone 52123.5 48547.4 86960.9 139784.2 178066.6
Percent Native Hawaiian and Other Pacific Islander Alone 52273.4 48706.6 87135.6 139740.3 177378.7
Percent Other Race Alone 52202.6 48633.4 87055.1 139688.4 177606.3
Percent Multiple Races 52042.2 48470.6 86889.1 139661.3 178104.6
Percent Hispanic 52181.3 48609.2 87019.6 139808.6 177754.4
Housing Costs Median Rent ($) 52004.0 48440.1 86942.8 139972.2 177952.2
Housing Value ($) 52094.5 48520.9 87032.6 140053.9 178202.0
Occupancy Percent Rented 52006.7 48421.1 86681.5 139426.7 177818.5
Percent Vacant 52186.5 48617.5 87003.7 139451.9 177021.2
Single Parent Percent Single Parent 51747.7 48155.6 86542.8 139654.1 178338.5
Home Age Year Built 51949.7 48360.5 86621.1 139739.2 178275.2
Year Occupied Unit Built 51966.8 483779 86641.4 139748.6 178258.9
Percent Built Before 1940 51923.9 483353 86505.1 139476.8 178110.9
Percent Built Before 1950 51897.9 48308.1 86483.1 139547.1 178188.5
Percent Built Before 1960 51959.8 48374.0 86653.5 139697.8 178061.5
Percent Built Before 1970 52052.3 48469.4 86806.3 139775.8 177977.1
Percent Built Before 1980 52073.4 48490.9 86850.4 139771.3 177896.0
Percent Occupied Units Built Before 1940 51931.0 48342.4 86512.2 139475.5 178078.2
Percent Occupied Units Built Before 1950 51910.8 48321.2 86497.8 139549.3 178149.3
Percent Occupied Units Built Before 1960 51975.9 48389.9 86675.0 139713.0 178044.5
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Variable Category | Variable Model 1 Model 2 Model 3 Model 4 Model 5
Percent Occupied Units Built Before 1970 52070.4 48486.2 86829.5 139799.3 177979.1
Percent Occupied Units Built Before 1980 52083.6 48501.0 86860.0 139776.7 177867.1

Children Percent Less than 6 Years of Age 52280.4 48713.7 87126.9 177615.0
Number Less than 6 Years of Age 52243.2 48678.2 86913.2 138995.8

Education Percent Less than 9™ Grade 52006.5 48435.7 86828.7 139726.7 177859.2
Percent without High School Degree 51852.7 48279.9 86709.8 139857.7 178346.7
Percent without any College 51787.2 48218.2 86729.0 140104.0 178689.0
Percent without College Degree 51822.1 48251.2 86759.6 140084.9 178625.6

Population Total Housing Units 52286.9 48720.8 87090.7 139461.7 176701.5
Total Population 52223.0 48660.6 86909.7 138948.0
Housing Density 52272.6 48697.2 87068.2 139579.8 177260.2

Air Air Dispersion (ASPEN) Model 52275.1 48708.3 87136.9 139740.1 177377.1
Air Exposure (HAPEMS5) Model 52273.1 48706.3 87134.9 139737.8 177375.0
Air Hazard Quotient (HQ) 52272.3 48705.5 87134.0 139737.0 177374.2

HUD Funding Current HUD Funding ($ per Child) 52290.9 48722.4 87140.4 139755.6 177426.7
Cumulative HUD Funding ($ per Child) 522873 48723.3 87163.4 139804.9 1774443
Current State Funding ($ per Child) 52162.4 48582.7 87014.3 139706.6 177503.7
Cumulative State Funding ($ per Child) 52200.7 48617.7 87044.0 139740.2 177459.9
Current CDC Funding ($ per Child) 52288.3 48720.8 87151.7 139760.5 177456.0
Cumulative CDC Funding ($ per Child) 52292.6 48725.0 87136.0 139706.1 177330.9
Current Total Funding ($ per Child) 52282.8 48711.9 177377.3
Cumulative Total Funding ($ per Child) 522922 48721.9 87145.9
Current HUD Funding ($ per Census Tract) 52302.9 48737.1 87167.5 139723.5 177172.3
Cumulative HUD Funding ($ per Census Tract) 52306.8 48740.4 87097.6 177127.9
Current State Funding ($ per Census Tract) 52232.2 48659.5 87178.1 140076.2 178005.1
Cumulative State Funding ($ per Census Tract) 52210.6 48638.3 87222.7 140117.0 178018.7
Current CDC Funding ($ per Census Tract) 52297.5 48729.5 87162.7 177462.6
Cumulative CDC Funding ($ per Census Tract) 52303.7 48737.2 87121.6 139570.8 176972.0
Current Total Funding ($ per Census Tract) 52303.1 48735.6 87173.9 139790.6 177370.8
Cumulative Total Funding ($ per Census Tract) 52300.1 487323 87179.7 139780.5 177447.9
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Variable Category | Variable Model 1 Model 2 Model 3 Model 4 Model 5
TRI TRI Compounds (Total Air) 52295.5 48728.8 87153.5 139761.4 177395.8
TRI Compounds (Fugitive Air) 52287.7 48720.7 87146.1 139750.0 177399.8
TRI Compounds (Stacks) 52295.6 48728.9 87154.3 139761.8 177395.5
TRI Compounds (Water Surface) 52285.5 48718.8 87147.0 139753.0 177391.9
TRI Lead Only (Total Air) 52291.0 48724.0 87153.1 139762.9 177405.1
TRI Lead Only (Fugitive Air) 52289.6 48722.6 87151.4 139759.1 177404.2
TRI Lead Only (Stacks) 52291.7 48725.0 87153.7 139757.2 177390.5
TRI Lead Only (Water Surface) 52274.4 48708.5 87138.1 139746.5 177386.0
TRI Total Lead (Total Air) 52295.8 48729.0 87155.2 139759.7 177392.4
TRI Total Lead (Fugitive Air) 52291.5 48724.6 87154.0 139761.5 177401.9
TRI Total Lead (Stacks) 52295.6 48728.9 871543 139760.6 177393.4
TRI Total Lead (Water Surface) 52285.4 48718.6 87147.4 139753.3 177393.0
Housing Inspection | P1: Proportion of Housing Units Passing MA Standard of Care: 52214.0 48643.0 87070.2 139774.6 177816.1
Naive Method 1
F1: Proportion of Housing Units Failing MA Standard of Care: 52108.5 48548.2 86916.6 139803.2 178520.9
Naive Method 1
N1: Proportion of Housing Units Assessed: Naive Method 1 52131.7 48554.8 86963.0 139849.2 178224.8
P2: Proportion of Housing Units Passing MA Standard of Care: 52240.8 48671.5 87101.3 139767.8 177800.8
Naive Method 2
F2: Proportion of Housing Units Failing MA Standard of Care: 52199.5 48645.5 87046.4 139861.5 178375.2
Naive Method 2
N2: Proportion of Housing Units Assessed: Naive Method 2 52208.4 48641.6 87066.2 139826.1 178110.9
P3: Proportion of Housing Units Passing MA Standard of Care: 52240.8 48671.5 87101.3 139767.8 177800.8
Naive Method 3
F3: Proportion of Housing Units Failing MA Standard of Care: 52108.5 48548.2 86916.6 139803.2 178520.9
Naive Method 3
N3: Proportion of Housing Units Assessed: Naive Method 3 52160.8 48586.2 86996.1 139865.4 178257.4
P4: Proportion of Housing Units Passing MA Standard of Care: 52240.5 48671.1 87098.8 139769.1 177809.5
MDPH Method
F4: Proportion of Housing Units Failing MA Standard of Care: 52106.5 48545.8 86919.8 139808.9 178518.4
MDPH Method
N4: Proportion of Housing Units Assessed: MDPH Method 52160.3 48585.5 86994.8 178259.8

46




5.0 STATISTICAL MODELING RESULTS

As described in Section 2.3, for each statistical model within each of the two broad model types
(Low and High Resolution) the variables that led to the best model fits were initially included in
a multivariate statistical model and assessed jointly to determine which variables were predictive
of children’s blood-lead levels. If higher order interactions with time were not significant within
the multivariate model and did not negatively impact the fit of the model upon removal, they
were subsequently removed. As results of each model run were reviewed, some variables were
dropped from the model if they were not significant predictors of the outcome variable and were
not improving the fit of the model by being included. Thus, each model was run and results were
assessed multiple times until a final model was reached. The sections below present the final
model results for the national risk models (Section 5.1) and the local risk models for
Massachusetts (Section 5.2). Maps of the predicted results are included in Section 6 and in
Appendix G.

5.1 Low-Resolution Modeling Results

Table 5-1 presents the full set of variables included in the final multivariate models for Models 1
through 4. Across all four models, the time and space variables were important predictors of the
various outcomes. The same three variables related to time and space were included in all four
models:

e EPA region

e the interaction between EPA region and a continuous measure of time (in years,
centered at the year 2000)

¢ the interaction of EPA region and quarter of the year with the 31 quarter (July-
September) associated with the highest predicted lead levels.

Notes on the other variable types explored and a summarization of the set of variables included
in the final models are presented below.

e Income — Percent of Units with No Household Wages was included in Models 1 to 3 with
all interactions with time included. Percent of Units with No Household Earnings was
included in all Model 4 although the interaction with time squared was dropped.

e Race — Percent Black was included in Model 1, Percent Multiple Races in Model 2, and
Percent Asian in Models 3 and 4, although the interaction with time squared was dropped
in Model 3 and both interactions were dropped in Model 4. The best-fitting race
variables were included in Models 1 through 5.

e Housing Cost — Median Rent was only included in all models and all interaction terms
appeared to be strong predictors.

e Occupancy — Percent Vacant was included in Model 1 and Percent Rented in the other
three. The interaction with time squared was dropped in Models 2 and 4.

e Single Parent Status — The percent of single parent households was included in all
models with the interaction with time squared was dropped in Models 3 and 4.

e Housing Age — Percent Built Pre-1960 was included in Models 1 and 2, Percent Built Pre-
1950 in Model 3, and Percent Built Pre-1940 in Model 4.
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e Children’s Age — The percent of children less than six years old was included in all
models, although the p-values for each term in Model 2 are high.

e Education Level — Percent Without a College Degree was included in all models,
although the interaction with time squared was dropped in Model 3 and both interaction
terms were dropped in Model 4.

e Population — Total Housing Units was included in Model 1 without either interaction
with time. Total Population was included in Model 2 with both interactions. Housing
Density was included in Models 3 and 4, although the interaction terms were dropped
from Model 4.

e Air Lead — Median Air Lead, 99'" Percentile was included in Models 1, 2, and 4, although
the interaction terms were dropped from Models 3 and 4. Air Lead 9" Percentile was
included in Model 2.

e TRI-TRI Lead Total Air, 95" Percentile was included in Model 1 with all interaction
terms. TRI Lead Water Surface 95™ Percentile was included in Models 2 and 3 with both
interaction terms. TRI Lead Underwater Injection 95™ Percentile was included in Model
4 but the interaction with time squared was dropped.

e Drinking Water — The two Mean Water Lead Concentration variables were included in
each model, although the interaction with time squared was dropped in Model 3 and both
interactions were dropped in Model 4.

e Funding — Total Cumulative Funding 36-month Time Lag was included in Model 1 with
both interactions with time. Current CDC Funding 12-month Time Lag was included in
Models 2 and 3 with both interaction terms. Current HUD Funding 12-month Time Lag
was included in Model 4 with all terms being significant.

e Screening — Screening penetration was included in each model, although the interaction
with time squared was dropped in Models 2 and 4.

Thus, in Model 4 for probability of blood-lead level > 25, most of the interactions with time
squared were dropped from the model and a number of the interactions with time were dropped
as well. Note that when the interaction with time and/or time squared were significant or
improved the model, the lower order terms were kept in the model even if a particular term had a
p-value above 0.05.

Tables 5-2 through 5-7 present the parameter estimates from each of the four multivariate
national models. The standard error and p-value associated with each predictor also is included.
Estimates also are presented for the three variance components that were included in the national

models —o7; . o; ;.and o (related to the random intercept (80i) and slope (81;) terms.

Following each table are two figures that provide information on the fit of the final models. The
first, a histogram of the residuals from the final model fit, helps determine whether or not it is
reasonable to assume that the random errors in a statistical process can be assumed to be drawn
from a normal distribution. Figures 5-1, 5-3, 5-5, and 5-7 contain the residual histograms of the
observed-predicted probabilities from each of the four logistic regression models. Please note
that for these four histograms — the model was actually applied on the logit scale. However,
because the logit is undefined for observed proportions at zero and one, the histograms were
applied to the original scale of measure.
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The second set of figures plot the observed values versus the predicted values for each model. If
the multivariate model fitted is appropriate, predicted values obtained from regressing the
observed values on the multivariate model’s predicted values when plotted against observed
values, one would expect all the points to be very close to the 45° line. Figures 5-2, 5-4, 5-6, and
5-8 contain these comparison plots for each of the four national models, respectively. The plots
were conducted on both the observed probability and logit probability scales, with observed data
points at zero and one censored in the logit scale plots.

In general, these plots suggest that the models are performing well. A weighted regression line
(blue line) fit to the observed versus predicted plots shows a very high R? value in most of the
models that mirrors the 45° line (shown in red) for the majority of the data. One trend observed
in these plots that is important to consider is that the Broad-Based National Models tend to
under-predict for county/quarter combinations with higher proportions that exceed the 5, 10, 15
and 25 pg/dL threshold values. Further exploration may be necessary to determine whether these
higher values represent county/quarter combinations with fairly sparse data (i.e., few
observations) — which might explain why they would have been less influential because the
models are influenced by the number of observations associated with each observed value. For
the higher blood-lead threshold categories, the model appears to over-predict the lower observed
proportions — suggesting the possibility of a regression to the mean effect.
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Table 5-1. Summary of Variables Included in Final National Multivariate Model

Variable Type Model 1 Model 2 Model 3 Model 4
Region Region Region Region

Area and Time | Time*Region Time*Region Time*Region Time*Region
Region*Quarter Region*Quarter Region*Quarter Region*Quarter

Income Percent of Units No | Percent of Units Percent of Units Percent qf Units No
HH Wages No HH Wages No HH Wages HH Earnings

Race Percent Multiple . .
Percent Black Races Percent Asian Percent Asian

Housing Cost Median Rent Median Rent Median Rent Median Rent

Occupancy Percent Vacant Percent Rented Percent Rented Percent Rented
Family Percent Single Parent | Percent Single Percent Single Percent Single
Structure Parent Parent Parent
sty A Percent Built Pre- Percent Built Pre- | Percent Occupied | Percent Occupied
1960 1960 Built Pre-1950 Built Pre-1940
Ciliikisi’s A Percent < Six Years |Percent < Six Percent < Six Percent < Six Years
Old Years Old Years Old Old
. Percent without Percent No College | Percent No College | Percent No College
Education
College Degree
Population Total Housing Units | Total Population Housing Density Housing Density
. Median Air Lead, Air Lead, 95t Median Air 99™ Median Air 99™
Air Lead th . . . .
99™ percentile percentile percentile percentile
TRI Lead Water TRI Lead Water
TRI TRI Lead Total Air, | Surface 95™, Surface 95™, TRI Lead UI 95",
95™ percentile percentile percentile percentile
Mean Water Lead Mean Water Lead | Mean Water Lead | Mean Water Lead
Drinking Water | (water=1) (water=1) (water=1) (water=1)
Lead Mean Water Lead Mean Water Lead |Mean Water Lead | Mean Water Lead
(water=2) (water=2) (water=2) (water=2)
Total Cumulative Current CDC Current CDC Current HUD
Funding Funding 36-month Funding 12-month | Funding 12-month | Funding, 12-month
Time Lag Time Lag Time Lag Time Lag
. . . Screenin Screenin Screenin
S Screening Penetration Penetrati%n Penetrati%n Penetrati%n
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Table 5-2. Model 1 (Proportion 2 5 pg/dL) Parameter Estimates for Multivariate National Model

Region 1 Region 2 Region 3
Effect Estimate | StdErr| P-Value Effect Estimate | StdErr | P-Value Effect Estimate StdErr | P-Value
Region 2,200 0.291 0001 Region 2,567 0299 000 Region 2250 0.286 ~ 000}
Time*Region 0.115 0.060 | 0.0546 Time*Region 0.134 0061 | 00295 Time*Region 0.023 0.059 0.6958
Region*Quarter-1 -0.149 0.008 < 0001 Region*Quarter-1 -0.256 0.005 ool Region*Quarter-1 -0.271 0.008 oo |
Region*Quarter-2 -0.054 0.008 oot Region*Quarter-2 -0.142 0.005 ool Region*Quarter-2 0.125 0.008 ool
Region*Quarter-3 0.243 0.007 0001 Region*Quarter-3 0.209 0.005 0oo1 Region*Quarter-3 0.156 0.008 ooo|
Region*Quarter-4 0.000 Region*Quarter-4 0.000 Region*Quarter-4 0.000
Region 4 Region 5 Region 6
Effect Estimate | StdErr | P-Value Effect Estimate | StdErr| P-Value Effect Estimate StdErr P-Value
Region -2.003 0.280 GU| Region -2.546 0284 ([V1¢h} Region -2.196 0.283 Goe |
Time*Region -0.065 0,058 0.2628 Time*Region 0018 0058 | 0.758996 Time*Region 0016 0.058 0.7801
Region*Quarter-1 -0.195 0.006 uool Region*Quarter-1 -0334 0004 0001 Region*Quarter-1 0114 0.008 OO0
Region*Quarter-2 -0.038 0.006 LV} Region*Quarter-2 -0.117 0.004 ool Region*Quarter-2 -0.018 0.008 00334
Region*Quarter-3 0.068 0.006 e Region*Quarter-3 0.280 0.004 0o0] Region*Quarter-3 0.102 0.008 000]
Region*Quarter-4 0.000 Region*Quarter-4 0.000 Region*Quarter-4 0.000
Region 7 Region 8 Region 9
Effect Estimate | StdErr| P-Value Effect Estimate | StdErr| P-Value Effect Estimate StdErr | P-Value
Region -2.406 0.279 Loo) Region -2.621 0285 0001 Region -2.125 0318 ouu|
Time*Region 0.048 0.057 0.4064 Time*Region 0.076 0.059 02013 Time*Region 0118 0.066 0.074%
Region*Quarter-1 -0.291 0.009 LUl Region*Quarter-1 -0.277 0.057 00| Region*Quarter-1 -0.016 0,021 0.4596
Region*Quarter-2 -0.006 0.009 | 0.5220 Region*Quarter-2 -0.250 0,055 0001 Region*Quarter-2 0214 0.020 uoul
Region*Quarter-3 0184 0.008 il Region*Quarter-3 0.057 0051 0.2686 Region*Quarter-3 -0.006 0.019 0.7635
Region*Quarter-4 0.000 Region*Quarter-4 0.000 Region*Quarter-4 0.000
Region 10 Other Predictors
Effect Estimate | StdErr| P-Value Eff X X*Time X*Time2
Region 2916 | 0311 | - ool S Est. |StdErr] P-val | Est StdErr P-Val | Est. | StdErr | P-Val
Time*Region 0.052 0065 | 04231 Screening Penetration -1.010 | 0.066 | <0.0001) 0.117 0.014 <0.0001 | -0.087 | 0.004 [ <0000l
Region*Quarter-1 -0.325 0.052 bl Pct. Units Built Before
1960 1.792 0.109 | <0.0001] -0.209 0.023 <0.0001 0.026 0.001 <(.0001
Region*Quarter-2 -0.196 0.050 { LOUGLY TRI Lead Total Air >
95th Percentile 0.250 0.051 | <0.0001| -0.013 0.010 0.1944 0.000 0.000 <0.0001
Region*Quarter-3 0.113 0.049 | DO2045] Median Rent -0.039 0.019 | 00465 -0.013 0.004 0.0009 -0.002 0.000 <(.0001
Region*Quarter-4 0.000
Total Cumulative
Funding: 36-Month Lag [ -0.002 | 0.000 | <0.0001 | 0.001 0.000 <0.0001 | -0.0002 | <0.0001 | <0.0001
Pet of Residents Without
CollegeDegree 0.544 | 0.254 | 00321 0.077 0.053 0.1431 -0.014 | 0.002 | <0.0001
Variance Components Pet Units with No
Household Wage 0.270 0.300 | 0.3687 | -0.120 0.064 0.0592 0.005 0.004 0.2343
Effect Estimate | StdErr| P-Value Pet <6 Yrs of Age -1.569 1.094 | 0.1515 | -0.449 0.237 0.0585 0.061 0.015 0.0001
UN(L1) 0210 0.007 Pct Single Parent 0.139 0243 | 0.5662 | -0.10] 0.052 0.0511 -0.002 0.002 0.3862
UN(2,1) -0.020 0.001 Pct Black Alone 0.697 0.125 | <0.0001 | 0.072 0.027 0.0069 0.003 0.001 0.0409
UN(2,2) 0.009 0.000 Pet. Vacant Units 0.102 0.161 | 0.5258 0.004 0.035 0.9063 -0.012 0.003 | <0.0001
Mean Water Lead
Conc.(water =1) 0.056 0.011 | <0.0001 | 0.002 0.004 0.6776 -0.003 0.001 <0,0001
Mean Water Lead
Conc.(water =2) -0.151 0.027 | <0.0001| -0.013 0.010 0.1800 0.013 0.002 | <0.0001
Median Air 2 99th
Percentile 0.307 0,100 | 0.0022 0.012 0.010 0.2031 -0.001 0.000 0.0007
Total Housing Units -0.001 0.001 | 06118
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Figure 5-1. Histograms of Residuals from Fitted National Multivariate Model 1
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Figure 5-2a. Plot of National Multivariate Model Predicted Values versus Observed with
Fitted Regression Line and 45° Reference Line for Proportion of Children
with BLL 2 5 pg/dL
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Figure 5-2b. Plot of National Multivariate Model Predicted Values versus Observed with
Fitted Regression Line and 45° Reference Line for Proportion of Children
with BLL 2 5 pg/dL (Logit Scale)
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Table 5-3. Model 2 (Proportion 2 10 ug/dL) Parameter Estimates for Multivariate National Model

Region 1 Region 2 Region 3
Effect Estimate | StdErr | P-Value Effect Estimate | StdErr| P-Value Effect Estimate | StdErr | P-Value
Region -4.973 0.277 < {100 | Region -5.505 0.286 = 0001 Region -5.173 0.266 Lo
Time*Region 0.117 0.051 00216 Time*Region 0.185 0.053 0 00035 Time*Region 0.041 0.050 0.4085
Region*Quarter-1 -0.195 0015 ooo| Region*Quarter-1 -0.354 0.012 (elelel] Region*Quarter-] -0.333 0014 (G |
Region*Quarter-2 -0.012 0015 0.3983 Region*Quarter-2 -0.145 0.011 = QU1 Region*Quarter-2 -0.119 0013 GO0 |
Region*Quarter-3 0.342 0014 uow] Region*Quarter-3 0.304 0.010 ool Region*Quarter-3 0.248 0.012 oGl
Region*Quarter-4 0.000 Region*Quarter4 0.000 Region*Quarter-4 0.000
Region 4 Region § Region 6
Effect Estimate | StdErr| P-Value Effect Estimate | StdErr | P-Value Effect Estimate | StdErr | P-Value
Region -5.170 0.260 ot Region 5417 0.259 0001 Region -5.175 0264 [Fle]F
Time*Region 0.049 0.049 0.3080 Time*Region 0.046 0.048 03447 Time*Region 0098 0.050 00441
Region*Quarter-1 -0.231 0015 0001 Region*Quarter-1 -0.467 0.007 < 0001 Region*Quarter-] -0.166 0.019 il
Region*Quarter-2 0017 0015 0.2443 Region*Quarter-2 -0.138 0.007 uuo| Region*Quarter-2 -0,048 0.018 008
Region*Quarter-3 0.133 0014 QoL Region*Quarter-3 0.370 0.006 ool Reglon*Quarter-3 0,090 0.018 okl
Region*Quarter-4 0.000 Region*Quarter-4 0.000 Region*Quarter-4 0.000
Region 7 Region 8 Region 9
Effect Estimate | StdErr| P-Value Effect Estimate | StdErr [ P-Value Effect Estimate | StdErr | P-Value
Region -5.071 0.259 QO Region -5.624 0.286 000 Region -4.747 0310 Ouo|
Time*Region 0.061 0.048 0.2048 Time*Region 0.042 0.056 0.4465 Time*Region 0.249 0.059 0ug]
Region*Quarter-1 -0.463 0.017 UGo | Region*Quarter-1 -0.482 0.136 U UG0S Region*Quarter-1 0.088 0.035 Ry
Region*Quarter-2 -0.008 0015 0.5943 Region*Quarter-2 -0.164 0.120 0.1734 Region*Quarter-2 -0.108 0.033 00el]
Region*Quarter-3 0225 0.014 (00 | Region*Quarter-3 -0.061 0113 0.5930 Region*Quarter-3 0.050 0.032 0.1223
Region*Quarter-4 0.000 Region*Quarter-4 0.000 Region*Quarter-4 0.000
Region 10 Other Predictors
Effect Estimate | StdErr | P-Value Effect X X*Time X*Time2
Region -5.677 0313 Houl Est. [StdErr| P-Val | Est. StdErr P-Val Est. | StdErr P-Val
Time*Region 0076 0.061 02119 Screening Penetration -3.605 | 0.093 | <0.0001]-0.519 0.024 <0,0001 . . .
Region*Quarter-1 -0.572 0.105 Upo | Median Rent 0.030 0022 | 0.1769 | -0.014 0,004 0.0003 ]-0.002| 0.000 <0.0001
Region*Quarter-2 0385 0.098 | (b6t Pct. Units Built Before 1960 2028 0.133 | <0.0001 | 0.026 0.024 0.2828 ] 0.013 | 0.002 <0.0001
Region*Quarter-3 0.153 0.091 | 00939 Pct of Residents No College 0.624 0.217 | 00040 |-0.123 0.041 0.0026 | 0.030 | 0.004 <0.0001
Region*Quarter-4 0.000 Pct Units with No Household
Wage 1.049 0.374 | vunso | -0.064 0.073 0.3791 1-0.092( 0.008 <0.0001
TRI Lead Water Surface >
95th Percentile 0.105 0.059 | 0.0773 | -0.004 0.010 0.6734 | 0.005 0.001 <0.0001
Variance Components Current CDC Funding; 12-
Month Time Lag 0,050 0015 | 00009 | 0.053 0.003 <(.0001 | 0.003 | 0.000 <0.0001
Effect Estimate | StdErr| P-Value Pet <6 Yrs of Age 1.154 1.407 | 04118 |-0.126 0.277 0.6493 |-0.003] 0028 0.9192
UN(L,1) 0.304 0.012 Pct Multiple Races -3.486 1.230 | 0 uode |-0.884 0.235 0.0002 | 0.132 0.031 <0.0001
UN(Z,1) -0.012 0.002 Total Pop 0.001 0.000 | B30 | 0.000 0.000 0.0006 | 0.000 | 0.000 =0.0001
UN(2,2) 0.007 (.000 Pct Single Parent 1,770 0.258 | <0.0001 | -0.043 0.050 0.3842 | 0010 | 0.003 0.0044
Mean Water Lead Conc.(water
=10 0.008 0.021 [ 0.6943 | 0.019 0.008 0.0189 ]-0004| 0.001 0.0027
Mean Water Lead Conc (water,
=2 -0.019 0.048 | 0.6858 | -0.071 0.019 0.0001 0.014 | 0.003 <0.0001
Air Lead: 95" Percentile 2.552 0.609 | <0.0001 ] -0.086 0.101 0.3948 ]-0.065| 0.008 <0.0001
Pet. Rented Units 0021 | 0262] 09363 |-0.015 0.048 0.7615
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Figure 5-3. Histograms of Residuals from Fitted National Multivariate Model 2
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Figure 5-4a. Plot of National Multivariate Model Predicted Values versus Observed with Fitted
Regression Line and 45° Reference Line for Proportion of Children with BLL = 10 pg/dL.
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Figure 5-4b. Plot of National Multivariate Model Predicted Values versus Observed with Fitted
Regression Line and 45° Reference Line for Proportion of Children with BLL =10 pg/dL
(Logit Scale)
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Table 5-4. Model 3 (Proportion 2 15 pg/dL) Parameter Estimates for Multivariate National Model
Region 1 Region 2 Region 3
Effect Estimate | StdErr | P-Value Effect _Estimate | StdErr| P-Value _Effect Estil StdErr | P-Value |
Region -7.800 0.339 <000] Region -8.243 0.346 <0001 Region -7.620 0.325 = 0001
Time*Region 0.186 0.066 | 0.004948 Time*Region 0.262 0.068 | 0.000123 Time*Region 0.097 0.064 | 0.13021
Region*Quarter-1 -0.197 0.027 | <000l Region*Quarter-1 -0.352 0.021 | <0001 Region*Quarter-1 0361 0,021 <0001
|Region*Quarter-2 0.028 0.025 | 0.265927 Region*Quarter-2 -0.073 0.019 [ 0000164 Region*Quarter-2 -0.093 0.020 < 000
Region*Quarter-3 0411 0.023 < 0001 Region*Quarter-3 0373 0.018 <0001 Region*Quarter-3 0279 0018 <0001
fRegjon‘Quaner—4 0.000 [Region*Quarter-4 0.000 Region*Quarter-<4 0.000
Region 4 Region 5 Region 6
EfTect Estimate | StdErr | P-Value Effect Estimate | StdErr| P-Value Effect Estimate | StdErr| P-Value
Region -7.743 0316 <0001 Region -7.958 0315 < 0001 Region -7.702 0321 < 0001
Time*Region 0.144 0.062 | 002099 Time*Region 0118 0.062 | 0.057593 Time*Region 0.186 0.064 | 0003527
Region*Quarter-1 -0.262 0.029 < 0001 Region*Quarter-1 -0512 0011 < 0001 Region*Quarter-1 -0.146 0.032 000l
Region*Quarter-2 0.089 0.027 | 0000873 Region*Quarter-2 -0.106 0.010 0001 Region*Quarter-2 -0.089 0.032 | 0005426
Region*Quarter-3 0.169 0.026 = 0001 Region*Quarter-3 0,440 0.009 0001 Region*Quarter-3 0.032 0.031 | 0304026
Region*Quarter-4 0.000 Region*Quarter-4 0.000 Region*Quarter-4 0.000
Region 7 Region § 5 Region 9
Effect Esti StdErr | P-Value Effect Estimate | StdErr | P-Value Effect Estimate | StdErr | P-Value
|Region -1.750 0317 | <0001 Region -8.192 0.363 <0001 Region -6.830 0.382 <0001
Time*Region 0.139 0.063 | D 02608 Time*Region 0.121 0.075 | 0.104597 Time*Region 0.149 0.077 | 0.053885
Region*Quarter-1 -0.492 0.027 < 0001 Region*Quarter-1 -0.730 0.241 | 0002463 Region*Quarter-1 -0.171 0.049 | 0000454
Region*Quarter-2 0.079 0.024 | DO01043 Region*Quarter-2 -0.104 0.193 | 0.589189 Region*Quarter-2 -0.220 0.046 <0001
Region*Quarter-3 0303 0.023 <0001 IRe.g,ion'QuarLer—} -0.093 0.185 | 0613293 Region*Quarter-3 0.016 0.045 | 0.722024
Region*Quarter-4 0.000 IEegion‘Quaner-ﬂ 0.000 Region*Quarter-4 0.000
Region 10 Other Predictors
Effect Estimate | Stdbrr] P-Value G X X*Time X*Time2
Region £170_| 0393 | = oool x Est. [StdErr] P-val | Est. StdErr P-Val | Est. | StdErc] P-Val
Time*Region 0.172 0.079 | 0028832 Screening Penetration -4.185 | 0.187 | <0.0001 | -0.542 0,039 <0.0001 | 0.024 [ 0.011 0.0273
Region*Quarter-1 -0.892 0186 | <000] Median Rent 0.178 0.027 | <0.0001 | -0.020 0.005 0.0002 [ -0.004[ 0.000 <0.0001
Region*Quarter-2 -0.350 0.156 | 0025118 Pet. Occupied Units Built
Before 1950 2.993 0.185 | <0.0001 | -0.004 0.037 0.9228 | 0.017 | 0.003 <0.0001
Region*Quarter-3 0.019 0.147 | 0.895229 Pct of Residents No College 0.799 0.260 | 0.0021 | -0.032 0.053 0.5384
Region*Quarter- 0.000 Pct Units with No Household
Wage 1.400 0.454 | 0.0021 | -0.195 0.094 0.0387 |-0.021] 0.007 0.0048
Current CDC Funding;: 12-
Month Time Lag 0.026 0.025 | 0.2810 | 0.059 0.005 <0.0001 | 0.004 | 0.001 <0.0001
Variance Components Pct <6 Yrs of Age 3.599 1.718 | 0.0361 | -0.877 0.363 0.0156 | 0.255 | 0.027 <0.0001
Effect Estimate | StdErr | P-Value Pct Asian Alone -2.253 | 0.953 | 0.0180 | 0.316 0.191 0.0991
UN(1,1) 0.365 0.016 TRI Lead Water Surface > 95th
Percentile 0.223 0.066 | 0.0008 | -0.006 0.012 0.6063 | -0.001| 0.001 0.2423
UN(2,1) 0.018 0.002 Mean Water Lead Conc.(water
=]) -0.025 | 0.032 [ 0.4313 | 0.008 0.007 0.2212
UN(2,2) 0.009 0.001 Mean Water Lead Conc.(water
=2) 0.110 0.075 | 0.1392 | -0.044 0.016 0.0053
Housing_Density -0.006 [ 0.002 | 0.0001 | -0.001 0.000 0.0266 | 0.000 | 0.000 <0.0001
Median Air > 99" Percentile | 0.665 | 0.143 | <0.0001
Pct. Rented Units 0.949 0.325 | 0.0035 | 0.052 0.066 0.4366 | -0.025| 0.005 <0.0001
Pct Single Parent 2135 0313 | <0.0001] -0.196 0.065 0.0024

85



50 7

40 7

30 7

Percent

20

4

0 T T T T T T U T T T T T T

-0.148 -0.108 -0.068 -0.028 0.012 0.052 0.092 0.132 0.172 0.212 0.252 0.292 0.332

Residuals from Model-5 (P15)

Figure 5-5. Histograms of Residuals from Fitted National Multivariate Model 3
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Figure 5-6a. Plot of National Multivariate Model Predicted Values versus Observed with
Fitted Regression Line and 45° Reference Line for Proportion of Children
with BLL 2 15 pg/dL.
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Figure 5-6b. Plot of National Multivariate Model Predicted Values versus Observed with

Fitted Regression Line and 45° Reference Line for Proportion of Children
with BLL 2 15 ug/dL (Logit Scale)
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Table 5-5. Model 4 (Proportion = 25 ng/dL) Parameter Estimates for Multivariate National Model

Region 1 Region 2 Region 3
Effect Estimate | StdErr | P-Value Effect Estimate | StdErr| P-Value Effect Estimate | StdErr| P-Value
Region -9.307 0.403 <0001 Region -9.797 0421 <0001 Region -9.083 0.393 <0001
Time*Region 0.250 0.074 | 0000684 | |Time*Region 0.207 0.081 0.01021 Time*Region 0.090 0.073 | 0.218218
Region*Quarter-1 -0.270 0.055 <0001 Region*Quarter-1 -0.287 0.043 <.000!} Region*Quarter-1 -0.452 0.045 < 0001
Region*Quarter-2 0.111 0.050 | 0026461 Region*Quarter-2 0.003 0.039 | 0.930399 Region*Quarter-2 -0.048 0.042 | 0.248085
Region*Quarter-3 0.441 0.046 < 0ool Region*Quarter-3 0.466 0.036 <0001 Region*Quarter-3 0.319 0.037 < 0001
Region*Quarter-4 0.000 Region*Quarter-4 0.000 Region*Quarter-4 0.000
Region 4 Region § Region 6
Effect Estimate | StdErr | P-Value Effect Estimate | StdErr | P-Value Effect Estimate | StdErr | P-Value
Region -6.48] 0.380 < 0001 Region -9.426 0379 0001 Region -9.396 0.386 < 0001
Time*Region 0.156 0.070 | 0025874 | ITime*Region 0.131 0.071 | 0.064377 Time*Region 0.165 0.073 | 0.024058
Region*Quarter-1 -0.122 0063 | 0051773 | |Region*Quarter-1 -0.541 0.023 0001 Region*Quarter-1 -0.117 0.071 | 0.100954
Region*Quarter-2 0.204 0.058 0.0005 Region*Quarter-2 -0.008 0020 | 0.705084 Region*Quarter-2 0.031 0,070 | 0.658998
Region*Quarter-3 0.313 0.056 <0001 Region*Quarter-3 0537 0018 < Qootl Region*Quarter-3 0.136 0.067 0.0434)
Region*Quarter-4 0.000 Region*Quarter-4 0.000 Region*Quarter-4 0.000
Region 7 Region 8 Region 9
Effect Estimate | StdErr | P-Value Effect Estimate | StdErr| P-Value Effect Estimate | StdErr | P-Value
Region -9.474 0.380 | =000l Region -9.634 0.493 <0001 Region -8.770 0463 < 0001
Time*Region 0.172 0.072 | 00l6446 | JTime*Region 0.170 0.103 | 0098117 Time*Region 0.157 0.088 | 0.074789
Region*Quarter-1 -0.409 0.059 | <0001 Region*Quarter-1 -0.984 0.531 | 0064023 Region*Quarter-1 -0.115 0.098 | 0.241363
Region*Quarter-2 0.299 0.050 =~ ool Region*Quarter-2 0.087 0373 | 0814912 Region*Quarter-2 -0.036 0.092 | 0.691996
Region*Quarter-3 0.500 0.048 < 0001 Region*Quarter-3 -0.349 0.395 | 0376556 Region*Quarter-3 0.025 0.092 | 0.78802
Region*Quarter-4 0.000 Region*Quarter-4 0.000 Region*Quarter-4 0.000
Region 10 Other Predictors
Effect Estimate | StdErr| P-Value Effect X X*Time X*Time2
Region 9959 | 0540 | =aoui G Est.|StdErr] P-val | Est. StdErr P-Val | Est. | StdErr| P-val
Time*Region 0.206 0.098 | 0035646 Screening Penetration -4.491 0.275 | <0.0001 | -0.478 0.073 <0.0001
Region*Quarter-1 -0.225 0388 | 0.561648 Pet. Occupied Units Built
Before 1940 3.344 0.268 | <0.0001 | -0.005 0.057 0.9231 3 3 A
Region*Quarter-2 0.180 0345 | 0.602567 Median Rent 0.183 0.033 | <0.0001 ] -0.013 0.006 0.0178 [-0.003] 0.001 | <0.0001
Region*Quarter-3 0.194 0350 | 0.580418 | |Pct of Residents No College 0.351 0.324 | 0.2787
Region*Quarter-4 0.000 Pct Units with No Household
Earnings 2475 | 0619 | 0.0001 |-0.111 0.131 0.3951
Pet Asian Alone -1.135 1.082 | 0.2943
Variance Components Current HUD Funding: 12-
Month Time Lag -0.015 0.005 | 00010 | -0.006 0.002 0.0004 | 0.002 | 0.000 | <0.0001
Effect Estimate | StdErr | P-Value Pct <6 Yrs of Age 6.920 2.254 | 00021 |-0.928 0.462 0.0448 | 0.173 | 0.028 | <0.0001
UN(1,1) 0.370 0.022 TRI Lead Underground
Injection > 95th Percentile -0.089 0.183 | 0.6295 | -0.021 0.040 0.5914
UN(2,1) -0.018 0.003 Mean Water Lead Conc.(water
=1) 0.020 0.021 | 0.3446
UN(2,2) 0.010 0.001 Mean Water Lead Conc.(water
=2) 0.030 0.053 | 0.5689
Housing_Density -0.006 | 0.002 | 0.0008
Median Air = 99" Percentile 0.383 0.183 | 0.0365 2 y ’
Pct Single Parent 2.060 0.428 | <0.0001 | -0.355 0.093 0.0001
Pct. Rented Units 1.102 0.408 | 0.0069 | 0.037 0.078 0.6330
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Figure 5-7. Histograms of Residuals from Fitted National Multivariate Model 4
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Figure 5-8a. Plot of National Multivariate Model Predicted Values versus Observed with
Fitted Regression Line and 45° Reference Line for Proportion of Children
with BLL 2 25 ug/dL.
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Figure 5-8b. Plot of National Multivariate Model Predicted Values versus Observed with

Fitted Regression Line and 45° Reference Line for Proportion of Children
with BLL 2 25 pg/dL (Logit Scale)
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5.2 High-Resolution Modeling Results

The Massachusetts final multivariate models were constructed similarly to the national models.
One basic difference in the Massachusetts models is that there was no EPA region. Thus, there
was no area variable included other than census tract. As in the national model, time period and
quarter were significant predictors; however, in the Massachusetts model they are not interacted
with an area variable. Table 5-6 presents the full set of variables included in the final
multivariate models for Models 1 through 5. Model 6 was not fit for the Massachusetts data
because of the scarcity of data above 25 pg/dL.

Among the demographic variables, housing cost, occupancy, family structure, and housing age
were significant predictors in all five models. Median Rent was the selected housing cost
variable in all five models. For occupancy, Percent Rented was the selected variable in four of
the five models. Percent of Single Parent Households is the family structure variable in all
models. Three housing age variables were included across the five models, but Percent Built
Pre-1950 was the included variable in Models 1 to 3.

Race and Income variables were included in four of the five final models. Median Household
Income and Percent Multiple Races were the two variables used in all four models. Children’s
Age, Education, and Population each had a variable included in one of the final models. Number
of Children less than or equal to six years old and Total Population were included in Model 3.
Percent Without 9" Grade Education was included in Model 4.

Unlike the national models, none of the environmental variables were included in the final
multivariate models for Massachusetts. On the other hand, the housing inspection data from
Massachusetts were predictive and included in all of the final models. The percentage of units
passing the Massachusetts standard of care (calculated using the MDPH method) was included in
all five models. Additionally, the percentage of units failing the Massachusetts standard of care
(calculated using the MDPH method) was included in Models 4 and 5.

The selected programmatic funding variable was included in Models 1, 2, and 5. Current State
Funding ($ per Child) was used in the GM models and Cumulative CDC Funding ($ per tract)
was used in Model 5.

As with the national models, parameter estimates and associated standard errors and p-values are
presented for all models in Table 5-7. Figures 5-9 to 5-18 contain the histograms of residuals
and plots of observed versus predicted values that allow assessment of the various model fits.

These plots suggest that models 1-3 are performing well, with Models 4 and 5 providing a
somewhat suboptimal fit (perhaps due to fewer children being observed above the 10 and 15
ng/dL threshold values in Massachusetts). The weighted regression line fit to the observed
versus predicted plots (shown in blue) also demonstrates a systematic degradation in model
performance from Models 3 through 5, with the R* value diminishing as the blood-lead threshold
value increases. Similar to the National Models, the High-Resolution Multivariate Models in
Massachusetts tend to under-predict for census-tract/quarter combinations with higher geometric
mean blood-lead concentrations and higher exceedance proportions. Further exploration may be
necessary to determine whether these higher values represent county/quarter combinations with
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fairly sparse data (i.e., few observations) — which might explain why they would have been less
influential in Models 2 through 6, which are influenced by the number of observations associated
with each observed value.

Appendix F presents predictions of areas of the country estimated to have the highest children’s
blood-lead levels. These predictions were generated by averaging predicted values across the
four quarters of 2006. Table F-1 lists the 150 counties/townships in the United States with the
highest predicted GM blood-lead levels (using Model 2) and proportion of children above 5, 10,
15, and 25 pg/dL. Table F-2 lists the 10 counties in each state with the highest levels of those
same five outcomes. Table F-3 lists the 150 Massachusetts census tracts with the highest
predicted GM blood-lead levels. Figure F-1 provides a map of these 150 Massachusetts census
tracts.
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Table 5-6. Summary of Variables Included in Final Massachusetts Multivariate Model

Variable Type Model 1 Model 2 Model 3 Model 4 Model 5
Time Time Period, Quarter | Time Period, Quarter | Time Period, Quarter | Time Period, Quarter | Time Period, Quarter
Income Median Household Median Household Median Household Median Household

Income Income Income Income
Race Percent Multiple Race | Percent Multiple Race | Percent Multiple Race | Percent Multiple Race
Housing Cost Median Rent Median Rent Median Rent Median Rent Median Rent
Occupancy Percent Rented Percent Rented Percent Rented Percent Rented Percent Vacant

Family Structure

Percent Single Parent

Percent Single Parent

Percent Single Parent

Percent Single Parent

Percent Single Parent

Percent Built Pre-

Percent Occupied

Percent Occupied

Housing Age Percent Built Pre-1950 | Percent Built Pre-1950 | 1950 Built Pre-1940 Built Pre-1980
Chilldi e I;;f;bglr dless than 6
Education Percent without 9™
Grade education
Population Total Population
P4 - % Passing P4 - % Passing P4 - % Passing P4 - % Passing P4 - % Passing
Standard of Care, Standard of Care, Standard of Care, Standard of Care, Standard of Care,
MDPH Method MDPH Method MDPH Method MDPH Method MDPH Method

Housing Inspection

F4 - % failing
standard of care,

F4 - % failing standard
of care, MDPH

MDPH Method Method
Fundin Current State Funding | Current State Funding Cumulative CDC
& ($ per Child) ($ per Child) Funding ($ per tract)
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Table 5-7. Massachusetts Multivariate Model Estimates

Model Effect Levels | Estimate | Standard | P-
Error Value
Intercept _ 2.290 0.033 <.0001
Time _ -0.088 0.002 <.0001
1 -0.187 0.007 <.0001
2 -0.143 0.007 <.0001
Quarter (Season) 3 0.130 | 0.006 | <0001
4 0.000 . .
Median Household Income _ -0.008 0.001 <.0001
Percent Multiple Races _ 3.909 0.536 | <.0001
Median Rent ($) _ -0.032 0.005 <.0001
! . | Percent Rented Units _ -0.568 0.069 <.0001
(Geometric -

Mean) Percent Single Parent Households _ 0.702 0.096 <.0001
Percent Units Built Before 1950 _ 0.849 0.047 <.0001
p4 _ -0.983 0.166 <.0001
Current State Funding _ 0.028 0.006 <.0001
o ;0 0.229
ol s -0.026
o ;1 0.004
O.érmr 0.191
Intercept _ 2.249 0.033 <.0001
Time _ -0.087 0.002 <.0001

1 -0.185 0.006 <.0001
2 -0.137 0.006 <.0001
Quarter (Season) 3 0127 | 0006 | <0001
4 0.000 . .
Median Household Income _ -0.008 0.001 <.0001
Percent Multiple Races _ 3.826 0.531 <.0001
2 Median Rent ($): _ -0.032 0.005 <.0001
(Weighted | Percent Rented Units _ -0.561 0.069 <.0001
Geometric | Percent Single Parent Households _ 0.735 0.096 | <.0001

Mean) | percent Units Built Before 1950 _ 0.866 | 0.046 | <0001
p4 _ -0.933 0.164 <.0001
Current State Funding _ 0.031 0.006 <.0001
o ;0 0218

2 -0.024
5046,
o ;1 0.004
o érmr 3.986
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Model Effect Levels | Estimate Stémdard P
rror Value
Intercept _ -2.312 0.054 <.0001
Time _ -0.146 0.003 <.0001
1 -0.195 0.010 <.0001
2 -0.117 0.010 <.0001
Quarter (Season) 3 0.187 | 0009 | <0001
4 0.000 . .
Median Household Income _ -0.010 0.001 <.0001
3 Percent Multiple Races _ 3.420 0.610 <.0001
(Proportion | Median Rent ($): _ -0.044 0.006 | <.0001
of Children | percent Rented Units B 0724 | 0083 | <0001
with (]?I;)Od Percent Single Parent Households — 0.817 0.119 <0001
Lj;‘ /di)S Percent Units Built Before 1950 B 1468 | 0056 | <0001
Number Residents Less than Six Years of Age _ 0.000 0.000 0.0114
Total Population _ 0.000 0.000 0.0292
p4 _ -0.649 0.218 0.0029
o ;0 0.129 0.007
2 -0.008 0.001
89,6
o §1 0.004 0.000
Intercept _ -4.235 0.052 <.0001
Time _ -0.136 0.005 <.0001
1 -0.282 0.022 <.0001
2 -0.130 0.021 <.0001
Quarter (Season) 3 0247 | 0020 | <0001
4 0.000 . .
Median Household Income _ -0.010 0.001 <.0001
4 Percent Multiple Races _ 4.326 0.781 <.0001
(Proportion |Median Rent ($): _ -0.057 0.009 | <.0001
of Children | Percent Rented Units _ -0.562 0.119 | <.0001
with Blood | Percent Single Parent Households _ 0.697 0.159 | <.0001
Lead> 10 | percent Occupied Units Built Before 1980 _ 1.758 0.083 | <.0001
ug/dL) Percent Residents with Less than Ninth Grade _ -0.581 0.279 0.0372
Education
4 _ 1.802 0.504 0.0004
p4 _ -1.339 0.321 <.0001
ol 0.175 | 0.016
ol 20013 | 0.003
O-gl 0.004 0.001
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Model Effect Levels | Estimate Stémdard P

rror Value
Intercept _ -6.278 0.144 <.0001
Time _ -0.093 0.008 <.0001
1 -0.307 0.042 <.0001
2 -0.093 0.040 0.019
Quarter (Season) 3 0332 | 0036 | <0001

4 0.000 . .

5 Median Rent ($): _ -0.049 0.010 <.0001
(Proportion | Percent Vacant Units _ 1.039 0.335 0.0019
of Children | percent Single Parent Households _ 1.002 0.169 | <.0001
V}il;deiofsd Percent Occupied Units Built Before 1980 _ 1.187 0.168 | <.0001

=15 My B 4.047 0.677 | <0001
pg/dL)
p4 _ -1.476 0.440 0.0008
Cumulative CDC Funding _ 0.000 0.000 0.0127
O-go 0.249 0.035
2 -0.020 0.008
8056,
O-; 0.004 0.002

64




20.0
17.5

15.0 7 ]

12.5 7 x
10.0 7 ZZ

7.5 7]

Percent

0 ! ! ! ! ! ! ! ! ! ! ! !

-1.875 -1.275 -0.675 -0.075 0.525 1.125 1.725 2325 2925 3.525 4.125 4.725

Residuals from Model-1 (GM)

Figure 5-9. Histograms of Residuals from Fitted Massachusetts Multivariate Model 1
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Figure 5-10. Plot of Massachusetts Multivariate Model Predicted Values versus

Observed with Fitted Regression Line and 45° Reference Line for
Unweighted Geometric Mean Response
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Figure 5-11. Histograms of Residuals from Fitted Massachusetts Multivariate Model 2
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Figure 5-12. Plot of Massachusetts Multivariate Model Predicted Values versus
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Figure 5-13. Histograms of Residuals from Fitted Massachusetts Multivariate Model 3
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Figure 5-14a. Plot of Massachusetts Multivariate Model Predicted Values versus
Observed with Fitted Regression Line and 45° Reference Line for
Proportion of Children with BLL = 5 pg/dL.
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Figure 5-14b. Plot of Massachusetts Multivariate Model Predicted Values versus
Observed with Fitted Regression Line and 45° Reference Line for
Proportion of Children with BLL 2 pg/dL (Logit Scale)
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Figure 5-15. Histograms of Residuals from Fitted Massachusetts Multivariate Model 4
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Figure 5-16a. Plot of Massachusetts Multivariate Model Predicted Values versus
Observed with Fitted Regression Line and 45° Reference Line for
Proportion of Children with BLL 2 10 pg/dL
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Figure 5-16b. Plot of Massachusetts Multivariate Model Predicted Values versus

Observed with Fitted Regression Line and 45° Reference Line for
Proportion of Children with BLL = 10 pug/dL (Logit Scale)
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Figure 5-17. Histograms of Residuals from Fitted Massachusetts Multivariate Model 5
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Figure 5-18a. Plot of Massachusetts Multivariate Model Predicted Values versus
Observed with Fitted Regression Line and 45° Reference Line for
Proportion of Children with BLL = 15 pg/dL.
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Figure 5-18b. Plot of Massachusetts Multivariate Model Predicted Values versus
Observed with Fitted Regression Line and 45° Reference Line for
Proportion of Children with BLL = 15 pug/dL (Logit Scale)
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6.0 GRAPHICAL PRESENTATION OF MODELING RESULTS

In addition to the discussion of the final multivariate modeling results in Section 5, it is
informative to be able to view the results visually. Two methods were utilized for graphical
presentation of the results — mapping and via use of an interactive software tool. Section 6.1
presents a subset of the maps generated, while Sections 6.2 and 6.3 discuss the interactive
software tool.

6.1 Maps of Observed and Predicted Blood-Lead Qutcomes

Mapping is an informative method to graphically present the results of the multivariate models.
Figure 6-1 contains maps displaying the observed levels of GM blood-lead levels in 2000 and
2005 based on CDC'’s national surveillance data, and the comparable predicted GM blood-lead
levels in 2000 and 2005. A key difference is that maps of observed levels contain many counties
with missing data either because they do not submit childhood lead surveillance data to CDC or
they have too few test records to be included in the analysis, while the maps of predicted levels
covers all counties in the country. Appendix G contains detailed maps from the national level
models of GM blood-lead levels and proportion of children with BLLs > 10 pg/dL.

Because it is difficult to view many of the individual counties within the U.S.-level maps,
regional-level maps also were produced. Figure 6-2 contains examples of these for EPA Region
V. Comparable maps for all regions are included in Appendix G. With darker colors
representing areas of higher lead levels, it appears that lead levels are declining across EPA
Region V from the 2000 to 2005 time period. Figure 6-3 contains maps of observed and
predicted proportion of children’s blood-lead levels in Massachusetts at the census-tract level.
The Boston area is enlarged to better show the tracts in that area.

6.2 Visualization Tool Development

In addition to generating maps, a software tool was developed to provide a flexible way for users
to quickly view data for particular areas and to obtain information that led to the results being
viewed. To do this, the project team utilized existing technology developed through internal
research and modified this technology to meet the needs of this study. The software sews
together a series of static maps so that they can be viewed dynamically. This allows users to
view a movie of changes in surfaces over time and space.

The software is written in C++. Users interact with the software via a Windows GUI that is

implemented using Microsoft Foundations Classes (MFC). The 3-dimensional graphics within
the tool were implemented using an Open Graphics Library (OpenGL).
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Figure 6-1. Observed and Predicted Proportion of Children with Blood-Lead Levels = 10 ug/dL in the United States

by County, 2000 and 2005
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Figure 6-2. Observed and Predicted Proportion of Children with Blood-Lead Levels = 10
Mg/dL in Region V by County, 2000 and 2005
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The software visualizes the observed values and the predicted values for the response variable of
each model (6 national models, 5 Massachusetts models). The software interpolates the
predicted values spatially within each state using a squared inverse distance algorithm; it
interpolates linearly in time. The predicted values are defined for each county. There are two
visualization modes: (1) a spatial surface moving in time, and (2) a time series. The tool was
built in a flexible way so that it can be easily adapted to accept updated data.

Figures 6-4 and 6-5 are screen shots from the visualization tool. Figure 6-4 provides an example
of a response surface generated by the tool to illustrate predicted blood-lead levels across a
geographic area. In this example, the area is the state of Illinois. Figure 6-5 provides an
example of a method the visualization provides to plot predicted blood-lead levels in a given
geographic area over time.
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Figure 6-4. Response Surface of Predicted Geometric Mean Blood-Lead Concentration
Across the State of lllinois from the Visualization Tool
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7.0 DISCUSSION AND FUTURE WORK

The goal of this study was to determine whether tools could be developed to differentiate
geographic areas (counties and census tracts), based on their predicted risk of containing children
with elevated blood-lead levels. Statistical models were developed that link CDC’s childhood
blood-lead surveillance data to demographic predictor variables available in the 2000 U.S.
Census. While earlier chapters of this report focus on the development and performance of these
statistical models, this chapter provides a discussion of the factors that should be considered
when using the models, and some preliminary ideas for improvement.

71 Major Findings

The results of this study suggest that longitudinal predictive models can be developed at the
county level across the nation based on the use of quarterly summary information from CDC’s
National Surveillance Database, and at the census-tract level within states that have a long
history of universal screening and reporting, such as Massachusetts. These models can be used
to describe how risk of childhood lead poisoning changes over time within different regions of
the country, as well as within small geographic areas within states (e.g., counties) and even
smaller geographic areas within counties (e.g., census tracts). They can be used to predict the
risk of childhood lead poisoning in counties (or census tracts) with little or no surveillance data,
and also can be used to identify those counties (or census tracts) that are at highest risk at the end
of the period of observation (see Appendix F for a list of the 150 counties across the country at
highest risk predicted by each of the six models, as well as the top 10 counties within each state).

The statistical model chosen (a random-effects model with separate intercepts and slopes
estimated within each county or census tract) also allows ranking of geographic areas based on
the rate of decline over time after accounting for the fixed-effects variables of the model
(although only among those areas that provided adequate surveillance data). Within the context
of the Broad-Based National Model, these random effects would allow us to identify those
counties that are experiencing a more rapid reduction in risk of childhood lead poisoning over
time (to identify best practices) and those counties that are experiencing a significantly less rapid
decline over time (to identify areas in need of additional attention and resources for combating
lead poisoning), after already accounting for the demographic, programmatic, and environmental
factors included in the multivariate model.

Within the context of the series of Broad-Based National Models, the data suggest that there are
significant differences in the distribution of childhood blood-lead concentrations among the
different regions of the country, and that the manner in which these distributions change over
time and are impacted by seasonality also is regionally specific. After accounting for these
regional differences, a number of demographic, environmental, and programmatic variables were
found to be highly predictive of childhood blood-lead concentrations among the different
response variables modeled within this project. The specific variables that were found to be
predictive within the multivariate models varied based on the response variable; however, there
were certainly some variables that were found to be selected in multiple models. In addition to
various census demographic variables that were identified in previous risk modeling efforts (e.g.,
age of housing, percent single parent families, race/ethnicity), it was found that variables
constructed from EPA’s Safe Drinking Water Information System, time-lagged programmatic
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funding information from HUD and/or CDC, and variables associated with high lead emmisions
or predicted air concentrations were selected within the National (Low Resolution) multivariate
statistical models.

Within the context of the High-Resolution Model developed using data from the Commonwealth
of Massachusetts, the project team also found a highly significant downward trend in the risk of
childhood lead poisoning among the five models developed. Due to a very small number of
children observed at or above 25 ug/dL within Massachusetts over the 2000-2006 period of
observation — this sixth model was not included. After accounting for the long-term reduction
over time and seasonality using similar methods that were employed in the Broad-Based
National Model, we found that only the demographic and programmatic variables were
predictive of the risk of childhood lead poisoning at the census-tract level. Of particular interest
were the variables that described the proportion of housing units within each census tract that
were found to be in compliance and out of compliance with the Massachusetts Standard of Care.
In all five of the multivariate models, the risk of childhood lead poisoning was significantly
reduced as the proportion of housing units in compliance increased within a census tract. In
addition, for the last two models (which predicted proportion of children at or above 10 and 15
ng/dL), the risk of childhood lead poisoning increased significantly as the proportion of housing
units out of compliance increased within a census tract.

7.2 Comparison Between Results and NHANES

Due to selection bias associated with surveillance data, it is expected that the CDC National
Surveillance dataset as well as the Massachusetts surveillance data may show higher proportions
of elevated blood-lead concentrations than found in the general population. For this reason, the
proportion of children with elevated blood-lead concentrations as well as the distribution of the
potential continuous summary measure derived from the surveillance data were compared with
those reported by the most recent six years of available CDC National Health and Nutrition
Examination Survey (NHANES). Results of this comparison are presented graphically in Figure
7-1 — suggesting that there is a highly significant difference between the NHANES and CDC’s
National Surveillance Database with respect to the proportion of children observed at or above 5
ug/dL (with lesser differences observed for the proportion of children observed at or above 10,
15, and 25 pg/dL). In future work on this project, EPA might consider methods for calibrating
the Surveillance data to better match the National Distribution of childhood blood-lead
concentrations using methods similar to those employed by Strauss, et. al. 2001a.
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Figure 7-1. Comparison of National Surveillance Data to NHANES Data
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7.3 Data Issues

The models that were developed as part of this project are based on data sources that have both
strengths and limitations. In this section, four potentially limiting aspects of the data are
considered — biases from the geocoding process, biases inherent in the surveillance data,
reporting limits in surveillance data, predicting within-area relationships with ecological models,
and use of Census data from 2000.

7.3.1 Biases from Geocoding

The quarterly summary statistics from CDC’s National Surveillance Database utilized in these
analyses were available at the county level of geographic specificity. CDC based this
summarization on county FIPS codes reported by its grantees. This field is quite well reported in
CDC’s CBLS database. The Massachusetts surveillance data was summarized and analyzed at
the census-tract level, with the geocoding of address data within the Massachusetts data being
conducted by MDPH staff. While there is no reason to suspect lack of data quality within the
Massachusetts surveillance data, experience shows that the process of geocoding can introduce
some subtle biases into surveillance data. Thus, the following section is offered as a guide for
EPA to consider for future modeling efforts in which state or local surveillance data are
geocoded to the census-tract level:

The geocoding process is highly dependent on the quality of address data recorded by the local
lead poisoning prevention programs with whom the blood-lead information originated. Several
factors could prevent an address from being successfully geocoded, such as:
e Erroneous, illegible, or purposefully misleading address information being provided to
the childhood lead poisoning prevention program
e Address data that contain either a P.O. Box or Rural Route as part of the street address,
which typically cannot be successfully geocoded
e Errors in data entry.

While these problems with address data are likely to occur in all programs with a non-trivial
frequency, there may be a systematic bias that programs introduce (albeit unintentionally) when
correcting address data. It is likely that address data errors are identified and corrected with
higher frequency for children who have an elevated blood-lead level and require follow up.

Given the potential bias introduced through the geocoding process, further research may be
worthwhile to determine whether there are reasonable approaches that could be used to adjust the
models for this bias.

7.3.2 Reporting Limits in Surveillance Data

Other naturally occurring biases in the surveillance data may influence the degree to which
models are representative of the true trends in childhood lead poisoning. For example, within the
context of the Broad-Based National Model, there may be differences between states and
localities in the manner in which childhood blood-lead testing results are reported to CDC.
Sections 2 and 3 included a discussion about a screening algorithm that was applied to the
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surveillance data to supress county/quarter data combinations for areas that were not conducting
universal reporting of blood-lead testing results. Additional scrutiny of these data by CDC and
other members of the lead poisoning prevention community may reveal other county/quarter
combinations that were not identified through the screening algorithm that should be excluded
from these analyses. We are confident that the overall impact of including these data in the
current work will not severely bias the fixed-effects parameter estimates in the series of
generalized linear mixed models developed in this project.

7.3.3 Selection Bias in Surveillance Data

Selection bias is perhaps the most serious bias that is yet left unaccounted for in the models that
have been developed, and may have severe impact on their predictive ability. Surveillance data
are observational by nature, and are not designed to be representative of the general population.
There are many competing forces that influence whether or not a child is screened at an
appropriate age, and recorded in the blood-lead surveillance database. Some have hypothesized
that surveillance data in the urban environment are representative of the affluent (who have
private health insurance) and the poor (who receive Medicaid or other medical assistance), while
under-representing the working poor (who may have no health insurance, and no mechanism for
receiving appropriate preventive medical testing). While this may be true in general, many
outstanding lead poisoning prevention programs currently are extending outreach, education, and
screening services to areas with historically high incidence of childhood lead poisoning. These
programs generally provide assistance to all members of the community, regardless of
entitlement status. While these services are typically offered in high-risk urban areas with the
infrastructure of a federally funded (CDC and/or HUD) or state-funded lead poisoning
prevention program, they typically are less available in similar high-risk rural areas without
similar infrastructure. In addition to outreach, education and screening activities, many
childhood lead poisoning prevention programs (or partnering housing agencies) receive funding
from HUD’s Office of Lead Hazard Control to conduct environmental investigations and reduce
lead hazards in the residential environment. Many of these activities generate targeted screening
of children living in deteriorated, older housing — which also is a non-trivial source of selection
bias in the surveillance data.

An important question for EPA to address is how selection bias is likely to influence the relative
rankings of counties within a region or census tracts within a more localized area, as well as the
predictive ability of the models themselves.

7.3.4 Limitations of Ecological Models for Predicting Within-Area Relationships

The models that were developed within this project are ecological models that describe quarterly
distributional summary statistics within geographic areas as a function of predictor variables
assessed within those same geographic areas. It also may be the case that some of these
predictor variables have significant variation within a county (or census tract) — and that this
within-area variation is highly predictive of risk of childhood lead poisoning within these
geographic areas. Unfortunately, the data limitations within this study (for both the blood-lead
response variables as well as many of the predictor variables) prohibit us from ascertaining these
important person-level relationships. This type of relationship can be established only by linking

81



individual blood-lead concentration data with individual-level environmental, demographic,
and/or programmatic information (which usually is not available).

Within the context of the High-Resolution Massachusetts Model — it may be possible to link
individual blood-lead records with the longitudinal housing inspection information to assess the
loss of information associated with going from an individual-level model to an area-based
ecological model. This type of assessment could be introduced in later stages of this project.

7.3.5 Use of 2000 Census Data and Other Time Invariant Data as Predictors

One potential criticism of the modeling effort is that we are linking blood-lead surveillance data
collected between 1995 and 2006 to census data that were collected in 2000. Is the demographic
information collected in 2000 likely to remain unchanged over the course of time? The answer
probably depends on the variable under consideration. For example, age of housing in census
tracts or proportion of housing built prior to 1950 is not likely to change dramatically in census
tracts, unless there is a lot of demolition or new construction occurring. On the flip side, average
income is likely to change substantively over time.

Even though the demographic information contained in the 2000 Census is likely to change over
time, the more important question is what effect will that change have on our model predictions?
While the models likely would be improved with the use of more current census data for use as
predictors, we do not believe that the use of older (less current) information will result in poor or
inaccurate prediction. In fact, for the purpose of predicting current or future trends in childhood
lead poisoning, we are more concerned with the age of the surveillance data that are being used
as the response variable in this modeling exercise than with the age of the predictor variables.

Similar arguments can be made for the use of static air modeling data, and averaged information
from EPA’s Toxics Release Inventory.

7.4 Model Validation Issues

The risk index models developed as part of this project may require validation before being used
by childhood lead poisoning prevention programs throughout the country. The following four
issues might be considered by EPA as being important to address as part of this validation
exercise:

1. Within counties and/or census tracts that contribute blood-lead information to the
models, how representative is the screened population of children (on which the
models are based) of the general population of children?

2. Within counties and/or census tracts that do not contribute much information to the
models (e.g., counties with low screening penetration), how well does the model
perform at predicting relative risk and blood-lead distributions?

3. Can risk index models based on historical blood-lead data from 1995 through 2005

accurately predict risk and blood-lead distributions in future years (e.g., can it be used
to forecast towards the federal 2010 goal)?
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4. Can the High-Resolution Model developed in Massachusetts be generalized to predict
risk and blood-lead distributions in other states across the Nation (or even within EPA
Region 1)?

If EPA is to provide childhood lead poisoning prevention programs with a risk characterization
tool based on these models, a comprehensive validation should be pursued to address the above
four issues.

Validation of the Surveillance Data

The first issue is related to the quality of the data supporting model development. For example,
if CDC’s surveillance data are biased toward inclusion of high-risk children (as shown in the
comparisons to NHANES), the risk index models also will be biased and tend to over-predict
children at high risk. Note that if the bias is consistent among all counties and census tracts (i.e.,
it over-represents high risk children everywhere), the model predictions for the proportion of
children in each blood-lead category likely will be biased, while the ability for risk indices to
differentiate between high- and low- risk areas will be preserved. If the biases occur differently
in different areas, non-trivial adjustments to the model would need to be pursued prior to use by
childhood lead poisoning prevention programs.

Because the unit of analysis in the development of the Broad-Based National Model is at the
county level, the goal of a validation exercise would be to determine whether the distribution of
children’s blood-lead concentrations that are included in the surveillance data for a sample of
census tracts are representative of the general population of children found within those census
tracts. One possible approach, would be to develop a field testing validation survey, in which a
stratified random sample of counties are selected for a short-term outreach campaign in which
eligible children are sampled in a representative manner. Stratification variables to be
considered would be Rural/Suburban/Urban, predicted level of risk from the model, and possibly
levels of socio-economic status. Obviously, development of such a survey would be costly,
difficult to implement, and likely beyond the scope of this project. Alternatively, CDC might be
able to reveal the specific counties that participated in various waves of NHANES — with
comparisons being made in those specific counties. Access to the identification of the specific
counties from which NHANES study subjects were sampled (within the NHANES analysis
dataset) would provide this project with the best foundation to address the serious biases
identified in Section 7.2 and calibrate the model to ensure that it is more reflective of the U.S.
population.

Validation of the Models in Areas with Low Screening Penetration

This second issue relates to the performance of the risk index models in predicting both relative
risk and the number of children in different blood-lead categories in the census tracts that
historically had low screening penetration. Due to the fact that there is little to no data in these
geographic areas to determine the fit of the risk index models, some field studies similar to the
one described in the previous section would need to be conducted to address this issue. The
major difference between the two field studies is that the census tracts chosen for this validation
exercise would be tracts in which the screening penetration is low.
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A similar approach could be used to conduct this field validation exercise in which a stratified
sample of counties would be identified for the study, and a representative sample of children’s
blood-lead levels would be obtained within those census tracts using an intense, brief outreach
effort. The counties again would be chosen using a stratified random sampling approach, to
obtain a sample of tracts that represents a combination of high-, medium- and low-risk areas in
the rural, suburban, and urban environments. This is an area for potential future collaboration
with CDC and perhaps some of their lead poisoning prevention grantees.

Validation of the Models in Predicting Future Blood-Lead Concentrations

Validation of this third issue can be performed to a certain extent using data that are already
available as part of the modeling process. For example, in the national model where data are
available from 1995 through 2005, data for a state or set of states can be removed for one or
more years and the missing data predicted by the model. If all 2005 data were removed, models
would be developed using the data from 1996 through 2004, and then the “future” predictive
ability of those models can be assessed by applying them to the data from 2005.

Validation of the Models in Predicting Blood-Lead Concentrations in Other Geographic Areas
The last type of validation involves the determination of synergies (or lack thereof) in prediction
between the Broad-Based National Model and the High-Resolution Model. Conceptually, we
should be able to aggregate the modeling predictions from multiple census tracts within a county
from the low-resolution model and match the county-level predictions from the Broad-Based
National Model. Due to the fact that the National Model and Massachusetts Models were
developed independently, using different data sources for the surveillance data (CDC and
MDPH), and utilizing different predictor variables — these synergies may not exist.

Further work on integrating the Broad-Based National Model with the High-Resolution Model
(or multiple high resolution models if EPA is successful at expanding this project to include
multiple additional programs) can be done by fitting these two types of models jointly under the
concept of hierarchical linear modeling. This type of model, while more sophisticated and
computer-intense, can be developed using specialized software under a Monte-Carlo Markov
Chain Bayesian formulation.

7.5 Other Recommendations for Immediate Future Work

The previous sections within Chapter 7 focus on various important issues related to the
development of models to predict risk of childhood lead poisoning at the geographic level,
including calibration to the nationally representative trends over time observed in NHANES,
assessment of the potential impact of a variety of important biases and other data quality issues,
and various model validation exercises that can be explored. EPA also has been including other
state and local lead poisoning prevention programs as part of the project conference calls in
anticipation of developing additional High-Resolution Models as part of follow-up work to this
project. While these are all worthy tasks to pursue as part of future work, there are some
additional analyses that the project team would recommend pursuing on the Broad-Based
National Model as well as the High-Resolution Model within Massachusetts prior to approval of
this report as a final report. These activities include the following:
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Broad-Based National Model

0 CDC grantee relationship managers may have insight into data quality issues
(such as the previously discussed laboratory minimum reporting values, and not
following universal reporting guidelines) for specific geographic areas and
periods of time. Additional scrutiny of these data could be used to improve the
quality of the blood-lead response data that serves as a basis for these models.
The maps and visualization tool should help foster this review of the data.

0 In addition to the above data review —further investigation into using urban vs.
rural status as a potential effect modifier in the analyses also is recommended.
Differentiating between urban and rural areas can be conducting in numerous
ways, including:

= Determining whether the county is part of a Metropolitan Statistical Area
within the 2000 US Census

= Identification of the counties that contain the U.S. top 100 (or 200) cities
based on population size

= Use of a population density score (with a cut-off value).

Use of this variable as a potential effect modifier might include fitting separate
intercepts and slopes for the effects of time and seasonality within the different
regions of the country, as well as the potential for using different environmental,
programmatic, and demographic predictor variables in these two area types in the
multivariate predictive models.

0 Once the proper way of handling the potential effect modifier for rural versus
urban areas — the exploratory analyses that assess the predictive ability of each
candidate environmental, programmatic, and demographic variable could be refit
in a manner consistent with the baseline effects that will be included in the model.
Thus — rather than assessing the predictive ability of a candidate variable after
adjusting for the downward trend of time, it should be assessed after adjusting it
for region, region*time, region*seasonality, and potentially region*urban/rural.

High-Resolution Model in Massachusetts

Due to the fact that we know that Massachusetts followed universal screening and
reporting guidelines during the entire period of observation (2000-2006), and the fact that
these data have been used previously to support federally funded research projects — there
is less concern about some of the previously mentioned data quality issues. This does not
mean that the Massachusetts data are not potentially biased or flawed, as there are still
probable selection biases and potential geocoding biases that were introduced into the
analysis dataset that supports the High-Resolution Model. Our collaborators at the
Massachusetts Department of Public Health are invited to review and comment on this
work, and add their insight and experience in making recommendations on additional
ways of handling the various data sources that were integrated into this model.

It also is recommended that comparisons be made between the observed and predicted

data from the Broad-Based National Model for counties in Massachusetts (based on the
input data received from CDC) with the observed and predicted data from the High-
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Resolution Model (based on the input data received from MDPH) by aggregating the
observed and predicted census tract data within Massachusetts to the county level.

Finally, pursuit of some additional analyses of the individual-level data from MDPH is
recommended — by linking individual blood-lead testing results on children over time to
the housing inspection results (as well as other census-tract level predictors that were
used in the current High-Resolution Model). This will help identify the degree of
information loss experienced by pursuit of the ecological models of aggregate summary
data.

86



8.0 REFERENCES

24 CFR Part 35; 40 CFR Part 745, Lead;. Requirements for Disclosure of Known Lead-Based
Paint and/or Lead-Based Paint Hazards in Housing; Final Rule (3/6/1996). Accessed at
http://www.leadsafehomes.info/pdfs/all_titleten_fulltext english.pdf#search=%22HUD%
201018%20Rule%22

40 CFR Part 745, Lead;. Identification of Dangerous Levels of Lead; Final Rule (1/5/2001).
Accessed at http://www.epa.gov/fedrgstr/EPA-TOX/2001/January/Day-05/t84.pdf

Battelle. Draft Quality Management Plan for the Targeting Elevated Blood-lead Levels in
Children Pilot Study. February 2007.

CDC. 1997. Screening Young Children for Lead Poisoning: Guidance for State and Local Public
Health Officials, edited by U.S. Department of Health and Human Sevices. Atlanta GA:
Public Health Sevices, CDC.

HUD. 1995. The Relation of Lead Contaminated House Dust and Blood-Lead Levels Among
Urban Children. Washington DC: U.S. Department of Housing and Urban Development.

Lanphear, BP, TD Matte, J Rogers, RP Clickner, B Dietz, RL Bornschein, P Succop, KR
Mahaftey, S Dixon, W Galke, M Rabinowitz, M Farfel, C Rohde, J Schwartz, P Ashley,
and DE Jacobs. 1998. The contribution of lead-contaminated house dust and residential
soil to children's blood-lead levels. A pooled analysis of 12 epidemiologic studies.
Environ Res 79 (1):51-68.

Miranda, ML, DC Dolinoy, and MA Overstreet. 2002. Mapping for Prevention: GIS Models for
Directing Childhood Lead Poisoning Prevention Programs. Environmental Health
Perspectives 110 (9):947-53.

Miranda, ML, JM Silva, MA Overstreet Galeano, JP Brown, DS Campbell, E Coley, CS
Cowan, D Harvell, J Lassiter, JL Parks, and W Sandele. 2005. Building Geographic
Information System Capacity in Local Health Departments: Lessons from a North
Carolina Project. Am J Public Health 95 (12):2180-5.

Spivey, Angela. The Weight of Lead: Effects Add Up in Adults. Environmental Health
Perspectives Volume 115, Number 1, January 2007.

Strauss, Warren, R Carroll, Steve Bortnick, John Menkedick, and B Schultz. 2001a. Combining
Datasets to Predict the Effects of Regulation of Environmental Lead Exposure in Housing
Stock. Biometrics 57:203-210.

Strauss, Warren, Ramzi Nahhas, Leanna House, Amy Kurokawa, and Bradley Skarpness. 2001b.
Development of Models to Predict Risk of Childhood Lead Poisoning at the Census Tract
Level. Columbus OH: Technical Report to the U.S. Centers for Disease Control and
Prevention under Contract No. 200-98-0102.

Strauss, Warren, Tim Pivetz, P Ashley, John Menkedick, E Slone, and S Cameron. 2006.
Evaluation of Lead Hazard Control Treatments in Four Massachusetts Communities
through Analysis of Blood-lead Surveillance Data. Environmental Research 99
(2):214-223.

U.S. Department of Housing and Urban Development. September 15, 1999. Final Rule,
Requirements for Notification, Evaluation and Reduction of Lead-Based Paint Hazards in
Federally Owned Residential Property and Housing Receiving Federal Assistance.
Washington DC: Federal Register, 50140-50231.

87





