# Arsenic Removal from Drinking Water by Adsorptive Media U.S. EPA Demonstration Project at Nambe Pueblo, New Mexico Final Performance Evaluation Report

by

Christopher T. Coonfare<sup>‡</sup> Abraham S.C. Chen<sup>§</sup> Anbo Wang<sup>‡</sup>

<sup>‡</sup>Battelle, Columbus, OH 43201-2693 <sup>§</sup>ALSA Tech, LLC, Columbus, OH 43219-0693

> Contract No. 68-C-00-185 Task Order No. 0019

> > for

Thomas J. Sorg Task Order Manager

Water Supply and Water Resources Division National Risk Management Research Laboratory Cincinnati, OH 45268

National Risk Management Research Laboratory Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH 45268

#### DISCLAIMER

The work reported in this document was funded by the United States Environmental Protection Agency (EPA) under Task Order 0019 of Contract 68-C-00-185 to Battelle. It has been subjected to the Agency's peer and administrative reviews and has been approved for publication as an EPA document. Any opinions expressed in this paper are those of the author(s) and do not, necessarily, reflect the official positions and policies of the EPA. Any mention of products or trade names does not constitute recommendation for use by the EPA.

#### FOREWORD

The U.S. Environmental Protection Agency (EPA) is charged by Congress with protecting the nation's land, air, and water resources. Under a mandate of national environmental laws, the Agency strives to formulate and implement actions leading to a compatible balance between human activities and the ability of natural systems to support and nurture life. To meet this mandate, EPA's research program is providing data and technical support for solving environmental problems today and building a science knowledge base necessary to manage our ecological resources wisely, understand how pollutants affect our health, and prevent or reduce environmental risks in the future.

The National Risk Management Research Laboratory (NRMRL) is the Agency's center for investigation of technological and management approaches for preventing and reducing risks from pollution that threaten human health and the environment. The focus of the Laboratory's research program is on methods and their cost-effectiveness for prevention and control of pollution to air, land, water, and sub-surface resources; protection of water quality in public water systems; remediation of contaminated sites, sediments and groundwater; prevention and control of indoor air pollution; and restoration of ecosystems. NRMRL collaborates with both public and private sector partners to foster technologies that reduce the cost of compliance and to anticipate emerging problems. NRMRL's research provides solutions to environmental problems by developing and promoting technologies that protect and improve the environment; advancing scientific and engineering information to support regulatory and policy decisions; and providing the technical support and information transfer to ensure implementation of environmental regulations and strategies at the national, state, and community levels.

This publication has been produced as part of the Laboratory's strategic long-term research plan. It is published and made available by EPA's Office of Research and Development to assist the user community and to link researchers with their clients.

> Sally Gutierrez, Director National Risk Management Research Laboratory

#### ABSTRACT

This report documents the activities performed and the results obtained from this arsenic removal treatment technology demonstration project at the Nambe Pueblo, New Mexico. The main objective of the project was to evaluate the effectiveness of AdEdge Technologies' AD-33 media in removing arsenic to meet the new arsenic maximum contaminant level (MCL) of 10  $\mu$ g/L. Additionally, this project evaluated (1) the reliability of the treatment system, (2) the required system operation and maintenance (O&M) and operator skills, and (3) the capital and O&M cost of the technology. The project also characterized the water in the distribution system and residuals produced by the treatment process. The types of data collected included system operation, water quality (both across the treatment train and in the distribution system), process residuals, and capital and O&M cost.

The treatment system consisted of two 48-in  $\times$  72-in FRP vessels in parallel configuration, each containing 35.6 ft<sup>3</sup> of AD-33 media. Delivered in granules, AD-33 media is an iron-based adsorptive media developed by Bayer AG and marketed under the name of AD-33 by AdEdge. The treatment system was designed for a peak flowrate of 160 gal/min (gpm) (80 gpm per vessel) and an empty bed contact time (EBCT) of approximately 3.3 min. Over the performance evaluation period, the actual average flowrate was at 114 gpm, corresponding to an EBCT of 4.7 min.

The treatment system began regular operation on May 15, 2007. From May 15, 2007, through the end of the performance evaluation study on September 28, 2009, the treatment system operated for a total of 10,134 hr, treating approximately 64,580,000 gal (or 121,390 bed volumes [BV]) of water. The average daily operation time was 12.3 hr/day and the average daily demand was 78,360 gal/day (gpd).

As part of the water treatment system, a pH adjustment/control system was used to adjust pH values of source water from as high as 9.1 to a target value of 7.0. The pH adjustment system consisted of a carbon dioxide (CO<sub>2</sub>) supply assembly, an automatic pH control panel, a CO<sub>2</sub> membrane module (that injected CO<sub>2</sub> into a CO<sub>2</sub> loop), and an in-line pH probe. During the performance evaluation study, the treatment system experienced periodic losses of pH control due to lack of a constant CO<sub>2</sub> supply. Real-time pH values monitored/recorded after pH adjustments by an in-line pH meter/datalogger cycled between 7 and 8 and over 9.

Total arsenic concentrations in source water ranged from 10.7 to 59.0  $\mu$ g/L, and averaged 32.2  $\mu$ g/L with soluble As(V) as the predominating species, ranging from 34.2 to 36.5  $\mu$ g/L based on the results of two speciation sampling events. Total uranium concentrations in source water ranged from 19.9 to 55.8  $\mu$ g/L, and averaged 39.3  $\mu$ g/L. Except for some occasions, total arsenic and uranium concentrations were removed to below 3 and 20  $\mu$ g/L, respectively, in system effluent throughout the 28-month study period. Significantly elevated arsenic and uranium concentrations (often higher than the respective source water concentrations) were measured during a number of sampling events, which coincided with the time periods when the system was operating without pH control.

Periodic losses of pH control apparently had caused the media beds to operate under constant adsorption/desorption cycles, with the captured arsenic and uranium intermittently "flushed" out of the media beds. Therefore, the AD-33 media was not exhausted as expected even after treating 121,390 BV of water (twice the projected working capacity estimated by the vendor). Analyses of media samples collected at 78,200 BV revealed that the adsorptive media were loaded only minimally with arsenic and uranium (i.e., 0.38% and 3.2% of the respective mass in 78,200 BV of source water), which supported the speculation that adsorbed arsenic and uranium were intermittently "flushed" out of the media beds.

Comparison of the distribution system sampling results before and after system startup showed a significant decrease in arsenic concentration (from an average of 33.7 to <10  $\mu$ g/L), except for three occasions when the treatment system had lost pH control. Uranium concentrations in distribution water also were reduced to below its MCL of 30  $\mu$ g/L, except for four occasions. Lead and copper concentrations did not appear to have been affected by the operation of the treatment system.

The capital investment cost of \$143,113 included \$116,645 for equipment, \$11,638 for site engineering, and \$14,830 for installation. Using the system's rated capacity of 160 gpm (or 230,400 gpd), the capital cost was \$894/gpm (or 0.62/gpd) of design capacity. The unit capital cost would be 0.16/1,000 gal if the 160 gpm system were operating around the clock. Based on the average daily operating times (12.3 hr/day) and average system flowrate (114 gpm), the unit capital cost increased to 0.44/1,000 gal at this reduced rate of use.

The O&M cost included only the cost associated with the adsorption system, such as media replacement and disposal,  $CO_2$  and chlorine use, electricity consumption, and labor. Although media replacement did not take place during the performance evaluation study, the media replacement cost would have represented the majority of the O&M cost and was estimated to be \$29,532 to change out both vessels (71.2 ft<sup>3</sup> AD-33 media and associated labor for media changeout and disposal).

| DISC | CLA  | MER                                                                      | . ii            |
|------|------|--------------------------------------------------------------------------|-----------------|
| FOR  | EWO  | ORD                                                                      | iii             |
| ABS  | TRA  | CT                                                                       | iv              |
| APP  | END  | ICES                                                                     | vii             |
| FIGU | URE  | 5                                                                        | vii             |
| TAB  | BLES |                                                                          | vii             |
| ABE  | BREV | /IATIONS AND ACRONYMS                                                    | ix              |
| ACK  | KNO  | WLEDGMENTS                                                               | xi              |
| 1.0  | ытт  | ADUCTION                                                                 | 1               |
| 1.0  |      | CODUCTION                                                                | . I<br>1        |
|      | 1.1  | Background                                                               | . I<br>1        |
|      | 1.2  | Treatment Technologies for Arsenic Removal                               | I               |
|      | 1.3  | Project Objectives                                                       | . 2             |
| 2.0  | SUM  | MARY AND CONCLUSIONS                                                     | 3               |
| 2.0  | 5010 |                                                                          | . 5             |
| 3.0  | МАТ  | ERIALS AND METHODS                                                       | . 4             |
|      | 3.1  | General Project Approach                                                 | . 4             |
|      | 3.2  | System O&M and Cost Data Collection                                      | . 5             |
|      | 3.3  | Sample Collection Procedures and Schedules                               | . 5             |
|      |      | 3.3.1 Source Water Sample Collection.                                    | . 5             |
|      |      | 3.3.2 Treatment Plant Water Sample Collection.                           | . 6             |
|      |      | 3.3.3 Backwash Wastewater/Solids and Spent Media Samples.                | 7               |
|      |      | 3.3.4 Distribution System Water Sample Collection.                       | . 7             |
|      | 3.4  | Sampling Logistics.                                                      | . 7             |
|      |      | 3.4.1 Preparation of Arsenic Speciation Kits                             | . 7             |
|      |      | 3.4.2 Preparation of Sampling Coolers                                    | . 8             |
|      |      | 3.4.3 Sample Shipping and Handling.                                      | . 8             |
|      | 3.5  | Analytical Procedures                                                    | . 8             |
|      |      |                                                                          |                 |
| 4.0  | RES  | JLTS AND DISCUSSION                                                      | 10              |
|      | 4.1  | Facility Description and Pre-existing Treatment System Infrastructure    | 10              |
|      |      | 4.1.1 Source water Quality.                                              | 10              |
|      | 4.0  | 4.1.2 Distribution System.                                               | 12              |
|      | 4.2  | Treatment Process Description                                            | 15              |
|      | 4.3  | System Installation                                                      | 23              |
|      |      | 4.3.1 Permitting.                                                        | 24              |
|      |      | 4.3.2 Building Preparation.                                              | 24              |
|      | 4 4  | 4.5.5 System Installation, Snakedown, and Startup                        | 24              |
|      | 4.4  | 4.4.1 Operational Decementary                                            | 27              |
|      |      | 4.4.1 Operational Parameters                                             | $\frac{27}{20}$ |
|      |      | 4.4.2 Pasidual Management                                                | 27<br>21        |
|      |      | 4.4.5 Restoud Wallagement.                                               | 24<br>21        |
|      | 15   | 4.4.4 System/Operation Kenaointy and Simplicity                          | 24<br>25        |
|      | 4.3  | 4.5.1 Treatment Dignt Sompling                                           | 22<br>25        |
|      |      | 4.5.2 Sport Modia Sampling                                               | 55<br>11        |
|      |      | 4.5.2     Spent Witcuta Sampling       4.5.3     Backwash Water Sampling | +∠<br>∕\?       |
|      |      | 4.5.5 Dackwash water Sampling                                            | 43<br>12        |
|      |      | 4.3.4 Distribution System water Sampling.                                | 43              |

# CONTENTS

| 4.6 System   | Cost                           | 46 |
|--------------|--------------------------------|----|
| 4.6.1        | Capital Cost                   | 46 |
| 4.6.2        | Operation and Maintenance Cost | 47 |
| 5.0 REFERENC | ES                             | 49 |

#### APPENDICES

# Appendix A: OPERATIONAL DATA Appendix B: ANALYTICAL DATA

## FIGURES

| Figure 4-1.   | Nambe Pueblo Buffalo Range                                                       | 10 |
|---------------|----------------------------------------------------------------------------------|----|
| Figure 4-2.   | Pump Head on Buffalo Well at Nambe Pueblo, NM                                    | 11 |
| Figure 4-3.   | Pre-existing Pump House and Water Storage Tank                                   | 11 |
| Figure 4-4.   | Chlorination Before Distribution at Nambe Pueblo, NM                             | 12 |
| Figure 4-5.   | Nambe Pueblo Water Distribution System Map                                       | 14 |
| Figure 4-6.   | Schematic of AdEdge APU-160 Arsenic Removal System                               | 17 |
| Figure 4-7.   | Process Flow Diagram and Sampling Schedule and Locations                         | 18 |
| Figure 4-8.   | Chlorination Feed System                                                         | 20 |
| Figure 4-9.   | Process Diagram of CO <sub>2</sub> pH Adjustment System (top) and pH/PID Control |    |
|               | Panel (bottom)                                                                   | 21 |
| Figure 4-10.  | Carbon Dioxide Gas Flow Control System for pH Adjustment                         | 22 |
| Figure 4-11.  | Adsorption System Valve Tree and Piping Configuration                            | 23 |
| Figure 4-12.  | Nambe Pueblo Treatment Plant Building                                            | 25 |
| Figure 4-13.  | Operator Training at Nambe Pueblo                                                | 26 |
| Figure 4-14.  | Treatment System Daily Operating Times                                           | 28 |
| Figure 4-15.  | System Instantaneous and Calculated Flowrates                                    | 29 |
| Figure 4-16.  | Operational Pressure Readings                                                    | 30 |
| Figure 4-17a. | In-line pH Data for Period from March 31 Through June 20, 2008                   | 31 |
| Figure 4-17b. | In-line pH Data for Period from September 17, 1008 Through January 08, 2009      | 32 |
| Figure 4-18.  | Total Arsenic Breakthrough Curves                                                | 39 |
| Figure 4-19.  | Real-time pH values at AP Location vs. Effluent As and U Concentrations          | 40 |
| Figure 4-20.  | Total Uranium Breakthrough Curves                                                | 41 |
| Figure 4-21.  | Total Silica (as SiO <sub>2</sub> ) Breakthrough Curves                          | 41 |
| Figure 4-22.  | Arsenic Concentrations Measured in Distribution System Water                     | 45 |
| Figure 4-23.  | Uranium Concentrations Measured in Distribution System Water                     | 45 |
| Figure 4-24.  | Media Replacement and Operation and Maintenance Cost                             | 48 |

#### TABLES

| Table 1-1. | Summary of Round 1 Arsenic Removal Demonstration Sites           | 2 |
|------------|------------------------------------------------------------------|---|
| Table 3-1. | Predemonstration Study Activities and Completion Dates           | 4 |
| Table 3-2. | Evaluation Objectives and Supporting Data Collection Activities  | 4 |
| Table 3-3. | Sampling Schedule and Analytes                                   | 6 |
| Table 4-1. | Water Quality Data for Buffalo Well at Nambe Pueblo Tribe, NM    |   |
| Table 4-2. | Nambe Pueblo Lead and Copper Rule Sampling Results, October 2003 |   |
| Table 4-3. | Physical and Chemical Properties of AD-33 Media                  |   |
|            |                                                                  |   |

| Table 4-4.  | Design Specifications for AdEdge APU-160 System                                |    |
|-------------|--------------------------------------------------------------------------------|----|
| Table 4-5.  | Properties of Celgard <sup>®</sup> , X50-215 Microporous Hollow Fiber Membrane |    |
| Table 4-6.  | Key Activities and Completion Dates in Building Preparation and System         |    |
|             | Installation                                                                   |    |
| Table 4-7.  | System Punch-List/Operational Issues                                           |    |
| Table 4-8.  | Summary of AdEdge APU-160 System Operation                                     |    |
| Table 4-9.  | Example pH Data from the In-line pH Probe                                      |    |
| Table 4-10. | Summary of Analytical Results for Arsenic, Iron, Manganese,                    |    |
| Table 4-11. | Summary of Water Quality Parameter Sampling Results                            |    |
| Table 4-12. | Spent Media Total Metal Analysis                                               |    |
| Table 4-13. | Spent Media Uranium                                                            |    |
| Table 4-14. | Distribution System Sampling Results                                           | 44 |
| Table 4-15. | Capital Investment Cost for Nambe Pueblo Tribe System                          |    |
| Table 4-16. | Operation and Maintenance Cost for the Nambe Pueblo System                     |    |

# ABBREVIATIONS AND ACRONYMS

| Δp              | differential pressure                        |
|-----------------|----------------------------------------------|
| AAL             | American Analytical Laboratories             |
| AM              | adsorptive media                             |
| APU             | arsenic package unit                         |
| As              | arsenic                                      |
| ATSI            | Applied Technology Systems, Inc.             |
| AWC             | Arizona Water Company                        |
| BET             | Brunauer, Emmett, and Teller                 |
| BV              | bed volume                                   |
| Ca              | calcium                                      |
| CAD             | computer-aided design                        |
| C/F             | coagulation/filtration process               |
| CISD            | Consolidated Independent School District     |
| Cl              | chlorine                                     |
| CO <sub>2</sub> | carbon dioxide                               |
| CRF             | capital recovery factor                      |
| Cu              | copper                                       |
| DO              | dissolved oxygen                             |
| EBCT            | empty bed contact time                       |
| EPA             | U.S. Environmental Protection Agency         |
| F               | fluorine                                     |
| Fe              | iron                                         |
| FRP             | fiber-reinforced plastic                     |
| gpd             | gallons per day                              |
| gph             | gallons per hour                             |
| gpm             | gallons per minute                           |
| ICP-MS          | inductively coupled plasma-mass spectrometry |
| ID              | identification                               |
| IHS             | Indian Health Services                       |
| ISFET           | Ion Sensitive Field Effect Transistor        |
| IX              | ion exchange                                 |
| LCR             | Lead and Copper Rule                         |
| MCL             | maximum contaminant level                    |
| MDL             | method detection limit                       |
| MDWCA           | Mutual Domestic Water Comsumer's Association |
| Mg              | magnesium                                    |
| Mn              | manganese                                    |

# ABBREVIATIONS AND ACRONYMS (Continued)

| mV                                                                                       | millivolts                                                                                                                                                                                |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Na<br>NA<br>NaOCl<br>NMED<br>NRMRL<br>NSF                                                | sodium<br>not analyzed<br>sodium hypochlorite<br>New Mexico Environment Department<br>National Risk Management Research Laboratory<br>NSF International                                   |
| O&M<br>ORD<br>ORP                                                                        | operation and maintenance<br>Office of Research and Development<br>oxidation-reduction potential                                                                                          |
| PID<br>PLC<br>PO <sub>4</sub><br>psi<br>PVC                                              | Proportional Integral Derivative<br>programmable logic controller<br>phosphate<br>pounds per square inch<br>polyvinyl chloride                                                            |
| QAPP<br>QA/QC                                                                            | Quality Assurance Project Plan<br>quality assurance/quality control                                                                                                                       |
| RPD                                                                                      | relative percent difference                                                                                                                                                               |
| SDWA<br>SiO <sub>2</sub><br>SM<br>SMCL<br>SO <sub>4</sub> <sup>2-</sup><br>STMGID<br>STS | Safe Drinking Water Act<br>silica<br>system modification<br>secondary maximum contaminant level<br>sulfate<br>South Truckee Meadows General Improvement District<br>Severn Trent Services |
| TOC                                                                                      | total organic carbon                                                                                                                                                                      |
| U                                                                                        | uranium                                                                                                                                                                                   |
| V                                                                                        | vanadium                                                                                                                                                                                  |
| WRWC                                                                                     | White Rock Water Company                                                                                                                                                                  |

#### ACKNOWLEDGMENTS

The authors wish to acknowledge the Nambe Pueblo Tribe, Indian Health Services, and EPA Region 6 for the design and construction of the new treatment building, coordination of various demonstration-related issues, monitoring of the treatment system, and collection of samples from the treatment and distribution systems throughout the performance evaluation study. This performance evaluation would not have been possible without their efforts.

### **1.0 INTRODUCTION**

### 1.1 Background

The Safe Drinking Water Act (SDWA) mandates that the U.S. Environmental Protection Agency (EPA) identify and regulate drinking water contaminants that may have adverse human health effects and that are known or anticipated to occur in public water supply systems. In 1975 under the SDWA, EPA established a maximum contaminant level (MCL) for arsenic at 0.05 mg/L. Amended in 1996, the SDWA required that EPA develop an arsenic research strategy and publish a proposal to revise the arsenic MCL by January 2000. On January 18, 2001, EPA finalized the arsenic MCL at 0.01 mg/L (EPA, 2001). To clarify the implementation of the original rule, EPA revised the rule text on March 25, 2003, to express the MCL as 0.010 mg/L (10  $\mu$ g/L) (EPA, 2003). The final rule required all community and non-transient, non-community water systems to comply with the new standard by January 23, 2006.

In October 2001, EPA announced an initiative for additional research and development of cost-effective technologies to help small community water systems (<10,000 customers) meet the new arsenic standard, and to provide technical assistance to operator of small systems in order to reduce compliance cost. As part of this Arsenic Rule Implementation Research Program, EPA's Office of Research and Development (ORD) proposed a project to conduct a series of full-scale, onsite demonstrations of arsenic removal technologies, process modifications, and engineering approaches applicable to small systems. Shortly thereafter, an announcement was published in the *Federal Register* requesting water utilities interested in participating in Round 1 of this EPA-sponsored demonstration program to provide information on their water systems. In June 2002, EPA selected 17 out of 115 candidate sites to host the demonstration studies. The facility at Nambe Pueblo in New Mexico was selected to participate in this demonstration program.

In September 2002, EPA solicited proposals from engineering firms and vendors for cost-effective arsenic-removal treatment technologies for the 17 host sites. EPA received 70 technical proposals for the 17 host sites, with each site receiving from one to six proposals. In April 2003, an independent technical panel reviewed the proposals and provided its recommendations to EPA on the technologies that it determined were acceptable for the demonstration at each site. Because of funding limitations and other technical reasons, only 12 of the 17 sites were selected for the demonstration program. Using the information provided by the review panel, EPA in cooperation with the host sites and the drinking water programs of the respective states (or Indian Health Services [IHS] and EPA Region 6 in the case of the Nambe Pueblo site) selected one technical proposal for each site. An adsorptive media (AM) system proposed by AdEdge Technologies (AdEdge) using the Bayoxide E33 (AD-33) media developed by Bayer AG was selected for demonstration at the Nambe Pueblo site.

### **1.2** Treatment Technologies for Arsenic Removal

The technologies selected for the 12 Round 1 arsenic removal demonstration host sites included nine AM systems, one coagulation/filtration (C/F) system, one ion exchange (IX) system, and one process modification with iron addition. Table 1-1 summarizes the locations, technologies, vendors, system flowrates, and key source water quality parameters (including arsenic, iron, and pH) of the 12 demonstration sites. An overview of the technology selection and system design for the 12 demonstration sites and the associated capital cost is provided in two EPA reports (Wang et al., 2004; Chen et al., 2004), which are posted on the EPA Arsenic Research Program Web site at http://www.epa.gov/ORD/NRMRL/wswrd/dw/arsenic/index.html.

|                         |                 |          | Design            | Source '           | Water Qu           | ality |
|-------------------------|-----------------|----------|-------------------|--------------------|--------------------|-------|
| Demonstration           | Technology      |          | Flowrate          | As                 | Fe                 |       |
| Site                    | (Media)         | Vendor   | (gpm)             | (µg/L)             | (µg/L)             | pН    |
| WRWC (Bow), NH          | AM (G2)         | ADI      | 70 <sup>(a)</sup> | 39                 | <25                | 7.7   |
| Rollinsford, NH         | AM (E33)        | AdEdge   | 100               | 36 <sup>(b)</sup>  | 46                 | 8.2   |
| Queen Anne's County, MD | AM (E33)        | STS      | 300               | 19 <sup>(b)</sup>  | 270 <sup>(c)</sup> | 7.3   |
| Brown City, MI          | AM (E33)        | STS      | 640               | 14 <sup>(b)</sup>  | 127 <sup>(c)</sup> | 7.3   |
| Climax, MN              | C/F (Macrolite) | Kinetico | 140               | 39 <sup>(b)</sup>  | 546 <sup>(c)</sup> | 7.4   |
| Lidgerwood, ND          | SM              | Kinetico | 250               | 146 <sup>(b)</sup> | $1,325^{(c)}$      | 7.2   |
| Desert Sands MDWCA, NM  | AM (E33)        | STS      | 320               | 23 <sup>(b)</sup>  | 39                 | 7.7   |
| Nambe Pueblo Tribe, NM  | AM (E33)        | AdEdge   | 145               | 33                 | <25                | 8.5   |
| AWC (Rimrock), AZ       | AM (E33)        | AdEdge   | 90 <sup>(a)</sup> | 50                 | 170                | 7.2   |
| AWC (Valley Vista), AZ  | AM (AAFS50)     | Kinetico | 37                | 41                 | <25                | 7.8   |
| Fruitland, ID           | IX (A-300E)     | Kinetico | 250               | 44                 | <25                | 7.4   |
| STMGID, NV              | AM (GFH)        | Siemens  | 350               | 39                 | <25                | 7.4   |

Table 1-1. Summary of Round 1 Arsenic Removal Demonstration Sites

AM = adsorptive media; C/F = coagulation/filtration; IX = ion exchange; SM = system modification AWC = Arizona Water Company; MDWCA = Mutual Domestic Water Consumer's Association; STMGID = South Truckee Meadows General Improvement District; WRWC = White Rock Water Company; STS = Severn Trent Services

(a) Design flowrate reduced by 50% due to system reconfiguration from parallel to series operation.

(b) Arsenic existing mostly as As(III).

(c) Iron existing mostly as Fe(II).

As of December 7, 2010, the performance evaluation of all 12 systems has been completed, and the final performance evaluation reports of ten demonstration sites have been completed and posted on the EPA Arsenic Research Program Web site.

#### 1.3 **Project Objectives**

The objective of the arsenic demonstration program is to conduct full-scale arsenic removal technology demonstration studies on the removal of arsenic from drinking water supplies. The specific objectives are to:

- Evaluate the performance of the arsenic removal technologies for use on small systems
- Determine the required system operation and maintenance (O&M) and operator skill levels
- Characterize process residuals produced by the technologies
- Determine the capital and O&M cost of the technologies.

This report summarizes the performance of the AdEdge system at the Nambe Pueblo in New Mexico, from May 15, 2007, through September 28, 2009. The types of data collected included system operation, water quality (both across the treatment train and in the distribution system), residuals characterization, and capital and preliminary O&M cost.

## 2.0 SUMMARY AND CONCLUSIONS

AdEdge's APU-160 treatment system with AD-33 granular media was installed and has operated at the Nambe Pueblo site in New Mexico since May 15, 2007. Based on the information collected during May 15, 2007, through September 28, 2009, the following summary and conclusion statements are provided:

Performance of the arsenic removal technology for use on small systems:

- AD-33 media effectively lowered arsenic and uranium concentrations to below 3 and 20 µg/L, respectively, in system effluent throughout the 28-month study period.
- Significantly elevated arsenic and uranium concentrations (often higher than the corresponding source water concentrations) were measured in system effluent during a number of sampling events, presumably due to loss of pH control during system operation.
- The operation of the treatment system significantly lowered arsenic and uranium concentrations to below 10 and 30 µg/L, respectively, in distribution system water. Elevated arsenic and uranium concentrations were observed during a few sampling events presumably caused by loss of pH control during system operation. The treatment system did not appear to have impacted lead or copper concentrations in distribution system water.

### *Required system O&M and operator skill levels:*

- The facility experienced difficulties in maintaining a constant carbon dioxide (CO<sub>2</sub>) supply, caused by non-standard working hours of the operator, remote site location, and/or delivery delays by the CO<sub>2</sub> vendor. Interruption of CO<sub>2</sub> supply caused periodic losses of pH control during system operation.
- Operation of the system did not appear to require additional skills beyond those necessary to operate the existing water supply equipment.

#### Process residuals produced by the technology:

- No backwash residuals were produced because of low pressure drop (i.e., 1.1 lb/in<sup>2</sup> [psi]) across the media beds.
- The adsorptive media did not need to be replaced even though it had treated twice as much water as projected by the vendor. Periodic losses of pH control might have caused arsenic and uranium to be "flushed" from the adsorptive media beds, thus extending the media life.

#### Cost-effectiveness of the technology:

- Based on the system's rated capacity of 160 gal/min (gpm) (or 230,400 gal/day [gpd]), the capital cost was \$894/gpm (or \$0.62/gpd) of design capacity.
- Media replacement and disposal did not occur during system performance evaluation; however, the cost to change out both vessels (71.2 ft<sup>3</sup> AD-33 media) was estimated to be \$29,532, which included the replacement media, spent media disposal, shipping, labor, and travel.

#### 3.0 MATERIALS AND METHODS

#### 3.1 General Project Approach

Following the predemonstration activities summarized in Table 3-1, the performance evaluation study of the AdEdge AM system began on May 15, 2007, and ended on September 28, 2009. Table 3-2 summarizes the types of data collected and/or considered as part of the technology evaluation study. Overall performance of the system was evaluated based on its ability to consistently remove arsenic to below the arsenic MCL of 10  $\mu$ g/L through the collection of water samples across the treatment plant, as described in a Performance Evaluation Study Plan (Battelle, 2005). The reliability of the system was evaluated by tracking the unscheduled system downtime and frequency and extent of repair and replacement.

| Activities <sup>(a)</sup>              | Date     |
|----------------------------------------|----------|
| Introductory Meeting Held              | 08/19/03 |
| Draft Letter of Understanding Issued   | 09/03/03 |
| Final Letter of Understanding Issued   | 09/10/03 |
| Request for Quotation Issued to Vendor | 08/22/03 |
| Vendor Quotation Received by Battelle  | 09/09/03 |
| Purchase Order Completed and Signed    | 10/06/03 |
| APU System Shipped                     | 05/04/05 |
| Final Study Plan Issued                | 06/01/05 |
| System Installation Completed          | 05/15/07 |
| System Shakedown Completed             | 05/15/07 |
| Performance Evaluation Begun           | 05/15/07 |

| Table 3-1. | Predemonstration Study Activities |
|------------|-----------------------------------|
|            | and Completion Dates              |

(a) Additional activities related to treatment building preparation and system installation, shakedown, and startup presented in Table 4-6.

|  | Table 3-2. | Evaluation | Objectives and | Supporting Data | Collection Activities |
|--|------------|------------|----------------|-----------------|-----------------------|
|--|------------|------------|----------------|-----------------|-----------------------|

| <b>Evaluation Objectives</b> | Data Collection                                                                                                                     |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Performance                  | -Ability to consistently meet 10 µg/L of arsenic MCL in treated water                                                               |
| Reliability                  | -Unscheduled system downtime                                                                                                        |
|                              | -Frequency and extent of repairs, including a description of problems, materials and supplies needed, and associated labor and cost |
| System O&M and               | -Pre- and post-treatment requirements                                                                                               |
| Operator Skill               | -Level of automation for system operation and data collection                                                                       |
| Requirements                 | -Staffing requirements including number of operators and laborers                                                                   |
|                              | -Task analysis of preventative maintenance including number, frequency, and complexity of tasks                                     |
|                              | -Chemical handling and inventory requirements                                                                                       |
|                              | -General knowledge needed of relevant chemical processes and health and safety practices                                            |
| Residual Management          | -Quantity and characteristics of aqueous and solid residuals generated by                                                           |
|                              | system process                                                                                                                      |
| System Cost                  | -Capital cost for equipment, engineering, and installation                                                                          |
|                              | -O&M cost for media replacement, electricity usage, and labor                                                                       |

The required system O&M and operator skill levels were evaluated through quantitative data and qualitative considerations, including the need for pre- and/or post-treatment, level of system automation, extent of preventive maintenance activities, frequency of chemical and/or media handling and inventory, and general knowledge needed for relevant chemical processes and related health and safety practices. The staffing requirements for system operation were recorded on an Operator Labor Hour Log Sheet.

The cost of the system was evaluated based on the capital cost per gpm (or gpd) of design capacity and the O&M cost per 1,000 gal of water treated. This requires tracking the capital cost for equipment, site engineering, and installation, as well as the O&M cost for media replacement and disposal, chemical consumption, electrical power usage, and labor. Data on Nambe Pueblo's O&M cost were limited to  $CO_2$  consumption, electricity usage, and labor because media replacement did not take place during the system performance evaluation.

## 3.2 System O&M and Cost Data Collection

The plant operator performed daily, weekly, and monthly system O&M and data collection according to instructions provided by the vendor and Battelle. The plant operator recorded system operational data such as pressure, flowrate, system throughput, and hour meter readings on a Daily System Operation Log Sheet; checked sodium hypochlorite (NaOCI) and CO<sub>2</sub> levels; and conducted visual inspections to ensure normal system operations. If any problem occurred, the plant operator contacted the Battelle Study Lead, who determined if the vendor should be contacted for troubleshooting. The plant operator recorded all relevant information, including problems encountered, course of actions taken, materials and supplies used, and associated cost and labor incurred, on the Repair and Maintenance Log Sheet.

The capital cost for the arsenic-removal system consisted of the cost for equipment, site engineering, and system installation. The O&M cost consisted of the expenditure for chemical use, electricity consumption, and labor. Liquid CO<sub>2</sub> was delivered in 50-lb cylinders by Airgas West (Santa Fe, NM) on an as-needed basis and its use was tracked by recording on the Daily System Operation Log Sheets whenever CO<sub>2</sub> cylinders were replaced. Electricity consumption was tracked through an onsite electric meter. Labor hours for routine system O&M, system troubleshooting and repairs, and demonstration-related work, were tracked using an Operator Labor Hour Log Sheet. Routine O&M included activities such as completing field logs, replacing CO<sub>2</sub> cylinders, ordering supplies, performing system inspections, and others as recommended by the vendor. Demonstration-related work, including activities such as performing field measurements, collecting and shipping samples, and communicating with the Battelle Study Lead and vendor, was recorded but not used for the cost analysis.

# 3.3 Sample Collection Procedures and Schedules

To evaluate system performance, samples were collected from the wellhead, across the treatment plant, and from the distribution system. Table 3-3 provides the sampling schedule and analytes measured during each sampling event. Specific sampling requirements for analytical methods, sample volumes, containers, preservation, and holding times are presented in Table 4-1 of the EPA-endorsed Quality Assurance Project Plan (QAPP) (Battelle, 2003).

**3.3.1 Source Water Sample Collection.** During the initial visit to the site on August 19, 2003, one set of source water samples was collected from the Buffalo Well for detailed water quality analyses. Source water also was speciated onsite using a speciation kit (see Section 3.4.1). The sample tap was flushed for several minutes before sampling; special care was taken to avoid agitation, which might cause unwanted oxidation. Analytes for the source water samples are listed in Table 3-3.

| Sample                   | Sampling                                   | No. of<br>Sampling |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                              | Sampling                                                                    |
|--------------------------|--------------------------------------------|--------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Туре                     | Locations <sup>(a)</sup>                   | Locations          | Frequency                                                                          | Analytes                                                                                                                                                                                                                                                                                                                                                                                                     | Date                                                                        |
| Source<br>Water          | IN                                         | 1                  | Once during<br>initial site<br>visit                                               | Onsite: pH<br>Offsite:<br>Al (total and soluble),<br>As (total and soluble),<br>As (total and soluble),<br>As(III), As(V),<br>Fe (total and soluble),<br>Mn (total and soluble),<br>Mo (total and soluble),<br>Sb (total and soluble),<br>V (total and soluble),<br>V (total and soluble),<br>Na, Ca, Mg, Cl, F, SO <sub>4</sub> ,<br>SiO <sub>2</sub> , PO <sub>4</sub> , TOC,<br>alkalinity, and turbidity | 08/19/03                                                                    |
| Treatment<br>Plant Water | IN, AP, TT                                 | 3                  | Once in<br>each 4-week<br>cycle <sup>(b)</sup><br>(Speciation<br>Sampling)         | Onsite: pH, temperature,<br>DO, ORP, and $Cl_2$ (total<br>and free) <sup>(c)</sup><br>Offsite:<br>As (total and soluble),<br>As(III), As(V),<br>Fe (total and soluble),<br>Mn (total and soluble),<br>U (total and soluble),<br>Ca, Mg, F, NO <sub>3</sub> , SO <sub>4</sub> ,<br>SiO <sub>2</sub> , P, TOC, alkalinity,<br>and turbidity                                                                    | 07/09/07<br>08/10/07                                                        |
|                          | IN, AP, TA, TB                             | 4                  | Three times<br>in each 4-<br>week<br>cycle <sup>(d)</sup><br>(Regular<br>Sampling) | Onsite: $pH^{(e)}$ ,<br>temperature, DO, ORP,<br>and Cl <sub>2</sub> (total and free) <sup>(c)</sup><br>Offsite: As (total),<br>Fe (total), Mn (total),<br>U (total), SiO <sub>2</sub> , P,<br>alkalinity, and turbidity                                                                                                                                                                                     | See Appendix B                                                              |
| Distribution<br>Water    | Three locations<br>supplied plant<br>water | 3                  | Monthly <sup>(f)</sup>                                                             | pH, alkalinity, and total<br>As, Fe, Mn, U, Pb, and<br>Cu                                                                                                                                                                                                                                                                                                                                                    | Baseline sampling:<br>See Table 4-14<br>Monthly sampling:<br>See Table 4-14 |

Table 3-3. Sampling Schedule and Analytes

(a) Abbreviations in parentheses corresponding to sample locations shown in Figure 4-7: IN = at wellhead; AP = after pH adjustment; TA = after Vessel A; TB = after Vessel B; and TT = after effluent combined.

(b) Although scheduled monthly, speciation sampling performed only twice on July 9 and August 10, 2007.

(c) Total and free chlorine to be measured at AP and TT only but none was measured during actual sampling.

(d) Actual sampling frequency varied from 1 to 8 weeks.

(e) Onsite water quality parameters not measured during performance evaluation study; real-time pH readings monitored with an in-line pH meter at AP location.

(f) Monthly sampling discontinued after September 10, 2008.

**3.3.2** Treatment Plant Water Sample Collection. During the system performance evaluation study, the plant operator collected water samples across the treatment train for onsite and offsite analyses. The Battelle Study Plan called for weekly sampling: One week in each four-week cycle, treatment plant

samples were collected at the wellhead (IN), after pH adjustment but before the split to the two adsorption vessels (AP), and after effluent from the two vessels combined (TT). These samples were speciated and analyzed for the analytes listed under "Speciation Sampling" in Table 3-3. For the other three weeks in each four-week cycle, treatment plant samples were collected at four locations, i.e., IN, AP, and after Vessels A and B (TA and TB), and analyzed for the analytes listed under "Regular Sampling" in Table 3-3.

Because only trace amounts of As(III) existed in source water, speciation was performed only twice (on July 9 and August 10, 2007). Regular sampling was normally performed weekly between June 26, 2007, when the performance evaluation study began and August 28, 2008. The sampling frequency was extended to once every two weeks on seven occasions (on September 11, September 26, and November 26, 2007, and on March 4, April 8, May 6, and June 3, 2008), and to once every four weeks on one occasion (on January 16, 2008). After August 28, 2008, the sampling frequency occurred monthly on a regular basis. Although called for in the Study Plan, the operator did not perform onsite water quality analyses during all regular sampling events. The operator did, however, record pH values at the AP location using an in-line pH meter.

**3.3.3** Backwash Wastewater/Solids and Spent Media Samples. Because the system was not backwashed during the entire study period, no backwash residuals were produced. Further, because media replacement did not take place, there were no spent media. However, media samples were collected during the performance evaluation study as described in Section 4.5.2.

**3.3.4 Distribution System Water Sample Collection.** Samples were collected from the distribution system to determine the impact of the arsenic treatment system on the water chemistry in the distribution system, specifically arsenic, uranium, lead, and copper levels. Prior to system startup from December 2003 to March 2004, four sets of baseline distribution system water samples were collected at three locations within the distribution system. Following system startup, distribution system water sampling continued on a monthly basis through September 10, 2008.

The three locations selected for baseline sampling included one resident home, the Housing Department Office, and the Senior Center, which were partially served by the Buffalo Well. After system startup, sampling locations were moved to three residences that received only the treatment plant water. The baseline and monthly distribution system samples were collected following an instruction sheet developed according to the *Lead and Copper Monitoring and Reporting Guidance for Public Water Systems* (EPA, 2002). First-draw samples were collected from cold-water faucets that had not been used for at least 6 hr to ensure that stagnant water was sampled. Samplers recorded date and time of last water use before sampling and the date and time of sample collection for calculations of the stagnation time. The samples were analyzed for the analytes listed in Table 3-3. Arsenic speciation was not conducted on the distribution system water samples.

# 3.4 Sampling Logistics

All sampling logistics, including preparation of arsenic speciation kits and sample coolers, and sample shipping and handling are discussed as follows:

**3.4.1 Preparation of Arsenic Speciation Kits.** The arsenic field speciation method used an anion exchange resin column to separate soluble arsenic species, As(V) and As(III) (Edwards et al., 1998). Resin columns were prepared in batches at Battelle laboratories in accordance with the procedures detailed in Appendix A of the EPA-endorsed QAPP (Battelle, 2003).

**3.4.2 Preparation of Sampling Coolers.** For each sampling event, a sample cooler was prepared with the appropriate number and type of sample bottles, disc filters, and/or speciation kits. All sample bottles were new and contained appropriate preservatives. Each sample bottle was affixed with a preprinted, color-coded, and waterproof label, consisting of the sample identification (ID), date and time of sample collection, collector's name, site location, sample destination, analysis required, and preservative. The sample ID consisted of a two-letter code for the specific water facility, sampling date, a two-letter code for a specific sampling location, and a one-letter code for designating the arsenic speciation bottle (if necessary). The sampling locations at the treatment plant were color-coded for easy identification. For example, red, blue, orange, yellow, and green were used to designate sampling locations for IN, AP, TA, TB, and TT, respectively. The pre-labeled bottles for each sampling location were placed in separate ziplock bags and packed in the cooler. When needed, the sample cooler also included bottles for the distribution system water sampling.

In addition, all sampling and shipping-related materials, such as latex gloves, sampling instructions, chain-of-custody forms, pre-paid/pre-addressed FedEx air bills, and bubble wrap, were included in each cooler. Except for the operator's signature, the chain-of-custody forms and air bills had already been completed with the required information. The sample coolers were shipped via FedEx to the facility approximately 1 week prior to the scheduled sampling date.

**3.4.3** Sample Shipping and Handling. After sample collection, samples for off-site analyses were packed carefully in the original coolers with wet ice and shipped to Battelle. Upon receipt, the sample custodian verified that all samples indicated on the chain-of-custody forms were included and intact. Sample IDs were checked against the chain-of-custody forms and the samples were logged into the laboratory sample receipt log. Discrepancies noted by the sample custodian were addressed with the plant operator by the Battelle Study Lead.

Samples for metal analyses were stored and analyzed at Battelle's inductively coupled plasma-mass spectrometry (ICP-MS) laboratory. Samples for other water quality analyses were packed in separate coolers and picked up by couriers from American Analytical Laboratories (AAL) in Columbus, OH and TCCI Laboratories in Lexington, OH, both of which were under contract with Battelle for this demonstration study. The chain-of-custody forms remained with the samples from the time of preparation through analysis and final disposition. All samples were archived by the appropriate laboratories for the respective duration of the required hold time and disposed of properly thereafter.

### 3.5 Analytical Procedures

The analytical procedures described in detail in Section 4.0 of the EPA-endorsed QAPP (Battelle, 2003) were followed by Battelle ICP-MS, AAL, and TCCI Laboratories. Laboratory quality assuarnce/quality control (QA/QC) of all methods followed the prescribed guidelines. Data quality in terms of precision, accuracy, method detection limits (MDLs), and completeness met the criteria established in the QAPP (i.e., relative percent difference [RPD] of 20%, percent recovery of 80 to120%, and completeness of 80%). The quality assurance data associated with each analyte will be presented and evaluated in a QA/QC Summary Report to be prepared under separate cover upon completion of the Arsenic Demonstration Project.

Field measurements of pH, temperature, dissolved oxygen (DO), and oxidation-reduction potential (ORP) were conducted only twice on July 9 and August 10, 2007 by the plant operator using a VWR Symphony SP90M5 Handheld Multimeter. The meter was calibrated for pH and DO prior to use following the procedures provided in the user's manual. The ORP probe also was checked for accuracy by measuring the ORP of a standard solution and comparing it to the expected value. The plant operator collected a water sample in a clean, plastic beaker and placed the Symphony SP90M5 probe in the beaker until a stable value was obtained. pH values at the AP location (after pH adjustment) also were monitored by an

in-line pH meter, which was connected to the system's programmable logic controller (PLC). Measured pH values were recorded at 30-min intervals during system operation and saved at the PLC for later download.

## 4.0 RESULTS AND DISCUSSION

#### 4.1 Facility Description and Pre-existing Treatment System Infrastructure

The Nambe Pueblo water system supplied drinking water to approximately 500 community members with 150 service connections. Located on a hilltop adjacent to a buffalo range (Figure 4-1), the pre-existing system consisted of a 145-gpm well (Buffalo Well [Figure 4-2]), a pump house (located about 10 ft from the well), and a 17-ft-diameter, 24-ft-tall water storage tank (Figure 4-3). Groundwater was pumped intermittently from the well to the pump house where a totalizer was used to track the total volume of feed water to the system. Liquid chlorine was added (Figure 4-4) using a peristaltic pump to maintain a residual chlorine level of approximately 0.58 mg/L (as Cl<sub>2</sub>) in the 40,000-gal water storage tank and distribution system. Water in the storage tank was gravity-fed through the distribution system to the community. The system typically operated for 3 to 4 hr/day, with a daily demand of approximately 34,000 gpd.



Figure 4-1. Nambe Pueblo Buffalo Range

**4.1.1 Source Water Quality.** Water samples from the Buffalo Well were collected and speciated on August 19, 2003. The results are presented in Table 4-1 and compared to those taken by the facility for the EPA demonstration site selection and independently collected and analyzed by EPA.

*Arsenic.* Total arsenic concentrations of the Buffalo Well water ranged from 29 to  $33.2 \mu g/L$ , which existed primarily as soluble As(V) (94% based on the August 2003 Battelle sampling results). Trace amounts of soluble As(III) and particulate arsenic also existed at 0.2 and 1.8  $\mu g/L$ , respectively.



Figure 4-2. Pump Head on Buffalo Well at Nambe Pueblo, NM



Figure 4-3. Pre-existing Pump House and Water Storage Tank



Figure 4-4. Chlorination Before Distribution at Nambe Pueblo, NM

*Iron and Manganese.* Iron and manganese concentrations in the Buffalo Well water were low, ranging from <30 to 138  $\mu$ g/L and from 1.3 to 22.9  $\mu$ g/L, respectively. In general, adsorptive media technologies are best suited to sites with relatively low iron levels (e.g., less than 300  $\mu$ g/L, the secondary maximum contaminant level [SMCL]). Iron concentrations greater than 300  $\mu$ g/L can cause taste, odor, and color problems and an increased potential for fouling of adsorption system components.

*pH*. pH values of source water ranged between 8.5 and 8.8. Arsenic adsorption by AD-33 media can be performed at pH values ranging between 6.0 and 9.0, but is more effective when the pH is <8.0. Because of the high pH, the vendor recommended pH adjustment of source water to approximately 7.0 using CO<sub>2</sub>.

*Competing Anions.* Arsenic adsorption can be influenced by competing anions such as silica, phosphorus, and vanadium. Concentrations of these ions as presented in Table 4-1do not appear to be high enough to cause any adverse effect on arsenic adsorption.

*Other Water Quality Parameters.* Concentrations of other water quality parameters were low and do not appear to have any impact on arsenic adsorption.

**4.1.2 Distribution System.** The Nambe Pueblo distribution system consists of a 10-mile long, partially looped distribution line and two 88,000-gal storage tanks supplied by the Buffalo Well, Lower Well, and Upper Well with a combined production capacity of approximately 285 gpm. The two storage tanks are located approximately 1 mile apart and are connected to the distribution system with 6-in polyvinyl chloride (PVC) pipe. The distribution system is constructed of 2- to 6-in PVC pipe.

|                                          |        | Utility | EPA      | Battelle |
|------------------------------------------|--------|---------|----------|----------|
| Parameter                                | Unit   | Data    | Data     | Data     |
| Samplin                                  | g Date | -       | 10/09/02 | 08/19/03 |
| pH                                       | S.U.   | 8.8     | NA       | 8.5      |
| Total Alkalinity (as CaCO <sub>3</sub> ) | mg/L   | 204.0   | 163.2    | 168.0    |
| Hardness (as CaCO <sub>3</sub> )         | mg/L   | 199.0   | NA       | 5.4      |
| Turbidity                                | mg/L   | NA      | NA       | NA       |
| Chloride                                 | mg/L   | <10     | 5.6      | 8.4      |
| Fluoride                                 | mg/L   | NA      | 0.9      | 0.1      |
| Sulfide                                  | mg/L   | NA      | 9.4      | NA       |
| Sulfate                                  | mg/L   | <10     | 28.2     | 28.0     |
| Silica (as $SiO_2$ )                     | mg/L   | 15.0*   | 15.1     | 14.1     |
| Orthophosphate (as PO <sub>4</sub> )     | mg/L   | <0.065* | < 0.005  | < 0.10   |
| TOC                                      | mg/L   | NA      | NA       | 2.1      |
| As(total)                                | μg/L   | 32.0    | 29.0     | 33.2     |
| As (soluble)                             | μg/L   | NA      | NA       | 31.4     |
| As (particulate)                         | μg/L   | NA      | NA       | 1.8      |
| As(III)                                  | μg/L   | NA      | NA       | 0.2      |
| As(V)                                    | μg/L   | NA      | NA       | 31.2     |
| Fe (total)                               | μg/L   | <100    | 138.0    | <30      |
| Fe (soluble)                             | μg/L   | NA      | NA       | <30      |
| Al (total)                               | μg/L   | NA      | <25      | 10.0     |
| Al (soluble)                             | μg/L   | NA      | NA       | 28.7     |
| Mn (total)                               | μg/L   | <50     | 22.9     | 1.3      |
| Mn (soluble)                             | μg/L   | NA      | NA       | 1.3      |
| V (total)                                | μg/L   | NA      | NA       | 9.2      |
| V (soluble)                              | μg/L   | NA      | NA       | 8.6      |
| Mo (total)                               | μg/L   | NA      | NA       | <0.1     |
| Mo (soluble)                             | μg/L   | NA      | NA       | <0.1     |
| Sb (total)                               | μg/L   | NA      | <25      | <0.1     |
| Sb (soluble)                             | μg/L   | NA      | NA       | <0.1     |
| Na (total)                               | μg/L   | 22.0    | 88.6     | 93.3     |
| Ca (total)                               | mg/L   | 73.0    | 2.1      | 2.1      |
| Mg (total)                               | mg/L   | 4.0     | < 0.04   | 0.0      |

Table 4-1. Water Quality Data for Buffalo Well at Nambe Pueblo, NM

\* = data provided by EPA; NA = not analyzed; TOC = total organic carbon

The distribution system is subdivided into the lower and upper zones. The lower zone is supplied by all three wells, whereas the upper zone is served primarily by the Buffalo Well. All three locations for distribution system water sampling were located in the upper zone. Figure 4-5 presents an aerial photograph map of the Nambe Pueblo distribution system.

The Nambe Pueblo Tribe collects water samples from the distribution system for several analytes. Three samples are collected each month for bacteria analysis. The bacteriological sampling locations vary from month to month. Under the Lead and Copper Rule (LCR) (EPA, 2002), water samples were collected from customer taps at five locations. As an example, Table 4-2 presents the results of LCR samples collected in October 2003.



Figure 4-5. Nambe Pueblo Water Distribution System Map

| Location                                   | Date     | Unit | Copper | Lead |
|--------------------------------------------|----------|------|--------|------|
| LCR 01                                     | 10/27/03 | μg/L | 51.5   | <2.0 |
| LCR 08                                     | 10/26/03 | μg/L | 12.7   | <2.0 |
| LCR 09                                     | 10/27/03 | μg/L | 129    | <2.0 |
| LCR38                                      | 10/27/03 | μg/L | 269    | <2.0 |
| LCR 40                                     | 10/30/03 | μg/L | 72.4   | <2.0 |
| 90 <sup>th</sup> percentile <sup>(a)</sup> | -        | μg/L | 199    | <2.0 |

# Table 4-2. Nambe Pueblo Lead and Copper RuleSampling Results, October 2003

Analysis performed by EPA Region 6 Laboratory.

(a) To determine 90<sup>th</sup> percentile concentration for five samples, average highest and second-highest concentrations.

### 4.2 Treatment Process Description

The arsenic package unit (APU) marketed by AdEdge is a fixed-bed, down-flow adsorption system used for small water systems in the flow range of 5 to 300 gpm. It uses Bayoxide E33 media (branded as AD-33 by AdEdge), an iron-based adsorptive media developed by Bayer AG, for arsenic removal from drinking water supplies. Table 4-3 presents physical and chemical properties of the media. AD-33 media is delivered in a dry crystalline form and listed by NSF International (NSF) under Standard 61 for use in drinking water applications. The media exists in both granular and pelletized forms, which have similar physical and chemical properties, except that pellets are denser than granules (i.e., 35 vs. 28 lb/ft<sup>3</sup>). For the Nambe Pueblo site, the granular media was selected for use.

The AdEdge arsenic treatment system consisted of two adsorption vessels (i.e., A and B) arranged in parallel. The original proposal for this demonstration site specified an 150-gpm APU-150 system; however, due to the experience gained at other demonstration sites, the vendor upgraded the system to treat 160 gpm of water. Figure 4-6 is a schematic of the AdEdge APU-160 system.

The APU-160 system can be either manually or automatically backwashed on an as-needed basis, as determined by the pressure loss across the adsorption vessels or time elapsed since the last backwash. However, no backwash was conducted during the performance evaluation study due to minimal pressure drop across the vessels. Figure 4-7 shows a process flow diagram with the sampling locations and analytes. Table 4-4 presents key system design parameters. The system included CO<sub>2</sub> addition to reduce the pH to approximately 7. No post treatment was proposed.

Key process steps and major system components are discussed as follows:

- Intake. Source water was pumped from the Buffalo Well and chlorinated before being fed to the treatment system.
- **Prechlorination**. Although prechlorination was not required (because arsenic existed primarily as As[V]), the existing chlorination system was retained to provide disinfection to the treatment system. In addition, a post-chlorination point was included to ensure that the target chlorine residual level of 0.58 mg/L (as Cl<sub>2</sub>) was met before treated water entered the distribution system. Figure 4-8 presents photographs of the chlorine metering pumps, the chlorine storage drum, and the pre- and post-chlorination injection points.

| Physical Properties                             |                      |  |  |  |
|-------------------------------------------------|----------------------|--|--|--|
| Parameter                                       | Value                |  |  |  |
| Matrix                                          | Iron oxide composite |  |  |  |
| Physical Form                                   | Dry granular media   |  |  |  |
| Color                                           | Amber                |  |  |  |
| Bulk Density (lb/ft <sup>3</sup> )              | 28                   |  |  |  |
| BET Area $(m^2/g)$                              | 142                  |  |  |  |
| Attrition (%)                                   | 0.3                  |  |  |  |
| Moisture Content (%)                            | <15 (by weight)      |  |  |  |
| Particle Size Distribution (U.S. standard mesh) | 10 × 35              |  |  |  |
| Crystal Size (Å)                                | 70                   |  |  |  |
| Crystal Phase                                   | α – FeOOH            |  |  |  |
| Chemical Analysis                               |                      |  |  |  |
| Constituents                                    | Weight (%)           |  |  |  |
| FeOOH                                           | 90.1                 |  |  |  |
| CaO                                             | 0.27                 |  |  |  |
| MgO                                             | 1.00                 |  |  |  |
| MnO                                             | 0.23                 |  |  |  |
| $SO_3$                                          | 0.13                 |  |  |  |
| Na <sub>2</sub> O                               | 0.12                 |  |  |  |
| TiO <sub>2</sub>                                | 0.11                 |  |  |  |
| SiO <sub>2</sub>                                | 0.06                 |  |  |  |
| Al <sub>2</sub> O <sub>3</sub>                  | 0.05                 |  |  |  |
| P <sub>2</sub> O <sub>5</sub>                   | 0.02                 |  |  |  |
| Cl                                              | 0.01                 |  |  |  |

Table 4-3. Physical and Chemical Properties of AD-33 Media

Source: Provided by AdEdge

BET = Brunauer, Emmett, and Teller

The chlorine addition system consisted of a peristaltic pump, a chemical feed tank (containing a 10% NaOCl solution), and a secondary containment. Chlorine addition was synchronized with the well pump. Proper operation of the chlorine feed system was tracked through tank level measurements.

• **pH adjustment.** pH values of source water were lowered from 8.5 to 8.8 to a target value of 7.0 using CO<sub>2</sub>. CO<sub>2</sub> was selected for pH adjustments because (1) it is less corrosive than mineral acids, such as H<sub>2</sub>SO<sub>4</sub>, and (2) when treated water is depressurized after exiting the adsorption vessels, some CO<sub>2</sub> may degas, thereby raising the pH of the treated water and reducing its corrosivity to the distribution piping.

A carbon dioxide gas flow control system manufactured by Applied Technology Systems, Inc. (ATSI) in Souderton, PA, was used for pH control. The pH control system consisted of a liquid CO<sub>2</sub> supply assembly, an automatic pH control panel, a CO<sub>2</sub> membrane assembly, and a pH probe located downstream of the membrane module.

Figure 4-9 presents a process flow diagram of the control system, which is designed to introduce gaseous  $CO_2$  into the water in a side-stream configuration, or a  $CO_2$  loop. Figure 4-10 provides a series of photographs showing various system components.

• Liquid CO<sub>2</sub> in two 50-lb cylinders vaporizes into gaseous CO<sub>2</sub> via a feed vaporizer prior to entering a pH control panel.



Figure 4-6. Schematic of AdEdge APU-160 Arsenic Removal System



Figure 4-7. Process Flow Diagram and Sampling Schedule and Locations

| Parameter                                             | Value                              | Remarks                                              |  |  |  |
|-------------------------------------------------------|------------------------------------|------------------------------------------------------|--|--|--|
| Pre-treatment                                         |                                    |                                                      |  |  |  |
| Target pH Value after Adjustment (S.U.)               | 7.0                                | Using CO <sub>2</sub>                                |  |  |  |
| Target Chlorine Residual (mg/L [as Cl <sub>2</sub> ]) | 0.58                               | Using NaClO                                          |  |  |  |
| Adsorption Vessels                                    |                                    |                                                      |  |  |  |
| Vessel Size (in)                                      | $48 \text{ D} \times 72 \text{ H}$ | _                                                    |  |  |  |
| Cross-Sectional Area (ft <sup>2</sup> /vessel)        | 12.6                               | -                                                    |  |  |  |
| Number of Vessels                                     | 2                                  | _                                                    |  |  |  |
| Configuration                                         | Parallel                           | _                                                    |  |  |  |
| AD-33 Adsorption Media                                |                                    |                                                      |  |  |  |
| Media Bed Depth (in)                                  | 34                                 |                                                      |  |  |  |
| Media Quantity (lb)                                   | 1,994                              | 997 lb/vessel                                        |  |  |  |
| Media Volume (ft <sup>3</sup> )                       | 71.2                               | 35.6 ft <sup>3</sup> /vessel                         |  |  |  |
| Media Type                                            | AD-33                              | Granular form                                        |  |  |  |
| Service                                               |                                    |                                                      |  |  |  |
| Design Flowrate (gpm)                                 | 160                                | 80 gpm/vessel                                        |  |  |  |
| Hydraulic Loading Rate (gpm/ft <sup>2</sup> )         | 6.3                                | _                                                    |  |  |  |
| EBCT (min)                                            | 3.3                                | Based on 160 gpm design flow                         |  |  |  |
| Estimated Working Capacity (BV)                       | 61,296                             | To 10 µg/L total arsenic breakthrough                |  |  |  |
| Throughput to Breakthrough (gal)                      | 32,609,500                         | $1 \text{ BV} = 71.2 \text{ ft}^3 = 532 \text{ gal}$ |  |  |  |
| Average Use Rate (gal/day)                            | 45,000                             | Based on 6.25 hr/day operation at 120 gpm            |  |  |  |
| Estimated Media Life (months)                         | 24.2                               | Vendor estimated media life                          |  |  |  |
| Backwash                                              |                                    |                                                      |  |  |  |
| Pressure Differential Set Point (psi)                 | 10                                 | _                                                    |  |  |  |
| Backwash Flowrate (gpm)                               | 113 to125                          | _                                                    |  |  |  |
| Hydraulic Loading Rate (gpm/ft <sup>2</sup> )         | 9 to 10                            | _                                                    |  |  |  |
| Backwash Frequency (per month)                        | 1                                  | -                                                    |  |  |  |
| Backwash Duration (min/vessel)                        | 17 to 19                           | -                                                    |  |  |  |
| Wastewater Production (gal/vessel)                    | 1,920–2,380                        | -                                                    |  |  |  |

 Table 4-4. Design Specifications for AdEdge APU-160 System

- As the CO<sub>2</sub> gas flowed to the pH control panel, the gas flowrate is automatically controlled and adjusted by a JUMO pH/Proportional Integral Derivative (PID) controller and an Alicat mass flowmeter (Figure 4-10) to reach a desired pH setpoint. As an alternative, manual regulation of the gas flowrate also can be achieved via the use of a three-way ball valve and a rotameter. Further, a solenoid valve interlocks with the well pump, allowing gas to flow only when the well pump is turned on.
- After flowing out of the control panel,  $CO_2$  is injected into water through a Celgard<sup>®</sup> microporous hollow fiber membrane module housed in a 1.5-in stainless steel sanitary cross. Table 4-5 lists the properties and specifications of the hollow fiber membrane module. The sanitary cross is located in a side stream from the main water line to allow only a portion of water to flow through the membrane module to minimize the pressure drop. The membrane introduced  $CO_2$  gas into the water at a near molecular level for rapid mixing/reaction with water to achieve a quick pH response/change.
- Located downstream from the sanitary cross, a Sentron ion sensitive field effect transistor (ISFET) type silicon chip sanitary pH probe with automatic temperature compensation continuously monitors pH levels of treated water and sends signals back to the pH/PID controller for pH control. Data from the in-line pH meter are recorded and stored in a datalogger.



**Figure 4-8. Chlorination Feed System** (Clockwise from top left: NaClO storage tank and chlorine metering pumps; Prechlorination injection point; and Post-chlorination injection point)

- Throughout the study, the CO<sub>2</sub> pH control system supplied CO<sub>2</sub> at approximately 16.2  $ft^3/hr$ , or 23.3 lb/day (Section 4.4.2). The CO<sub>2</sub> gas supplied from two 50-lb cylinders provided CO<sub>2</sub> for about 4.3 days before requiring change-out.
- Adsorption. The AdEdge APU-160 arsenic removal system consists of two 48-in × 72-in vessels configured in parallel, each containing 35.6 ft<sup>3</sup> of AD-33 media supported by a gravel underbed. The vessels are fiber-reinforced plastic (FRP) construction rated for 150 psi working pressure. The FRP vessels are skid-mounted and piped to a valve rack mounted on a polyurethane coated, welded frame. The empty bed contact time (EBCT) for the system is 3.3 min and the hydraulic loading to each vessel is 6.3 gpm/ft<sup>2</sup>, based on the design flowrate of 160 gpm.



Figure 4-9. Process Diagram of CO<sub>2</sub> pH Adjustment System (top) and pH/PID Control Panel (bottom)



**Figure 4-10. Carbon Dioxide Gas Flow Control System for pH Adjustment** (Clockwise from top left: Liquid CO<sub>2</sub> supply assembly; Automatic pH control Panel; CO<sub>2</sub> Membrane Module; and Port for pH Probe)

| Parameter                                   | Value              |
|---------------------------------------------|--------------------|
| Porosity (%)                                | 40                 |
| Pore Dimensions (µm)                        | $0.04 \times 0.10$ |
| Effective Pore Size (µm)                    | 0.04               |
| Minimum Burst Strength (psi)                | 400                |
| Tensile Break Strength (g/filament)         | ≥300               |
| Average Resistance to Air Flow (Gurley sec) | 50                 |
| Axial Direction Shrinkage (%)               | ≤5                 |
| Fiber Internal Diameter, nominal (µm)       | 220                |
| Fiber Wall Thickness, nominal (µm)          | 40                 |
| Fiber Outer Diameter, nominal (µm)          | 300                |
| Module Dimensions (in)                      | $1.5 \times 3.0$   |

# Table 4-5. Properties of Celgard®, X50-215 MicroporousHollow Fiber Membrane

Data Source: Celgard®

Each pressure vessel is interconnected with Schedule 80 PVC piping and five electrically actuated butterfly valves, which make up the valve tree as shown in Figure 4-11. During normal operation, the feed valves and effluent valves are opened and the other six valves are closed to direct water downward through the two adsorptive vessels. During backwashing, the feed and effluent valves are closed and the backwash feed valves and backwash effluent valves are opened to divert water upward through the two adsorption vessels. The butterfly valves are controlled by a Square D Telemechanique PLC with a Magelis G2220 color touch interface screen.

• **Backwash**. The vendor recommended that the APU-160 system be backwashed approximately once per month, either manually or automatically, to remove particulates and media fines that accumulate in the media beds. Automatic backwash can be initiated by either timer or differential pressure across the vessels (i.e., when  $\Delta p > 10$  psi). Backwash is to be performed upflow at a flowrate of 113 to 125 gpm to achieve a hydraulic loading rate of about 9 to 10 gpm/ft<sup>2</sup>. Each backwash cycle is set to last for about 17 to 19 min/vessel, generating approximately 1,920 to 2,380 gal/vessel of wastewater. The backwash water is discharged into a drainage pond adjacent to the treatment facility.



Figure 4-11. Adsorption System Valve Tree and Piping Configuration

# 4.3 System Installation

The installation of the APU system was completed by AdEdge and its subcontractor, Pumps and Services, Inc., on May 15, 2007. The following briefly summarizes predemonstration activities, including permitting, building preparation, system offloading, installation, shakedown, and startup.

**4.3.1 Permitting.** The Nambe Pueblo community water system was not subject to State of New Mexico Environment Department (NMED) drinking water permit requirements due to the sovereignty of Nambe Pueblo as a tribal land; therefore, no engineering submittals or permit packages were prepared for this demonstration.

**4.3.2 Building Preparation.** The existing building (Figure 4-3) at the Buffalo Well was too small to house the APU system, therefore, a new building (Figure 4-12) was constructed by the IHS to house the treatment system. To facilitate the building design, conceptual system footprint and structural requirements were provided by AdEdge to IHS on November 14, 2003, and computer-aided design (CAD) drawings of the system were provided on November 28, 2003. IHS signed a contract with a general contractor for construction of the building on October 5, 2004, and site work began on November 8, 2004. The concrete foundation was completed on December 2, 2004, and geotechnical samples were collected to determine if the concrete would support the wet weight of the APU. The concrete was approved in January 2005, and building construction was resumed.

Construction of the first phase of building, including the walls, roof, and doors, was completed in April 2005; however, the electrical and plumbing work was not complete, and the construction contract funding was depleted. Construction of the building stopped in April 2005, pending the award of additional federal funding to pay for the remaining construction effort. Additional funding was received by IHS on August 2, 2005, but the new construction contract was not issued until May 31, 2006. Construction activities resumed on June 26, 2006, and the final electrical work was completed on August 29, 2006. A summary of building preparation completion dates is included in Table 4-6.

**4.3.3** System Installation, Shakedown, and Startup. The treatment system was delivered to the new building on May 9, 2005. However, as noted in Section 4.3.2, the plumbing and electrical portions of the building were not completed, and system installation could not be performed. The system was secured in the unfinished building pending completion of the plumbing and electrical work required to support installation of the system. After building construction was completed on August 29, 2006, plumbing and electrical connections for the system (with the exception of  $CO_2$  gas line) were completed on September 5, 2006. Due to various issues among the Nambe Pueblo Tribe, IHS, and EPA Region 6, approval to finalize the installation of the system was not reached until February 2007.

On May 7, 2007, the vendor returned to the site to complete the plumbing, install the CO<sub>2</sub> system, and perform shakedown testing and operator training. Hydraulic testing of the system (prior to media loading) was conducted on May 8, 2007. The flow and differential pressure measurements were approved, and the underbedding gravels and adsorptive media were loaded into the vessels on May 8, 2007. Final installation activities, including initial backwash of the media, plumbing of sample ports, and installation of the pH control system, was conducted from May 11 through 15, 2007, with personnel present from AdEdge, IHS, EPA Region 6, and Nambe Pueblo Tribe (the operator and assistant operator). The system officially went into service on May 15, 2007, and operator training was provided by AdEdge on May 16, 2007. Battelle staff arrived at Nambe Pueblo on July 9, 2007, to inspect the system and provide additional operator training (Figure 4-13). Training included calibration and use of the field water quality meters, collection and recording of operational data, proper sample collection techniques, arsenic speciation, and sample handling and shipping procedures. Table 4-6 summarizes key activities and completed dates during system installation, shakedown, and startup.





**Figure 4-12. Nambe Pueblo Treatment Plant Building** (*Top: Building under construction; Bottom: Completed building*)
| Activity                                                 | Date              |
|----------------------------------------------------------|-------------------|
| Building Preparation                                     |                   |
| Footprint and Structural Requirements from AdEdge to HIS | November 14, 2003 |
| CAD Drawings provided by AdEdge to IHS                   | November 28, 2003 |
| IHS Signed Contract with General Contractor              | October 5, 2004   |
| Site Work Began                                          | November 8, 2004  |
| Concrete Foundation Completed                            | December 2, 2004  |
| Concrete Pour Approved                                   | January 2005      |
| First Phase of Construction Completed; Funding Exhausted | April 2005        |
| Additional Federal Funds Received by HIS                 | August 2, 2005    |
| New Construction Contract Issued                         | May 31, 2006      |
| Construction Resumed                                     | June 26, 2006     |
| Final Electrical Work Completed                          | August 29, 2006   |
| Installation, Shakedown, and Startu                      | р                 |
| APU Delivered to Nambe Building                          | May 9, 2005       |
| Plumbing and Electrical Connections Completed            | September 5, 2006 |
| Approval to Finalize Installation Received               | February 2007     |
| Hydraulic Testing Performed                              | May 8, 2007       |
| Adsorptive Media Loaded                                  | May 8, 2007       |
| Final Installation and Startup                           | May 11–15, 2007   |
| System Startup                                           | May 15, 2007      |
| Operator Training Performed by AdEdge                    | May 16, 2007      |
| Operator Training Performed by Battelle                  | July 9, 2007      |

Table 4-6. Key Milestones for Building Preparation and System Installation



Figure 4-13. Operator Training at Nambe Pueblo

Table 4-7 summarizes the punch-list items identified by Battelle during system shakedown and operator training, and corrective actions taken by AdEdge. The first two items were addressed quickly. The uneven flow through Vessels A and B did not cause a problem; the flow imbalance was not significant during the demonstration study (i.e. 51.5% through Vessel A and 48.5% through Vessel B [Section 4.3.1]). Therefore, no action was taken on this item. Vendors were contacted to determine cost and feasibility of installing a large CO<sub>2</sub> tank, and it was determined that the most efficient approach would be to have more CO<sub>2</sub> cylinders on hand and provide better coordination for delivery.

| Item | Punch-List/                                                                                                                                                              |                                                                                                                                                                                                                                                                          | Resolution |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| No.  | Operational Issues                                                                                                                                                       | Corrective Action(s) Taken                                                                                                                                                                                                                                               | Date       |
| 1    | Rotameter for CO <sub>2</sub> system too small                                                                                                                           | • Ordered and install a larger rotameter                                                                                                                                                                                                                                 | June 2007  |
| 2    | pH control system appears to have a high $CO_2$ use rate                                                                                                                 | • Checked for leaks in system, but none was found                                                                                                                                                                                                                        | June 2007  |
| 3    | Water flow through Tank A higher than Tank B                                                                                                                             | • Observe to determine if uneven flow becomes a problem                                                                                                                                                                                                                  | Not needed |
| 4    | Operator prefers to have a large $CO_2$ storage tank with a fill connection outside fenced area so that $CO_2$ vendor can replenish supplies when operator is not onsite | • Vendors contacted to determine cost<br>and feasibility of installing a large CO <sub>2</sub><br>tank, and it was determined that most<br>efficient approach would be to have<br>more CO <sub>2</sub> cylinders on hand and<br>provide better coordination for delivery | Not needed |

 Table 4-7. System Punch-List/Operational Issues

#### 4.4 System Operation

**4.4.1 Operational Parameters.** Operational data were collected from July 9, 2007, through September 28, 2009, and are attached as Appendix A. Table 4-8 summarizes key parameters. According to the well pump hour meter, the treatment system operated for a total of 9,445 hr. Daily operating times fluctuated significantly from 2 to 24 hr and remained low at 2.1 hr/day (on average) from October 11 through December 3, 2007 (see Figure 4-14). This was due to testing of a rehabilitated well in the distribution system, which reduced daily demand from the treatment plant. Excluding the period from October 11 to December 3, 2007, the average daily operation time was 12.3 hr/day. Because no daily operational data were collected from system startup on May 15, 2007 to July 9, 2007, operation hours (689 hr) during this period were estimated by multiplying the average daily operation time (12.3 hr/day) by the number of days (56 day). Total system operation time during the entire performance evaluation study (i.e. from May 15, 2007, through September 28, 2009) was calculated to be 10,134 hr.

Total volume throughput during the performance evaluation study was 64,580,000 gal, or 121,390 bed volumes (BV) (1 BV = 71.2 ft<sup>3</sup> of media in both vessels), based on two totalizers installed at the inlet side of the adsorption vessels. The average daily demand was 78,360 gpd, excluding the period from October 11 to December 3, 2007, when a rehabilitated well was tested in the distribution system.

System flowrates were tracked by electromagnetic flow meters/totalizers installed at the inlet side of the vessels. Flowrates also were calculated based on flow totalizer and hour meter readings from the same electromagnetic flow meters/totalizers. Instantaneous flowrate readings for Vessels A and B were 58.8 and 55.5 gpm (on average), respectively, which were 4% to 5% higher than the corresponding calculated flowrates of 56.7 and 53.0 gpm (on average). As shown in Figure 4-15, there was slight flow imbalance between Vessels A and B, i.e., 51.5 and 48.5%, respectively, based on instantaneous flowrate readings.

| Parameter                                        | Actual                        |
|--------------------------------------------------|-------------------------------|
| Study Duration                                   | 05/15/07-09/28/09             |
| Estimated Total Operating Time (hr)              | 10,134                        |
| Average Daily Operating Time <sup>(a)</sup> (hr) | 12.3                          |
| Volume Throughput (gal)                          | Vessel A: 33,460,647          |
|                                                  | Vessel B: 31,119,352          |
|                                                  | System: 64,580,000            |
| System Throughput <sup>(b)</sup> (BV)            | 121,390                       |
| System Average Daily Use <sup>(a)</sup> (gpd)    | 78,360                        |
| Average (Range) of Instantaneous                 | Vessel A: 58.8 (49.7 to 72.2) |
| Flowrate (gpm)                                   | Vessel B: 55.5 (44.2 to 67.5) |
|                                                  | System: 114 (97 to 140)       |
| Average (Range) of Hydraulic Loading             | Vessel A: 4.7(3.9 to 5.7)     |
| Rate $(gpm/ft^2)$                                | Vessel B: 4.4 (3.5 to 5.4)    |
|                                                  | System: 4.5 (3.8 to 5.6)      |
| Average (Range) of EBCT (min)                    | Vessel A: 4.5 (3.7 to 5.4)    |
|                                                  | Vessel B: 4.8 (3.9 to 6.0)    |
|                                                  | System: 4.7 (3.8 to 5.5)      |
| Average (Range) of $\Delta p$ (psi)              | Vessel A: 1.1 (0.0 to 4.0)    |
|                                                  | Vessel B: 1.1 (0.0 to 5.0)    |
|                                                  | System: 1.1 (0.0 to 5.0)      |

Table 4-8. Summary of AdEdge APU-160 System Operation

(a) Not including period from 10/11/07 through 12/03/07.
(b) 1 BV = 71.2 ft<sup>3</sup> or 532 gal.



Figure 4-14. Treatment System Daily Operating Times



Figure 4-15. System Instantaneous and Calculated Flowrates

Instantaneous flowrates through the treatment system ranged from 97 to 140 gpm and averaged 114 gpm, which was lower than the design flowrate of 160 gpm (Table 4-4). This average flowrate represented an average hydraulic loading rate of 4.5 gpm/ft<sup>2</sup> and an average EBCT of 4.7 min. The average hydraulic loading rate was lower than the design value of 6.3 gpm/ft<sup>2</sup>, and the average EBCT was longer than the design value of 3.3 min.

Differential pressure ( $\Delta p$ ) readings across the system ranged from 0 to 5 psi and averaged 1.1 psi (Figure 4-16).  $\Delta p$  readings across Vessel A ranged from 0 to 4 psi and averaged 1.1 psi.  $\Delta p$  readings across Vessel B ranged from 0 to 5 psi and averaged 1.1 psi. Due to the low  $\Delta p$  readings across the media vessels, no backwash was conducted during the performance evaluation study.

**4.4.2 pH Adjustments.** pH adjustment was provided by a carbon dioxide gas flow control system manufactured by ATSI (Section 4.2). Carbon dioxide gas was supplied to the system by a pair of 50-lb cylinders connected in parallel. The water system operator monitored the  $CO_2$  cylinders and ordered and received replacement cylinders when necessary. During the course of the performance evaluation study, the operator reported difficulties in coordinating the delivery of replacement cylinders and maintaining a constant  $CO_2$  supply to the pH control system. Factors for the difficulties might have included the non-standard working hours of the operator, remote site location, and reported delivery delays by the  $CO_2$  vendor.

The lack of constant CO<sub>2</sub> supply to the pH adjustment system resulted in periodic losses of pH control. The pH values recorded by an in-line pH meter/logger at the AP location were downloaded for two time periods from March 31 through June 20, 2008, and from September 17, 2008, through January 8, 2009, and the data are plotted in Figures 4-17a and 17b, respectively. The datalogger recorded pH readings



Figure 4-16. Operational Pressure Readings

from the in-line pH probe at 30-min intervals only when the well pump and APU system were operating. An additional data point was recorded when the well pump shut off. Based on the operational data sheets in Appendix A, the treatment system operated for 17.4 and 10.5 hr/day (on average) during the first and second time periods, respectively. It can be seen easily on Figure 4-17b, during December 7, 2008, through January 8, 2009, when the system was on or off. However, it is more difficult to differentiate the system's on/off outside of this time period because of the large number of data points presented in the figures.

Shaded areas shown in Figures 4-17a and 4-17b denote the durations when the treatment system operated without pH control. Based on the datalogger, the system operated without pH control for 55.2% of the time during the first period. pH control improved significantly in the second period with only 14.3% of the time operating without pH control. The improvement was probably due to an improved coordination of the plant operator to maintain a more constant  $CO_2$  supply, when analytical results started to indicate that losing pH control might flush adsorbed arsenic and uranium out of the adsorptive media beds (Section 4.5.1).

As also shown in Figures 4-17a and 4-17b, pH values measured by the in-line pH probe and recorded in the datalogger during periods without pH control were higher than those of source water, i.e., 9.0 and 9.1, as presented in Table 4-11. It is possible that the calibration of the in-line pH probe was off; however, due to lack of pH readings from a handheld meter, there were no additional data that might be used to compare the in-line pH probe readings. While the exact pH values might be incorrect due to lack of calibration, it does appear that the probe was able to detect the relative changes in pH during system operation.



Figure 4-17a. In-line pH Data for Period from March 31 Through June 20, 2008



Figure 4-17b. In-line pH Data for Period from September 17, 2008, Through January 08, 2009

32

| Date and Time        | pH (in-line probe) |
|----------------------|--------------------|
| April 10, 2008 11:00 | 7.28               |
| April 10, 2008 11:28 | 7.35               |
| April 10, 2008 17:00 | 8.01               |
| April 10, 2008 17:30 | 8.06               |
| April 10, 2008 18:00 | 7.91               |
| April 10, 2008 18:30 | 7.47               |
| April 10, 2008 19:00 | 7.47               |
| April 10, 2008 19:30 | 7.31               |
| April 10, 2008 20:00 | 7.26               |
| April 10, 2008 20:30 | 7.16               |
| April 10, 2008 21:00 | 7.18               |
| April 10, 2008 21:30 | 7.12               |
| April 10, 2008 22:00 | 7.16               |
| April 10, 2008 22:30 | 7.16               |
| April 10, 2008 23:00 | 7.13               |
| April 10, 2008 23:30 | 7.16               |
| April 11, 2008 00:00 | 7.16               |
| April 11, 2008 00:30 | 7.09               |
| April 11, 2008 01:00 | 7.09               |
| April 11, 2008 01:04 | 7.07               |
| April 11, 2008 06:30 | 8.32               |
| April 11, 2008 07:00 | 7.82               |
| April 11, 2008 07:30 | 7.44               |

Table 4-9. Example pH Data from In-linepH Probe

Table 4-9 shows a subset of pH datalogger recordings for April 10 and 11, 2008, at periods during system operation, shutdown, and startup. On April 10, the system was operating and recording data at 30-min intervals, as noted for the 11:00 data point. The datalogger then recorded another point at 11:28 when the well pump turned off. The next data point was recorded at 17:00 after the system had restarted. The period of time between 11:28 and 17:00 represented system downtime. The exact restart time of the system was unknown, but had to have occurred between 16:30 and 17:00. The pH data shown in Table 4-9 suggested CO<sub>2</sub> degassing during periods when the well pump (and consequently the pH control system and datalogger) was not operating. During this time, pH values in the in-line probe cell began to drift upwards, as shown by the pH readings increasing from 7.35, when the system shut down at 11:28, up to a level presumably higher than the 8.01 value measured by the time of the first reading at 17:00, or between 0 and 29 min after system restart. A similar pattern was shown for April 11, 2008, where the system shut off at 01:04 with a pH value of 7.07, and restarted between 06:00 and 06:30 with a pH value measured at 8.32 at 06:30. The data show that the pH continued to decrease with continued system operation. The pattern shown for each of these days was repeated on other dates where the datalogger pH data exist. Data collected during routine treatment plant sampling across the treatment train at TA, TB, and TT did not include pH measurements; it was therefore unclear if CO<sub>2</sub> degassing phenomenon also had occurred within the adsorption vessels.

In order to address the difficulty with maintaining proper pH control, alternative  $CO_2$  storage and delivery options were investigated. Quotes for the purchase and/or lease of a large  $CO_2$  storage tank were solicited from local vendors, and the costs for tank purchase and installation were compared to the costs of 50-lb cylinder rental. Analysis of the cost comparison indicated that the purchase and installation of a large

 $CO_2$  storage tank, while potentially more convenient for the operator, was not economically feasible due to the significant capital cost. Therefore, it was decided not to install a large  $CO_2$  storage tank at the site.

During the period from July 9, 2007 to May 22, 2008, the treatment system operated 318 days and consumed a total of 148 50-lb CO<sub>2</sub> cylinders. (Note that the consumption of CO<sub>2</sub> cylinders was not recorded before July 9, 2007 and after May 22, 2008). Therefore, the treatment system consumed an average of 23.3 lb/day of CO<sub>2</sub>, corresponding to 16.2 ft<sup>3</sup>/hr of CO<sub>2</sub> based on a gas density of 0.117 lb/ft<sup>3</sup> and an average system operating time of 12.3 hr/day. The CO<sub>2</sub> gas supplied from two 50-lb cylinders provided CO<sub>2</sub> for about 4.3 days' operation before requiring replacement. Using a CO<sub>2</sub> consumption model, the vendor estimated the theoretical CO<sub>2</sub> usage based on source water quality and system flowrate. The theoretical usage was 15.8 ft<sup>3</sup>/hr (including 4 ft<sup>3</sup>/hr on the purge line), which was very close to the actual average usage of 16.2 ft<sup>3</sup>/hr.

**4.4.3 Residual Management.** No residuals were produced because neither backwash nor media replacement was required.

**4.4.4 System/Operation Reliability and Simplicity.** In addition to the pH adjustment problem discussed in Section 4.4.2, no major operational problems were encountered. The only O&M issues encountered were a broken pre-chlorination injector and malfunctioning main solenoid valve in the CO<sub>2</sub> gas system. Both issues were solved quickly and did not cause any system downtime. The system O&M and operator skill requirements are discussed below in relation to pre- and post-treatment requirements, levels of system automation, operator skill requirements, preventive maintenance activities, and frequency of chemical/media handling and inventory requirements.

**Pre-** and Post-Treatment Requirements. Pre- and post-treatment consisted of pH adjustment, prechlorination, and postchlorination.  $CO_2$  was used to lower pH values of source water to a target value of 7.0 in order to increase the arsenic removal capacity of the adsorptive media. The  $CO_2$  injection point and in-line pH probe used to monitor and control the adjusted pH levels were installed downstream of the chlorine injection point. O&M of the pH adjustment system required routine system pressure checks and regular changeout of  $CO_2$  supply bottles as pressure was depleted. The operator also recorded daily pH readings from the in-line probe, as needed. The use of  $CO_2$  for pH adjustment also required safety training for and awareness by the operator due to potential hazards.

For pre- and post-chlorination, the existing chlorination system was upgraded and installed inside the treatment building. The upgraded chlorination system, as discussed in Section 4.2 and shown on Figure 4-8, utilized a 10% NaOCl solution to reach a target residual level of 0.58 mg/L (as Cl<sub>2</sub>) at the entry point. The upgraded chlorination system did not require maintenance or skills other than those required by the previous system. The operator monitored chlorine tank levels (to estimate consumption rates) and residual chlorine levels (using a Hach meter).

*System Automation*. The system was fitted with automated controls to allow for automatic backwash. The system also was equipped with an automated carbon dioxide gas flow control system for pH control/adjustment. Each media vessel was equipped with five electrically actuated butterfly valves, which were controlled by a Square D Telemechanique PLC with a Magelis G2220 color touch interface screen.

The automated portion of the system did not require regular O&M; however, operator awareness and an ability to detect unusual system measurements were necessary when troubleshooting system automation failures. The equipment vendor provided hands-on training and a supplemental operations manual to the operator.

*Operator Skill Requirements*. Skill requirements to operate the system demanded a higher level of awareness and attention than the previous system. The system offered increased operational flexibility, which, in turn, required increased monitoring of system parameters. The operator's knowledge of system limitations and typical operational parameters were key to achieve system performance objectives. The two operators were onsite typically five times a week and spent a total of approximately 6.5 hr each time, as claimed by the operators, to perform visual inspections and record relevant system operating parameters on the Daily System Operation Log Sheets. The basis for the operator skills began with onsite training and a thorough review of the system operations manual; however, increased knowledge and invaluable system troubleshooting skills were gained through hands-on operational experience.

*Preventive Maintenance Activities*. Preventive maintenance tasks included periodic checks of flow meters and pressure gauges and inspection of system piping and valves. Checking the CO<sub>2</sub> cylinders and supply lines for leaks and adequate pressure and calibrating the in-line pH probe also were performed. Typically, the operator performed these duties while onsite for routine activities.

*Chemical/Media Handling and Inventory Requirements*. NaOCl was used for pre- and post-chlorination. The operator ordered the chemical as done prior to installation of the APU-160 system. CO<sub>2</sub> used for pH adjustment was ordered on an as-needed basis. Typically, 15 50-lb cylinders were used per month. As CO<sub>2</sub> cylinders were delivered to the site by Airgas, empty cylinders were returned for reuse.

#### 4.5 System Performance

**4.5.1 Treatment Plant Sampling.** Treatment plant water samples were collected on 63 occasions (including four duplicate samples collected during four regular sampling events) with field speciation performed during two of the 63 occasions at IN, AP, and TT sampling locations. Table 4-10 summarizes the analytical results of arsenic, iron, manganese, and uranium measured at the five sampling locations across the treatment train. Table 4-11 summarizes the results of other water quality parameters. Appendix B contains a complete set of analytical results throughout the performance evaluation study.

*Arsenic*. Total arsenic concentrations in source water ranged from 10.7 to 59.0  $\mu$ g/L and averaged 32.2  $\mu$ g/L. Based on the two speciation sampling events taking place on July 9 and August 10, 2007, soluble As(V) was the predominating species, ranging from 34.2 to 36.5  $\mu$ g/L and averaging 35.4  $\mu$ g/L. Trace levels of soluble As(III) also existed, with concentrations ranging from 0.3 to 1.0  $\mu$ g/L and averaging 0.7  $\mu$ g/L. Particulate arsenic concentrations were low as well, ranging from <0.1 to 2.9  $\mu$ g/L and averaging 1.5  $\mu$ g/L. Arsenic concentrations measured during the performance evaluation study were consistent with those collected previously during source water sampling (Table 4-1).

As expected, arsenic concentrations and speciation remained essentially unchanged after pH adjustments, with As(V) existing as the predominating species at 31.0 µg/L (on average).

Figure 4-18 presents total arsenic breakthrough curves. Throughout the performance evaluation study (i.e., from May 15, 2007, through September 28, 2009, treating approximately 64,580,000 gal [or 121,390 BV) of water), total arsenic concentrations were reduced to below 3  $\mu$ g/L in system effluent (at TA, TB, and/or TT) during most sampling events. Exceptionally high total arsenic concentrations (i.e., from 14.7 to 46.9  $\mu$ g/L) were measured on six occasions (August 15, 2007, September 26, 2007, February 13, 2008, April 22, 2008, May 13, 2008, and August 27, 2009, at 17,240, 27,730, 40,830, 51,320, 55,500, and 120,242 BV, respectively). After each spike, arsenic concentrations returned to the respective pre-spike levels, suggesting that the concentration spikes observed were not due to normal arsenic breakthrough.

|                     | Sampling | Sample  | Conc    | entration (µg | g/L)             | Standard         |
|---------------------|----------|---------|---------|---------------|------------------|------------------|
| Parameter           | Location | Count   | Minimum | Maximum       | Average          | Deviation        |
|                     | IN       | 63      | 10.7    | 59.0          | 32.2             | 7.1              |
|                     | AP       | 63      | 10.6    | 44.9          | 31.6             | 7.6              |
| As (total)          | ТА       | 61      | < 0.1   | 46.9          | _(a)             | _(a)             |
|                     | ТВ       | 61      | <0.1    | 44 7          | _(a)             | _(a)             |
|                     | TT       | 2       | 13      | 2.5           | _(a)             | _(a)             |
|                     | IN       | 2       | 34.5    | 37.7          | 36.1             | 2.2              |
|                     | AP       | 2       | 30.9    | 32.5          | 31.7             | 1.2              |
| As (soluble)        | ТА       | NM      | NM      | NM            | NM               | NM               |
|                     | ТВ       | NM      | NM      | NM            | NM               | NM               |
|                     | TT       | 2       | 1.4     | 2.3           | _ <sup>(a)</sup> | _ <sup>(a)</sup> |
|                     | IN       | 2       | < 0.1   | 2.9           | 1.5              | 2.0              |
| <b>A</b> c          | AP       | 2       | 0.8     | 4.4           | 2.6              | 2.6              |
| AS<br>(particulate) | TA       | NM      | NM      | NM            | NM               | NM               |
| (particulate)       | TB       | NM      | NM      | NM            | NM               | NM               |
|                     | TT       | 2       | <0.1    | 0.1           | _ <sup>(a)</sup> | _(a)             |
|                     | IN       | 2       | 0.3     | 1.2           | 0.7              | 0.6              |
|                     | AP       | 2       | 0.3     | 1.1           | 0.7              | 0.6              |
| As (III)            | TA       | NM      | NM      | NM            | NM               | NM               |
|                     | TB       | NM      | NM      | NM            | NM               | NM               |
|                     | TT       | 2       | 0.3     | 1.0           | _(a)             | _(a)             |
|                     | IN       | 2       | 34.2    | 36.5          | 35.4             | 1.6              |
|                     | AP       | 2       | 29.7    | 32.2          | 31.0             | 1.8              |
| As (V)              |          | NM      | NM      | NM            | NM               | NM               |
|                     | TB       | NM      | NM      | NM            | NM<br>(a)        | NM<br>(a)        |
|                     |          | 2       | 0.4     | 2.0           | - <sup>(u)</sup> | _ <sup>(u)</sup> |
|                     |          | 63      | <25     | 154           | <25              | 22.8             |
| Es (tatal)          |          | 63      | <25     | 28.4          | <25              | 2.0              |
| re (total)          |          | 61      | <25     | 44.5          | <25              | 5.5              |
|                     |          | 01      | <25     | <u> </u>      | <25              | 0.0              |
|                     |          | 2       | <23     | <23           | <25              | 0.0              |
|                     |          | 2       | <23     | <23           | <25              | 0.0              |
| Fe (soluble)        |          | 2<br>NM | NM      | NM            | ~23<br>NM        | NM               |
| re (soluble)        | TR       | NM      | NM      | NM            | NM               | NM               |
|                     | TT       | 2       | <25     | <25           | <25              | 0.0              |
|                     | IN       | 63      | <0.1    | 10.8          | 0.8              | 1.7              |
|                     | AP       | 63      | <0.1    | 63.8          | 1.3              | 8.0              |
| Mn (total)          | ТА       | 61      | <0.1    | 0.3           | <0.1             | 0.0              |
| iiii (totai)        | TB       | 61      | <0.1    | 0.3           | <0.1             | 0.0              |
|                     | TT       | 2       | <0.1    | <0.1          | < 0.1            | 0.0              |
|                     | IN       | 2       | <0.1    | 1             | 0.4              | 0.4              |
|                     | AP       | 2       | < 0.1   | 0.2           | 0.1              | 0.1              |
| Mn (soluble)        | ТА       | NM      | NM      | NM            | NM               | NM               |
| . ,                 | TB       | NM      | NM      | NM            | NM               | NM               |
|                     | TT       | 2       | < 0.1   | 0.3           | 0.2              | 0.2              |
|                     | IN       | 63      | 19.9    | 55.8          | 39.3             | 4.8              |
| U (total)           | AP       | 63      | 26.6    | 48.9          | 39.3             | 3.7              |
|                     | ТА       | 61      | 1.3     | 135           | _(a)             | _(a)             |

Table 4-10. Summary of Analytical Results for Arsenic, Iron, Manganese, and Uranium

|             | Sampling | Sample | Conc    | Standard |                  |                  |
|-------------|----------|--------|---------|----------|------------------|------------------|
| Parameter   | Location | Count  | Minimum | Maximum  | Average          | Deviation        |
| U (total)   | TB       | 61     | 1.4     | 90.9     | _ <sup>(a)</sup> | _(a)             |
| (Continued) | TT       | 2      | 2.8     | 71.6     | _ <sup>(a)</sup> | _ <sup>(a)</sup> |
|             | IN       | 2      | < 0.1   | 41       | 20.3             | 28.7             |
|             | AP       | 2      | 24.8    | 41.0     | 32.9             | 11.4             |
| U (soluble) | TA       | NM     | NM      | NM       | NM               | NM               |
| · · · ·     | TB       | NM     | NM      | NM       | NM               | NM               |
|             | TT       | 2      | < 0.1   | 72.0     | _(a)             | _(a)             |

# Table 4-10. Summary of Analytical Results for Arsenic, Iron, Manganese, and Uranium (Continued)

(a) Statistics not provided; see Figures 4-14 and 4-16 for breakthrough curves.

NM = not measured.

One-half of detection limit used for samples with concentrations <MDL for calculations.

|                               | Sampling |      | Sample | С       | oncentration |         | Standard  |
|-------------------------------|----------|------|--------|---------|--------------|---------|-----------|
| Parameter                     | Location | Unit | Count  | Minimum | Maximum      | Average | Deviation |
|                               | IN       | mg/L | 63     | 155     | 190          | 169     | 7.2       |
|                               | AP       | mg/L | 63     | 158     | 196          | 169     | 7.0       |
| Alkalinity                    | TA       | mg/L | 61     | 156     | 209          | 172     | 13.0      |
| $(as CaCO_3)$                 | TB       | mg/L | 61     | 156     | 219          | 172     | 12.3      |
|                               | TT       | mg/L | 2      | 186     | 211          | 199     | 17.7      |
|                               | IN       | mg/L | 3      | 0.9     | 1.1          | 1.0     | 0.1       |
|                               | AP       | mg/L | 3      | 0.8     | 1.1          | 0.9     | 0.2       |
| Fluoride                      | ТА       | mg/L | 1      | 0.5     | 0.5          | 0.5     | NA        |
|                               | TB       | mg/L | 1      | 0.8     | 0.8          | 0.8     | NA        |
|                               | TT       | mg/L | 2      | 0.6     | 0.8          | 0.7     | 0.1       |
|                               | IN       | mg/L | 3      | 26.1    | 29.0         | 27.4    | 1.5       |
|                               | AP       | mg/L | 3      | 25.0    | 37.0         | 29.7    | 6.4       |
| Sulfate                       | TA       | mg/L | 1      | 26.2    | 26.2         | 26.2    | NA        |
|                               | TB       | mg/L | 1      | 31.2    | 31.2         | 31.2    | NA        |
|                               | TT       | mg/L | 2      | 27.0    | 32.0         | 29.5    | 3.5       |
|                               | IN       | mg/L | 3      | 0.7     | 0.8          | 0.7     | 0.1       |
|                               | AP       | mg/L | 3      | 0.7     | 0.8          | 0.7     | 0.1       |
| Nitrate (as N)                | TA       | mg/L | 1      | 0.4     | 0.4          | 0.4     | NA        |
|                               | TB       | mg/L | 1      | 0.6     | 0.6          | 0.6     | NA        |
|                               | TT       | mg/L | 2      | 0.7     | 0.8          | 0.7     | 0.0       |
|                               | IN       | μg/L | 63     | <10     | 26.1         | <10     | 2.9       |
|                               | AP       | μg/L | 63     | <10     | 23.4         | <10     | 3.0       |
| Total P (as PO <sub>4</sub> ) | TA       | μg/L | 61     | <10     | 13.0         | <10     | 1.6       |
|                               | TB       | μg/L | 61     | <10     | 15.3         | <10     | 1.9       |
|                               | TT       | μg/L | 2      | <10     | <10          | <10     | 0.0       |
|                               | IN       | mg/L | 63     | 11.1    | 15.7         | 14.1    | 0.9       |
|                               | AP       | mg/L | 63     | 11.1    | 16.3         | 14.0    | 1.0       |
| Silica (as SiO <sub>2</sub> ) | TA       | mg/L | 61     | 9.3     | 30.4         | 15.8    | 3.5       |
|                               | TB       | mg/L | 61     | 10.2    | 25.9         | 15.3    | 2.7       |
|                               | TT       | mg/L | 2      | 15.7    | 21.7         | 18.7    | 4.2       |
|                               | IN       | NTU  | 63     | <1.0    | 3.1          | <1.0    | 0.6       |
| Turbidity                     | AP       | NTU  | 63     | < 0.1   | 6.2          | 0.6     | 0.9       |
|                               | TA       | NTU  | 61     | < 0.1   | 3.9          | 0.6     | 0.7       |

Table 4-11. Summary of Water Quality Parameter Sampling Results

|                         | Sampling |      | Sample | C       | oncentration |         | Standard  |
|-------------------------|----------|------|--------|---------|--------------|---------|-----------|
| Parameter               | Location | Unit | Count  | Minimum | Maximum      | Average | Deviation |
| Turbidity               | TB       | NTU  | 61     | < 0.1   | 2.6          | 0.6     | 0.5       |
| (Continued)             | TT       | NTU  | 2      | 0.3     | 0.4          | 0.4     | 0.1       |
|                         | IN       | mg/L | 2      | <1.0    | <1.0         | <1.0    | 0         |
|                         | AP       | mg/L | 2      | <1.0    | <1.0         | <1.0    | 0         |
| TOC                     | TA       | mg/L | NA     | NA      | NA           | NA      | NA        |
|                         | TB       | mg/L | NA     | NA      | NA           | NA      | NA        |
|                         | TT       | mg/L | 2      | <1.0    | <1.0         | <1.0    | 0         |
|                         | IN       | S.U. | 2      | 9.0     | 9.1          | 9.0     | 0.1       |
|                         | AP       | S.U. | 56     | 6.9     | 8.1          | 7.3     | 0.2       |
| pН                      | TA       | S.U. | 1      | 8.0     | 8.0          | 8.0     | NA        |
|                         | TB       | S.U. | 1      | 8.1     | 8.1          | 8.1     | NA        |
|                         | TT       | S.U. | 2      | 8.3     | 8.6          | 8.5     | 0.2       |
|                         | IN       | °C   | 2      | 20.4    | 22.3         | 21.4    | 1.3       |
|                         | AP       | °C   | 2      | 20.4    | 21.8         | 21.1    | 1.0       |
| Temperature             | ТА       | °C   | NA     | NA      | NA           | NA      | NA        |
|                         | TB       | °C   | NA     | NA      | NA           | NA      | NA        |
|                         | TT       | °C   | 2      | 20.2    | 22.6         | 21.4    | 1.7       |
|                         | IN       | mg/L | 2      | 6.8     | 6.9          | 6.9     | 0.1       |
| Dissolved               | AP       | mg/L | 2      | 3.4     | 3.8          | 3.6     | 0.3       |
| Oxygen                  | ТА       | mg/L | NA     | NA      | NA           | NA      | NA        |
| Oxygen                  | TB       | mg/L | NA     | NA      | NA           | NA      | NA        |
|                         | TT       | mg/L | 2      | 4.2     | 4.7          | 4.5     | 0.3       |
|                         | IN       | mV   | 2      | 391.3   | 396          | 394     | 3.3       |
|                         | AP       | mV   | 2      | 409     | 442          | 426     | 23.1      |
| ORP                     | TA       | mV   | NA     | NA      | NA           | NA      | NA        |
|                         | TB       | mV   | NA     | NA      | NA           | NA      | NA        |
|                         | TT       | mV   | 2      | 424     | 467          | 446     | 30.2      |
|                         | IN       | mg/L | 3      | 6       | 7            | 7       | 0.6       |
| Total Hardness          | AP       | mg/L | 3      | 6       | 7            | 7       | 0.8       |
| (as CaCOa)              | TA       | mg/L | 1      | 8       | 8            | 8       | NA        |
| (as CaCO <sub>3</sub> ) | TB       | mg/L | 1      | 8       | 8            | 8       | NA        |
|                         | TT       | mg/L | 2      | 7       | 41           | 24      | 23.8      |
|                         | IN       | mg/L | 3      | 6       | 7            | 7       | 0.6       |
| Ca Hardness             | AP       | mg/L | 3      | 6       | 7            | 6       | 0.8       |
| $(as CaCO_a)$           | TA       | mg/L | 1      | 8       | 8            | 8       | NA        |
| (as CaCO3)              | TB       | mg/L | 1      | 8       | 8            | 8       | NA        |
|                         | TT       | mg/L | 2      | 7       | 40           | 23      | 23.5      |
|                         | IN       | mg/L | 3      | 0.1     | 0            | 0.1     | 0.0       |
| Mg Hardness             | AP       | mg/L | 3      | 0.1     | 0            | 0.1     | 0.0       |
| $(as CaCO_{2})$         | TA       | mg/L | 1      | 0.6     | 1            | 1       | NA        |
| (45 04003)              | TB       | mg/L | 1      | 0.5     | 1            | 1       | NA        |
|                         | TT       | mg/L | 2      | 0.1     | 1            | 0       | 0.3       |

 Table 4-11. Summary of Water Quality Parameter Sampling Results (Continued)

One-half of detection limit used for samples with concentrations <MDL for calculations.

It is well established that arsenic adsorption on iron-based media performs the best between pH 6.0 to 8.0. As pH increases and approaches the point of zero charge, the availability of adsorption sites on the media surface diminishes. As such, arsenic not only will no longer be adsorbed onto the media but also will begin to desorb. During the performance evaluation study, there were difficulties maintaining a constant  $CO_2$  supply at the site (Section 4.4.2), thus causing repeated losses of pH control prior to adsorption.



Figure 4-18. Total Arsenic Breakthrough Curves

Figure 4-19 superimposes effluent arsenic and uranium concentrations with the downloaded in-line pH data during March 31 through June 20, 2008, as plotted in Figure 4-17a. The four concentration spikes observed during this period, i.e., 46.9 and 44.7  $\mu$ g/L on April 22, 2008, and 43.5 and 41.5  $\mu$ g/L on May 13, 2008, occurred when the system was operating without pH control. The fact that the concentration spikes had concentrations even higher than those in the system influent (i.e., 31.5 and 40.5  $\mu$ g/L on April 22 and May 13, 2008, respectively) indicate probable arsenic desorption without pH control.

Since the treatment system lost pH control periodically, the adsorptive media beds apparently operated at repeated adsorption and desorption cycles, with captured arsenic being intermittently "flushed" from the media beds. The loss of pH control is likely the reason for the adsorption vessels not exhausting as expected, even after treating 121,390 BV of water (or twice the working capacity [61,300 BV] projected by the vendor) by the end of the performance evaluation study.

*Uranium.* Originating from rocks and mineral deposits, uranium found in most drinking water sources is naturally occurring and contains three isotopes: U-238 (over 99% by weight), U-235, and U-234. Due to varying amounts of each isotope in the water, the ratio of uranium concentration ( $\mu$ g/L) to activity (pCi/L) varies with drinking water sources from region to region. Based on considerations of kidney toxicity and carcinogenicity, EPA proposed a uranium MCL of 20  $\mu$ g/L in 1991 (corresponding to 30 pCi/L based on a mass/activity ratio of 1.5 pCi/ $\mu$ g of uranium). The final rule was set at 30  $\mu$ g/L in December 2000 after the conversion factor was revised to 1 pCi/ $\mu$ g (EPA, 2000). In this study, uranium was analyzed by an ICP-MS method (EPA Method 200.8) with the results expressed in  $\mu$ g/L. Uranium activity (pCi/L) was not reported to avoid potential confusion associated with the use of different conversion factors.



Figure 4-19. Real-time pH values at AP Location vs. Effluent As and U Concentrations

Total uranium concentrations in source water ranged from 19.9 to 55.8  $\mu$ g/L and averaged 39.3  $\mu$ g/L. Figure 4-20 shows that uranium was removed to <20  $\mu$ g/L during the entire study period, except for eight occasions, indicating that AD-33 media was capable of removing uranium. The eight occasions with elevated uranium included the six when arsenic concentrations also were elevated (Figure 4-18).

Similar to arsenic, the uranium concentration spikes observed in the system effluent were likely caused by loss of pH control. As shown in Figure 4-19, the four uranium spikes (i.e., 105 and 90.9  $\mu$ g/L on April 22, 2008, and 62.4 and 50.6  $\mu$ g/L on May 13, 2008) occurred when pH values at AP were above 9. These concentrations were higher than the corresponding influent concentrations of 41.5 and 37.4  $\mu$ g/L on April 22 and May 13, 2008, respectively, indicating desorption from the media beds. Similar to arsenic, uranium breakthrough at MCL did not occur during the performance evaluation study.

*Competing Anions.* Phosphate and silica, which might influence arsenic adsorption, were measured at the five sampling locations across the treatment train. Phosphate concentrations in source water were low, i.e., less than  $26 \mu g/L$  (as PO<sub>4</sub>). Silica concentrations in source water ranged from 11.1 to 15.7 mg/L and averaged 14.1 mg/L. Figure 4-21 presents the silica concentration curves across the treatment train. No silica concentration reduction was observed. Instead, silica concentrations in system effluent were frequently higher than measured in source water, as shown in Figure 4-21. The reason for higher silica concentrations in effluent is unknown.



Figure 4-20. Total Uranium Breakthrough Curves



Figure 4-21. Total Silica (as SiO<sub>2</sub>) Breakthrough Curves

*Iron and Manganese.* Total iron concentrations in source water and following the adsorption vessels were mostly below the MDL of 25  $\mu$ g/L (Table 4-10). Total manganese levels in source water also were low, ranging from <0.1 to 10.8  $\mu$ g/L and averaging 0.8  $\mu$ g/L. Total manganese levels were reduced to mostly below the MDL of 0.1  $\mu$ g/L in system effluent.

*Other Water Quality Parameters.* As shown in Table 4-11, alkalinity, reported as CaCO<sub>3</sub>, ranged from 155 to 190 mg/L and averaged 169 mg/L in source water. As expected, alkalinity after pH adjustment and adsorption remained essentially unchanged at 169 mg/L (on average) at AP and 172 mg/L (on average) at TA and TB, since  $CO_2$ , instead of mineral acids, was used for pH adjustment.

The treatment plant water samples were analyzed for hardness only during three sampling events. Total hardness concentrations, reported as CaCO<sub>3</sub>, ranged from 6 to 7 mg/L and averaged 7 mg/L in source water. Total hardness existed primarily as calcium hardness. Total hardness remained unchanged at 7 to 8 mg/L, on average, following pH adjustment (at AP) and adsorption (at TA and TB).

Sulfate and fluoride concentrations were measured only during three sampling events. Sulfate concentrations in source water ranged from 26.1 to 29.0 mg/L and averaged 27.4 mg/L. After pH adjustment and adsorption, sulfate levels remained unchanged at 26.2 to 31.2mg/L (on average). Fluoride concentrations in source water ranged from 0.9 to 1.1 mg/L and averaged 1.0 mg/L. Fluoride concentrations following the treatment vessels reduced slightly to 0.5 to 0.8 mg/L.

Average DO levels ranged from 3.6 to 6.9 mg/L throughout the treatment train. ORP readings averaged 394 mV in source water and increased to an average of 426 mV at AP and an average of 446 in system effluent. High DO levels and ORP readings suggest that the source water was oxidizing.

**4.5.2 Spent Media Sampling.** On August 20, 2008, after treating approximately 41,600,000 gal (or 78,200 BV) of water, the operator collected a media sample approximately 6 in below the surface of the media beds from both vessels. Each sample was split, with a portion of each sent to Battelle and Teledyne Brown Laboratories (a subcontractor to AdEdge) for ICP/MS and uranium activity analysis, respectively. Table 4-12 presents the ICP/MS results.

|          |     | Concentrations (µg/g) |       |      |       |     |         |     |      |      |     |      |     |      |     |     |
|----------|-----|-----------------------|-------|------|-------|-----|---------|-----|------|------|-----|------|-----|------|-----|-----|
| Analytes | Mg  | Al                    | Si    | Р    | Ca    | V   | Fe      | Mn  | Ni   | Cu   | Zn  | As   | Cd  | Ba   | Pb  | U   |
| Vessel A | 575 | 1,607                 | 1,548 | 84.0 | 1,708 | 490 | 232,724 | 408 | 91.9 | 23.2 | 301 | 21.5 | 0.1 | 135  | 1.7 | 300 |
| Vessel B | 575 | 2,310                 | 2,361 | 89.8 | 1,509 | 441 | 197,188 | 413 | 69.0 | 42.9 | 381 | 28.8 | 0.0 | 89.2 | 3.9 | 213 |

Table 4-12. Spent Media Total Metal Analysis

As shown in the table, arsenic and uranium concentrations in the spent media were low, ranging from 21.5 to 28.8  $\mu$ g/g (or 0.002 to 0.003%) and from 213 to 300  $\mu$ g/g (or 0.02 to 0.03%), respectively. The ICP/MS results indicated that the media were only minimally loaded with arsenic and uranium even after treating 41,600,000 gal of water.

These arsenic and uranium loadings were compared to the 6,593- and 8,049- $\mu$ g/g loadings assuming 100% arsenic and uranium removal from source water (this was close to the actual percentage removal based on the breakthrough curves). The media analytical data indicate that only 0.38% and 3.2% of influent arsenic and uranium mass were retained on the media, which would be possible only if captured arsenic and uranium had been intermittently "flushed" out of the media beds due presumably to losses of pH control as discussed in Section 4.4.2.

Table 4-13 presents the results of uranium activity analysis conducted by Teledyne Brown Laboratories. An average uranium activity of 120 pCi/g (dry wt) was measured for the spent media.

| Analyte  | U-233/234<br>(pCi/g) | U-235<br>(pCi/g) | U-238<br>(pCi/g) | U<br>(pCi/g) |
|----------|----------------------|------------------|------------------|--------------|
| Vessel A | 78.5                 | 2.75             | 60.1             | 141          |
| Vessel B | 55.4                 | 1.45             | 41.3             | 98.2         |
| Average  | 67.0                 | 2.1              | 50.7             | 120          |

Table 4-13. Spent Media UraniumActivity Analysis

**4.5.3** Backwash Water Sampling. Backwash was not performed during the performance evaluation study.

**4.5.4 Distribution System Water Sampling.** Table 4-14 summarizes the results of the distribution system sampling. The stagnation times for the first draw samples ranged from 5.0 to 23.8 hr, which met the requirements of the EPA LCR sampling protocol (EPA, 2002).

Prior to the installation/operation of the treatment system, baseline distribution system water samples were collected from three sampling locations served by three production wells including the Buffalo Well. After system startup, the sampling locations were moved to three new locations served only by the treated water supplied by the Buffalo Well. Comparison of water quality between the Buffalo Well (IN location in Tables 4-10 and 4-11) and the three wells combined (baseline in Table 4-14) revealed that while pH of the Buffalo Well water was slightly higher than the three wells combined (i.e., 9.0 vs. 8.7 on average), concentrations of arsenic, iron, manganese and alkalinity were rather comparable.

Figure 4-22 plots arsenic concentrations of distribution system water. Average arsenic concentrations in distribution water were reduced from an average of 33.7  $\mu$ g/L in baseline samples to below MCL during most sampling events, with exceptions on August 15, 2007, February 27, 2008, and May 29, 2008. Loss of pH control most likely was the reason for the elevated concentrations observed. This was confirmed by the August 15, 2007, system effluent data that included elevated arsenic concentrations at 19.1 and 19.5  $\mu$ g/L (Figure 4-18). Available in-line pH data indicated a source-water level pH value on May 29, 2008. In-line pH data were not available for August 15, 2007 and February 27, 2008.

Figure 4-23 plots uranium concentrations measured in distribution system water. Similar to arsenic, uranium concentrations in distribution water were reduced to below MCL (i.e.,  $30 \ \mu g/L$ ) during most sampling events. The exceptions were on July 10, 2007, August 15, 2007, February 27, 2008, and April 2, 2008, when higher than MCL concentrations were measured. On August 15, 2007, elevated uranium concentrations at 68.9 and 66.9  $\mu$ g/L also were measured in system effluent (Figure 4-20). In-line pH data indicated elevated pH values on April 2, 2008. In-line pH data for the other three sampling events were not available.

Lead concentrations ranged from 0.1 to 12.8  $\mu$ g/L, with no sample exceeding the action level of 15  $\mu$ g/L. Copper concentrations ranged from 4.8 to 385  $\mu$ g/L, with no sample exceeding the 1,300  $\mu$ g/L action level. Measured pH values ranged from 7.0 to 8.9 and averaged 7.5, which were 0.5 to 1.0 units lower than the avearge pH value immediately after the adsorption vessels (i.e. at TA, TB, and TT). Compared to an average value of 8.7 before the treatment system became operational, the significantly lowered pH values did not appear to have affected the lead or copper concentrations in the distribution system.

|                    |           |                 |     |            |      | DS1       |       |      |      |      |                 |      |            |      | DS2        |       |      |      |      |                 |      |            |      | DS3     |       |          |      |      |
|--------------------|-----------|-----------------|-----|------------|------|-----------|-------|------|------|------|-----------------|------|------------|------|------------|-------|------|------|------|-----------------|------|------------|------|---------|-------|----------|------|------|
|                    |           |                 |     |            | s    | erafin Vi | gil   |      |      |      |                 |      | -          | Ba   | lerie Vigi | il    |      |      |      |                 |      |            | Fra  | ank Rom | ero   |          |      |      |
| Sampli             | ing Event | Stagnation Time | Hd  | Alkalinity | As   | Fe        | Mn    | 5    | Pb   | Сц   | Stagnation Time | Hd   | Alkalinity | As   | Fe         | Mn    | D    | Pb   | Cu   | Stagnation Time | Hd   | Alkalinity | As   | Fe      | Mn    | <u> </u> | PP   | Cu   |
| No.                | Date      | hr              | S.U | mg/L       | μg/L | μg/L      | μg/L  | μg/L | μg/L | μg/L | hr              | S.U. | mg/L       | μg/L | μg/L       | μg/L  | μg/L | μg/L | μg/L | hr              | S.U. | mg/L       | μg/L | μg/L    | μg/L  | μg/L     | μg/L | μg/L |
| BL1 <sup>(a)</sup> | 12/23/03  | 7.0             | 8.9 | 170        | 28.7 | <25       | 1.5   | NS   | <0.1 | 50.8 | NA              | 8.9  | 175        | 29.6 | <25        | 0.5   | NS   | 2.3  | 8.8  | NA              | 9.0  | 175        | 30.5 | 41      | 1.3   | NS       | 0.2  | 63.2 |
| BL2 <sup>(a)</sup> | 01/21/04  | 11.8            | 9.0 | 165        | 39.7 | <25       | 0.3   | NS   | 0.9  | 51.0 | 15.5            | 8.9  | 173        | 38.5 | <25        | 0.4   | NS   | 2.0  | 2.7  | 15.8            | 9.1  | 173        | 40.4 | <25     | 0.3   | NS       | 0.5  | 60.4 |
| BL3 <sup>(a)</sup> | 02/19/04  | 8.0             | 8.7 | 176        | 42.3 | <25       | 0.6   | NS   | 3.3  | 57.7 | 14.8            | 8.7  | 182        | 44.2 | <25        | 0.7   | NS   | 1.9  | 7.0  | 15.8            | 8.8  | 168        | 43.8 | <25     | 1.2   | NS       | 0.4  | 70.8 |
| BL4 <sup>(a)</sup> | 03/31/04  | 10.5            | 6.9 | 214        | 2.6  | <25       | 0.1   | NS   | 1.0  | 236  | 15.8            | 8.7  | 167        | 32.7 | <25        | 0.9   | NS   | 2.3  | 11.2 | 17.0            | 8.7  | 163        | 32.0 | <25     | 0.9   | NS       | 0.2  | 60.7 |
| 1                  | 07/10/07  | 8.5             | 8.1 | 176        | 4.3  | <25       | 0.1   | 27.8 | 3.1  | 125  | 7.0             | 8.3  | 185        | 8.8  | <25        | < 0.1 | 38.3 | <0.1 | 37.4 | 8.5             | 8.2  | 183        | 8.3  | <25     | 0.1   | 40.8     | <0.1 | 28.3 |
| 2                  | 08/15/07  | 9.3             | 8.5 | 165        | 16.6 | <25       | <0.1  | 73.7 | 1.5  | 42.4 | 7.8             | 8.7  | 162        | 18.9 | <25        | < 0.1 | 63.2 | 0.2  | 11.4 | 6.5             | 8.9  | 165        | 21.2 | <25     | <0.1  | 61.8     | 0.2  | 4.8  |
| 3                  | 09/13/07  | 8.4             | 7.7 | 181        | 6.6  | <25       | <0.1  | 19.5 | 1.1  | 70.7 | 6.0             | 7.4  | 173        | 5.4  | <25        | <0.1  | 15.6 | 1.2  | 134  | 6.5             | 7.2  | 171        | 4.6  | <25     | <0.1  | 15.5     | 0.7  | 198  |
| 4                  | 10/25/07  | NS              | NS  | NS         | NS   | NS        | NS    | NS   | NS   | NS   | 9.8             | 7.3  | 165        | 5.1  | <25        | 0.1   | 10.4 | 1.8  | 125  | 8.0             | 7.2  | 168        | 5.4  | <25     | 0.1   | 11.2     | 0.4  | 162  |
| 5                  | 11/20/07  | 23.8            | 7.3 | 192        | 1.9  | <25       | 5.7   | 7.5  | 12.8 | 13.2 | 5.5             | 7.3  | 167        | 2.0  | <25        | 0.1   | 5.6  | 1.6  | 284  | 6.8             | 7.3  | 171        | 2.1  | <25     | 0.2   | 6.5      | 1.0  | 228  |
| 6                  | 01/17/08  | 7.8             | 7.3 | 163        | 6.1  | <25       | <0.1  | 19.6 | 3.4  | 385  | 8.0             | 7.6  | 174        | 5.8  | <25        | 0.7   | 15.7 | <0.1 | 31.0 | 8.0             | 7.3  | 176        | 6.5  | <25     | 0.2   | 23.1     | 1.0  | 260  |
| 7                  | 01/31/08  | 5.3             | 7.3 | 178        | 5.7  | 26        | 0.1   | 24.7 | 0.9  | 42.6 | 7.0             | 7.3  | 174        | 5.3  | 34         | 0.1   | 24.2 | 0.8  | 129  | 7.0             | 7.1  | 170        | 4.7  | 56      | 0.9   | 18.6     | 0.5  | 136  |
| 8                  | 02/27/08  | 8.5             | 7.5 | 172        | 15.0 | <25       | <0.1  | 35.6 | 0.5  | 56.4 | 19.3            | 7.1  | 168        | 10.3 | <25        | 0.6   | 32.0 | <0.1 | 152  | 7.0             | 7.2  | 170        | 10.8 | <25     | <0.1  | 27.8     | 0.2  | 199  |
| 9                  | 04/02/08  | 8.0             | 7.2 | 171        | 8.4  | <25       | <0.1  | 30.3 | 0.8  | 51.7 | 6.0             | 7.0  | 169        | 9.0  | <25        | < 0.1 | 27.2 | 0.3  | 99.3 | 6.0             | 7.1  | 173        | 11.2 | <25     | <0.1  | 37.7     | 0.3  | 127  |
| 10                 | 05/29/08  | 9.0             | 7.3 | 177        | 16.6 | <25       | < 0.1 | 25.2 | 3.5  | 283  | 5.0             | 7.2  | 177        | 16.6 | <25        | < 0.1 | 25.9 | 0.1  | 28.1 | 5.5             | 7.3  | 175        | 12.8 | <25     | 0.2   | 25.6     | 0.3  | 158  |
| 11                 | 07/24/08  | 8.0             | 7.1 | 169        | 6.3  | <25       | < 0.1 | 12.2 | 1.2  | 146  | 7.0             | 7.1  | 167        | 2.5  | <25        | < 0.1 | 6.1  | 0.3  | 37.3 | 6.5             | 7.2  | 167        | 4.3  | <25     | 0.2   | 10.3     | 1.3  | 182  |
| 12                 | 09/10/08  | 7.5             | 7.6 | NA         | 10.2 | <25       | <0.1  | 20.3 | 0.8  | 327  | 9.0             | 7.2  | NA         | 4.4  | <25        | < 0.1 | 7.4  | <0.1 | 168  | 6.5             | 7.1  | NA         | 3.8  | <25     | < 0.1 | 8.2      | <0.1 | 184  |

## Table 4-14. Distribution System Sampling Results

Lead action level = 15 µg/L; copper action level = 1.3 mg/L BL = Baseline Sampling; NA = Not Available; NS = Not Sampled. (a) Baseline sampling locations moved to locations served by only Buffalo Well after system startup.



Figure 4-22. Arsenic Concentrations Measured in Distribution System Water



Figure 4-23. Uranium Concentrations Measured in Distribution System Water

Alkalinity levels ranged from 162 to 192 mg/L (as CaCO<sub>3</sub>). Iron was detected in one of the sampling events; manganese concentrations ranged from <0.1 to 5.7  $\mu$ g/L. The arsenic treatment system did not seem to affect these water quality parameters in the distribution system.

#### 4.6 System Cost

System cost is evaluated based on the capital cost per gpm (or gpd) of the design capacity and the O&M cost per 1,000 gal of water treated. The capital cost includes the cost for equipment, site engineering, and installation. The O&M cost includes the cost for media replacement and disposal, electrical use, and labor.

**4.6.1 Capital Cost**. The capital investment for equipment, site engineering, and installation of the treatment system was \$143,113 (see Table 4-15). The equipment cost was \$116,645 (or 82% of the total capital investment), which included the cost for two APU-160 vessels, 71.2 ft<sup>3</sup> of AD-33 media, pH adjustment module, instrumentation and controls, miscellaneous materials and supplies, labor, and shipping.

The site engineering cost was \$11,638, or 8% of the total capital investment. Because an engineering plan or a permit submittal package was not required for the Nambe Pueblo site, the site engineering cost represents a small fraction of total capital cost.

| [                               |                |            |                 |  |  |  |  |  |  |  |  |
|---------------------------------|----------------|------------|-----------------|--|--|--|--|--|--|--|--|
|                                 |                | <i>a</i> . | % of Capital    |  |  |  |  |  |  |  |  |
| Description                     | Quantity       | Cost       | Investment Cost |  |  |  |  |  |  |  |  |
| Equipment Costs                 |                |            |                 |  |  |  |  |  |  |  |  |
| APU-160 Tanks                   | 2              | \$33,697   | —               |  |  |  |  |  |  |  |  |
| AD-33 Media                     | 71.2 $ft^3$    | \$18,620   | -               |  |  |  |  |  |  |  |  |
| Piping and Valves               | _              | \$11,656   | -               |  |  |  |  |  |  |  |  |
| Instrument and Controls         |                | \$7,735    | —               |  |  |  |  |  |  |  |  |
| pH Adjustment Module            |                | \$17,100   | —               |  |  |  |  |  |  |  |  |
| O&M Manual and Training         |                | \$4,535    | —               |  |  |  |  |  |  |  |  |
| Vendor Labor                    |                | \$20,377   | —               |  |  |  |  |  |  |  |  |
| Shipping CO <sub>2</sub> System |                | \$350      | —               |  |  |  |  |  |  |  |  |
| Shipping APU System and Media   | _              | \$2,575    | _               |  |  |  |  |  |  |  |  |
| Equipment Total                 | _              | \$116,645  | 82              |  |  |  |  |  |  |  |  |
|                                 | Engineering    | Costs      |                 |  |  |  |  |  |  |  |  |
| Materials                       | _              | \$75       | -               |  |  |  |  |  |  |  |  |
| Vendor Labor                    |                | \$3,420    | —               |  |  |  |  |  |  |  |  |
| Subcontractor Labor             | _              | \$7,150    | -               |  |  |  |  |  |  |  |  |
| Vendor Travel                   |                | \$993      | —               |  |  |  |  |  |  |  |  |
| Engineering Total               |                | \$11,638   | 8               |  |  |  |  |  |  |  |  |
|                                 | Installation ( | Costs      |                 |  |  |  |  |  |  |  |  |
| Material                        | _              | \$400      | _               |  |  |  |  |  |  |  |  |
| Subcontractor                   |                | \$10,100   |                 |  |  |  |  |  |  |  |  |
| Vendor Labor                    |                | \$3,040    |                 |  |  |  |  |  |  |  |  |
| Vendor Travel                   |                | \$1,290    |                 |  |  |  |  |  |  |  |  |
| Installation Total              |                | \$14,830   | 10              |  |  |  |  |  |  |  |  |
| Total Capital Investment        | _              | \$143,113  | 100             |  |  |  |  |  |  |  |  |

| Table 4-15. Capital Investment Cost for Nambel Leolo System | Table 4-15. | Capital Invest | ment Cost for M | Nambe Pueblo | System |
|-------------------------------------------------------------|-------------|----------------|-----------------|--------------|--------|
|-------------------------------------------------------------|-------------|----------------|-----------------|--------------|--------|

The installation cost included the equipment and labor to unload and install the skid-mounted unit, perform piping tie-ins and electrical work, load and backwash the media, perform system shakedown and startup, and conduct operator training. The installation cost was \$14,830, or 10% of the total capital investment.

The total capital cost of \$143,113 was normalized to the system's rated capacity of 160 gpm (230,400 gpd), which resulted in \$894/gpm of design capacity (\$0.62/gpd). The capital cost also was converted to an annualized cost of \$13,508/yr using a capital recovery factor (CRF) of 0.09439 based on a 7% interest rate and a 20-year return period. Assuming that the system operated 24 hours a day, 7 days a week at the system design flowrate of 160 gpm to produce 84,096,000 gal of water per year, the unit capital cost would be \$0.16/1,000 gal. Because the system operated an average of 12.3 hr/day at approximately 114 gpm (see Table 4-8), producing 30,708,180 gal of water annually, the unit capital cost increased to \$0.44/1,000 gal at this reduced rate of use.

**4.6.2 Operation and Maintenance Cost.** The O&M cost included the cost for media replacement and disposal,  $CO_2$  use, electricity consumption, and labor (Table 4-16). Although media replacement did not occur during the system performance evaluation, the media replacement cost for both vessels would have represented the majority of the O&M cost and was estimated to be \$29,532. This media change-out cost would include the cost for media, underbedding gravels, freight, labor, travel, spent media analysis, and media disposal fee. This cost was used to estimate the media replacement cost per 1,000 gal of water treated as a function of the projected media run length at the 10  $\mu$ g/L arsenic breakthrough from the adsorption vessels (Figure 4-24).

| Cost Category                         | Value              | Assumptions                                                 |
|---------------------------------------|--------------------|-------------------------------------------------------------|
| Volume Processed (kgal)               | 11,500             | 05/15/07-09/28/09                                           |
| Medi                                  | ia Replacement and | Disposal                                                    |
| Media Cost (\$/ft <sup>3</sup> )      | 274                | Vendor quote                                                |
| Total Media Volume (ft <sup>3</sup> ) | 71.2               | Both vessels                                                |
| Media Replacement Cost (\$)           | 19,525             | Vendor quote                                                |
| Freight (\$)                          | 707                | Vendor quote                                                |
| Labor Cost (\$)                       | 4,200              | Vendor quote                                                |
| Disposal of Spent Media (\$)          | 5,100              | Vendor quote                                                |
| Subtotal                              | 29,532             | Vendor quote                                                |
| Media Replacement and Disposal        |                    | Based upon media run length at 10-µg/L                      |
| Cost (\$/1,000 gal)                   | See Figure 4-24    | arsenic breakthrough                                        |
|                                       | Chemical Usage     |                                                             |
| CO <sub>2</sub> Gas (\$/1,000 gal)    | \$0.20             | Based on the cost of CO <sub>2</sub> cylinders for          |
|                                       |                    | pH adjustment                                               |
|                                       | Electricity        |                                                             |
| Electricity Cost (\$/1,000 gal)       | 0.00               | Electrical cost assumed negligible                          |
|                                       | Labor              |                                                             |
| Average Weekly Labor (hrs)            | 32.5               | 6.5 hr/day (5 days/week)                                    |
| Labor Cost (\$/1,000 gal)             | \$1.16             | Labor rate = $21/hr$                                        |
| Total O&M Cost/1,000 gal              | See Figure 4-24    | Based upon media run length at 10-µg/L arsenic breakthrough |

| Table 4-16   | Operation | and Mainte | mance Cost | for the l | Namhe Pu  | ehlo System |
|--------------|-----------|------------|------------|-----------|-----------|-------------|
| 1 auto 4-10. | Operation |            |            | 101 the l | Nambe F u | culo System |

The chemical cost included the cost for NaClO for pre- and post-chlorination and  $CO_2$  gas for pH adjustment. NaClO was already used at the site prior to the installation of the APU unit for disinfection purposes prior to distribution. The presence of the APU system did not affect the use rate of the NaClO solution. Therefore, the incremental chemical cost for chlorine was negligible. The  $CO_2$  cost for pH adjustment was recorded to be \$6,260 per year or \$0.20/1,000 gal of water treated.

Comparison of electrical bills supplied by the utility prior to system installation and since startup did not indicate a noticeable increase in power consumption. Therefore, electrical cost associated with operation of the system was assumed to be negligible. Under normal operating conditions, routine labor activities to operate and maintain the system consumed 6.5 hr per day, 5 days per week, as noted in Section 4.4.4. Therefore, the estimated labor cost was \$1.16/1,000 gal of water treated. This estimation assumes that maintenance and operational procedures were consistently performed through the completion of the system performance evaluation.



Note: One bed volume equals 71.2 ft<sup>3</sup> (532 gal)

Figure 4-24. Media Replacement and Operation and Maintenance Cost

#### **5.0 REFERENCES**

- Battelle. 2003. *Revised Quality Assurance Project Plan for Evaluation of Arsenic Removal Technology*. Prepared under Contract No. 68-C-00-185, Task Order No. 0019, for U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH.
- Battelle. 2005. Final System Performance Evaluation Study Plan: U.S. EPA Demonstration of Arsenic Removal Technology at the Webb Consolidated Independent School District in Bruni, Texas. Prepared under Contract No. 68-C-00-185, Task Order No. 0029 for U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH.
- Chen, A.S.C., L. Wang, J.L. Oxenham, and W.E. Condit. 2004. Capital Costs of Arsenic Removal Technologies: U.S. EPA Arsenic Removal Technology Demonstration Program Round 1. EPA/600/R-04/201. U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH.
- Edwards, M., S. Patel, L. McNeill, H. Chen, M. Frey, A.D. Eaton, R.C. Antweiler, and H.E. Taylor. 1998. "Considerations in As Analysis and Speciation." J. AWWA, 90(3):103-113.
- EPA. 2000. National primary Drinking Water Regulations: Radionuclides Final Rule. *Fed. Register*, 40 CFR Parts 9, 141, and 142.
- EPA. 2001. National Primary Drinking Water Regulations: Arsenic and Clarifications to Compliance and New Source Contaminants Monitoring. *Fed. Register*, 40 CFR Parts 9, 141, and 142.
- EPA. 2002. Lead and Copper Monitoring and Reporting Guidance for Public Water Systems. EPA/816/R-02/009. U.S. Environmental Protection Agency, Office of Water, Washington, DC.
- EPA. 2003. Minor Clarification of the National Primary Drinking Water Regulation for Arsenic. *Federal Register*, 40 CFR Part 141.
- Wang, L., W.E. Condit, and A.S.C. Chen. 2004. Technology Selection and System Design: U.S. EPA Arsenic Removal Technology Demonstration Program Round 1. EPA/600/R-05/001. U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH.

# APPENDIX A

#### **OPERATIONAL DATA**

|             |          | Buffalo       | o Well         |          |           |            |                        |          | Instr     | ument Pano | el                     |            |         |          |                     |        |
|-------------|----------|---------------|----------------|----------|-----------|------------|------------------------|----------|-----------|------------|------------------------|------------|---------|----------|---------------------|--------|
|             |          | Pump          |                |          | Vessel A  | Flow Meter |                        |          | Vessel B  | Flow Meter |                        |            |         |          | $\Delta \mathbf{P}$ |        |
|             |          | Hour<br>Meter | Incr.<br>Hours | Flowrate | Totalizer | Incr. Flow | Calculated<br>Flowrate | Flowrate | Totalizer | Incr. Flow | Calculated<br>Flowrate | System Thr | oughput | Vessel A | Vessel B            | System |
| Week<br>No. | Date     | hr            | hr             | gpm      | gal       | gal        | gpm                    | gpm      | gal       | gal        | gpm                    | gal        | BV      | psig     | psig                | psi    |
|             | 05/15/07 | NA            | NA             | NA       | NA        | NA         | NA                     | NA       | NA        | NA         | NA                     | NA         | NA      | NA       | NA                  | NA     |
|             | 07/09/07 | 2,345.6       | NA             | 63.4     | 2,807,920 | NA         | NA                     | 60.7     | 2,610,655 | NA         | NA                     | 5,418,575  | 10,185  | 0.5      | 1.2                 | 5      |
|             | 07/16/07 | 2,428.2       | 82.6           | 64.5     | 3,124,554 | 316,634    | 63.9                   | 63.0     | 2,909,728 | 299,073    | 60.3                   | 6,034,282  | 11,343  | 1.5      | 4.0                 | 0      |
| 1           | 07/17/07 | 2,443.2       | 15.0           | 61.8     | 3,182,383 | 57,829     | 64.3                   | 61.1     | 2964292   | 54,564     | 60.6                   | 6,146,675  | 11,554  | 1.0      | 1.0                 | 3      |
|             | 07/18/07 | 2,453.0       | 9.8            | 66.6     | 3,222,963 | 40,580     | 69.0                   | 64.1     | 3,002,523 | 38,231     | 65.0                   | 6,225,486  | 11,702  | 1.5      | 1.5                 | 4      |
|             | 07/20/07 | 2,479.1       | 26.1           | 67.8     | 3,321,797 | 98,834     | 63.1                   | 62.4     | 3,095,457 | 92,934     | 59.3                   | 6,417,254  | 12,063  | 1.0      | 1.0                 | NA     |
|             | 07/23/07 | 2,512.2       | 33.1           | 64.1     | 3,446,277 | 124,480    | 62.7                   | 61.0     | 3,212,544 | 117,087    | 59.0                   | 6,658,821  | 12,517  | 1.5      | 1.0                 | 0      |
|             | 07/24/07 | 2,521.6       | 9.4            | 68.4     | 3,482,810 | 36,533     | 64.8                   | 61.2     | 3,245,392 | 32,848     | 58.2                   | 6,728,202  | 12,647  | 1.0      | 1.5                 | 4      |
| 2           | 07/25/07 | 2,540.4       | 18.8           | 66.6     | 3,555,184 | 72,374     | 64.2                   | 60.8     | 3,311,010 | 65,618     | 58.2                   | 6,866,194  | 12,906  | 1.0      | 1.5                 | 1      |
|             | 07/26/07 | 2,548.6       | 8.2            | 61.2     | 3,586,675 | 31,491     | 64.0                   | 56.4     | 3,339,705 | 28,695     | 58.3                   | 6,926,380  | 13,020  | 1.5      | 1.5                 | NA     |
|             | 07/27/07 | 2,550.6       | 2.0            | 62.1     | NA        | NA         | NA                     | 59.1     | NA        | NA         | NA                     | NA         | NA      | 1.0      | 1.0                 | 0      |
|             | 07/30/07 | 2,592.7       | 42.1           | 65.0     | 3,758,554 | 171,879    | 65.0                   | 60.0     | 3,497,128 | 157,423    | 59.5                   | 7,255,682  | 13,639  | 2.0      | 1.0                 | 0      |
|             | 07/31/07 | 2,605.6       | 12.9           | 64.0     | 3,808,614 | 50,060     | 286.7                  | 58.0     | 3,543,142 | 46,014     | 59.4                   | 7,351,756  | 13,819  | 1.0      | 1.0                 | 2      |
| 3           | 08/01/07 | 2,616.5       | 10.9           | 64.0     | 3,850,739 | 42,125     | 64.4                   | 62.1     | 3,581,913 | 38,771     | 59.3                   | 7,432,652  | 13,971  | 2.0      | 1.0                 | 0      |
|             | 08/02/07 | 2,627.5       | 11.0           | 65.0     | 3,892,596 | 41,857     | 63.4                   | 57.0     | 3,620,474 | 38,561     | 58.4                   | 7,513,070  | 14,122  | 2.0      | 1.0                 | 0      |
|             | 08/03/07 | 2,635.7       | 8.2            | 63.4     | 3,924,622 | 32,026     | 65.1                   | 58.1     | 3,649,995 | 29,521     | 60.0                   | 7,574,617  | 14,238  | 4.0      | 1.0                 | 0      |
|             | 08/06/07 | 2,679.3       | 43.6           | 61.1     | 4,088,525 | 163,903    | 62.7                   | 57.3     | 3,801,246 | 151,251    | 57.8                   | 7,889,771  | 14,830  | 1.0      | 1.0                 | 4      |
|             | 08/07/07 | 2,714.3       | 35.0           | 60.8     | 4,215,243 | 126,718    | 60.3                   | 57.1     | 3,918,186 | 116,940    | 55.7                   | 8,133,429  | 15,288  | 1.0      | 1.0                 | 4      |
| 4           | 08/09/07 | 2,739.1       | 24.8           | 60.8     | 4,303,663 | 88,420     | 59.4                   | 56.7     | 3,999,709 | 81,523     | 54.8                   | 8,303,372  | 15,608  | 1.0      | 1.0                 | 4      |
|             | 08/10/07 | 2,763.6       | 24.5           | 60.6     | 4,390,682 | 87,019     | 59.2                   | 56.1     | 4,079,920 | 80,211     | 54.6                   | 8,470,602  | 15,922  | 1.0      | 1.0                 | 4      |
|             | 08/11/07 | 2,775.0       | 11.4           | 59.2     | 4,431,111 | 40,429     | 59.1                   | 53.9     | 4,117,167 | 37,247     | 54.5                   | 8,548,278  | 16,068  | 1.0      | 1.0                 | 3      |
|             | 08/13/07 | 2,829.1       | 54.1           | 60.1     | 4,634,775 | 203,664    | 62.7                   | 58.6     | 4,295,982 | 178,815    | 55.1                   | 8,930,757  | 16,787  | 1.0      | 1.0                 | 4      |
| 5           | 08/14/07 | 2,852.8       | 23.7           | 60.3     | 4,713,195 | 78,420     | 55.1                   | 61.3     | 4,377,465 | 81,483     | 57.3                   | 9,090,660  | 17,088  | 1.0      | 1.0                 | 4      |
| 5           | 08/15/07 | 2,864.1       | 11.3           | 66.4     | 4,756,069 | 42,874     | 63.2                   | 61.7     | 4,417,138 | 39,673     | 58.5                   | 9,173,207  | 17,243  | 1.0      | 1.0                 | 4      |
|             | 08/16/07 | 2,877.0       | 12.9           | 60.3     | 4,757,001 | 932        | 1.2                    | 59.1     | 4,418,240 | 1,102      | 1.4                    | 9,175,241  | 17,247  | 1.0      | 1.0                 | 4      |
|             | 08/20/07 | 2,949.0       | 72.0           | 61.6     | 5,051,630 | 294,629    | 68.2                   | 59.5     | 4,693,468 | 275,228    | 63.7                   | 9,745,098  | 18,318  | 1.0      | 1.0                 | 3      |
|             | 08/21/07 | 2,974.1       | 25.1           | 60.7     | 5,158,025 | 106,395    | 70.6                   | 56.2     | 4,793,149 | 99,681     | 66.2                   | 9,951,174  | 18,705  | 1.0      | 1.0                 | 3      |
| 6           | 08/22/07 | 2,997.2       | 23.1           | 60.3     | 5,238,846 | 80,821     | 58.3                   | 59.8     | 4,868,906 | 75,757     | 54.7                   | 10,107,752 | 19,000  | 1.0      | 1.0                 | 3      |
|             | 08/23/07 | 3,022.7       | 25.5           | 60.6     | 5,328,955 | 90,109     | 58.9                   | 56.1     | 4,953,405 | 84,499     | 55.2                   | 10,282,360 | 19,328  | 1.0      | 1.0                 | 3      |
|             | 08/24/07 | 3,024.8       | 2.1            | 60.1     | 5,388,102 | 59,147     | 469.4                  | 59.1     | 4,953,512 | 107        | 0.8                    | 10,341,614 | 19,439  | 1.0      | 1.0                 | 2      |

Table A-1 EPA Arsenic Demonstration Project at Nambe Pueblo, NM - Daily System Operation Log Sheet

(a) Bed volume = 35.6 cu.ft. (266 gal) in each vessel or 71.2 cu.ft. (532 gal) total for two vessels.

NA = Not Availble.

|       |          | Buffalo       | Well           |          |           |            |                        |          | Instr     | ument Pano | el                     |             |         |          |                     |        |
|-------|----------|---------------|----------------|----------|-----------|------------|------------------------|----------|-----------|------------|------------------------|-------------|---------|----------|---------------------|--------|
|       |          | Pump          |                |          | Vessel A  | Flow Meter |                        |          | Vessel B  | Flow Meter |                        |             |         |          | $\Delta \mathbf{P}$ |        |
| XV I- |          | Hour<br>Meter | Incr.<br>Hours | Flowrate | Totalizer | Incr. Flow | Calculated<br>Flowrate | Flowrate | Totalizer | Incr. Flow | Calculated<br>Flowrate | System Thre | oughput | Vessel A | Vessel B            | System |
| No.   | Date     | hr            | hr             | gpm      | gal       | gal        | gpm                    | gpm      | gal       | gal        | gpm                    | gal         | BV      | psig     | psig                | psi    |
|       | 08/27/07 | 3,115.2       | 90.4           | 59.1     | 5,658,901 | 270,799    | 49.9                   | 56.4     | 5,254,908 | 301,396    | 55.6                   | 10,913,809  | 20,515  | 1.0      | 1.0                 | 3      |
|       | 08/28/07 | 3,141.9       | 26.7           | 60.6     | 5,752,359 | 93,458     | 58.3                   | 54.7     | 5,341,489 | 86,581     | 54.0                   | 11,093,848  | 20,853  | 1.0      | 1.0                 | NA     |
| 7     | 08/29/07 | 3,163.4       | 21.5           | 60.5     | 5,828,198 | 75,839     | 58.8                   | 53.4     | 5,411,096 | 69,607     | 54.0                   | 11,239,294  | 21,126  | 1.0      | 2.0                 | 4      |
|       | 08/30/07 | 3,191.1       | 27.7           | 51.9     | 5,925,460 | 173,101    | 58.6                   | 55.8     | 5,500,466 | 89,370     | 53.8                   | 11,425,926  | 21,477  | 1.0      | 2.0                 | 3      |
|       | 08/31/07 | 3,203.2       | 12.1           | 62.9     | 5,967,883 | 42,423     | 58.4                   | 54.4     | 5,539,485 | 39,019     | 53.7                   | 11,507,368  | 21,630  | 1.0      | 1.0                 | 3      |
|       | 09/10/07 | 3,453.1       | 249.9          | 58.9     | 6,836,737 | 868,854    | 57.9                   | 54.4     | 6,342,914 | 803,429    | 53.6                   | 13,179,651  | 24,774  | 1.0      | 1.0                 | 4      |
|       | 09/11/07 | 3,478.5       | 25.4           | 53.1     | 6,922,456 | 85,719     | 56.2                   | 52.2     | 6,422,449 | 79,535     | 52.2                   | 13,344,905  | 25,084  | 1.0      | 1.0                 | 4      |
| 9     | 09/12/07 | 3,494.4       | 15.9           | 61.0     | 6,978,299 | 55,843     | 58.5                   | 57.4     | 6,474,329 | 51,880     | 54.4                   | 13,452,628  | 25,287  | 1.0      | 1.0                 | 4      |
|       | 09/13/07 | 3,509.7       | 15.3           | 61.2     | 7,033,757 | 55,458     | 60.4                   | 56.4     | 6,525,692 | 51,363     | 56.0                   | 13,559,449  | 25,488  | 1.0      | 1.0                 | 4      |
|       | 09/14/07 | 3,524.1       | 14.4           | 58.2     | 7,086,492 | 108,193    | 60.7                   | 54.1     | 6,574,841 | 49,149     | 56.9                   | 13,661,333  | 25,679  | 1.0      | 1.0                 | 4      |
|       | 09/17/07 | 3,576.9       | 52.8           | 59.7     | 7,262,245 | 175,753    | 55.5                   | 53.9     | 6,738,734 | 163,893    | 51.7                   | 14,000,979  | 26,318  | 1.0      | 1.0                 | 3      |
|       | 09/18/07 | 3,603.6       | 26.7           | 59.9     | 7,354,100 | 91,855     | 57.3                   | 54.6     | 6,822,670 | 83,936     | 52.4                   | 14,176,770  | 26,648  | 1.0      | 1.0                 | 4      |
| 10    | 09/19/07 | 3,610.7       | 7.1            | 55.4     | 7,376,413 | 114,168    | 56.3                   | 51.2     | 6,843,950 | 21,280     | 50.0                   | 14,220,363  | 26,730  | 1.0      | 1.0                 | 3      |
|       | 09/20/07 | 3,622.4       | 11.7           | 70.4     | 7,416,870 | 40,457     | 57.6                   | 63.0     | 6,881,640 | 37,690     | 53.7                   | 14,298,510  | 26,877  | 1.0      | 1.0                 | 4      |
|       | 09/21/07 | 3,629.6       | 7.2            | 59.4     | 7,477,069 | 60,199     | 139.3                  | 57.9     | 6,891,028 | 9,388      | 21.7                   | 14,368,097  | 27,008  | 1.0      | 1.0                 | 4      |
|       | 09/24/07 | 3,668.2       | 38.6           | 66.1     | 7,569,652 | 152,782    | 40                     | 63.8     | 7,021,813 | 130,785    | 56.5                   | 14,591,465  | 27,428  | 1.0      | 2.0                 | 2      |
|       | 09/25/07 | 3,680.8       | 12.6           | 57.4     | 7,616,949 | 47,297     | 62.6                   | 57.0     | 7,066,357 | 44,544     | 58.9                   | 14,683,306  | 27,600  | 1.0      | 2.0                 | 2      |
| 11    | 09/26/07 | 3,690.2       | 9.4            | 62.4     | 7,652,262 | 35,313     | 62.6                   | 59.1     | 7,099,503 | 33,146     | 58.8                   | 14,751,765  | 27,729  | 1.0      | 2.0                 | 2      |
|       | 09/27/07 | 3,707.0       | 16.8           | 57.9     | 7,709,793 | 57,531     | 57.1                   | 56.0     | 7,153,809 | 54,306     | 53.9                   | 14,863,602  | 27,939  | 1.0      | 1.0                 | 1      |
|       | 09/28/07 | 3,715.6       | 8.6            | 60.0     | 7,735,632 | 25,839     | 50.1                   | 54.9     | 7,179,650 | 25,841     | 50.1                   | 14,915,282  | 28,036  | 1.0      | 1.0                 | 1      |
|       | 10/01/07 | 3,747.4       | 31.8           | 54.1     | 7,837,308 | 101,676    | 53.3                   | 51.6     | 7,275,279 | 95,629     | 50.1                   | 15,112,587  | 28,407  | 1.0      | 1.0                 | 1      |
| 12    | 10/02/07 | 3,766.1       | 18.7           | 58.7     | 7,901,529 | 64,221     | 57.2                   | 57.2     | 7,335,541 | 60,262     | 53.7                   | 15,237,070  | 28,641  | 1.0      | 1.0                 | 1      |
|       | 10/04/07 | 3,785.1       | 19.0           | 56.8     | 7,967,646 | 130,338    | 57.6                   | 53.2     | 7,397,668 | 62,127     | 54.5                   | 15,365,314  | 28,882  | 1.0      | 1.0                 | 1      |
|       | 10/08/07 | 3,830.1       | 45.0           | 62.1     | 8,163,893 | 196,247    | 72.7                   | 54.1     | 7,582,755 | 185,087    | 68.6                   | 15,746,648  | 29,599  | 1.0      | 1.0                 | 1      |
|       | 10/09/07 | 3,846.3       | 16.2           | 58.1     | 8,178,980 | 15,087     | 15.5                   | 53.4     | 7,595,875 | 13,120     | 13.5                   | 15,774,855  | 29,652  | 1.0      | 1.0                 | 1      |
| 13    | 10/10/07 | 3,851.1       | 4.8            | 64.3     | 8,194,555 | 15,575     | 54.1                   | 62.1     | 7,610,517 | 14,642     | 50.8                   | 15,805,072  | 29,709  | 1.0      | 1.0                 | 1      |
|       | 10/11/07 | 3,852.6       | 1.5            | 61.3     | 8,200,169 | 5,614      | 62.4                   | 63.4     | 7,615,760 | 5,243      | 58.3                   | 15,815,929  | 29,729  | 1.0      | 1.0                 | 0      |
|       | 10/12/07 | 3,854.4       | 1.8            | 67.0     | 8,206,406 | 6,237      | 57.7                   | 64.4     | 7,621,592 | 5,832      | 54.0                   | 15,827,998  | 29,752  | 1.0      | 1.0                 | 3      |
|       | 10/15/07 | 3,864.0       | 9.6            | 67.8     | 8,240,515 | 34,109     | 59.2                   | 60.2     | 7,653,931 | 32,339     | 56.1                   | 15,894,446  | 29,877  | 2.0      | 1.0                 | 0      |
|       | 10/16/07 | 3,867.2       | 3.2            | 66.8     | 8,252,243 | 11,728     | 61.1                   | 63.3     | 7,664,397 | 10,466     | 54.5                   | 15,916,640  | 29,918  | 1.0      | 1.0                 | 0      |
| 14    | 10/17/07 | 3,870.6       | 3.4            | 63.4     | 8,264,334 | 12,091     | 59.3                   | 61.9     | 7,675,719 | 11,322     | 55.5                   | 15,940,053  | 29,963  | 1.0      | 1.0                 | 0      |
|       | 10/18/07 | 3,874.9       | 4.3            | 64.4     | 8,276,334 | 12,000     | 46.5                   | 60.9     | 7,685,795 | 10,076     | 39.1                   | 15,962,129  | 30,004  | 2.0      | 1.0                 | 0      |
|       | 10/19/07 | 3,877.5       | 2.6            | 67.8     | 8,288,132 | 11,798     | 75.6                   | 61.8     | 7,697,509 | 11,714     | 75.1                   | 15,985,641  | 30,048  | 1.0      | 1.0                 | 0      |

Table A-1. EPA Arsenic Demonstration Project at Nambe Pueblo, NM - Daily System Operation Log Sheet (Continued)

(a) Bed volume = 35.6 cu.ft. (266 gal) in each vessel or 71.2 cu.ft. (532 gal) total for two vessels.

NA = Not Availble.

|              |                          | Buffalo       | o Well         |              |                  |                  |                        |          | Instr     | ument Pane | el 🛛                   |            |         |          |          |        |
|--------------|--------------------------|---------------|----------------|--------------|------------------|------------------|------------------------|----------|-----------|------------|------------------------|------------|---------|----------|----------|--------|
|              |                          | Pump          |                |              | Vessel A         | Flow Meter       |                        |          | Vessel B  | Flow Meter |                        |            |         |          | ΔP       |        |
| <b>X</b> Y 1 |                          | Hour<br>Meter | Incr.<br>Hours | Flowrate     | Totalizer        | Incr. Flow       | Calculated<br>Flowrate | Flowrate | Totalizer | Incr. Flow | Calculated<br>Flowrate | System Thr | oughput | Vessel A | Vessel B | System |
| Week<br>No.  | Date                     | hr            | hr             | gpm          | gal              | gal              | gpm                    | gpm      | gal       | gal        | gpm                    | gal        | BV      | psig     | psig     | psi    |
|              | 10/22/07                 | 3,873.7       | NA             | 65.4         | 8,275,698        | -12,434          | NA                     | 61.4     | 7,686,334 | NA         | NA                     | 15,962,032 | 30,004  | 1.0      | 1.0      | 1      |
| 15           | 10/23/07                 | 3,883.8       | 6.3            | 64.3         | 8,311,026        | 35,328           | 93.5                   | 54.1     | 7,719,620 | 33,286     | 88.1                   | 16,030,646 | 30,133  | 1.0      | 1.0      | 0      |
| 15           | 10/24/07                 | 3,887.1       | 3.3            | 67.4         | 8,322,944        | 11,918           | 60.2                   | 58.6     | 7,730,445 | 10,825     | 54.7                   | 16,053,389 | 30,176  | 3.0      | 1.0      | 0      |
|              | 10/25/07                 | 3,888.1       | 1.0            | 63.7         | 8,326,509        | 3,565            | 59.4                   | 53.1     | 7,733,538 | 3,093      | 51.6                   | 16,060,047 | 30,188  | 2.0      | 2.0      | 1      |
|              | 10/29/07                 | 3,901.1       | 13.0           | 61.2         | 8,369,032        | 42,523           | 54.5                   | 61.9     | 7,780,785 | 47,247     | 60.6                   | 16,149,817 | 30,357  | 1.0      | 1.0      | 2      |
|              | 10/30/07                 | 3,903.1       | 2.0            | 54.3         | 8,376,856        | 7,824            | 65.2                   | 59.1     | 7,789,222 | 8,437      | 70.3                   | 16,166,078 | 30,387  | 1.0      | 1.0      | 1      |
| 16           | 10/31/07                 | 3,906.8       | 3.7            | 65.1         | 8,389,901        | 13,045           | 58.8                   | 61.1     | 7,803,044 | 13,822     | 62.3                   | 16,192,945 | 30,438  | 1.0      | 1.0      | 1      |
|              | 11/01/07                 | 3,907.4       | 0.6            | 64.4         | 8,390,411        | 510              | 14.2                   | 61.4     | 7,803,429 | 385        | 10.7                   | 16,193,840 | 30,440  | 1.0      | 1.0      | 1      |
|              | 11/02/07                 | 3,910.1       | 2.7            | 62.5         | 8,401,810        | 11,399           | 70.4                   | 59.3     | 7,814,455 | 11,026     | 68.1                   | 16,216,265 | 30,482  | 1.0      | 1.0      | 2      |
|              | 11/05/07                 | 3,917.1       | 7.0            | 64.3         | 8,424,774        | 22,964           | 54.7                   | 61.7     | 7,836,564 | 22,109     | 52.6                   | 16,261,338 | 30,566  | 1.0      | 1.0      | 1      |
|              | 11/06/07                 | 3,920.0       | 2.9            | 64.5         | 8,434,984        | 10,210           | 58.7                   | 64.7     | 7,846,320 | 9,756      | 56.1                   | 16,281,304 | 30,604  | 1.0      | 1.0      | 2      |
| 17           | 11/07/07                 | 3,920.3       | 0.3            | 61.4         | 8,435,255        | 271              | 15.1                   | 61.4     | 7,846,570 | 250        | 13.9                   | 16,281,825 | 30,605  | 1.0      | 1.0      | NA     |
|              | 11/08/07                 | 3,923.4       | 3.1            | 64.9         | 8,447,201        | 11,946           | 64.2                   | 62.2     | 7,858,027 | 11,457     | 61.6                   | 16,305,228 | 30,649  | 1.0      | 1.0      | 1      |
|              | 11/09/07                 | 3,927.4       | 4.0            | 65.7         | 8,460,101        | 12,900           | 53.8                   | 61.1     | 7,868,041 | 10,014     | 41.7                   | 16,328,142 | 30,692  | 1.0      | 2.0      | 1      |
|              | 11/12/07                 | 3,928.7       | 1.3            | 59.1         | 8,466,041        | 5,940            | 76.2                   | 57.4     | 7,876,010 | 7,969      | 102.2                  | 16,342,051 | 30,718  | 1.0      | 1.0      | 1      |
| 18           | 11/13/07                 | 3,929.0       | 0.3            | 64.1         | 8,467,132        | 1,091            | 60.6                   | 62.1     | 7,877,104 | 1,094      | 60.8                   | 16,344,236 | 30,722  | 1.0      | 1.0      | 0      |
| 10           | 11/14/07                 | 3,929.4       | 0.4            | 67.6         | 8,468,411        | 1,279            | 53.3                   | 64.2     | 7,878,261 | 1,157      | 48.2                   | 16,346,672 | 30,727  | 1.0      | 2.0      | 1      |
|              | 11/15/07                 | 3,934.0       | 4.6            | 67.2         | 8,485,553        | 17,142           | 62.1                   | 65.8     | 7,894,614 | 16,353     | 59.3                   | 16,380,167 | 30,790  | 1.0      | 2.0      | 1      |
|              | 11/19/07                 | 3,936.0       | 2.0            | 66.7         | 8,500,184        | 14,631           | 121.9                  | 64.3     | 7,901,354 | 6,740      | 56.2                   | 16,401,538 | 30,830  | 1.0      | 2.0      | 1      |
|              | 11/20/07                 | 3,940.0       | 4.0            | 67.9         | 8,510,643        | 10,459           | 43.6                   | 61.5     | 7,918,155 | 16,801     | 70.0                   | 16,428,798 | 30,881  | 1.0      | 2.0      | 1      |
| 19           | 11/21/07                 | 3,943.0       | 3.0            | 68.4         | 8,522,182        | 11,539           | 64.1                   | 62.5     | 7,928,954 | 10,799     | 60.0                   | 16,451,136 | 30,923  | 1.0      | 1.0      | 2      |
|              | 11/22/07                 | 3,944.2       | 1.2            | 66.2         | 8,530,012        | 7,830            | 108.8                  | 61.2     | 7,939,691 | 10,737     | 149.1                  | 16,469,703 | 30,958  | 1.0      | 1.0      | 1      |
|              | 11/23/07                 | 3,946.7       | 2.5            | 63.6         | 8,534,739        | 4,727            | 31.5                   | 62.1     | 7,940,709 | 1,018      | 6.8                    | 16,475,448 | 30,969  | 1.0      | 2.0      | 1      |
| 20           | 11/26/07                 | 3,949.8       | 3.1            | 65.5         | 8,547,323        | 12,584           | 67.7                   | 62.0     | 7,952,572 | 11,863     | 63.8                   | 16,499,895 | 31,015  | 1.0      | 2.0      | 2      |
| 20           | 11/27/07                 | 3,952.8       | 3.0            | 69.6         | 8,558,197        | 10,874           | 60.4                   | 64.4     | 7,962,837 | 10,265     | 57.0                   | 16,521,034 | 31,055  | 1.0      | 2.0      | 1      |
|              | 12/03/07                 | 3,963.2       | 10.4           | 62.3         | 8,597,981        | 39,784           | 63.8                   | 58.7     | 8,003,550 | 40,713     | 65.2                   | 16,601,531 | 31,206  | 1.0      | 2.0      | 0      |
| 21           | 12/04/07                 | 3,971.5       | 8.3            | 64.1         | 8,627,214        | 29,233           | 58.7                   | 60.8     | 8,027,979 | 24,429     | 49.1                   | 16,655,193 | 31,307  | 1.0      | 1.0      | NA     |
| 21           | 12/05/07                 | 3,976.2       | 4.7            | 61.9         | 8,643,492        | 16,278           | 57.7                   | 59.7     | 8,043,375 | 15,396     | 54.6                   | 16,686,867 | 31,366  | 1.0      | 2.0      | 0      |
|              | 12/06/07                 | 3,984.7       | 8.5            | 61.8         | 8,673,104        | 29,612           | 58.1                   | 57.4     | 8,071,317 | 27,942     | 54.8                   | 16,744,421 | 31,474  | 1.0      | 1.0      | 1      |
| (a) Bed v    | olume = 35.0<br>Availble | 6 cu.ft. (26  | 6 gal) in e    | ach vessel o | r 71.2 cu.ft. (5 | i32 gal) total f | or two vessels         | 3.       |           |            |                        |            |         |          |          |        |

 Table A-1. EPA Arsenic Demonstration Project at Nambe Pueblo, NM - Daily System Operation Log Sheet (Continued)

|           |             | Buffal       | o Well      |              |                 |                |                |          | Instr     | ument Pan  | el         |            |         |          |                     |          |
|-----------|-------------|--------------|-------------|--------------|-----------------|----------------|----------------|----------|-----------|------------|------------|------------|---------|----------|---------------------|----------|
|           |             | Pump         |             |              | Vessel A        | Flow Meter     |                |          | Vessel B  | Flow Meter |            |            |         |          | $\Delta \mathbf{P}$ |          |
|           |             | Hour         | Incr.       | Flowroto     | Totalizar       | In or Flow     | Calculated     | Flowmato | Totolizor | Iner Flow  | Calculated | System Thr | oughput | Vessel A | Voccol P            | System   |
| Week      | Data        | hr           | hr          | gnm          | gal             | gal            | gnm            | gnm      | gal       | gal        | gnm        | gal        | BV      | vessel A | vessel B            | system   |
| NO.       | 12/10/07    | 4.017.4      | 22.7        | 50.4         | 8               | 102.020        | (2.2           | 52 1     | 9 099 174 | 16.047     | 8 <b>r</b> | 16.005.100 | 21.720  | 1.0      | psig                | psi<br>0 |
|           | 12/11/07    | 4,017.4      | 32.7        | 50.6         | 8,797,024       | 125,920        | 03.2           | 55.0     | 8,088,104 | 10,847     | 8.0        | 10,885,188 | 22,107  | 1.0      | 1.0                 | 0        |
| 22        | 12/12/07    | 4,035.0      | 17.0        | 59.0         | 8 862 200       | 49,150         | 285.0          | 56.0     | 8,254,547 | 16 101     | 268.4      | 17,080,701 | 32,107  | 1.0      | 2.0                 | 1        |
|           | 12/12/07    | 4,030.0      | 0.2         | 50.4         | 8,803,309       | 21 101         | 263.9          | 56.0     | 8,230,048 | 26.865     | 66.1       | 17,115,957 | 32,109  | 1.0      | 2.0                 | 0        |
|           | 12/14/07    | 4 056 1      | 10.8        | 61.4         | 8 930 021       | 35.611         | 55.0           | 56.5     | 8 314 002 | 26 489     | 40.9       | 17 244 023 | 32,277  | 1.0      | 1.0                 | 1        |
|           | 12/20/07    | 4 114 2      | 58.1        | 59.0         | 0 127 604       | 107 673        | 56.7           | 54.7     | 8 /00 //0 | 185 447    | 53.2       | 17.627.143 | 33 134  | 1.0      | 1.0                 | 1        |
| 23        | 12/21/07    | 4 132 4      | 18.2        | 55.7         | 9 188 263       | 60 569         | 55.5           | 52.6     | 8 556 362 | 56 913     | 52.1       | 17 744 625 | 33 355  | 1.0      | 1.0                 | 1        |
|           | 12/26/07    | 4 178 9      | 46.5        | 51.2         | 9 348 594       | 160 331        | 57.5           | 54.1     | 8 706 924 | 150 562    | 54.0       | 18 055 518 | 33,939  | 1.0      | 1.0                 | 1        |
| 24        | 12/27/07    | 4 186 1      | 7.2         | 56.4         | 9 398 410       | 49 816         | 115.3          | 53.2     | 8 751 831 | 44 907     | 104        | 18 150 241 | 34 117  | 1.0      | 1.0                 | 1        |
|           | 12/28/07    | 4,197.3      | 11.2        | 57.9         | 9,431,614       | 33,204         | 49.4           | 54.1     | 8,794,317 | 42,486     | 63.2       | 18,225,931 | 34,259  | 1.0      | 1.0                 | 0        |
|           | 01/02/08    | 4,250.6      | 53.3        | 51.9         | 9,578,566       | 146,952        | 46.0           | 51.9     | 8,923,809 | 129,492    | 40.5       | 18,502,375 | 34,779  | 1.0      | 5.0                 | 1        |
| 25        | 01/03/08    | 4,261.8      | 11.2        | 51.9         | 9,618,311       | 39,745         | 59.1           | 51.9     | 8,956,486 | 32,677     | 48.6       | 18,574,797 | 34,915  | 1.0      | 1.0                 | 1        |
|           | 01/04/08    | 4,279.5      | 17.7        | 54.3         | 9,645,043       | 26,732         | 25.2           | 54.3     | 8,986,416 | 29,930     | 28.2       | 18,631,459 | 35,022  | 1.0      | 2.0                 | 1        |
|           | 01/07/08    | 4,302.8      | 23.3        | 72.2         | 9,758,579       | 113,536        | 81.2           | 67.5     | 9,093,256 | 106,840    | 76.4       | 18,851,835 | 35,436  | 1.0      | 1.0                 | 2        |
|           | 01/08/08    | 4,315.2      | 12.4        | 58.3         | 9,804,465       | 45,886         | 61.7           | 53.1     | 9,013,730 | -79,526    | NA         | 18,818,195 | 35,373  | 1.0      | 2.0                 | 1        |
| 26        | 01/09/08    | 4,322.7      | 7.5         | 57.3         | 9,829,182       | 24,717         | 54.9           | 52.7     | 9,160,331 | 67,075     | 56.2       | 18,989,513 | 35,695  | 1.0      | 1.0                 | 1        |
|           | 01/10/08    | 4,345.4      | 22.7        | 62.1         | 9,906,807       | 77,625         | 57.0           | 60.1     | 9,173,342 | 13,011     | 9.6        | 19,080,149 | 35,865  | 1.0      | 1.0                 | 1        |
|           | 01/11/08    | 4,350.0      | 4.6         | 57.6         | 9,924,879       | 18,072         | 65.5           | 52.6     | 9,250,514 | 77,172     | 279.6      | 19,175,393 | 36,044  | 1.0      | 1.0                 | 1        |
|           | 01/14/08    | 4,392.5      | 42.5        | 54.3         | 10,065,231      | 140,352        | 55.0           | 51.4     | 9,382,356 | 131,842    | 51.7       | 19,447,587 | 36,556  | 1.0      | 1.0                 | 1        |
|           | 01/15/08    | 4,407.1      | 14.6        | 55.3         | 10,062,491      | NA             | NA             | 53.1     | NA        | NA         | NA         | NA         | NA      | 1.0      | 1.0                 | 1        |
| 27        | 01/16/08    | 4,421.0      | 13.9        | 56.6         | 10,156,567      | 91,336         | 112.8          | 53.7     | 9,468,325 | 85,969     | 50.3       | 19,624,892 | 36,889  | 1.0      | 1.0                 | 0        |
|           | 01/17/08    | 4,437.2      | 16.2        | 55.8         | 10,199,825      | 43,258         | 44.5           | 53.6     | NA        | NA         | NA         | NA         | NA      | 1.0      | 1.0                 | 1        |
|           | 01/18/08    | 4,446.2      | 9.0         | 53.0         | 10,209,213      | 9,388          | 17.4           | 49.9     | 9,546,100 | 77,775     | 51.4       | 19,755,313 | 37,134  | 1.0      | 1.0                 | 1        |
|           | 01/21/08    | 4,484.7      | 38.5        | 60.9         | 10,395,213      | 186,000        | 80.5           | 55.7     | 9,689,821 | 143,721    | 62.2       | 20,085,034 | 37,754  | 1.0      | 1.0                 | 0        |
|           | 01/22/08    | 4,495.2      | 10.5        | 54.1         | 10,406,631      | 11,418         | 18.1           | 53.5     | 9,703,448 | 13,627     | 21.6       | 20,110,079 | 37,801  | 1.0      | 1.0                 | 1        |
| 28        | 01/23/08    | 4,505.6      | 10.4        | 61.3         | 10,441,031      | 34,400         | 55.1           | 60.1     | 9,735,182 | 31,734     | 50.9       | 20,176,213 | 37,925  | 1.0      | 1.0                 | 1        |
| 1         | 01/24/08    | 4,516.8      | 11.2        | 51.0         | 10,478,275      | 37,244         | 55.4           | 52.3     | 9,770,736 | 35,554     | 52.9       | 20,249,011 | 38,062  | 1.0      | 1.0                 | 1        |
|           | 01/25/08    | 4,527.7      | 10.9        | 56.2         | 10,514,264      | 35,989         | 55.0           | 50.8     | 9,804,581 | 33,845     | 51.8       | 20,318,845 | 38,193  | 1.0      | 1.0                 | 1        |
| (a) Bed v | olume = 35. | 6 cu.ft. (26 | 6 gal) in e | ach vessel o | r 71.2 cu.ft. ( | 532 gal) total | for two vessel | s.       |           |            |            |            |         |          |                     |          |
| NA = Not  | Availble.   |              |             |              |                 |                |                |          |           |            |            |            |         |          |                     |          |

 Table A-1. EPA Arsenic Demonstration Project at Nambe Pueblo, NM - Daily System Operation Log Sheet (Continued)

|           |             | Buffal        | o Well         |              |                  |                |                        |          | Instr      | ument Pan  | el                     |            |         |          |                     |        |
|-----------|-------------|---------------|----------------|--------------|------------------|----------------|------------------------|----------|------------|------------|------------------------|------------|---------|----------|---------------------|--------|
|           |             | Pump          |                |              | Vessel A         | Flow Meter     |                        |          | Vessel B   | Flow Meter |                        |            |         |          | $\Delta \mathbf{P}$ |        |
| Week      |             | Hour<br>Meter | Incr.<br>Hours | Flowrate     | Totalizer        | Incr. Flow     | Calculated<br>Flowrate | Flowrate | Totalizer  | Incr. Flow | Calculated<br>Flowrate | System Thr | oughput | Vessel A | Vessel B            | System |
| No.       | Date        | hr            | hr             | gpm          | gal              | gal            | gpm                    | gpm      | gal        | gal        | gpm                    | gal        | BV      | psig     | psig                | psi    |
|           | 01/28/08    | 4,567.2       | 39.5           | 53.4         | 10,645,076       | 130,812        | 55.2                   | 51.2     | 9,927,900  | 123,319    | 52.0                   | 20,572,976 | 38,671  | 1.0      | 1.0                 | 1      |
|           | 01/29/08    | 4,572.2       | 5.0            | 55.0         | 10,660,984       | 15,908         | 53.0                   | 53.1     | 9,942,911  | 15,011     | 50.0                   | 20,603,895 | 38,729  | 1.0      | 1.0                 | 1      |
| 29        | 01/30/08    | 4,581.1       | 8.9            | 51.1         | 10,699,940       | 38,956         | 73.0                   | 52.4     | 9,984,121  | 41,210     | 77.2                   | 20,684,061 | 38,880  | 1.0      | 1.0                 | 1      |
|           | 01/31/08    | 4,598.0       | 16.9           | 54.0         | 10,744,790       | 44,850         | 44.2                   | 55.5     | 10,022,060 | 37,939     | 37.4                   | 20,766,850 | 39,035  | 1.0      | 1.0                 | 0      |
|           | 02/01/08    | 4,607.2       | 9.2            | 54.1         | 10,791,510       | 46,720         | 84.6                   | 53.1     | 10,244,130 | 222,070    | 402.3                  | 21,035,640 | 39,541  | 1.0      | 1.0                 | 1      |
|           | 02/04/08    | 4,642.2       | 35.0           | 53.6         | 10,891,540       | 100,030        | 47.6                   | 49.1     | 10,160,099 | -84,031    | NA                     | 21,051,639 | 39,571  | 1.0      | 1.0                 | 1      |
|           | 02/05/08    | 4,654.8       | 12.6           | 52.6         | 10,933,316       | 41,776         | 55.3                   | 51.8     | 10,199,438 | 39,339     | NA                     | 21,132,754 | 39,723  | 1.0      | 1.0                 | 1      |
| 30        | 02/06/08    | 4,660.8       | 6.0            | 55.4         | 10,952,911       | 19,595         | 54.4                   | 52.6     | 10,217,890 | 18,452     | NA                     | 21,170,801 | 39,795  | 1.0      | 1.0                 | 1      |
|           | 02/07/08    | 4,678.1       | 17.3           | 54.9         | 11,010,332       | 57,421         | 55.3                   | 52.1     | 10,279,190 | 61,300     | 59.1                   | 21,289,522 | 40,018  | 1.0      | 1.0                 | 1      |
|           | 02/08/08    | 4,694.8       | 16.7           | 53.9         | 11,094,210       | 83,878         | 83.7                   | 58.8     | 10,346,421 | 67,231     | 67.1                   | 21,440,631 | 40,302  | 1.0      | 1.0                 | 1      |
|           | 02/11/08    | 4,714.5       | 19.7           | 54.2         | 11,137,523       | 43,313         | 36.6                   | 53.3     | 10,391,483 | 45,062     | 38.1                   | 21,529,006 | 40,468  | 1.0      | 1.0                 | 1      |
|           | 02/12/08    | 4,725.3       | 10.8           | 55.3         | 11,173,139       | 35,616         | 55.0                   | 53.9     | 10,424,972 | 33,489     | 51.7                   | 21,598,111 | 40,598  | 1.0      | 2.0                 | 1      |
| 31        | 02/13/08    | 4,736.4       | 11.1           | 56.2         | 11,209,816       | 36,677         | 55.1                   | 50.9     | 10,459,415 | 34,443     | 51.7                   | 21,669,231 | 40,732  | 1.0      | 1.0                 | 1      |
|           | 02/14/08    | 4,752.5       | 16.1           | 53.3         | 11,262,804       | 52,988         | 54.9                   | 52.1     | 10,509,144 | 49,729     | 51.5                   | 21,771,948 | 40,925  | 1.0      | 1.0                 | 1      |
|           | 02/15/08    | 4,764.9       | 12.4           | 56.0         | 11,303,488       | 40,684         | 54.7                   | 51.5     | 10,547,330 | 38,186     | 51.3                   | 21,850,818 | 41,073  | 1.0      | 1.0                 | 1      |
|           | 02/19/08    | 4,807.2       | 42.3           | 59.1         | 11,450,791       | 147,303        | 58.0                   | 55.6     | 10,686,097 | 138,767    | 54.7                   | 22,136,888 | 41,611  | 1.0      | 1.0                 | 0      |
| 32        | 02/20/08    | 4,817.7       | 10.5           | 56.4         | 11,487,622       | 36,831         | 58.5                   | 54.2     | 10,720,812 | 34,715     | 55.1                   | 22,208,434 | 41,745  | 1.0      | 1.0                 | 0      |
| 52        | 02/21/08    | 4,823.7       | 6.0            | 55.3         | 11,506,882       | 19,260         | 53.5                   | 54.2     | 10,758,974 | 38,162     | 106                    | 22,265,856 | 41,853  | 1.0      | 1.0                 | 0      |
|           | 02/22/08    | 4,842.7       | 19.0           | 54.2         | 11,569,408       | 62,526         | 54.8                   | 52.1     | 10,748,053 | -10,921    | NA                     | 22,317,461 | 41,950  | 1.0      | 1.0                 | 0      |
|           | 02/25/08    | 4,869.1       | 26.4           | 56.9         | 11,655,000       | 85,592         | 54.0                   | 53.5     | 10,878,461 | 130,408    | 82.3                   | 22,533,461 | 42,356  | 1.0      | 1.0                 | 1      |
|           | 02/26/08    | 4,880.2       | 11.1           | 55.4         | 11,691,646       | 36,646         | 55.0                   | 51.3     | 10,913,227 | 34,766     | 52.2                   | 22,604,873 | 42,490  | 1.0      | 1.0                 | 1      |
| 33        | 02/27/08    | 4,899.3       | 19.1           | 53.4         | 11,756,464       | 64,818         | 56.6                   | 52.4     | 10,974,454 | 61,227     | 53.4                   | 22,730,918 | 42,727  | 1.0      | 1.0                 | 0      |
|           | 02/28/08    | 4,909.2       | 9.9            | 56.3         | 11,788,754       | 32,290         | 54.4                   | 51.9     | 11,005,101 | 30,647     | 51.6                   | 22,793,855 | 42,846  | 1.0      | 1.0                 | 1      |
|           | 02/29/08    | 4,920.7       | 11.5           | 55.1         | 11,831,551       | 42,797         | 62.0                   | 52.0     | 11,043,388 | 38,287     | 55.5                   | 22,874,939 | 42,998  | 1.0      | 1.0                 | 1      |
|           | 03/03/08    | 4,952.2       | 31.5           | 52.4         | 11,925,248       | 93,697         | 49.6                   | 51.4     | 11,134,203 | 90,815     | 48.1                   | 23,059,451 | 43,345  | 1.0      | 1.0                 | 1      |
| 1         | 03/04/08    | 4,964.3       | 12.1           | 58.6         | 11,965,565       | 40,317         | 55.5                   | 52.2     | 11,172,225 | 38,022     | 52.4                   | 23,137,790 | 43,492  | 1.0      | 1.0                 | 1      |
| 34        | 03/05/08    | 4,982.3       | 18.0           | 52.4         | 12,024,989       | 59,424         | 55.0                   | 48.8     | 11,228,181 | 55,956     | 51.8                   | 23,253,170 | 43,709  | 1.0      | 1.0                 | 1      |
|           | 03/06/08    | 4,995.0       | 12.7           | 55.0         | 12,063,879       | 38,890         | 51.0                   | 50.3     | 11,264,778 | 36,597     | 48.0                   | 23,328,657 | 43,851  | 1.0      | 1.0                 | 1      |
|           | 03/07/08    | 5,014.2       | 19.2           | 56.8         | 12,328,105       | 264,226        | 229.4                  | 54.6     | 11,373,315 | 108,537    | 94.2                   | 23,701,420 | 44,552  | 1.0      | 1.0                 | 1      |
| (a) Bed v | olume = 35. | 6 cu.ft. (26  | 6 gal) in e    | ach vessel o | r 71.2 cu.ft. (5 | 532 gal) total | for two vessel         | s.       |            |            |                        |            |         |          |                     |        |
| NA = Not  | Availble.   |               |                |              |                  |                |                        |          |            |            |                        |            |         |          |                     |        |

 Table A-1. EPA Arsenic Demonstration Project at Nambe Pueblo, NM - Daily System Operation Log Sheet (Continued)

|              |             | Buffalo       | o Well         |              |                  |               |                        |          | Instr      | ument Pane | el                     |             |         |          |          |        |
|--------------|-------------|---------------|----------------|--------------|------------------|---------------|------------------------|----------|------------|------------|------------------------|-------------|---------|----------|----------|--------|
|              |             | Pump          |                |              | Vessel A         | Flow Meter    |                        |          | Vessel B   | Flow Meter |                        |             |         |          | ΔP       |        |
| <b>X</b> V 1 |             | Hour<br>Meter | Incr.<br>Hours | Flowrate     | Totalizer        | Incr. Flow    | Calculated<br>Flowrate | Flowrate | Totalizer  | Incr. Flow | Calculated<br>Flowrate | System Thre | oughput | Vessel A | Vessel B | System |
| No.          | Date        | hr            | hr             | gpm          | gal              | gal           | gpm                    | gpm      | gal        | gal        | gpm                    | gal         | BV      | psig     | psig     | psi    |
|              | 03/10/08    | 5,032.5       | 18.3           | 0            | 12,190,789       | 126,910       | NA                     | 0        | 11,384,145 | 10,830     | 9.9                    | 23,574,934  | 44,314  | 1.0      | 1.0      | 0      |
|              | 03/11/08    | 5,048.5       | 16.0           | 51.2         | 12,243,822       | 53,033        | 55.2                   | 50.0     | 11,434,061 | 49,916     | 52.0                   | 23,677,883  | 44,507  | 1.0      | 1.0      | 1      |
| 35           | 03/12/08    | 5,067.7       | 19.2           | 53.4         | 12,290,147       | 46,325        | 40.2                   | 50.4     | 11,477,654 | 43,593     | 37.8                   | 23,767,801  | 44,676  | 1.0      | 1.0      | 0      |
|              | 03/13/08    | 5,074.2       | 6.5            | 56.8         | 12,328,105       | 37,958        | 97.3                   | 54.6     | 11,513,015 | 35,361     | 90.7                   | 23,841,120  | 44,814  | 1.0      | 1.0      | 1      |
|              | 03/14/08    | 5,083.6       | 9.4            | 0            | 12,358,817       | 30,712        | 54.5                   | 0        | 11,542,162 | 29,147     | 51.7                   | 23,900,979  | 44,927  | 1.0      | 1.0      | 0      |
|              | 03/17/08    | 5,121.5       | 37.9           | 57.3         | 12,482,568       | 123,751       | 54.4                   | 50.7     | 11,658,495 | 116,333    | 51.2                   | 24,141,063  | 45,378  | 1.0      | 1.0      | 0      |
|              | 03/18/08    | 5,126.4       | 4.9            | 0            | 12,497,898       | 15,330        | 52.1                   | 0        | 11,672,980 | 14,485     | 49.3                   | 24,170,878  | 45,434  | 1.0      | 1.0      | 0      |
| 36           | 03/19/08    | 5,137.8       | 11.4           | 61.2         | 12,536,640       | 38,742        | 56.6                   | 59.6     | 11,709,362 | 36,382     | 53.2                   | 24,246,002  | 45,575  | 1.0      | 1.0      | 1      |
|              | 03/20/08    | 5,157.4       | 19.6           | 53.4         | 12,601,109       | 64,469        | 54.8                   | 49.9     | 11,770,081 | 60,719     | 51.6                   | 24,371,190  | 45,811  | 1.0      | 1.0      | 0      |
|              | 03/21/08    | 5,149.1       | NA             | 54.1         | 12,682,090       | 80,981        | NA                     | 51.1     | 11,811,120 | 41,039     | NA                     | 24,493,210  | 46,040  | 1.0      | 1.0      | 0      |
|              | 03/24/08    | 5,213.7       | 64.6           | 52.4         | 12,791,884       | 190,775       | 49.2                   | 54.5     | 11,949,211 | 138,091    | 35.6                   | 24,741,095  | 46,506  | 1.0      | 1.0      | 1      |
|              | 03/25/08    | 5,227.4       | 13.7           | 55.5         | 12,836,029       | 44,145        | 53.7                   | 53.4     | 11,990,941 | 41,730     | 50.8                   | 24,826,970  | 46,667  | 1.0      | 1.0      | 0      |
| 37           | 03/26/08    | 5,235.1       | 7.7            | 60.2         | 12,860,627       | 24,598        | 53.2                   | 54.6     | 12,014,216 | 23,275     | 50.4                   | 24,874,843  | 46,757  | 1.0      | 1.0      | 1      |
|              | 03/27/08    | 5,248.6       | 13.5           | 54.2         | 12,906,019       | 45,392        | 56.0                   | 54.0     | 12,056,815 | 42,599     | 52.6                   | 24,962,834  | 46,923  | 1.0      | 1.0      | 1      |
|              | 03/29/08    | 5,283.7       | 35.1           | 54.4         | 13,021,358       | 115,339       | 54.8                   | 51.4     | 12,168,680 | 111,865    | 53.1                   | 25,190,038  | 47,350  | 1.0      | 1.0      | 1      |
|              | 03/31/08    | 5,305.2       | 21.5           | 55.3         | 13,089,520       | 68,162        | 52.8                   | 55.0     | 12,230,152 | 61,472     | 47.7                   | 25,319,672  | 47,593  | 1.0      | 1.0      | 1      |
|              | 04/01/08    | 5,324.1       | 18.9           | 60.6         | 13,151,374       | 61,854        | 54.5                   | 52.8     | 12,288,839 | 58,687     | 51.8                   | 25,440,213  | 47,820  | 1.0      | 1.0      | 1      |
| 38           | 04/02/08    | 5,336.8       | 12.7           | 0            | 13,192,882       | 41,508        | 54.5                   | 0        | 12,328,945 | 40,106     | 52.6                   | 25,521,827  | 47,973  | 0:       | ff       | NA     |
|              | 04/03/08    | 5,351.7       | 14.9           | 56.5         | 13,244,271       | 51,389        | 57.5                   | 54.8     | 12,377,264 | 48,319     | 54.0                   | 25,621,535  | 48,161  | 1.0      | 1.0      | 1      |
|              | 04/04/08    | 5,391.4       | 39.7           | 54.2         | 13,377,678       | 133,407       | 56.0                   | 52.9     | 12,503,437 | 126,173    | 53.0                   | 25,881,115  | 48,649  | 1.0      | 1.0      | 1      |
|              | 04/07/08    | 5,400.1       | 8.7            | 60.5         | 13,406,024       | 161,753       | 55.7                   | 54.4     | 12,530,430 | 26,993     | 51.7                   | 25,936,454  | 48,753  | 1.0      | 1.0      | 1      |
|              | 04/08/08    | 5,413.3       | 13.2           | 62.8         | 13,499,228       | 93,204        | 177.7                  | 58.8     | 12,571,340 | 40,910     | 51.7                   | 26,070,568  | 49,005  | 1.0      | 1.0      | 1      |
| 39           | 04/09/08    | 5,434.0       | 20.7           | 58.4         | 13,517,864       | 18,636        | 15                     | 54.2     | 12,613,183 | 41,843     | 33.7                   | 26,131,047  | 49,119  | 1.0      | 1.0      | 1      |
|              | 04/10/08    | 5,446.8       | 12.8           | 57.4         | 13,558,576       | 40,712        | 53.0                   | 54.1     | 12,676,414 | 63,231     | 82.3                   | 26,234,990  | 49,314  | 1.0      | 1.0      | 1      |
|              | 04/12/08    | 5,474.1       | 27.3           | 54.8         | 13,651,282       | 92,706        | 56.6                   | 53.2     | 12,764,047 | 87,633     | 53.5                   | 26,415,329  | 49,653  | 1.0      | 1.0      | 1      |
|              | 04/14/08    | 5,494.2       | 20.1           | 62.7         | 13,716,992       | 65,710        | 54.5                   | 57.5     | 12,826,014 | 61,967     | 51.4                   | 26,543,006  | 49,893  | 1.0      | 1.0      | 1      |
|              | 04/15/08    | 5,508.2       | 14.0           | 61.3         | 13,763,265       | 46,273        | 55.1                   | 58.7     | 12,864,795 | 38,781     | 46.2                   | 26,628,060  | 50,053  | 1.0      | 1.0      | 1      |
| 40           | 04/16/08    | 5,522.5       | 14.3           | 54.7         | 13,808,840       | 45,575        | 53.1                   | 54.5     | 12,912,929 | 48,134     | 56.1                   | 26,721,769  | 50,229  | 1.0      | 1.0      | 1      |
|              | 04/17/08    | 5,542.2       | 19.7           | 60.2         | 13,819,777       | 10,937        | 9.3                    | 57.1     | 12,978,759 | 65,830     | 55.7                   | 26,798,536  | 50,373  | 1.0      | 1.0      | 1      |
|              | 04/18/08    | 5,570.1       | 27.9           | 60.3         | 13,900,019       | 80,242        | 47.9                   | 56.8     | 13,010,674 | 31,915     | 19.1                   | 26,910,693  | 50,584  | 1.0      | 1.0      | 1      |
| (a) Bed v    | olume = 35. | 6 cu.ft. (26  | 6 gal) in e    | ach vessel o | r 71.2 cu.ft. (5 | 32 gal) total | for two vessels        | s.       |            |            |                        |             |         |          |          |        |
| NA = Not     | Availble.   |               |                |              |                  |               |                        |          |            |            |                        |             |         |          |          |        |

 Table A-1. EPA Arsenic Demonstration Project at Nambe Pueblo, NM - Daily System Operation Log Sheet (Continued)

|           |             | Buffal        | o Well         |              |                  |                |                        |          | Instr      | ument Pano | el                     |            |         |          |          |        |
|-----------|-------------|---------------|----------------|--------------|------------------|----------------|------------------------|----------|------------|------------|------------------------|------------|---------|----------|----------|--------|
|           |             | Pump          |                |              | Vessel A         | Flow Meter     |                        |          | Vessel B   | Flow Meter |                        |            |         |          | ΔP       |        |
| Week      |             | Hour<br>Meter | Incr.<br>Hours | Flowrate     | Totalizer        | Incr. Flow     | Calculated<br>Flowrate | Flowrate | Totalizer  | Incr. Flow | Calculated<br>Flowrate | System Thr | oughput | Vessel A | Vessel B | System |
| No.       | Date        | hr            | hr             | gpm          | gal              | gal            | gpm                    | gpm      | gal        | gal        | gpm                    | gal        | BV      | psig     | psig     | psi    |
|           | 04/21/08    | 5,595.2       | 25.1           | 57.6         | 14,054,100       | 154,081        | 102.3                  | 53.4     | 13,100,249 | 89,575     | 59.5                   | 27,154,349 | 51,042  | 1.0      | 1.0      | 0      |
|           | 04/22/08    | 5,613.9       | 18.7           | 50.9         | 14,107,195       | 53,095         | 47.3                   | 50.0     | 13,194,149 | 93,900     | 83.7                   | 27,301,344 | 51,318  | 1.0      | 1.0      | 1      |
| 41        | 04/23/08    | 5,634.9       | 21.0           | 57.9         | 14,176,189       | 68,994         | 54.8                   | 53.4     | 13,259,170 | 65,021     | 51.6                   | 27,435,359 | 51,570  | 1.0      | 1.0      | 1      |
|           | 04/24/08    | 5,654.0       | 19.1           | 56.4         | 14,237,241       | 61,052         | 53.3                   | 49.2     | 13,317,163 | 57,993     | 50.6                   | 27,554,404 | 51,794  | 1.0      | 1.0      | 0      |
|           | 04/25/08    | 5,670.9       | 16.9           | 57.1         | 14,278,421       | 41,180         | 40.6                   | 52.1     | 13,391,121 | 73,958     | 72.9                   | 27,669,542 | 52,010  | 1.0      | 1.0      | 0      |
|           | 04/28/08    | 5,717.4       | 46.5           | 52.8         | 14,442,242       | 163,821        | 58.7                   | 50.9     | 13,509,719 | 118,598    | 42.5                   | 27,951,961 | 52,541  | 1.0      | 1.0      | 0      |
|           | 04/29/08    | 5,739.4       | 22.0           | 54.4         | 14,512,272       | 70,030         | 53.1                   | 49.9     | 13,572,600 | 62,881     | 47.6                   | 28,084,872 | 52,791  | 1.0      | 1.0      | NA     |
| 42        | 04/30/08    | 5,745.2       | 5.8            | 53.1         | 14,530,374       | 18,102         | 52.0                   | 51.1     | 13,588,994 | 16,394     | 47.1                   | 28,119,368 | 52,856  | 1.0      | 1.0      | NA     |
|           | 05/01/08    | 5,773.8       | 28.6           | 54.5         | 14,623,601       | 93,227         | 54.3                   | 47.4     | 13,673,915 | 84,921     | 49.5                   | 28,297,516 | 53,191  | 1.0      | 1.0      | 0      |
|           | 05/02/08    | 5,791.1       | 17.3           | 53.7         | 14,699,810       | 76,209         | 73.4                   | 49.1     | 13,710,010 | 36,095     | 34.8                   | 28,409,820 | 53,402  | 1.0      | 1.0      | 0      |
|           | 05/05/08    | 5,834.3       | 43.2           | 50.7         | 14,840,708       | 140,898        | 54.4                   | 47.6     | 13,872,532 | 162,522    | 62.7                   | 28,713,240 | 53,972  | 1.0      | 1.0      | 1      |
|           | 05/06/08    | 5,847.1       | 12.8           | 58.4         | 14,864,610       | 23,902         | 31.1                   | 53.7     | 13,894,972 | 22,440     | 29.2                   | 28,759,582 | 54,059  | 1.0      | 1.0      | 0      |
| 43        | 05/07/08    | 5,875.7       | 28.6           | 56.9         | 14,957,913       | 93,303         | 54.4                   | 49.2     | 13,980,806 | 85,834     | 50.0                   | 28,938,719 | 54,396  | 1.0      | 1.0      | 1      |
|           | 05/08/08    | 5,885.7       | 10.0           | 57.0         | 15,033,981       | 76,068         | 126.8                  | 44.2     | 14,050,768 | 69,962     | 116.6                  | 29,084,749 | 54,671  | 1.0      | 1.0      | 1      |
|           | 05/09/08    | 5,900.1       | 14.4           | 58.3         | 15,033,494       | -487           | NA                     | 49.9     | 14,101,021 | 50,253     | 58.2                   | 29,134,515 | 54,764  | 1.0      | 1.0      | 1      |
|           | 05/12/08    | 5,953.3       | 53.2           | 54.6         | 15,205,944       | 171,963        | 42.4                   | 52.4     | 14,209,062 | 108,041    | 33.8                   | 29,415,006 | 55,291  | 2.0      | 2.0      | NA     |
|           | 05/13/08    | 5,971.8       | 18.5           | 53.8         | 15,263,842       | 57,898         | 52.2                   | 49.8     | 14,262,403 | 53,341     | 48.1                   | 29,526,245 | 55,500  | 1.0      | 1.0      | 0      |
| 44        | 05/14/08    | 5,988.0       | 16.2           | 57.0         | 15,317,823       | 53,981         | 55.5                   | 53.7     | 14,312,201 | 49,798     | 51.2                   | 29,630,024 | 55,696  | 1.0      | 1.0      | 0      |
|           | 05/15/08    | 6,112.6       | 124.6          | 0            | 15,395,218       | 77,395         | 10.4                   | 0        | 14,383,656 | 71,455     | 9.6                    | 29,778,874 | 55,975  | 0.0      | 0.0      | 0      |
|           | 05/16/08    | 6,120.9       | 8.3            | 56.9         | 15,425,018       | 29,800         | 59.8                   | 53.1     | 14,400,101 | 16,445     | 33.0                   | 29,825,119 | 56,062  | 1.0      | 1.0      | 1      |
|           | 05/19/08    | 6,077.1       | NA             | 53.5         | 15,603,788       | 178,770        | NA                     | 51.1     | 14,582,169 | 182,068    | NA                     | 30,185,957 | 56,741  | 1.0      | 1.0      | 0      |
|           | 05/20/08    | 6,084.0       | 96.0           | 61.1         | 15,630,183       | 26,395         | NA                     | 53.6     | 14,602,232 | 20,063     | 3.5                    | 30,232,415 | 56,828  | 1.0      | 1.0      | 0      |
| 45        | 05/21/08    | 6,103.6       | 19.6           | 57.6         | 15,690,424       | 60,241         | 51.2                   | 50.4     | 14,660,970 | 58,738     | 49.9                   | 30,351,394 | 57,051  | 1.0      | 1.0      | 0      |
|           | 05/22/08    | 6,132.2       | 28.6           | 55.4         | 15,752,112       | 61,688         | 35.9                   | 49.8     | 14,770,120 | 109,150    | 63.6                   | 30,522,232 | 57,373  | 1.0      | 1.0      | NA     |
|           | 05/23/08    | 6,151.0       | 18.8           | 53.2         | 15,847,626       | 95,514         | 84.7                   | 49.2     | 14,806,644 | 36,524     | 32.4                   | 30,654,270 | 57,621  | 1.0      | 1.0      | 0      |
| 47        | 06/03/08    | NA            | NA             | 52.8         | 16,535,004       | 687,378        | NA                     | 46.0     | 15,457,241 | 650,597    | NA                     | 31,992,245 | 60,136  | 1.0      | 1.0      | 0      |
| 48        | 06/11/08    | 6,554.3       | 403.3          | 51.4         | 17,105,814       | 570,810        | 23.6                   | 48.3     | 15,993,699 | 536,458    | 22.2                   | 33,099,513 | 62,217  | 1.0      | 1.0      | 0      |
| 49        | 06/19/08    | 6,693.9       | 139.6          | 51.1         | 17,531,117       | 425,303        | 50.8                   | 50.3     | 16,394,910 | 401,211    | 47.9                   | 33,926,027 | 63,771  | 1.0      | 1.0      | 0      |
| 50        | 06/24/08    | 6,852.9       | 159.0          | 49.7         | 18,000,351       | 469,234        | 49.2                   | 47.3     | 16,840,407 | 445,497    | 46.7                   | 34,840,758 | 65,490  | 1.0      | 1.0      | 0      |
| 51        | 07/02/08    | 7,024.9       | 172.0          | 57.0         | 18,532,902       | 532,551        | 51.6                   | 52.1     | 17,337,632 | 497,225    | 48.2                   | 35,870,534 | 67,426  | 1.0      | 1.0      | 1      |
| 58        | 08/28/08    | 8,129.7       | 1104.8         | 54.7         | 21,954,007       | 3,421,105      | 51.6                   | 50.2     | 20,530,591 | 3,192,959  | 48.2                   | 42,484,598 | 79,858  | 1.0      | 1.0      | 0      |
| (a) Bed v | olume = 35. | 6 cu.ft. (26  | 6 gal) in e    | ach vessel o | r 71.2 cu.ft. (5 | 532 gal) total | for two vessel         | s.       |            |            |                        |            |         |          |          |        |
| NA = Not  | Availble.   |               |                |              |                  |                |                        |          |            |            |                        |            |         |          |          |        |

 Table A-1. EPA Arsenic Demonstration Project at Nambe Pueblo, NM - Daily System Operation Log Sheet (Continued)

|           |              | Buffalo       | o Well         |              |                  |                |                        |          | Instr      | ument Pane | el                     |            |         |          |                     |        |
|-----------|--------------|---------------|----------------|--------------|------------------|----------------|------------------------|----------|------------|------------|------------------------|------------|---------|----------|---------------------|--------|
|           |              | Pump          |                |              | Vessel A         | Flow Meter     |                        |          | Vessel B   | Flow Meter |                        |            |         |          | $\Delta \mathbf{P}$ |        |
| Week      |              | Hour<br>Meter | Incr.<br>Hours | Flowrate     | Totalizer        | Incr. Flow     | Calculated<br>Flowrate | Flowrate | Totalizer  | Incr. Flow | Calculated<br>Flowrate | System Thr | oughput | Vessel A | Vessel B            | System |
| No.       | Date         | hr            | hr             | gpm          | gal              | gal            | gpm                    | gpm      | gal        | gal        | gpm                    | gal        | BV      | psig     | psig                | psi    |
| 62        | 09/24/08     | 8,625.0       | 495.3          | 55.9         | 23,481,108       | 1,527,101      | 51.4                   | 53.5     | 21,964,421 | 1,433,830  | 48.2                   | 45,445,529 | 85,424  | 1.0      | 1.0                 | 0      |
| 67        | 10/27/08     | 9,189.3       | 564.3          | 53.9         | 25,203,427       | 1,722,319      | 50.9                   | 48.2     | 23,592,913 | 1,628,492  | 48.1                   | 48,796,340 | 91,722  | 1.0      | 1.0                 | 1      |
| 71        | 11/24/08     | 9,586.1       | 396.8          | 53.1         | 26,439,978       | 1,236,551      | 51.9                   | 52.7     | 24,644,715 | 1,051,802  | 44.2                   | 51,084,693 | 96,024  | 1.0      | 1.0                 | 1      |
| 75        | 12/24/08     | 9,804.1       | 218.0          | 59.9         | 27,130,764       | 690,786        | 52.8                   | 55.3     | 25,294,639 | 649,924    | 49.7                   | 52,425,403 | 98,544  | 1.0      | 1.0                 | 0      |
| 80        | 01/28/09     | 9,942.5       | 138.4          | 60.6         | 27,578,121       | 447,357        | 53.9                   | 58.9     | 25,729,321 | 434,682    | 52.3                   | 53,307,442 | 100,202 | 1.0      | 1.0                 | 0      |
| 84        | 02/25/09     | 10,108.0      | 165.5          | 58.7         | 28,115,307       | 537,186        | 54.1                   | 55.3     | 26,251,886 | 522,565    | 52.6                   | 54,367,193 | 102,194 | 1.0      | 1.0                 | 0      |
| 88        | 03/26/09     | 10,430.1      | 322.1          | 57.7         | 29,152,606       | 1,037,299      | 53.7                   | 54.9     | 27,238,667 | 986,781    | 51.1                   | 56,391,273 | 105,999 | 1.0      | 1.0                 | 1      |
| 97        | 05/20/09     | 11,137.4      | 707.3          | 53.0         | 31,358,125       | 2,205,519      | 52.0                   | 51.8     | 29,296,854 | 2,058,187  | 48.5                   | 60,654,979 | 114,013 | 1.0      | 1.0                 | 0      |
| 101       | 06/17/09     | 11,251.8      | 114.4          | 60.1         | 31,729,595       | 371,470        | 54.1                   | 54.6     | 29,648,739 | 351,885    | 51.3                   | 61,378,334 | 115,373 | 1.0      | 1.0                 | 0      |
| 107       | 07/28/09     | 11,576.4      | 324.6          | 59.1         | 32,766,407       | 1,036,812      | 53.2                   | 57.2     | 30,617,917 | 969,178    | 49.8                   | 63,384,324 | 119,143 | 1.0      | 1.0                 | 1      |
| 111       | 08/27/09     | 11,693.2      | 116.8          | 60.0         | 33,145,283       | 378,876        | 54.1                   | 54.6     | 205,432    | 205,432    | NA                     | 63,968,632 | NA      | 1.0      | 1.0                 | 1      |
| 115       | 09/21/09     | 11,780.1      | 86.9           | 56.9         | 33,426,403       | 281,120        | 53.9                   | 55.6     | 469,393    | 263,961    | 50.6                   | 64,513,713 | 121,266 | 1.0      | 1.0                 | 0      |
| 116       | 09/28/09     | 11,790.4      | 10.3           | 56.9         | 33,460,647       | 34,244         | 55.4                   | 53.4     | 501,435    | 32,042     | 51.8                   | 64,579,999 | 121,391 | 1.0      | 1.0                 | 0      |
| (a) Bed v | volume = 35. | 6 cu.ft. (26  | 6 gal) in e    | ach vessel o | r 71.2 cu.ft. (5 | 532 gal) total | for two vessel         | s.       |            |            |                        |            |         |          |                     |        |
| NA = Not  | Availble.    |               |                |              |                  |                |                        |          |            |            |                        |            |         |          |                     |        |

Table A-1. EPA Arsenic Demonstration Project at Nambe Pueblo, NM - Daily System Operation Log Sheet (Continued)

**APPENDIX B** 

## ANALYTICAL DATA

| Sampling Date                 |                  |           | 06/26       | 6/07 <sup>(a)</sup> |           |            | 07/0        | 3/07     |             |            | 07/09/07    |             |      | 07/1               | 18/07 |      |      | 07/2               | 6/07 |      |
|-------------------------------|------------------|-----------|-------------|---------------------|-----------|------------|-------------|----------|-------------|------------|-------------|-------------|------|--------------------|-------|------|------|--------------------|------|------|
| Sampling Location             |                  | INI       | ۸D          | Тл                  | тр        | INI        | ۸D          | тл       | тр          | INI        | ۸D          | тт          | INI  | ۸D                 | Тл    | тр   | INI  | ۸D                 | Тл   | тр   |
| Parameter                     | Unit             | IN        | AP          |                     | IB        |            | AP          | IA       | ТВ          | IN         | AP          |             | IIN  | AF                 |       | IB   |      | AP                 | IA   | ID   |
| Bed Volume                    | ×10 <sup>3</sup> | -         | -           | -                   | -         | -          | -           | -        | -           | -          | -           | 10.2        | -    | -                  | 12.1  | 11.3 | -    | -                  | 13.4 | 12.4 |
| Alkalinity (as CaCO -)        | ma/l             | 173       | 173         | 209                 | 211       | 171        | 175         | 207      | 197         | 168        | 168         | 211         | 173  | 171                | 171   | 168  | 170  | 165                | 165  | 168  |
|                               | mg/∟             | -         | -           | -                   | -         | -          | -           | -        | -           | -          | -           | -           | -    | -                  | -     | -    | -    | -                  | -    | -    |
| Fluoride                      | mg/L             | -         | -           | -                   | -         | -          | -           | -        | -           | 1.1        | 0.8         | 0.6         | -    | -                  | -     | -    | -    | -                  | -    | -    |
| Sulfate                       | mg/L             | -         | -           | -                   | -         | -          | -           | -        | -           | 29         | 37          | 32          | -    | -                  | -     | -    | -    | -                  | -    | -    |
| Nitrate (as N)                | mg/L             | -         | -           | -                   | -         | -          | -           | -        | -           | 0.8        | 0.8         | 0.8         | -    | -                  | -     | -    | -    | -                  | -    | -    |
| Total P (as P )               | ua/l             | <10       | <10         | <10                 | <10       | <10        | <10         | <10      | <10         | <10        | <10         | <10         | <10  | <10                | <10   | <10  | <10  | <10                | <10  | <10  |
|                               | µg/L             | -         | -           | -                   | -         | -          | -           | -        | -           | -          | -           | -           | -    | -                  | -     | -    | -    | -                  | -    | -    |
| Silica (as SiO <sub>2</sub> ) | ma/l             | 15.2      | 14.8        | 19.2                | 19.5      | 14.9       | 15.0        | 25.4     | 25.9        | 15.5       | 15.7        | 21.7        | 14.7 | 14.9               | 17.5  | 16.7 | 14.4 | 14.3               | 16.4 | 15.7 |
|                               | ing/L            | -         | -           | -                   | -         | -          | -           | -        | -           | -          | -           | -           | -    | -                  | -     | -    | -    | -                  | -    | -    |
| Turbidity                     | NTU              | 0.3       | 0.2         | 0.4                 | 0.5       | 0.9        | 0.2         | 0.7      | 0.4         | 0.4        | 0.6         | 0.4         | 0.5  | 0.7                | 0.5   | 0.7  | 0.7  | 2.1                | 1.5  | 0.9  |
|                               | NIO              | -         | -           | -                   | -         | -          | -           | -        | -           | -          | -           | -           | -    | -                  | -     | -    | -    | -                  | -    | -    |
| тос                           | mg/L             | -         | -           | -                   | -         | -          | -           | -        | -           | <1.0       | <1.0        | <1.0        | -    | -                  | -     | -    | -    | -                  | -    | -    |
| рН                            | S.U.             | -         | -           | -                   | -         | -          | -           | -        | -           | 9.1        | 7.1         | 8.6         | -    | 7.7 <sup>(c)</sup> | -     | -    | -    | 7.1 <sup>(c)</sup> | -    | -    |
| Temperature                   | C                | -         | -           | -                   | -         | -          | -           | -        | -           | 20.4       | 20.4        | 20.2        | -    | -                  | -     | -    | -    | -                  | -    | -    |
| DO                            | mg/L             | -         | -           | -                   | -         | -          | -           | -        | -           | 6.8        | 3.4         | 4.7         | -    | -                  | -     | -    | -    | -                  | -    | -    |
| ORP                           | mV               | -         | -           | -                   | -         | -          | -           | -        | -           | 396        | 442         | 467         | -    | -                  | -     | -    | -    | -                  | -    | -    |
| Total Hardness (as CaCO 3)    | mg/L             | -         | -           | -                   | -         | -          | -           | -        | -           | 7.2        | 7.1         | 40.7        | -    | -                  | -     | -    | -    | -                  | -    | -    |
| Ca Hardness (as CaCO 3)       | mg/L             | -         | -           | -                   | -         | -          | -           | -        | -           | 7.0        | 7.0         | 40.1        | -    | -                  | -     | -    | -    | -                  | -    | -    |
| Mg Hardness (as CaCO 3)       | mg/L             | -         | -           | -                   | -         | -          | -           | -        | -           | 0.1        | 0.1         | 0.6         | -    | -                  | -     | -    | -    | -                  | -    | -    |
| As (total)                    | ua/l             | 29.3      | 29.8        | 2.4                 | 2.1       | 26.4       | 25.8        | 1.5      | 2.7         | 37.4       | 36.9        | 2.5         | 30.1 | 31.4               | 0.4   | 0.4  | 28.9 | 30.0               | 0.3  | 0.3  |
|                               | P.9, -           | -         | -           | -                   | -         | -          | -           | -        | -           | -          | -           | -           | -    | -                  | -     | -    | -    | -                  | -    | -    |
| As (soluble)                  | µg/L             | -         | -           | -                   | -         | -          | -           | -        | -           | 34.5       | 32.5        | 2.3         | -    | -                  | -     | -    | -    | -                  | -    | -    |
| As (particulate)              | µg/L             | -         | -           | -                   | -         | -          | -           | -        | -           | 2.9        | 4.4         | 0.1         | -    | -                  | -     | -    | -    | -                  | -    | -    |
| As (III)                      | µg/L             | -         | -           | -                   | -         | -          | -           | -        | -           | 0.3        | 0.3         | 0.3         | -    | -                  | -     | -    | -    | -                  | -    | -    |
| As (V)                        | µg/L             | -         | -           | -                   | -         | -          | -           | -        | -           | 34.2       | 32.2        | 2.0         | -    | -                  | -     | -    | -    | -                  | -    | -    |
| Fe (total)                    | ua/l             | <25       | <25         | <25                 | <25       | <25        | <25         | <25      | <25         | <25        | <25         | <25         | <25  | <25                | <25   | <25  | <25  | <25                | <25  | <25  |
|                               | P.9, -           | -         | -           | -                   | -         | -          | -           | -        | -           | -          | -           | -           | -    | -                  | -     | -    | -    | -                  | -    | -    |
| Fe (soluble)                  | µg/L             | -         | -           | -                   | -         | -          | -           | -        | -           | <25        | <25         | <25         | -    | -                  | -     | -    | -    | -                  | -    | -    |
| Mn (total)                    | ua/l             | 0.2       | 0.2         | <0.1                | <0.1      | 0.5        | 1.2         | <0.1     | <0.1        | 0.2        | 0.1         | <0.1        | 0.2  | 0.2                | 0.3   | 0.1  | 0.1  | 0.1                | <0.1 | <0.1 |
|                               | P.9, -           | -         | -           | -                   | -         | -          | -           | -        | -           | -          | -           | -           | -    | -                  | -     | -    | -    | -                  | -    | -    |
| Mn (soluble)                  | µg/L             | -         | -           | -                   | -         | -          | -           | -        | -           | 0.7        | 0.2         | 0.3         | -    | -                  | -     | -    | -    | -                  | -    | -    |
| U (total)                     | ua/I             | 42.6      | 43.5        | 88.2                | 81.8      | 43.0       | 40.4        | 43.9     | 24.7        | 41.8       | 43.2        | 71.6        | 41.1 | 40.1               | 1.5   | 1.5  | 40.7 | 41.1               | 2.4  | 2.5  |
|                               | P9'-             | (42.6)    | (42.4)      | (88.2)              | (79.8)    | -          | -           | -        | -           | -          | -           | -           | -    | -                  | -     | -    | -    | -                  | -    | -    |
| U (soluble)                   | μg/L             | -         | -           | -                   | -         | -          | -           | -        | -           | 40.6       | 41.0        | 72.0        | -    | -                  | -     | -    | -    | -                  | -    | -    |
|                               |                  | (a) Resul | ts in parat | hensis are          | reruns. ( | b) Operato | or training | complete | d. (c) pH r | eading tak | ken from ir | nline probe | ).   |                    |       |      |      |                    |      |      |

# Table B-1. Analytical Results from Treatment Plant Sampling at Nambe Pueblo, NM

| Sampling Date                         |                  | 08/02/07 |                    |      |      | 08/10/07 |      |       | 08/15/07 |        |      |      | 08/22/07 |        |      |      | 08/28/07 |                    |       |              |
|---------------------------------------|------------------|----------|--------------------|------|------|----------|------|-------|----------|--------|------|------|----------|--------|------|------|----------|--------------------|-------|--------------|
| Sampling Location<br>Parameter        | Unit             | IN       | AP                 | ТА   | ТВ   | IN       | AP   | TT    | IN       | AP     | ТА   | ТВ   | IN       | AP     | ТА   | ТВ   | IN       | AP                 | ТА    | ТВ           |
| Bed Volume                            | ×10 <sup>3</sup> | -        |                    | 14.6 | 13.6 | -        |      | 15.4  |          | -      | 17.9 | 16.6 |          | -      | 19.7 | 18.3 | -        | -                  | 21.6  | 20.1         |
| Alkalinity (as CaCO 3)                | mg/L             | 189      | 196                | 179  | 189  | 184      | 189  | 186   | 165      | 165    | 179  | 179  | 168      | 168    | 170  | 168  | 170      | 170                | 170   | 168          |
|                                       |                  | -        | -                  | -    | -    | -        | -    | -     | -        | -      | -    | -    | -        | -      | -    | -    | 170      | 168                | 170   | 170          |
| Fluoride                              | mg/L             | -        | -                  | -    | -    | 0.9      | 0.8  | 0.8   | -        | -      | -    | -    | -        | -      | -    | -    | -        | -                  | -     | -            |
| Sulfate                               | mg/L             | -        | -                  | -    | -    | 27       | 27   | 27    | -        | -      | -    | -    | -        | -      | -    | -    | -        | -                  | -     | -            |
| Nitrate (as N)                        | mg/L             | -        | -                  | -    | -    | 0.8      | 0.7  | 0.7   | -        | -      | -    | -    | -        | -      | -    | -    | -        | -                  | -     | -            |
| Total P (as P )                       | µg/L             | <10      | <10                | <10  | <10  | <10      | <10  | <10   | <10      | <10    | <10  | <10  | <10      | <10    | <10  | <10  | <10      | <10                | <10   | <10          |
|                                       |                  | -        | -                  | -    | -    | -        | -    | -     | -        | -      | -    | -    | -        | -      | -    | -    | <10      | <10                | <10   | <10          |
| Silica (as SiO <sub>2</sub> )         | mg/L             | 14.5     | 14.8               | 15.9 | 16.3 | 15.2     | 14.8 | 15.7  | 14.8     | 14.6   | 14.7 | 14.8 | 13.6     | 13.1   | 13.3 | 13.0 | 15.7     | 15.1               | 15.9  | 15.5         |
|                                       |                  | -        | -                  | -    | -    | -        | -    | -     |          |        |      |      |          |        |      |      | 15.0     | 14.9               | 16.1  | 15.7         |
| Turbidity                             | NTU              | 0.5      | 0.7                | 0.8  | 0.3  | 0.3      | 0.2  | 0.3   | 0.3      | 0.3    | 0.2  | 0.2  | 0.9      | 0.4    | 0.5  | 0.5  | 1.7      | 1.2                | 2.7   | 1.3          |
|                                       |                  | -        | -                  | -    | -    | -        | -    | -     | -        | -      | -    | -    | -        | -      | -    | -    | 3.1      | 1.0                | 1.8   | 2.1          |
| тос                                   | mg/L             | -        | -                  | -    | -    | <1       | <1   | <1    | -        | -      | -    | -    | -        | -      | -    | -    | -        | -                  | -     | -            |
| рН                                    | S.U.             | -        | 7.4 <sup>(c)</sup> | -    | -    | 9.0      | 7.1  | 8.3   | -        | 7.7(0) | -    | -    | -        | 7.3(0) | -    | -    | -        | 7.2 <sup>(c)</sup> | -     | -            |
| Temperature                           | C                | -        | -                  | -    | -    | 22.3     | 21.8 | 22.6  | -        | -      | -    | -    | -        | -      | -    | -    | -        | -                  | -     | -            |
| DO                                    | mg/L             | -        | -                  | -    | -    | 6.9      | 3.8  | 4.2   | -        | -      | -    | -    | -        | -      | -    | -    | -        | -                  | -     | -            |
| ORP                                   | mV               | -        | -                  | -    | -    | 391      | 409  | 424   | -        | -      | -    | -    | -        | -      | -    | -    | -        | -                  | -     | -            |
| Total Hardness (as CaCO 3)            | mg/L             | -        | -                  | -    | -    | 6.9      | 6.9  | 7.0   | -        | -      | -    | -    | -        | -      | -    | -    | -        | -                  | -     | -            |
| Ca Hardness (as CaCO <sub>3</sub> )   | mg/L             | -        | -                  | -    | -    | 6.9      | 6.8  | 6.9   | -        | -      | -    | -    | -        | -      | -    | -    | -        | -                  | -     | -            |
| Mg Hardness (as CaCO 3)<br>As (total) | mg/L<br>μg/L     | -        | -                  | -    | -    | 0.1      | 0.1  | 0.1   | -        | -      | -    | -    | -        | -      | -    | -    | -        | -                  | -     | -            |
|                                       |                  | 30.7     | 29.9               | 0.4  | 0.3  | 31.7     | 31.7 | 1.3   | 29.9     | 28.5   | 19.1 | 19.5 | 30.7     | 32.3   | 0.7  | 0.6  | 28.6     | 29.6               | 0.6   | 0.5          |
| As (soluble)                          | ua/L             | -        | -                  | -    | -    | 37.7     | 30.9 | - 1.4 | -        | -      | -    | -    | -        | -      | -    | -    | - 29.1   | - 29.0             | - 0.5 | -            |
| As (particulate)                      | µg/L             | -        | -                  | -    | -    | <0.1     | 0.8  | <0.1  | -        | -      | -    | -    | -        | -      | -    | -    | -        | -                  | -     | -            |
| As (III)                              | µg/L             | -        | -                  | -    | -    | 1.2      | 1.1  | 1.0   | -        | -      | -    | -    | -        | -      | -    | -    | -        | -                  | -     | -            |
| As (V)                                | µg/L             | -        | -                  | -    | -    | 36.5     | 29.8 | 0.4   | -        | -      | -    | -    | -        | -      | -    | -    | -        | -                  | -     | -            |
| Fe (total)                            | µg/L             | <25      | <25                | <25  | <25  | <25      | <25  | <25   | <25      | <25    | <25  | <25  | <25      | <25    | <25  | <25  | <25      | <25                | <25   | <25          |
|                                       |                  | -        | -                  | -    | -    | -        | -    | -     | -        | -      | -    | -    | -        | -      | -    | -    | <25      | <25                | <25   | <25          |
| Fe (soluble)<br>Mn (total)            | μg/L<br>μg/L     | -        | -                  | -    | -    | <25      | <25  | <25   | -        | -      | -    | -    | -        | -      | -    | -    | - 0.1    | -                  | -     | 0.1          |
|                                       |                  | - 0.2    | -                  | -    | -    | - <0.1   | -    | -     | -        | - 0.4  | -    | -    | - <0.1   | -      | -    | -    | 0.1      | 0.2                | <0.1  | <0.1<br><0.1 |
| Mn (soluble)                          | µg/L             | -        | -                  | -    | -    | <0.1     | <0.1 | <0.1  | -        | -      | -    | -    | -        | -      | -    | -    | -        | -                  | -     | -            |
| U (total)                             | µg/L             | 43.1     | 42.5               | 2.4  | 2.5  | 40.9     | 40.4 | 2.8   | 42.4     | 39.9   | 68.9 | 66.9 | 41.2     | 40.4   | 2.2  | 2.5  | 41.5     | 42.2               | 1.4   | 1.5          |
|                                       |                  | -        | -                  | -    | -    | -        | -    | -     | -        | -      | -    | -    | -        | -      | -    | -    | 42.6     | 42.6               | 1.4   | 1.5          |
| U (soluble)                           | µg/L             | -        | -                  | -    | -    | <0.1     | 24.8 | <0.1  | -        | -      | -    | -    | -        | -      | -    | -    | -        | -                  | -     | -            |

# Table B-1. Analytical Results from Treatment Plant Sampling at Nambe Pueblo, NM (Continued)
| Sampling Date                       |                  |      | 09/                | 11/07 |      |      | 09/2               | 26/07 |      |      | 10/0               | 04/07 |      |      | 10/                | 11/07 | •    |      | 10/                | 16/07 |      |
|-------------------------------------|------------------|------|--------------------|-------|------|------|--------------------|-------|------|------|--------------------|-------|------|------|--------------------|-------|------|------|--------------------|-------|------|
| Sampling Location<br>Parameter      | Unit             | IN   | AP                 | ТА    | ТВ   |
| Bed Volume                          | ×10 <sup>3</sup> | -    | -                  | 26.0  | 24.1 |      | · ·                | 28.8  | 26.7 |      | -                  | 30.0  | 27.8 | -    | -                  | 30.8  | 28.6 |      | -                  | 31.0  | 28.8 |
|                                     |                  | 171  | 177                | 179   | 177  | 190  | 175                | 209   | 177  | 170  | 170                | 164   | 168  | 176  | 164                | 168   | 168  | 179  | 169                | 163   | 165  |
| Alkalinity (as CaCO 3)              | mg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| Fluoride                            | mg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| Sulfate                             | mg/L             | -    | -                  | -     |      | -    | -                  | -     |      | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| Nitrate (as N)                      | mg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
|                                     |                  | <10  | <10                | <10   | <10  | <10  | <10                | <10   | <10  | <10  | <10                | <10   | <10  | <10  | <10                | <10   | <10  | 11.1 | 17.8               | <10   | 11.0 |
| Total P (as P )                     | µg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
|                                     | m a/l            | 14.2 | 14.5               | 20.0  | 19.5 | 15.7 | 16.3               | 16.4  | 15.2 | 14.9 | 15.5               | 12.6  | 12.4 | 14.6 | 15.2               | 19.9  | 19.5 | 13.9 | 15.6               | 17.8  | 17.2 |
| Silica (as SiO <sub>2</sub> )       | mg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| Turbidity                           | NITLI            | 0.2  | 0.6                | 0.7   | 0.7  | 1.2  | 0.6                | 0.8   | 1.2  | 1.7  | 0.9                | 1.7   | 1.4  | 0.3  | 0.4                | 0.3   | 0.6  | 0.6  | 1.1                | 1.2   | 1.8  |
| Turblaity                           | NIU              | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| тос                                 | mg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| рН                                  | S.U.             | -    | 7.3 <sup>(c)</sup> | -     | -    | -    | 8.1 <sup>(c)</sup> | -     | -    | -    | 7.2 <sup>(c)</sup> | -     | -    | -    | 7.0 <sup>(c)</sup> | -     | -    | -    | 7.5 <sup>(c)</sup> | -     |      |
| Temperature                         | C                | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     |      |
| DO                                  | mg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| ORP                                 | mV               | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| Total Hardness (as CaCO 3)          | mg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| Ca Hardness (as CaCO 3)             | mg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| Mg Hardness (as CaCO <sub>3</sub> ) | mg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| As (total)                          | μg/L             | 30.7 | 31.7               | 1.1   | 1.0  | 27.6 | 27.4               | 19.8  | 31.5 | 30.9 | 32.0               | 0.7   | 0.8  | 31.5 | 32.2               | 0.8   | 0.7  | 16.3 | 20.8               | 0.1   | <0.1 |
|                                     |                  | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| As (soluble)                        | µg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| As (particulate)                    | µg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| As (III)                            | µg/L             | -    | -                  | -     | •    | -    | -                  | -     | •    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| As (V)                              | µg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| Fe (total)                          | μg/L             | <25  | <25                | <25   | <25  | <25  | <25                | <25   | <25  | <25  | <25                | <25   | <25  | <25  | <25                | <25   | <25  | <25  | <25                | <25   | <25  |
| Fe (soluble)                        | µg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
|                                     |                  | <0.1 | <0.1               | <0.1  | <0.1 | <0.1 | <0.1               | <0.1  | <0.1 | <0.1 | <0.1               | <0.1  | <0.1 | 0.3  | 0.3                | <0.1  | <0.1 | 0.6  | 1.1                | <0.1  | <0.1 |
| Min (total)                         | µg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| Mn (soluble)                        | µg/L             | -    | -                  |       |      | -    |                    | •     |      | -    | -                  |       | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| 11 (4-4-1)                          |                  | 43.9 | 41.2               | 4.9   | 4.0  | 44.2 | 42.9               | 135.4 | 66.9 | 37.1 | 35.4               | 1.3   | 1.4  | 40.3 | 40.1               | 2.4   | 2.3  | 39.3 | 40.4               | 2.0   | 2.0  |
|                                     | µg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| U (soluble)                         | µg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |

| Sampling Date               |                  |             | 10/2               | 5/07 <sup>(a)</sup> |              | r         | 11/0              | 02/07 |          |        | 11/0               | 07/07 |      |           | 11/                | 14/07 |      |           | 11/:              | 26/07 |          |
|-----------------------------|------------------|-------------|--------------------|---------------------|--------------|-----------|-------------------|-------|----------|--------|--------------------|-------|------|-----------|--------------------|-------|------|-----------|-------------------|-------|----------|
| Sampling Location Parameter | Unit             | IN          | AP                 | ТА                  | ТВ           | IN        | AP                | ТА    | ТВ       | IN     | AP                 | ТА    | ТВ   | IN        | AP                 | ТА    | ТВ   | IN        | AP                | ТА    | ТВ       |
| Bed Volume                  | ×10 <sup>3</sup> |             |                    | 31.3                | 29.1         |           |                   | 31.6  | 29.4     |        |                    | 31.7  | 29.5 |           |                    | 31.8  | 29.6 |           |                   | 32.1  | 30.0     |
|                             |                  | 163         | 163                | 196                 | 200          | 168       | 174               | 174   | 174      | 178    | 174                | 170   | 174  | 171       | 188                | 167   | 165  | 169       | 169               | 169   | 171      |
| Alkalinity (as CaCO 3)      | mg/L             | -           | -                  | -                   | -            | -         | -                 | -     | -        | -      | -                  | -     | -    | -         | -                  | -     | -    | -         | -                 | -     | -        |
| Fluoride                    | mg/L             | -           | -                  | -                   |              | -         | -                 | -     | -        | -      | -                  | -     | -    | -         | -                  | -     | -    | -         | -                 | -     | -        |
| Sulfate                     | mg/L             | -           | -                  | -                   | -            | -         | -                 | -     | -        | -      | -                  | -     | -    | -         | -                  | -     | -    | -         | -                 | -     | -        |
| Nitrate (as N)              | mg/L             | -           | -                  | -                   | -            | -         | -                 | -     | -        | -      | -                  | -     | -    | -         | -                  | -     | -    | -         | -                 | -     | -        |
| Total D (ac D)              |                  | <10         | <10                | <10                 | <10          | <10       | <10               | <10   | <10      | <10    | <10                | <10   | <10  | <10       | <10                | <10   | <10  | <10       | <10               | <10   | <10      |
| Total P (dS P )             | µg/∟             | -           | -                  | -                   | -            | -         | -                 | -     | -        | -      | -                  | -     | -    | -         | -                  | -     | -    | -         | -                 | -     | -        |
| Silica (as SiOa)            | ma/l             | 15.1        | 15.0               | 12.4                | 13.5         | 14.9      | 14.8              | 15.5  | 15.0     | 13.3   | 13.4               | 15.2  | 14.6 | 14.4      | 12.7               | 14.4  | 14.0 | 13.6      | 13.0              | 30.4  | 14.2     |
|                             | iiig/L           | -           | -                  | -                   | -            | -         | -                 | -     | -        | -      | -                  | -     | -    | -         | -                  | -     | -    | -         | -                 | -     | -        |
| Turbidity                   | NTU              | 3.0         | 6.2                | 3.9                 | 2.6          | 0.5       | 0.6               | 0.3   | 0.5      | 0.5    | 0.5                | 0.8   | 0.5  | 0.5       | 0.5                | 0.4   | 0.4  | 0.5       | 1.5               | 0.6   | 0.4      |
| Turblany                    | MIG              | -           | -                  | -                   | -            | -         | -                 | -     | -        | -      | -                  | -     | -    | -         | -                  | -     | -    | -         | -                 | -     | -        |
| тос                         | mg/L             | -           | -                  | -                   | -            | -         | -                 | -     | -        | -      | -                  | -     | -    | -         | -                  | -     | -    | -         | -                 | -     | -        |
| рН                          | S.U.             | -           | 7.0 <sup>(c)</sup> | -                   | -            | -         | 7.1 <sup>c)</sup> | -     | -        | -      | 7.0 <sup>(c)</sup> | -     | -    | -         | 7.3 <sup>(c)</sup> | -     | -    | -         | 7.1 <sup>c)</sup> | -     | -        |
| Temperature                 | °C               | -           | -                  | -                   | -            | -         | -                 | -     | -        | -      | -                  | -     | -    | -         | -                  | -     | -    | -         | -                 | -     | -        |
| DO                          | mg/L             | -           | -                  | -                   | -            | -         | -                 | -     | -        | -      | -                  | -     | -    | -         | -                  | -     | -    | -         | -                 | -     | -        |
| ORP                         | mV               | -           | -                  | -                   | -            | -         | -                 | -     | -        | -      | -                  | -     | -    | -         | -                  | -     | -    | -         | -                 | -     | -        |
| Total Hardness (as CaCO 3)  | mg/L             | -           | -                  | -                   | -            | -         | -                 | -     | -        | -      | -                  | -     | -    | -         | -                  | -     | -    | -         | -                 | -     | -        |
| Ca Hardness (as CaCO 3)     | mg/L             | -           | -                  | -                   | -            | -         | -                 | -     | -        | -      | -                  | -     | -    | -         | -                  | -     | -    | -         | -                 | -     | -        |
| Mg Hardness (as CaCO 3)     | mg/L             | -           | -                  | -                   | -            | -         | -                 | -     | -        | -      | -                  | -     | -    | -         | -                  | -     | -    | -         | -                 | -     | -        |
| As (total)                  | µg/L             | 40.6        | 42.3               | 4.6                 | 3.7          | 34.2      | 36.1<br>-         | 0.6   | 0.5<br>- | - 10.7 | - 14.3             | 0.7   | 0.7  | 30.9<br>- | - 10.6             | 0.8   | 0.7  | 30.5<br>- | 17.2              | 1.0   | 1.1<br>- |
| As (soluble)                | µg/L             | -           | -                  | -                   | -            | -         | -                 | -     | -        | -      | -                  | -     | -    | -         | -                  | -     | -    | -         | -                 | -     | -        |
| As (particulate)            | µg/L             | -           | -                  | -                   | -            | -         | -                 | -     | -        | -      | -                  | -     | -    | -         | -                  | -     | -    | -         | -                 | -     | -        |
| As (III)                    | µg/L             | -           | -                  | -                   | -            | -         | -                 | -     | -        | -      | -                  | -     | -    | -         | -                  | -     | -    | -         | -                 | -     | -        |
| As (V)                      | µg/L             | -           | -                  | -                   | -            | -         | -                 | -     | -        | -      | -                  | -     | -    | -         | -                  | -     | -    | -         | -                 | -     | -        |
| Fe (total)                  | µg/L             | <25         | <25                | <25                 | <25          | <25       | <25               | <25   | <25      | <25    | <25                | <25   | <25  | 56        | <25                | 42    | 34   | <25       | <25               | <25   | <25      |
| Fe (soluble)                | ua/l             |             |                    |                     |              |           |                   |       |          |        |                    |       |      |           |                    |       |      |           |                   |       |          |
|                             | P9/2             | 0.4         | 0.4                | 0.1                 | <0.1         | 0.2       | 0.2               | <0.1  | <0.1     | 0.5    | 11                 | <0.1  | 0.1  | 3.6       | 23                 | 0.3   | 0.3  | 1.8       | 10                | 0.1   | 0.2      |
| Mn (total)                  | µg/L             | -           | -                  | -                   | -            | -         | -                 | -     | -        | -      | -                  | -     | -    | -         | -                  | -     | -    | -         | -                 | -     | -        |
| Mn (soluble)                | µg/L             | -           | -                  | -                   | -            | -         | -                 | -     | -        | -      | -                  | -     | -    | -         | -                  | -     | -    | -         | -                 | -     | -        |
| U (total)                   | µg/L             | 29.0        | 28.9               | 13.9                | 19.4         | 38.9      | 38.3              | 1.9   | 2.0      | 35.7   | 36.1               | 1.8   | 1.9  | 41.5      | 42.3               | 2.0   | 2.0  | 40.7      | 38.7              | 2.5   | 3.1      |
| U (soluble)                 | µg/L             | -           | -                  | -                   | -            | -         | -                 | -     | -        |        | -                  | -     | -    | -         | -                  | -     | -    | -         | -                 | -     | -        |
|                             |                  | (a) Alkalii | nity, silica,      | and turbic          | dity results | collected | on 10/23/         | 07.   |          |        |                    |       |      |           |                    |       |      |           |                   |       |          |

| Sampling Date                       |                  |              | 12/0               | 05/07 |      |        | 12/                | 12/07 |       |        | 12/2               | 20/07 |      |      | 01/                | 16/08    | •     |        | 01/2               | 23/08 |       |
|-------------------------------------|------------------|--------------|--------------------|-------|------|--------|--------------------|-------|-------|--------|--------------------|-------|------|------|--------------------|----------|-------|--------|--------------------|-------|-------|
| Sampling Location<br>Parameter      | Unit             | IN           | AP                 | ТА    | ТВ   | IN     | AP                 | ТА    | ТВ    | IN     | AP                 | ТА    | ТВ   | IN   | AP                 | ТА       | ТВ    | IN     | AP                 | ТА    | ТВ    |
| Bed Volume                          | ×10 <sup>3</sup> |              |                    | 32.5  | 30.2 |        |                    | 33.3  | 31.0  |        |                    | 34.3  | 32.0 |      |                    | 38.2     | 35.6  |        |                    | 39.3  | 36.6  |
|                                     |                  | 167          | 168                | 172   | 170  | 163    | 163                | 161   | 161   | 158    | 164                | 171   | 175  | 161  | 159                | 161      | 159   | 162    | 166                | 172   | 168   |
| Alkalinity (as CaCO 3)              | mg/L             | 165          | 170                | 168   | 167  | -      | -                  | -     | -     | -      | -                  | -     | -    | -    | -                  | -        | -     | -      | -                  | -     | -     |
| Fluoride                            | mg/L             | -            | -                  | -     | -    | -      | -                  | -     | -     | -      | -                  | -     | -    | -    | -                  | -        | -     | -      | -                  | -     | -     |
| Sulfate                             | mg/L             | -            | -                  | -     | -    | -      | -                  | -     | -     | -      | -                  | -     | -    | -    | -                  | -        | -     | -      | -                  | -     | -     |
| Nitrate (as N)                      | mg/L             | -            | -                  | -     | -    | -      | -                  | -     | -     | -      | -                  | -     | -    | -    | -                  | -        | -     | -      | -                  | -     | -     |
| Total D (co. D.)                    |                  | <10          | <10                | <10   | <10  | <10    | <10                | <10   | <10   | <10    | <10                | <10   | <10  | <10  | <10                | <10      | <10   | <10    | <10                | <10   | <10   |
| Total P (as P )                     | µg/L             | <10          | <10                | <10   | <10  | -      | -                  | -     | -     | -      | -                  | -     | -    | -    | -                  | -        | -     | -      | -                  | -     | -     |
|                                     | ma/l             | 14.3         | 14.1               | 13.7  | 14.1 | 14.9   | 14.7               | 15.3  | 15.1  | 13.8   | 14.0               | 22.7  | 21.2 | 15.4 | 15.2               | 17.5     | 17.3  | 13.4   | 13.1               | 13.7  | 13.2  |
|                                     | IIIg/L           | 14.5         | 13.7               | 13.5  | 14.3 | -      | -                  | -     | -     | -      | -                  | -     | -    | -    | -                  | -        | -     | -      | -                  | -     | -     |
| Turbidity                           | NTU              | 0.3          | 0.3                | 0.4   | 0.5  | 0.5    | 0.3                | 0.3   | 0.6   | 0.4    | 0.2                | 0.9   | 0.3  | 1.0  | 0.3                | 0.7      | 0.6   | 0.8    | 0.5                | 0.6   | 0.5   |
| Turbluity                           | NIU              | 0.4          | 0.4                | 0.4   | 0.7  | -      | -                  | -     | -     | -      | -                  | -     | -    | -    | -                  | -        | -     | -      | -                  | -     | -     |
| тос                                 | mg/L             | -            | -                  | -     | -    | -      | -                  | -     | -     | -      | -                  | -     | -    | -    | -                  | -        | -     | -      | -                  | -     | -     |
| рН                                  | S.U.             | -            | 7.0 <sup>(c)</sup> | -     | -    | -      | 7.1 <sup>(c)</sup> | -     | -     | -      | 7.2 <sup>(c)</sup> | -     | -    | -    | 7.0 <sup>(c)</sup> | -        | -     | -      | 7.0 <sup>(c)</sup> | -     | -     |
| Temperature                         | C                | -            | -                  | -     | -    | -      | -                  | -     | -     | -      | -                  | -     | -    | -    | -                  | -        | -     | -      | -                  | -     | -     |
| DO                                  | mg/L             | -            | -                  | -     | -    | -      | -                  | -     | -     | -      | -                  | -     | -    | -    | -                  | -        | -     | -      | -                  | -     | -     |
| ORP                                 | mV               | -            | -                  | -     | -    | -      | -                  | -     | -     | -      | -                  | -     | -    | -    | -                  | -        | -     | -      | -                  | -     | -     |
| Total Hardness (as CaCO 3)          | mg/L             | -            | -                  | -     | -    | -      | -                  | -     | -     | -      | -                  | -     | -    | -    | -                  | -        | -     | -      | -                  | -     | -     |
| Ca Hardness (as CaCO 3)             | mg/L             | -            | -                  | -     | -    | -      | -                  | -     | -     | -      | -                  | -     | -    | -    | -                  | -        | -     | -      | -                  | -     | -     |
| Mg Hardness (as CaCO <sub>3</sub> ) | mg/L             | -            | -                  | -     | -    | -      | -                  | -     | -     | -      | -                  | -     | -    | -    | -                  | -        | -     | -      | -                  | -     | -     |
| As (total)                          | µg/L             | 37.0         | 37.3               | 1.0   | 0.9  | 41.7   | 44.9               | 4.4   | <0.1  | 41.4   | 41.5               | 1.5   | 1.3  | 34.7 | 36.8               | 2.1      | 1.4   | 41.5   | 39.3               | 2.3   | 2.2   |
| . ,                                 | 10               | 36.6         | 36.5               | 1.0   | 0.7  | -      | -                  | -     | -     | -      | -                  | -     | -    | -    | -                  | -        | -     | -      | -                  | -     | -     |
| As (soluble)                        | µg/L             | -            | -                  | -     | -    | -      | -                  | -     | -     | -      | -                  | -     | -    | -    | -                  | -        | -     | -      | -                  | -     | -     |
| As (particulate)                    | µg/L             | -            | -                  | -     | -    | -      | -                  | -     | -     | -      | -                  | -     | -    | -    | -                  | -        | -     | -      | -                  | -     | -     |
| As (III)                            | µg/L             | -            | -                  | -     | -    | -      | -                  | -     | -     | -      | -                  | -     | -    | -    | -                  | -        | -     | -      | -                  | -     | -     |
| As (V)                              | µg/L             | -            | -                  | -     | -    | -      | -                  | -     | -     | -      | -                  | -     | -    | -    | -                  | -        | -     | -      | -                  | -     | -     |
| Fe (total)                          | µg/L             | <25          | <25                | <25   | <25  | <25    | <25                | <25   | <25   | <25    | <25                | <25   | <25  | <25  | <25                | <25      | <25   | <25    | <25                | <25   | <25   |
|                                     |                  | <25          | <25                | <25   | <25  | -      | -                  | -     | -     | -      | -                  | -     | -    | -    | -                  | -        | -     | -      | -                  | -     | -     |
| Fe (soluble)                        | µg/L             | -            | -                  | -     | -    | -      | -                  | -     | -     | -      | -                  | -     | -    | -    | -                  | -        | -     | -      | -                  | -     | -     |
| Mn (total)                          | µg/L             | 1.0          | 0.4                | <0.1  | <0.1 | 2.9    | 0.3                | 0.1   | <0.1  | 0.3    | 0.3                | <0.1  | <0.1 | 0.2  | 0.2                | <0.1     | <0.1  | 0.3    | 0.3                | <0.1  | <0.1  |
|                                     |                  | 0.8          | 0.4                | <0.1  | <0.1 | -      | -                  | -     | -     | -      | -                  | -     | -    | -    | -                  | -        | -     | -      | -                  | -     | -     |
| ivin (soluble)                      | µg/L             | -            | -                  | -     | -    | -      | -                  | -     | -     | -      | -                  | -     | -    | -    | -                  | -        | -     | -      | -                  | -     | -     |
| U (total)                           | µg/L             | 41.3<br>42.5 | 42.5               | 2.3   | 2.6  | - 39.4 | 38.7               | 5.0   | - 2.3 | - 36.8 | 37.8               | 4.3   | 3.2  | 38.8 | - 39.8             | 3.1<br>- | - 2.9 | - 34.6 | 36.6<br>-          | - 2.6 | - 2.6 |
| U (soluble)                         | μg/L             | -            | -                  | -     | -    | -      | -                  | -     | -     | -      | -                  | -     | -    | -    | -                  | -        | -     | -      | -                  | -     | -     |

| Sampling Date                  |                  | 1    | 01/2               | 29/08 |      |      | 02/0              | 06/08 |      |      | 02/                | 13/08 |      |      | 02/2               | 21/08 | •    |      | 03/0              | 04/08 |      |
|--------------------------------|------------------|------|--------------------|-------|------|------|-------------------|-------|------|------|--------------------|-------|------|------|--------------------|-------|------|------|-------------------|-------|------|
| Sampling Location<br>Parameter | Unit             | IN   | AP                 | ТА    | ТВ   | IN   | AP                | ТА    | ТВ   | IN   | AP                 | ТА    | ТВ   | IN   | AP                 | ТА    | ТВ   | IN   | AP                | ТА    | ТВ   |
| Bed Volume                     | ×10 <sup>3</sup> | -    |                    | 40.0  | 37.4 |      |                   | 41.2  | 38.4 |      |                    | 42.1  | 39.3 |      |                    | 43.5  | 40.4 |      |                   | 45.0  | 42.0 |
|                                |                  | 168  | 168                | 170   | 166  | 160  | 166               | 160   | 164  | 162  | 164                | 192   | 188  | 167  | 163                | 167   | 167  | 167  | 169               | 165   | 167  |
| Alkalinity (as CaCO 3)         | mg/L             | -    | -                  | -     | -    | -    | -                 | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                 | -     | -    |
| Fluoride                       | mg/L             | -    | -                  | -     | -    | -    | -                 | -     |      | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                 | -     | -    |
| Sulfate                        | mg/L             | -    | -                  | -     | -    | -    | -                 | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                 | -     | -    |
| Nitrate (as N)                 | mg/L             | -    | -                  | -     | -    | -    | -                 | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                 | -     | -    |
| Total P (as P )                | ua/I             | <10  | <10                | <10   | <10  | <10  | <10               | <10   | <10  | <10  | <10                | <10   | <10  | <10  | <10                | <10   | <10  | <10  | <10               | <10   | <10  |
|                                | P9/2             | -    | -                  | -     | -    | -    | -                 | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                 | -     | -    |
| Silica (as SiO <sub>2</sub> )  | ma/L             | 14.4 | 14.3               | 19.2  | 18.3 | 14.0 | 13.8              | 14.6  | 14.6 | 13.8 | 13.8               | 10.0  | 10.6 | 15.7 | 15.3               | 21.3  | 20.2 | 15.5 | 15.2              | 17.0  | 16.7 |
| (                              |                  | -    | -                  | -     | -    | -    | -                 | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                 | -     | -    |
| Turbidity                      | NTU              | 0.4  | 0.7                | 0.3   | 0.2  | 0.8  | 1.6               | 0.9   | 1.3  | 0.2  | 0.2                | 0.4   | 0.4  | 0.6  | 0.9                | 0.6   | 0.3  | 0.7  | 0.5               | 0.5   | 0.4  |
|                                |                  | -    | -                  | -     | -    | -    | -                 | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                 | -     | -    |
| тос                            | mg/L             | -    | -                  | -     | -    | -    | -                 | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                 | -     | -    |
| рН                             | S.U.             | -    | 7.2 <sup>(c)</sup> | -     | -    | -    | 7.1 <sup>c)</sup> | -     | -    | -    | 7.0 <sup>(C)</sup> | -     | -    | -    | 7.3 <sup>(c)</sup> | -     | -    | -    | 7.1 <sup>c)</sup> | -     | -    |
| Temperature                    | C                | -    | -                  | -     | -    | -    | -                 | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                 | -     | -    |
| DO                             | mg/L             | -    | -                  | -     | -    | -    | -                 | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                 | -     | -    |
| ORP                            | mV               | -    | -                  | -     | -    | -    | -                 | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                 | -     | -    |
| Total Hardness (as CaCO 3)     | mg/L             | -    | -                  | -     | -    | -    | -                 | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                 | -     | -    |
| Ca Hardness (as CaCO 3)        | mg/L             | -    | -                  | -     | -    | -    | -                 | -     | •    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                 | -     | -    |
| Mg Hardness (as CaCO 3)        | mg/L             | -    | -                  | -     | -    | -    | -                 | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                 | -     | -    |
| As (total)                     | µg/L             | 32.4 | 32.5               | 1.4   | 1.3  | 36.9 | 37.8              | 1.5   | 1.4  | 36.0 | 38.0               | 20.4  | 26.2 | 39.7 | 41.3               | 2.1   | 2.0  | 38.0 | 38.5              | 0.8   | 0.8  |
| As (soluble)                   | ua/l             |      |                    |       |      |      |                   |       |      |      |                    |       |      |      |                    |       |      |      |                   |       |      |
| As (particulate)               | ua/L             | -    | -                  | -     | -    | -    |                   | -     |      | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                 | -     | -    |
| As (III)                       | µg/L             | -    | -                  |       |      | -    |                   | -     |      | -    | -                  | -     | -    |      | -                  | -     | -    | -    | -                 | -     | -    |
| As (V)                         | µg/L             | -    | -                  | -     | -    | -    | -                 | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                 | -     | -    |
|                                |                  | <25  | 28                 | <25   | <25  | 25   | <25               | <25   | <25  | <25  | <25                | <25   | <25  | <25  | <25                | <25   | <25  | <25  | <25               | <25   | <25  |
| Fe (total)                     | µg/L             | -    | -                  | -     | -    | -    | -                 | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                 | -     | -    |
| Fe (soluble)                   | µg/L             | -    | -                  | -     | -    | -    | -                 | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                 | -     | -    |
| Mn (total)                     | ua/l             | 0.3  | 0.2                | 0.1   | <0.1 | 1.9  | 0.2               | <0.1  | <0.1 | 0.2  | 0.2                | <0.1  | <0.1 | <0.1 | <0.1               | <0.1  | <0.1 | 1.4  | <0.1              | <0.1  | <0.1 |
|                                | µy/L             | -    | -                  | -     | -    | -    | -                 | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                 | -     | -    |
| Mn (soluble)                   | µg/L             | -    | -                  | -     | -    | -    | -                 | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                 | -     | -    |
| LL (total)                     | ua/I             | 37.2 | 35.3               | 4.2   | 3.7  | 35.5 | 35.1              | 3.0   | 2.8  | 35.7 | 35.2               | 33.3  | 46.5 | 37.7 | 38.1               | 2.8   | 2.5  | 40.5 | 39.5              | 2.8   | 2.6  |
|                                | µy/∟             | -    | -                  | -     | -    | -    | -                 | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                 | -     | -    |
| U (soluble)                    | µg/L             | -    | -                  | -     | -    | -    | -                 | - 1   | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                 | -     | -    |

| Sampling Date                 |                  |              | 03/                | 11/08 |            |            | 03/1               | 19/08       |           |      | 03/2               | 26/08 |      |      | 04/0               | 08/08 |      |      | 04/1               | 15/08 |      |
|-------------------------------|------------------|--------------|--------------------|-------|------------|------------|--------------------|-------------|-----------|------|--------------------|-------|------|------|--------------------|-------|------|------|--------------------|-------|------|
| Sampling Location             |                  | INI          |                    | ТА    | тр         | INI        |                    | тл          | тр        | INI  |                    | ТА    | тр   | INI  |                    | ТА    | тр   | INI  |                    | ТА    | тр   |
| Parameter                     | Unit             |              | AF                 |       |            |            | AF                 |             | IB        |      | AF                 |       | ТВ   |      | AF                 |       | ID   |      | Ar                 |       |      |
| Bed Volume                    | ×10 <sup>3</sup> | -            | -                  | 46.0  | 43.0       | -          | -                  | 47.1        | 44.0      | -    | -                  | 48.3  | 45.2 | -    | -                  | 50.7  | 47.3 | -    | -                  | 51.7  | 48.4 |
| Alkalinity (as CaCO )         | ma/l             | 169          | 169                | 174   | 171        | 172        | 168                | 166         | 164       | 168  | 168                | 164   | 166  | 167  | 169                | 171   | 167  | 171  | 169                | 173   | 169  |
|                               | ing/E            | 171          | 169                | 171   | 174        | -          | -                  | -           | -         | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| Fluoride                      | mg/L             | -            | -                  | -     | -          | -          | -                  | -           | -         | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| Sulfate                       | mg/L             | -            | -                  | -     | -          | -          | -                  | -           | -         | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| Nitrate (as N)                | mg/L             | -            | -                  | -     | -          | -          | -                  | -           | -         | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| Total P (as P )               | ua/l             | <10          | <10                | <10   | <10        | <10        | <10                | <10         | <10       | <10  | <10                | <10   | <10  | <10  | <10                | <10   | <10  | <10  | <10                | <10   | <10  |
|                               | P9'-             | <10          | <10                | <10   | <10        | -          | -                  | -           | -         | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| Silica (as SiO <sub>2</sub> ) | ma/l             | 13.2         | 13.3               | 14.0  | 13.9       | 14.9       | 14.9               | 16.0        | 16.0      | 13.2 | 13.6               | 14.8  | 14.5 | 13.8 | 14.1               | 15.3  | 15.1 | 14.8 | 14.7               | 20.3  | 18.9 |
|                               | g/L              | 13.1         | 13.3               | 13.9  | 13.7       | -          | -                  | -           | -         | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| Turbidity                     | NTU              | 0.3          | 0.3                | 0.2   | 0.4        | 0.6        | 0.8                | 0.4         | 1.2       | 0.5  | 0.3                | 0.3   | 0.6  | 1.0  | 0.3                | 1.0   | 0.7  | 0.7  | 0.5                | 0.7   | 0.9  |
| - di blany                    |                  | 0.4          | 0.1                | 0.3   | 0.2        | -          | -                  | -           | -         | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| тос                           | mg/L             | -            | -                  | -     | -          | -          | -                  | -           | -         | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| рН                            | S.U.             | -            | 6.9 <sup>(c)</sup> | -     | -          | -          | 7.2 <sup>(c)</sup> | -           | -         | -    | 7.3 <sup>(c)</sup> | -     | -    | -    | 7.2 <sup>(c)</sup> | -     | -    | -    | 7.2 <sup>(c)</sup> | -     | -    |
| Temperature                   | °C               | -            | -                  | -     | -          | -          | -                  | -           | -         | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| DO                            | mg/L             | -            | -                  | -     | -          | -          | -                  | -           | -         | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| ORP                           | mV               | -            | -                  | -     | -          | -          | -                  | -           | -         | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| Total Hardness (as CaCO 3)    | mg/L             | -            | -                  | -     | -          | -          | -                  | -           | -         | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| Ca Hardness (as CaCO 3)       | mg/L             | -            | -                  | -     | -          | -          | -                  | -           | -         | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| Mg Hardness (as CaCO 3)       | mg/L             | -            | -                  | -     | -          | -          | -                  | -           | -         | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| As (total)                    | µg/L             | 31.5<br>32.8 | 34.9<br>33.2       | 1.1   | 1.2<br>1.2 | 29.6       | 29.9               | 1.8         | 1.8       | 28.9 | 28.9               | 1.3   | 1.2  | 28.1 | 30.1               | 1.0   | 0.9  | 28.7 | 29.8               | 1.3   | 1.3  |
| As (soluble)                  | ua/L             | -            | -                  | -     | -          | -          | -                  | -           | -         | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| As (particulate)              | ua/L             | -            | -                  | -     | -          | -          | -                  | -           | -         | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| As (III)                      | µg/L             | -            | -                  | -     | -          | -          | -                  | -           | -         | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| As (V)                        | μg/L             | -            | -                  | -     | -          | -          | -                  | -           | -         | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
|                               |                  | <25          | <25                | <25   | <25        | <25        | <25                | <25         | <25       | <25  | <25                | <25   | <25  | <25  | <25                | <25   | <25  | <25  | <25                | <25   | <25  |
| Fe (total)                    | µg/L             | <25          | <25                | <25   | <25        | -          | -                  | -           | -         | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| Fe (soluble)                  | µg/L             | -            | -                  | -     |            | -          | -                  | -           | -         | -    | -                  | -     | -    |      | -                  | -     | -    | -    | -                  | -     | -    |
|                               |                  | <0.1         | <0.1               | <0.1  | <0.1       | 0.3        | 0.5                | <0.1        | <0.1      | 0.2  | 63.8               | 0.2   | <0.1 | 0.3  | 0.6                | <0.1  | <0.1 | 0.4  | 0.5                | <0.1  | <0.1 |
| Mn (total)                    | µg/L             | <0.1         | <0.1               | <0.1  | <0.1       | -          | -                  | -           | -         | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| Mn (soluble)                  | µg/L             | -            | -                  | -     | -          | -          | -                  | -           | -         | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
|                               |                  | 40.8         | 42.5               | 4.0   | 4.0        | 38.6       | 41.4               | 5.3         | 5.2       | 39.7 | 41.9               | 3.7   | 3.4  | 43.5 | 42.4               | 4.1   | 3.7  | 42.9 | 42.2               | 3.9   | 3.6  |
| U (total)                     | µg/L             | 42.5         | 42.1               | 4.1   | 4.2        | -          | -                  | -           | -         | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| U (soluble)                   | µg/L             | -            | -                  | -     | -          | -          | -                  | -           | -         | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
|                               |                  |              |                    |       |            | (c) pH rea | ading take         | n from inli | ne probe. |      |                    |       |      |      |                    |       |      |      |                    |       |      |

| Sampling Date                 |                  |       | 04/2               | 22/08 |       |      | 05/0               | 06/08 |      |      | 05/1               | 13/08 |       |      | 05/2               | 21/08 |       |      | 06/0               | )3/08 |       |
|-------------------------------|------------------|-------|--------------------|-------|-------|------|--------------------|-------|------|------|--------------------|-------|-------|------|--------------------|-------|-------|------|--------------------|-------|-------|
| Sampling Location             | Unit             | IN    | AP                 | ТА    | ТВ    | IN   | AP                 | ТА    | ТВ   | IN   | AP                 | ТА    | ТВ    | IN   | AP                 | ТА    | тв    | IN   | AP                 | ТА    | тв    |
| Bed Volume                    | ×10 <sup>3</sup> |       |                    | 53.0  | 49.6  |      | •                  | 55.9  | 52.2 |      |                    | 57.4  | 53.6  |      |                    | 59.0  | 55.1  |      | -                  | 62.2  | 58.1  |
|                               |                  | 166   | 164                | 204   | 202   | 157  | 161                | 165   | 163  | 162  | 162                | 182   | 178   | 170  | 168                | 166   | 170   | 177  | 170                | 173   | 173   |
| Alkalinity (as CaCO 3)        | mg/L             | -     | -                  | -     | -     | -    | -                  | -     | -    | -    | -                  | -     | -     | -    | -                  | -     | -     | -    | -                  | -     |       |
| Fluoride                      | mg/L             | -     | -                  | -     | -     | 1.0  | 1.1                | 0.5   | 0.8  | -    | -                  | -     | -     | -    | -                  | -     | -     | -    | -                  | -     | -     |
| Sulfate                       | mg/L             | -     | -                  | -     | -     | 26.1 | 25.0               | 26.2  | 31.2 | -    | -                  | -     | -     | -    | -                  | -     | -     | -    | -                  | -     | -     |
| Nitrate (as N)                | mg/L             | -     | -                  | -     | -     | 0.7  | 0.7                | 0.4   | 0.6  | -    | -                  | -     | -     | -    | -                  | -     | -     | -    | -                  | -     | -     |
| Total P (as P )               | ua/L             | <10   | <10                | 13.0  | 12.6  | <10  | <10                | <10   | <10  | <10  | <10                | <10   | <10   | 12.1 | 10.7               | <10   | <10   | <10  | <10                | <10   | <10   |
|                               | F-37 -           | -     | -                  | -     | -     | -    | -                  | -     | -    | -    | -                  | -     | -     | -    | -                  | -     | -     | -    | -                  | -     | -     |
| Silica (as SiO <sub>2</sub> ) | mg/L             | 14.5  | 14.5               | 15.0  | 15.0  | 14.2 | 13.9               | 17.9  | 16.8 | 13.8 | 14.1               | 13.3  | 13.4  | 13.7 | 13.9               | 20.0  | 19.0  | 13.6 | 13.5               | 14.3  | 13.8  |
|                               |                  | -     | -                  | -     | -     | -    | -                  | -     | -    | -    | -                  | -     | -     | -    | -                  | -     | -     | -    | -                  | -     | -     |
| Turbidity                     | NTU              | - 0.6 | - 0.6              | - 0.6 | - 0.6 | -    | - 0.5              | - 0.6 | -    | -    | - 0.4              | - 0.8 | - 0.9 | -    | -                  | -     | - 0.6 | -    | <0.1               | <0.1  | - 0.1 |
| тос                           | mg/L             | -     | -                  | -     | -     | -    | -                  | -     | -    | -    | -                  | -     | -     | -    | -                  | -     | -     | -    | -                  | -     | -     |
| pН                            | S.U.             | -     | 7.2 <sup>(c)</sup> | -     | -     | -    | 7.6 <sup>(c)</sup> |       | -    | -    | 7.6 <sup>(c)</sup> | -     | -     | -    | 7.2 <sup>(c)</sup> | -     | -     | -    | 7.1 <sup>(c)</sup> | -     | -     |
| Temperature                   | c                | -     | -                  | -     | -     | -    | -                  | -     | -    | -    | -                  | -     | -     | -    | -                  | -     | -     | -    | -                  | -     | -     |
| DO                            | mg/L             | -     | -                  | -     | -     | -    | -                  | -     | -    | -    | -                  | -     | -     | -    | -                  | -     | -     | -    | -                  | -     | -     |
| ORP                           | mV               | -     | -                  | -     | -     | -    | -                  | -     | -    | -    | -                  | -     | -     | -    | -                  | -     | -     | -    | -                  | -     | -     |
| Total Hardness (as CaCO 3)    | mg/L             | -     | -                  | -     | -     | 6.1  | 5.7                | 8.2   | 8.1  | -    | -                  | -     | -     | -    | -                  | -     | -     | -    | -                  | -     | -     |
| Ca Hardness (as CaCO 3)       | mg/L             | -     | -                  | -     | -     | 5.9  | 5.6                | 7.5   | 7.5  | -    | -                  | -     | -     | -    | -                  | -     | -     | -    | -                  | -     | -     |
| Mg Hardness (as CaCO 3)       | mg/L             | -     | -                  | -     | -     | 0.2  | 0.2                | 0.6   | 0.5  | -    | -                  | -     | -     | -    | -                  | -     | -     | -    | -                  | -     | -     |
| As (total)                    | µg/L             | 31.5  | 32.7               | 46.9  | 44.7  | 43.5 | 44.7               | 1.2   | 1.2  | 40.5 | 41.0               | 43.5  | 41.5  | 33.6 | 32.0               | 2.5   | 2.3   | 30.4 | 32.3               | 1.1   | 1.1   |
|                               |                  | -     | -                  | -     | -     | -    | -                  | -     | -    | -    | -                  | -     | -     | -    | -                  | -     | -     | -    | -                  | -     | -     |
| As (soluble)                  | µg/L             | -     | -                  | -     | -     | -    | -                  | -     | -    | -    | -                  | -     | -     | -    | -                  | -     | -     | -    | -                  | -     | -     |
| As (particulate)              | µg/L             | -     | -                  | -     | -     | -    | -                  | -     | -    | -    | -                  | -     | -     | -    | -                  | -     | -     | -    | -                  | -     | -     |
| As (III)                      | µg/L             | -     | -                  | -     | -     | -    | -                  | -     | -    | -    | -                  | -     | -     | -    | -                  | -     | -     | -    | -                  | -     | -     |
| As (V)                        | µg/L             | -     | -                  | -     | -     | -    | -                  | -     | -    | -    | -                  | -     | -     | -    | -                  | -     | -     | -    | -                  | -     | -     |
| Fe (total)                    | μg/L             | <25   | <25                | <25   | <25   | <25  | <25                | <25   | <25  | <25  | <25                | <25   | <25   | <25  | <25                | <25   | <25   | <25  | <25                | <25   | <25   |
| Fe (soluble)                  | µg/L             | -     | -                  | -     | -     | -    | -                  | -     | -    | -    | -                  | -     | -     | -    | -                  | -     | -     | -    | -                  | -     | -     |
|                               |                  | <0.1  | <0.1               | <0.1  | <0.1  | 0.2  | 0.2                | <0.1  | <0.1 | 0.2  | 0.1                | <0.1  | <0.1  | 1.3  | 0.4                | <0.1  | <0.1  | 0.1  | <0.1               | <0.1  | <0.1  |
| Mn (total)                    | µg/L             | -     | -                  | -     | -     | -    | -                  | -     | -    | -    | -                  | -     | -     | -    | -                  | -     | -     | -    | -                  | -     | -     |
| Mn (soluble)                  | µg/L             | -     | -                  | -     | -     | -    | -                  | -     | -    | -    | -                  | -     | -     | -    | -                  | -     | -     | -    | -                  | -     | -     |
| U (total)                     | µg/L             | 41.5  | 40.7               | 105.0 | 90.9  | 36.7 | 35.2               | 2.1   | 2.0  | 37.4 | 38.2               | 62.4  | 50.6  | 36.7 | 35.0               | 2.2   | 2.0   | 36.5 | 35.6               | 2.0   | 2.0   |
|                               |                  | -     | -                  | -     | -     | -    | -                  | -     | -    | -    | -                  | -     | -     | -    | -                  | -     | -     | -    | -                  | -     | -     |
| o (soluble)                   | µg/∟             | II -  | -                  |       |       |      | 1 <sup>-</sup>     | 1 -   | 1 .  |      |                    | I -   | -     | -    | -                  | -     | -     | -    |                    | · ·   | -     |

| Sampling Date                 |                  |      | 06/                | 11/08 |      |      | 06/1               | 19/08 |      |      | 06/2               | 24/08 |      |      | 07/0              | 02/08 |      |      | 08/2               | 8/08 |      |
|-------------------------------|------------------|------|--------------------|-------|------|------|--------------------|-------|------|------|--------------------|-------|------|------|-------------------|-------|------|------|--------------------|------|------|
| Sampling Location             | Unit             | IN   | AP                 | ТА    | ТВ   | IN   | AP                 | ТА    | тв   | IN   | AP                 | ТА    | ТВ   | IN   | AP                | ТА    | ТВ   | IN   | AP                 | ТА   | ТВ   |
| Bed Volume                    | ×10 <sup>3</sup> | -    | -                  | 64.3  | 60.1 |      | -                  | 65.9  | 61.6 |      |                    | 67.6  | 63.3 | -    | -                 | 69.6  | 65.1 | -    | -                  | 82.5 | 77.2 |
|                               |                  | 179  | 173                | 168   | 166  | 173  | 168                | 171   | 171  | 173  | 175                | 173   | 171  | 159  | 161               | 156   | 159  | 168  | 162                | 166  | 173  |
| Alkalinity (as CaCO 3)        | mg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | 159  | 159               | 156   | 159  | -    | -                  | -    | -    |
| Fluoride                      | mg/L             | -    | -                  | -     | -    | -    | -                  | -     |      | -    | -                  | -     | -    | -    | -                 | -     | -    | -    | -                  | -    |      |
| Sulfate                       | mg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                 | -     | -    | -    |                    | -    | -    |
| Nitrate (as N)                | mg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                 | -     | -    | -    | -                  | -    | -    |
|                               |                  | <10  | <10                | <10   | <10  | <10  | <10                | <10   | <10  | <10  | <10                | <10   | <10  | <10  | <10               | <10   | <10  | <10  | <10                | <10  | <10  |
| Total P (as P )               | µg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | <10  | <10               | <10   | <10  | -    | -                  | -    | -    |
|                               | m a/l            | 13.6 | 13.7               | 16.1  | 15.4 | 13.7 | 13.6               | 14.3  | 13.9 | 13.4 | 13.3               | 14.0  | 14.0 | 15.3 | 14.5              | 19.1  | 18.4 | 13.5 | 13.2               | 13.8 | 13.3 |
| Silica (as SiO <sub>2</sub> ) | mg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | 15.0 | 14.7              | 19.1  | 18.4 | -    | -                  | -    | -    |
| Turbidity                     | NITLI            | <0.1 | <0.1               | <0.1  | <0.1 | 0.4  | 0.7                | 0.3   | 0.9  | 0.1  | 0.1                | 0.1   | 0.1  | <0.1 | <0.1              | <0.1  | <0.1 | <0.1 | <0.1               | 0.2  | <0.1 |
| Turblaity                     | NIU              | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | <0.1 | <0.1              | <0.1  | <0.1 | -    | -                  | -    | -    |
| тос                           | mg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                 | -     | -    | -    | -                  | -    | -    |
| рН                            | S.U.             | NA   | 7.2 <sup>(c)</sup> | NA    | NA   | NA   | 7.2 <sup>(c)</sup> | NA    | NA   | NA   | 7.2 <sup>(c)</sup> | NA    | NA   | NA   | 7.1 <sup>c)</sup> | NA    | NA   | NA   | 7.2 <sup>(c)</sup> | NA   | NA   |
| Temperature                   | C                | NA   | NA                 | NA    | NA   | NA   | NA                 | NA    | NA   | NA   | NA                 | NA    | NA   | NA   | NA                | NA    | NA   | NA   | NA                 | NA   | NA   |
| DO                            | mg/L             | NA   | NA                 | NA    | NA   | NA   | NA                 | NA    | NA   | NA   | NA                 | NA    | NA   | NA   | NA                | NA    | NA   | NA   | NA                 | NA   | NA   |
| ORP                           | mV               | NA   | NA                 | NA    | NA   | NA   | NA                 | NA    | NA   | NA   | NA                 | NA    | NA   | NA   | NA                | NA    | NA   | NA   | NA                 | NA   | NA   |
| Total Hardness (as CaCO 3)    | mg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                 | -     | -    | -    | -                  | -    | -    |
| Ca Hardness (as CaCO 3)       | mg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                 | -     | -    | -    | -                  | -    | -    |
| Mg Hardness (as CaCO 3)       | mg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                 | -     | -    | -    | -                  | -    | -    |
| As (total)                    | µg/L             | 32.7 | 32.5               | 1.3   | 1.3  | 27.2 | 27.2               | 0.9   | 0.9  | 28.3 | 28.5               | 1.7   | 1.9  | 38.4 | 37.5              | 1.3   | 1.3  | 31.2 | 32.6               | 1.6  | 1.5  |
|                               |                  | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                 | -     | -    | -    | -                  | -    | -    |
| As (particulato)              | µg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                 | -     | -    | -    | -                  | -    | -    |
|                               | µg/L             | -    | -                  |       |      |      |                    |       |      | -    |                    |       |      | -    |                   |       |      |      |                    |      |      |
| As (V)                        | ug/l             | -    | -                  |       |      |      | -                  | -     |      |      |                    |       | -    | -    | -                 | -     | -    | -    | -                  | -    |      |
|                               | P9/2             | <25  | <25                | <25   | <25  | <25  | <25                | <25   | <25  | <25  | <25                | <25   | <25  | <25  | <25               | <25   | <25  | <25  | <25                | <25  | <25  |
| Fe (total)                    | µg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                 | -     | -    | -    | -                  | -    | -    |
| Fe (soluble)                  | µg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                 | -     | -    | -    | -                  | -    | -    |
| Mp (total)                    |                  | <0.1 | <0.1               | <0.1  | <0.1 | <0.1 | <0.1               | <0.1  | <0.1 | <0.1 | <0.1               | <0.1  | <0.1 | 0.1  | 0.1               | <0.1  | <0.1 | 0.1  | 0.1                | <0.1 | <0.1 |
|                               | µy/∟             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                 | -     | -    | -    | -                  | -    | -    |
| Mn (soluble)                  | µg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                 | -     | -    | -    | -                  | -    | -    |
| LL (total)                    | ug/l             | 46.1 | 44.1               | 1.5   | 1.5  | 41.5 | 42.2               | 1.4   | 1.4  | 41.6 | 42.4               | 2.9   | 3.0  | 37.2 | 38.1              | 2.9   | 2.6  | 35.6 | 35.4               | 5.9  | 5.6  |
|                               | µy/∟             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                 | -     | -    | -    | -                  | -    | -    |
| U (soluble)                   | µg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                 | -     | -    | -    | -                  | -    | -    |

| Sampling Date                  |                  | 1    | 09/2               | 24/08 |      |      | 10/2               | 27/08 |      |      | 11/.               | 24/08 |      |      | 12/2               | 22/08 |      |      | 01/2               | 28/09 |      |
|--------------------------------|------------------|------|--------------------|-------|------|------|--------------------|-------|------|------|--------------------|-------|------|------|--------------------|-------|------|------|--------------------|-------|------|
| Sampling Location<br>Parameter | Unit             | IN   | AP                 | ТА    | ТВ   |
| Bed Volume                     | ×10 <sup>3</sup> | -    |                    | 88.3  | 82.6 |      |                    | 94.8  | 88.7 |      |                    | 99.4  | 96.0 |      |                    | 102   | 95.1 |      |                    | 104   | 96.7 |
|                                |                  | 166  | 168                | 166   | 161  | 155  | 159                | 164   | 164  | 158  | 158                | 156   | 156  | 184  | 182                | 157   | 168  | 168  | 175                | 164   | 166  |
| Alkalinity (as CaCO 3)         | mg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| Fluoride                       | mg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| Sulfate                        | mg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| Nitrate (as N)                 | mg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| Total P (as P )                | ug/l             | <10  | <10                | <10   | <10  | <10  | <10                | <10   | <10  | <10  | <10                | <10   | <10  | <10  | <10                | <10   | <10  | <10  | <10                | <10   | <10  |
| Total P (as P )                | µy/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| Silica (as SiOs)               | ma/l             | 14.0 | 13.9               | 13.1  | 13.3 | 13.6 | 13.2               | 13.6  | 13.6 | 13.6 | 13.1               | 12.9  | 13.3 | 11.1 | 11.1               | 13.0  | 13.0 | 12.1 | 11.6               | 12.6  | 12.8 |
|                                | ing/∟            | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| Turbidity                      | NTU              | <0.1 | <0.1               | <0.1  | 0.2  | <0.1 | 0.1                | <0.1  | <0.1 | 0.1  | <0.1               | <0.1  | <0.1 | 0.2  | <0.1               | 0.1   | 0.1  | 0.2  | 0.2                | 0.2   | 0.1  |
|                                |                  | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| тос                            | mg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| рН                             | S.U.             | NA   | 7.5 <sup>(c)</sup> | NA    | NA   | NA   | 7.3 <sup>(c)</sup> | NA    | NA   | NA   | 7.4 <sup>(c)</sup> | NA    | NA   | NA   | 7.4 <sup>(c)</sup> | NA    | NA   | NA   | 7.4 <sup>(c)</sup> | NA    | NA   |
| Temperature                    | C                | NA   | NA                 | NA    | NA   |
| DO                             | mg/L             | NA   | NA                 | NA    | NA   |
| ORP                            | mV               | NA   | NA                 | NA    | NA   |
| Total Hardness (as CaCO 3)     | mg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| Ca Hardness (as CaCO 3)        | mg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| Mg Hardness (as CaCO 3)        | mg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| As (total)                     | µg/L             | 28.4 | 28.3               | 1.6   | 1.8  | 32.4 | 32.6               | 2.0   | 2.0  | 40.8 | 40.7               | 1.9   | 2.0  | 11.0 | 10.6               | 1.9   | 2.2  | 22.0 | 12.2               | 2.6   | 2.7  |
|                                |                  | -    | -                  | •     | -    | -    | -                  | -     | •    | •    | -                  | •     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| As (soluble)                   | µg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
|                                | µg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| As (11)                        | µg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| AS (V)                         | µy/L             |      | - 25               | - 25  | - 25 | - 25 | - 25               | - 25  | - 25 | 25   | - 25               | 25    | - 25 | -    | - 25               | 25    | - 25 | - 25 | - 25               | 25    | - 25 |
| Fe (total)                     | µg/L             | - 25 |                    |       |      | - 25 | - 25               | - 25  | - 25 | - 25 | - 25               | - 25  |      | -    | - 25               | - 25  | - 25 |      |                    |       | - 25 |
| Fe (soluble)                   | ua/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
|                                | 15               | 0.4  | 0.3                | <0.1  | <0.1 | 0.7  | 0.2                | <0.1  | <0.1 | <0.1 | <0.1               | <0.1  | <0.1 | 6.8  | 0.7                | <0.1  | <0.1 | 1.1  | 0.4                | <0.1  | <0.1 |
| Mn (total)                     | µg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| Mn (soluble)                   | µg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  |       | -    |
|                                |                  | 44.8 | 43.8               | 9.8   | 11.8 | 19.9 | 38.4               | 4.8   | 4.7  | 34.1 | 34.0               | 7.1   | 7.4  | 36.1 | 35.5               | 8.2   | 9.1  | 26.0 | 26.6               | 7.5   | 8.7  |
| U (total)                      | µg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    | -    | -                  | -     | -    |
| U (soluble)                    | µg/L             | -    | -                  | -     | -    | -    | -                  | -     | -    | -    |                    | -     | -    |      | -                  | -     | -    | -    | -                  | -     | -    |

| Sampling Date                  |                  |       | 02/2               | 25/09 |      |      | 03/2               | 6/09 |      |      | 04/2 | 4/09 |      |      | 05/2               | 0/09 | •    |      | 06/1               | 7/09 |      |
|--------------------------------|------------------|-------|--------------------|-------|------|------|--------------------|------|------|------|------|------|------|------|--------------------|------|------|------|--------------------|------|------|
| Sampling Location<br>Parameter | Unit             | IN    | AP                 | ТА    | ТВ   | IN   | AP                 | ТА   | ТВ   | IN   | AP   | ТА   | ТВ   | IN   | AP                 | ТА   | ТВ   | IN   | AP                 | ТА   | ТВ   |
| Bed Volume                     | ×10 <sup>3</sup> |       | -                  | 106   | 98.7 | -    | -                  | 110  | 102  | -    | -    | NA   | NA   |      | -                  | 118  | 110  | -    | -                  | 119  | 111  |
|                                |                  | 167   | 171                | 169   | 163  | 169  | 173                | 167  | 165  | 166  | 166  | 168  | 171  | 177  | 174                | 172  | 177  | 175  | 175                | 175  | 173  |
| Alkalinity (as CaCO 3)         | mg/L             | -     | -                  | -     | -    | -    | -                  | -    | -    | -    | -    | -    | -    | -    | -                  | -    | -    | -    | -                  | -    | -    |
| Fluoride                       | mg/L             | -     | -                  | -     | -    | -    | -                  | -    | -    | -    | -    | -    | -    | -    | -                  | -    | -    | -    | -                  | -    | -    |
| Sulfate                        | mg/L             | -     | -                  | -     | -    | -    | -                  | -    | -    | -    | -    | -    | -    | -    | -                  | -    | -    | -    | -                  | -    | -    |
| Nitrate (as N)                 | mg/L             | -     | -                  | -     | -    | -    | -                  | -    | -    | -    | -    | -    | -    | -    | -                  | -    | -    | -    | -                  | -    | -    |
| Total P (as P )                | ug/l             | 10.4  | 10.5               | <10   | <10  | <10  | <10                | <10  | <10  | 26.1 | 23.4 | 12.7 | 11.4 | <10  | <10                | <10  | <10  | <10  | <10                | <10  | <10  |
| Total P (as P )                | µy/L             | -     | -                  | -     | -    | -    | -                  | -    | -    | -    | -    | -    | -    | -    | -                  | -    | -    | -    | -                  | -    | -    |
| Silica (as SiOs)               | ma/l             | 13.4  | 12.8               | 15.8  | 15.3 | 12.6 | 12.4               | 12.1 | 12.3 | 14.3 | 14.3 | 14.6 | 14.7 | 13.0 | 13.9               | 13.8 | 13.5 | 13.1 | 13.0               | 14.5 | 14.3 |
|                                | mg/∟             | -     | -                  | -     | -    | -    | -                  | -    | -    | -    | -    | -    | -    | -    | -                  | -    | -    | -    | -                  | -    | -    |
| Turbidity                      | NTU              | <0.1  | <0.1               | <0.1  | <0.1 | 0.4  | 0.3                | 0.5  | 0.2  | 0.1  | <0.1 | 0.1  | 0.3  | 0.8  | 0.1                | 0.2  | 0.5  | 0.5  | 0.9                | 0.6  | 0.6  |
| Turblany                       | NIO              | -     | -                  | -     | -    | -    | -                  | -    | -    | -    | -    | -    | -    | -    | -                  | -    | -    | -    | -                  | -    | -    |
| тос                            | mg/L             | -     | -                  | -     | -    | -    | -                  | -    | -    | -    | -    | -    | -    | -    | -                  | -    | -    | -    | -                  | -    | -    |
| рН                             | S.U.             | NA    | 7.7 <sup>(c)</sup> | NA    | NA   | NA   | 7.5 <sup>(c)</sup> | NA   | 7.6 <sup>(c)</sup> | NA   | NA   | NA   | 7.5 <sup>(c)</sup> | NA   | NA   |
| Temperature                    | C                | NA    | NA                 | NA    | NA   | NA   | NA                 | NA   | NA   | NA   | NA   | NA   | NA   | NA   | NA                 | NA   | NA   | NA   | NA                 | NA   | NA   |
| DO                             | mg/L             | NA    | NA                 | NA    | NA   | NA   | NA                 | NA   | NA   | NA   | NA   | NA   | NA   | NA   | NA                 | NA   | NA   | NA   | NA                 | NA   | NA   |
| ORP                            | mV               | NA    | NA                 | NA    | NA   | NA   | NA                 | NA   | NA   | NA   | NA   | NA   | NA   | NA   | NA                 | NA   | NA   | NA   | NA                 | NA   | NA   |
| Total Hardness (as CaCO 3)     | mg/L             | -     | -                  | -     | -    | -    | -                  | -    | -    | -    | -    | -    | -    | -    | -                  | -    | -    | -    | -                  | -    | -    |
| Ca Hardness (as CaCO 3)        | mg/L             | -     | -                  | -     | -    | -    | -                  | -    | -    | -    | -    | -    | -    | -    | -                  | -    | -    | -    | -                  | -    | -    |
| Mg Hardness (as CaCO 3)        | mg/L             | -     | -                  | -     | -    | -    | -                  | -    | -    | -    | -    | -    | -    | -    | -                  | -    | -    | -    | -                  | -    | -    |
| As (total)                     | µg/L             | 29.5  | 26.5               | 2.2   | 2.6  | 31.3 | 32.0               | 1.7  | 1.8  | 59.0 | 42.2 | 3.6  | 3.0  | 35.1 | 35.7               | 1.9  | 1.8  | 30.8 | 30.8               | 2.2  | 2.3  |
|                                |                  | -     | -                  | -     | -    | -    | -                  | -    | -    | -    | -    | -    | -    | -    | -                  | -    | -    | -    | -                  | -    | -    |
| As (soluble)                   | µg/L             | -     | -                  | -     | -    | -    | -                  | -    | -    | -    | -    | -    | -    | -    | -                  | -    | -    | -    | -                  | -    | -    |
| As (particulate)               | µg/L             | -     | -                  | -     | -    | -    | -                  | -    | -    | -    | -    | -    | -    | -    | -                  | -    | -    | -    | -                  | -    | -    |
| As (III)                       | µg/L             | -     | -                  | -     | -    | -    | -                  | -    | -    | -    | -    | -    | -    | -    | -                  | -    | -    | -    | -                  | -    | -    |
| As (V)                         | µg/L             | -     | -                  | -     | -    | -    | -                  | -    | -    | -    | -    | -    | •    | -    | -                  | -    | -    | -    | -                  | -    | -    |
| Fe (total)                     | µg/L             | - 154 | <25                | <25   | <25  | <25  | <25                | <25  | <25  | <25  | <25  | <25  | <25  | <25  | <25                | <25  | <25  | <25  | <25                | <25  | <25  |
| Fe (soluble)                   | µg/L             | -     | -                  | -     | -    | -    | -                  | -    | -    | -    | -    | -    | -    | -    | -                  | -    | -    | -    | -                  | -    | -    |
|                                |                  | 10.8  | 0.5                | <0.1  | <0.1 | 2.4  | 0.5                | <0.1 | <0.1 | 0.3  | 0.2  | <0.1 | <0.1 | 0.2  | 0.1                | <0.1 | <0.1 | 0.8  | 0.5                | 0.3  | <0.1 |
| ivin (total)                   | µg/L             | -     | -                  | -     | -    | -    | -                  | -    | -    | -    | -    | -    | -    | -    | -                  | -    | -    | -    | -                  | -    | -    |
| Mn (soluble)                   | µg/L             | -     | -                  | -     | -    | -    | -                  | -    | -    | -    | -    | -    | -    | -    | -                  | -    | -    | -    | -                  | -    | -    |
| U (total)                      | µg/L             | 40.7  | 39.2               | 7.2   | 6.0  | 45.0 | 45.3               | 7.2  | 6.4  | 55.8 | 48.9 | 7.4  | 6.1  | 36.3 | 37.3               | 3.7  | 3.3  | 39.5 | 39.4               | 6.0  | 6.7  |
| U (soluble)                    | ua/l             | -     | -                  | -     | -    | -    | -                  | -    | -    | -    | -    | -    | -    | -    | -                  | -    | -    | -    | -                  | -    | -    |

| Descripting Location         Unit         N         AP         TA         TB         TA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sampling Date                       |                  |        | 07/2               | 28/09  |        |        | 08/2               | 7/09    |        |        | 09/2               | 21/09  |        |        | 09/2               | 28/09 |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------|--------|--------------------|--------|--------|--------|--------------------|---------|--------|--------|--------------------|--------|--------|--------|--------------------|-------|------|
| Add Volume         No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sampling Location                   | Unit             | IN     | AP                 | ТА     | ТВ     | IN     | AP                 | ТА      | ТВ     | IN     | AP                 | ТА     | ТВ     | IN     | AP                 | ТА    | ТВ   |
| Akalahiy (as CaCO.)         mgl.         165         170         156         157         175         177         288         219         168         167         159         174         172         169         167           Fluorde         mgl.         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td>Bed Volume</td> <td>×10<sup>3</sup></td> <td>-</td> <td>-</td> <td>123</td> <td>115</td> <td>-</td> <td>-</td> <td>125</td> <td>NA</td> <td>-</td> <td>-</td> <td>126</td> <td>116</td> <td>-</td> <td>-</td> <td>126</td> <td>117</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bed Volume                          | ×10 <sup>3</sup> | -      | -                  | 123    | 115    | -      | -                  | 125     | NA     | -      | -                  | 126    | 116    | -      | -                  | 126   | 117  |
| Akalanty (as CaCO)         mpl         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |                  | 165    | 170                | 156    | 159    | 175    | 177                | 208     | 219    | 168    | 167                | 159    | 159    | 174    | 172                | 169   | 167  |
| Photokic         mgL         i.         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Alkalinity (as CaCO 3)              | mg/L             | -      | -                  | -      | -      | -      | -                  | -       | -      | -      | -                  | -      | -      | -      | -                  | -     | -    |
| Sulfate         mqu         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fluoride                            | mg/L             | -      | -                  | -      | -      | -      | -                  | -       | -      | -      | -                  | -      | -      | -      | -                  | -     | -    |
| Intra (as N)         mgl         i.e.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sulfate                             | mg/L             | -      | -                  | -      | -      | -      | -                  | -       | -      | -      | -                  | -      | -      | -      | -                  | -     | -    |
| Total P (as P)         μgL         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Nitrate (as N)                      | mg/L             | -      | -                  | -      | -      | -      | -                  | -       | -      | -      | -                  | -      | -      | -      | -                  | -     | -    |
| Image         Image <t< td=""><td>Total P (as P )</td><td>µg/L</td><td>&lt;10</td><td>&lt;10</td><td>&lt;10</td><td>&lt;10</td><td>&lt;10</td><td>10.9</td><td>11.4</td><td>15.3</td><td>&lt;10</td><td>&lt;10</td><td>&lt;10</td><td>&lt;10</td><td>&lt;10</td><td>&lt;10</td><td>&lt;10</td><td>&lt;10</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Total P (as P )                     | µg/L             | <10    | <10                | <10    | <10    | <10    | 10.9               | 11.4    | 15.3   | <10    | <10                | <10    | <10    | <10    | <10                | <10   | <10  |
| Sile         mL         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         14.7         15.0         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         13.6         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |                  | -      | -                  | -      | -      | -      | -                  | -       | -      | -      | -                  | -      | -      | -      | -                  | -     | -    |
| Turbidity         NTU         0.4         0.2         0.2         0.4         2.4         2.5         1.8         1.1         0.6         0.4         0.7         0.9         0.2         0.3         0.4         0.3           TOC         mgl         1.         1.         1.         1.         1.         1.         1.         1.         1.         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Silica (as SiO₂)                    | mg/L             | - 13.9 | 13.6               | - 13.6 | - 13.4 | - 12.6 | 12.4               | 9.3     | - 10.2 | - 15.0 | - 15.2             | - 14.7 | - 15.0 | - 13.4 | 12.4               | 12.3  | 12.6 |
| Turbidity         Image         Image <thimage< th="">         Image         Image</thimage<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |                  | 0.4    | 0.2                | 0.2    | 0.9    | 2.4    | 2.5                | 1.8     | 1.1    | 0.6    | 0.4                | 0.7    | 0.9    | 0.2    | 0.3                | 0.4   | 0.3  |
| TOC         mgL <td>Turbidity</td> <td>NTU</td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Turbidity                           | NTU              | -      | -                  | -      | -      | -      | -                  | -       | -      | -      | -                  | -      | -      | -      | -                  | -     | -    |
| pH         S.U.         NA         7.2 <sup>(a)</sup> NA         NA         NA         NA         7.2 <sup>(a)</sup> NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | тос                                 | mg/L             | -      | -                  | -      | -      | -      | -                  | -       | -      | -      | -                  | -      | -      | -      | -                  | -     | -    |
| Temperature         TC         NA           Cal Ardenes(as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | рН                                  | S.U.             | NA     | 7.2 <sup>(c)</sup> | NA     | NA     | NA     | 7.2 <sup>(c)</sup> | NA      | NA     | NA     | 7.2 <sup>(c)</sup> | NA     | NA     | NA     | 7.6 <sup>(c)</sup> | NA    | NA   |
| DO         mgL         NA           ORP         mV         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Temperature                         | C                | NA     | NA                 | NA     | NA     | NA     | NA                 | NA      | NA     | NA     | NA                 | NA     | NA     | NA     | NA                 | NA    | NA   |
| ORP     mV     NA     NA    <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DO                                  | mg/L             | NA     | NA                 | NA     | NA     | NA     | NA                 | NA      | NA     | NA     | NA                 | NA     | NA     | NA     | NA                 | NA    | NA   |
| Total Hardness (as CaCO)         mg/L         i.e.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ORP                                 | mV               | NA     | NA                 | NA     | NA     | NA     | NA                 | NA      | NA     | NA     | NA                 | NA     | NA     | NA     | NA                 | NA    | NA   |
| Ca Hardness (as CaCO.)         mg/l         i.e.         i.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total Hardness (as CaCO 3)          | mg/L             | -      | -                  | -      | -      | -      | -                  | -       | -      | -      | -                  | -      | -      | -      | -                  | -     | -    |
| Mg Hardness (as CaCO $_{3}$ mg/L $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ca Hardness (as CaCO 3)             | mg/L             | -      | -                  | -      | -      | -      | -                  | -       | -      | -      | -                  | -      | -      | -      | -                  | -     | -    |
| $ \begin{tabux large}{  \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mg Hardness (as CaCO <sub>3</sub> ) | mg/L             | -      | -                  | -      | -      | -      | -                  | -       | -      | -      | -                  | -      | -      | -      | -                  | -     | -    |
| Image of the state o | As (total)                          | µg/L             | 29.2   | 29.6               | <0.1   | <0.1   | 26.5   | 19.3               | 14.7    | 19.0   | 30.5   | 31.7               | 0.7    | 0.1    | 32.4   | 29.1               | 2.4   | 1.6  |
| As (soluble) $\mu g/L$ $\cdot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |                  | -      | -                  | -      | -      | -      | -                  | -       | -      | -      | -                  | -      | -      | -      | -                  | -     | -    |
| As (particulate)       µg/L </td <td>As (soluble)</td> <td>µg/L</td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | As (soluble)                        | µg/L             | -      | -                  | -      | -      | -      | -                  | -       | -      | -      | -                  | -      | -      | -      | -                  | -     | -    |
| As (II) $\mu g/L$ $\cdot$ Fe (tota) </td <td>As (particulate)</td> <td>µg/L</td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | As (particulate)                    | µg/L             | -      | -                  | -      | -      | -      | -                  | -       | -      | -      | -                  | -      | -      | -      | -                  | -     | -    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | As (III)                            | µg/L             | -      | -                  | -      | -      | -      | -                  | -       | -      | -      | -                  | -      | -      | -      | -                  | -     | -    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | As (V)                              | µg/L             | -      | -                  | -      | -      | -      | -                  | -       | -      | -      | -                  | -      | -      | -      | -                  | -     | -    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fe (total)                          | µg/L             | - 29   | <25                | <25    | <25    | - 28   | <25                | 45<br>- | - 57   | <25    | <25                | <25    | <25    | <25    | <25                | <25   | <25  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fe (soluble)                        | µg/L             | -      | -                  | -      | -      | -      | -                  | -       | -      | -      | -                  | -      | -      | -      | -                  | -     | -    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mn (total)                          | ua/I             | 1.9    | 1.0                | 0.2    | <0.1   | 1.0    | 0.5                | 0.1     | 0.2    | 0.8    | 0.7                | <0.1   | <0.1   | 1.2    | 0.8                | 0.1   | <0.1 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     | µg/L             | -      | -                  | -      | -      | -      | -                  | -       | -      | -      | -                  | -      | -      | -      | -                  | -     | -    |
| U (total) Hg/L 36.6 36.5 6.1 3.3 37.4 37.0 27.2 33.8 38.1 38.6 4.3 3.9 39.1 39.1 7.2 4.3<br>U (soluble) Hg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mn (soluble)                        | µg/L             | -      | -                  | -      | -      | -      | -                  | -       | -      | -      | -                  | -      | -      | -      | -                  | -     | -    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U (total)                           | μg/L             | 36.6   | 36.5               | 6.1    | 3.3    | 37.4   | 37.0               | 27.2    | 33.8   | 38.1   | 38.6               | 4.3    | 3.9    | 39.1   | 39.1               | 7.2   | 4.3  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U (soluble)                         | ua/L             | -      | -                  | -      | -      | -      | -                  | -       | -      | -      | -                  | -      | -      | -      | -                  | -     | -    |