

Combined National and State-level Health Benefits for the Cross-State Air Pollution Rule and Mercury and Air Toxics Standards Combined National and State-level Health Benefits for the Cross-State Air Pollution Rule and Mercury and Air Toxics Standards

By:

Office of Air and Radiation
U.S. Environmental Protection Agency
Washington, District of Columbia

and

Office of Air Quality Planning and Standards U.S. Environmental Protection Agency Research Triangle Park, North Carolina

U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Health and Environmental Impacts Division Research Triangle Park, North Carolina

## <u>Introduction and Purpose of Analysis</u>

This year EPA finalized two rulemakings requiring reductions of air pollutants from electric generators (EGUs)—the Cross-State Air Pollution Rule (CSAPR) and Mercury and Air Toxics Standards (MATS). Starting in 2012, the CSAPR requires 28 states in the eastern half of the United States to substantially improve air quality by reducing power plant emissions of sulfur dioxide (SO<sub>2</sub>) and nitrogen oxides (NO<sub>X</sub>) that cross state lines and contribute to fine particle pollution (PM<sub>2.5</sub>) and ground-level ozone (O<sub>3</sub>) in other states. MATS reduces emissions of toxic air pollutants including mercury (Hg), arsenic, chromium, and nickel as well as acid gases including hydrogen chloride (HCl) and hydrogen fluoride (HF) from new and existing coal- and oil-fired power plants across the U.S. starting as early as 2015. As a co-benefit, MATS also reduces SO<sub>2</sub> and direct PM<sub>2.5</sub> emissions and thereby reduces ambient PM<sub>2.5</sub> concentrations.

While these rules have separate and distinct goals, cover different geographic areas, and have different implementation timeframes, they are also similar in multiple respects: they affect overlapping sets of electricity producers; they were finalized within six months of each other; they will each substantially reduce exposure to air pollution and thereby improve human health and welfare; and a majority of the quantified benefits of each rule is attributable to reductions in  $PM_{2.5}$  resulting from  $SO_2$  emission reductions. Given the similarities between these rules, EPA estimated the national and state-level benefits of these rules combined, which will provide better understanding of their cumulative human health benefits.

The regulatory assessments of the CSAPR and MATS differed in several respects. For example, benefits for the CSAPR were estimated directly from air quality modeling of anticipated emission reductions for the final rule while MATS benefits were estimated using benefit per-ton (BPT) factors derived from a modeled interim policy scenario. The assessments also differed in endpoints analyzed. Due to time and resource constraints, the CSAPR assessment quantified only the health benefits of PM<sub>2.5</sub> and ground-level ozone reductions as well as the welfare benefits of recreational visibility improvements and climate benefits of carbon dioxide (CO<sub>2</sub>) reductions while the MATS analysis quantified only the health benefits of PM<sub>2.5</sub> reductions and the climate benefits of CO<sub>2</sub> reductions. Additionally, the emission reductions and health benefits were assessed for differing analysis years—2014 and 2016 for the CSAPR and MATS, respectively. For more detailed information about the human health and welfare benefits of each rule, as well as the inherent limitations and uncertainties in estimating these benefits, please refer to their respective Regulatory Impact Analyses (RIAs). <sup>1,2</sup>

<sup>&</sup>lt;sup>1</sup> U.S. Environmental Protection Agency (U.S. EPA). 2011. Regulatory Impact Analysis (RIA) for the final Transport Rule. Office of Air and Radiation, Washington, DC. June. Available on the Internet at <a href="http://www.epa.gov/airtransport/pdfs/FinalRIA.pdf">http://www.epa.gov/airtransport/pdfs/FinalRIA.pdf</a>>.

<sup>&</sup>lt;sup>2</sup> U.S. Environmental Protection Agency (U.S. EPA). 2011. Regulatory Impact Analysis (RIA) for the final Mercury and Air Toxics Standard (MATS). June. Available on the Internet at <a href="http://www.epa.gov/ttn/ecas/ria.html">http://www.epa.gov/ttn/ecas/ria.html</a>.

## Methods

In order to sum the benefits of the CSAPR and MATS, EPA needed to update the CSAPR benefits to reflect the same assessment year as MATS. This required re-running the benefits model (Benefits Mapping and Analysis Program (BenMAP<sup>3</sup>)) to assess PM<sub>2.5</sub> and ozone benefits for a 2016 assessment year. EPA did not update the visibility benefits or climate benefits for the CSAPR.

Updating the benefits modeling affected two key parameters: population year and projected income growth. These key inputs are important to the health impacts assessment because the incidence of health impacts reduced, via reduced exposure to air pollutants, depend on population exposure and because the valuation of health impacts avoided is sensitive to income. Because EPA applies baseline incidence rates for premature mortality in 5 year increments (2010, 2015, 2020, etc.), evaluating 2016 rather than 2014 does not change in baseline incidence rates used to estimate incidences of premature mortality avoided.

While the purpose of this assessment is to evaluate benefits of the CSAPR in 2016, this analysis is based on existing air quality modeling of emissions under the CSAPR in 2014. We do not have emissions or air quality modeling to use as the basis for updating the air quality information in the benefits modeling. However, EPA does not think that this is a significant source of uncertainty because the state-level emission budgets for the CSAPR do not change after 2014. While banking of allowances in 2012 and 2013 may impact the trend of emission reductions over time, creating the potential for reductions in 2016 to be somewhat different than 2014, we expect EGU emission reductions in 2016 will likely be generally similar in aggregate level and geographic distribution to 2014.

## Limitations

This analysis is a screening-level assessment of the combined benefits of the CSAPR and MATS and is limited in its inputs, methods, and results, which are fully described in the underlying RIAs. These limitations include:

- This assessment accounts for PM<sub>2.5</sub>-related human health benefits for the CSAPR and MATS and ozone-related health benefits for the CSAPR. Time and data limitations precluded the inclusion of additional benefits that were quantified in the regulatory assessments of these rules such as visibility improvements and greenhouse gas reductions. For a full list of human health and welfare effects of pollutants affected by these rules, please refer to Table 5-2 in the CSAPR RIA<sup>1</sup> and Table 5-2 in the MATS RIA.<sup>2</sup>
- This analysis presents results at the state-level. We are confident, with respect to the availability of necessary data at the state-level, in the estimation of state-level mortality benefits. Due to the high proportion of total benefits attributable to the reduction in premature mortality, we are confident in the total monetized benefits at the state-level.

<sup>&</sup>lt;sup>3</sup> Abt Associates, Inc. 2010. Environmental Benefits and Mapping Program (Version 4.0). Bethesda, MD. Prepared for U.S. Environmental Protection Agency Office of Air Quality Planning and Standards. Research Triangle Park, NC. Available on the Internet at <a href="http://www.epa.gov/air/benmap">http://www.epa.gov/air/benmap</a>.

However, we are less confident in the estimation of morbidity benefits because the assessment relies on national average baseline incidence rates. Additionally, we are more confident in the state-level results for the CSAPR than MATS because, as described in the MATS RIA, we did not perform air quality modeling for the final MATS scenario.

- As mentioned above, we used the available 2014 emissions and air quality modeling for the CSAPR to update the benefits of the CSAPR for 2016. While we do not anticipate that this is a significant source of uncertainty, we note that emission reductions in 2016 may be different than 2014.
- The PM<sub>2.5</sub>-related benefits for MATS were derived through a BPT approach, which does not fully reflect local variability in population density, meteorology, exposure, baseline health incidence rates, or other local factors that might lead to an over-estimate or under-estimate of the actual co-benefits of reducing ambient PM<sub>2.5</sub>.
- State-level results for MATS assume that the state distribution of health co-benefits for the final policy is equivalent to that of the modeled interim scenario.
- This assessment relies on different methods for estimating the benefits of the CSAPR (air quality modeling) and MATS (BPT). We used the BPT method to estimate MATS benefits because EPA did not develop air quality modeling for the final rule. Due to the use of the benefit per-ton method, there is more uncertainty with the state-level MATS results than for the CSAPR, and the added uncertainty in MATS contributes to the summed uncertainty. However, EPA does not anticipate that utilizing different methods will result in significant uncertainty in the summed benefits.
- We assume that all fine particles, regardless of their chemical composition, are equally potent in causing premature mortality. This is an important assumption because the health benefits of these rules are primarily related to reductions of SO<sub>2</sub>, a precursor to ambient PM<sub>2.5</sub>. PM<sub>2.5</sub> improvements produced via reductions in transported precursors (SO<sub>2</sub> and NO<sub>X</sub>) emitted from EGUs may differ significantly from direct PM<sub>2.5</sub> released from diesel engines and other industrial sources, but the scientific evidence is not yet sufficient to allow differential effects estimates by particle type.
- We assume that the health impact function for fine particles is linear within the range of ambient concentrations under consideration. Thus, the estimates include health co-benefits from reducing fine particles in areas with varied concentrations of PM<sub>2.5</sub>, including both regions that are in attainment with the fine particle standard and those that do not meet the standard, down to the lowest modeled concentrations.

## Results

The results of this assessment show a very small increase in total health benefits estimated for the CSAPR in 2016 compared to 2014. This increase is due to population growth between 2014 and 2016 as well as increases in projected income. After re-calculating the CSAPR PM<sub>2.5</sub>- and ozone-related benefits to reflect population and income growth for 2016, we summed these results with the 2016 MATS PM<sub>2.5</sub>-related benefits to show the combined benefits of these two rules. Table 1 below depicts the total quantified and monetized human health benefits of the CSAPR and MATS as well as their combined benefits. Table 2 below presents the estimated health impacts avoided due to CSAPR and MATS in 2016 at a national level. Table 3 below displays the estimated health impacts avoided due to the CSAPR and MATS in

2016 at the state-level (3% discount rate). This table includes incidences of premature mortality avoided and the total value of all quantified and monetized mortality and morbidity benefits. The range shows estimated  $PM_{2.5}$ -related benefits using Pope et al.  $(2002)^4$  and Laden et al.  $(2006)^5$  as well as ozone-related benefits using Bell et al.  $(2004)^6$  and Levy et al.  $(2005)^7$ . The state-level MATS results are reported in Appendix 5D of the MATS RIA.

Table 1: Total monetized human health-related benefits of CSAPR (2014 and 2016) and MATS (2007\$, billions)

|                                          | CSAPR | CSAPR | MATS | CSAPR & MATS |
|------------------------------------------|-------|-------|------|--------------|
|                                          | 2014  | 2016  | 2016 | 2016         |
| Pope et al. (2002) & Bell et al. (2004)  |       |       |      |              |
| 3% discount rate                         | \$110 | \$120 | \$36 | \$150        |
| 7% discount rate                         | \$100 | \$110 | \$32 | \$140        |
| Laden et al. (2006) & Levy et al. (2005) |       |       |      |              |
| 3% discount rate                         | \$270 | \$290 | \$89 | \$380        |
| 7% discount rate                         | \$250 | \$260 | \$80 | \$340        |

\_

<sup>&</sup>lt;sup>4</sup> Pope, C.A., III, R.T. Burnett, M.J. Thun, E.E. Calle, D. Krewski, K. Ito, and G.D. Thurston. 2002. Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution. Journal of the American Medical Association 287:1132-1141.

<sup>&</sup>lt;sup>5</sup> Laden, F., J. Schwartz, F.E. Speizer, and D.W. Dockery. 2006. Reduction in Fine Particulate Air Pollution and Mortality. American Journal of Respiratory and Critical Care Medicine 173:667-672.

<sup>&</sup>lt;sup>6</sup> Bell, M.L., et al. 2004. Ozone and short-term mortality in 95 US urban communities, 1987-2000. Journal of the American Medical Association. 292(19): p. 2372-8.

<sup>&</sup>lt;sup>7</sup> Levy, J.I., S.M. Chemerynski, and J.A. Sarnat. 2005. Ozone exposure and mortality: an empiric bayes metaregression analysis. Epidemiology. 16(4): p. 458-68

Table 2: Estimated health impacts avoided due to the CSAPR and MATS—incidences of avoided health effects<sup>1</sup> and value<sup>1</sup> (millions of dollars, 2007\$) of mortality and morbidity impacts

CSAPR 2014 | CSAPR 2016 | MATS 2016

|                     |                                                                                                       | CSAPR 2014 |                 | CSAPR 2016 |                 | MATS 2016  |         |
|---------------------|-------------------------------------------------------------------------------------------------------|------------|-----------------|------------|-----------------|------------|---------|
| Неа                 | Health Effect                                                                                         |            | Value           | Incidences | Value           | Incidences | Value   |
|                     | related endpoints                                                                                     |            |                 |            |                 |            |         |
|                     | Pope et al. (2002) (age > 30)                                                                         | 13,000     |                 | 14,000     |                 | 4,200      |         |
| Premature Mortality | 3% discount rate                                                                                      |            | \$100           |            | \$110           |            | \$34    |
| 4oı                 | 7% discount rate                                                                                      |            | \$94            |            | \$99            |            | \$30    |
| e J                 | Laden at al. (2006) (age > 25)                                                                        | 34,000     |                 | 35,000     |                 | 11,000     |         |
| atu                 | 3% discount rate                                                                                      |            | \$270           |            | \$280           |            | \$87    |
| ä                   | 7% discount rate                                                                                      |            | \$240           |            | \$250           |            | \$78    |
| Pre                 | Infant (< 1 year)                                                                                     | 59         | \$0.52          | 60         | \$0.53          | 20         | \$0.20  |
|                     | Chronic Bronchitis                                                                                    | 8,700      | \$4.2           | 8,900      | \$4.3           | 2,800      | \$1.40  |
|                     | Non-fatal heart attacks (age > 18)                                                                    | 15,000     |                 | 16,000     |                 | 4,700      |         |
|                     | 3% discount rate                                                                                      |            | \$1.7           |            | \$1.8           |            | \$0.50  |
|                     | 7% discount rate                                                                                      |            | \$1.3           |            | \$1.4           |            | \$0.40  |
| >                   | Hospital admissions—respiratory (all ages)                                                            | 2,700      | \$0.039         | 2,800      | \$0.041         | 830        | \$0.01  |
| Morbidity           | Hospital admissions—cardiovascular (age > 18)                                                         | 5,800      | \$0.091         | 6,000      | \$0.094         | 1,800      | \$0.03  |
|                     | Emergency room visits for asthma (age < 18)                                                           | 9,800      | <\$0.01         | 10,000     | <\$0.01         | 3,100      | <\$0.01 |
|                     | Acute bronchitis (age 8 - 12)                                                                         | 19,000     | <\$0.01         | 19,000     | <\$0.01         | 6,300      | <\$0.01 |
|                     | Lower respiratory symptoms (age 7 - 14)                                                               | 240,000    | <\$0.01         | 250,000    | <\$0.01         | 80,000     | <\$0.01 |
|                     | Upper respiratory symptoms (asthmatics age 9 - 18)                                                    | 180,000    | <\$0.01         | 190,000    | <\$0.01         | 60,000     | <\$0.01 |
|                     | Asthma Exacerbation (asthmatics age 6 - 18)                                                           | 400,000    | \$0.022         | 410,000    | \$0.022         | 130,000    | <\$0.01 |
|                     | Lost work days (ages 18 - 65)                                                                         | 1,700,000  | \$0.21          | 1,700,000  | \$0.21          | 540,000    | \$0.10  |
|                     | Minor restricted-activity days (ages 18 - 65)                                                         | 10,000,000 | \$0.64          | 10,000,000 | \$0.65          | 3,200,000  | \$0.20  |
| Ozor                | ne-related endpoints                                                                                  |            |                 |            |                 |            |         |
| <b>t</b>            | Multi-city and NMMAPS                                                                                 |            |                 | •          |                 |            |         |
| tali                | Bell et al. (2004) (all ages)                                                                         | 27         | \$230           | 28         | \$240           | -          | =       |
| ſor                 | Schwartz et al. (2005) (all ages)                                                                     | 41         | \$360           | 42         | \$370           | -          | =       |
| Premature Mortality | Huang et al. (2005) (all ages)                                                                        | 37         | \$330           | 40         | \$360           | -          | -       |
| ıtır                | Meta-analyses                                                                                         | 120        | Ф1 000          | 120        | ф1 100          |            |         |
| ma                  | Ito et al. (2005) (all ages)                                                                          | 120        | \$1,000         | 120        | \$1,100         | -          | -       |
| Pre                 | Bell et al. (2005) (all ages)                                                                         | 87         | \$760           | 90         | \$800           | -          | -       |
|                     | Levy et al. (2005) (all ages)                                                                         | 120        | \$1,100         | 130        | \$1,100         | _          | -       |
| Ę,                  | Hospital admissionsrespiratory causes (ages > 65)<br>Hospital admissionsrespiratory causes (ages < 2) | 160<br>84  | \$4.0<br>\$0.87 | 170<br>85  | \$4.2<br>\$0.88 | -          | =       |
| idi                 | Emergency room visits for asthma (all ages)                                                           | 86         | \$0.87          | 83<br>87   | \$0.034         | -          | -       |
| Morbidity           | Minor restricted-activity days (ages 18 - 65)                                                         | 160,000    | \$0.033<br>\$10 | 160,000    | \$0.034         | -          | -       |
| $\mathbf{\Sigma}$   | School absence days                                                                                   | 51,000     | \$4.7           | 53,000     | \$4.9           | _          | _       |
| 1 <sub>D</sub> .    | unded to two significant digits: no confidence intervals                                              |            | ψ <b>Τ.</b> /   | 33,000     | ψτιΖ            |            |         |

Rounded to two significant digits; no confidence intervals provided.

Table 3: Estimated state-level health impacts avoided<sup>1</sup> due to the CSAPR and MATS<sup>2</sup>—incidences of premature mortality<sup>3</sup> and value<sup>3</sup> (millions of dollars, 2007\$) of mortality and morbidity impacts

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mortality' and value' (millions of dollars, 2007\$) of mortality and morbidity impacts |                                    |                                       |                       |               |                 |             |                   |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------|---------------------------------------|-----------------------|---------------|-----------------|-------------|-------------------|--|
| Alabama                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                        | CSAPR                              |                                       |                       | MATS Benefits |                 |             |                   |  |
| Arizona's O <sub>3</sub> 210-530 \$1,800-54,400 \$6-250 \$82,95-2,000 30-780 \$2,600-56,400 California's O <sub>3</sub> 210-530 \$1,800-54,400 \$6-250 \$82,95-2,000 30-780 \$2,600-56,400 California's O <sub>4</sub> \$1,800-54,400 \$6-250 \$82,95-2,000 30-780 \$2,600-56,400 California's O <sub>5</sub> \$1,800-54,400 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$48,8-\$120 \$6-14 \$64,8-\$120 \$6-14 \$64,8-\$120 \$6-14 \$64,8-\$120 \$6-14 \$64,8-\$120 \$6-14 \$64,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$60,8-\$120 \$ |                                                                                        |                                    |                                       |                       | •             |                 | •           |                   |  |
| Arkamsas O <sub>3</sub> 210-530 \$1,800-\$4,400 \$6-250 \$820-\$52,000 \$00.780 \$2,600-\$6,400 \$1.00 \$1.00 \$1.40 \$48.8-\$120 \$6.14 \$48.8-\$120 \$6.14 \$48.8-\$120 \$6.14 \$48.8-\$120 \$6.14 \$48.8-\$120 \$6.14 \$48.8-\$120 \$6.14 \$48.8-\$120 \$6.14 \$48.8-\$120 \$6.14 \$48.8-\$120 \$6.14 \$48.8-\$120 \$6.14 \$48.8-\$120 \$6.14 \$48.8-\$120 \$6.14 \$48.8-\$120 \$6.14 \$48.8-\$120 \$6.14 \$48.8-\$120 \$6.14 \$48.8-\$120 \$6.14 \$48.8-\$120 \$6.14 \$48.8-\$120 \$6.14 \$48.8-\$120 \$6.14 \$48.8-\$120 \$6.14 \$48.8-\$120 \$6.14 \$48.8-\$120 \$6.14 \$48.8-\$120 \$6.14 \$48.8-\$120 \$6.14 \$48.8-\$120 \$6.14 \$48.8-\$120 \$6.14 \$48.8-\$120 \$6.14 \$48.8-\$120 \$6.14 \$48.8-\$120 \$6.14 \$48.8-\$120 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15 \$6.15                        |                                                                                        | $PM_{2.5}, O_3$                    | 390–1,000                             | \$3,400–\$8,300       |               |                 |             |                   |  |
| California <sup>2</sup>   6-14   \$48-\$120   6-14   \$48-\$120   6-14   \$48-\$120   6-14   \$48-\$120   6-14   \$48-\$120   6-14   \$48-\$120   6-14   \$48-\$120   6-14   \$48-\$120   6-14   \$48-\$120   6-15   6-14   \$48-\$120   6-15   6-14   \$48-\$120   6-15   6-14   \$48-\$120   6-15   6-14   \$48-\$120   6-15   6-14   \$48-\$120   6-15   6-14   \$48-\$120   6-15   6-14   \$48-\$120   6-15   6-14   \$48-\$120   6-15   6-14   \$48-\$120   6-15   6-14   \$48-\$120   6-15   6-14   \$48-\$120   6-15   6-14   \$48-\$120   6-15   6-14   \$48-\$120   6-15   6-14   \$48-\$120   6-15   6-14   \$48-\$120   6-15   6-14   \$48-\$120   6-15   6-14   \$48-\$120   6-15   6-14   \$48-\$120   6-15   6-14   \$48-\$120   6-15   6-14   \$48-\$120   6-15   6-14   \$48-\$120   6-15   6-14   \$48-\$120   6-15   6-14   \$48-\$120   6-15   6-14   \$48-\$120   6-15   6-14   \$48-\$120   6-15   6-14   \$48-\$120   6-15   6-14   \$48-\$120   6-15   6-14   \$48-\$120   6-15   6-14   \$48-\$120   6-15   6-14   \$48-\$120   6-15   6-14   \$48-\$120   6-15   6-14   \$48-\$120   6-15   6-15   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14   6-14                                                                                                                                                                                                                                                                                          |                                                                                        |                                    | 210 720                               | <b>#1 000 #1 100</b>  |               |                 |             |                   |  |
| Colorado <sup>5</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                        | $O_3$                              | 210–530                               | \$1,800–\$4,400       |               |                 |             |                   |  |
| Connecticut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                        |                                    |                                       |                       |               |                 |             |                   |  |
| Delaware   57-150   \$500-\$1,200   13-32   \$110-\$270   70-180   \$600-\$1,500   \$51500-\$1,500   \$5150-\$1610   \$0.592-\$1.500   \$520-\$5160   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.592-\$1.500   \$0.5                                                                                                                           |                                                                                        |                                    | 120 210                               | Φ1 100 Φ <b>2</b> 000 |               |                 |             |                   |  |
| District of Columbia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                    |                                       |                       |               |                 |             |                   |  |
| Florida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                        |                                    |                                       |                       |               |                 |             |                   |  |
| Georgia   PM2,5 O,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                        |                                    |                                       |                       |               |                 |             |                   |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                        |                                    | · · · · · · · · · · · · · · · · · · · |                       |               |                 |             |                   |  |
| Illinois                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                        | $PM_{2.5}, O_3$                    | 610–1,600                             | \$5,300-\$13,000      |               |                 | · ·         |                   |  |
| Indiana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                        |                                    |                                       |                       |               |                 |             |                   |  |
| lowa         PM_2, 0/stages         95-240         \$820-\$2,000         61-160         \$520-\$1,300         160-400         \$1,300-\$3,300           Kansas         PM <sub>25</sub> 84-220         \$730-\$1,800         60-150         \$520-\$1,300         140-370         \$1,200-\$3,100           Kentucky         PM <sub>25</sub> , 0,3         550-1,400         \$4,700-\$12,000         83-210         \$710-\$1,800         630-1,600         \$5,400-\$13,000           Maine         24-63         \$210-540         \$1,800-\$4,400         110-290         \$970-\$2,400         320-830         \$2,800-\$6,800           Maryland         PM <sub>25</sub> , 0,3         420-1,100         \$3,700-\$9,000         84-210         \$720-\$1,800         510-1,300         \$4,400-\$11,000           Massachusetts         160-400         \$1,400-\$3,300         \$60-\$140         \$1,400-\$3,400         710-1,800         \$6,200-\$15,100           Michigan         PM <sub>25</sub> , 0,3         \$60-1,400         \$1,400-\$3,300         \$60-\$140         \$1,400-\$3,400         \$10-1,400         \$1,400-\$3,400           Michigan         PM <sub>25</sub> , 0,3         \$40-\$1,100         \$3,700-\$9,000         \$8-210         \$10-1,800         \$6,200-\$15,000           Mississippi         O3         230-\$50         \$2,000-\$4,800         \$71-40         \$490-\$1,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                    |                                       |                       |               |                 | · ·         |                   |  |
| Kamasa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                    |                                       |                       |               |                 |             |                   |  |
| Kentucky                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                        |                                    |                                       |                       |               |                 |             |                   |  |
| Louisiana   O <sub>3</sub>   210-540   \$1,800-\$4,400   110-290   \$970-\$2,400   320-830   \$28,00-\$6,800   Maine   O <sub>3</sub>   24-63   \$210-\$520   8-20   \$68-\$170   32-83   \$280-\$680   Maryland   PM <sub>2.5</sub> , O <sub>3</sub>   420-1,100   \$3,700-\$9,000   84-210   \$720-\$1,800   \$510-1,300   \$4,400-\$11,000   Massachusetts   160-400   \$1,400-\$3,300   \$52-130   \$450-\$1,100   210-540   \$1,800-\$4,400   Michigan   PM <sub>2.5</sub> , O <sub>3</sub>   560-1,400   \$4,800-\$12,000   160-410   \$1,400-\$3,400   720-1,800   \$6,200-\$15,000   Minnesota   PM <sub>2.5</sub>   79-200   \$680-\$51,700   \$7-140   \$490-\$1,200   140-350   \$1,200-\$2,900   Missispipi   O <sub>3</sub>   230-580   \$2,000-\$4,800   93-240   \$800-\$2,000   320-820   \$2,800-\$6,800   Missouri   PM <sub>2.5</sub> , O <sub>3</sub>   340-870   \$2,900-\$7,200   160-410   \$1,400-\$3,400   500-1,300   \$4,300-\$11,000   Montana   \$8.25-\$62   3-8   \$25-\$62   3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8   \$25-\$62   \$3-8    |                                                                                        |                                    |                                       | ·                     |               |                 |             |                   |  |
| Maine         24-63         \$210-\$\$20         \$6-20         \$68-\$170         32-83         \$280-\$680           Maryland         PM2, O3         420-1,100         \$37,00-\$9,000         84-210         \$720-\$1,800         510-1,300         \$4,400-\$11,000           Michigan         PM2, O3         560-1,400         \$1,400-\$3,300         52-130         \$450-\$1,100         720-1,800         \$6,200-\$15,000           Michigan         PM2, O3         560-1,400         \$4,800-\$12,000         160-410         \$1,400-\$3,400         720-1,800         \$6,200-\$15,000           Missori         PM2, O3         340-870         \$2,900-\$7,200         160-410         \$1,400-\$3,400         500-1,300         \$43,00-\$11,000           Missori         PM2, O3         340-870         \$2,900-\$7,200         160-410         \$1,400-\$3,400         500-1,300         \$43,00-\$11,000           Missori         PM2, O3         340-870         \$2,900-\$7,200         160-410         \$1,400-\$3,400         500-1,300         \$43,00-\$11,000           Missori         PM2, O3         340-870         \$2,900-\$7,200         160-410         \$1,400-\$3,400         500-1,300         \$43,00-\$11,000           New Hamshire         32-83         \$280-\$60         10-25         \$84-\$210         42-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                      |                                    | •                                     |                       |               |                 | · ·         |                   |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                        | $O_3$                              |                                       |                       |               |                 |             |                   |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                        |                                    |                                       |                       |               |                 |             |                   |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                        | $PM_{2.5}, O_3$                    |                                       |                       |               |                 |             |                   |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                        |                                    |                                       |                       |               |                 |             |                   |  |
| Mississippi         O3         230-580         \$2,000-\$4,800         93-240         \$800-\$2,000         320-820         \$2,800-\$6,800           Missouri         PM25, O3         340-870         \$2,900-\$7,200         160-410         \$1,400-\$3,400         500-1,300         \$4,300-\$11,000           Montana*         B         \$25-562         3-8         \$25-562         3-8         \$25-562           Nebraska         PM25         31-81         \$270-\$670         28-72         \$240-\$600         \$59-150         \$510-\$13,000           New Hampshire         32-83         \$280-\$690         10-25         \$84-\$210         42-110         \$333-\$82           New Hampshire         32-83         \$280-\$690         10-25         \$84-\$210         42-110         \$336-\$89           New Jersey         PM25, O3         470-1,200         \$4,000-\$9,900         120-320         \$1,100-\$2,600         \$90-1,500         \$5,100-\$13,000           New Maxico*         PM25, O3         800-2,000         \$6,900-\$17,000         170-440         \$1,500-\$3,700         \$90-1,500         \$8,400-\$200           North Carolina         PM25, O3         800-2,000         \$6,700-\$16,000         170-440         \$1,500-\$3,700         \$970-2,500         \$8,400-\$20,000           Nort                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                        | $PM_{2.5}, O_3$                    |                                       |                       |               |                 |             |                   |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                        | $PM_{2.5}$                         |                                       |                       |               |                 |             |                   |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mississippi                                                                            |                                    | 230–580                               | \$2,000-\$4,800       | 93-240        | \$800-\$2,000   | 320-820     | \$2,800-\$6,800   |  |
| Nebraska                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                        | $PM_{2.5}, O_3$                    | 340-870                               | \$2,900-\$7,200       | 160-410       | \$1,400-\$3,400 | 500-1,300   | \$4,300-\$11,000  |  |
| New Hampshire   32-83   \$280-\$690   10-25   \$84-\$210   42-110   \$33-\$82   New Hampshire   32-83   \$280-\$690   10-25   \$84-\$210   42-110   \$360-\$890   New Jersey   PM25, O3   470-1,200   \$4,000-\$9,900   120-320   \$1,100-\$2,600   590-1,500   \$5,100-\$13,000   New Mexico                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Montana <sup>5</sup>                                                                   |                                    |                                       |                       |               | \$25-\$62       | 3–8         | \$25-\$62         |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Nebraska                                                                               | $PM_{2.5}$                         | 31-81                                 | \$270-\$670           | 28–72         | \$240-\$600     | 59-150      | \$510-\$1,300     |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Nevada <sup>5</sup>                                                                    |                                    |                                       |                       | 4–10          | \$33–\$82       | 4–10        | \$33–\$82         |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | New Hampshire                                                                          |                                    | 32-83                                 | \$280-\$690           | 10–25         | \$84-\$210      | 42-110      | \$360-\$890       |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | New Jersey                                                                             | $PM_{2.5}, O_3$                    | 470-1,200                             | \$4,000-\$9,900       | 120-320       | \$1,100-\$2,600 | 590-1,500   | \$5,100-\$13,000  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | New Mexico <sup>5</sup>                                                                |                                    |                                       |                       | 9–24          | \$79-\$200      | 9–24        | \$79-\$200        |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | New York                                                                               | $PM_{2.5}, O_3$                    | 800-2,000                             | \$6,900-\$17,000      | 170-440       | \$1,500-\$3,700 | 970-2,500   | \$8,400-\$21,000  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | North Carolina                                                                         | $PM_{2.5}, O_3$                    | 780–2,000                             | \$6,700-\$16,000      | 190-480       | \$1,600-\$3,900 | 970-2,500   | \$8,300-\$20,000  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | North Dakota                                                                           |                                    | 3–8                                   | \$28-\$68             | 7–19          | \$63-\$150      | 11–27       | \$90-\$220        |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ohio                                                                                   | $PM_{2.5}, O_3$                    | 1,300-3,300                           | \$11,000-\$27,000     | 220-560       | \$1,900-\$4,600 | 1,500-3,900 | \$13,000-\$32,000 |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Oklahoma                                                                               | $O_3$                              | 160-410                               | \$1,400-\$3,400       | 120-300       | \$1,000-\$2,500 | 280-720     | \$2,400-\$5,900   |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Oregon <sup>5</sup>                                                                    |                                    |                                       |                       | 5–12          | \$39–\$97       | 5–12        | \$39–\$97         |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pennsylvania                                                                           | $PM_{2.5}, O_3$                    | 1,200-3,000                           | \$10,000-\$25,000     | 210-530       | \$1,800-\$4,400 | 1,400-3,600 | \$12,000-\$29,000 |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rhode Island                                                                           |                                    | 32-83                                 | \$280-\$680           | 11–29         | \$96-\$240      | 44–110      | \$370-\$920       |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | South Carolina                                                                         | $PM_{2.5}, O_3$                    | 400-1,000                             | \$3,400-\$8,400       | 130-330       | \$1,100-\$2,700 | 520-1,300   | \$4,500-\$11,000  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | South Dakota                                                                           |                                    | 9–22                                  | \$75–\$180            | 11–27         | \$92-\$230      | 19-50       | \$170-\$410       |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tennessee                                                                              | $PM_{2.5}, O_3$                    | 680-1,700                             | \$5,800-\$14,000      | 140-370       | \$1,200-\$3,000 | 820-2,100   | \$7,000-\$17,000  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Texas                                                                                  | $PM_{2.5}, O_3$                    | 700-1,800                             | \$6,100-\$15,000      | 460–1,200     | \$4,000-\$9,700 | 1,200-3,000 | \$10,000-\$25,000 |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Utah <sup>5</sup>                                                                      |                                    |                                       |                       | 8–22          | \$74-\$180      | 8–22        | \$74-\$180        |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                        |                                    | 18–46                                 | \$150-\$380           |               |                 |             |                   |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                        | PM <sub>2.5</sub> , O <sub>3</sub> |                                       |                       |               |                 |             |                   |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                        | 20, 0                              |                                       |                       |               |                 |             |                   |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                        | $PM_{2.5}, O_3$                    | 280-720                               | \$2,400-\$5,900       |               |                 |             |                   |  |
| Wyoming <sup>5</sup> 2-6         \$20-\$49         2-6         \$20-\$49           14,000-         \$120,000-         4,200-         \$36,000-         18,000-         \$150,000-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                        |                                    |                                       |                       |               |                 |             |                   |  |
| 14,000— \$120,000— 4,200— \$36,000— 18,000— \$150,000—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                        | 2.37 - 3                           |                                       |                       |               |                 |             |                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>,                                     </u>                                          |                                    | 14,000—                               | \$120.000—            |               |                 |             |                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | National Total <sup>4</sup>                                                            |                                    |                                       |                       |               |                 |             |                   |  |

<sup>&</sup>lt;sup>1</sup> Some states may show benefits even if emissions are not reduced within those states due to pollution transport across state boundaries.

<sup>&</sup>lt;sup>2</sup> State-level MATS benefits estimates assume that the distribution of health-co-benefits for the final policy is equivalent to the modeled interim scenario. Differences in the scenarios may lead to over- or underestimates of benefits in some states.

<sup>&</sup>lt;sup>3</sup> Range reflects estimates of PM<sub>2.5</sub>-related benefits using Pope et al. (2002) and Laden et al. (2006) and ozone-related benefits using Bell et al. (2004) and Levy et al. (2005); rounded to two significant digits; no confidence intervals provided.

<sup>&</sup>lt;sup>4</sup> State results do not sum to national total due to rounding.

<sup>&</sup>lt;sup>5</sup> States in the Western U.S. are not expected to be significantly impacted by the CSAPR, their benefits are not presented at the state-level.

(This page is intentionally left blank.)

| United States                   | Office of Air Quality Planning and Standards | Publication No. EPA-452/R-11-014 |
|---------------------------------|----------------------------------------------|----------------------------------|
| <b>Environmental Protection</b> | Health and Environmental Impacts Division    | December, 2011                   |
| Agency                          | Research Triangle Park, NC                   |                                  |