EPA/500/R-93/01Q
                                                                 Febnliiry 1993 '.
                          A MANUAL OF INSTRUCTIONAL PROBLEMS
i                              FOR THE U.S.G.S: MODFLOW MQPEL
•V)
                                              by
                                        Peter F. Andersen
                                         GeoTrans, Inc.
                                  4605,0 Manekin Plaza, Suite 100
                                     Sterling, Virginia 22170
                                     DYNAMAC CONTRACT
                                          68-C8-0058
                                         Project Officer
                                        John E. Matthews
                             Extramural.Activities and Assistance Division -
                           Robert S. Kerr Environmental Research Laboratory
                                      Ada, Oklahoma 74820
                   ROBERT S. KERR ENVIRONMENTAL RESEARCH
                           OEHCE OF RESEARCH AND
                          U. S/ENVWOhfMENTAL PROTECTION
                                 S ' •      P.O.BOX 1198
                                    ADA, OKLAHOMA 74820
                                                                  Printed on Recycled Paper

-------
                                  DISCLAIMERS
                                      '; ' ,    '% „ ' i

   The information in this document has been funded in part by the Environmental Protection
Agency under DYNAMAC Contract No. 68-C8:OQ58. with .G^oTransJnc^ as # snb-icontractor.
Scott Huling and Randall Ross, Rotten S. Kerr Environmental ResparcrPLaboratory, will gswe
as Task Managers on thlis project.  'It has been subject,to, the Ag'^rKiy *s'peer andadmi,nistrar  -
live tevi&#,'and it has beeh^p^rbved  as an EPA document. Mentipn^f trade names or,,: ~-,^  ,,
commercM products does nd'tj&>nstitute endorsement or recomrrierjdatiQn for,:
   This report utiliie's the U.S.G.S. Modular Three-Dimensional Ground-Water- Flow Model
(MODFLOW) for analyzing grpundwater flow under various^ hydrologic conditions.    - ,r
MODFLOW is a public-domain code and may be used and copied freely. If errors-are-found
in the document or if you have suggestions for improvement, please contact the Center, for.   ,
Subsurface: Modeling Support (CSMoS) at the Robert S. Kerr Environmental Research
Laboratory, -Ada, Oklahoma.                                                 ,

   Center^or Subsurface Modeling Support            :,,
   RdbeftS^Kfirr Environmental Research Laboratory
   P.O; Bbx4l98, Ada;'Oklahoma, 74820
   (405)'436-8500   ;
                                         11

-------
                                    FOREWORD
                i     -.     ,.                       ,v  ,.      -         -
   EPA is charged by Congress to protect the Nation's land, air and water systems. Under a
mandate of national environmental laws focused on air and water quality, solid waste, ;
management and, the control of toxic substances, pesticides, noise and radiation, the Agency ,,
strives to1 formulate and implement actions which lead to  a compatible balance  between
human activities and the ability of natural systems to support and nurture life.
                                                                    ,  i*

   The Robert S. Kerr Environmental Research Laboratory is the Agency's center of •-
expertise for the investigation of the soil and subsurface environment. Personnel at the     ,
Laboratory are responsible for the management of research programs to: (a) determine, the
fate, transport, and transformation rates of pollutants in the soil, and the unsatarated and
saturated zones of the subsurface environment;  (b) define the processes to be used in
characterizing the soil and subsurface environment as a receptor of pollutants; (c) develop
techniques for predicting the effects of pollutants on ground water, soil, and indigeneous
organisms; and (d) define and demonstrate the applicability and limitations of using natural ,
process, indigenous to the soil and subsurface environment, for the protection of this resource.
                                                                                 I*
   EPA is involved in groundwater flow modeling to analyze and predict the movement of
water in the subsurface. Traditionally, groundwater flow models are rarely supported by
documents that assemble the practical application aspects of modeling. While it is important
to understand the theory behind the mathematical model,  it is equally important to understand
the principles of modeling, model options, rules of thumb, and common mistakes from an
applications perspective. This manual was developed specifically for the U.S.G.S. modular
groundwater flow model (MODFLOW) and  it illustrates by examples, the principles of
groundwater flow modeling and model options. The manual  was developed to be used for
self-study  or as a text for courses. Three diskettes are included which contain the input and
output data sets for each problem presented  in the manual. A copy of the MODFLOW code is
not included. The information in this document should be of interest to both  the beginner and
advanced modeler for hands-on experience with the practical application of MODFLOW.
                                              Clinton W. Hall
                                              Director
                                              Robert S. Kerr Environmental
                                                 Research Laboratory
                                          111

-------
                                   CONTENTS
Foreword	-	iii
Figures	iv
Tables 	  vii
Acknowledgments 	ix

   Introduction	  1-1
   The Theis solution	  1-1
   Anisotropy	2-1
   Artesian-water table conversion	3-1
   Steady-state	4-1
   Mass balance	5-1
   Similarity solutions in calibration	6-1
   Superposition	7-1
   Grid and time stepping considerations	8-1
   Calibration and prediction		,	9-1
   Transient calibration	  10-1
   Representation of aquitards	 .  11-1
   Leaky aquifers	  12-1
   Solution techniques and convergence	  13-1
   Head dependent boundary conditions  	  14-1
   Drains	  15-1
   Evapotranspiration  	  16-1
   Wells	 ,	17-1
   Cross-sectional simulations	  18-1
   Application to a water supply problem	  19-1
   Application to a hazardous waste problem	 .  20-1

References	R-l
Appendix

A: Abbreviated Input Instructions for MODFLOW	 . A-l

-------
                                      FIGURES
Number                                                                          Page

1.1          Configuration of the model for simulating radial flow Parts a-d 	1-4
1.2          Drawdown versus time for each  model configuration	  1-10
2.1          Drawdown versus time at the observation point located 55 m   '
             from the pumping well along the x-axis for the three
             model configurations	2-10
2.2          Drawdown versus time at the observation point located 55 m
             from the pumping well along the y-axis for the three model
             configurations	2-11
2.3          Drawdown contours (ft) for the 10:1 anisotropic case modeled
             in Part a	   £-13
2.4          Three-dimensional view of the drawdown for the 10:1 anisotropic
             case modeled in Part a	]2-14
3.1          Drawdown versus time for the four MODFLOW configurations
             and the analytical solution	 .  .1 3-7
3.2          Drawdown versus distance at 2.19 days for the water table,
             conversion, and artesian cases	,13-8
4.1          Configuration of the Problem 4 modeled domain  .	 4-2
5.1          Potentiometric surface map and hydraulic head array at time step 1  	[5-3
5.2  ,  ,      Model wide mass balance at time step 1	 5-4
5.3         . Printout of cell-by-cell flow terms for each  component of the             >. •
             mass balance  	5-5
3.4          Hand calculations for each component of the mass balance   	5-10
6.1          Contour map of potentiometric surface, hydraulic head array,             £
             and mass balance output for Part a	r 6,-3
-6(2          Contour map of potentiometric surface, hydraulic head array,             „.,-•,'
             .and mass balance output for Part b	  ? 6-4
6.3          Contour map of potentiometric surface, hydraulic head array,             f,./-
             and mass balance output for Part c 	6-5
7.1          Contour map of potentiometric surface, hydraulic head array,             j ?;
             model wide mass balance, and individual specified head node
       .      . mass balance for Part a 	7-4
7.2          Contour map of potentiometric surface, hydraulic head array,             •_ r
             model wide mass balance, and individual specified head node
       . .     mass balance for Part b	7-5
"7.3          Contour map of potentiometric surface, hydraulic head array,             ; ^,1
• i      . .    model wide mass balance, and individual specified head node            -_. /;
       .     mass balance for Part c	7-6
7.4    .     Contour map of potentiometric surface, hydraulic head array,             , <-••
             model wide mass balance, and individual specified head node • .          ; ^
             mass balance for Part d	,	7-7
8.1          Location of pumping wells, observation wells, and boundary,,            i. i/j
             conditions  for Problem 8	-.;f. ........ 8-2

                                          vi

-------
 8.2           Drawdown (m) at 20 days for the 4 x 4 grid simulation of Part a	8-10
 8.3           Drawdown (m) at 0.2 days for the 16 x 16 grid simulation of Part b . .  . .  8-11
 9.1           Geometry and potentiometric surface of the aquifer system  	9-2
 9.2           Hydraulic head arrays, potentiometric surface contour maps,
              and mass balance summary for Part a  	9-5
 9.3           Hydraulic head arrays, potentiometric surface contour maps, and mass
              balance summary for Part b using pumpage of -0.4 ftVs	9-6
 9.4           Potentiometric surface contour map for Part b using pumpage
              of -0.1 ftVs .	9-9
 9.5           Potentiometric surface contour map for Part b using pumpage
              of -0.5 ftVs	  9-10
 10.1          Grid and boundary conditions for coastal transient problem 	  10-3
 11.4          Hydraulic head (ft) in the middle of the confining bed versus time
              for 11-5 cases a, b, and d	  11-5
 11.2          Total flux (ftVs) and  storage flux versus time from the confining
               bed for the seven layer model 	  11-6
 12.1          Drawdown versus time for the analytical, MODFLOW, and SEFTRAN
              simulations	  12-9
 13.1          Model geometry, boundary conditions, and hydraulic conductivity
               zonation for  Problem 13	  13-2
 13.2          Iteration history for variations in the SIP seed parameter	  13-9
 13.3          Iteration history for variations in the SSOR acceleration parameter  ....  13-10
 14.1          Hydraulic head (ft) versus flow rate (ftVd)  for each of the five
              methods of representing the third type boundary conditions	  14-9
 15.1          Model configuration  for Problem 15	  15-3
 16.1          Finite-difference grid, boundary conditions, and simplified
               topography for Problem 16	  16-2
 16.2          Potentiometric surface (ft) for Problem 16, Part a	  16-6
 16.3          Potentiometric surface (ft) for Problem 16, Part b (net recharge)	  16-7
 16.4          Drawdown map (ft) for Problem 16, Part c	  16*8
 16.5          Drawdown (ft) map for Problem 16, Part d  	  16-9
 16.6          Net recharge  rates (in/yr) for the steady-state, non-pumping
 -°            scenario (Part a)	  16-11
 17.1          Drawdown versus distance for the fully penetrating well case
              and the partially penetrating well case in the 20 m thick aquifer
              at time = 50938 s  	  17-7
 17.2          Drawdown versus distance for the fully penetrating well case
              and the partially penetrating well case in the 40 m thick aquifer
              at time = 50938 s  	  17-8
 18.1          Layering and zonation used in the cross-sectional model  	  18-2
 18.2          Hydraulic head arrays for the  cross-sectional model   	  18-10
 19.1          Geologic map of the  Musquodoboit harbor region	  19-2
 19.2          Geologic map of the  Musquodoboit harbor region	  19-3
 19.3          Model boundary and transmissivity zones used in the
^ "             numerical model  	  19-13
 19.4          Location of the river boundary condition, pumping well,
- x            and observation  wells used in the numerical model	  19-14

                                           vii

-------
19.5         Drawdown (ft) versus time (min) for the aquifer test conducted at
             Musquodoboit Harbor  	  19-16
19.6         Comparison of modeled to observed drawdown (ft) data
             for the base case	  19-17
19.7         Comparison of modeled to observed drawdown in well 1
             for the base case and for a 2-fold increase and reduction
             in transmissivity  	  19-18
19.8         Comparison of modeled to observed drawdown in wells for
             the base case and for storage coefficients of 0.1 and 0.005	  19-19
19.9         Drawdown (ft) after 1000 days of pumping at 0.963 ftVs	  19-21
19.10        Comparison of modeled drawdown for the drawdown-dependent
             storage coefficient	  19-23
19.11        Comparison of modeled to observed drawdown in well 1  for
              the base case and for order of magnitude increase and decrease
              in river conductance	  19-24
20.1         Finite difference grid showing the location of specified head cells
             for the steady-state model	20-3
20.2         Grid cells representing the impermeable clay cap,  the slurry wall,
             and the drain   	20-9
20.3a        Hydraulic head (ft) contours in the vicinity of the  landfill for the
             steady-state case (a)	  20-19
20.3b        Hydraulic head (ft) contours in the vicinity of the  landfill for the
             case involving a cap (b)	  20-20
20.3c        Hydraulic head (ft) contours in the vicinity of the  landfill for the
             case involving a cap and a slurry wall (c)  	  20-20
20.3d        Hydraulic head (ft) contours in the vicinity of the  landfill for the
             case involving a cap and a drain (e)  	  20-21
20.4         Hydraulic head (ft) along column 19 of the model at 2.69 years for
             each remedial alternative simulation  	  20-24
                                          Vlll

-------
                                       TABLES
Number                                                                          Page

1            Verification of MODFLOW results	  1-4
2            Packages used in the problem sets	  1-5
1.1          Parameters used in Problem 1	1-2
1.2          Grid spacing (m) used for various model configurations	1-3
1.3          Calculations for determination of transmissivity and storage
             coefficient for wedge-shaped domain	  1-8
1.4          Drawdown versus time for each model configuration	1-9
2.1          Parameters used in problem 2	2-2
2.2          Grid spacing used in the various model configurations	2-3
2.3          Drawdown (m) at an observation point located 55 m from
              the pumping well along the x axis	2-7
2,4          Drawdown (m) at an observation point located 55 m from
              the pumping well along the y axis	,	2-8
2.5 ,         Drawdown (m) at an observation point located 77.8 m from
             the pumping well at a 45° angle between the x and  y axis	2-9
3.1          Parameters used in problem 3	3-2
3.2          Grid spacing (ft) used in problem 3	3-3
3.3          Drawdown versus time for each model configuration	3-6
4.1          Initial head (SHEAD) at specified head cells 	4-3
4,2          Hydraulic head (ft) at node (7,1), storage component of
             mass balance, and iteration data for each time step and the
             steady-state simulations  	4-6
5.1          Comparison of model calculated and hand calculated rate
             mass balance  	5-12
8.1          Grid data	8-3
8.2          Comparison of results for various grid spacings in Part a	8-7
8.3          Comparison of results for various grid spacings in Part b	8-7
8.4          Comparison of results for variations in time stepping in Part c	8-8
8.5          Comparison of results for variations in closure criterion in Part d	8-8
8.6          Comparison of drawdowns (m) at well 2 for various time
             derivatives and spatial approximations (analytical =  1.63)  	8-12
9.1          River data  	9-3
9.2          Calibration targets	9-3
10.1         Hydraulic head (ft) versus time  (weeks after drought began)
             at an observation well located at node (1,5)  	  10-2
10.2         Pre-drought groundwater levels  (ft) within the model- domain	  10-3
10.3         Groundwater levels resulting from a steady-state simulation
             using a hydraulic conductivity of 850 ft/d  	  10-7
11.1         Hydraulic heads (ft) in the middle of  the confining bed versus
             time for all cases of Problem 11	  11-7
12.1         Parameters and discretization data used in Problem  12	  12-2
                                          IX

-------
12.2         Time versus drawdown (analytical solution) at distances
             of 117.4 m	  12-3
12.3         Time versus drawdown at distances of 117,4 m for the
             analytical solution, MODFLOW configuration, and SEFTRAN
             radial solution	  12-8
13.1         Sensitivity analysis on SIP seed and acceleration parameter	  13-7
13.2         Sensitivity analysis on SSOR and acceleration parameter	  13-8
14.1         Aquifer parameters and discretization  data for Problem  14	  14-2
14.2         Hydraulic head at node (1,4) for each of the five methods of
             representing the third type boundary condition  	  14-7
14.3         Discharge for each of the five methods of representing  the
             third type boundary condition	  14-8
14.4         Other uses for the head-dependent flux boundary conditions
             in MODFLOW	  14-10
15.1         Grid spacing used in  the fine-gridded  model (Part b)	  15-4
15.2         Hydraulic head at the drain  node (column 6) and drain  flux for
             variations in drain conductance (coarse model)	  15-19
16.1         Comparison of hydraulic heads (ft) along row 10 for MODFLOW
             and FTWORK	  16-12
17.1         Parameters  and discretization used in  Problem 17	17-3
17.2         Drawdown  versus distance at 50938 s for the fully penetrating,
             partially penetrating,  and stratified aquifer simulations	  17-6
18.1         Bottom and top elevations (ft) in cross-sectional model	  18-4
18.2         Initial heads in layer  6		  18-5
18.3         Assumed saturated thickness (ft) of layer 1 in the cross-sectional
             model   	  18-6
19.1         Input data for the water supply problem	  19-15
19.2         Observed drawdown  data from aquifer test	  19-15
19.3         Modeled drawdown data for the base  case	  19-20
19.4         Drawdown (ft) versus time  in observation well 1 for variations in
             transmissivity, storage coefficient,  and river leakance	  19-25
20.1         Attributes of the drain used in Part d  .	  20-10
20.2         Comparison of MODFLOW results versus USGS2D results for the
             steady-state case (Part a) and the wall and cap scenario (Part c)
             at 6.08 yr	  20-22
20.3         Hydraulic heads (ft) along column 19 of the model at 2.69 years for
             each remedial alternative simulation  	  20-23
20.4         Drain discharge (ft3/s) versus time for the well, cap, and drain
             scenario (Part d)and the cap and drain scenario (Part e)	  20-25

-------
                              ACKNOWLEDGMENTS
   The author wishes to thank the many individuals who have contributed to make this
document possible. In particular, I thank Joanne Elkins of GeoTrans, Inc. who was largely
responsible for typing this document. Also, I wish to thank Debbie Shackleford and Carol
House of Dynamac Corporation for the  final preparations of the document.  Finally, I thank
my students at the International Ground Water Modeling Center's (IGWMC) Applied
Groundwater Modeling short course for their many helpful suggestions.
                                         XI

-------
                                  INTRODUCTION

   A recent report by the United States Environmental Protection Agency Groundwater
Modeling Policy Study Group (van der Heijde and Park, 1986) offered several approaches to
training Agency staff in the application of groundwater modeling. They identified the
problem that current training efforts tend to be of short duration (one week or less) with a
lack  of in-house programs to reinforce training received in a formal setting.  The study group
suggested, among other things, the alternative of self-study coupled with obtaining experience
under the guidance of a senior modeling specialist.

   In order for groundwater modeling self study to be viable, a curriculum must exist that
allows the student to have hands-on experience with the practical application of models.
Available resources do not meet this need.  Current groundwater modeling texts deal
primarily with the mathematics or theory of modeling.  Code documentations usually discuss
the programming aspects and performance standards of particular models.  They usually
include one or two test problems for verification purposes.  Journal articles or U.S.
Geological  Survey  publications best fit the need for learning about the practical application of
models.  However, these sources either do not give enough  information to reproduce results
or involve data setup that is too complicated to allow a student to efficiently have hands-on
experience with the model.

   This manual is  intended to meet the need described above.  Twenty documented problems,
complete with problem statements, input data sets, and discussion of results are presented.
The problems are designed to cover modeling principles, specifics of input/output, options
available to the modeler, rules of thumb,  and common modeling mistakes.

   Data set preparation time and execution time have been minimized by simplifying  the
problems to small size and to focus only on the aspect that  is under consideration. Model
grids are generally smaller and more homogeneous than would be used in practice, however,
the intent and result of each exercise are not compromised by the simplification.

   This manual is  developed for the U.S. Geological Survey modular groundwater model
(MODFLOW) by McDonald and Harbaugh (1988).  MODFLOW is perhaps the most popular
groundwater flow model used by government agencies and consulting firms. MODFLOW
solves the partial differential equation describing the three-dimensional movement of
groundwater of constant density through porous material:
     ic      + -   IK            [K       - w  - s
    r*dx    ay    yyay     az   zza*           sat

-------
where:
   , Kyy, and K^,        are values of hydraulic conductivity along the x, y, and z coordinate
                       axes, which are assumed to be parallel to the major axes of
                       hydraulic conductivity (LT"1);

h                      is the potentiometric head (L);

W                     is a volumetric flux per unit volume and represents sources and/or
                       sinks of water (T"1);

Ss                     is the specific storage of the porous material  (L "'); and

t                      is time (T).
Ss, K^, Kyy, and K^ may be functions of space and W may be a function of space and time.
This equation, combined with specification of boundary and initial conditions, is a
mathematical expression of a groundwater flow system.  MODFLOW uses the finite
difference method to obtain an approximate solution to this equation. Hydrogeologic layers
can be simulated as confined, unconfined, or  a combination of confined and unconfined.
External stresses such as wells, areal recharge, evapotranspiration, drains and streams can also
be simulated.  Boundary conditions include specified head, specified flux, and head-dependent
flux.  Two iterative solution techniques, the Strongly Implicit Procedure and Slice Successive
Over Relaxation, are contained within MODFLOW to solve the finite difference equations
(McDonald and Harbaugh, 1988).

   The user of this manual should attempt to solve the problems as described in  the problem
statement portion of each exercise. The model setup can be checked in the data set listing
given in the model input section of each problem.  Results can be checked by the pertinent
portions given in the model output section. Some  training on the structure and input of
MODFLOW as well as some training on the  theory of groundwater modeling is assumed.
The  user will need to refer to the MODFLOW manual on some occasions. The abbreviated
input instructions given in the MODFLOW manual are included as Appendix A to this
manual.

   A secondary function of this manual is for verification purposes. Although the
MODFLOW code has been extensively applied, very little documentation of its testing and
verification is available in the literature.  To address this  situation, where possible, model
generated results are compared to analytical solutions, results of other models, or to
simulations with alternative boundary conditions or configurations.  In addition to providing
an informal benchmarking of MODFLOW, these problems can be used to verify  the correct
installation of the code on a particular computer system or to verify that certain user
modifications have not altered the integrity of the program. The results of the simulations
may vary  slightly (approximately ±0.02 ft or  m) from one computer to another.  The results
obtained here were with a 386 microcomputer. Table 1 shows the problems that  were run
and what types of verification were performed.

                                          1-2

-------
   All the packages of MODFLOW have been utilized at least twice in this series of
problems. Table 2 is a matrix showing which packages were utilized in individual problems.
Several parts exist to each problem. Input and output files are included on the attached
diskette for the data sets listed in the manual. Minor modifications, as described in the model
input section of each problem are not included as separate data sets.  The diskettes included
with this document do not include a copy of MODFLOW.  It is assumed the reader has
obtained  a copy of MODFLOW and has the necessary computer hardware to execute the
program.

   The problems given in the  manual  are intended to be useful without changes or additions.
However, the problems may also be useful as a stepping stone to more detailed analysis.
Rather than creating new data sets, the analyst can modify existing data sets to fill a
particular need.
                                          1-3

-------
Table 1.  Verification of MODFLOW results
Problem
No.
1
2
3

4
5
6
7
8
9
10
11.
12
13
14
15
16
17
18
19
20
Analytical or
Semianalytical
Tide Solution
Theis solution X
Anisotropy X
Artesian-water table X
conversion
Steady State
Mass balance
Similarity solutions in model
calibration
Superposition
Grid and time stepping X
considerations
Calibration and prediction
Transient calibration
Representation of aquitards
Leaky aquifers X
Solution techniques and
convergence
Head dependent boundary
conditions
Drains
Evapotranspiration
Wells
Cross-sectional simulations
Application to a water supply
problem
Application to a hazardous
waste site
Alternate
Boundary
Condition or
Numerical Model
Model Configuration




X
X

X
X



X

X
X
X
•

X
X
                                         1-4

-------
Table 2. Packages used in the problem sets*
Problem
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Well Drain River ET
X
X
X
X

X
-x
X
X X


X

X X X X
X
X X
X

X X
X
GHB Recharge



X
X
X
X
X
X
X


X
X

X

X

X
SIP
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
Output
SSOR Control
X
X
X
X
X

X '


X X
X
X
X
X
X

X
X X
X
X
*The Basic and Block Centered Flow packages were used for all simulations.  Packages
available in MODFLOW and their major function are:

Basic                    Overall model setup and execution
Block Centered Flow      Calculates terms of finite difference equations for flow within
                         porous media
Well                     Specified flux condition (volumetric input)
Drain                    Head dependent flux condition limited to discharge
ET                      Evapotranspiration, head dependent flux condition limited to
                         discharge with a maximum specification of discharge
GHB                     General Head Boundary, head dependent flux condition
Recharge                 Specified flux condition (linear input)
SIP                      Strongly Implicit Procedure solution  technique
SSOR                    Slice Successive Over Relaxation solution technique
Output Control           Directs amount, type, and format of model output

                                          1-5

-------
                                     PROBLEM 1
                                   The Theis Solution
INTRODUCTION

   With the exception of Darcy's Law, perhaps the most widely used analytical technique by
hydrologists is the solution by Theis (1935). It is therefore fitting that the first problem
presented in this manual is a benchmark of MODFLOW with the Theis solution.  Three
different model configurations for analyzing radial flow to a well are examined.  The
techniques described in this problem can be generally applied to well test analysis and
representations of radial flow.

PROBLEM STATEMENT AND DATA

   Theis' solution predicts drawdown in a confined aquifer at any distance from a well at any
time since the start of pumping given the aquifer properties, transmissivity and storage
coefficient.

   The assumptions inherent in the Theis solution include:

   1)  The aquifer is homogeneous, isotropic, uniform thickness, and of infinite areal extent.

   2)  The initial potentioinetric surface is horizontal and uniform.

   3)  The well is pumped at a constant rate and it fully penetrates the aquifer.

   4)  Flow to  the well is horizontal, the aquifer is fully confined from above and below.

   5)  The well diameter is small, storage in the wellbore can be neglected.

   6)  Water is removed from storage instantaneously with decline in head.

   All of these assumptions, with the exception of infinite areal extent, can be easily
represented with the  numerical model.  Several options exist  to represent the domain as
effectively infinite.  The most frequently applied  method is to extend the model domain
beyond the effects of the stress.  The modeled domain is therefore usually fairly large and a
limited time frame is modeled.  An increasing grid spacing expansion is used to extend the
model boundaries.

   The model domain is assumed to be uniform,  homogeneous, and isotropic.  A  single layer
is used to model the  confined aquifer.  A fully penetrating well located at the center of the
model domain pumps at a constant rate. The potentiometric surface of the aquifer is
monitored with time  at an observation well 55 m from the pumping well. Specific details of
the problem are from Freeze and Cherry (1979) pp. 345, and are given in Table 1.1.
                                          1-1

-------
Table 1.1.  Parameters used in Problem 1
                    Initial head                       0.0 m
                    Transmissivity                    0.0023 m2/s
                    Storage coefficient                0.00075
                    Pumping rate                     4 x 10"3 mVs
                    Final time                        86400 s
                    Number of time steps             20
                    Time step expansion factor        1.3
                    SIP iteration parameters           5
                    Closure criterion                  0.0001
                    Maximum number of iterations     50
Part a)     Represent the entire aquifer domain by using the grid spacing shown in Table 1.2.
           Place the well at the center of the domain, row 10, column 10.  Run the model,
           noting drawdown at each time step at an observation point 55 m from the
           pumping well. The configuration of the model for part a and future parts b, e,
           and d is shown in Figure 1.1.
                                          1-2

-------
Table 1.2. Grid spacing (m) used for various model configurations
Row number, i
(=column number, j)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
Part a
DELC (i)
(=DELR(j))
300
200
150
100
80
60
40
30
30
20
30
30
40
60
80
100
150
200
300
Part b
DLEC(i)
(=DELR(j))
20
30
30
40
60
80
100
150
200
300









Part c
DELC(i)
(=DELR(j))
1
1.413
2
2.83
4 -
5.65
8
11.3
12
14.62
20
28.3 •
40
56.5
80
110
150
200
252.89
                                      1-3

-------
well
wedge
                                                                       c quadrant
             a  (entire  square)
Figure 1.1. Configuration of the model for simulating radial flow for parts a-d. Arrows
            denote groundwater flow direction.
Part b)    Because of symmetry, the aquifer domain can be represented as a quadrant.  Set
          up a second model covering only the lower right quadrant of the previous domain.
          The grid spacing for this model is shown in Table 1.2.  Position the well at the
          upper left corner of the new model, row 1, column 1.  Because only one-fourth of
          the aquifer is simulated, the well discharge should also be reduced to one-fourth
          the original discharge.  Run the model and note drawdown at each time step at an
          observation point 55 m from the pumping well.

Part c)    Re-run part b with the grid spacing shown in Table 1.2.  The overall model
          domain is the same size as part b, but grid spacing is finer near the pumping well.
          Run the model and note drawdown at each time step at an observation point 55 m
          from the pumping well.

Part d)    Another form of symmetry for this problem  (radial flow) is a pie shaped wedge
          with the well at the vertex of the  wedge.  Unfortunately this geometry is difficult
          to represent because the finite difference method is based on orthogonality of rows
          and columns. However, because the  model is posed in terms of conductance (a

                                         1-4

-------
function of grid spacing and transmissivity) and grid block storativity (a function
of storage coefficient and area) it is possible to adjust T and S in such a manner
to approximate the wedge.  Using a 20 m wide row (DELC(l) = 20) and grid
spacing along a row (DELR) as in part b, calculate changes to transmissivity and
storage coefficient for a 10° pie wedge.  Adjust the  well discharge to account for
the reduced model domain and input these parameters into the model.  Run this
one-dimensional model and note drawdown at each  time step at an observation
point 55 m from the well.
                               1-5

-------
MODEL INPUT
The following is a listing of data sets used for part a.

                   *********************************
                   *         Basic package        *
                   *********************************
theis problem  full grid
1/4/90   pfa
         1         19        19         1          1
 11 12   0 0   0 0  0  0 19  0  0 22
         0          1
         0          1
999.00
         0   .OOOE+00
86400.             201.3000
                                                                                headngd)
                                                                                headng(2)
                                                                                nIay, nrow,ncoI,nper,itmuni
                                                                                iunit array
                                                                                iapart,istrt
                                                                                ibound(Iocat,iconst)
                                                                                hnoflow
                                                                                shead(locat.cnstnt)
                                                                                perlen,nstp,tsmult
                     *********************************
                     *  Block Centered Flow Package  *
                     *********************************
0
11
300.0
30.00
80.00
11
300.0
30.00
80.00
0
0
.100E+01


.100E+OK7G11.4)
200.0
30.00
100.0
150.0
20.00
150.0
100.0
30.00
200.0
.100E+OK7G11.4)
200.0
30.00
100.0
.750E-03
.230E-02
150.0
20.00
150.0


100.0
30.00
200.0



12
80.00
30.00
300.0
12
80.00
30.00
300.0


                                                          60.00
                                                          40.00
                                                          60.00
                                                          40.00
                                                                  40.00
                                                                  60.00
                                                                  40.00
                                                                  60.00
                                                 iss,ibcfcb
                                                 Iayeon
                                                 trpy
                                                 delr(locat,cnstnt,fmtin,iprn)
                                                 delr array
                                                 delc
-------
The same data set was used in part b, except the model domain was reduced to a  10x10 grid
(NROW = 10, NCOL =10) in the BASIC package.  Accordingly, only one-fourth  of the grid,
(as shown in Table  1.2, part  b)  was used. In addition, the well discharge was moved to row
1, column 1 and reduced to Ixl0"3m3/s in the WELL package.  The part c data set is identical
to part a, except grid spacing (DELC, DELR in the BCF package) is modified as shown in
Table 1.2  and the well location and discharge is as in part b.  The data set for part d is shown
below, minus the SIP and output control  files, which are identical to those of parts a-c.  The
calculations for adjustments to transmissivity and storage coefficient are shown in Table 1.3.
                    ***•**»**•*•*»•»»»*»*»**
                                         *********
                    *        Basic package        *
                    ******»*******»*»*»*»*»*»********
   theis problem  pie grid
   1/4/91   pfa
           1        1       10        1        1
    11  12  0  0  0  0  0  0  19  0  0 22
           0        1
           0        1
   999,00
           0  .OOOE+00
   86400.           201.3000

                    *********************************
                    *  Block Centered Flow Package  *
                    *********************************
      0  -100E+01
     11  .100E+OK7G11.4)                  12
20.00      30.00      30.00     40.00     60.00     80.00      100.0
150.0      200.0      300.0
      0  .200E+02
     11 7.500E-04(7G11.4>                  12
.22001-01  .2180      .4800     .7850     1.222     1.833      2,618
3.709      5.236      7.418
     11 2.3001-03C7G11.4J                  12
.4400E-01  .2180      .4800     .7850     1.222     1.833      2.618
3.709      5.236      7.418

               *»*«*»*******»***»*****»*»*******
               *         Well package        *
               *********************************
      1        0
      1
      1        1        1-.11111E-3
                                                                      headng(l)
                                                                      headng(2)
                                                                      nlay,nrow,ncol,nper,itmuni
                                                                      iunit array
                                                                      iapart,istrt
                                                                      ibound(Iocat,iconst)
                                                                      hnoflo
                                                                      istrt(locat.cnstnt)
                                                                      perlen.nstp,tsmult
                                                                           iss.ibcfcb
                                                                           Iayeon
                                                                           trpy
                                                                           delr(locat,cnstnt,fmtin, iprrt}
                                                                           delr array

                                                                           delc(locat,cnstnt)
                                                                           sf1(locat,cnstnt,fmtin,iprn)
                                                                           sfl array

                                                                           tran
-------
Table 1.3.  Calculations for determination of transmissivity and storage coefficient for
           wedge-shaped domain (part d)


Block
number j
1
2
3
4
5
6
7
8
9
10
Area
DELC
X
DELR
400
600
600
800
1200
1600
2000
3000
4000
6000


Radius to
block edge
10
40
70
10
170
250
350
500
700
1000
Individual
block area
of 10°
wedge
8.73
130.9
288.0
628.32
1466.1
2932.2
5236.0
11126.5
20944.0
44505.9
Wedge
area
-r
acutal area
0.022
0.218
0.480
0.785
1.222
1.833
2.618
3.709
5.236
7.418

Radius to
block
midpoint
5
25
55
90
140
210
300
425
600
850


10° arc
length
0.873
4.363
9.599
15.71
23.43
36.652
52.360
74.176
104.72
148.35
10° arc
length
.:-
actual
DELC
0.044
0.218
0.480
0.785
1.222
1.833
2.618
3.709
5.236
7.418
               Adjusted transmissivity  *
                                          10° arc length
                                          actual DELC
 transmissivity
            Adjusted storage coefficient   =
                                           wedge area
                                           actual area
storage coefficient
                                          1-8

-------
 MODEL OUTPUT

    Drawdowns versus time are tabulated in Table 1,4 for each of the four cases.  Comparison
 is also made to the analytical solution of Theis.  A drawdown versus time plot is shown in
 Figure 1.2 for the best comparison case (the refined quadrant) and  the worst comparison case
 (the coarse quadrant). .Other cases are not shown, but are generally very similar to the refined
 quadrant case.
Table 1.4.  Drawdown versus time for each model configuration
Time Step
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Time (sec)
137.1
315.3
547.1
848.6
1239.9
1748.9
2410.7
3271,1
4389.5
5843.4
7733.6
10190.7
13385.1
17537.7
22936.1
29954.0
39077.4
50937.7
66356.1
86400.
Analytic
0.009
0.044
0.086
0.129
0.170
0.210
0.249
0.288
0.326
0.364
0.401
0.438
0.475
0.512
0.549
0.586
0.622
0.659
0.695
0.731
Drawdown (m)
Full grid Quadrant
(case a) (case b)
0.017
0.048
0.085
. 0.126
0.167
0.208
0.248
0.288
0.327
0,365
0.403
0.441
0.479
0.516
0.553
0.591
0.628
0.665
0.704
0.744
0.010
0.030
0.059
0.092
0.128
0.165
0..203
0.240
0.278
0.315
0.353
0.390
0.427
0.464
0.501
0.538
0.575
0.613
0.651
0.691
Refined
Quadrant
(case c)
0.014
0.043
0.079
0.120
0.160
0.201
0.241
0.280
0.320
0.358
0.397
0.434
0.471
0.508
0.545
0.582
0.619
0.656
0.697
0.738
Pie Wedge
(case d)
0.013
0.039
0.074
0.114
0.155
0.197
0.237
0.277
0.316
0.354
0.392
0.429
0.467
0.504
0.540
0.577
0.614
0.651
0.691
0.733
                                         1-9

-------
      0.80
     0.00
                                     analytical
                             ***** coarse quadrant
                                     refined  quadrant
                     20000     40000     60000     80000    100000
                           TIME   (seconds)
Figure 1.2.  Drawdown versus time for each model configuration.
DISCUSSION OF RESULTS

  With the exception of the coarse-quadrant grid (case b), the MODFLOW results compare
well to the analytic solution.  The numerical results are generally within 0.005 m of the
analytic.  An exact comparison is not attained because of the approximations made in the
numerical model.  These include: 1) use of a discrete rather than continuous spatial domain,
2) use of a discrete rather than continuous time domain, 3) use of an iterative solution with a
closure tolerance, and 4) artificial placement of boundaries.

  The distant no-flow boundary is  only a small factor in this analysis because it is placed far
enough from the stress so that drawdown at the  boundary is very limited.  There is a
significant departure  from the Theis curve at the final time step, however,  as the non-infinite
nature of the model domain becomes a factor.  The comparison would continue to deteriorate
if the model were  run for longer time.

                                     1-10

-------
   This problem illustrates three methods of modeling radial flow to a well.  The first, placing
the well at the center of a rectangular grid, is the most intuitive approach to this problem, but
is not the  most efficient  The second method, the quadrant, recognizes symmetry of flow.
Some care must be taken in designing the grid. The third method, the pie wedge, also
recognizes symmetry but involves fairly labor intensive parameter adjustment to approximate
a wedge shaped grid.

   The quadrant grid is a satisfactory approximation, provided it is sufficiently fine near the
pumping well.  The predominant reason for the approximation error noted in the first
quadrant analyzed (case b) is because the block-centered grid "approach models a larger area
than a quadrant.  There will always be an extra 1/2 grid block on the margins of the model
area and therefore extra storage in the model domain. The extra storage accounts  for a
majority of the underprediction of drawdown in case b.  When the size of the blocks on the
margins is reduced in case c, the error is also reduced.

   The pie-wedge grid provides a reasonable approximation for this particular problem.  The
user is cautioned that it is conceptually difficult and error-prone to develop the grid and
aquifer parameters for  this type of configuration.  Some approximation errors may become
more apparent if larger areas or greater wedge angles are used.  Although this is an
appropriate methodology, its main reason for presentation in this manual is to reinforce the
user's understanding of the relationship between transmissivity,  grid spacing, and
conductance.
                                          1-11

-------
                                    PROBLEM 2
                                      Anisotropy
INTRODUCTION
   Anisotropy is often encountered in aquifers, particularly in the vertical direction.  Vertical
anisotropy is  handled in MODFLOW through the VCONT term, which is used in the three-
dimensional simulations.  Horizontal anisotropy can also occur and may result from fracture
networks or depositional environments.  Although MODFLOW was designed as a porous
media model, the scale of many modeling efforts is such that fractured media or a karst
environment can be considered an equivalent porous media.  This problem examines how
MODFLOW handles horizontal anisotropy, provides a check on model accuracy, and
illustrates some special considerations for modeling anisotropic aquifers.

PROBLEM STATEMENT AND DATA

   This problem is very similar to the Theis problem (problem 1) with regard to assumptions,
model configuration, and hydraulic parameters.  An effectively infinite confined aquifer is
assumed, with a fully penetrating well located at the center of the model domain pumping at
a constant rate.   The aquifer is ten times as transmissive in the x-direction as in the y
direction.  For parts a and b, the principal directions of the hydraulic conductivity tensor are
assumed to be aligned with the model grid.  The potentiometric surface of the aquifer is
monitored at 3 points:  55 m from the pumping well in the x direction, 55 m from the
pumping well in the y direction, and 77.8 m from the pumping well along a diagonal at 45°
to the x and y axis. Specific details  on  the problem are nearly identical to the Theis problem
and are given in Table  2.1.  The data sets from  problem 1  can be easily modified rather than
creating new  data sets.  Note that  area! anisotropy is handled with the TRPY term in the BCF
package.
                                          2-1

-------
Table 2.1.  Parameters used in Problem 2
                    Initial head
                    Transmissivity, T^
                    Transmissivity, Tyy
                    Storage coefficient
                    Pumping rate
                    Stress period length
                    Number of time steps
                    Time step expansion factor
                    SIP iteration parameters
                    Closure criterion
                    Maximum number of iterations
0.0 m
0.0023 m2/s
0.00023 m2/s
0.00075
4 x 10'3 m'/s
86400 s
20
1.3
5
0.0001
50
Part a)  Represent the entire aquifer domain with the grid spacing shown in Table 2.2.  Note
        that this spacing is the same as problem 1, part a.  Place the well at the center of the
        domain, row 10, column 10. Run the model, noting drawdowns at each time step at
        the 3 observation points described above.
                                          2-2

-------
Table 2.2.  Grid spacing used in the various model configurations
Row number, i
(=column number ,j)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
Part a
DELC(i)
(=DELR(j))
300
200
150
100
80
60
40
30
30
20
30
30
40
60
80
100
150
200
300
Part b
DELC(i)
(=DELR(j))
1
1.41
2
2.83
4
5.65
8
11.3
12
14.62
20
28.3
40
56.5
80
110
150
200
252.89
Part b)  Represent a quadrant of the aquifer domain with the grid spacing shown in Table 2.2.
        Note that this is the same spacing used in problem 1, part c. Place the well at the
        upper left corner of the model, row 1, column 1 and reduce the pumping to one-
        fourth the original value.  Note drawdowns at each time step at the 3 observation
        points.

Part c)  In the previous parts to this problem, the principal directions of the hydraulic
        conductivity tensor were aligned with the finite difference grid.  That is, the
        maximum T (0.0023 nf/s) was along the x axis while the minimum T (0.00023 m2/s)
        was along the y axis.  In this exercise, we will examine the error which occurs if the
        grid is not aligned with the principal directions of the hydraulic conductivity tensor.
        We will assume that the maximum T is  still 0.0023 nr/s and the minimum T is still
        0.00023 m2/s and at right angles to one another, however, the analyst has not aligned
        the finite difference grid along these maximums and minimums. The grid is tilted

                                         2-3

-------
     20° off the principal directions of hydraulic conductivity. The transmissivity along
     the x and y axis can be calculated from equations given by Bear (1972), page 140.


                            T   4. T      T   _ f
                      T   » _£!	*1  + _£	II cos  20                      (2.1)
                            T   + T      T    — T
                              *'*    y
-------
MODEL INPUT
   The
following is a listing of the input data sets for part b.
             *********************************
                                            *
                                        *****
                     *         Basic package
                     ************************
   ani sot ropy problem  quadrant fine spacing
   2/20/91   pfa
            1       19        19         1         1
    11 12  0  0  0  0  0  0 19  0  0 22
            0         1
            0         1
   999.00
            0  .OOOE+00
   86400.           201.3000

                      *********************************
                      *  Block Centered Flow Package  *
                      *********************************


1.00
11.30
80.00

1.00
11.30
80.00


0
11



11



0
0
.100E+00


.100E+OU7G11.4)
1.41
12.00
110.0
2.00
14.62
150.0
2.83
20.00
200.0
.100E+OK7G11.4)
1.41
12.00
110.0
.750E-03
.230E-02
2.00
14.62
150.0


2.83
20.00
200.0



12
4.00
28.30
252.89
12
4.00
28.30
252.89


*********************************





1
1
1
*
***
0


it ^*^W^W li

Well package
'* ^ ifcWiMMfc 11 it iHt "toil

*


1 1 -.100E-02
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
* SIP package *
                                                           5.65
                                                          40.00
                                                           5.65
                                                          40.00
                                                             8.00
                                                             56.50
                                                             8.00
                                                             56.50
           50         5
   1.0000    .10000E-03         1.00000             1

                      *********************************
                      *     Output Control package    *
                      *********************************
           10
            0
            0
           -1
           -1
           -1
           -1
           -1
           -1
           -1
           -1
           -1
           -1
           -1
            10
             1
             1
             1
             1
             1
             1
             1
             1
             1
             1
             1
             1
             1
             1
             1
             1
             1
             1
             1
             1
             1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
                                                                        headngd)
                                                                        headng(2)
                                                                        nlay.ncol,nrow,nper,itmuni
                                                                        iunit array
                                                                        iapart,istrt
                                                                        ibound(locat,iconst)
                                                                        hnoflo
                                                                        shead(Iocat,cnstnt)
                                                                        perlen,nstp,tsmult
                                        iss.ibcfcb
                                        laycon
                                        trpy
                                        delr(locat,cnstnt,fmtin,iprn)
                                        delr array
                                        delc(locat,cnstnt,fratin,iprn)
                                        dele array
                                                                                 sfK locat, cnstnt)
                                                                                 tran(locat,cnstnt)
                                                                                 mxuell,iwelcb
                                                                                 ittnp
                                                                                 layer,row,column,q
                                                                        mxiter.nparm
                                                                        accl,hclose,ipcalc,useed,iprsip
ihedfm.iddnfm.ihedun.
incode,ihddfl.ibudfl,
hdpr,ddpr,hdsv.ddsv
incode,ihddfl.ibudfl,
incode,ihddfl.ibudfl,
incode,ihddfl.ibudfl,
incode.ihddfl.ibudfl,
incode,ihddfl.ibudfl,
incode,ihddfl.ibudfl,
incode,ihddfl.ibudfl,
incode,ihddfl.ibudfl,
incode,ihddfl.ibudfl,
incode,ihddfl.ibudfl,
incode,ihddfl.ibudfl,
incode,ihddfl.ibudfl,
incode,ihddfl.ibudfl,
incode.ihddfl.ibudfl,
incode,ihddfl.ibudfl,
incode,ihddfl.ibudfl,
incode,ihddfl.ibudfl,
incode,ihddfl.ibudfl,
incode,ihddfl.ibudfl,
iddnun
icbcfKstep 1)

icbcfKstep 2)
icbcfKstep 3)
icbcfKstep 4)
icbcfKstep 5)
icbcfKstep 6)
icbcfKstep 7)
icbcfKstep 8)
icbcfKstep 9)
icbcfKstep 10)
icbcfKstep 11)
icbcfKstep 12)
icbcfKstep 13)
icbcfKstep 14)
icbcfKstep 15)
icbcfKstep 16)
icbcfKstep 17)
icbcfKstep 18)
icbcfKstep 19)
icbcfKstep 20)
                                                   2-5

-------
Part b is shown here because part a is nearly identical to that of problem 1, part a which was
shown previously in the problem 1 writeup.  The only difference between the previous part a
data set and the current part a data set is that the layer wide  anisotropy ratio (TRPY) is
changed from 1.0 to 0.1 to yield a transmissivity along a column of 1/10 that along a row.
The part b data set shown above is nearly  identical to that of part c of Problem 1. Again the
layer wide anisotropy ratio is set at 0.1 for the current simulation. In part c, the same data
set  as part a is used, however, the transmissivity along a row (TRAN) is changed to 0.00206
m2/s.  Because we desire a transmissivity of 0.00047 mVs along the y axis (column), the layer
wide anisotropy ratio is set at 0.00047/0.00206 or 0.22816.

MODEL  OUTPUT

   Drawdown versus time is tabulated for  the three observation points in Tables 2.3, 2.4, and
2.5 for the three cases. These results may be compared to the analytical solution of
Papadopulos  (1965) for anisotropic aquifers. The results of these simulations are plotted in
Figures 2.1 and 2.2.
                                           2-6

-------
Table 2.3,  Drawdown (m) at an observation point located 55 m from the pumping well
          along the x axis
Time
step
number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Time (sec)
137.1
315.3
547.1
848.3
1239.9
1748.9
2410.7
3271.1
4389.5
5843.4
7733.6
10190.7
13385.1
17537.7
22936.1
29954.0
39077.4
50937.7
66356.1
86400.0
Analytic
0.028
0.140
0.273
0.407
0.537
0.664
0.789
0.911
1.032
1.151
1.269
1.387
1.503
1.620
1.736
1.852
1.967
2.082
2.198
2.313
Drawdown (m)
Part a Part b Part c
0.050
0.154
0.293
0.447
0.600
0.744
0.880
1.009
1.133
1.255
1.375
1.495 -
1.614
1.732
1.851
1.969
2.087
2.205
2.324
2.446
0.044
0.135
0.252
0.379
0.509
0.636
0.762
0.886
1.008
1.129
1.249
1.369
1.487
1,605
1.722
1.839
1.957
2.074
2.193
2.315
0.036
0.109
0.203
0.303
0.401
0.497
0.590
0.681
0.772
0.861
0.950
1.038
1.126
1,214
1.301
1.388
1.474
1.561
1.649
1.738
                                      2-7

-------
Table 2.4, Drawdown (m) at an observation point located 55 m from the pumping well
          along the y axis
Time
step
number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Time (sec)
137.1
315.3
547.1
848.3
1239.9
1748.9
2410.7
3271.1
4389.5
5843.4
7733.6
10190.7
13385.1
17537.7
22936.1
29954.0
39077.4
50937.7
66356.1
86400.0
Analytic
0.000
0.000
0.001
0.006
0.022
0.050
0.092
0.148
0.215
0.292
0.377
0.468
0.565
0.665
0.769
0.876
0.984
1.094
1.204
1.316
Drawdown (m)
Part a Part b Part c
0.001
0.003
0.008
0.019
0.036
0.063
0.102
0.152
0.215
0.288
0.371
0.461
0.557
0.658
0.762
0.870
0.979
1.091
1.205
1.323
0.000
0.001
0.004
0.012
0.028
0.054
0.093
0.144
0.207
0.280
0.363
0.453
0.548
0.648
0.751
0.858
0.967
1.077
1.191
1.309
0.002
0.010
0.024
0.047
0.081
0.125
0.179
0.241
0.309
0.381
0.457
0.535
0.616
0.697
0.780
0.863
0.948
1.032
1.118
1.206
                                      2-8

-------
Table 2.5. Drawdown (m) at an observation point located 77.8 m from the pumping well
          at a 45° angle between the x and y axis
Time
step
number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Time (sec)
137.1
315.3
547.1
848.3
1239.9
1748.9
2410.7
3271.1
4389.5
5843.4
7733.6
10190.7
13385.1
17537.7
22936.1
29954.0
39077.4
50937.7
66356.1
86400.0
Analytic
0.000
0.000
0.001
0.004
0.017
0.041
0.078
0.129
0.192
0.265
0.347
0.436
0.530
0.629
0.732
0.837
0.945
1.054
1.164
1.276
Drawdown (m)
Part a Part b Part c
0.000
0.001
0.005
0.013
0.027
0.050
0.085
0.131
0.190
0.259
0.339
0.426
0.520
0.619
0,722
0.828
0.937
1.048
1.162
1.280
0.000
0.001
0.003
0.009
0.022
0.045
0.079
0.126
0.185
0.255
0.334
0,421
0.514
0.612
0.714
0.820
0.928
1.038
1.151
1.269
0.001
0.004
0.013
0.029
0.055
0.092
0.139
0.194
0257
0.325
0.398
0.473
0.552
0.632
0.713
0.796
0.879
0.963
1.049
1.137
                                      2-9

-------
   3.00 -i
   •2.00 -
 c
 £
 o
 O
 i^

Q
1.00 -
   0.00
        100
                    	 analytic
                    ***** part a
                    x x x x x part b

                    + + + + + part c
                    1000            10000

                  Time   (seconds)
100000
Figure 2.1.  Drawdown versus time at the observation point located 55 m from the

         pumping well along the x-axis for the three model configurations.
                              2-10

-------
    2.00 -i
  O 1.00 -
  TJ
  Q
     0.00
         100
                        	  analytic
                        *****  part  a
                        x x x x x  part  b
                        + + + + +  part  c
  1000           10000
Time  (seconds)
100000
Figure 2.2. Drawdown versus time at the observation point located 55 m from the
         pumping well along the y-axis for the three model configurations.
                               2-11

-------
DISCUSSION OF RESULTS

   The comparison of MODFLOW results with the analytical solution is again very good.
However, just as the overall grid design was important in the Theis problem, the directional
grid design becomes important for areally anisotropic problems. Note in Figures 2.3 and 2.4
that the drawdown contours form an ellipse with the major axis in the direction  of highest
transmissivity.

   The model results are in excellent agreement with analytical results along the y-axis, which
is in the direction of low transmissivity, for both the coarse and fine grids (see Table 2.4 and
Figure 2.2 for parts a and b).  It appears from these results that the coarse and fine grids are
equally satisfactory.  Along the x-axis, or direction of high transmissivity, there  is a more
apparent difference between the results of the coarse and fine meshes. The results using the
fine mesh are very close to the analytical results, but the coarse mesh results consistently
show greater drawdown. This is not a boundary effect, the model boundary is located at
equivalent distances (1000 m) for both grids.  Instead, the grid resolution influences  the
results more in this direction because the drawdown and gradient to the pumping well  are
greater than in the y-direction.  This illustrates that for areally anisotropic problems,  grid
design becomes even more important than for isotropic problems.  As a general  rule for aU
models, grids should be designed to match expected gradients.  The grid should be able to
accommodate the vertical curvature of streamlines.  Note that the results along the 45° angle
(Table 2.5) are similar to the results along the y-axis and are therefore not plotted. The
coarse and fine grids are also equally effective in providing satisfactory answers. Inspection
of Figure 2.3 shows the similarity between the results along the y-axis and along the 45°
angle.

   The results of part c, where the grid was not aligned with the principal directions of the
hydraulic conductivity  tensor, shows significant deviation from the  analytical results.  Note
that MODFLOW  does  not have the capability to accurately model a situation such as this.
The principal directions of the hydraulic conductivity tensor must be aligned with the x and y
directions of the model grid. Even a small misalignment, 20° in case c, can cause significant
errors.  This  becomes even more apparent for highly fractured systems where anisotropy
ratios may be greater than 10:1.

   Area! anisotropy is handled in MODFLOW by the TRPY term, which establishes the ratio
of transmissivity along a column to transmissivity along a row.  Note that this is a layer wide
term and a given  anisotropy ratio is therefore assumed to exist layer wide.
                                          2-12

-------
      740.00     800.00     860.00     920.00     980.00     1040.00     1100.00     1160.00     1220.00
1080.00
1020,00
                                                                                               -  1080.00
-  1020.00
                I    !   I   I    I   I   I    I   I    I   I   I    I   I   I    I   I   I    I   I   !  	l_	I	
                                                                                               -  960.00
      740.00     800.00     860.00     920,00     980.00     1040.00    1100.00    1160.00     1220.00
  Figure 2.3.  Drawdown contours (ft) for the 10:1 anisotropic case modeled in part a.
                                                  2-13

-------
Figure 2.4. Three-dimensional view of the drawdown for the 10:1 anisotropic case
            modeled in part a.
                                       2-14

-------
                                     PROBLEM 3
                            Artesian-water table conversion
INTRODUCTION

   When a confined aquifer is heavily stressed, its potentiometric surface may be drawn down
sufficiently such that the aquifer begins to dewater, or behave as a water-table aquifer.  This
conversion takes place when the potentiometric surface falls below the top of the aquifer.
The primary change that takes place in a situation such as this is with the storage coefficient
(s); under confined conditions water is derived from pressure changes and S is fairly small,
while under water-table conditions water is derived from dewatering  pore spaces and S is
usually fairly large. A secondary  change is that if drawdown is sufficient to cause  changes in
saturated thickness, the transmissivity of the aquifer will  be reduced.   MODFLOW  has the
capability to model both these effects. This problem demonstrates the physical process of the
conversion, how it is implemented in MODFLOW simulations, and compares the numerical
results to an analytical solution.

PROBLEM STATEMENT AND DATA

   The problem is essentially the same as the  example presented by Moench and Prickett
(1972) who derived an analytical solution to the artesian-water-table  conversion problem.  The
assumptions inherent in the Theis  solution are also a part of this solution.  Of particular
interest to this problem, the thickness of the aquifer is assumed to be such that the  dewatering
does not significantly reduce the aquifer transmissivity, all flow lines in  the water table region
are assumed horizontal, and water is released instantaneously from storage.   The model
domain is assumed to be effectively infinite; the grid is therefore extended to where the
effects of the stress are negligible.

   A fully penetrating well located at the center of the aquifer  pumps at a constant  rate. The
potentiometric surface of the aquifer is monitored with time at an observation well  1000 ft
from the pumping well.  Specific details on the problem  are given in Table 3.1 and are from
Moench and Prickett (1972).
                                          3-1

-------
Table 3.1.  Parameters used in Problem 3
                    Initial head                       0.0 ft
                    Transmissivity                    2673.8 ft2/d
                    Storage coefficient (confined)      0.0001
                    Specific yield (unconfmed)         0.1
                    Pumping rate                     33636 ft3/d
                    Stress period length               100 days
                    Number of time steps             25
                    Time step expansion factor         1.44
                    SIP iteration parameters           5
                    Closure criterion                  0.001
                    Maximum iterations               50
Part a)  Represent the entire aquifer domain by using the grid spacing shown in Table 3.2.
        Place the well at node 1,1, and use one-fourth of the well discharge given in Table
        3.1, because only 1/4 of the aquifer domain is modeled.  Place the aquifer top at -1
        ft. Use layer type 2 (LAYCON) so that the conversion only involves a change in
        storage coefficient.  Run the model and note drawdown with time at a point 1000 ft
        from the pumping well.

Part b)  Run  the problem with the aquifer top set at -2 ft.  Note drawdown versus time at a
        point 1000 ft from the pumping well.  Compare to part a.

Part c)  Run  the problem as confined (LAYCON = 0) with storage coefficient of 0.0001 and
        note  drawdown versus time at a point 1000 ft from the pumping well.

Part d)  Rerun part c except use a storage coefficient of 0.1 and note drawdown versus time
        at a point 1000 ft from the pumping well.
                                          3-2

-------
Table 3.2.  Grid spacing (ft) used in Problem 3
Row number i
(=column number, j) •
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
DELC(i)
(=DELR(j))
10
15
20
30
50
70
100
150
200
220
280
300
400
600
800
1000
1500
2000
3000
4000
6000
8000
10000
15000
20000
30000
                                        3-3

-------
MODEL INPUT
   The following is a listing  of the input data sets for part a.
                      *********************************
                      *         Basic package         *
                      *********************************
   ARTESIAN/WATER-TABLE CONVERSION  PROBLEM  HOENCH PRICKETT 1972
   1/14/91   PFA
            1        26        26        1         4
    11 12  0  0  0  0  0  0 19  0  0 22
            0         1
            0         1
   999.00
            0  .OOOE+00
   100.00            251.414

                      *********************************
                      *  Block Centered  Flow Package  *
                      *********************************


10.00
150.0
800.0
8000.

10.00
150.0
800.0
8000.




0
11




11




0
0
0
0
.100E+01


.100E+OK7G11.4)
15.00
200.0
1000.
10000.
20.00
220.00
1500.
15000.
30.00
280.0
2000.
20000.
.100E+OK7G11.4)
15.00
200.0
1000.
10000.
.1006-03
.2674E+04
.100E+00
-.100E+01
20.00
220.0
1500.
15000.




30.00
280.0
2000.
20000.





12
50.00
300.0
3000.
30000.
12
50.00
300.0
3000.
30000.






70.00
400.0
4000.


70.00
400.0
4000.







100.0
600.0
6000.


100.0
600.0
6000.





                      *********************************
                      *          Well  package         *
                      *********************************
                      0
                      1
                     1   -8409.09
    1.0000
           *********************************
           *          SIP package         *
           *********************************
50         5
  .10000E-02         1.00000             1
                                                                      headngd)
                                                                      headng(2)
                                                                      nlay,nrow,ncol,nper,itmuni
                                                                      iunit array
                                                                      iapart,istrt
                                                                      ibound(locat,iconst)
                                                                      hnoflo
                                                                      shead(locat,cnstnt)
                                                                      perlen,nstp,tsmult
                                                                                  iss.ibcfcb
                                                                                  Iayeon
                                                                                  trpy(locat,cnstnt)
                                                                                  delr( locat, cnstnt. ftntin.iprn)
                                                                                  delr array
                                                                                 delc(locat,cnstnt,fmtin,iprn)
                                                                                 dele  array
                                                                                  sf1(locat,cnstnt)
                                                                                  t ran(Iocat,cnstnt)
                                                                                  sf2(locat,cnstnt)
                                                                                  top(Iocat.cnstnt)
mxwell,iuelcb
itmp
layer,row,column,q
mxiter,nparm
accl.hclose,ipcalc.wseed,iprsip
                                                    3-4

-------
          *********************************
          *     Output Control  package    *
          *********************************
-1
ihedfm.iddnfm,
incode.ihddfI.
hdpr,ddpr,hdsv
incode.ihddfI,
incode.ihddfI,
incode,ihddfI,
incode.ihddfI,
incode.ihddfI,
incode.ihddfI,
incode.ihddfI,
incode.ihddfI,
incode.ihddfI,
incode.ihddfI,
incode.ihddfI,
incode.ihddfI,
incode.ihddfI,
incode.ihddfI,
incode,ihddfI,
incode.ihddfI.
incode,ihddfI,
incode,ihddfI,
incode.ihddfI,
incode,ihddfI,
incode,ihddfI,
incode,ihddfI,
incode,ihddfI.
incode,ihddfI,
                                                                                   ihedun,iddnun
                                                                                   ibudfl.icbcfKstep 1)
                                                                                   ,ddsv
                                                                                   ibudfl.icbcfKstep 2)
                                                                                   ibudfl.icbcfUstep 3)
                                                                                   ibudfl,icbcfl(step 4)
                                                                                   ibudfl.icbcfKstep 5)
                                                                                   ibudfl.icbcfKstep 6)
                                                                                   ibudfl.icbcfKstep 7)
                                                                                   ibudfl.icbcfKstep 8)
                                                                                   ibudfl.icbcfKstep 9)
                                                                                   ibudfl.icbcfKstep 10)
                                                                                   ibudfl.icbcfKstep 11)
                                                                                   ibudfl.icbcfKstep 12)
                                                                                   ibudfl.icbcfKstep 13)
                                                                                   ibudfl.icbcfKstep 14)
                                                                                   ibudfl.icbcfKstep 15)
                                                                                   ibudfl.icbcfKstep 16)
                                                                                   ibudfl.icbcfKstep 17)
                                                                                   ibudfl.icbcfKstep 18)
                                                                                   ibudfl.icbcfKstep 19)
                                                                                   ibudfl.icbcfKstep 20)
                                                                                   ibudfl.icbcfKstep 21)
                                                                                   ibudfl.icbcfKstep 22)
                                                                                   ibudfl.icbcfKstep 23)
                                                                                   ibudfl.icbcfKsteo 241
                                                                                   ibudfl.icbcfKstep 25)
                                        3-5

-------
In part b, aquifer top (TOP) is set to -2 ft.  In part c layer type (LAYCON) is changed to 0.
As a result, the secondary storage factor (SF2) and aquifer top (TOP) are no longer required.
In part d, the primary storage factor (SF1) is changed from 0.0001 to 0.1.

MODEL OUTPUT

   Drawdown versus time is tabulated in Table 3.3 and plotted in Figure 3.1 for each of the
four cases.  The results of parts a and b can also be compared to Moench and Prickett (1972)
which is reproduced on the table.

Table 3.3.  Drawdown versus time for each model configuration
Time step
number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
• 23
24
25
Time
(days)
0.0072
0.0173
0.0317
0.0520
0.0806
0.1212
0.1785
0.2596
0.3743
0.5364
0.7657
1.090
1.548
2.196
3.113
4.409
6.241
8.832
12.50
17.68
25.00
35.36
50.01
70.72
100.0
Aquifer
Analytical
0.02
0.09
0.16
0.23
0.29
0.36
0.42
0.48
0.55
0.61
0.67
0.73
0.79
0.85
0.91
—
1.03
1.13
1.27
1.46
1.68
1.93
2.21
2.51
2.82
Drawdown (ft)
top at -1 ft Aquifer
MODFLOW Analytical
0.03
0.09
0.16
0.22
0.29
0.36
0.42
0.49
0.55
0.62
0.68
0.74
0.80
0.86
0.93
1.00
1.05
1.14.
1.27
1.44
1.65
1.90
2.17
2.46
2.77
0.04
0.17
0.30
0.42
0.55
0.66
0.78
0.90
1.01
1.13
1.24
1.35
1.46
1.58
1.69
1.80
—
2.02
2.17
. 2.35
2.57
2.83
3.10
3.40
3.71
top at -2 ft
MODFLOW
0.06
0.16
0.28
0.41
0.53
0.65
0.78
0.89
1.01
1.13
1.24
1.36
1.47
1.60
1.70
1.83
1.93
2.05
2.18
2.35
2.56
2.80
3.07
3.36
3.67
Confined
8=0.0001
0.16
0.47
0.84
1.22
1.61
1.98
2.36
2.72
3.08
3.43
3.78
4.14
4.50
4.85
5.20
5.55
5.90
6.26
6.61
6.96
7.37
7.72
8.07
8.42
8.79
Unconfined
S=0.1
0.00
0.00
0.00
0.00-
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.02
0.05
0.11
0.20
0.33
0.50
0.71
0.96
1.23
1.52
1.83
                                        3-6

-------
    o
    o
                     	  analytic
                     *****  MODFLOW
                     xxxxx  MODFLOW
                     +++++  MODFLOW
                     *****  MODFLOW
                 top  at  -1  ft)
                 top  at  -2  ft)
                 confined)
                 unconfined)
                                         II  III)
     0.01
0.1                  1                  10
          Time   (days)
100
Figure 3.1. Drawdown versus time for the four MODFLOW configurations and the analytical
            solution.
DISCUSSION OF RESULTS

   This problem demonstrates the physical process of artesian/water table conversion as related to the
change in storage coefficient. MODFLOW results compare well to the analytical results for both
locations of aquifer top datum. It is apparent from Figure'3.1 that the time-drawdown plots for the
conversion cases are enveloped between the artesian and water-table time-drawdown plots. The
greater the distance from the initial  potentiometric surface to the aquifer top, the closer the curve
becomes to the artesian case.  The shape of the curve is generally similar prior to conversion to the
Theis curve for artesian conditions while after conversion the slope is similar to the unconfined curve.
Note that the storage coefficient is only related to the time-dependent nature of drawdown.

   Figure 3.2 shows distance drawdown plots for the water-table, conversion, and artesian conditions
at 2.19 days. Note that the conversion curve is again enveloped between the artesian and water-table
curves. The water-table responds only near the well due to the  large component of storage. The
                                          3-7

-------
conversion case drawdown plot shows a fairly rapid response at distance, where the aquifer is under
artesian conditions. The well is, however, obtaining much of its withdrawal from the newly acquired
storage in the vicinity of the well.

   Not shown in this exercise is the feature of MODFLOW which allows a confined aquifer
transmissivity to change to a saturated thickness based unconflned transmissivity.  As can be  seen
from Figure 3.2, most of a potential change in saturated thickness would be felt immediately  near the
well for this problem. This is generally true for pumping well problems and it is often not necessary
to incorporate this added complexity.  It may be necessary to account for both storage coefficient and
transmissivity conversion in relatively thin aquifers or in areas where the conversion is regional.

   This problem deals with artesian to water-table conversion. It is also possible to convert from
water-table to artesian with MODFLOW. The conversion feature may also be used in a spatial sense:
parts of the model area may be under water-table  conditions while others are under confined
conditions.
     15-t
                                                    conversion
                                              «-*-f artesian
                                                  * water-table
                                            4000              6000
                        distance   from    well   (ft)
8000
Figure 3.2.  Drawdown versus distance at 2.19 days for the water table, conversion, and artesian
             cases.
                                            3-8

-------
                                    PROBLEM 4
                                     Steady-state
INTRODUCTION
   Transient model simulations such as in the preceding problems involve flow into and out
of storage within the aquifer.  The preceding problems considered only wells; in complex
aquifer systems other components, such as rivers, springs, evapotranspiration, and recharge,
may contribute or extract flow from the system.

   When the aquifer is in equilibrium, flow is balanced between these various sources and
sinks and the system may be in a steady-state. In this exercise, the role of aquifer storage in
transient and steady state simulations is demonstrated.  Several methods of simulating a
steady-state solution are  attempted.

PROBLEM STATEMENT AND DATA

   The modeled domain  is discretized using a seven by seven uniformly spaced finite
difference grid of spacing 500 ft as shown in Figure 4.1.  Specified head boundaries are
located along row 1 and along column 7.  These boundaries may be conceptualized as two
rivers intersecting perpendicularly  in the northeastern corner of the modeled groundwater
system.  The hydraulic head values associated with these boundaries are given in Table 4.1.
Elsewhere, in the  active  part of the grid, use a starting head of 10.0 ft. Only a single aquifer
is modeled; therefore only 1 layer  is used.  The aquifer is treated as confined because it is
relatively thick and does not experience large changes in saturated thickness.  The
transmissivity of the aquifer is 500 ftVd, while recharge occurs at a rate of 0.001 ft/d. A well
discharges at a rate of 8000 ft3/d at row 5, column 3,

   The strongly implicit  procedure (SIP) solution technique is used in this exercise. The
maximum number of iterations (MX1TER) used is 50, the number of iteration parameters
(NPARM) is 5, the acceleration parameter (ACCL) is 1.0, the head change criterion is 0,01,
IPCALC = 1, WSEED = 0,0,  and IPRSIP = 1. A more detailed presentation  of solution
techniques and convergence is presented in Problem 13.
                                         4-1

-------
Row
           2

           3
           5

           6

           7
                             Co  umn'
                        /\  =  constant  head cell

                            =  active cell
                        10  =  assigned  head (ft)
                      500 ft
Figure 4.1.  Configuration of the Problem 4 modeled domain.
                                                     7
10
A
6
*
«
•
«
a
9
A
*
*
*
•
m
•
8
'A
o
*
«
«
»
«
6
A
a
«
*
a
a
*
4
A
a
a
#
«
*
a
2
A
a
«
*
*
•
a
0
A
3
A
6
A
8
A
12
A
15
A
20
A
                             4-2

-------
Table 4.1.  Initial heads (SHEAD) at specified head cells
Row
1
1
1
1
1
1
1
2
3
4
5
6
7
Column
1
2
3
4
5
6
7
7
7
7
7
7
7
Head (ft)
10.
9.
8.
6.
4.
2.
0.
3.
6.
8.
12.
15.
20.
Part a)  Run the model in a transient mode using a storage coefficient of 0.01.  Five time
        steps, a time step multiplier of 1.5, and stress period length of 365 days should be
        specified in the BASIC package.  Print the mass balance (budget) and head
        distributions at all five time steps by using the OUTPUT CONTROL PACKAGE,

Part b)  Run the model in a steady-state mode  by invoking that option in the BCF package.
        Run for 1 time step of 1  day in length. Use a time step multiplier of 1.0. Compare
        the results to that of part a, time step 5.

Part c)  Run the model in a steady-state mode  as you did in part b, but ran for 1 time step of
        365 days in length. Compare results to that of parts a and b.

Part d)  Repeat part b, except use an initial head condition  in the active part of the grid of
        1000 ft. Compare results to that of part b.
                                         4-3

-------
MODEL INPUT

   The following is a listing of data sets used in problem 4 part a. In part b the time-stepping
parameters, PERLEN, NSTP, and TSMULT, are changed to  1.0, 1, and 1.0, respectively in
the BASIC package.  The steady state flag (ISS) is changed to 1 and the storage coefficient is
eliminated in the BCF package.   Part c uses the part b data sets, except PERLEN,  the length
of the simulation, is set to 365 days in the BASIC package.  Part  d is identical to part b,
except the initial head (SHEAD) in the active area of the model is set to 1000 ft in the
BASIC package.
                    •**«»»**•*•*«•««*«**<
                                       >****•*»•««
* Basic pack
steady state problem
5/28/91

11 12


-1-1-1-1
1111
1111
1111
1111
1111
1111
.00000

10.00
10.00
10.00
10.00
10.00
10.00
10.00
365.00
PFA
1 7 7
00000 18 19 00
0 0
1 1(4012)
-1-1-1
1 1-1
1 1-1
1 1-1
1 1-1
1 1-1
1 1-1

1 .1006*01(7011.4)
9.000 S.OOO
10.00 10.00
10.00 10.00
10.00 10.00
10.00 10.00
10.00 10.00
10.00 10.00
51 .5000


22











6.00
10.0
10.0
10.0
10.0
10.0
10.0

                                  12
                                4.000     2.000      .0000
                                10.00     10.00      3.000
                                10.00     10.00      6.000
                                10.00     10.00      8.000
                                10.00     10.00      12.00
                                10.00     10.00      15.00
                                10.00     10.00      20.00
                    **»»***»»**********»***»*»*»»**»*
                    *  Slock Centered Flow Package  *
0  .1006+01
0  .500E+03
0  .5006+03
0  .100E-01
0  .500E+03
                    *********************************
                    *         Met I package        *
                    *********************************
                    0

                    5        3 -.SOOE+04
                                                                         headngd)
                                                                         headng<2)
                                                                         nlay,nrow,ncol,nper, f tmuni
                                                                         funit array
                                                                         iapart,istrt
                                                                         ibound(locat,iconst,frotin,iprn)
                                                                         ibound array
                                                                         hnoflo
                                                                         sheed
-------
1.0000
           A********************************
           *           SIP package         *
           ••A******************************
50         5
  .10000E-01         1.00000             1
mxiter.npartn
accl,hclose,ipcalc,wse«d,iprsip
                   »»*»***»»»»»***»****»»»»**»»*****
                   *       Recharge package        *
                   *********************************
                   0
                   0
                .001

                   *********************************
                   *     Output Control package    *
                   *********************************
                                                                        nrchop,i rchcb
                                                                        inrech.inirch
                                                                        rech(Iocat,cnstnt)
                                                                                ihedfm,iddnfm,ihedun,iddnun
                                                                                incode,ihddfl,ibudfl,icbcfl(step 1)
                                                                                hdpr,ddpr,hdsv,ddsv
                                                                                incode,ihddfl,ibudfl,icbcfl(step 2)
                                                                                hdpr,ddpr,hdsv,ddsv
                                                                                incode,ihddfl,ibodfl,icbcfl(step 3)
                                                                                hdpr,ddpr,hdsv,ddsv
                                                                                incode,ihddfl,ibudfl,icbcfl(step 4)
                                                                                hdpr,ddpr,hdsv,ddsv
                                                                                incode,ihddfl,ibodfl,icbcfl(step 5)
                                                                                hdpr,ddpr,hdsv,ddsv
                                                  4-5

-------
MODEL OUTPUT

   Hydraulic head, mass balance information, and iteration data are given in Table 4.2 for
each simulation in this problem set.
Table 4.2.  Hydraulic head (ft) at node (7,1), storage component of mass balance, and
            iteration data for each time step and the steady-state simulations
                                 Hydraulic    Into storage  Out of storage    No. of
    Time step no. Time (days)  head (7,1) (ft)     (ft3/d)        (ft3/d)       iterations
1
2
3
4
5
Steady-state
Steady-state
Steady-state
(initial head =
1000 ft)
27.68
69.19
131.5
224.9
365.0
1.0
365.0
1.0
10.30
10.04
9.78
9.65
9.60
9.59
9.59
9.62
3227.9
713.37
217.01
65.43
14.47
0.00
0.00
0.00
1491.8
106.58
0.13
0.00
0.00
0.00
0.00
0.00
6
6
6
5
4
11
11
16
DISCUSSION OF RESULTS

   In part a, the system was ran in a transient mode from an arbitrary initial condition in the
active part of the model area.  After  1 year of flow (recharge,  pumping well, flux to constant
heads, flux from constant heads, storage) the system reaches an equilibrium where heads no
longer change.   Row into the system is perfectly balanced with flow out of the system.  In
part b, the model was run in its steady-state model (ISS = 1) for a single 1 day time step.
Notice from Table 4.2 that the head at node (7,1)  at 365 days  for the transient simulation is
almost identical to the 1  day steady-state result Also note that the transient simulation shows
an asymptotic with time  approach to the 1 day steady-state result.  Further, notice that the
storage component decreases nearly to zero after 365 days for the  transient simulation.
                                          4-6

-------
   In the 1 day steady state simulation, the problem is forced to steady-state in one time

                                                  eth
step by zeroing out the transient head change term  ™    on the right-hand side of the

equation by setting the storage coefficient to zero:
                                                = S _                              (4.1)
                                    9x2    9y2       3t

                                    Set storage (S) to 0


                                      d2"  + d2h  = o                                (4.2)
                                      8x2    9y2
   By eliminating time from the equation, the length of the simulation is immaterial.
Therefore, the hydraulic heads from a 1 day steady-state simulation and a 365 day steady-
state simulation (part c) are identical.  Similarly, because the system is not responding to any
time related activity,  the initial conditions are of no consequence.  Therefore, the case (part d)
where initial conditions in the active part of the model were  1000 ft generates essentially the
same answers as when they were set to  10 ft.  Part d required slightly more iterations to reach
the result, but within the accuracy of the iterative scheme, arrived at the same result. The
user is cautioned that although initial conditions are generally not important for steady-state
simulations, they could be important in certain non-linear situations where flux,
transmissivity, or saturation are a function of head. For example, for unconfmed simulations,
where the transmissivity is the product of hydraulic conductivity and saturated  thickness, it is
important that the initial head be specified such that there is a finite saturated thickness.
                                            4-7

-------
                                    PROBLEM 5
                                    Mass Balance
INTRODUCTION

   Often modelers will use hydraulic heads or drawdowns derived from a model exclusively
without regard to other useful information that the model produces.  The mass balance, which
is a volumetric accounting of all sources and sinks, is a very useful aspect of a model.  The
mass balance can be used as a check on the conceptualization of an aquifer system, as a
check on the numerical accuracy of the solution, and to assess flow rates in discrete portions
of the aquifer.  MODFLOW has a mass balance for model wide cumulative volumes,
volumetric rates for each time step for the entire model, and volumetric rates for individual
nodes.  This problem demonstrates that the mass balance (or budget) is an algebraic
calculation based on simple hydraulic relationships.

PROBLEM STATEMENT AND DATA

   The model domain is identical to that of problem 4 and uses the aquifer parameters and
general set-up of problem 4a (see Figure 4.1). The model input parameters for the SIP
package are also identical to that used in Problem 4.

Part a)  Modify the data set from problem 4a to use the OUTPUT CONTROL PACKAGE to
        print out the model wide mass balance and to save cell-by-cell budgets for the BCF,
        WELL, and RECHARGE packages at timestep 1.  Run the model.  Using the
        hydraulic heads generated for time step 1, manually compute the model wide rate
        components into storage, out of storage, well discharge, out of constant heads, into
        constant heads, and recharge.  Hint: Use Darcy's law  to compute constant head flux,
        recall the definition of storage coefficient to determine rate change in storage.
        Compare to the values computed by the model.

Part b)  Run the POSTMOD program  or equivalent to decipher the binary cell-by-cell
        budgets.  Compare the model computed values to your own calculations.  How is the
        cell-by-cell information useful?
                                        5-1

-------
MODEL INPUT
   The following is a listing of the input files for problem  5.  Note that the cell-by-cell flags
are set in the individual packages as well as in the OUTPUT CONTROL PACKAGE.
                     *********************************
* Basic package *
mass balance probl<
5/28/91

11 12


1 1
1 1
1 1
1 1
1 1
1 1 1
.00000

10.00
10.00
10.00
10.00
10.00
10.00
10.00
365.00
Ml
PFA
1
0
0
1
1 1
1 1
1 1
1 1
1 1
1 1

1

0 0


1-1
1-1
1-1
1-1
1-1
1-1


0









7 7
0 18 19 0
0
1(4012)








0 22









1





















.100E+OU7G11.4)
9.000







10
10
10
10
10
10

.00
.00
.00
.00
.00
.00

8.000
10.00
10.00
10.00
10.00
10.00
10.00
51.5000
A A A 4> J>A *^ * ^>A^
6.000
10
10
10
10
10
10
A*>*4>4>*>
.00
.00
.00
.00
.00
.00
4>4>4>4tA*
4


2







12
4.000
10
10
10
10
10
10
*4t*^A
.00
.00
.00
.00
.00
.00
4>AAA
























2.000
10.
10.
10.
10.
10.
00
00
00
00
00
10.00














.0000
3.000
6.000
8.000
12.00
15.00
20.00

                     *  Block Centered Flow Package  *
                     *********************************
                    31
               .100E+01
               .500E+03
               .500E+03
               .100E-01
               .500E+03
   *********************************
   *          Well  package         *
   *********************************
  32

   5         3 -.800E+04

   *********************************
   *       Recharge package        *
   *********************************
  33
   0
.001

   *********************************
   *     Output Control package    *
          *************************
                                                                              headngd)
                                                                              headng(2)
                                                                              nlay,nrow,ncol,nper,itmuni
                                                                              iunit array
                                                                              iapart,istrt
                                                                              ibound
-------
MODEL OUTPUT

   The hydraulic head array and plot of the potentiometric surface at timestep 1 is given in
Figure 5.1. The model wide mass balance or budget is given in Figure 5.2.  Printout of cell-
by-cell flow terms is given in Figure 5.3.
                    HEAD IN LAYER  1 AT END OF TIME STEP  1  IN STRESS PERIOD  1
1
2
3
4
5
6
7
10.00
9.95
9.89
9.72
9.59
9.98
10.30
9.00
9.43
9.49
9.14
8.50
9.54
10.18
a.oo
8.69
8.91
8.18
4.95
8.92
10.24
6.00
7.68
8.59
8.89
8.79
10.25
11.15
4.00
6.50
8.14
9.29
10.36
11.68
12.67
2.00
5.05
7.33
9.13
11.26
13.25
15.16
.00
3.00
6.00
8.00
12.00
15.00
20.00
Figure 5.1. Potentiometric surface map and hydraulic head array at time step 1.

                                          5-3

-------
                            VOLUMETRIC BUDGET FOR ENTIRE MODEL AT END OF TIME STEP  1 IN STRESS PERIOD   1

                   CUMULATIVE VOLUMES      L**3                                    RATES FOR THIS TIME  STEP
                                                                                  L**3/T
                         IN:

                          STORAGE
                     CONSTANT HEAD
                            UELLS
                         RECHARGE
                         TOTAL IN
                       OUT:

                          STORAGE
                     CONSTANT HEAD
                            UELLS
                         RECHARGE
                         TOTAL OUT
                         IN - OUT
               PERCENT  DISCREPANCY
                                                                IN:
         89340.
         .10213E+06
         .00000
         .24910E+06
         .44057E+06
         41290.
         .17802E+06
         .22142E+06
         .00000
         .44073E+06
         -164.50
                     -.04
STORAGE =
CONSTANT HEAD <
UELLS =
RECHARGE =
TOTAL IN =
OUT:
STORAGE
CONSTANT HEAD
UELLS
RECHARGE
TOTAL OUT
IN - OUT
PERCENT DISCREPANCY «
3227.9
3690.0
.00000
9000.0
15918.

1491.8
6432.0
8000.0
.00000
15924.
-5.9434

                                                                            -.04
         TIME SUMMARY  AT END OF TIME STEP
                             SECONDS
     TIME STEP LENGTH
   STRESS PERIOD TIME
TOTAL SIMULATION TIME
             1 IN STRESS PERIOD  1
              MINUTES         HOURS
.239136E+07
.239136E+07
.239136E+07
39855.9
39855.9
39855.9
                              DAYS
                              YEARS
664.265
664.265
664.265
27.6777
27.6777
27.6777
.757775E-01
.757775E-01
.757775E-01
                                 Figure 5.2. Model wide mass balance at time step 1.

-------
  Cell-by-eel I flow terms for    CONSTANT HEAD.

       Layer        Row     Co I urn           Flow












1
1
1
1
1
1
2
3
4
5
6
7
1
2
3
4
5
6
7
7
7
7
7
7
27.371710
-216.143300
•344.624700
-837.609300
-1249.781000
-1527.405000
-1027.405000
-663.161900
-565.842700
372.070300
872.851000
2417.705000
 Cell-by-ceU flou terms for FLOW FRONT FACE
      Layer
                  Row
Coll.
Flow
























i

1
1
1

•
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
3
3
3
3
3
3
4
4
I 4
4
4
4
5
5
5
5
5
5
6
6
6
6
6
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
&
1
2
3
4
5
6
1
2
3
4
5
6
27.371710
-216.143300
-344.624700
-837.609300
-1249.781000
-1527.405000
25.881840
-29.765600
-111.489900
-458.164400
-817.985900
-1135.757000
84.710740
177.319700
366.522000
•148.238300
-575.810500
-902.680800
66.183140
319.798200
1614.626000
47.723980
-538.281600
-1062.087000
-193.995200
-521.259900
-1983.955000
-728.688400
-660.206100
-999.219400
-161.909900
-321.031900
-658.988300
-450.047100
-493.980100
-955.145500
Figure 5.3.  Printout of eell-by-cell flow terms for each component of the mass
             balance.
                                          5-5

-------
Figure 5.3.  (Continued)
     -by-cell flow term for
      Layer        ROM      Colunrt
         WELLS.
                Flow
          1
         -8000.000000
 Cell-by-cell flow terms for
      RECHARGE.
      Layer
                   Row
Column
                                            Flow







4




























I 2
1 2
1 2
1 2
2
1 2
3
1 3
3
3
3
3
4
4
4
4
4
4
5
5
1 5
I S
1 5
1 5
1 6
1 6
1 6
1 6
6
6
7
7
7
1 7
1 7
1 7
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
&
1
2
3
4
5
&
2SO
250
250
250
250
250
.000000
.000000
.000000
.000000
.000000
.000000
250.000000
250
250
250
250
250
,000000
.000000
.000000
.000000
.000000
250.000000
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
                                             5-6

-------
Figure 5.3.  (Continued)
 Cell--by-cell flow terms  for
STORAGE.
      Layer
                  Row
                          Co I urn
         Flow
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
3
3
3
3
3
3
4
4
4
4
4
4
5
5
5
5
5
5
6
6
6
6
6
6
7
7
7
7
7
7
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
4.944750
51.278940
118.394000
209.986700
316.178300
446.676100
9.620309
45.901760
98.253240
127.219000
168.408600
241.500700
24.923340
77.934650
164.465700
100.439600
64.387950
78.430820
36.879360
135.706500
456.149000
109.061000
-32.852960
-113.435900
1.834027
41.540440
97.746050
-22.577030
-152.119600
-293.945600
-27.415140
-16.454130
-21.300590
-103.878400
-241.357500
-466.493300
                                           5-7

-------
Figure 5.3.  (Continued)
Cell-by-cell  flow terms for FLOW RIGHT FACE
     Layer
                  Row
Column
Flow
2
2
2
2
2
•1 2
1 3
1 3
1 3
1 3
1 3
1 3
1 4
1 4
1 4
1 4
1 4
1 4
1 5
1 5
1 5
1 5
1 5
5
6
6
6
6
6
6
7
7
7
7
7
1 7
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
256.485000
371.518600
507.015400
587.828300
722.376200
1027.405000
200.837600
289.794300
160.340900
228.006800
404.605000
663.161900
293.446500
478.996600
-354.419400
-199.565400
77.734710
565.842700
547.061700
1773.824000
-1921.321000
-785.570900
-446.070800
-372.070300
219.797000
311.128500
-666.054100
-717.088600
•785.084000
-872.851000
60.675000
-26.827900
-457.112900
-761.021600
-1246.250000
-2417.705000
                                          5-8

-------
DISCUSSION OF RESULTS

   In addition to the hydraulic heads printed in Figure 5.1, MODFLOW provides the
comprehensive mass balance or volumetric budget shown in Figure 5.2. The budget has two
component, cumulative volume and rates for the time step.  The cumulative mass balance
accumulates volumes (L3) over the entire length of the simulation.  The rate mass balance
deals only with the current time step and divides the volume transferred to various sources
and sinks by the length of time step to yield a rate (L3/T).  Because storage is considered in
the mass balance, inflow must always equal outflow.  Storage can be viewed as an external
term:  water comes in from storage when a well is pumped but goes out as storage when a
well injects.

   There will nearly always be a slight difference between outflow and inflow which is
reflected in the in-out and percent discrepancy terms.  Generally the percent discrepancy
should be less than 1 percent. Mass balance errors on the order of less than  10 percent are
usually the  result of an unconverged solution, too high a closure criterion, too coarse grid
spacing, or too long a time step.  Mass balance errors of greater than 10 percent may indicate
a conceptual problem.

   The mass balance  is actually a series of simple  arithmetic calculations that are made using
the computed hydraulic heads. Figure 5.4 shows the hand calculations for each component of
the rate mass balance using the heads shown in Figure 5.1. The well rate is given in the
problem writeup. Recharge is the specified recharge rate integrated over the active area of
the grid. Note that constant head cells do not receive recharge. Constant head discharge is
simply Darcy's law from constant head cell to adjacent cell. Note that MODFLOW does not
consider flow from constant head to constant head in the mass balance. Because the storage
coefficient is the volume of water given up per unit surface area of aquifer per unit  decline in
head, the volume from storage is the storage coefficient times the  area  of aquifer times the
decline in head.  Table 5,1 compares the hand calculated mass balance sums with the model
results.  The minor difference which occurs is due to truncation error.  The hand calculated
values use heads accurate to the nearest hundredth of a foot, whereas the model's precision is
much greater.

   Figure 5.3 shows the cell-by-cell printouts for each component of the mass balance. These
support the hand calculations. In addition to the terms shown in the model wide mass
balance, the cell-by-cell mass balance can calculate right face, front face, and bottom face
(multilayer simulations) fluxes.  Because of shared faces, only  three sides of a six-sided finite
difference cell are printed. This level of detail is useful for analyzing subregions of models,
for input to submodels, and to use in particle tracking programs such as MODPATH (Pollack,
1989).
                                          5-9

-------
Mass Balance Computations for each component

  Well Rate  =    -8000 ft'/d
                  (given)

  Recharge   =    0.001 ft/d x 500 ft x 6 x 500 ft x 6 = 9000 ft3/d
                  (constant head cells do not receive recharge)
  Constant head discharge = q
= kia
(for all noted adjacent to constant head cells)
                                       kAh (DELRXb)
                                          DElT
                     TAh (along a column)
                                    kAh DELC(b)
                                       DELR
                  = TAh (along a row)
                                 note that DELC = DELR and T = kb

                  row 1, column 1 = 500 (10-9.95)= 25
                  row 1, column 2 = 500 (9-9.43)= -215
                  row 1, column 3 = 500 (8-8.69)= -345
                  row 1, column 4 = 500 (6-7.68)= -840
                  row 1, column 5 = 500 (4-6.5)= -1250
                  row 1, column 6 = 500 (2-5.05)= -1525
                  row 2, column 7 = 500 (3-5.05)= -1025
                  row 3, column 7 = 500 (6-7.33)= -665
                  row 4, column 7 = 500 (8-9.13)= -565
                  row 5, column 7 = 500 (12-11.26)= 370
                  row 6, column 7 = 500 (15-13.25)= 875
                  row 7, column 7 = 500 (20-15.16)= 2420
                  (flow from constant head to constant head = 0, therefore flow at row 1,
                  column 7 = 0)

             Sum of constant head discharge = -6430 ft3/d
             Sum of constant head sources = 3690 ftVd
Figure 5.4. Hand calculations for each component of the mass balance.
                                        5-10

-------
Figure 5.4. (Continued)
   Storage    = (S) (area) (drawdown)/At
             = (0.01) (500 ft)2 (drawdown)/27.6778 d
             = 90.325 ft2/d (drawdown)

                  row 2, column 1  = 90.325 (10-9.95) = 4.52
                  row 2, column 2  = 90.325 (10-9.43) = 51.49
                  row 2, column 3  = 90.325 (10-8.69) = 118.33
                  row 2, column 4  = 90.325 (10-7.68) = 209.55
                  row 2, column 5  = 90.325 (10-6.50) = 316.14
                  row 2, column 6  = 90.325 (10-5.05) = 447.11
                  row 3, column 1  = 90.325 (10-9.89) = 9.94
                  row 3, column 2  = 90.325 (10-9.49) = 46.07
                  row 3, column 3  = 90.325 (10-8.91) = 98.45
                  row 3, column 4  = 90.325 (10-8.59) = 127.36
                  row 3, column 5  = 90.325 (10-8.14) = 168.00
                  row 3, column 6  = 90.325 (10-7.33) = 241.17
                  row 4, column 1  = 90.325 (10-9.72) = 25.29
                  row 4, column 2  = 90.325 (10-9.14) = 77.68
                  row 4, column 3  = 90.325 (10-8.18) = 164.39
                  row 4, column 4  = 90.325 (10-8.89) = 100.26
                  row 4, column 5  = 90.325 (10-9.29) = 64.13
                  row 4, column 6  = 90.325 (10-9.13) = 78.58
                  row 5, column 1  = 90.325 (10-9.59) = 37.03
                  row 5, column 2  = 90.325 (10-8.50) = 135.49
                  row 5, column 3  = 90.325 (10-4.95) = 456.14
                  row 5, column 4  = 90.325 (10-8.79) = 109.29
                  row 5, column 5  = 90.325 (10-10.36) = -32.52
                  row 5, column 6  = 90.325 (10-11.26) = -113.81
                  row 6, column 1  = 90.325 (10-9.98) = 1.81
                  row 6, column 2  = 90.325 (10-9.54) = 41.55
                  row 6, column 3  = 90.325 (10-8.92) = 97.55
                  row 6, column 4  = 90.325 (10-10.25) = -22.58
                  row 6, column 5  = 90.325 (10-11.68) = -151.75
                  row 6, column 6  = 90.325 (10-13.25) = -293.56
                  row 7, column 1  = 90.325 (10-10.30) = -27.10
                  row 7, column 2  = 90.325 (10-10.18) = -16.26
                  row 7, column 3  = 90.325 (10-10.24) = -21.68
                  row 7, column 4  = 90.325 (10-11.15) = -103.87
                  row 7, column 5  = 90.325 (10-12.67) = -241.17
                  row 7, column 6  = 90.325 (10-15.16) = -466.08

   Storage (source) = sum of positives   =  3227.32 ft3/d
   Storage (discharge) = sum of negatives = -1490.38 ft3/d
                                        5-11

-------
Table 5.1.  Comparison of model calculated and hand calculated rate mass balance


                                        Model        Hand Calculations
              Inflows (ftVd)
                 Storage                 3227.9              3227.3
                 Constant head           3690.0              3690.0
                 Recharge               9000.0              9000.0
                 Total inflow            15918.0             15917.0
Outflows (ft/d)
Storage
Constant head
Wells
Total outflow

1491.8
6432.0
8000.0
15924.0

1490.4
6430.0
8000.0
15920.0
   The mass balance is a very useful aspect of the model.  Because the program uses
computed heads to develop the mass balance, the  mass balance provides a check on the
accuracy of the numerical solution. Although a good mass balance may not guarantee an
accurate solution, a poor mass balance generally indicates problems with the solution.  In
addition, the information in the mass balance is useful to understand the relative importance
of flows into  and out of the system.
                                         5-12

-------
                                     PROBLEM 6
                        Similarity Solutions in Model Calibration
INTRODUCTION
   Model calibration involves matching modeled results to observed data. In the process of
obtaining a match, aquifer parameters are usually adjusted within reasonable ranges until a
satisfactory match is derived. Because subsurface properties are generally heterogeneous and
obtained from limited observations, they are somewhat inexact for modeling purposes.
Several "inexact" parameters usually are involved in the construction and calibration of a
model.  This problem examines the interplay of two parameters, recharge and  transmissivity,
and the ramifications of uncertainty in both parameters on model calibration.
PROBLEM STATEMENT AND DATA

   The model domain is identical to that of problems 4 and 5 and uses the steady state
configuration of problem 4b, except the well is eliminated (see Figure 4.1).

Part a)  Make a steady state simulation (1 stress period, 1 timestep of 1 day length) using the
        following parameters:

                        Recharge = 0.001 ft/d
                        Transmissivity = 500 frVd

Part b)  Make another steady-state simulation as you did in Part a, but lower the
        transmissivity to 50 frVd,  Compare these hydraulic heads to those of Part a.

Part c)  Make another steady-state simulation with the following parameters:

                        Recharge = 0.0001 ft/d
                        Transmissivity = 50 ftVd

Compare these hydraulic heads to those of Part a.
                                          6-1

-------
MODEL INPUT

   The following is a listing of data sets used for Part a.  It is identical to that used for
problem 4 part b, except the well package is eliminated.
                   *********************************
www www w w w w wwww w w w w w w w ww w
similarity solutions in calibration
5/28/91 PFA
1771
11 000000 18 19 000
0 0
1(4012)
1*111 _14
1111
1111
1111
1111
1111
1111
.00000
1-1
1-1
1-1
1-1
1-1
1-1


1 .100E+OK7G11.4)
10.00 9.000
10.00 10.00
10.00 10.00
10.00 10.00
10.00 10.00
10.00 10.00
10.00 10.00
1 .0000
8.000
10.00
10.00
10.00
10.00
10.00
10.00
11.0000
*^ A ***** *.Mfc * A A
6.000
10.00
10.00
10.00
10.00
10.00
10.00
****** *****
w w w w w w w w w
4
2

12
4.000
10.00
10.00
10.00
10.00
10.00
10.00
*********



2.000
10.00
10.00
10.00
10.00
10.00
10.00




.0000
3.000
6.000
8.000
12.00
15.00
20.00

           1
                 *  Block Centered Flow Package  *
                 *********************************
                 0
           0  .100E+01
           0  .500E+Q3
           0  .SOOE+03
           0  .500E+Q3
                    a********************** »*>•*«*•**
                           Recharge package
                    0
                    0
                 .001
                    *********************************
                    *          SIP package        *
                    *********************************
       50        5
1.0000    .10000E-01
                                                                         headngd)
                                                                         headng<2)
                                                                         nlay,nrow,ncol,nper,itmuni
                                                                         iunit array
                                                                         japart,istrt
                                                                         ibound(locat,iconst,fratin,iprn)
                                                                         ibound array
                                                                         hnoflo
                                                                         shead(locat,cnstnt,fmtin,iprn)
                                                                         shead array
                            1.00000E+00
                                                                         perlen.nstp,tsmult
iss.ifacfeb
Iayeon
trpy
delr
-------
MODEL OUTPUT

   Hydraulic head arrays, contour maps of potentiometric surface, and mass balance printout
for Paris a, b, and c are given in Figures 6.1, 6.2, and  6.3, respectively.
                    HEAD IN LAYER  1 AT END OF TINE STEP 1 ID STRESS PERICO 1
1
2
3
4
5
6
7
10.00
11.37
12.82
H.I?
15.30
16.12
16.54
9.000
10.79
12.42
13.89
IS. 11
16.00
16.47
8.000
9.860
11.70
13.36
14.76
1S.81
16.37
6.000
8.4S6
10.64
12.58
14.27
1S.5S
16.34
4.000
6.824
9.321
11.56
13.67
15.41
16.57
2.000
5.020
7.757
10.19
12.92
IS. 32
17.47
O.OOOOE+00
3.000
6.000
8.000
12.00
15.00
20.00
                       VOUWETIiC BUDGET FOR EHTItE MODEL AT BO OP TIME STEP  1  IN STRESS PERIOD  1

              CUNULAT1VE VOLUMES     L««3                           MTES TOR THIS TIME STEP     L**3/T
                    ID:

                     STORAGE
                CONSTANT HEAD
                    RECHARGE
                    TOTAL IN
                   OUT:

                     STORAGE
                CONSTANT HEAD
                    RECHARGE
                    TOTAL OUT
                    IN - OUT
           PERCENT DISCREPANCY
Q.QOOOOE+00
 1266.9
 9000.0
 10267.
O.OOOOOE+00
 10263.
O.OOOOOE+00
 10263.
 4.2383
           0.04
        IN:

          STORAGE
     CONSTANT HEAD
         RECHARGE
         TOTAL IN
        OUT:

          STORAGE
     CONSTANT HEAD
         RECHARGE
        TOTAL OUT
         IN - OUT
PERCENT DISCREPANCY
O.OOOOOE+00
 1266.9
 9000.0
 10267.
O.OOOOOE+00
 10263.
O.OOOOOE+00
 10263.
 4.2383
Figure 6.1.  Contour map of potentiometric surface, hydraulic head array, and mass
                balance ouput for Part a.
                                                                   0.04
                                                  6-3

-------
               HEAD IN LAYER  1  AT END OF TIME STEP  1 IN STRESS PERIOD  1
1
I
3
4
5
6
7
10,00
28.82
43.81
55.31
63.65
69.08
71.76
9.000
27.66
42.30
53.47
61 .56
66.83
69.44
8.000
25.52
39.25
49.70
57.28
62.23
64.72
6.000
22.16
34.50
43.81
50.62
55.16
S7.48
4.000
17.62
27.77
35.42
41.23
45.29
47,56
2.000
11.5*
1S.55
23.89
21.58
32.20
34.92
O.QOOOE+00
3.000
6.000
8.000
12.00
15.00
20.00
                  VOLUMETRIC BUDGET  FOR ENTIRE MODEL AT END OF TIME STEP  1  IN STRESS PERIOD  1

         CUMULATIVE VOLUMES      L«*3                            RATES FOR THIS TIME STEP     L**3/T
               IN:

                 STORAGE
           CONSTANT HEAD
                RECHARGE
                TOTAL ill
              OUT:

                 STORAGE
           CONSTANT HEAD
                RECHARGE
               TOTAL OUT
                IN - OUT
      PERCENT DISCREPANCY
O.OOOQQE-HJO
O.OOOOOE-KJO
 9000.0
 9000.0
0.000006*00
 8999.7
O.QOQOOE+00
 8999.7
0.31641
                                       0.00
         IN:

           STORAGE
     CONSTANT HEAD
          RECHARGE
          TOTAL IN
        OUT:

           STORAGE
     CONSTANT HEAD
          RECHARGE
         TOTAL OUT
          IN - OUT
PERCENT DISCREPANCY
O.OOOOOE+00
O.QOOOOE+QO
 9000.0
 9000.0
0.000006*00
 8999,7
O.OOOOOE+00
 8999.7
0.31641
                                                                      0.00
Figure 6.2.  Contour map of potentiometrie surface, hydraulic head array, and mass
                balance output for Part b.
                                                    6-4

-------
                        HEAD IN LAYER  1 AT END OF TIME  STEP  1 IN STRESS PERICO  1
1
2
3
4
5
6
7
10.00
11.37
12.82
14.17
15.30
16.12
16.54
9.000
10.79
12.42
13.89
15.11
16.00
16.47
8.000
9.360
11.70
13.36
14.76
15.81
16.37
6.000
8.4S6
10.64
12.S8
14.27
15.S8
16.34
4.000
6.824
9.321
11.56
13.67
15.41
16.57
2.000
5.020
7.757
10.19
12.92
15.32
17.47
O.OOOOE+00
3.000
6.000
S.OOO
12.00
15.00
20.00
                    VOLUMETRIC BUDGET FOR ENTIRE MODEL AT END OF TIME STEP  1  IN STRESS PERIOD  1

           oiMuunve VOLUMES      L*«3                           RATES FOR THIS TIHE STEP     L«*3/T
                 IN:

                   STORAGE
             CONSTANT HEAD
                  RECHARGE
                  TOTAL IN
                OUT;

                   STORAGE
             CONSTANT HEAD
                  RECHARGE
                 TOTAL OUT
                  IK - OUT
        PERCENT DISCREPANCY
O.QOOOQE+00
 126.69
 900.00
 1026.7
O.OOQOQE+00
 1026.3
O.OOOOOE-00
 1026.3
0.42651
                                         0.04
         IK:

           STORAGE
     CONSTANT HEAD
          RECHARGE
          TOTAL IN
        OUT:

           STORAGE
     CONSTANT HEAD
          RECHARGE
         TOTAL OUT
          IN  - OUT
PERCENT DISCREPANCY
O.OOOOOE+00
 126.69
 900.00
 1026.7
O.OOOOOE+00
 1026.3
O.OOOOOE+00
 1026.3
0.42651
                                                                                                    0.04
Figure 6.3.  Contour map of potentiometric surface, hydraulic head array, and mass
                balance output for Part c.
                                                    6-5

-------
DISCUSSION OF RESULTS

   The potentiomelric surface generated in Part a represents a balance between sources
(primarily recharge, some specified head) and sinks (specified head).  Flow is generally
toward the specified head cells and gently slopes toward the potentiometric low at the
confluence of the two "rivers".  The "rivers" are gaining, except for a small portion in the
southeastern corner which contributes flux to the groundwater system.

   In Part b, the transmissivity is decreased, representing a much "tighter" aquifer. For the
given recharge rate, hydraulic heads and gradients increase. Note that again sources balance
the sinks, however all flow is now toward the rivers; recharge is the only source.  If you
wished to calibrate this model by  varying transmissivity you would therefore decrease
transmissivity if modeled heads were lower than observed and increase transmissivity if
modeled heads  were too high.

   In Part c, recharge  is reduced by  an  order of magnitude in addition to the reduction in
transmissivity that was done in Part b.  Identical heads and gradients are obtained for Part c
as in Part a.  Although this result  may be surprising, there is a simple mathematical
explanation of this phenomenon.  If we look at the two-dimensional steady-state groundwater
flow equation (6.1), we can see that it relates hydraulic gradients to transmissivity (T) and a
source term, (R). Algebraic manipulation of (6.1) results in (6.2) which shows  that the ratio
of source terms to transmissivity governs the computed hydraulic gradient.
                                    ___
                                     ax2    ay2
                                                                                    .
                                     a*2  ay2  T

   Therefore, similar ratios of transmissivity  and recharge will generate the same head
distribution.  In Part a, the ratio of recharge to transmissivity was 0.001/500 or 2xlO"6; in Part
c the ratio was 0.0001/50  or 2xlO"6. Theoretically, infinite combinations of recharge and
transmissivity (as long as  their ratio is the same) could cause identical head distributions.
This phenomenon is often referred to as "non-uniqueness" by hydrologists, but is referred to
more correctly as similarity solutions by mathematicians.  The ramifications of this
phenomenon are quite important:  a good match of modeled results to observed data does not
necessarily guarantee an accurate  model.  In  order to narrow the range in hydraulic
parameters, supporting field data should be collected  for the necessary parameters.  Secondly,
the effect of parameter uncertainty should be evaluated by observing model response within
the range of parameter uncertainty.

   Note that for this example another calibration target is potentially available; matching
observed stream baseflow to model results. This would provide additional assurance of model
accuracy.
                                          6-6

-------
                                     PROBLEM 7
                                     Superposition
INTRODUCTION

  A goal in groundwater modeling is often to examine the independent effect of a stress on
the system.  Given the complexity of most hydrologic systems, including transients, parameter
uncertainty, and the interplay of these parameters, it is sometimes difficult to isolate the result
of one particular stress.  This exercise illustrates a property of the groundwater flow equation
that allows the modeler to simplify problems and also use these simplifications to examine
problems involving multiple stresses and optimal pumping rates.

PROBLEM STATEMENT AND DATA

  The model domain is identical to that of problems 4, 5 and 6 (see Figure 4.1).  This
problem uses the aquifer parameters given  in problem 6,  part a.

Part a)    Rerun Part a of Problem 6.  Print out the individual specified head fluxes by
          invoking that option in the BCF package.

Part b)    Specify a well located at row 5, column 3 pumping of a rate of -8000 ft3/d and
          run a steady-state simulation (1 stress period, 1 timestep of 1  day length).  As in
          Part a,  printout the  individual specified head fluxes. Observe the results and
          compare to Part a.

Part c)    Set up  a "drawdown" model using the parameters and stresses of Part b. This
          model will have an initial head of zero,  recharge rate of zero, and specified heads
          of 0 along row 1 and column 7. Run a  steady-state simulation (1  stress period, 1
          timestep of  1 day length).  As in Parts a and  b, printout the individual specified
          head fluxes.  On a node-by-node basis, add the heads  of Part  a and c and  compare
          the results to those  of Part b. Perform a similar computation  for the specified
          head fluxes given in each output file.

Part d)    Run the problem of Part c with twice the well rate. Compare the  heads of Part c
          to Part d.
                                          7-1

-------
MODEL INPUT
   The following is a listing  of data sets for Part a.
                      *********************************
                      *         Basic package        *
                      *********************************
   SUPERPOSITION PROBLEM PART A
   12/8/89
            1         7
     11  0  0  0  0  0  0 18 19
            0         0
                       0 22
            1
           1(4012)
-1-1-1-1
1
1
1
1
1
1
1
1
1
1
1
1
1 1
1 1
1 1
1 1
1 1
1 1
-1-
1
1
1
1
1
1
1-
1-
1-
1
1
1


















1-1
1-
1-
1
1












1-1
.OOOOOE+00








1.

10
10
10
10
10
10
10

.00
.00
.00
.00
.00
.00
.00
1







0.







0000
100E+OK7G11.4)
9.000
10.00
10.00
10.00
10.00
10.00
10.00
11
8.
10
10
10
10
10
10
.0000
000
.00
.00
.00
.00
.00
.00

6.000
10
10
10
10
10
10

.00
.00
.00
.00
.00
.00

4.
10
10
10
10
10
10

12
000
.00
.00
.00
.00
.00
.00

*********************************





*
Block Centered
Flow
Package *
*********************************

0
















1

0
0
0
0


0.
0.
0.
0.
-1

100E+01
500E+03
500E+03
500E+03




































                                                           2.000
                                                           10.00
                                                           10.00
                                                           10.00
                                                           10.00
                                                           10.00
                                                           10.00
                                                          O.OOOOE+00
                                                           3.000
                                                           6.000
                                                           8.000
                                                           12.00
                                                           15.00
                                                           20.00
    1.0000
           *********************************
           *        Recharge package       *
           *********************************
 1         0
 0         0
 0 0.100E-02

           *********************************
           *           SIP package         *
           *********************************
50         5
  .10000E-01         1.OOOOOE+00         1

           *********************************
           *     Output  Control package    *
           *********************************
                               35
                                1
                                1
headngd)
headng<2)
nlay,nrow,ncol,nper,itmuni
iunit array
iapart,istrt
ibouncK locat,iconst,fmtin,iprn)
ibound array
hnoflo
shead(locat,cnstnt,fmtin,iprn)
shead array
                                                                                  perlen,nstp,tsmult
                                                                                  iss.ibcfcb
                                                                                  laycon
                                                                                  trpy(locat,cnstnt)
                                                                                  delr(locat,cnstnt)
                                                                                  delc(locat,cnstnt)
                                                                                  tran
-------
   In Part b,  the WELL package shown below is added.  It is invoked by setting IUNTT(2) to
12 in the BASIC package.
                     ************************
                     *          Well package
                     ************************
                     0
                           ******
                               *
                              3-.1600E+05
                                                           mxweU.iwelcb
                                                           i trap
                                                           layer,row,col,q
   The following is a listing of the data sets for Part c.
                     *********************************
SUPERPOSITION
3/15/90 PFA
1
11 12 0 0
0
1
-1-1-1-1-1-1-1
1111 1-1
1111 1-1
1111 1-1
1111 1-1
1111 1-1
111111-1
.00000
WYWWWWWWWWWWWWWWWWWWWWW
PROBLEM PART C

7 7 1
0 0 0 0 19 0 0 22
0
1(4012)








wwwwwwwww

4


2








o .oooe+oo
1.0000
11.0000

           1
          50
         1.0
  *  Block Cantered Flow Package  *
  a**.******************************
 -1
           0  .1006+01
           0  .5006+03
           0  .500E+Q3
           0  .500E+03
                     *********************************
                     *          Well package        *
                     *********************************
                     0

                     5
           3 -.800E+Q4
  *********************************
  *          SIP package         *
  *********************************
  5
.01        1      0.0         1
                                                                             headngd)
                                                                             headng<23
                                                                             nlay,nrow,ncol,nper,itmuni
                                                                             iunit array
                                                                             iapart,istrt
                                                                             i bound(locat,iconst,fmtin,iprn)
                                                                             fbound array
                                                                             hnoflo
                                                                             i st rt(Iocat,enstnt)
                                                                             perlen,nstp,tsmult
                                                           iss.ibcfcb
                                                           Iayeon
                                                           trpy(locat,cnstnt)
                                                           delr(locat,cnstnt)
                                                           delcClocat,cnstnt)
                                                           tran(locat,cnstnt)
mxwell,iwelcb
itmp
layer,row,col,q
mxiter,nparm
accl,hclose,ipcalc,wseed,iprsip
   In Part d, the data set of Part c is modified by changing the well rate (parameter Q) in the
WELL package from -8000 to -16000 ft3/d.
                                                 7-3

-------
MODEL OUTPUT

   Hydraulic head arrays, contour maps of potentiometric surface, model wide mass balance,
and individual node mass balances  are presented for Parts a, b, c,  and d in Figures 7,1, 7.2,
7.3, and 7.4, respectively.
1
2
3
4
5
6
10.00
11. 37
12.82
H.17
15.30
16.12
9.00
10.79
12.42
13.89
15.11
16.00
8.00
9.86
11.70
13.34
14.76
15.81
6.00
8.46
10.64
12.58
14.27
1S.S8
4.00
6.82
9.32
11.54
13.67
15.41
2.00
5.02
7.76
10.19
12.92
15.32
.00
3.00
6.00
8.00
12.00
15.00
                               16.54   16.47  16.37  16.34   16.S7   17.47  20.00
           IN:

             STORAGE »    .00000
        CONSTANT  HEAD «    1266.9
            RECHARGE =•    9000.0
            TOTAL IN »    10267.
          OUT:

             STORAGE =    .00000
        CONSTANT  HEAD     10263.
            RECHARGE     .00000
           TOTAL OUT     10263.
            IN - OUT     4.2607
   PERCENT DISCREPANCY
.04
KM
HOW
MM
MM
ROU
ROW
ROW
ROU
ROW
ROU
ROM
ROU
ROW
1
1
1
1
1
1
1
2
3
4
5
6
7
COL
COL
COL
COL
COL
COL
COL
COL
COL
COL
COL
COL
COL
1
2
3
4
5
6
7
7
7
7
7
7
7
-685.0535
-894.2446
-929.9719
-1227.958
•1412.217
-1510.177
 .0000000
-1010.177
-878.3768
-1092.589
-459.6479
•162.2080
 1266.881
 Figure 7.1.      Contour map of potentiometric surface, hydraulic head array, model
                  wide mass balance, and individual specified head node mass balance for
                  Part a.
                                              7-4

-------
1
2
3
4
5
6
7
10.00
9.58
9.24
8.87
8.67
9.16
9.59
9.00
9.01
8.77
8.21
7.49
8.71
9.51
8.00
8.18
8.11
7.19
3.87
8.18
9.75
6.00
7.10
7.81
8.09
8.11
9.90
11.05
4.00
5.90
7.U
8.74
10.08
11.76
12.99
2.00
4.56
6.83
8.83
11.24
13.54
15.68
.00
3.00
6.00
8.00
12.00
15.00
20.00
           IN:

             STORAGE »    .00000
        CONSTANT HEAD a    3478.1
               WELLS =    .00000
            RECHARGE =    9000.0
            TOTAL IN =    12478.
          OUT:

             STORAGE =    .00000
        CONSTANT HEAD =    4479.9
               WELLS =    8000.0
            RECHARGE =    .00000
           TOTAL OUT =    12480.
            IN - OUT =   -1.8662
  PERCENT DISCREPANCY =
                                    -.01
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
COL
COL
COL
COL
COL
COL
COL
COL
COL
COL
COL
COL
COL
1
2
3
4
5
6
7
7
7
7
7
7
7
 208.5836
-3.670284
-89.71581
-548.7798
-950.0516
-1279.053
 .0000000
-779.0528
-416.2093
-413.4138
 380.5986
 728.3688
 2160.528
Figure 7.2.      Contour map of potentiometric surface, hydraulic head array, model
                  wide mass balance, and individual specified head node mass balance for
                  Part b.
                                               7-5

-------
1
2
3
4
5
6
7
.00
-1.79
-3.58
-5.30
-6.63
-6.96
-6.96
.00
-1.78
-3.66
-5.69
-7.62
-7.29
-6.96
.00
-1.68
-3.58
-6.16
-10.89
-7.62
-6.63
.00
-1.36
-2.83
-4.50
-6.16
-5.69
-5.30
.00
-.92
-1.88
-2.83
-3.58
-3.66
-3.58
.00
-.46
-.92
-1.36
-1.68
-1.78
-1.79
.00
.00
.00
.00
.00
.00
.00
         IN:

           STORAGE =    .00000
      CONSTANT  HEAD =    7993.9
            WELLS =    .00000
          TOTAL IN =    7993.9
        OUT:

           STORAGE =    .00000
      CONSTANT  HEAD =    .00000
            WELLS =    8000.0
         TOTAL OUT =    8000.0
          IN - OUT =   -6.1274
 PERCENT DISCREPANCY =
-.08
ROU
ROW
ROU
ROU
ROU
ROU
ROU
ROU
ROU I
ROU '
ROU
ROU
ROU
COL
COL
COL
COL
COL
COL
COL
2 COL
5 COL
I COL
5 COL
& COL
7 COL
1
2
3
4
5
6
7
7
7
7
7
7
7
893.6370
890.5743
340.2561
679.1781
462.1656
231.1239
.0000000
231.1239
462.1674
679.1755
340.2465
890.5767
893.6470
Figure 7.3.      Contour map of potentiometric surface, hydraulic head array, model
                 wide mass balance, and individual specified head node mass balance for
                 Part c.
                                            7-6

-------
1
2
3
4
5
6
7
.00
-3.57
-7,16
-10.60
-13.25
-13.92
-13.92
.00
-3.56
-7.31
-11.37
-1S.25
-14.58
-13.92
.00
-3.36
-7.17
-12.33
-21.79
-15.25
-13.25
.00
-2.72
-5.66
-8.99
-12.33
-11.37
-10.60
.00
-1.85
-3.75
-5.66
-7.17
•7.31
-7.16
.00
-.92
-1.85
-2.72
-3.36
-3.56
-3.57
.00
.00
.00
.00
.00
.00
.00
          IN:

            STORAGE =    .00000
       CONSTANT HEAD =    15988.
             WELLS =    .00000
           TOTAL IN =    15988.
         OUT:

            STORAGE =    .00000
       CONSTANT HEAD     .00000
             WELLS     16000.
          TOTAL OUT     16000.
           IN - OUT    -12.255
  PERCENT DISCREPANCY
ROM
ROW
ROW
ROU
ROW
ROU
ROU
ROU
ROU
ROU
ROU
ROU
ROU
1
1
1
1
1
1
1
2
3
4
5
6
7
COL
COL
COL
COL
COL
COL
COL
COL
COL
COL
COL
COL
COL
1
2
3
4
5
6
7
7
7
7
7
7
7
RATE
RATE
RATE
RATE
RATE
RATE
RATE
RATE
RATE
RATE
RATE
RATE
RATE
1787.274
1781.149
1680.512
1358.356
924.3312
462.2479
.0000000
462.2479
924.3349
1358.351
1680.493
1781.153
1787.294
Figure 7.4.      Contour map of potentiometric surface, hydraulic head array, model
                 wide mass balance, and individual specified head node mass balance for
                 Partd.
                                            7-7

-------
DISCUSSION OF RESULTS

  The potentiometric surface generated in Part a represents a balance between sources
(primarily recharge, some specified head) and sinks (specified head).  Flow is generally
toward the specified heads and generally slopes toward the potentiometric low at the
confluence of the two "rivers." The "rivers" are gaining except for a small portion in the
southeastern corner, which contributes flux to the groundwater system. This flow reversal
may be verified in the cell-by-cell flux printout which indicates a positive specified head flux
for row 7, column 7.

  In Part b, a well is added, resulting in lowered head and flow otherwise destined for the
specified head cells to be diverted to the well.  This reduced specified head flux may be
observed in the  model wide mass balance  (10263 ft3/d OUT for Part a, 4479.9 ftVd OUT for
Part b; 1266.9 ft3/d IN for Part a, 3478.1 IN for Part b).

  In Part c, the drawdown model shows only the effects of the pumping well.  Pumpage
from the  well is obtained by a diversion from the specified head cells.  When matrix addition
is performed, the  sum of heads at individual nodes in Part a and Part c equals the head at the
corresponding node in Part b.  For example, at row 7, column 1:

                                16.54 + (-6.96)  = 9.59
                                   a  +    c    =  b

  For all nodes the" sum of the background head (a) and head from the drawdown model (c)
is equivalent to  the head in  the composite  model (b).  Note that the mass balance  components
are  also additive in this sense.  For example the flow from the specified head cell in row 4,
column 7 is:

                          -1092.59+ 679.18 = -413.41
                              a   +   c   =   b

  Notice that although flow in Part c is positive or out of the specified head cell, the net
result of  the well (Part b) is to reduce the  amount of flow into the specified head  cell.  A
similar computation may be made for the components of the model wide mass balance:

                     -10263 +  1266.9 + 7993.9 = -4479 + 3478.1
                         a   +   a   +    c=    b +   b
   This additive property of the groundwater flow equation for heads and fluxes is called the
principle of superposition.
                                          7-8

-------
  In Part d, the well rate is doubled, resulting in a doubling of the drawdown.  For example
at row 7, column 1, head for part c was -6,96, for part d it was -13.92. This is consistent with
the principle of superposition in that the 16,000 ftVd discharge could be broken into two 8000
ft3/d discharges and the results summed. The results of this summation would be twice the
drawdown generated by the 8000 ft3/d discharge.

  The principle of superposition implies that for any linear problem, the individual effect of a
stress can be modeled individually and then superimposed onto the natural flow system.
Several stresses can also be modeled individually and the results summed to develop a
composite  result. Some advantages of using superposition  in groundwater system are
discussed by Reilly et al. (1987). They summarize this discussion as follows:

  Superposition enables us to simplify complex problems and to obtain useful
results despite a lack of certain information describing the groundwater system
and the stresses acting on it.  Through the use of superposition, the problem can
be formulated in simpler terms, which saves effort and reduces data
requirements. Thus, if the technique is-applicable, it may  be advantageous to
use superposition in solving many specific problems.

  In order for superposition to be valid, the system (governing equation and boundary
conditions) must be linear.  An unconfined system or head dependent boundary conditions
with abrupt flux change (drain, E-T, river) is non-linear and superposition will not strictly be
valid.
                                        7-9

-------
                                    PROBLEM 8
                        Grid and Time Stepping Considerations
INTRODUCTION
   In finite difference models, the aquifer system which is described by a partial differential
equation representing a continuous domain is simplified to a series of algebraic equations
which represent discrete intervals of the system. Both space and time  are broken into intervals
(discretized). Questions often arise regarding the proper level of discretization required for
accuracy. Another related question arises regarding the proper closure criterion to use  for the
iterative solution of the system of equations. The objective of this exercise is to examine
various levels of grid spacing, time stepping, and closure  criterion for a problem for which an
exact solution is known. Comparisons of relative accuracy and execution time as well  as
general observations concerning selection of the parameters can  be made.

PROBLEM STATEMENT

   This problem has been modified from example 4 of Rushton and Tomlinson  (1977), A
two-dimensional square aquifer with 15000 m sides has impermeable  (no-flow) boundaries on
three sides and a fourth (the north side) held at a specified head of 0.0 rn. A well pumping at
15000 m3/d is located as shown in Figure  8.1. Three observation wells are used as illustrated
in Figure 8.1. The transmissivity of the aquifer is 2400 m2/d and the storage coefficient is
2.5x10"*.  Five grid configurations will be examined in Parts a and b.  The location of the
pumping and observation wells and additional data on each  grid configuration are given in
Table 8.1. Notice that the wells are conveniently located at  the center of finite difference
blocks.

   In order to place  the specified head boundary exactly on  the edge of the model domain, the
general head boundary (GHB) package is used. The conductance parameter must be computed
to represent the conductance between the node center at row 1 to the  northern edge of the
finite difference block of row  1, An example calculation for grid 1 is shown below:
                                                                                 (8.1)
                                            L

where:

  C = Conductance [L2/T]
  T = Transmissivity in direction of flow [L2/T]
  L = Length of flow path  (node center to edge) [L]
  W = Width of face perpendicular to flow [L]
                                          8-1

-------
                      H  = 0
=0
   5000 m
            X
            f
   5000 m
   5000 m  /
       i    /•
                         Well 1      Well 2
                                      Well 3
                   Q  - 15,000  m3/d
          \
          \
          \
          \
             •v
           \
           $
                          ^^^	^^-^-
                   5000 m       5000 m     5000 m
Figure 8.1. Location of pumping wells, observation wells, and boundary conditions for
         problem 8.
                              8-2

-------
Table 8.1. Grid data
 Grid
Size     Grid Spacing*
Pumping
  Well
                                                    Well locations (row, column)
Well 1     Well 2    Well 3
           4*4    2500 row, column 1
                  5000 row, column 2,3
                  2500 row, column 4
                                 3,2
            2,2
           2,3
 3,3
           7*7    1750 row, column 1
                  2000 row, column 2
                  2500 row, column 3-5
                  2000 row, column 6
                  1750 row, column 7
                                 5,3
            3,3
           3,5
 5,5
          10*10   1250 row, column 1
                  1666.7 row, columm 2-9
                  1250 row, column 10
                                 7,4
            4,4
           4,7
 7,7
          16*16   500 row, column 1
                  1000 row, column 2-15
                  500 row, column 16
                                 11,6
            6,6
           6,11
11,11
          30*30   416.7 row, column 1-6      20,11
                  555.6 row, column 7-24
                  416.7 row, column 25-30
                                          11,11
                     11,20
                    20,20
*spacing along a column is the same as along a row such that DELX(l) = DELY(l),
DELX(2) = DELY(2), etc.
                                      8-3

-------
for row 1, column 1:
                       = TW  m (2400 mVd)(2500 m)  .   ^
                          L           (1250 m)
for row 1, column 2:
                    C  = ™  = (2400mVd)(5000m)  m
                          L           (1250 m)
Note that L remains constant for a given grid because distance from center to edge is always
the same, but W changes due to varying column widths.

   In each case, use the SIP solver, acceleration parameter = 1.0, closure criterion = 0.0001,
and maximum iterations = 50.
Part a)     Set up the model for each of the grids (1-5) and run. Record drawdowns at
           observation wells 1, 2, and 3 at the final time step. Record the total number of
           iterations required for all time steps. Use the following time parameters:

           time step multiplier = 1.414
           number of time steps = 10
           length of stress period  = 20 days

Part b)     Repeat part a, but use the following time parameters:
                                                                          «
           time step multiplier = 1.414
           number of time steps = 10
           length of stress period  = 0.2 days
                                          8-4

-------
Part c)    Rerun one of the grids used in part a, changing only the number of time steps.
          Record drawdowns at observation wells 1, 2, and 3 as well as the total number of
          iterations for all time steps.

          Run the following cases:

          1.   1 time step
          2.   2 time steps
          3.   3 time steps
          4.   5 time steps
          5.   7 time steps
          6.   10 time steps
          7.   20 time steps
          8.   30 time steps

Part d)    Rerun one of the grids used in part a, changing only the closure criterion. Record
          drawdowns or observations wells 1, 2, and 3 as well as the total number of
          iterations for all time steps. Run the following cases:
          1    HCLOSE = 0.0001
          2    HCLOSE = 0.001
          3    HCLOSE = 0.01
          4    HCLOSE = 0.1
          5    HCLOSE = 0.5
          6    HCLOSE = 1.0
                                        8-5

-------
MODEL INPUT
   The following is a listing of data sets used in part a for grid 1.
                     *********************************
                     *        Basic package        *
                     *********************************
    GRID AND TIME STEPPING CONSIDERATIONS
    4/20/90  PFA
                     4        4
    11 12


   .00000

   20.000
     2500.

     2500.
 1
0  0
 0
 0
 0
11

11

 0
 0
    0 17
      1
      1
0 19 0  0  0
    ,0006+00
         101.4140
          A********************************
          *  Stock Centered Flow Package  *
          *********************************
          0
.1001*01
.100E+01C7C11.4)
 5000.      5000.
.1001+01(7011.4)
 5000.      5000.
.250E-03
.240E+04
2500.

2500.
                       12

                       12
                     *         Well  package        *
                     ******»**»*******»*»»»******»***»
                     0

                     3        2-.150QE+05
                     *********************************
                     * General Head Boundary package *
                     ****.*****.*/*********************»*
                              1  .OOOE+00  .480E+04
                              2  .OOOE+00  .960E+04
                              3  .OOOE+00  .96QE+04
                              4  .OOOE+00  .480E+04
   1.0000
          a********************************
          *          SIP package         *
          *********************************
50        5
  .10000E-03         1.00000            1
                                         headngd)
                                         headng(Z)
                                         nlay.rsrow, ncol, riper, i tmuni
                                         iunit array
                                         iapart.istrt
                                         ibound(locat,iconst)
                                         hnoflo
                                         shead(tocat,cnstnt)
                                         perten.nstp,tsmult
iss.ibcfcb
laycon
trpy(locat,cnstnt)
delr
-------
MODEL OUTPUT

  Drawdown, iteration and CPU data are given in Tables 8.2, 8.3, 8.4, and 8.5 for parts a, b,
c, and d, respectively. A comparison is also made to analytical results obtained from the
image well technique.
Table 8.2  Comparison of results for various grid spacings in part a
Drawdown (m)
Observation Well
Grid
1
2
3
4
5
analytic2
# Nodes
16
49
100
256
900

Total
Iterations
47
74
96
124
143

CPU1
5.64
8.12
13.02
30.33
106.54

1
1.956
1.971
1.962
1.955
1.952
2.04
2
1.493
1.537
1.546
1.550
1.550
1.63
3
2.806
2.816
2.807
2.801
2.797
2.95
1 PRIME 550 computer
2 Image well solution given in Rushton and Tomlinson (1977)
Table 8.3.  Comparison of results for various grid spacings in part b
Drawdown (m)
Observation Well
Grid
1
2
3
4
5
analytic
# Nodes
16
49
100
256
900

Total
Iterations
22
24
26
32
38

CPU
5.13
6.03
7.56
12.77
36.63

1
0.0162
0.0153
0.0126
0.0097
0.0085
0.0047
2
0.0010
0.0007
0.0007
0.0006
0.0006
0.0001
3
0.0162
0.0153
0.0126
0.0097
0.0085
0.0047
                                        8-7

-------
Table 8.4.  Comparison of results for variations in time stepping in part c
Drawdown (m)
Observation Well
#Time
Steps
* Of CPU 1
Iterations
2 3
1
2
3
5
7
10
20
30
11
18
24
31
37
47
72
92
3.92
4.09
4.23
4.46
4.70
5.05
6.05
7.03
1.586
1.784
1.860
1.921
1.943
1.956
1.962
1.962
1.169
1.335
1.403
1.459
1.481
1.493
1.499
1.499
2.233
2.530
2.650
2.748
2.785
2.806
2.816
2.816
Table 8.5.  Comparison of results for variations in closure criterion in part d
Drawdown (m)
Observation Well

HCLOSE
0.0001
0.001
.001
.01
.05
1.0
# of
TT v*
Iterations
47
42
36
25
10
10

CPU
5.64
4.94
4.83
4.65
4.48
4.48

1
1.956
1.956
1.956
1.945
1.653
1.653

2
1.493
1.493
1.493
1.482
1.177
1.177

3
2.806
2.805
2.805
2.787
2.259
2.259
                                        8-8

-------
DISCUSSION OF RESULTS

  In part a, all the grid configurations provide reasonable approximations to the drawdown as
shown in Table 8.2. This is because the solution is close to steady-state and steep hydraulic
gradients near the pumping well do not exist.  Successively finer spacings generally tend to
decrease drawdown directly along rows and columns and increase drawdown diagonal to rows
and columns. The answers generally converge toward a solution, but still differ from the
analytical solution. Note that CPU time is directly related to the number of nodes. The  CPU
times stated herein are for comparative purposes and should not be used to estimate execution
times for other problems. The drawdowns at  the final time step are shown in  Figure 8.2 for
the coarse grid case.

  Drawdowns for the final timestep of part b are shown in Figure 8.3 for the  16 x 16 grid.
The accuracy of the answer is highly dependent upon the grid configuration used (Table 8.3).
This is because in early time, the gradients are much steeper in the vicinity of the pumping
well. A fine grid can approximate this rapid spatial variation much better than a coarse grid.
Notice that the grid design can take on vastly different configurations depending on the  intent
of the modeling.  As a general rule, the grid should be designed to match the curvature  of the
drawdown cone.

  In part c, the number of time  steps is shown in Table 8.4 to be important. The results after
1 time step are very inaccurate; approximately 4 time steps are required for acceptable results.
This is consistent with Priekett and Lonnquist (1971)  who recommend performing 3-4 time
steps before relying on results. Just like with grid discretization, it is important to discretize
time increments to approximate steep gradients in early time. Comparison of CPU times
indicates that the time required for modeling four time steps is not great when compared to
the initial time required for one time step.  This is because in all cases some time will be
spent reading the data and initiating execution of the program. Note that the results tabulated
in Table 8.4 are for the coarse 4x4 grid.

  The results of part d, shown in Table 8.5, indicate that the optimal closure criterion for this
problem is 0.01. Little, if anything, is gained by a smaller closure criterion. A general rule of
thumb is that the closure criterion should be an order of magnitude smaller than the desired
accuracy. It is interesting to note that order of magnitude changes in closure criterion are not
excessively time consuming. However, some complex problems reach a threshold where
further convergence is  no longer possible. Note that the results when using closure criterions
of 0.5 and 1.0 are identical because the closure criterion is satisfied after the first iteration of
each time step.
                                         8-9

-------
    15000
5000           1 0000          1 5000
                                  15000
    10000
     5000
                          i   i   i   i   i   i   i   i   i   i
                               - 10000
                               - 5000
                        5000
               10000
15000
Figure 8.2. Drawdown (m) at 20 days for the 4x4 grid simulation of Part a.
                                   8-10

-------
     15000
           0
5000
10000
     10000
      5000
         0
                               I   I   I   I    I   I   I   I    I
15000
    15000
           0
                                    V
                                            I   I   I   I
5000
10000
                                    10000
                                    5000
    0
15000
Figure 8.3.  Drawdown (m) at 0.2 days for the 16 x 16 grid simulation of Part b.
                                     8-11

-------
To assess the reason for the seemingly large error between analytic and numerical results, the
finite element code SEFTRAN (GeoTrans, 1988) was run for comparative purposes.
SEFTRAN allows usage of a backward and central difference scheme for approximation of
the time derivative. MODFLOW uses only a backward difference scheme.  Drawdowns at
well 2 for each grid are shown in Table 8.6.  Notice that for this particular problem the
numerical method (finite element or finite difference) does not seem as important as the
approximation of the time derivative in matching the analytical result.
Table 8.6.  Comparison of drawdowns (m) at well 2 for various time derivatives and
            spatial approximations (analytical = 1.63)
                     Grid
  Finite-
Difference
Backward
Difference
  Finite-
 Element
 Central
Difference
  Finite-
 Element
                      1
                      2
                      3
                      4
                      5
  1.493
  1.537
  1.546
  1.550
  1.550
  1.620
  1.565
  1.556
  1.553
  1.729
  1.671
  1.662
  1.659
                                         8-12

-------
                                     PROBLEM 9
                               Calibration and Prediction
INTRODUCTION
   Groundwater models are usually applied either to conceptualize and understand a
hydrologic system or to predict the outcome of a future change to the system.  In order to
provide some assurance that the model reflects the behavior or appearance of the flow system,
it must be calibrated prior to use as a predictive tool.  Calibration involves matching modeled
results to observed data.  This usually includes hydraulic heads, drawdowns, induced
discharge  and/or induced  recharge. In the process of obtaining a  match, aquifer parameters,
such as transmissivity, leakance, storage  coefficient, or the attributes of boundary conditions
are adjusted within reasonable ranges until a satisfactory match is obtained.  Once the
modeler is convinced that the model replicates current system  behavior, and  that it is capable
of replicating future behavior, it may be  used  in a predictive mode. This problem provides an
exercise in system conceptualization, a simple model calibration,  and use as  a predictive tool.

PROBLEM STATEMENT

   The idealized flow system shown in Figure 9.1  is a small, confined aquifer which is
strongly controlled by the river which runs across it. The aquifer is approximately 100 ft
thick and is composed primarily of silly  sand. The river is not in direct hydraulic connection
with the aquifer, but acts as a leaky boundary condition which can gain or lose water to the
aquifer. Other boundary  conditions are no flow, which  surround  the square  and define the
areal extent of the aquifer.  Evapotranspiration and small domestic users in the area may be
neglected, although  precipitation recharge is significant  Stage data for the river as well as
river bed elevation determined in an earlier study are shown in Table 9.1.

Part  a)    Given constraints of uniform transmissivity and recharge, and additional data
          below, obtain a steady state calibration (history match) based on  the
          potentiometric surface map of Figure 9.1 and the calibration targets shown in
          Table 9.2.

          grid size:                                   15 x 15
          Ax = Ay:                                   500 ft
          river base flow at western  model boundary:    10 cfs
          river base flow at eastern model boundary:     111/8  cfs
          River bed conductance:                      0.01 ftVs

Part  b)    A source of contamination has been  discovered in  the northeastern corner of the
          aquifer.  At the same time an industry is trying to  gain permission to pump
          groundwater from a well located at row 13,  column 4 of the modeled area. What
          is the maximum pumping rate that should be allowed  to prevent  the industry from
          contaminating its own water  supply?
                                          9-1

-------
                    X
PROPOSED WELL LOCATION
                        RIVER  LOCATION
Figure 9.1. Geometry and potentiometric surface of the aquifer system.
                                    9-2

-------
Table 9.1.  River data
Bottom
Elevation
Row
4
4
4
4
4
5
6
7
8
9
9
9
9
9
9
















Column
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Stage (ft)
100.0
100.0
100.0
99.0
99.0
98.0
97.0
96.0
95.0
94.0
94.0
94.0
94.0
93.0
93.0
(ft)
90.0
90.0
90.0
89.0
89.0
88.0
86.0
86.0
85.0
84.0
84.0
84.0
84.0
83.0
83.0
Table 9.2. Calibration targets












Row
14
11
13
8
4
9
2
11
7
3.
2
Column Head (ft)











1 124.0
4 119.9
13 113.9
1 116.1
12 113.0
6 114.0
3 108.5
10 111.7
14 107.6
8 111.3
15 115.6











                                          9-3

-------
MODEL INPUT
The following is a listing of data sets used in Part a.

                  *****•««»*•««******•******««««««•
                  *         Basic package        *
                  a********************************
CALIBRATION AND PREDICTION
3/15/90 PFA    (PART A)
         1        15        15         1         1
 11  0  0 14  0 0 0 18 19  0  0  0
         0        0
         0        1
.00000
         0  .100E+03
86400.            11.0000

                  *********************************
                  *  Block Centered Flow Package  *
                  *********************************
0 .100E+01
0 .500E+03
0 .500E+03
0 .100E-01
w^ w A ft wft ww wft ft ft ft ft ft ftftwft ft ft ft ft ft ft ft ft ft ft ft ftw
* River package "*
15
15
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0

4
4
4
4
4
5
6
7
8
9
9
9
9
9
9

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

100.0000
100.0000
100.0000
99.0000
99.0000
98.0000
97.0000
96.0000
95.0000
94.0000
94.0000
94.0000
. 94.0000
93.0000
93.0000

.0100
.0100
.0100
.0100
.0100
.0100
.0100
.0100
.0100
.0100
.0100
.0100
.0100
.0100
.0100

90.0000
90.0000
90.0000
89.0000
89.0000
88.0000
87.0000
86.0000
85.0000
84.0000
84.0000
84.0000
84.0000
83.0000
83.0000
*********************************

*
Recharge package
*

*********************************
1
0
0
0








         0  .200E-07
                      ************
                                       ***************
                                 SIP package
           50         5
    1.0000    .10000E-01         1.00000
                                                                                headngd)
                                                                                headng(2)
                                                                                nlay.nrow.ncol,nper,itmuni
                                                                                iunit array
                                                                                iapart,istrt
                                                                                ibound(locat,iconst)
                                                                                hnoflo
                                                                                shead(Iocat,cnstnt)
                                                                                perlen.nstp.tsmult
                                                                                iss.ibcfcb
                                                                                Iayeon
                                                                                trpy(locat,cnstnt)
                                                                                delrdocat,cnstnt)
                                                                                delc(locat,cnstnt)
                                                                                tran(locat,cnstnt)
                                                                                nurivr.jrivcb
                                                                                itnp
                                                                                layer, row,colon,stage,cond.rbot
                                                                                layer, row,colum,stage,cond.rbot
                                                                                layer,row,coltwn,stage,cond.rbot
                                                                                layer, row,colum,stage,cond,rbot
                                                                                layer, row,colum, stage,cond, root
                                                                                layer,row,coltwn,stage,cond,rbot
                                                                                layer, row,colum,stage,cond, rbot
                                                                                Iayer,row,col inn,stage,cond,rbot
                                                                                layer,row,column,stage,cond,rbot
                                                                                Iayer,row,column,stage,cond,rbot
                                                                                Iayer,row,coluran,stage,cond,rbot
                                                                                layer,row,column,stage,cond,rbot
                                                                                Iayer,row,column,stage,cond,rbot
                                                                                layer,row,column,stage,cond,rbot
                                                                                layer,row,colurcn.stage,cond,rbot
                                                                                nrchop,i rchcb
                                                                                inrech.inirch
                                                                                rech•••*•«««••«««««•««•
                      *          Well  package         *
                      a********************************
                      0
                     13
                             4-.4000
raxwell.iwelcb
itrnp
layer,roM,col,q
                                                   9-4

-------
MODEL OUTPUT
   Hydraulic  head arrays, mass balance summaries, and potentiometrie surface contour maps
for Parts a and b are given in Figures 9.2 and 9.3, respectively.
                                                              10
                                                                   11
                                                                                    14
                                                                                          15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
108.8
108.2
107.1
105. A
108.6
111.4
113.9
116,1
11S.1
119.8
121.3
122.5
123.4
124.0
124,3
108.9
108.3
107.1
105.3
108.4
111.2
113.6
115.9
ii?.«
119.6
121.0
122.3
123.2
123.8
124.1
109.1
108.S
10T.2
105,2
108,2
110.8
113.2
115.4
117,3
119.1
120.6
121.8
122.8
123.4
123.8
109.5
108.8
107.3
105.0
107,7
110.1
112.4
114.6
116.1
118.3
119.9
121.2
122.2
122.9
123.2
110.1
109.4
107.9
105.4
107.1
109.1
111.3
113.4
115.4
117.3
119,0
120.4
121.4
122.2
122.5
110.8
110,2
109.0
1Q7.3
105.S
107.5
109.7
111.9
114.0
116,0
117.8
119.3
120.5
121.3
121.7
111.7
111.2
110.2
108.8
107.2
105.3
107.6
109.9
112.2
114.4
116.4
118.1
119.5
120.3
120.8
112.6
112.1
111.3
110.1
108.5
106.8
104.9
107.4
109.9
112.5
114.9
116,9
118,3
119.3
W.8
113.4
113.0
112.2
111.1
109.7
108.0
106,1
104.2
107.1
110.4
113.3
115.5
117.2
118.3
118.9
114.1
113.8
113.0
111.9
110.5
108.8
107.0
105,1
103.5
108.3
111.7
114.3
116.1
117.3
117.9
114.7
114.4
113.6
112.5
111.1
109.4
107.4
105.1
102.4
107.0
110.5
113.2
115.2
116.5
117,1
111.2
114.9
114.1
113.0
111.5
109.7
107.6
105.0
102.0
106.2
109.7
112.5
114.5
115.8
116.4
115.6
115.2
114.5
113.3
111.8
109.9
107.6
104.9
101.7
105.7
109.2
111.9
113.9
11S.3
115.9
115.8
115.4
114.?
113,5
112.0
110.0
107.6
104,8
101.3
105.4
108.8
111.5
113.5
114.?
115.6
115.9
115.6
114.8
113.6
112.1
110.1
107.6
104.7
101.2
105.2
108.6
111.3
113.4
114.7
115.4
                CUMULATIVE VOLUMES     L**3
                                                      RATES FOR THIS TIME STEP
                                                                               L**3/T
                     II:

                       STORAGE      .00000
                  CONSTANT HEAD      .00000
                      RECHARGE      97200.
                  RIVER LEAKAGE      .00000
                      TOTAL ill      97200.
                     OUT:

                       STORAGE      .00000
                  CONSTAHT HEAD      .00000
                      RECHARGE      .00000
                  RIVER LEAKAGE      96977.
                     TOTAL OUT      96977.
                      IK - OUT      222.98
              PERCENT DISCREPANCY
        IN:

         STORAGE
     CONSTANT HEAD
         RECHARGE
     RIVER LEAKAGE
         TOTAL IN
       OUT:

         STORAGE
     CONSTANT HEAD
         RECHARGE
     RIVER LEAKAGE
        TOTAL OUT
         IN • OUT
PERCENT DISCREPANCY
.00000
.00000
1.1250
.00000
1.1250
.00000
.00000
.00000
1.1224
1.1224
.2SB08E-02
Figure 9.2.  Hydraulic head arrays, potentiometrie surface contour maps,
                 balance summary for Part a.
                               .23
                              and mass
                                                  9-5

-------
                                                               10
                                                                     11
                                                                           12
                                                                                 13
                                                                                        K
                                                                                              15
1
2
3
4
5
6
7
3
9
10
11
12
13
14
15
106.4
105.8
104.7
102.9
103.7
103.9
103.7
103.0
101.8
100.3
98.5
96.6
95.1
94.5
94.4
106.5
105.9
104.7
102.9
103.6
103.9
103.6
102.9
101.7
100.1
98.0
95.7
93.8
93.6
93.8
106.;
106.1
104.2
102.;
103.
103.
103.
102.
101.
99.
97.
93.
90.
91.
92.
' 107.1
106.4
1 105.0
» 102.8
103.5
103.6
103.4
102.8
101.6
99.8
? 96.8
P 91.8
2 81.0
r 89.8
7 92.5
107.6
106.9
105.5
103.2
103.3
103.4
103.2
102.7
101.8
100.3
98.1
95.0
91.6
93.3
94.5
108.3
107.7
106.5
104.8
102.7
102.9
102.9
102.6
102.0
101.0
99.7
98.1
96.7
96.9
97.2
109.1
108.6
107.6
106.1
104.2
102.1
102.3
102.3
102.1
101.7
101.0
100.3
99.8
99.7
99.8
109.9
109.5
108.5
107.2
105.6
103.6
101.3
101.6
101.8
102.0
102.0
101.9
101.8
101.9
101.9
110.7
110.3
109.5
108.2
106.7
104.8
102.8
100.5
101.1
102.0
102.6
103.0
103.3
103.5
103.6
111.4
111.0
110.2
109.1
107.6
105.8
103.8
101.7
99.7
101.7
103.0
103.8
104.4
104.7
104.9
112.0
111.6
110.9
109.8
108.3
106.5
104.5
102.1
99.5
101.7
103.2
104.4
105.1
105.6
105.8
112.5
112.1
111.4
110.3
108.8
107.0
104.9
102.4
99.5
101.7
103.5
104.8
105.7
106.2
106.5
112.9
112.5
111.8
110.7
109.2
107.3
105.1
102.5
99,5
101.8
103.6
105.0
106.0
106.7
107.0
113.1
112.8
112.0
110.9
109.4
107.5
105.2
102.5
99.3
101.8
103.7
105.2
106.3
107.0
107.3
113.3
112.9
112.1
111.0
109.5
107.6
105.3
102.5
99.3
101.8
103.8
105.3
106.4
107.1
107.5
   CUMULATIVE VOLUMES     LM3

        IK:

          STORAGE *    .00000
     CONSTANT HEAD •    .00000
            WELLS :    .00000
         RECHARGE *    97200.
     RIVER LEAKAGE *    .00000
         TOTAL IN >    97200.
        OUT:

          STORAGE '    .00000
     CONSTANT HEAD •    .00000
            WELLS '    34S60.
         RECHARGE =    .00000
     RIVER LEAKAGE *    62597.
         TOTAL OUT =    97157.
          IN  - OUT -    43.211
PERCENT DISCREPANCY »
.04
                                 RATES FOR THIS TIME STEP     L*«3/T

                                              IN:

                                                STORAGE »   .00000
                                           CONSTANT HEAD '   .00000
                                                 WELLS »   .00000
                                               RECHARGE =   1.1250
                                           RIVER LEAKAGE =   .00000
                                               TOTAL IN >   1.1250
                                             OUT:

                                                STORAGE '   .00000
                                           CONSTANT HEAD -   .00000
                                                  WELLS >   .40000
                                               RECHARGE *   .00000
                                           RIVER LEAKAGE »   .72450
                                               TOTAL  OUT »   1.1245
                                               IN -  OUT *   .50008E-03
                                      PERCENT DISCREPANCY »
.04
 Figure 9.3.  Hydraulic head arrays, potentiometric surface contour  maps, and mass
                   balance summary for Part b using pumpage of -0.4 ftYs.
                                                     9-6

-------
DISCUSSION OF RESULTS

  The first step in this problem is to perform the steady state history match or calibration.
One could attempt to calibrate the model by  trying various combinations of T and R until a
match was achieved. This would be costly, time consuming, and would not ensure that the
right combination of T and R had been used (see Problem 6),

  The modeler should realize that the only discharge is to the  river and the only source is
recharge. Therefore, to be in steady state, these two must balance.  Recharge must therefore
equal 1.125 cfs (the river gain equals 11.125 cfs - 10 cfs).  Spreading over the modeled area:
                      1.125 il/(15xl5)(500ft  x 500ft) = 2xlQ-8 —
  Since recharge is now known, we must calibrate by varying transmissivity.  A first cut
estimate of transmissivity can be obtained by recognizing that flow to the river is known, as
is the gradient.  Assuming that flow is slightly less from the northeastern corner, we can write
Darcy's law as:


                                         q=kia
                          0.5ft Vs = k   8   (bXlength of river)
                                      2500
                            kb = T  - °-5(2500) . 0.021
                                      (8X7500)
  This first cut estimate will not match the steady state distribution. Further adjustment
yields T = 0.01 tf/s.

  A trial and error procedure is used to compute the allowable discharge from the well. It
should be obvious that the answer must be somewhere between 0.0 cfs and 1.125 cfs.  Figure
9.4 shows the results of an 0.1 cfs simulation, which hardly is noticeable.  Figure 9.5 shows a
0.5 cfs simulation, where all flow is toward the well.  Finally, using a discharge of 0.4 cfs, a
slight ridge forms near the river. These results are presented as the maximum  allowable
discharge shown in Figure 9.3.  Using an optimization package a maximum rate of 0.42 cfs
was obtained for this problem.

                                          9-7

-------
  This is a highly idealized problem where many assumptions have been made. Some of the
assumptions particular to this problem include:

  1)       The river discharge measurements are precise and do not change with time,

  2)       The system is in a steady state condition where heads and thus the magnitude and
           location of the "ridge" do not change with time.

  3)       The river characteristics, conductance and stage, are  precisely known.

  4)       The no-flow boundaries surrounding the model are true hydrologic features
           (aquifer extent or pinchout) and do not change upon imposition of the stress.
  Note that these assumptions would be violated in most practical situations.  A "factor of
safety" has not been built in to the calculation of permissible withdrawal. A sensitivity
analysis would be required to assess parameter uncertainty and ramifications of modeling
assumptions.  A more rigorous analysis than the one performed for this demonstration
problem would probably need to be conducted for a real world problem with similar
contamination potential.
                                           9-8

-------
Figure 9.4.  Potentiometric surface contour map for Part b using pumpage of -0.1 ft?/s.
                                        9-9

-------
Figure 9.5.   Potentiometric surface contour map for Part b using pumping of -0.5 frVs.
                                       9-10

-------
                                    PROBLEM 10
                                 Transient Calibration
INTRODUCTION
   Most modeling studies deal with a steady-state calibration such as the one performed in
the previous problem. It is often desirable and sometimes necessary to perform a transient
calibration.  This problem gives an example of a transient calibration and cites a common
misapplication of the transient calibration process.

PROBLEM STATEMENT

   A regional coastal area has been experiencing a drought for the past six months.
Hydrograph data (shown in Table 10.1) indicates that water levels have  dropped as much as 5
ft in  the unconfined aquifer since the drought began.  Water resource officials are interested
in  the amount of net recharge reduction that has occurred.  A numerical model is being  used
to  assess the situation.

   Because all flow is toward the coast, a simple one-dimensional model is being used. A
great deal of confidence exists in the specific  yield value of 0.1 and  the pre-drought recharge
rate of 20 in/yr. Hydraulic conductivity is assumed to be uniform within the aquifer and has
been estimated to be 850 ft/d.  The aquifer base is uniformly at -120 ft.  The model is a
single row of 15 nodes,  each of which is 1 mile in  length.  The coastal boundary is simply a
constant head of 0.0 ft on the right side of the model (column 15) as shown in Figure 10.1.
Elsewhere, the  nodes in  the model are active.  Pre-drought water levels  which remained fairly
steady for a number of years are shown in Table 10.2.

   Set up the model and determine  the recharge rate  reduction that has  caused the observed
groundwater level decline at node (1,5) shown in Table 10.1.
                                          10-1

-------
Table 10.1.     Hydraulic head (ft) versus time (weeks after drought began) at an
               observation well located at node (1, 5)
Week
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
Head (ft)
61.7
61.5
61.3
61.1
60.9
60.7
60.5
60.2
60.0
59.8
59.6
59.4
59.2
59.0
58.8
58.6
58.4
58.2
58.0
57.8
57.6
57.4
57.2
57.0
56.8
56.7
                                        10-2

-------
    123456789
10    ii   12   13    14.   15
                              ( scale in mile )
                              0123
                          Constant  Head  Node
Figure 10.1.     Grid and boundary conditions for coastal transient problem.
Table 10.2.     Pre-drought ground water levels (ft) within the model domain
Node (column)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Head (ft)
67.24
66.71
65.75
64.06
61.91
59.19
55.86
51.91
47.27
41.89
35.70
28.59
20.42
10.99
0
                                      10-3

-------
MODEL INPUT

    The input files that correctly model the transient behavior at the observation well are
shown below.
                                 *********************
                      *        Basic package        *
                      *********************************
INITIAL CONDITIONS PROBLEM (TRANSIENT)
6/28/91   PFA
         1        1        15         1
 11  000000 18  00 21 22
         0        0
         1        1(4012)
 11111111111111-1
999.00
         1  .100E+OK7G11.4)
  67.24     66.71      65.65      64.06
  51.91     47.27      41.89      35.70
  .0000
183.00           261.0000
                                                  12
                                                61.91
                                                28.59
                      *********************************
          ***
0         0

0  .100i+01
0  .528E+04
0  .528E+04
0  -100E+00
0  .13QE+04
0 -.1206+03
                         Block Centered Flow Package
                      *********************************
                      *       Recharge package      *
                      *********************************
                                              59.19
                                              20.42
55.86
10.99
1         0
0         0
0  .1601-02
                      ************ «*«**»*****»*«* ******
                      *          SSOR package       *
           50
    1.0000    .10000E-01
headngd)
headng(2)
nlay,nrow,ncol,nper,itmuni
ii*iit array
iapart,$strt
ibound
-------
**»***»»«»*
*
0
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Output
0
1
0






1
1
1
1
1
1





1
1
1
1
1
1
1
1
Control package *
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
                                     ihedfm,iddnfm,
                                     incode.ihddfl,
                                     hdpr,ddpr,hdsv
                                     incode.ihddfl,
                                     incode.ihddfl,
                                     incode.ihddfl,
                                     incode.ihddfl,
                                     incode,ihddfl,
                                     incode.ihddfl.
                                     incode.ihddfl.
                                     incode.ihddfl,
                                     Incode.ihddfl,
                                     incode.ihddfl,
                                     incode,ihddfl,
                                     incode.ihddfl,
                                     incode.ihddfl,
                                     incode.ihddfl,
                                     incode.ihddfl,
                                     incode.ihddfl.
                                     incode.ihddfl,
                                     incode.ihddfl,
                                     incode.ihddfl,
                                     fncode.ihddfl,
                                     incode.ihddfl,
                                     incode.ihddfl,
                                     incode.ihddfl,
                                     incode.ihddfl,
                                     incode.ihddfl,
 ihedun,
 ibudfl,
r.ddsv
 ibudfl
 ibudfl,
 ibudfl,
 ibudfl,
 ibudfl,
 ibudfl,
 ibudfl
 ibudfl,
 ibudfl,
 ibudfl
 ibudfl,
 ibudfl,
 ibudfl
 ibudfl
 ibudfl
 ibudfl
 ibudfl
 ibudfl
 ibudfl,
 ibudfl,
 ibudfl,
 ibudfl,
 ibudfl,
 ibudfl
 ibudfl
iddnun
icbcfKstep 1)

icbcf Kstep 2)
icbcfKstep 3)
icbcf Kstep 4)
icbcfKstep 5}
icbcfKstep 6)
icbcfKstep 7)
icbcfKstep 8)
icbcfKstep 9)
icbcfKstep 10)
icbcfKstep 11)
icbcfKstep 12)
icbcfKstep 13)
icbcfKstep U)
icbcfKstep 15)
icbcfKstep 16)
icbcfKstep 17)
icbcfKstep 18)
icbcfKstep 19)
icbcfKstep 20)
icbcfKstep 21)
icbcfKstep 22)
icbcfKstep 23)
icbcf Kstep 24)
icbcfKstep 25)
icbcfKstep 26)
        10-5

-------
DISCUSSION OF RESULTS

   The analyst should have obtained a value of 7 in/yr (0.0016 ft/d) for recharge, a 13 in/yr
reduction from the pre-drought condition.  A common error in model calibration was made if
a value of 0.44 in/yr (0.0001 ft/d) was obtained.  Prior to running the transient simulation, the
modeler should have checked the reasonableness of the given parameters in obtaining the
initial conditions.  This could be done by running a steady-state simulation with the pre-
drought recharge rate and checking the result with the water levels that "had remained fairly
steady for a number  of years".  If the 850 ft/d value for hydraulic conductivity were used, the
modeler would have  noted the heads shown in Table 10.3, which are about 20 ft too high.
Because hydraulic conductivity was only an estimate, while other parameters had a fair
amount of confidence associated with them, hydraulic conductivity should have been adjusted.
A value of 1300 ft/d would have given the desired head distribution.  The analyst would have
then derived 7 in/yr for recharge by simple trial and error after the hydraulic conductivity
adjustment was made.

   Performing a transient calibration without a prior steady-state calibration or isolation of
the stress and response (superposition model) is a common mistake.  In this example this
resulted in  the transient response being a combination of seeking  equilibrium with the given
hydraulic conductivity (rising water levels) and the response to the recharge reduction (falling
water levels).  For this reason this recharge reduction had to be much higher than if the
proper hydraulic conductivity had been used.  Franke et al. (1987) discuss this aspect of the
importance of initial  conditions.
                                          10-6

-------
Table 10.3.  Groundwater levels resulting from a steady-state simulation using a
            hydraulic conductivity of 850 ft/d
                          Node (column)         Head (ft)
                                1                 943
                                2      ,           93.6
                                3                 92.2
                                4                 90.0
                                5                 87.2
                                6                 83.5
                                7                 79.0
                                8          .       73.7
                                9                 67.4
                                10                60.1
                                11                51.5
                                12                41.6
                                13                30.1
                                14                16.4
                                15                  0
                                         10-7

-------
                                    PROBLEM 11
                              Representation of Aquitards
INTRODUCTION
   In multiaquifer simulations, the modeler has to choose the most appropriate way of
representing confining beds that separate aquifers. Aquitards can be modeled implicitly as a
leakage term or explicitly as a separate model layer. This problem provides insight into
choosing the method of representing aquitards and how to choose the proper level of
discretization if the confining bed is modeled explicitly.

PROBLEM STATEMENT

   A one-dimensional vertical leakage conceptual model will be evaluated; these principles
can be extended areally to three-dimensional applications. Two 50 ft thick aquifers are
separated by a 100 ft thick confining bed.  At time t=0, the head in the lower aquifer is
instantaneously lowered to -10 ft. This is simulated using a constant head boundary condition
in the bottom aquifer. The head in the overlying aquifer is also held constant at a head of 0.0
ft. Different methods of representing the confining bed are evaluated, aquitard properties are
varied, and the magnitude of the lower boundary condition is changed. The properties of the
hydrologic system are shown below:

                    Aquifers
                      hydraulic conductivity            ±= 2x1 G"5 ft/s
                      thickness                       = 50 ft
                      specific storage                 = lxlO"7/ft

                    Aquitard
                      hydraulic conductivity            = IxlO"8 ft/s
                      thickness                       = 100  ft
                      specific storage                 = 5xlO*6/ft

                    Areal dimensions                 = Ax = Ay = 100 ft
Part a)       Set up and run the model"such that the confining bed is represented as a
             separate layer.  A 3 layer, 1 row, 1 column model will therefore be set up.
             You will need to compute VCONT between the aquifers and the aquitard using
             equation 51 (page 5-13) from the MODFLOW documentation:
                                 VCONT=	*
                                         AZ,/2   AZ/2                            (11,1)
                                         ~K~ +~KT  -
                                          11-1

-------
             Run the model for a simulation time of 1 year, broken into 25 time steps with
             time step  multiplier of 1.3.  Plot hydraulic head in the confining bed  and flux
             into storage as a function of time.
Part b)       Represent the confining bed as 3 separate layers of 25, 50, and 25 ft
             thicknesses.  Represent each of the aquifers by 2 layers of 25 ft thickness.  A 7
             layer, 1 row, 1 column model will therefore be used.  VCONT and storage
             coefficients will need to be recomputed.  Run the model and plot results as you
             did in part a.

Part c)       Rerun part b, lowering the head in the lower aquifer to -100 ft.  Compare the
             response to that of part b.

Part d)       Rerun part b, raising the hydraulic conductivity of the aquitard by a factor of 2,
             and compare the response to part b.

Part e)       Rerun part b, dividing the specific storage of the aquitard by a factor of 2.
                                          11-2

-------
MODEL INPUT
    The following is a listing of model input for part  b.
                      *********************************
                      *         Basic package        *
                      *********************************
   ONE DIMENSIONAL RESPONSE IN AN AOUIFER/AQUITARD SYSTEM
   1/16/91   PFA
                                1         1          1
                            19  0  0 22
7
11 0 0
0
0
0
0
0
0
0
0
999.00
0
0
0
0
0
0
0
.31536e*08
1
0 0 0 0 I
0
-1
-1
1
1
1
-1
-1

.OOOE+00
.OOOE+00
.OQOE+00
.OOOE+00
.OOOE+00
-.100E+03
-.100E+03
251.3
    000
                      *********************************

                      *  Block Centered Flow Package  *
   1.0000
0
1 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


50
«
0
0 0
.100E+01
.100E+03
.1001*03
.250E-05
.500E-03
.flOOE-06
.250E-05
.500E-03
.800E-09
.125E-03
.250E-06
.267E-09
.250E-03
-500E-06
.267E-09
.125E-03
.250E-06
.800E-09
.250E-05
.500E-Q3
.800E-06
.250E-05
.500E-03
*1
*
Al
5
10000E-01
                      *********************************
                                  SIP package
1.00000
                                                  headngd)
                                                  headna(2)
                                                  nIay,nron,ncoI,nper,itmuni
                                                  iunit  array
                                                  iapart,istrt
                                                  ibound layer 1( locat,iconst)
                                                  ibound layer 2(locat,iconst)
                                                  ibound layer 3Clocat,iconst)
                                                  ibound layer 4(locat,iconst}
                                                  ibound layer 5(locat,iconst)
                                                  ibound layer 6(locat,iconst)
                                                  ibound layer 7(locat,iconst)
                                                  hnoflo
                                                  shead layer 1(locat,cnstnt)
                                                  shead layer 2(locat,cnstnt)
                                                  shead layer 3
-------
                    *»***»»»***•**»***»***«*»**•*••*«
                    *    Output Control package    *
                    ft********************************
                                      0
                                      0
                                      0
                                      0
                                      0
                                      0
                                      0
                                      0
                                      0
                                      0
                                      0
                                      0
                                      0
                                      0
                                      0
                                      0
                                      0
                                      0
                                      0
                                      0
                                      0
                                      0
                                      0
                                      0
                                      0
                                      0
                                      0
ihedfm,iddnfm,ihedun,iddnun
tncode,ihddfl,ibudfl,icbcfl(step 1)
hdfl.ddfl.hdsv.ddsv
incode,ihddfl.ihudft.fcbcfUstep 2)
ineode, ihddfl.ibudfl.icbcfUstep 3)
incode,ihddfl,ibudfl,icbcfl
-------
  5.00  -i
   0.00
                                        * * * * * 3  layer  model
                                        x >< x x x 7  layer  model
                                        	doubled  k
                         T  i i i i i 111    i  r i i nil]    T  i  i i i i 111
                     1           10        .100         1000
                         time   (days)
Figure 11.1.  Hydraulic head (ft) in the middle of the confining bed versus time for
          cases a, b, and d.
                              11-5

-------
   10000^1
    1000-
H—
 o

00
 I
UJ
 X
100"
       10-
         0.1
           * >< x x x total  leakage
           i i i i  i confining bed storage
 1                10
time   (days)
                                                     100
 Figure 11.2. Total flux (ftVs) and storage flux versus time from the confining bed for
          the seven layer model.
                               11-6

-------
Table 11,1.   Hydraulic heads (ft) in the middle of the confining bed versus time for all
             cases of Problem 11
Time
(days)
0.155
0.357
0.620
0.961
1.41
1.98
2.73
3.70
4.97
6.62
8.77
11.6
15.2
19.9
26.0
34.0
44.3
57.7
75.2.
97.9
127.5
165.9
215.8
280.7
365.
3 layer
model
(case a)
0.05
0.12
0.21
0.32
0.46
0.63
0.85
1.11
1.42
1.79
2.20
2.65
3.12
3.58
4.01
4.36
4.63
4.81
4.91
4.97
4.99
5.00
5.00
5.00
5.00
10 layer
model
(case b)
0.01
0.04
0.10
0.20
0.36
0.59
0.91
1.32
1.80
2.34
2.91
3.46
3.95
4.34
4.63
4.82
4.92
4.97
4.99
5.00
5.00
5.00
5.00
5.00
5.00
100ft
decline
(case c)
0.11
0.40
0.98
1.99
3.59
5.92
9.10
13.16
18.01
23.43
29.10
34.58
39.47
43.44
46.33
48,18
49.22
49.71
49,91
49,98
50.00
50.00
50.00
50.00
50.00
Kx2
(case d)
0.04
0.13
0.30
0.57
0.94
1.41
1.96
2.55
3.15
3.70
4.16
4.51
4.75
4.88
4.96
4.99
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
Ss/2
(case e)
0.04
0.13
0.31
0.57
0.94
1.41
1.96
2.55
3.15
3.70
4.16
4.51
4.75
4.89
4.96
4.99
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
                                        11-7

-------
DISCUSSION OF RESULTS

   There are three ways of representing an aquitard in multiaquifer simulations.  The first
and simplest is the quasi-three-dimensional approach.  In this situation, the aquitard is not
explicitly represented.  It is simply incorporated as a leakage term (VCONT) between
adjacent  aquifers.  This effectively ignores storage within the confining bed and assumes an
instantaneous response in the unstressed aquifer.  This case was not ran, but it should be clear
that the flux between the stressed and unstressed aquifers would be constant throughout time.
This is because the only source of water is the unstressed aquifer and the head difference
between  the two aquifers does not change with time. Applying Darcy's law, the leakage
would be IxlO"5 cfs. This analysis may be appropriate for steady-state simulations or systems
with very thin confining beds with limited storage properties.

   A second approach is to discretize the confining bed as a separate  layer.  This considers
the storage within  the aquitard, but generally does not provide a good  approximation of
gradient  within the confining bed.  As Figure 11.1 indicates, the response time is not as
accurate  as with a  finer gridded confining bed.  Because the single layer does not approximate
the gradient well, leakage is also in error. This method is appropriate  for approximations of
response  time, if accuracy is not a prime consideration.  Note  from Figure 11.1 that the
storage factor only dictates the response time.  Equilibrium heads are the same for all cases.

   The third method involves several layers within the confining bed to approximate the
gradient.  This provides a better estimate of the response time, although more gridding than
the 3 layers used in this example would probably provide a better approximation.  The
modeler  must weigh the benefits of including gridding in an area where there is probably
limited data and interest in hydraulic heads.

   Bredehoeft and Finder (1970) presented an approximation  of response time in multilayer
systems.  Using equation 11.2, for dimensionless time of less  than 0.1, response is entirely
from the  aquitard,  while at dimensionless time greater than 0,5, the aquitard is in equilibrium
and flux  is from the unstressed aquifer.

                                        K't
                                                                          (11.2)
    where     tD     is dimensionless time
              K'    is aquitard hydraulic conductivity
              t      is time
              S/    is aquitard specific storage
              b     is aquitard thickness

    For this problem, equation 11.2 indicates that all response should be from the aquitard
until an elapsed time of 5.8 days and the aquitard should be in equilibrium at 29 days.  Figure
11.1 supports the 29 day time with the aquitard head at about 4.7 ft or 94% of its final value.
Figure 11.2 shows that the upper aquifer begins to contribute at approximately 3 days.  This
slight discrepancy between 3 days  and 5.8 days is probably due to grid discretization.

                                          11-8

-------
   Equation 11.2 shows that magnitude of response is not time related. This was
demonstrated in part c where the 100 ft decline generated a response  10 times greater than the
10 ft decline, but at the same time. The equation also indicates that response time is directly
proportional to hydraulic conductivity and inversely proportional to specific storage.  For this
reason, doubling of hydraulic conductivity in part d generated identical answers as a halving
of specific storage in part e.  Response time is cut in half for these two cases as illustrated in
Figure 11.1.

   Equation 11.2 and the relationships presented in the problem should be useful for
designing model grids and determining necessity of vertical discretization.  Note that the
intent of the model may influence greatly its final configuration:  a steady- state multiaquifer
water supply model may not require discretization of aquitards; a transient model to  assess
contaminant advection through several layers may  require significant discretization.
                                           11-9

-------
                                    PROBLEM 12
                                    Leaky Aquifers
INTRODUCTION
   Large grids are often required to accurately model transient behavior of aquifers that are
adjacent to aquitards with significant storage properties. In this case a majority of discharge
from the aquifer may actually be obtained from confining bed storage with the aquifer serving
as merely a conduit to flow. This problem demonstrates the applicability of MODFLOW to
simulate leaky aquifer problems, presents an application of a large transient problem, and
provides a benchmark of MODFLOW  with an analytic solution and another numerical model.

PROBLEM STATEMENT AND DATA

   The modeled domain consists of a 50 ft thick aquifer that is overlain by a 50 ft thick
aquitard.  A well fully penetrating the  aquifer is pumped at a constant rate and drawdown is
noted at an observation well.  The assumptions inherent in the Theis solution are all
applicable, except the assumption of total confinement.  In order to minimize the total  number
of nodes in the problem, only a quadrant of the entire domain is modeled. Aquifer
parameters and discretization data are given in Table 12.1.
                                         12-1

-------
Table 12.1. Parameters and discretization data used in Problem 12
aquifer hydraulic conductivity, K
aquifer specific storage, Ss
aquifer thickness, b
aquitard hydraulic conductivity, K'
aquitard specific storage, Ss
well discharge, Q
length of stress period
number of time steps
time step multiplier
closure criterion
initial head
NROW = NCOL
DELX (n) = DELY (n)
top layer constant head, all others active
Part a vertical discretization (m)
Part b vertical discretization (m)
0.001 m/s
0.0001 m'1
50m
0.00001 m/s
0.0016 nv1
6.283 mVs (1.571 m3/s for quadrant)
787900 s
30
1.414
0.001 m
0
25
1, 1.5, 2, 3, 5, 8, 12, 18,25, 25, 34.8, 46.2,
69, 100,  150, 200, 250, 250, 250, 250,
250, 250, 250, 250, 300

48, 2, 2, 3, 4, 6, 9, 12, 14, 2
2 layers aquifer, 7 layers aquitard, 1 layer
upper aquifer
50,50,2
Part a)  Using a fully three-dimensional grid with fine grid spacing in the aquitard (Table
        12.1), set up and ran the model for the stress period length of 787900 s, 30
        timesteps, and timestep multiplier of 1.414. Note drawdown versus time in the
        pumped aquifer at an observation point 117.4 m from the pumping well.  Compare
        the results to the analytical solution shown in Table 12.2. Note that transmissivities,
        storage coefficient, VCONTs, and -well discharges will have to be apportioned to
        accommodate the grid spacing.

Part b)  Using the coarse three-dimensional grid (3 layer model shown in Table 12.1),  set up
        and run the model for a stress period length of 787900 s, 30 time steps, and time
        step multiplier of 1.414.  Note drawdown versus time at  an observation point 117.4
        m from the pumping well.  Compare the results to the analytical solution and part a.
                                          12-2

-------
Table 12.2.  Time versus drawdown (analytical solution) at distances of 117.4 m
Time (103 sec)

0.1689
0,2488
0.3619
0.5217
0.7476
1.067
1.519
2.158
3,061
4339
6.144
8.698
12.31

17.42
24.64
34.84
49.28
69.69
98.56
139.4
197.1
278.7
394.1
557.2
787.9
Drawdown (m) at r = 1 17.4
Analytical Solution
Short time solution
0.2838
0.7524
1.442
2.427
3.645
5.047
6.585
8.217
9.908
11.64
13.38
15.14
16.89
Long time solution
15,49
18.23
20.89
23.42
25.73
27.72
29.34
30.54
31.33
31.76
31.94
32.00
                                        12-3

-------
MODEL INPUT
   The  following is a listing of the input file for part a.
                      *********************************
                      *         Basic package         *
                      *********************************
   hantush verification problem
   6/25/91  pfa
10
11 12 0
0
0
0
0
0
0
0
0
0
0
0
999.00
0
0
0
0
0
0
0
0
0
0
.78790E+06

25 25 1
00000 19 00 22
0
-1
1
1
1
1
1
1
1
1
1

.OOOE+00
.OOOE+00
.OOOE+00
.OOOE+00
.OOOE+00
.OOOE+00
.OOOE+00
.OOOE+00
.OOOE+00
.OOOE+00
301.4140
* Block Centered Flow
1
























1 1i It it A A A irtt 1i ii
Package *
*********************************
0
00000
0
11
1.000
18.00
150.0
250.0
11
1.000
18.00
150.0
250.0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
00000
.100E+01
.100E+01(7G11.4)
1.500 2.000 3.000
25.00 25.00 34.80
200.0 250.0 250.0
250.0 250.0 300.0
.100E+OK7G11.4)
1.500 2.000 3.000
25.00 25.00 34.80
200.0 250.0 250.0
250.0 250.0 300.0
.200E-03
.200E-02
.1427E-5
.224E-01
.140E-03
.7692E-6
.192E-01
.120E-03
.7407E-6
.144E-01
.900E-04
.1333E-5
.960E-02
.600E-04
.200E-05
.640E-02
.400E-04
.2857E-5



12
5.000
46.20
250.0

12
5.000
46.20
250.0



















                                                           8.000
                                                           69.00
                                                           250.0
                                                           8.000
                                                           69.00
                                                           250.0
12.00
100.0
250.0
12.00
100.0
250.0
            headngd)
            headng(2)
            nlay,nrou,ncol,nper,itmuni
            iunit array
            iapart,istrt
            ibound layer  1(locat,iconst)
            ibound layer  2
-------
0
0
0
0
0
0
0
0
0
0
0
           .480E-02
           .300E-04
           .4006-05
           .320E-02
           .20QE-Q4
           .990E-05
           .2001-03
           .200E-02
           .400E-04
           .480E-02
           .480E-01
                                                 sf1 layer 7{locat,cnstnt)
                                                 Iran layer 7(local,enstnt)
                                                 vcont layer 7-8(locat,cnstnl)
                                                 sfl layer SClocat.cnstnt)
                                                 tran layer 8{locat,enstnt5
                                                 vcont layer 8-9{local,cnstnl)
                                                 sf1 layer 9{local,cnstnt)
                                                 tran layer 9(local,cnstnt)
                                                 vcont layer 9-10(locat,cnslnl)
                                                 *f1 layer 10( local, cmlnt)
                                                 Iran layer 10
-------
For part b, the following data set is used.
                   *********************************
                   *         Basic  package         *
                   *********************************
hantush verification problem part b
6/25/91  pfa
3
11 12 0
0
0
0
0
999.00
0
0
0
.78790E+06
25 25 1
00000 19 00 22
0
-1
1
1

.OOOE+00
.OOOE+00
.OOOE+00
1









301.4140
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
* Block Centered Flow Package *
0
000
0
11
1.000
18.00
150.0
250.0
11
1.000
18.00
150.0
250.0
0
0
0
0
0
0
0
0
0

.100E+01
.100E+OK7G11.4)
1.500 2.000 3.000
25.00 25.00 34.80
200.0 250.0 250.0
250.0 250.0 300.0
.100E+OK7G11.4)
1.500 2.000 3.000
25.00 25.00 34.80
200.0 250.0 250.0
250.0 250.0 300.0
.200E-03
.200E-02
.400e-06
.800e-01
.500e-03
.396e-06
,500e-02


12
5.000
46.20
250.0

12
5.000
46.20
250.0








.500e-01
w w w ww w w w w w ww w w w ww w ww w w w w w w w w w w w w w
* Well package *
1
1
3
W W w w ww w w w w w w w w w w w w w w w w w w ww w w w w w w w
0

1 1-1.57075


                                                        8.000
                                                        69.00
                                                        250.0
                                                        8.000
                                                        69.00
                                                        250.0
12.00
100.0
250.0
12.00
100.0
250.0
                   *********************************
                               SIP package
        50         5
1.0000    .10000E-02         1.00000
            headngd)
            headng(2)
            nlay,nrow,ncol,nper,itmuni
            iunit array
            iapart,istrt
            ibound layer 1(locat,iconst)
            (bound layer 2(locat,iconst)
            ibound layer 3(locat,iconst)
            hnoflo
            shead layer 1(locat,cnstnt)
            shead layer 2(locat,cnstnt)
            shead layer 3(locat,cnstnt)
            perlen,nstp,tsmult
iss.ibcfcb
laycon array
trpy(locat,cnstnt)
delrdocat,cnstnt,fmtin, iprn)
delr array
delc(locat,cnstnt,fmtin,iprn)
dele array
                                                                               sf1  layer 1(locat,cnstnt)
                                                                               tran layer 1(locat,cnstnt)
                                                                               vcont layer 1-2(locat,cnstnt
                                                                               sf1  layer 2(locat,cnstnt)
                                                                               tran layer 2(locat,cnstnt)
                                                                               vcont layer 2-3(locat,cnstnt)
                                                                               sf1  layer 3(locat,cnstnt)
                                                                               tran layer 3(locat,cnstnt)
                                                                               mxuell.iuelcb
                                                                               itmp
                                                                               layer,row,column,q
            mxiter,nparm
            accl,hclose,ipcalc,wseed,iprsip
                                                12-6

-------
                    *********************************
                    *     Output Control  package    *
0 0
1 1
9 0
9 0
9 0
1 1
1
1
1





1
1
1
1
1
1
1
1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 -
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
                                                                            ihedfm,iddnfm,
                                                                            incode.ihddfl,
                                                                            hdpr,ddpr,hdsv
                                                                            hdpr,ddpr,hdsv
                                                                            hdpr,ddpr,hdsv
                                                                            incode.ihddfl,
                                                                            incode.ihddfl,
                                                                            incode.ihddfl,
                                                                            incode,ihddfL,
                                                                            incode.ihddfl,
                                                                            incode.ihddfl,
                                                                            incode,ihddfI,
                                                                            incode,ihddfl,
                                                                            incode.ihddfl,
                                                                            incode.ihddfl,
                                                                            incode.ihddfl,
                                                                            incode.ihddfl,
                                                                            incode.ihddfl,
                                                                            incode.ihddfl,
                                                                            incode,ihddfI,
                                                                            incode.ihddfl,
                                                                            incode,ihddfI,
                                                                            incode,ihddfI,
                                                                            incode.ihddfl,
                                                                            incode.ihddfl,
                                                                            incode.ihddfl,
                                                                            incode.ihddfl.
                                                                            incode.ihddfl,
                                                                            incode.ihddfl,
                                                                            incode.ihddfl,
                                                                            incode.ihddfl,
                                                                            incode,ihddfI,
                                                                            incode.ihddfl,
                                                                            incode.ihddfl,
ihedun,iddnun
ibudfl.icbcfUstep 1)
,ddsv(layer 1)
,ddsv(layer 2)
,ddsv(layer 3)
ibudfl.icbcfUstep 2)
ibudfl.icbcfUstep 3)
ibudfl.icbcfUstep 4)
ibudfl.icbcfUstep 5)
ibudfl.icbcfUstep 6)
ibudfl.icbcfUstep 7)
ibudfl.icbcfUstep 8)
ibudfl.icbcfUstep 9)
ibudfl.icbcfUstep 10)
ibudfl.iebcfUstep 11}
ibudfl.icbcfUstep 12)
ibudfl.icbcfUstep 13)
ibudfl.icbcfUstep 145
ibudfl.icbcfUstep 15)
ibudfl.icbcfUstep 16)
ibudfl.icbcfUstep 17)
ibudfl.icbcfUstep 18}
ibudfl.icbcfUstep 19)
ibudfl.icbcfUstep 20)
ibudfl.icbcfUstep 21}
ibudfl.icbcfUstep 22}
ibudfl.icbcfUstep 23)
ibudfl.icbcfUstep 24)
ibudfl.icbcfUstep 25}
ibudfl.icbcfUstep 26}
ibudfl.icbcfUstep 27)
ibudfl.icbcfUstep 28}
ibudfl.icbcfUstep 29}
ibudfl.icbcfUstep 30}
MODEL OUTPUT

   Table 12.3 compares results of the Han tush analytical solution to the  10 and 3  layer
MODFLOW simulation. Comparison is also made to SEFTRAN (GeoTrans, 1988) a finite
element model.  This data is plotted in Figure  12.1.
                                                12-7

-------
Table 12.3.   Time versus drawdown at distances of 117.4 m for the analytical solution,
            MODFLOW configuration, and SEFTRAN radial solution.
Time
(103 sec)

0.1689
0.2488
0.3619
0.5217
0.7476
1.067
1.519
2.158
3.061
4.339
6.144
8.698
12.31

17.42
24.64
34.84
49.28
69.69
98.56
139.4
197.1
278.7
394.1
557.2
787.9
Drawdown (m) at r = 1 17.4 m
Analytical 10 layer 3 layer
Solution MODFLOW MODFLOW

0.2838
0.7524
1.442
2.427
3.645
5.047
6.585
8.217
9.908
11.64
13.38
15.14
16.89

15.49
18.23
20.89
23.42
25.73
27.72
29.34
30.54
31.33
31.76
31.94
32.00
Short time solution
0.48
0.98
1.72
2.70
3.88
5.24
6.74
8.33
9.98
11.69
13.42
15.16
16.92
Long time solution
18.68
20.44
22.20
23.97
25.72
27.42
28.98
30.17
31.38
32.11
32.55
32.79

0.59
1.27
2.32
2.79
5.64
7.79
10.15
12.62
15.10
17.50
19.71
21.67
23.32

24.65
25.68
26.49
27.20
27.90
28.65
29.45
30.25
30.98
31.57
31.98
32.21
SEFTRAN

0.1266
0.4710
1.119
2.066
3.251
4.619
6.122
7.713
9.359
11.04
12.75
14.47
16.18

17.89
19.60
21.30
23.00
24.69
26.35
27.88
29.15
30.06
30.60
30.85
30.93
                                      12-8

-------
      10-
 c
 2
 O
 ~D
 Z
 O
 L
Q
1  ~
   0. 1
                                                x x
                                	 analytic
                                * * * * * SEFTRAN
                                x x x x x MODFLOW  3  I
                                +++++MODFLOW  10
a y er
layer
1 00
                       1 000         1 0000        1 00000      1 000000
                          T I me    (  seconds)
Figure 12.1.  Drawdown versus time for the analytical, MODFLOW, and SEFTRAN
            simulations.
DISCUSSION OF RESULTS

  The Hantush (1960) analytical solution to this problem is stated as two solutions, one for
early time and one for late time.  The results of the 10-layer MODFLOW simulation
compares well with both short time and long time solutions. There is some apparent over-
prediction in early times when compared to the analytical solutions. The three-layer
MODFLOW simulation does not compare well in early-time, although there is excellent
agreement in late time. The poor early time comparison is because the level of vertical
discretization is not fine enough to approximate the steep gradient within the confining bed
during early time.  As the gradient dissipates, the model is able to approximate leakage much
better. The configuration of a model will therefore depend  upon when in time following a
                                      12-9

-------
stress that accurate answers are desired.  For a general purpose model, the fine discretization
is most accurate, but a price is paid in terms of number of nodes and execution time.  A
10-layer finite element model called SEFTRAN (GeoTrans, 1988) was run with a similar
level of areal discretization.  This provides comparison with another numerical model. Note
from Figure 12.1 that SEFTRAN under-predicts drawdown in early time. The answers
compare well with both the analytic and MODFLOW 10-layer results.

   Output from  MODFLOW is extremely voluminous for large problems such as this. In
order to keep the output file within reasonable size, the option to print only certain layers was
invoked in the OUTPUT CONTROL PACKAGE. As such, only layers 9 and 10 were
printed. Layer  10 was used for plotting results because it represents the bulk of the aquifer
and is away from the steep gradient near the aquifer-aquitard  interface.  An option to print
only observation nodes would  be useful for applications such  as these. This is not available
in  MODFLOW, but is an easy modification to make.
                                         12-10

-------
                                    PROBLEM 13
                         Solution Techniques and Convergence
INTRODUCTION
   Aquifer systems that are either very heterogeneous or that have complex boundary
conditions are generally difficult to model numerically. The  choice of solution technique
parameters, or even the solution technique itself may govern  whether the model will converge
and give reasonable results. The purpose of this exercise is to give the user some insight into
methods and parameter adjustments for making difficult solutions converge.  MODFLOW
includes two iterative solution techniques: Strongly Implicit Procedure (SIP) and Slice
Successive Over Relaxation (SSOR).  Both techniques will be utilized and adjustments to
iteration parameters will be made to achieve a solution.

PROBLEM STATEMENT AND DATA

   The three-layer system shown in Figure 13.1  is bounded on its east side in layer 1 by a
specified head boundary set at  160 m.  All other external boundaries are implicitly no-flow.
The aquifer receives recharge of 2.5xlO"10m/s on a portion of layer 1 (Zone 3), elsewhere
layer 1 is considered to be overlain by impermeable material. Grid spacing is uniform in the
horizontal, 15 columns by 10 rows, each block being 1000 m on a side.  In the vertical,  layer
1 is considered to be unconfmed, with a bottom elevation of  150 m.  Layers 2 and 3 have
uniform thicknesses of 100 m and 50  m, respectively.  For computing VCONT between  layer
1 and layer 2, assume  layer 1 is 20 m thick.  Hydraulic conductivity zonation is shown in
Figure 13.1.

   Set up the model and obtain a solution using the SIP solution technique for Part a and
using the SSOR technique for part b.  Use a closure criterion of 0,01 and do not allow more
than 50 iterations for this steady-state problem.
                                         13-1

-------
                             7 , 8 ,  9 , 10 , 11 , 12 ,13 , 14 , 15

                 3|4!5|6t7[8[9, 10 | 11 ,12 113 r14 115
LAYER 2
         a
         3
         4
LAYER 3 1
         6
         ?
         8
         9
         10
           1|2|3|4i5;6i7 i 8 i 9 | 1Q..1.11 | 12 | 13 I 14 ) 1S
CONDUCTIVITY ZONES
      ZONE 1 K = 10-s
      ZONE 2 K s 2x10'"
      ZONE 3 K = 1Q'»
      ZONE 4 K = 10-11
 Figure 13.1. Model geometry, boundary conditions, and hydraulic conductivity zonation
             for Problem 13.
                                      13-2

-------
MODEL INPUT
    The following is a listing of data sets for Problem 13, part a.
                     *********************************
                     *         Basic package         *
                     *********************************
   SOLUTION TECHNIQUES AND CONVERGENCE
                                  0  0
PFA

11


1
1
1
1
1
1
1
1
1
1


999
3/7/90
3
00000
0
1
11111111
11111111
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1








1
1
1
1
1
1
1







1 1
1
1
1
1
1
1
1
1
0
0
.00

10
0
0





15
18 19 0

1(4012)
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1



1 1 1-1
1 1 -1
1
1
<•
1
1
1
1
1
-1
-1
-1
-1
-1
1-1
1-1
1-1



0 .160E+03
0 .160E+03
0 .160E+03
86400.
11
.
0000
headngd)
headng(2)
nlay,nrou,ncol,nper,itiTuni
iunit array
iapart,istrt
ibouncK locat,iconst,fmtin.iprn)
ibound array  (layer 1)
                                                                                ibound  layer 2(locat,iconst)
                                                                                ibound  layer 3(locat,iconst)
                                                                                hnoflo
                                                                                shead layer Klocat.cnstnt)
                                                                                shead layer 2(locat,cnstnt)
                                                                                shead layer 3(locat,enstnt)
                                                                                perlen,nstp,tsmult
                     *********************************
                     *  Block Centered Flow Package  *
                     *********************************
1
0 0
0
0
0
11
.1000E-04
.1000E-04
.1000E-04
.2000E-05
.2000E-05
.2000E-05
.2000E-05
.2000E-05
.2000E-05
.2000E-05
.2000E-05
.2000E-05
.2000E-05
.2000E-05
.2000E-05
.2000E-05
.2000E-OS
.2000E-05
.2000E-05
.2000E-05
.2000E-05
.2000E-05
.2000E-05
.2000E-05
.1000E-05
.1000E-05
.2000E-OS
.1000E-05
.1000E-05
.2000E-05
0
.100E+01
.100E+04
.100E+04
.100E+OK7G11
.1000E-04 .
.1000E-04 .

.2000E-05 .
.2000E-05 .

.2000E-05 .
.2000E-05 .

.2000E-05 .
.2000E-05 .



.4)
1000E-04
1000E-04

2000E-05
2000E-05

2000E-05
2000E-05

2000E-05
2000E-05

.2000E-OS .2000E-05
.2000E-05 .

.2000E-05 .
.2000E-05 .

.2000E-05 .
.2000E-05 .

.2000E-05 .
.2000E-05 .

.1000E-05 .
.1000E-05 .

.1000E-05 .
.1000E-05 .

2000E-05

2000E-05
2000E-OS

2000E-05
2000E-05

2000E-05
2000E-05

1000E-05
1000E-05

1000E-05
1000E-05




.1000E-04
.1000E-04

.2000E-05
.2000E-05

.2000E-05
.2000E-05

.2000E-05
.2000E-05

.2000E-05
.2000E-05

.2000E-05
.2000E-05

.2000E-05
.2000E-05

.2000E-05
.2000E-05

.1000E-05
.2000E-05

.1000E-05
.2000E-05



12
.1000E-04
.1000E-04

.2000E-05
.2000E-05

.2000E-05
.2000E-05

.2000E-05
.2000E-05

.2000E-05
.2000E-05

.2000E-05
.2000E-05

.2000E-05
.2000E-05

.2000E-05
.2000E-05

.1000E-05
.2000E-05

.1000E-05
.2000E-05




.1000E-04
.1000E-04

.2000E-05
.2000E-05

.2000E-05
-2000E-05

.2000E-05
.2000E-05

.2000E-05
.2000E-05

.2000E-05
.2000E-05

.2000E-05
.2000E-05

.2000E-05
.2000E-05

.1000E-05
.2000E-05

.1000E-05
.2000E-05

iss.ibcfcb
1 aye on
trpy
delr( locat, cnstnt)
delc( locat , ens tnt)
k( locat, cnstnt , f mt in, iprn)
.1000E-04 k array (layer 1)
.1000E-04

.2000E-05
.2000E-05

.2000E-05
.2000E-05

.2000E-05
.2000E-05

.2000E-05
.2000E-05

.2000E-05
.2000E-05

.2000E-05
.2000E-05

.2000E-05
.2000E-05

.1000E-05
.2000E-05

.1000E-05
.2000E-05

                                                  13-3

-------
0
11
.1670E-06
.1670E-06
.1670E-06
.2000i-12
.2000E-12
-2000E-12
.2000E-12
.2000E-12
.2000E-12
.2000E-12
.20006-12
.2000E-12
.2000E-12
.2000E-12
-2000E-12
.2000E-12
.20006-12
.2000E-12
.2000E-12
.2000E-12
.2000E-12
.2000E-12
.2000E-12
.20006-12
.16706-07
,16706-07
-2000E-12
.16706-07
.16706-07
.2000E-12
11
.10005-02
. 1000E-02
.1000E-02
.1000E-08
.10006-08
.10006-08
.10006-08
.10006-08
.10006-08
.1000E-08
.1000E-08
.1000E-08
.1000E-08
.1000E-08
.10006-08
.1000E-08
. 1000E-08
.1000E-08
.1000E-08
.1000E-08
.1000E-08
.1000E-08
.1000E-08
.1000E-08
.1000E-03
.1000E-03
.1000E-08
.10001-03
. 1000E-03
.1000E-08
11
. 1330E-06
. 1330E-06
.13306-06
.20006-12
.2000E-12
.20006-12
.20006-12
.20006-12
.20006-12
.1506*03


.1006*01(7(511.4)
.16706-06
.16706-06

.20006-12
.20006-12

.2000E-12
.2000E-12

.20006-12
.20006-12

.20006-12
.20006-12

.20006-12
.20006-12

.2000E-12
.2000E-12

.2000E-12
.2000E-12

.16706-07
.16706-07

.16706-07
.16706-07

.16706-06
.1670E-06

.20006-12
.20006-12

.20006-12
.20006-12

.2000E-12
.20006-12

.20006-12
.20006-12

.2000E-12
.20006-12

.20006-12
.20006-12

.20006-12
.20006-12

.16706-07
.16706-07

.16706-07
.1670E-07

.16706-06
.16706-06

.20006-12
.20006-12

.20006-12
.20006-12

.20006-12
.20006-12

.20006-12
.20006-12

.20006-12
.20006-12

.20006-12
.20006-12

.20006-12
.20006-12

.16706-07
.20006-12

.16706-07
.20006-12

.1006*01(7011.4)
.10006-02
.10006-02

.10006-08
.10006-08

.10006-08
.10006-08

.10006-08
.10006-08

-1000E-08
.1000E-08

.10006-08
.10006-08

.10006-08
.1000E-08

.1000E-08
.10006-08

.10006-03
.10006-03

.10006-03
.10006-03

,10006-02
.10006-02

.10006-08
.10006-08

.10006-08
.10006-08

.10006-08
.10006-08

.10006-08
.10006-08

.10006-08
.10006-08

.1000E-08
.10006-08

.10006-08
.10006-08

.10006-03
.1000E-03

.10006-03
.10006-03

.10006-02
.10006-02

.10006-08
.10006-08

.10006-08
.10006-08

.10006-08
.10006-08

.10006-08
.10006-08

.10006-08
.10006-08

.10006-08
.10006-08

.10006-08
.10006-08

.10006-03
.10006-08

.10006-03
.10006-08

.1006*01(7011.4)
.13306-06
.13306-06

.20006-12
.20006-12

.20006-12
.20006-12

.13306-06
.13306-06

.20006-12
.20006-12

.20006-12
.20006-12

.13306-06
.13306-06

.20006-12
.20006-12

.20006-12
.20006-12


12
.16706-06
.16706-06

.20006-12
.20006-12

.20006*12
.20006-12

.20006-12
.20006-12

.20006-12
.20006-12

.20006-12
.20006-12

.20006-12
.20006-12

.20006-12
.20006-12

.16706-07
.20006-12

.16706-07
,20006-12

12
.10006-02
.10006-02

.10006-08
.10006-08

.10006-08
.10006-08

.10006-08
.10006-08

.10006-08
.10006-08

.10006-08
.10006-08

.10006-08
.10006-08

.10006-08
.10006-08

.10006-03
.10006-08

.10001-03
.10006-08

12
.13306-06
.13306-06

.20006-12
.20006-12

.20006-12
.20006-12



.16706-06
.16706-06

.20006-12
.20006-12

.20006-12
.20006-12

.20006-12
.20006-12

.20006-12
.20006-12

.20006-12
.20006-12

.20006-12
.20006-12

.20006-12
.20006-12

.16706-07
.20006-12

.16706-07
.20006-12


.10006-02
.10006-02

.10006-08
.10006-08

.10006-08
.10006-08

.10006-08
.10006-08

.10006-08
.10006-08

.10006-08
.10006-08

.10006-08
.10006-08

.10006-08
.10006-08

.10006-03
.10006-08

.10006-03
.10006-08


.13306-06
.13306-06

.20006-12
.20006-12

.20006-12
.20006-12



.16706-06
.16706-06

.20006-12
.20006-12

.20006-12
.20006-12

.20006-12
.20006-12

.20006-12
.20006-12

.20006-12
.20006-12

.20006-12
.20006-12

.20006-12
.20006-12

.16706-07
.20006-12

.16706-07
.20006-12


.10006-02
.10006-02

.10006-08
.10006-08

.10006-08
.10006-08

.10006-08
.10006-08

.10006-08
.10006-08

.10006-08
.10006-08

.10006-08
.10006-08

.10006-08
.10006-08

.10006-03
.10006-08

.10006-03
.10006-08


.13306-06
.13306-06

.20006-12
.20006-12

.20006-12
.20006-12

                             bot layer 1(loc«t,cnatnt)
                             vcont 1-2 (locat.cnatnt.firtin.iprn)
                             vcont array (layer 1-2)
                             trans (locat, crwtnt, fmtin, iprn)
                             trans array (l»y«r 2)
                             vcont 2-3
-------
.2000E-12
.2000E-12
.2000E-12
.2000E-12
.2000E-12
.2000E-12
.2000E-12
.2000E-12
.2000E-12
.2000E-12
.2000E-12
.2000E-12
.2000E-12
.2000E-12
.2000E-12
.1330E-07
.1330E-07
.2000E-12
.1330E-07
.1330E-07
.2000E-12
11
.5000E-03
.5000E-03
.5000E-03
.5000E-04
.5000E-04
.5000E-04
.5QOOE-04
.5000E-04
.SOOOE-04
.5000E-04
.5000E-04
.5000E-04
.5000E-04
.5000E-04
.5000E-04
.5000E-04
.5000E-04
.5000E-04
.5000E-04
.500QE-04
.5000E-04
.5000E-04
.5000E-04
.5000E-04
.5000E-04
.5000E-04
.5000E-04
.5000E-04
.5000E-04
.5000E-04
.2000E-12 .
.2000E-12 .

.2000E-12 .
.2000E-12 .

.2000E-12 .
.2000E-12 .

.2000E-12 .
.2000E-12 .

.2000E-12 .
.2000E-12 .

.1330E-07 .
.1330E-07 .

.1330E-07 .
.1330E-07 .

.100E+OK7G11
.5000E-03 .
.5000E-03 .

.5000E-04 .
.5000E-04 .

.5000E-04 .
.5000E-04 .

.5000E-04 .
.5000E-04 .

.5000E-04 .
.5000E-04 .

.5000E-04 .
.5000E-04 .

.5000E-04 .
.5000E-04 .

.5000E-04 .
.5000E-04 .

.5000E-04 .
.5000E-04 .

.5000E-04 .
.5000E-04 .

2000E-12
2000E-12

2000E-12
2000E-12

2000E-12
2000E-12

2000E-12
2000E-12

2000E-12
2000E-12

1330E-07
1330E-07

1330E-07
1330E-07

.4)
5000E-03
5000E-03

5000E-04
5000E-04

SOOOE-04
5000E-04

5000E-04
5000E-04

5000E-04
5000E-04

5000E-04
5000E-04

5000E-04
5000E-04

5000E-04
5000E-04

5000E-04
5000E-04

5000E-04
5000E-04

.2000E-12
.2000E-12

.2000E-12
.2000E-12

.2000E-12
.2000E-12

.2000E-12
.2000E-12

.2000E-12
.2000E-12

.1330E-07
.2000E-12

.1330E-07
.2000E-12


.5000E-03
.5000E-03

.5000E-04
.5000E-04

.SOOOE-04
.5000E-04

.5000E-04
.5000E-04

.5000E-04
.5000E-04

.5000E-04
.5000E-04

.5000E-04
.5000E-04

.5000E-04
.5000E-04

.5000E-04
.5000E-04

.SOOOE-04
.5000E-04

.2000E-12
.2000E-12

.2000E-12
.2000E-12

.2000E-12
.2000E-12

.2000E-12
.2000E-12

.2000E-12
.2000E-12

.1330E-07
.2000E-12

.1330E-07
.2000E-12

12
.5000E-03
.5000E-03

.5000E-04
.5000E-04

.SOOOE-04
.5000E-04

.5000E-04
.5000E-04

.5000E-04
.5000E-04

.5000E-04
.5000E-04

.5000E-04
.5000E-04

.5000E-04
.5000E-04

.5000E-04
.5000E-04

.SOOOE-04
.5000E-04

.2000E-12
.2000E-12

.2000E-12
.2000E-12

.2000E-12
.2000E-12

.2000E-12
.2000E-12

.2000E-12
.2000E-12

.1330E-07
.2000E-12

.1330E-07
.2000E-12


.5000E-03
.5000E-03

.5000E-04
.5000E-04

.5000E-04
.5000E-04

.5000E-04
.5000E-04

.5000E-04
.5000E-04

.5000E-04
.5000E-04

.5000E-04
.5000E-04

.5000E-04
.5000E-04

.5000E-04
.5000E-04

.SOOOE-04
.5000E-04

.2000E-12
.2000E-12

.2000E-12
.2000E-12

.2000E-12
.2000E-12
'
.2000E-12
.2000E-12

.2000E-12
.2000E-12

.1330E-07
.2000E-12

.1330E-07
.2000E-12

transdocat, cnstnt, fmtin, iprn)
.5000E-03 trans array (layer 3)
.5000E-03

.5000E-04
.5000E-04

.5000E-04
.5000E-04

.5000E-04
.5000E-04

.5000E-04
.5000E-04

.SOOOE-04
.5000E-04

.SOOOE-04
.5000E-04

.5000E-04
.5000E-04

.5000E-04
.5000E-04

.SOOOE-04
.5000E-04

13-5

-------
         1
         0
        18
  .0000
  .0000
  .0000
  .0000
  .0000
  .0000
  .0000
  .0000
  .0000
  .0000
  .0000
  .0000
  .0000
  .0000
  .0000
  .0000
  .0000
  .0000
  .0000
  .0000
  .0000
  .0000
  .0000
  .0000
  .2500E-09
  .2500E-09
  .0000
  .2500E-09
  .2500E-09
  .0000
           *********************************
           *        Recharge package       *
           *********************************
           0
    .100E+OK7G11.4)
     .0000      .0000
     .0000      .0000
     .0000
     .0000

     .0000
     .0000

     .0000
     .0000

     .0000
     .0000

     .0000
     .0000

     .0000
     .0000

     .0000
     .0000
.0000
.0000

.0000
.0000

.0000
.0000

.0000
.0000

.0000
.0000

.0000
.0000

.0000
.0000
.0000
.0000

.0000
.0000

.0000
.0000

.0000
.0000

.0000
.0000

.0000
.0000

.0000
.0000

.0000
.0000
  12
.0000
.0000

.0000
.0000

.0000
.0000

.0000
.0000

.0000
.0000

.0000
.0000

.0000
.0000

.0000
.0000
     .2500E-09  .2500E-09  .2500E-09  .2500E-09
     .2500E-09  .2500E-09  .0000      .0000

     .2500E-09  .2500E-09  .2500E-09  .2500E-09
     .2500E-09  .2500E-09  .0000      .0000
.0000
.0000

.0000
.0000

.0000
.0000

.0000
.0000

.0000
.0000

.0000
.0000

.0000
.0000

.0000
.0000

.2500E-09
.0000

.2500E-09
.0000
.0000
.0000

.0000
.0000

.0000
.0000

.0000
.0000

.0000
.0000

.0000
.0000

.0000
.0000

.0000
.0000

.2500E-09
.0000

.2500E-09
.0000
                                                        nrchop.irchcb
                                                        inrech.inirch
                                                        rechdocat.cnstntjfmtin.iprn)
                                                        rech array
1.0000
           «««««**««»***«««*««>«»«>««*****
           *           SIP package         *
           *********************************
50         5
  .10000E-01         1.00000E-00         1
                                                        mxiter.nparm
                                                        accl.hclose,ipcalc,wseed,iprsip
                                                 13-6

-------
For part b, the SSOR package shown below is invoked by setting IUN1T (21) to some finite
value and shutting off the SIP package by setting IUN1T (19) to 0.
                  *        SSOR package
                  ********************
         50
  1.7200   .10000E-01
mxiter
accl,hclose,iprsor
MODEL OUTPUT

   For part a, a sensitivity analysis on the SIP seed and acceleration parameter was
conducted.  The results are shown in Table 13.1.  In part b, a sensitivity analysis on  the
SSOR acceleration parameter was conducted.  The results are shown in Table  13.2.
Table 13.1. Sensitivity analysis on SIP seed and acceleration parameter
Maximum head change
after x iterations
SEED
0.0009*
0.0001
0.005
0.00001
0.00005
0.0009*
0.0009*
0.0009*
0.0009*
0.0009*
ACCL
1.0
1.0
1.0
1.0
1.0
0.8
1.2
1.4
1.6
1.7
5
8.637
18.23
4.251
52.64
22.14
7.031 .
10.25
11.96
13.97
15.17
20
.1.607
0.975
1.527
-3.048
-0.730
1.804
1.401
1.195
-1.582
4.507
50
0.3456
0.0134
0.4036
-0.1268
—
0.3970
0.2821
0.2184
0.4613
8.643
Mass
balance
% error
22
0.23
55.93
-0.31
-0.02
34.22
14.13
8.92
5.18
0.28
Total
iterations
50
50
50
50
42
50
50
50
50
50
       *model calculated seed
                                          13-7

-------
Table 13.2. Sensitivity analysis on SSOR acceleration parameter
                           Maximum head change
                              after x iterations
ACCL
1.0
2.0
1.4
1.85
1.8
1.7
1.72
1
2.697
7.634
4.403
6.751
6.468
5.918
6.026
11
0.9858
51.97
1.505
18.70
13.26
6.761
7.720
50
0.2212
234.
0.1087
0.0748
~
—
—
Mass
balance %
error
62.35
-194.14
11.45
0.79
-0.11
0.28
0.04
Total
iterations
50
50
50
50
47
35
31
DISCUSSION OF RESULTS

    This problem exhibits a large variation in hydraulic conductivities both horizontally and
vertically.  Consequently, it is difficult to solve numerically.  In part a, the initial run with
model calculated SIP seed and acceleration parameter of 1.0 does not converge in 50
iterations.  A trial-and-error process of optimizing the seed is attempted.  By trying order of
magnitude variations in the seed, a convergent solution is discovered fairly quickly.  The
iteration history for seeds of 0.005 and 0.00005 is shown in Figure  13.2.  Notice  that
decreasing the seed induces an oscillation in early time, but makes the solution convergent.
A second alternative of keeping  the model calculated seed, while  varying  the acceleration
parameter was also attempted. The results of this scheme were less promising; convergence
was not achieved although an acceptable mass balance was attained.

    In part b the SSOR solution  technique was used. A trial-and-error process was again used
to optimize the acceleration parameter (Table 13.2).  A few trials were required to discover
that a convergent solution could be attained between 1.65 and 1.8.  The iteration  history for
acceleration parameters of 1.0, 1.85 and  1.72 is shown in Figure  13.3. Notice that  the high
acceleration factor induces oscillation whereas the low acceleration  factor causes  an
asymptotic approach.  The SSOR solution technique works fairly  well for this problem
because most of the heterogeneity is in the vertical.  Because SSOR makes a direct solution
to slices in the vertical, the heterogeneity is primarily solved for by direct methods.
                                           13-8

-------
    30 n
    20-
 O)
 c
 D  10
_C
 u

"D
 O
 0
 f—   0
   -10-
                                 seed=0.005
                                 seed=0.00005
        i T i i i i i I i I i II I r I iri|iiriririi[iiriTiii!]irTii FI i r |
      0        10       20       30       40       50

                 iteration  number

 Figure 13.2. Iteration history for variations in the SIP seed parameter.
                          13-9

-------
    20-i
    15-
10-
 Q)
 C
 O

"U
 0
 CD
_c
     5-
 0-
    -5-
                             ** * * accl=1.0
                             i ' '  ' accl=1.85
                             x x x x accl=1.72
    1 U n i i i i i i i
       0
           10
20
30
40
50
                 iteration  number
 Figure 13.3. Iteration history for variations in the SSOR acceleration parameter.
                           13-10

-------
                                   PROBLEM 14
                        Head-Dependent Boundary Conditions
INTRODUCTION
   The RIVER, DRAIN, GENERAL HEAD, and EVAPOTRANSPIRATION packages of
MODFLOW are all head-dependent flux or third type boundary conditions.  Although their
names imply specific types of sources or sinks, these packages are mathematically very
similar and can be used for a variety of  hydrologic conditions other than those their names
suggest. This exercise illustrates the similarity  of the packages, compares results of each to
one another as a verification, and gives insight  to the utility of parameters used in the
packages.

PROBLEM STATEMENT AND  DATA

   In order to evaluate these boundary conditions, a single layer, 7 node by 7 node
unconfined aquifer is modeled in parts a-d.  All cells in the domain are active and a well
pumps in the upper left-hand corner (node  1,1). A head-dependent flux boundary condition
runs along column 4 for the entire  length of the system. The boundary will be  treated in five
different ways in this exercise.  Details on  the model specific to all configurations are given
in Table 14.1.
Part a)    Model the third type boundary condition as a river running down the center of
          column 4.  The river has the following characteristics:

          Elevation                            = 0.0 ft
          Width                               = 20 ft
          Riverbed hydraulic conductivity        = 0.1 ft/d
          Riverbed thickness                    = 1 ft
          River bottom elevation                = -2.0 ft

          Run the model for the 1 year simulation period  described in Table  14.1. Note
          hydraulic head and boundary discharge at row 1, column 4 for each time step.
          You will need to invoke the cell-by-cell print flag in both the river package and
          the output control package.

Part b)    Model the third type boundary condition as a general head boundary running
          down the center of column 4. The boundary  has the following characteristics:

                     Elevation                  = 0.0 ft
                     Conductance               = 200 ftVd

     Run the model and note the results as you did in part a.
                                        14-1

-------
Table 14.1. Aquifer parameters and discretization data for Problem 14

                    Initial head                          10.0 ft
                    Hydraulic conductivity                10 ft/d
                    Aquifer base                         -50 ft
                    Storage coefficient                    0.1
                    Grid spacing (uniform)                100 ft
                    Pumping rate                         2500 ft3/d
                    Stress period length                   365 days
                    Time steps                           20
                    Time step multiplier                  1.2
                    SIP iteration parameters               5
                    Maximum number of iterations        50
                    Acceleration parameter                1.0
                    Closure criterion                     0.001

Part c)     Model the third type boundary condition as a drain running down the center of
           column 4. The drain has the following characteristics:

                     Elevation             = 0.0 ft
                     Conductance          = 200 ft2/d

           Run the model and note the results as you did in parts a and b.

Part d)     Model the third type boundary condition as a line of ET nodes running down
           column 4. These nodes will have the following characteristics:

                 Maximum ET rate          = 0.2 ft/d
                 Extinction depth            = 10 ft
                 ET surface elevation        = 10 ft

           Run the model and note the results as you did in parts a-c. You"will need to store
           the cell-by-cell ET rates for each time step and then run POSTMOD to put into an
           ASCH form.

Part e)     Model the system described above using a two-layer model. The top layer will be
           the same as  in parts a-d, except a third type boundary will not be explicitly
           included.  Instead,  the bottom layer will represent  the third type  boundary
           condition. The bottom layer will  be inactive except along column 4, which  will
           be constant  head of 0.0 ft.  The bottom layer will  be confined and have a
           transmissivity  of 100 ft2/d.  Calculate a VCONT between layers  1  and 2 to give a
           conductance of 200 ftVd. Run the model and note results as you did in parts a-d.
                                          14-2

-------
MODEL INPUT
    The following is a listing of the input data sets for  part a.
                      *********************************
                      *         Basic package         *
                      *********************************
   Third type boundary condition verification problem
   2/6/91   PFA
            17714
     11 12  0 14  0  0  0  0 19  0  0 22
            0         0
            0         1
   999.00
            0  .100E+02
   365.00            201.2000

                      *********************************
                      *  Block Centered Flow Package  *
                      *********************************
            0         0
     1
            0  .100E+01
            0  .100E+03
            0  .100E+03
            0  .100E+00
            0  .100E+02
            0 -.500E+02
           *********************************
           *          Well  package        *
           *********************************
           0

           1         1 -.250E+04

           *********************************
           *         River  package        *

          -1

           1
           2
           3
           4
           5
           6
           7
4
4
4
4
4
4
4
.0000
.0000
.0000
.0000
.0000
.0000
.0000
200.0000
200.0000
200.0000
200.0000
200.0000
200.0000
200.0000
-2.0000
-2.0000
-2.0000
-2.0000
-2.0000
-2.0000
-2.0000
   1.0000
           *********************************
           *           SIP package        *
           *********************************
50         5
  .10000E-02         1.00000             1
                                                                       headngd)
                                                                       headng<2)
                                                                       nlay,nrou,ncol,nper,itinuni
                                                                       iunit array
                                                                       iapart,istrt
                                                                       ibound
-------
*********************************
*     Output Control package   *
*********************************
                                                          ihedfm,iddnfm,
                                                          incode,ihddfI,
                                                          hdpr,ddpr,hdsv
                                                          incode.ihddfI,
                                                          incode,ihddfI,
                                                          incode,ihddfI,
                                                          incode,ihddfI,
                                                          incode,ihddfI,
                                                          incode,ihddfI,
                                                          incode,ihddfI,
                                                          incode,ihddfI,
                                                          incode,ihddfI,
                                                          incode,ihddfI,
                                                          incode,ihddfI,
                                                          incode,ihddfI,
                                                          incode,ihddfI,
                                                          incode,ihddfI,
                                                          incode,ihddfI,
                                                          incode,ihddfI,
                                                          incode,ihddfI,
                                                          incode,ihddfI,
                                                          incode,ihddfI,
ihedun,
ibudfl,
,ddsv
ibudfl,
ibudfl,
ibudfl,
ibudfl,
ibudfl,
ibudfl,
ibudfl,
ibudfl,
ibudfl,
ibudfl,
ibudfl,
ibudfl,
ibudfl,
ibudfl,
ibudfl,
ibudfl,
ibudfl,
ibudfl,
ibudfl,
iddnun
icbcfKstep 1)

icbcfKstep 2)
icbcfKstep 3)
icbcfKstep 4)
icbcfKstep 5)
icbcfKstep 6)
icbcfKstep 7)
icbcfKstep 8)
icbcfKstep 9)
icbcfKstep 10)
icbcfKstep 11)
icbcfKstep 12)
icbcfKstep 13)
icbcfKstep 14)
icbcfKstep 15)
icbcfKstep 16)
icbcfKstep 17)
icbcfKstep 18)
icbcfKstep 19)
icbcfKstep 20)
                             14-4

-------
    In part b, the RIVER package is substituted with the following GENERAL HEAD
package.  The flag in the IUNIT array is changed from using the RIVER package to using the
GENERAL HEAD package.
           7
           7
           1
                   *********************************
                   * General Head Boundary package *
                   *********************************
1
2
3
4
5
6
7
4  .000
4  .000
4  .000
4  .000
4  .000
4  .000
4  .000
.200E+03
.200E+03
.200E+03
.200E+03
.200E+03
.200E+03
.200E+03
mxbnd.ighbcb
itnp
layer,row,column,boundary.cond
    In part c, the RIVER package is substituted with the following DRAIN package. The flag
in the lUNTT array is changed from using the RIVER package to using the DRAIN package.
                   • **»«O*******'O***O**«1>«*«I>******«
                   *        Drain package       *
                   *********************************
                   -1
                    1
                    2
                    3
                    4
                    5
                    6
                    7
            .000
            .000
            .000
            .000
            .000
            .000
            .000
            .200E+03
            .200E+03
            .200E+03
            .200E+03
            .200E+03
            .200E+03
            .200E+03
                                 mxdrn.idrncb
                                 itmp
                                 layer,row,col.elevation,cond
    In part d, the RIVER package is substituted  with the following ET package.  The flag in
the IUNIT array is changed from using the RIVER package to using the ET package.
                   *****•***•**••****•«**•**********
1
1
15
20.00
20.00
20.00
20.00
20.00
20.00
20.00
0
0
WWW
30
1
wwwwwwwww
1
.100E+OK7G11.4)
20.00
20.00
20.00
20.00
20.00
20.00
20.00
.200E+00
.100E+02
20.00
20.00
20.00
20.00
20.00
20.00
20.00


                                     1

                                 10.00
                                 10.00
                                 10.00
                                 10.00
                                 10.00
                                 10.00
                                 10.00
                         12
                       20.00
                       20.00
                       20.00
                       20.00
                       20.00
                       20.00
                       20.00
                        20.00
                        20.00
                        20.00
                        20.00
                        20.00
                        20.00
                        20.00
                      20.00
                      20.00
                      20.00
                      20.00
                      20.00
                      20.00
                      20.00
nevtop
insurf,inevtr,inexdp,inievt
surf(locat,cnstnt,fmtin,iprn)
surf array
                                                                         evtr(locat,cnstnt)
                                                                         exdp(locat.cnstnt)
                                              14-5

-------
    In part e,  a two-layer model is constructed. The following BASIC and BCF files are used
in conjunction with the  previously shown WELL, SIP and OUTPUT CONTROL packages.
                     *********************************
                     *        Basic package        *

   third type boundary condition verification
   2/6/91   PFA
           27714
    11 12  0  0  0  0  0 0 19  0  0 22
           0         0
           0         1
           1         1(4012)                      2
          1000
           000
           000
           000
           000
           000
 000
 000-
 000-
 000-
 000-
 000-
 000-
999.00
            000
   365.00
    1 0
           .100E+02
           .OOOE+00
                 201.2000
                     *********************************
                     *  Block Centered Flow Package *
                     *********************************
                    •1
            0   .100E+01
            0   .100E+03
            0   .100E+03
            0   .1006+00
            0   .100E+02
            0  -.500E+02
            0   .200E-01
            0   .100E+00
            0   .500E+03
headngd)
headng(2)
nlay,nrou,ncol,nper,itmuni
iunit array
iapart,istrt
ibound(locat,iconst)layer 1
ibound(locat,iconst,fmtin,iprn)layer
ibound array (layer 2)
hnoflo
shead(locat,cnstnt)layer  1
shead(locat,cnstnt)layer  2
perlen.nstp,tsmult
                                                                           iss.ibcfcb
                                                                           laycon(1,2)
                                                                           trpydocat.cnstnt)
                                                                           delr(locat.cnstnt)
                                                                           delc(locat,cnstnt)
                                                                           sfKlocat.cnstnt) layer 1
                                                                           hy
-------
MODEL RESULTS

   Table 14.2 shows hydraulic head versus time at node (1,4) for each of the five parts to
this problem.  Table 14.3 shows discharge versus time at node (1,4). Hydraulic head versus
flow is plotted in Figure 14.1.
Table 14.2.   Hydraulic head at node (1, 4) for each of the five methods of representing
             the third type boundary condition
Time Step
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Ellapsed
Time
(days)
1.955
4.301
7.117
10.495
14.549
19.414
25.252
32.258
40.655
50.753
62.858
77.385
94.817
115.74
140.84
170.96
207.11
250.49
302.54
365.
Hydraulic Head
River GHB
(part a) (part b)
8.510
7.540
6,716
5.926
5.129
4.313
3.481
2.643
1.816
1.023
0.286
-0.371
-0.930
-1.382
- -1.727
-1.972
-2.175
-2.337
-2.448
-2.520
8.510
7.540
6.716
5.926
5.129
4.313
3.481
2.643
1.816
1.023
0.286
-0.371
-0.930
-1.382
-1.727
-1.972
-2.133
-2.231
-2.285
-2.311
(ft)
Drain
(partc)
8.510
7.540
6.716
5.926
5.129
4.313
3.481
2.643
1.816
1.023
0.286
-0.495
-1.440
-2.540
-3.843
-5.399
-7.264
-9.505
-12.20
-15.43
E-T
(partd)
8.510
7.540
6.716
5.926
5.129
4.313
3.481
2.643
1.816
1.023
0.286
-0.495
-1.440
-2.540
-3.843
-5.399
-7.264
-9.505
-12.20
-15.43
Constant
head
(pane)
8.510
7.540
6.716
5.926
5.129
4.313
3.481
2.643
1.816
1.023
0.286
-0.370
-0.930
-1.382
-1.727
-1.972
-2.133
-2.231
-2.285
-2.310
                                        14-7

-------
Table 14.3.  Discharge for each of the five methods of representing the third type
            boundary condition
Time Step
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Elapsed
Time
(days)
1.955
4.301
7.117
10.495
14.549
19.414
25.252
32.258
40.655
50.753
62.858
77.385
94.817
115.74
140.84
170.96
207.11
250.49
302.54
365
Discharge (ft3/d)
River GHB Drain
(part a) (part b) (part c)
-1702.071
-1507.910
-1343.224
-1185.109
-1025.712
-862.600
-696.128
-528.506
-363.187
-204.534
-57.278
74.103
186.031
276.494
345.353
394.344
400.000
400.000
400.000
400.000
-1702.071
-1507.910
-1343.224
-1185.109
-1025.712
-862.600
-696.128
-528.506
-363.187
-204.534
-57.278
74.103
186.031
276.494
345.353
394.344
426.648
446.221
457.037
462.149
-1702.071
-1507.910
-1343.224
-1185.109
-1025.712
-862.600
-696.128
-528.506
-363.187
-204.534
-57.278
0
0
0
0
0
0
0
0
0
E-T
(part d)
-1702.071
-1507.910
-1343.224
-1185.109
-1025.712
-862.600
-696.128
-528.506
-363.187
-204.534
-57.278
0
0
0
0
0
0
0
0
0
Constant
head
(part e)
-1702.071
-1507.910
-1343.224
-1185.109
-1025.712
-862.600
-696.128
-528.506
-363.187
-204.534
-57.296
74.088
186.017 .
276.478
345.343
394.331
426.631
446.210
457.025
462.099
                                        14-8

-------
~o
 o
 0)
X
       5-
      0-
     -5-
    -15-
     -20-
                                 AH
                                 boundary
                                 conditions
                                                   GENERAL HEAD
                                                   and constant
                                                   head boundary
                                                               RIVER
                                                             •DRAIN and
                                                              ET
    TT—I	1	1	1	1	\	1	1	1	I	1	1	1	1	1	1	1—T
•2000     -1500     -1000      -500        0
               Discharge   (cfd)
                                                              500
Figure 14.1. Hydraulic head (ft) versus flow rate (ft3/d) for each of the five methods of
           representing the third type boundary condition.
DISCUSSION OF RESULTS

   The head-dependent boundary conditions in MODFLOW are all very similar. They allow
leakage into or out of the system depending upon the difference in head between the aquifer
and some constant head external to the system. The amount of leakage is controlled by a
conductance term, which establishes the degree of hydraulic connection between the aquifer
and the external source/sink.  This exercise demonstrates the equivalency of the boundaries
and highlights some of the differences.
                                    14-9

-------
   The general head boundary is, as the name implies, a general leakage boundary.  Flux is
directly proportional to head difference for the entire range of saturated conditions.  The drain
is essentially a one-way general head boundary.  Flow can only be out of the aquifer.
Evapotranspiration is posed in terms of rates, but it is equivalent to a drain with an  upper
limit on flux out of the aquifer.  Flow cuts off at a certain depth and can only reach a certain
upper threshold.  Finally, the river is a general-head boundary with an upper threshold of flux
into the aquifer.  Flow can be into or out of the aquifer, but it can only inflow to an upper
limit.

   The head-dependent flux boundaries can be used for other hydrologic conditions than their
names suggest.  Table 14.4 shows some other uses for these  boundaries.

   The head-dependent flux boundaries are similar in behavior to a constant-head boundary
in an  adjacent aquifer. In part d, a VCONT parameter of 200 ft2/d/(100 ft)2 = 0.02/d was
equivalent to a conductance and therefore  gave similar answers as the general  head  boundary.

   The excellent comparison of the head-dependent flux boundaries to one another  provides
assurance that they are  all implemented in the same fashion.  The additional comparison to
the two-layer model with adjacent constant head nodes provides a further check  that they are
implemented correctly in  the model.
Table 14,4.  Other uses for the head-dependent flux boundary conditions in MODFLOW
General Head
Boundary
Rivers
Drain
Intermittent streams
River
Adjacent aquifers
Evapotranspiration
Drains with
                                                                  maximum flow
                                                                  limitation
 Exterior model        Springs                                     Welands
 boundaries
 Adjacent aquifers      Ditches
                                         14-10

-------
                                    PROBLEM 15
                                        Drains
INTRODUCTION

    The drain package of MODFLOW is a third-type or head-dependent flux boundary
condition. This exercise demonstrates the utility of the package, provides guidance on
computing the conductance term, and compares this boundary to a more detailed
characterization of the drain.

PROBLEM STATEMENT AND DATA

    This problem is a simple, one-dimensional flow system which is intersected by a drain.
As shown in Figure 15.1, the system is a 120 ft wide strip of a confined aquifer, 1200 ft long
with a potentiometric surface which slopes linearly from  10 ft at one end to 0 ft at the other.
The potentiometric surface is established by constant head cells at each end of the model
domain.  A drain with an effective width of 4.44 ft is placed midway between the two
constant head nodes and covers the entire 120 ft strip.  The head in  the drain  is  2.0 ft.  A
range of conductance values for the drain will be tested and compared to a detailed
characterization of the drain as a specified-head condition.  The aquifer is isotropic with
transmissivity of 100 ft2/d.
Part a)     Set up a coarse-gridded model consisting of 1 layer, 1 row, and 11 columns of
           120 ft length.  Constant heads of 10 and 0 ft are placed at columns 1 and 11,
           respectively.  Compute the drain conductance as:
                                                                                (15,1)
           where:

           C is conductance, L2/T
           L is length of drain, L (120 ft)
           W is width of drain, L (4.44 ft)
           K. is hydraulic conductivity of material surrounding drain, LTT (varies)
           M is thickness of material surrounding drain, L (1 ft).
           Make several steady-state runs of the model, varying K from 0.0001 ft/d to 100
           ft/d.  Note hydraulic head in the block containing the drain and the drain flux rate
           for each K.

Part b)     Set up a fine-gridded model consisting of 6 layers, 9 rows, and 60 columns.  Use
           the column spacing shown in Table 15.1.  Row spacing is uniform at 13.33 ft

                                         15-1

-------
Layer spacing is  1 ft, 1 ft, 2 ft, 3 ft, 5 ft, and 8 ft, from top to bottom.  Constant
heads are placed  in all layers in columns 1 and 60 at values of 10 ft and 0 ft,
respectively. Two specified-head cells per row (in columns 30 and 31) are used
to model the drain.  These are set at a head of 2.0 and a hydraulic conductivity of
1000 ft/d to approximate a gravel.  A  1  ft-thick-filter layer surrounds the drain on
its side and base  as shown in Figure 15.1. Note that the specified-head cells are
only in layer 1 while the filter is in layer 1  and 2.  Run the model and obtain a
hydraulic conductivity for the filter layer which gives an equivalent flux as the 0.1
ft/d hydraulic conductivity used in  part a.
                                 15-2

-------
        120'
                         CONSTANT HEAD =10 ft.
                                           DRAIN ELEVATION = 2 ft.
                                                                  CONSTANT HEAD = Oft.
(M
                          COARSE DRAIN MODEL
                                                                (CONSTANT HEAD)

                                                          FILTER MATERIAL
                        DRAIN DETAIL FOR FINE
                              GRIDDED MODEL
                Figure 15.1.   Model configuration for Problem 15.

-------
Table 15.1. Grid spacing used in the fine-gridded model (Part b)
Column
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Width (ft)
40
40
40
40
40
30
30
30
30
24
24
24
24
24
20
20
20
20
20
20
13.33
13.33
6.67
6.67
6.67
5.11
4
2
1
1.22
Column
No.
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Width (ft)
1.22
1
2
4
5.11
6.67
6.67
6.67
13.33
13.33
20
20
20
20
20
20
24
24
24
24
24
30
30
30
30
40
40
40
40
40
                                       15-4

-------
MODEL INPUT
     The data set for part a with a K of 0.1 ft/d is shown below.
                      *********************************
                      *         Basic package         *
                      *********************************
   DRAIN PROBLEM  COARSE GRID
   1/21/91  PFA
            1         1        11          14
     11  0 13  00000 19  000
            0         0
            1         1(4012)                      2
   -1111111111-1
   999.00
            1  .1QQE+OK7G11.4)                   12
      10.00      .0000      .0000      .0000       .0000
      .0000      .0000      .0000      .0000
   1.0000             11.0000

                      *********************************
                      *  Block Centered Flow Package  *
                      ••» **««««««**«««•***«««*«««««»<«<
            1         0
     0
            0  .100E+01
            0  .12QE+03
            0  .120E+Q3
            0  .100E+Q3
                      *********************************
                      *         Drain package         *
                      *********************************
                      1
                            6  .2QQE+Q1 ,53281+02
                  *********************************
                  *           SIP package         *
                  *********************************
        50         5
1.0000    .10000E-02         1.00000             1
                                                                              headngd)
                                                                              headng(2)
                                                                              nlay,nrowfncol,nper,Itrauni
                                                                              iunit array
                                                                              iapart,fstrt
                                                                              iboundClocat,iconst,fmtfn,iprn)
                                                                              ibound array
                                                                              hnoflo
                                                                              sheadClocat,cnstnt, f nitIn,iprn)
                                                        .0000      .0000       shead array

                                                                              perIen,nstp,tsmuIt
                                                                              iss.ibefcb
                                                                              Iayeon
                                                                              trpy(locat,cnstnt)
                                                                              delr(locat,cnstnt)
                                                                              delc(locat,cnstnt)
                                                                              transClocat,cnstnt)
mxdrn,idrncb
itmp
layer,row,col,elevation,cond
                                                                                  mxiter,nparra
                                                                                  accl,hclose,ipcalc,useed,iprsip
                                                   15-5

-------
The data set for part b with a K of 0.1  ft/d  is shown  below.


drain problem
6/27/91

11 0


-1 1 1
1 1 1
-1 1 1
1 1 1
-1 1 1
1 1 1
-1 1 1
1 1 1
-1 1 1
1 1 1
-1 1 1
1 1 1
-1 1 1
1 1 1
-1 1 1
1 1 1
-1 1 1
1 1 1

-1 1 1
1 1 1
-1 1 1
1 1 1
-1 1 1
1 1 1
-1 1 1
1 1 1
-1 1 1
1 1 1
-1 1 1
1 1 1
-1 1 1
1 1 1
-1 1 1
1 1 1
-1 1 1
1 1 1

-1 1 1
1 1 1
-1 1 1
1 1 1
-1 1 1
1 1 1
-1 1 1
1 1 1
-1 1 1
1 1
-1 1
1 1
-1 1
1 1
-1 1
1 1
- 1 1
1 1

- 1 1
1 1
- 1 1
1 1
- 1 1
1 1
- 1 1
1 1
-1 1 1
1 1 1

pfa
6
0 0
0

1
1
1
1
1
1
1
1 1
1 1
1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1 1
1 1 1
1 1 1

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

*********
*
********4
fine grid

9
0 0 0 0 19
0
1(4012)
111 11
111 11
111 11
111 11
111 11
111 11
111 11
1111 11
1 1
1 1 1
1 1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

























1 1 1
1111
1111
1111
1111
1111
1111
1111
1111
1111
(4012)
1111
1111
1111
1111
1111
1111
1111
1111
1111
11 1 1
1111
1111
1111
1 1 1
1 1 1
1 1 1
1 1 1
1111
1(4012)
1111
1111
1111
1111
1111
1111
1 1 1
1 1 1
1 1 1
1111 11
1111 11
1111 11
111 11
111 11
111 11
11 111
11 111
11 111
(4012)
11 1111
11 1111
11 111
11 111
11 111
11 111
11 111
11 111
1111111
1111111

Basic package *
** 1t1t1t^t1t1t1t W** 1t1rtt 1t1t1t4t1t1l1t1t 4t

60
0 0


1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1




1 4
22


1 1
1

1
1
1
1
4

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1


2
1111111111 1-1-1 111111111
1-1
111111111 1-1-1 111111111
-1
111111111 1-1-1 111111111
-1
111111111 1-1-1 111111111
-1
1111111111 1-1-1 111111111
1-1
1111111111 1-1-1 111111111
1-1
1111111111 1-1-1 111111111
1-1
1111111111 1-1-1 111111111
1-1
1111111111 1-1-1 111111111
I 1-1
2
1111111111111111111111
1-1
1111111111111111111111
1-1
1111111111111111111111
1-1
1111111111111111111111
1-1
1111111111111111111111
1-1
1111111111111111111111
1-1
1111111111111111111111
1-1
1111111111111111111111
1-1
1111111111111111111111
1-1
2
1111111111111111111111
1-1
1111111111111111111111
1-1
1111111111111111111111
1-1
1111111111111111111111
1-1
1111111111111111111111
1-1
1111111111111111111111
1-1
11111111111111111111111
1 1-1
11111111111111111111111
1 -1
1 111111111111111111111
1 -1
2
111111111111111111111
-1
111111111111111111111
-1
111111111111111111111
-1
111111111111111111111
-1
1111111111111111111111
1-1
15-6
                                                                           headngd)
                                                                           headng(2)
                                                                           nlay,nroH,ncol,nper,itmuni
                                                                           iunit  array
                                                                           iapart.istrt
                                                                           i bound layer  Klocat.iconst.fmtin, ipr
                                                                           ibound layer  2(locat,iconst(fmtin,ipr
                                                                           ibound layer 3(locat,iconst,fmtin,ipr
                                                                           ibound layer  4(locat,iconst.fmtin,ipr

-------
.

.

.
1
-1
1

-

-

- 1
1 1 1
-1111
1111
-1111
1111
-1 1 1
1 1 1
-1 1 1
1 1 1
-1 1 1
1 1 1
-1 1 1
1 1 1

-1111
1111
-1111
1111
-1111
1111
•1111
1 1 1
-1 1 1
1 1 1
-1 1 1
1 1 1
-1111
1111
-1111
1111
-1111
1111
999.00
1








1
1
1





1
1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

1
1
1
1
1
1
1
1
1111
1111
1111
1111
1111
1111
1111
1111
1(4012)
1 1 1
1 1 1
1 1
1 i
1 1
1 1
1 1
1 1
1 1
1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1111
1(4C
1111
1 1
1 1
1 1
1 1
1 1
1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1
1 1
1 1
1 1
1 1
1 1

1
1
1
1
1
1
1 1
1 1
1 1
1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
) 2)
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1
1 1
1 1
1 1
1 1
1 1
1111
1111
1111
1111
1111
1111

1 1 1
11111111111111111111
1 1 1-1
1 1 1
1 1 1-
1 1 1
1 1 1-
1 1 1
1 1 1-

1
^
1
1
1
1 1 -
1 1
1 1 -
1 1
1 1 -
1111
11111111111111111111

11111111111111111111

11111111111111111111

2 i bound layer 5(locat, i const, fmt in, ipr
1111111111111111111 libound array

11111111111111111111

11111111111111111111

11111111111111111111

11111111111111111111

111111111111111111111
1111-1
1111
111111111111111111111
1111-1
1111
111111111111111111111
1111-1
1111
111111111111111111111
1111-1

1111
2 i bound layer 6( 1 oca t, icons t, fmt in, ipr
11111111111111111111 libound array
1111-1
1111
111111111111111111111
1111-1
1111
111111111111111111111
1111-1
1111
111111111111111111111
1111-1
1111
111111111111111111111
1111-1
1111
111111111111111111111
1111-1
1 1 1
1 1 1-
1 1 1
1 1 1-
1 1 1
11111111111111111111

11111111111111111111

11111111111111111111
1111-1

1 .100E+OK7G11.4)
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00

.0000
.0000
.0000
.0000
2.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
2.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
2.0000
.0000
.0000
.0000
.0000
.0000


.0000
.0000
.0000
.0000
2.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
2.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
2.0000
.0000
.0000
.0000
.0000
.0000

hnoflo
12 • shead layer 1(locat,cnstnt,fmtin,iprn
.0000 .0000 .0000 .0000 shead array
.0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000
.0000
.0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000
.0000
.0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000
.0000
.0000 .0000 .0000 .0000

15-7

-------
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
1
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
2.0000
.0000
.0000
.0000
.0000
.0000
'.0000
.0000
.0000
2.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
2.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
2.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
2.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
2.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
2.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
2.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
2.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
2.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
2.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
2.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.100E+OK7G11.4)
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

12
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000


.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000


.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
                              shead layer 2(locat,cnstnt,fmtin,iprn
                              shead array
15-8

-------
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
1
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.100E+OK7G11.4)
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

12
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000


.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000


.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
                               shead layer 3(locat,cnstnt,fmtin,iprn
                               shead array
15-9

-------
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
1
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
'.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.100E+OK7G11.4)
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

12
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000


.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000


.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
                               shead  layer 4(locat,cnstnt,fintinf iprn
                               shead  array
15-10

-------
.0000
.0000
.0000
.0000 •
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.oooo
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
1
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.100i+01(7G11
.0000
.0000
.0000
.0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
.4)
0000
0000
0000
0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

12
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000.
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000


.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000


.0000
.0000
.0000
.0000
                              shead layer 5(loeat,cnstnt,fi«fn,iprn
                              shead array
15-11

-------
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
to. oo
.0000
.0000
.0000
.0000
.0000
.0000
.6000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
• .0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
  15-12

-------
.0000      .0000      .0000      .0000
       1   .100E+OK7G11.4)
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.00
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
  12
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000

                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000

                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000

                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000

                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000

                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000

                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000

                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000

                                                       .0000
                                                       .0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
shead layer 6
-------
.0000
.0000
.0000
.0000
.0000
.0000
.0000
1.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
11.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000


.0000
.0000
.0000
.0000
.0000
.0000


.0000
.0000
.0000
.0000
.0000
.0000


*********************************
*  Block Centered Flow Package  *
                             12
                           40.00
                           24.00
                           20.00
                           5.110
                           2.000
                           13.33
                           24.00
                           30.00
1
00000
0
11
40.00
30.00
20.00
13.33
1.000
6.670
20.00
24.00
40.00
0
11
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
-1
0
.100E+01






.100E+OK7G11.4)
40.00
30.00
20.00
6.670
1.220
6.670
20.00
24.00
40.00
.1333E02
40.00
24.00
20.00
6.670
1.220
6.670
20.00
30.00
40.00

40.00
24.00
20.00
6.670
1.000
13.33
20.00
30.00
40.00

.100E+OK7G11.4)
5.000
5.000
5.000
5.000
.1000E+04
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
.1000E+04
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
.1000E+04
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
.1000E+04
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
.1000E+04
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
.1000E+04
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
.1000E+04
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
.1000E+04
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
.1000E+04
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
.1000E+04
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
                             12
                            ,000
                            .000
                            ,000
                            .000
                            .000
                            ,000
                            ,000
                           5.000

                           5.000
                           5.000
                             000
                             000
                             000
                             000
                             000
                           5.000

                           5.000
                           5.000
                           5.000
                           5.000
                           5.000
                           5.000
                           5.000
                           5.000
                            .000
                            .000
                            .000
                            .000
                            .000
                            .000
                           5.000
                           5.000
                           5.000
                           5.000
                           5.000
                           5.000
                           5.000
                           5.000
                           5.000
                           5.000

                           5.000
                           5.000
                           5.000
                           5.000
30.00
24.00
20.00
4.000
4.000
20.00
24.00
30.00
5.000
5.000
  000
  000
  000
  000
  000
 5.000

 5.000
 5.000
  000
  000
  000
  000
  000
 5.000

 5.000
 5.000
 5.000
 5.000
 5.000
 5.000
 5.000
 5.000

 5.000
 5.000
 5.000
 5.000
 5.000
•5.000
 5.000
 5.000

 5.000
 5.000
 5.000
 5.000
 5.000
 5.000
 5.000
 5.000

 5.000
 5.000
 5.000
 5.000
30.00
24.00
13.33
2.000
5.110
20.00
24.00
40.00
 .000
 .000
 .000
 .000
 .000
 .000
5.000
5.000
5.000
5.000
5.000
  000
  000
  000
  000
5.000
 .000
 .000
 .000
 .000
 .000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
  000
  000
  000
  000
  000
  000
  000
5.000

5.000
5.000
5.000
5.000
                                                             perlen.nstp.tsmult
iss.ibcfcb
laycon array
trpy
-------
0.100
5.000
5,000
5.000
5.000
S.OOO
S.OOO
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
S.OOO
5.000
5.000
11
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
S.OOO
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
S.OOO
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
S.OOO
5.000
5.000
0.100
5.000
S.OOO
.10001+04
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
.10001+04
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
.10006+04
5.000
5.000
5.000
5.000
5.000
5.000
5.000
S.OOO
.1QOOE+04
5.000
5.000
5.000
5.000
.10001+04
5.000
5.000
5.000
5.000
5.000
5.000 -
5.000
5.000
.1000E+04
5.000
5.000
5.000
5.000
S.OOO
5.000
5.000
5.000
.1000E+04
5.000
5.000
5.000
5.000
5.000
5.000
S.OOO
5.000
.1000E+04
5.000
S.OOO
5.000
5.000
0.100
5.000
S.OOO
5.000
S.OOO
S.OOO
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
S.OOO
5.000
0.100
5.000
5.000
S.OOO
5.000
S.OOO
S.OOO
5.000
5.000
0.100
5.000
5.000
5.000
5.000
.100E+OU7G11.4)
5.000
S.OOO
S.OOO
5.000
0.200
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.200
5.000
5.000
S.OOO
5.000
5.000
5.000
5.000
5.000
0.200
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.200
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.200
5.000
S.OOO
5.000
S.OOO
5.000
5.000
0.200
5.000
5.000
5.000
S.OOO
5.000
S.OOO
S.OOO
5.000
0.200
5.000
S.OOO
5.000
S.OOO
5.000
5.000
5.000
5.000
0.200
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.200
5.000
5.000
5.000
5.000
5.000
5.000
5.000
S.OOO
0.200
5.000
5.000
S.OOO
5.000
S.OOO
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
S.OOO
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
S.OOO
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000

S.OOO
5.000
5.000
5.000
5.000
5.000
S.OOO
5.000

12
5.000
S.OOO
5.000
S.OOO
5.000
5.000
5.000
5.000

5.000
5.000
5.000
S.OOO
5.000
5.000
5.000
S.OOO

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
S.OOO
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
S.OOO
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
S.OOO

5.000
S.OOO
S.OOO
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
S.OOO
5.000
5.000
5.000


5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5. 000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
S.OOO
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
,
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000


5.000
5.000
S.OOO
5,000
5.000
5.000
' 5.000
5.000

5.000
S.OOO
5.000
5.000
S.OOO
5.000
S.OOO
5.000

5.000
5.000
S.OOO
S.OOO
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
                               vcont layer  1-2Clocat,cnstnt,fmtin,ip
                               vcont array
15-15

-------
5.000
5.000
5.000
5.000
5.000
5.000
0,100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
11
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.200
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.200
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.200
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.200
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.200
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.200
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.200
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.200
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
Q. 100
5.000
5.000
5.000
5.000
.100E+OK7G11.4)
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0,100
5.000
5.000
5.000
5.000
5.000
5.000
5,000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5,000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5,000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5,000
5.000
5.000

12
5.000
5.000
5,000
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5,000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5,000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000


5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000


5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
                              tran layer 2(locat,cnstnt,fmtin,iprn)
                              tran array
15-16

-------
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
11
3.330
3.330
3.330
3.330
0.192
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
0.192
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
0.192
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.100
5.000
5.000
5.000
5.000
.100E+OK7G11.4)
3.330
3.330
3.330
3.330
0.192
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
0.192
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
0.192
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
0.192
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
0.192
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
0.192
3.330
, 3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
0.192
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
0.192
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
0.192
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
5.000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000

12
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330

3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330

3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330

3.330
3.330
3.330
3.330
5.000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
s: ooo
5.000
5.000
5.000
5.000


3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330

3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330

3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330

3.330
3.330
3.330
3.330
5.000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000

5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000


3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330

3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330

3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330

3.330
3.330
3.330
3.330
                               vcont  layer  2-3(locat,cnstnt,fmtin,ip
                               vcont  array
15-17

-------
0.192
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
0.192
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
0.192
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
0.192
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
0.192
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
0.192
3.330
3.330
3.330
3.330
0
0
0
0
0
0
0
0.192
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
0.192
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
0.192
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
0.192
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
0.192
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
0.192
3.330
3.330
3.330
3.330
.100E+02
.200E+01
.150E+02
.125E+01
.250E+02
.769E+00
.400E+02
0.192
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
0.192
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
0.192
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
0.192
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
0.192
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
0.192
3.330
3.330
3.330
3.330







0.192
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
0.192
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
0.192
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
0.192
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
0.192
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
0.192
3.330
3.330
3.330
3.330







3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
3.330
                                                            tran  layer 3(locat,cnstnt)
                                                            vcont  layer 3-4(locat,cnstnt)
                                                            tran  layer 4(locat,cnstnt)
                                                            vcont  layer 4-5(locat,cnstnt)
                                                            tran  layer S(locat,cnstnt)
                                                            vcont  layer 5-6(locat,cnstnt)
                                                            tran  layer 6(locat,cnstnt)
        50         5
1.0000    .10000E-02
       **************
            SIP package         *
     ****************************
0.00002
                                                            mxiter,nparm
                                                            accl.hclose,ipcalc.wseed,iprsip
*********************************
*     Output Control package    *
*********************************
                                                             ihedfm,iddnfm,ihedun,iddnun
                                                             incode,ihddfI,ibudfI,icbcfI
                                                             hdpr,ddpr,hdsv,ddsv
                             15-18

-------
MODEL OUTPUT

    Hydraulic head at the drain node and drain flux is shown for part a in Table 15.2.
Table 15.2. Hydraulic head at the drain node (column 6) and drain flux for variations
             in drain conductance (coarse model)

K
K
K
K
K
K
K

= 0.0001
= 0.001
= 0.01
= 0.1
= 1.0
= 10.0
= 100
Constant head
Hydraulic head
(ft)
5.00
4.96
4.65
3.29
2.21
2.02
2.00
2.00

K
K
K
K
K
K
K

= 0.0001
= 0.001
= 0.01
= 0.1
= 1.0
= 10.0
= 100
Constant head
Drain Flux
(ft3/d)
0.160
1.577
14.105
68.542
111.62
119.11
119.92
120.0
DISCUSSION OF RESULTS

    This problem compares two methods of representing a drain.  The first method, using the
MODFLOW DRAIN package, represents the drain as an external constant head which is
separated from the aquifer by a conductance term.  Leakage from the aquifer is due to the
head difference between the aquifer and the external drain elevation and is controlled by the
user-specified  conductance terra. Conductance is composed of a number of resistance or head
loss producing factors including: hydraulic conductivities in the vicinity of the drain,
thickness of material surrounding the drain, size of drain, and  drain penetration into the
aquifer. Conductance is usually somewhat difficult to quantify because it is a combination of
so many factors.  Equation  15.1  simplifies the conductance term by establishing a drain  size
(width x length) and assuming that the resistance to flow into  the drain is controlled by  a
filter around the drain.  It is further assumed that the  properties of the filter can be quantified.

    Regardless of quantification problems, the hydraulic conductivity becomes the variable
factor in equation 15.1.  The sensitivity analysis for this problem  (Table 15.2) shows that a
hydraulic conductivity value of 0.001 ft/d effectively shuts off discharge whereas a value of
10 ft/d causes  a direct connection between the drain and aquifer.

    The configuration of the fine-gridded model attempts to represent the drain as a set of
distinct, quantifiable hydraulic conductivity zones in the aquifer.  The drain itself is
conceptualized as a gravel zone 2.44 ft wide and 1 ft deep.  A wetted perimeter of 4.44 ft is
therefore modeled. The gravel is surrounded by a  1 ft-thick layer of porous material.  The

                                         15-19

-------
hydraulic conductivity of this material was varied in part b of this exercise to match a drain
discharge equivalent to the case where K was equal to 0,1 ft/d in the coarse-gridded drain
model,  A six-layer aquifer is modeled in part b to further characterize the vertical gradients
near the  drain.

    The hydraulic conductivity which best matches the 68.55 ftVd discharge from the coarse
model is also  0.1 ft/d.  The drain flux for this case is 70.76 ftVd.  Note that the six-layer
model has difficulty in converging due to the large variations in hydraulic conductivity from
block to block.  It is interesting how similar the fluxes generated by these two methods of
representing the drain are.  Although some of this can be attributed to the linearity and
simplicity of the system as well as the thinness of the aquifer, it is apparent that the drain
package  is a viable means of characterizing drains. The DRAIN package can be used
provided that  hydraulic conductivity in the drain  vicinity can be calculated. Note that the
drain behaves  as a constant head if the material in the vicinity of the drain is of greater
conductivity than the aquifer.  In many instances, the conductance  is a calibrated parameter
that is determined as  a part of the modeling exercise.
                                           15-20

-------
                                    PROBLEM 16
                                  Evapotranspiration
INTRODUCTION
  Evapotranspiration is a component of the water budget which is often subtracted from an
overall precipitation recharge rate prior to inclusion in the groundwater model This may be
physically appropriate, such as when the water table is sufficiently beneath the subsurface to
minimize the effect of evapotranspiration. In other instances, it is not implicitly included due
to data limitations. This problem illustrates the utility of the evapotranspiration module and
shows how excluding it from an analysis can affect the calibration and predictive capability of
the model.  The problem also gives an example of how a well may "capture" water otherwise
lost to evapotranspiration.

PROBLEM STATEMENT AND DATA

  The problem domain is a coastal environment covering a regional area of 90 square miles.
For the purposes of this analysis, the limestone  aquifer extends approximately 8 miles inland
and ends abruptly. Groundwater flow lines define the northern and southern extent of the
model domain and form no-flow boundaries in those  areas.  There is some topographic relief
in the area, with land surface elevation changing from 0 ft at the coast to 18 ft in the
southwest corner of the domain.  A uniformly spaced 20 row by 18 column, finite-difference
grid with 2640 ft  spacing is used.  Boundaries and topographic elevations are simplified  as
shown in Figure 16,1.  The  aquifer is unconfined with base  of -200 ft and hydraulic
conductivity of 1340 ft/d.

Part a)     Run the model in a steady-state mode with the EVAPOTRANSPIRATION option
           and parameters given below:

                        Maximum ET rate          = 50 in/yr
                        ET extinction depth        = 8 ft
                        ET surface                = land surface array from Figure  16.1
                        Recharge                  = 25 in/yr
                        Closure criterion            =0.01  ft

           Save the output  hydraulic heads for  later use as an initial condition. Do this  using
           the Hdsv parameter in the Output Control package. Plot the potentiometric
           surface.

Part b)     Subtract the total evapotranspiration rate component in the mass balance of part a
           from the recharge rate used in part a.  Use this as a net uniformly distributed
           recharge rate, eliminating the EVAPOTRANSPIRATION package. Run the
           model, plot the potentiometric surface and compare to part a.

Part c)      Using  the results of part a as  an initial condition, run the model with a  well
           pumping at row  4, column 5, at a rate of  535,000 ft3/d.  Plot the  steady-state
           drawdown,

                                         16-1

-------
Part d)    Using the results of part a as an initial condition, run the model with a well
          pumping at row 17, column 5, and a rate of 535,000 ft3/d.  Plot the steady-state
          drawdown.
                                     WELL, PART  C
                                                                      CONSTANT
                                                                      HEAD
                                   WELL,  PART D
Figure 16.1.  Finite-difference grid, boundary conditions, and simplified topography for
             Problem 16.
                                        16-2

-------
MODEL INPUT
   The following is a listing of the data set used for part a.
                      *         Basic  package         *
                      *********************************
   EVAPOTRANSPIRATION PROBLEM
   1/18/91   PFA

11 0


1 1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
99.00
1
0 0 15
0
1
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111

20

0
0 18
18
19 0

0 22
0
1(4012)
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1 '
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
"1

1 1
1 1
1 1
1 1













1
1
1
1
1
1
1
1
1
1
1
1
1
1 1
1 1
1 1

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1-1
1 1-1
1 1-1
1-1-1
-1-1
-1-1
- -1-1
- -1-1
- -1-1
1 1-1-1-1-1
1 1-1-1-1-1
1 1-1-1-1-1
1-1-1
1-1-1
1-1-1
1-1-
1-1-
1-1-
1-1-
1-1-
1-1-

-1-1-1
-1-1-1
-1-1-1
-1-1-1
-1-1-1
-1-1-1
-1-1-1
-1-1-1
-1-1-1

0 .OOOE+00
,0000
11.0000
                      *****•« *********** ****************
                      *  Block Centered  Flow Package
                      *********
                      0
*************************
               .100E+Q1
               ,2646+04
               .2641+04
               .134E+04
               .200E+03
                      *****************
                      *  Evapotranspiration package   *
                      *********************************
                                                  12
                                                10.00
                                                4.000

                                                10.00
                                                4.000

                                                10.00
                                                4.000

                                                10.00
                                                4.000

                                                10,00
                                                4.000

                                                10.00
                                                4.000
1
1
• 15
14.00
8.000
2.000
14.00
8.000
2.000
14.00
8.000
2.000
14.00
8.000
2.000
14.00
8.000
2.000
14.00
8.000
2.000
0
. 1

1

1
.10QE+01C7G11.4)
14.00
6.000
2.000
14.00
6.000
2.000
14.00
6.000
2.000
14.00
6.000
2.000
14.00
6.000
2.000
14.00
6.000
.0000
12.00
6.000
2.000
12.00
6,000
2.000
12.00
6.000
.0000
12.00
6.000
.0000
12.00
6.000
.0000
12.00
6.000
.0000
12.00
4.000
.0000
12.00
4.000
.0000
12.00
4.000
.0000
12.00
4.000
.0000
12.00
4.000
.0000
12.00
4.000
.0000
                             10.00
                             2.000

                             10.00
                             2.000

                             10.00
                             2.000

                             10.00
                             2.000

                             10.00
                             2.000

                             10.00
                             2.000
8.000
2.000

8.000
2.000

8.000
2.000

8.000
2.000

8.000
2.000

8.000
2.000
                                                   headngC1)
                                                   headng(2)
                                                   nlay.nrow.rvcol ,nper, i tmuni
                                                   iunit array
                                                   iapart,istrt
                                                   ibound(loeat,iconst,fmtin,iprn)
                                                   ibound array
                                                                                  hnoflo
                                                                                  shead(locat,cnstnt)
                                                                                  perLen,nstp,tsnult
                                                   iss.ibcfcb
                                                   laycon
                                                   trpy(locat.enstnt)
                                                   delr(local.cnstnt)
                                                   dele
-------
14.00
8.000
2.000
14.00
8.000
.0000
16.00
8.000
.0000
16.00
8.000
.0000
16.00
8.000
.0000
16.00
10.00
.0000
16.00
10.00
.0000
16.00
10.00
.0000
18.00
12.00
.0000
18.00
12.00
.0000
18.00
12.00
.0000
18.00
12.00
.0000
18.00
12.00
.0000
18.00
12.00
.0000
0
0
14.00
6.000
.0000
14.00
6.000
.0000
14.00
6.000
.0000
16.00
6.000
.0000
16.00
8.000
.0000
16.00
8.000
.0000
16.00
8.000
.0000
16.00
10.00
.0000
18.00
10.00
.0000
18.00
10.00
.0000
18.00
10.00
.0000
18.00
10.00
.0000
18.00
10.00
.0000
18.00
10.00
.0000
.114E-01
.8001+01
12.00
6.000
.0000
14.00
6.000
.0000
14.00
6.000
.0000
14.00
6.000
.0000
16.00
6.000
.0000
16.00
6.000
.0000
16.00
8.000
.0000
16.00
8.000
.0000
18.00
8.000
.0000
18.00
8.000
.0000
18.00
8.000
.0000
18.00
8.000
.0000
18.00
8.000
.0000
18.00
8.000
.0000


12.00
4.000
.0000
12.00
4.000
.0000
12.00
4.000
.0000
14.00
4.000
.0000
14.00
4.000
.0000
14.00
6.000
.0000
16.00
6.000
.0000
16.00
6.000
.0000
16.00
6.000
.0000
16.00
6.000
.0000
16.00
6.000
.0000
16.00
6.000
.0000
16.00
6.000
.0000
16.00
6.000
.0000


10.00
4.000

10.00
4.000

12.00
4.000

12.00
4.000

12.00
4.000

14.00
4.000

14.00
4.000

14.00
4.000

16.00
4.000

16.00
4.000

16.00
4.000

16.00
4.000

16.00
4.000

16.00
4.000



10.00
2.000

10.00
2.000

10.00
2.000

10.00
2.000

12.00
2.000

12.00
2.000

12.00
2.000

14.00
2.000

14.00
2.000

14.00
2.000

16.00
2.000

16.00
2.000

16.00
2.000

16.00
2.000



8.000
2.000

8.000
2.000

8.000
2.000

10.00
2.000

10.00
2.000

10.00
.0000

12.00
.0000

12.00
.0000

12.00
.0000

14.00
.0000

14.00
,.0000

14.00
.0000

14.00
.0000

14.00
.0000



                   *********************************
                   *        Recharge package       *
                   *********************************
                   0
                   0
            .571E-02
1.0000
           *•••«*««***«««*•••*•***•*•**•****
           *          SIP package    -     *
           ««••••*•*•*••**••*•****«***«•••*«
50         5
  .10000E-01         1.00000             1

           *********************************
           *     Output Control package    *
           *********************************
         9
         0
         1
                    30
                     1
                     1
                                                                                evtr(locat,cnstnt)
                                                                                exdp(Ioca t,cnstnt 5
                                                                        nrchop,irchcb
                                                                        inrech.infrch
                                                                        rech(locat,cnstnt)
mxiter,nparm
accl,hclose,ipcal.c,wseeci, iprsip
ihedfm,iddnfm,ihedun,iddnun
incode,ihddfI,ibudfI,icbcfI
hdpr,ddpr,hdsv,ddsv
                                                 16-4

-------
   In part b, the evapotranspiration package is turned off by setting IUNIT(5) to 0 in the
BASIC package.  The recharge rate (RECH) is changed to 0.001214 ft/d in the RECHARGE
package.

   The following is a partial listing of the part c  data set.  Note that the initial heads
(SHEAD) are the unstressed steady-state results from part a and are read from an external
binary file (unit 32) in the BASIC package.  A negative unit number directs the model to read
an unformatted file. The other packages, BCF, ET, RECHARGE, SIP, and OUTPUT
CONTROL are  identical to part a, and are not shown here.
                   *********************************
                   *        Basic package        *
                   *********************************
   EVAPOTRANSPIRATION PROBLEM
   1/18/91  PFA
    1  1
    1  1
    1  1
    1  1
    1  1
    1  1
    1  1
    1  1
    1  1 1
    1  1 1
    1  1
    1  1
    1  1
    1  1
    1  1
    1  1
    1  1
    1  1
    1  1
    1  1
   999.00
         -32  .100E+01
   1.0000           11.0000
1 20 18
2 0 0 15 0 0 18 19 0 0 22
0 1
1 1(4012)








1
1
1 1









1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1
1
1
1
1
1
1





1
1
1
1
1
1111
1111
1111
1111
1111
1111
1111
1111










1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
11111-1

















1111-1
1 1 1-1-1
1 1 1-1-1
1 1 1-1-1
1 1-1-1-1
1 1-1-1-1
1-1-1-1-1
1-1-1-1-1
1-1-1-1-1
1-1-1-1-1
-1-1-1-1-1
-1-1-1-1-1
-1-1-1-1-1
-1-1-1-1-1
-1-1-1- -1
-1-1-1- -1
-1-1-1- -1
1111 1-1-1-1- -1
1111111111 1-1-1-1- -1
                   *********************************
                   *        Well  package        *
                   *********************************
                   0

                   4       5 -.535E+06
headngd)
headng(2)
nlay.nrow.ncol.nper, it muni
iunit array
iapart,istrt
ibound(local,(const,fmtin,iprn)
ibound array
hnoflo
shead(Iocat,cnstnt)
perlen,nstp,tsmult
mxwell,iuelcb
itirp
layer,row,col,q
   The data set for part d is identical to part c, except the row location for the well (WELL
Package) is changed to 17.
                                            16-5

-------
MODEL OUTPUT

  Figures 16.2 and 16.3 are the potentiometric surface for part a and b, respectively.  Figures
16.4 and  16.5 are drawdown plots for parts c and d, respectively.
52800
                   10560
21120
31680
42240 -
31680 -
21120 -
10560 -
42240
                                                     i   i    i    i    i    i
           i    i   i    i    i    t    i   i
                                          52800
                                        - 42240
                                        - 31680
                                        - 21120
                                        - 10560
                    10560
21120
31680
42240
Figure 16.2. Potentiometric surface (ft) for Problem 16, Part a.
                                       16-6

-------
52800
      0
10560         21120          31680         42240
42240
31680
21120
10560
    0
                           1    I   I
                            I   i    I
                                                         I    i   I    i
          I    I   I    t   I    I    l
                                                      52800
                                                      42240
                                                      31680
                                                      21120
                                                       10560
      0           10S60          21120         31680          42240




 Figure 16.3.  Potentiometric surface (ft) for Problem 16, Part b (net recharge).
                                                      0
                                        16-7

-------
52800
                  10560
21120         31680
42240
42240
31680
21120
10560
    0
          i   i    i   i    [   I
                                            1   I    I    I   1    I   T
                                       52800
                                       42240
                                       31680
                                       21120
                                       10560
          i   ii   LI    ill   i    i   i 	i   i    i   i    ii
                                       0
      0           10560         21120         31680         42240



 Figure 16.4,  Drawdown(ft) map for Problem 16, Part c.
                                       16-8

-------
52800
                  10560         21120         31680         42240
42240 -
31680 -
21120 -
10560
          i   i    i   i    i   i    i   i    i   i    i   i    i   i    i   i    i
                           i       i    i           i          i
  52800
- 42240
- 31680
- 21120
- 10560
      0           10560         21120         31680         42240




Figure 16.5.  Drawdown (ft) map for Problem 16, Part d.
                                      16-9

-------
DISCUSSION OF RESULTS

   The steady-state results for this problem indicate that the system is dominated by
evapotranspiration. The only source is precipitation recharge and 79 percent of this is
discharged by evapotranspiration. The remainder (21 percent) discharges to the sea.  There is
quite a variation in net recharge areally across the system, as shown in  Figure 16.6.
Basically, the lower left corner of the model area is a recharge area because land surface
elevation is much greater than the water-table elevation.  Toward the northeast,  recharge
becomes progressively less until it reaches 0 where the water table is 4 ft below land surface.
This occurs when
                       4 ft
                ET = 	_ x  50 in/yr = 25 in/yr and recharge = 25 in/yr.
                       8 ft                                            J
North and east of this line is all net discharge where ET is greater than 25 in/yr. Notice that
the water-table elevation is a subdued representation of the topography.

   In part b, only the net recharge rate (0.001214 ft/d) is applied evenly across the region.  As
expected from Figure 16.6, this approach is entirely inappropriate because variations in
recharge and discharge areas are ignored.  Overall, heads are much lower than in part a and
water levels tend to follow the coastal boundary.

   In part c, a pumping  well is placed in the northwest corner of the model, and the model is
run to steady state.  A cone of depression  develops  around the well, with the 0.2 ft contour
extending less than half the  north-south  distance of  the model. The maximum drawdown at
the well node is 1.19 ft.  In part d, a well  is placed  in the southwest corner of the model.
This well pumps at the same rate as the part c well, is in the same column as in part c, and is
an equivalent distance from the southern boundary as the part c well was from the northern
boundary.  Intuitively, the drawdowns in parts c and d should be very similar.  Comparison of
the results of these two  simulations show significant differences, however. The 0.2 ft contour
of part d extends greater than half the north-south distance, and the maximum  drawdown at
the well is 1.57  ft. The reason for the discrepancy is due to the recharge-discharge
relationship in the aquifer.

   In part c  (Figure 16.4), the well is located in an area where the water table is close to land
surface and evapotranspiration is occurring.  When  the well is turned on, less discharge
occurs as evapotranspiration because the water table is now drawn down.  Although the well
is a new discharge from the system, the previous discharge from evapotranspiration is
reduced. Therefore,  the  system does not see the full impact of the discharging well.  In part
d, however, the  well is placed in an area where evapotranspiration is not significant.  The
well responds with greater drawdown (Figure 16.5)  because discharge from evapotranspiration
is not significantly reduced. The system in this case sees the full impact of the well.
                                          16-10

-------
52SOO
42240
31680
21120
 10560
                10560
                  1    I
           RECHARGE
              AREA
 257yr.
RECHARGE
                   21120
                                          31630
                                                       42240
                         DISCHARGE
                            AREA
                                                  CONSTANT
                                                     HEAD
                                                    I   I   I	L
                                                                 52800
                                                                 42240
                                                                 31680
                                                                 21120
                                                                  10560
                 10560
                    21120
31680
                                                        42240
Figure 16.6. Net recharge rates (in/yr) for the steady-state, non-pumping scenario
           (Part a)
                                   16-11

-------
An error exists with using the non-stressed conceptual model as a base for the stressed
simulations.  Recall that the northern and southern boundaries were no-flow because they
were flow lines. When the aquifer is stressed, this approximation is invalidated.  For the
purposes of this analysis, this error does not change  the conclusions previously stated,
however it does highlight the fact that the modelers  should always be aware of the
assumptions inherent to the original model before proceeding to predictive simulations.

   This exercise highlights the importance of including evapotranspiration in simulations
where it is an important component of the water budget and causes natural variation in
recharge  and  discharge areas. Attempting to calibrate a groundwater model with a uniform
net areal recharge rate, as is often done, would be inappropriate in this situation.  This
exercise also  illustrates an interesting consideration for well siting.

   As a check of the MODFLOW results, the hydraulic heads for part a were compared to a
similar simulation using the  FTWORK  (Faust et al,  1989) code.  As shown in Table 16.1, the
results of the codes are nearly identical.
Table 16.1. Comparison of hydraulic heads (ft) along row 10 for MODFLOW and
            FTWORK
Column
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
MODFLOW
7.41
7,27
6.99
6.59
6.08
5.49
4.84
4.15
3.43
2.73
2.03
1.39
0.80
0.33
0.00
FTWORK
7.44
7.30
7.02
6.62
6.10
5,50
4.85
4.15
3.43
2.73
2.03
1.39
0.80
0.33
0.00
                                         16-12

-------
                                    PROBLEM 17
                                         Wells
INTRODUCTION
   The WELL package of MODFLOW allows the user to specify withdrawal or injection
from the  modeled area. Wells are assumed to be placed at the center of grid blocks and to
fully penetrate the layer for which they are specified.  This problem examines situations of
partially penetrating wells and multiple aquifer wells.  A commonly used rule of thumb is
assessed numerically.

PROBLEM STATEMENT AND DATA

   The model domain is essentially the same  as that used for the fmely-gridded quadrant of
the Theis problem (problem  Ic).  Instead of the fully penetrating well assumed for problem 1,
a partially penetrating well will be analyzed as a part of this problem.  In addition,  a stratified
aquifer with a well fully penetrating 2 layers of varying transmissivity will be assessed. A
second layer will therefore be required to model these features.  Table 17.1 is a listing the
physical parameters and discretization data used in the  model.

Part a)     Re-run the single layer model used in problem Ic for comparison purposes.

Part b)     A well which penetrates only the upper 50% of the model domain is required.
           Because all wells in MODFLOW are assumed to fully penetrate a model layer,
           the system will be split into two layers of equal thickness and the well specified
           for the upper layer.  Set up the two layer model  Apportion  transmissivity and
           storage coefficient evenly between the two  layers. Assume the entire aquifer
           thickness is 20 m (10 m per layer) and calculate a VCONT based on an isotropic
           hydraulic conductivity.  Run the model and compare the distance-drawdown
           relationship at time = 50938 s to the distance drawdown relationship at  the same
           time for the fully penetrating case.

Part c)     Assume the thickness of the aquifer is 40 m (20 m per layer) with the same
           transmissivities and storage coefficients as part b.  VCONT is therefore  the only
           parameter which must be recalculated and input to the model. Run and compare
           distance-drawdown at time - 50938 s to parts a and b.

Part d)     Assume that the aquifer system is stratified as 2 layers.  The top layer is 10 m in
           thickness with a transmissivity of 0.002 nr/s and the  bottom  layer is 30 m thick
           with a transmissivity of 0.0003 nr/s. Storage coefficient is the same as in  part a
           and is distributed based on thickness (equivalent specific storages are used). Note
           that the net storage coefficient and transmissivity are  consistent for parts a-d.
           Recompute  VCONT and input to the model.

   A fully penetrating well will be used in this application.  Because of differences in
   thickness and hydraulic conductivity of the units, discharges from each layer must be
   scaled in some fashion.  A common method is to use a weighted average:

                                         17-1

-------
                                            . QT
                                           T
where:            QN is the well discharge from layer N
                  QT is the total well discharge
                  TN is the transmissivity of layer N
                  TT is the total transmissivity.

Using the same discharge as in parts a-c, apportion flux to the wells.  Run the model and
compare the distance drawdown relationships at time = 50938 s for the two aquifers and
to the one-layer simulation.
                                        17-2

-------
Table 17.1.  Parameters and discretization used in Problem 17
   Initial head
   Transmissivity
   Storage coefficient
   Pumping rate
   Final time
   Number of time steps
   Time step expansion factor
   SIP iteration parameters
   Clousre criterion
   Maximum number of iterations
   Number of rows, columns
   Number of layers
   Grid spacing (m):
   Row number , i
   (=column number, j)
   1
   2
   3
   4
   5
   6
   7
   8
   9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
0.0 m
0.0023 m2/s
0.00075
4 x 10"3 m3/s (1 x 10"3 m3/s for quandrant)
86400s
20
1.3
5
0.0001
50
19
2

DELC (i)
(=DELR(j))
1
1.143
2
2.83
4
5.65
8
11.3
12
14.62
20
28.3
40
56.5
80
110
150
200
252.89
                                        17-3

-------
MODEL INPUT
    The data set for part b is shown below.
                      *********************************
                      *         Basic package         *
                      *********************************
   partially penetrating well  problem  quadrant fine spacing
   6/25/91  pfa
                                         1         1
    11 12
   999.00
   86400.
    0 0
2
0
0
0
0
0
0

19
0 0 0 0 0 19
1
1
1
.OOOE+00
.OOOE+00
201 .3000
19
0






   0 22
                      *********************************
                      *  Block  Centered  Flow Package  *
                      *********************************


1.00
11.30
80.00

1.00
11.30
80.00





0
11



11



0
0
0
c
0
.100E+01


.100E+OU7G11.4)
1.41
12.00
110.0
2.00
14.62
150.0
2.83
20.00
200.0
.100E+OU7G11.4)
1.41
12.00
110.0
.375E-03
.115E-02
.115E-04
.375E-03
.115E-02
2.00
14.62
150.0





2.83
20.00
200.0






12
4.00
28.30
252.89
12
4.00
28.30
252.89







5.65
40.00


5.65
40.00








8.00
56.50


8.00
56.50






                      **************************1
                      *         Well package         *
                      *********************************
                      0
                      1
1 -.100E-02
   1.0000
                           ****************
           *          SIP package         *
           *********************************
50         5
  .10000E-03         1.00000             1
                                                                      headngd)
                                                                      headng(2)
                                                                      nlay,nrow,ncol,nper,itmuni
                                                                      iunit array
                                                                      iapart,istrt
                                                                      ibound layer Klocat, iconst)
                                                                      ibound layer 2(locat,iconst)
                                                                      hnoflo
                                                                      shead layer 1(locat.cnstnt)
                                                                      shead layer 2(locat,cnstnt)
                                                                      perlen.nstp.tsmult
                                                  iss.ibcfcb
                                                  laycon
                                                  trpy
-------
          *********************************
          *     Output Control  package    *
          *********************************
10
 0
 0
-1
-1
-1
-1
-1
-1
-1
-1
-1
10
ihedfm,iddnfm,
incode.ihddfl,
hdfl.ddfl.hdsv
incode.ihddfl,
incode.ihddfl,
incode.ihddfl,
incode.ihddfl,
incode.ihddfl,
incode.ihddfl,
incode.ihddfl,
incode.ihddfl,
incode.ihddfl,
incode.ihddfl,
incode.ihddfl,
incode.ihddfl,
incode.ihddfl,
incode.ihddfl.
incode.ihddfl,
incode.ihddfl,
incode.ihddfl,
incode.ihddfl,
incode.ihddfl.
ihedun,
ibudfl,
,ddsv
ibudfl,
ibudfl,
ibudfl,
ibudfl,
ibudfl,
ibudfl,
ibudfl,
ibudfl,
ibudfl,
ibudfl,
ibudfl,
ibudfl,
ibudfl,
ibudfl,
ibudfl,
ibudfl,
ibudfl,
ibudfl,
ibudfl,
iddnun
icbcfKstep 1)

icbcfKstep 2)
icbcfKstep 3)
icbcf Ustep 4)
icbcf Ustep 5)
icbcfKstep 6)
icbcfKstep 7)
icbcfKstep 8)
icbcfKstep 9)
icbcfKstep 10)
icbcfKstep 11)
icbcfKstep 12)
icbcfKstep 13)
icbcfKstep 14)
icbcfKstep 15)
icbcfKstep 16)
icbcfKstep 17)
icbcfKstep 18)
icbcfKstep 19)
icbcfKstep 20)
                                       17-5

-------
   The part a data set was described in problem  1. In part c, the part b data set is modified
by changing VCONT to 0.2875 E-5/s. In part d the following parameters are used:
          T, = 0.002 m2/s     S, = 1.875 E-4
          T2 = 0.0003 m2/s   S2 = 5.625 E-4
          VCONT = 6.557 E-7/s
Q! = 8.696 E-4 m3/s
Q2 = 1.304 E-4 m3/s
MODEL OUTPUT
   Drawdown versus distance at time = 50938 s is tabulated for parts a-d in Table 17.2.
These results are plotted in Figures 17.1 and 17.2.
Table 17.2.  Drawdown versus distance at 50938 s for the fully penetrating, partially
            penetrating, and stratified aquifer simulations
distance
(m)
0
1.207
2.913
5.328
8.743
13.57
20.30
30.04
41.69
55.00
72.31
96.46
130.61
178.86
247.11
342.11
522.11
747.11
873.56
fully
penetrating
1.890
1.628
1.438
1.288
1.158
1.040
0.928
0.821
0.732
0.656
0.581
0.502
0.419
0.335
0.251
0.174
0.107
0.057
0.030
Drawdown (m)
20 m aquifer 40 m aquifer
partially penetrating partially penetrating
pumped unpumped pumped unpumped
2.583
2.067
1.708
1.442
1.236
1.072
0.939
0.824
0.733
0.656
0.581
0.502
0.419
0.335
0.251
0.173
0.106
0.056
0.029
1.197
1.188
1.169
1.134
1.080
1.007
0.918
0.819
0.732
0.656
0.581
0.502
0.419
0.335
0.251
0.173
0.106
0.056
0.029
2.778
2.257
1.884
1.597
1.360
1.161
0.992
0.849
0.745
0.662
0.584
0.503
0.421
0.336
0.252
0.174
0.107
0.057
0.029
1.006
1.003
0.996
0.982
0.959
0.922
0.868
0.797
0.724
0.655
0.582
0.503
0.420
0.336
0.052
0.174-
0.107
0.056
0.029
Stratified
top bottom
1.890
' 1.628
1.438
1.288
1.158
1.040
0.928
0.822
0.733
0.656
0.581
0.502
0.419
0.335
0.252
0.174
0.107
0.057
0.030
1.887
1.625
1.436
1.285
1.155
1.037
0.926
0.819
0.730
0.654
0.579
0.500
0.417
0.333
0.250
0.172
0.106
0.056
0.030
                                         17-6

-------
   2.50 n
   2.00 H
'—S

 E
-—^

 c 1.50 H
 O
"D

 o1-OOH
   0.50 -
   0.00
                      fully  penetrating well
                *-+-+-*HC partially  penetrating  (pumped)
                                            (i
X X X X X
< partially  penetrating  (unpumped)
               r   i  i r i i i i
                                i   i  i  i r i
                          10
                         distance
                           100
                         (m)
                                      1000
Figure 17.1.  Drawdown versus distance for the fully penetrating well case and the
          partially penetrating well case in the 20 m thick aquifer at time = 50938 s.
                               17-7

-------
   2.50  1
   2.00  -
   1.50  -
 O
"O
   1.00  -
   0.50  -
   0.00
                       fully penetrating well
                 * * * * partially  penetrating (pumped)
                    *-* partially  penetrating (unpumped)
X X X X X
                  I  tI I 111
                          10
                         distance
                           100
                         (m)
1000
Figure 17.2. Drawdown versus distance for the fully penetrating well case and the
          partially penetrating well case in the 40 m thick aquifer at time = 50938 s.
                               17-8

-------
DISCUSSION OF RESULTS

  This problem illustrates a method of modeling partially penetrating wells. A separate layer
is used over the uncased part of the well while the rest of the aquifer is modeled with another
layer. In many situations it may not be necessary to incorporate this level of complexity.
This was shown in parts b and c, which support the rule of thumb that partial penetration
effects vanish  at a distance of 0.5 to 2 times the aquifer thickness. For part b, the twenty m
thick aquifer, partial penetration effects are minimal at 20m while for part c, the forty m thick
aquifer,  the effects are minimal at 40m from the well.

  A multiaquifer well is modeled in part d. Two wells are actually  required because
MODFLOW assumes one well per layer.  Well discharge was apportioned based on a
weighted average of the transmissivities.  This method results in the  same drawdown in the
well nodes for the two aquifers, as well as in  the rest of the aquifers. The weighted average
methodology is an intuitive approach which is commonly used.  It does not account for some
of the complexity inherent in natural systems.  Bennett et ah, (1982)  and McDonald (1984)
describe the dynamics of multiaquifer  wells and how they may be incorporated in numerical
models.
                                          17-9

-------
                                     PROBLEM 18
                              Cross-Sectional Simulations
INTRODUCTION

   When conceptualizing flow in a three-dimensional system, it is often useful to simplify the
system to a two-dimensional cross-section.  In other instances, such as in modeling flow
beneath a dam, the entire analysis may lend itself to a cross-sectional representation.  This
exercise shows how to set up a cross-section, illustrates a method of modeling layers  of non-
uniform thickness and extent, and discusses advantages of certain solution techniques.

PROBLEM STATEMENT AND DATA

   The area to be modeled is  near a major river system.  A  two-dimensional vertical cross-
section is useful to conceptualize the flow system, determine reasonable ranges of aquifer
parameters, assess model boundaries, and to determine the most influential parameters in the
system.  Specifically for this problem, the model was used to assess whether aquifer thinning
and facies changes could account for a steep hydraulic gradient in that area.

   The two-dimensional model domain is shown in Figure 18.1.  Most apparent from  this
illustration is the highly variable layer thicknesses and pinchouts of certain layers.  Partly due
to the pinchouts and variable  thicknesses, some of the layers have a pronounced dip
associated with them.

   The model domain is six layers  and 27 columns.  Because it is a vertical section, a single
row is used.  The top layer is unconfined, all  others are convertible. To avoid calculating
unique transmissivities manually for each block, a fully convertible option (LAYCON=3) is
used such that both aquifer tops and bottoms  are read in.  A groundwater divide is located on
the left side of the model domain.  It is implicitly modeled  as a no-flow boundary. A
specified head boundary condition  is used in layer 6 that allows leakage into and out  of the
overlying system.  The river is assumed to penetrate layers  1, 2  and 3 and is modeled as
specified head.  A divide is assumed beneath  the river such that all flow discharges up into
the river.  The remainder of the right boundary is therefore  also assumed implicitly to be no-
flow.  The upper boundary is the water table  and receives recharge of 1.315 in/yr.  Because
some  layers may be desaturated, recharge is assumed to be  to the highest active layer.

   The layer pinchouts are handled by specifying a minimal thickness of 0.5 ft in the  area
where the bed is absent and assigning a hydraulic conductivity typical of an areally adjacent
layer.  Therefore, layer 5 has  a hydraulic conductivity of 2.8 x 10'5 ft/d  for columns 1 through
9 and 28 ft/d for columns 10  through 27.  Vertical leakance terms are computed from these
hydraulic conductivities and layer thicknesses. Order of magnitude values of hydraulic
conductivity are used, with a horizontal to vertical anisotropy of  10 to 1. Hydraulic
conductivities  are shown below.
                                          18-1

-------
        Surficial Deposits, "A"
        Clay aquitard, "B"
        Gravel aquifer, "C"
        Sand aquifer, "D"
        Dense clay aquitard, "E"
        Leaky Clay aquitard, "F"
= 0.28 ft/d
= 0.028 ft/d
= 28 ft/d
= 0.28 ft/d
= 0.000028 ft/d
= 0.0028 ft/d
    Bottom elevations of each layer are given in Table 18.1.  Note that the top elevations for
  the underlying layer are identical to the bottom elevation for the overlying layer. Initial
  conditions for the model are 290 ft in the river nodes and 500 ft elsewhere in layers 1
  through 5.  Hydraulic heads in layer 6 are given in Table 18.2. Horizontal grid spacing is
  uniform at  1050 ft.  For purposes of computing VCONT's for layer 1, the assumed saturated
  thickness of layer 1  is given in Table 18.3.
450
     ELEVATION (MSL)
200
       12345678  9101112131415161718192021222324252627
                                MODEL BLOCK  NUMBER
  Figure 18.1.  Layering and zonation used in the cross-sectional model.
                                          18-2

-------
Part a)        Set up and run the model in a steady-state mode.  Use the SIP solution
              technique with an acceleration parameter of 1.0, 5 iteration parameters, closure
              criterion of 0.01, a maximum of 50 iterations and model calculated seed. Note
              the number of iterations required for convergence and the iteration history.  In
              case of non-convergence, adjust the SIP seed to obtain a solution.

Part b)        Run the model using the SSOR solution technique with acceleration parameter
              1.0. Note the number of iterations required for convergence and the iteration
              history.
                                           18-3

-------
Table 18.1.  Bottom and top elevations (ft) in cross-sectional model
Column
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
Layer 1
Bottom
Layer 2
Top
425
420
425
406
397
390
375
360
335
325
320
314
310
310
314
319
318
318
317
317
316
313
310
310
310
300
288
Layer 2
Bottom
Layer 3
Top
415
410
415
396
387
380
365
350
325
315
310
304
300
300
304
309
308
308
307
307
306
303
300
300
300
290
287
Layer 3
Bottom
Layer 4
Top
395
390
385
380
367
360
355
330
290
277
277
277
211
111
277
277
277
277
277
277
277
111
111
277
111
277
277
Layer 4
Bottom
Layer 5
Top
327
329
330
332
335
334
330
322
289
276.5
276,5
276.5
276.5
276.5
276.5
276.5
276.5
276.5
276.5
276.5
276.5
276.5
276.5
276.5
276.5
276.5
276.5
Layer 5
Bottom
Layer 6
Top
265
266
267
268
270
272
274
276
276
276
276
276
276
276
276
276
276
276
276
276
276
276
276
276
276
276
276
Layer 6
Bottom
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
                                      18-4

-------
Table 1S.2. Initial heads in layer 6
Column
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
Head (ft)
320
319.6
319.2
318.8
318.5
318.1
317.7
317.3
316.9
316.5
316.2
315.8
315.4
351.0
314.6
314.2
313.9
313.5
313.1
312.7
312.3
311.9
311.5
311.2
310.8
310.4
310.0
                                       18-5

-------
Table 18.3.   Assumed saturated thickness (ft) of layer 1 in the cross-sectional model
Column
1
2
• 3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
Thickness (ft)
25
20
15
19
3
10
25
20
30
35
40
51
55
55
51
46
52
52
48
48
44
37
40
10
10
15
2
                                         18-6

-------
MODEL INPUT
   The data sets for part a are shown  below.
*********************************
* Basic package *
***•••*****•**•*«««*******•******
CROSS SECTIONAL MODEL SIP SOLUTION
MAY 22, 1990
6 1 27 1 4
11 0 0 0 0 0 0 18 19 0 0 22
0 0
1
11111
1
22222
1
33333
1
1
55555
0
.00000
1
500.0
500.0
500.0
500.0
1
500.0
500.0
500.0
500.0
1
500. 0
500.0
SOO.O
500.0
0
0
1
320.0
317.3
314.6
311.9
100.00
1(4012)
1111111111
1(4012)
2222222222
1(4012)
3333333333
1(4012)
1(4012)
5555555555
•6

.100E+OK7G11.4)
500.0 500.0
500.0 500.0
500.0 500.0
500.0 500.0
.100E+QK7G11.4)
500.0 500.0
500.0 500.0
500.0 500.0
500.0 500.0
.1001+01(7611.4)
500.0 500.0
500.0 500.0
500.0 500.0
500.0 500.0
.50QE+03
.500E+Q3
.1QOE+QK7C11.4)
319.6 319.2
316.9 316.5
314. 2 313.9
311.5 311.2
11.0000

1111111

2222222

3333333


5555555



500.0
500.0
500.0
500.0

500.0
500.0
500.0
500.0

500.0
500.0
500.0
500.0



318.8
316.2
313.5
310.8

2
1111-1
2
2222-2
2
3333-3
2
2
55555


12
500.0
500.0
500.0
500.0
12
500.0
500.0
500.0
500.0
12
500.0
SOO.O
500.0
500.0


12
318.5
315.8
313.1
310.4













500.0
500.0
500.0
290.0

500.0
500.0
500.0
290.0

500.0
500.0
500.0
290.0



318.1
315.4
312.7
310.0

            1
    13333
            0
            0
            0
           11
     .2800
     .2800
     .2800
     .2800
           11
     425.0
     360.0
     314.0
     313.0
                     *********************************
                     *  Block Centered Flow Package  *
                     *«****«**i» *•*•*•*««•*••*********
.100E+Q1
.105E+04
.105E+04
.1001+01(7611.4)                    12
 .2800      .2800       .2800      .2800      .2800
 .2800      .2800       .2800      .2800      .2800
 .2800      .2800       .2800      .2800      .2800
 .2800      .2800       .2800      .2800      .2800
.100E+OK7G11.4)                    12
 420.0      417.0      406.0      397.0      390.0
 335.0      325.0      320.0      314.0      310.0
 319.0      318.0      318.0      317.0      317.0
 310.0      310.0      310.0      300.0      288.0
                                                                     500.0
                                                                     500.0
                                                                     500.0
                                                                     500.0
                                                                     500.0
                                                                     500.0
                                                                     500.0
                                                                     500.0
                                                                     500.0
                                                                     317.7
                                                                     315.0
                                                                     312.3
.2800
.2800
.2800
375.0
310.0
316.0
                                                                  headngd)
                                                                  headng{2>
                                                                  nlay.nron,ncol,nper,itmuni
                                                                  iunit array
                                                                  iapart,istrt
                                                                  ibound  layer 1{locat,iconst,fmtin,ipr
                                                                  ibound  array
                                                                  ibound  layer 2(locat,iconst.fmtin,ipr
                                                                  ibound  array
                                                                  ibound  layer Sdocat.ieonst.frotin.ipr
                                                                  ibound  array
                                                                  ibound  layer 4(locat,iconst,fmtin,ipr
                                                                  ibound  array
                                                                  ibound  layer 5(locat,iconst,fmtin,ipr
                                                                  ibound  array
                                                                  ibound  layer 6(locat,iconst)
                                                                  hnoflo
                                                                  shead layer 1(locat,cnstnt,fmtin,iprn
                                                                  shead array
                                                                   shead  layer 2(locat,cnstnt,fmtin,iprn
                                                                   shead  array
                                                                   shead  layer 3{locat,cnstnt,frntin,fprn
                                                                   shead  array
                                                                   shead  layer 4(locat,cnstnt)
                                                                   shead  layer 5(locat,cnstnt)
                                                                   shead  layer 1
-------
11
.44806-03
.4667E-03
.3709E-03
.4088E-03
11
.28006-01
.28006-01
.28006-01
.28006-01
11
415.0
350.0
304.0
303.0
11
.5589E-03
.55896-03
.55856-03
.55856-03
11
425.0
360.0
314.0
313.0
11
28.00
28.00
28.00
28.00
11
395.0
330.0
277.0
277.0
11
.82116-03
.68296-02
.2036
.2113
11
415.0
350.0
304.0
303.0
11
.2800
.2800
28.00
28.00
11
327.0
322.0
276.5
276.5
11
.90316-07
.12176-06
5.600
5.600
11
395.0
330.0
277.0
277.0
11
.28006-04
.28006-04
28.00
28.00
.1006*01(7611.4)
.46676-03 .48706-03
.43086-03 .41486-03
.38366-03 .36846-03
.40006-03 .50916-03
.1006*01(7011.4)
.28006-01 .28006-01
.28006-01 .28006-01
.28006-01 .28006-01
.28006-01 .28006-01
.1006+01(761 1.4)
410.0 407.0
325.0 315.0
309.0 308.0
300.0 300.0
.1006+OU7G11.4)
.5589E-03 .55886-03
.55806-03 .55796-03
.55826-03 .55836-03
.55876-03 .55876-03
.1006+01(761 1.4)
420.0 417.0
335.0 325.0
319.0 318.0
310.0 310.0
. 1006+01 (7G1 1.4)
28.00 28.00
28.00 28.00
28.00 28.00
28.00 28.00
.1006+01(701 1.4)
390.0 385.0
290.0 277.0
277.0 277.0
277.0 277.0
.1006+01(7011.4)
.91506-03 .10146-02
.1556 .1455
.1723 .1778
.2383 .2383
. 1006+01 (7G1 1.4)
410.0 407.0
325.0 315.0
309.0 308.0
300.0 300.0
.1006+01(701 1.4)
.2800 .2800
28.00 28.00
28.00 28.00
28.00 28.00
.100E+OK7G11.4)
329.0 330.0
289.0 276.5
276.5 276.5
276.5 276.5
. 1006+01 (7G1 1.4)
.88886-07 .88886-07
.43086-06 5.600
5.600 5,600
5.600 5.600
. 1006+01 (7G1 1.4)
390.0 385.0
290.0 277.0
277.0 277.0
277.0 277.0
.1006+01(701 1.4)
.28006-04 .28006-04
.28006-04 28.00
28.00 28.00
28.00 28.00

.47066-03
.40006-03
.36846-03
.50916-03

.28006-01
.28006-01
.28006-01
.28006-01

396.0
310.0
308.0
300.0

.55916-03
.55826-03
.55836-03
.55876-03

406.0
320.0
318.0
310.0

28.00
28.00
28.00
28.00

380.0
277.0
277.0
277.0

.11636-02
.1672
.1778
.2383

396.0
310.0
308.0
300.0

.2800
28.00
28.00
28.00

332.0
276.5
276.5
276.5

.87496-07
5.600
5.600
5.600

380.0
277.0
277.0
277.0

.28006-04
28.00
28.00
28.00
12
.54376-03
.37096-03
.37846-03
.48706-03
12
.28006-01
.28006-01
.28006-01
.28006-01
12
387.0
304.0
307.0
290.0
12
.55896-03
.55856-03
.55836-03
.55936-03
12
397.0
314.0
317.0
300.0
12
28.00
28.00
28.00
28.00
12
367.0
277.0
277.0
277.0
12
.17396-02
.2036
.1836
.4148
12
387.0
304.0
307.0
290.0
12
.2800
28.00
28.00
28.00
12
335.0
276.5
276.5
276.5
12
.86156-07
5.600
5.600
5.600
12
367.0
277.0
277.0
277.0
12
.28006-04
28.00
28.00
28.00

.50916-03
.36136-03
.37846-03
.46676-02

.28006-01
.28006-01
.28006-01
.28006-01

380.0
300.0
307.0
287.0

.55896-03
.55876-03
.55836-03
.55456-02

390.0
310.0
317.0
290.0

28.00
28.00
28.00
28.00

360.0
277.0
277.0
277.0

.21376-02
.2383
.1836
.5333

380.0
300.0
307.0
287.0

.2800
28.00
28.00
28.00

334.0
276.5
276.5
276.5

.90326-07
5.600
5.600
5.600

360.0
277.0
277.0
277.0

.28006-04
28.00
28.00
28.00

.44806-03
.36136-03
.38896-03


.28006-01
.28006-01
.28006-01


365.0
300.0
306.0


.55946-03
.55876-03
.55846-03


375.0
310.0
316.0


28.00
28.00
28.00


355.0
277.0
277.0


.22316-02
.2383
.1898


365.0
300.0
306.0


.2800
28.00
28.00


330.0
276.5
276.5


.10006-06
5.600
5.600


355.0
277.0
277.0


.28006-04
28.00
28.00

                              vcont layer 1-2(locat,cmtnt,fat1n,1p
                              vcont array
                              hy layer 2iprn)
                              bot array
                              vcont layer 2-3(locat,cnstnt,fMtin,ip
                              vcont array
                              top layer 2(locat>cnstnt,fmtin>iprn)
                              top array
                              hy layer 3
-------
11
265.0
276.0
276.0
276.0
11
.8939E-07
.1198E-06
.7368E-05
.7368E-05
11
327.0
322.0
276.5
276.5
11
.2800E-02
.2800E-02
.2800E-02
.2800E-02
11
200.0
200.0
200.0
200.0
11
265.0
276.0
276.0
276.0
.100E+OK7G11.4)
266.0 267.0
276.0 276.0
276.0 276.0
276.0 276.0
.100E+OK7G11.4)
.8797E-07 .8795E-07
.4070E-06 .7368E-05
.7368E-05 .7368E-05
.7368E-05 .7368E-05
.100E+OK7G11.4)
329.0 330.0
289.0 276.5
276.5 276.5
276.5 276.5
.100E+OK7G11.4)
.2800E-02 .2800E-02
.2800E-02 .2800E-02
.2800E-02 .2800E-02
.2800E-02 .2800E-02
.100E+OK7G11.4)
200.0 200.0
200.0 200.0
200.0 200.0
200.0 200.0
.100E+OK7G11.4)
266.0 267.0
276.0 276.0
276.0 276.0

268.0
276.0
276.0
276.0

.8658E-07
.7368E-05
.7368E-05
.7368E-05

332.0
276.5
276.5
276.5

.2800E-02
.2800E-02
.2800E-02
.2800E-02

200.0
200.0
200.0
200.0

268.0
276.0
276.0
12
270.0
276.0
276.0
276.0
12
.8524E-07
.7368E-05'
.7368E-05
.7368E-05
12
335.0
276.5
276.5
276.5
12
.2800E-02
.2800E-02
.2800E-02
.2800E-02
12
200.0
200.0
200.0
200.0
12
270.0
276.0
276.0
276.0 276.0 276.0 276.0

272.0
276.0
276.0
276.0

.8929E-07
.7368E-05
.7368E-05
.7368E-05

334.0
276.5
276.5
276.5

.2800E-02
.2800E-02
.2800E-02
.2800E-02

200.0
200.0
200.0
200.0

272.0
276.0
276.0
276.0

274.0
276.0
-276.0


.9870E-07
.7368E-05
.7368E-05


330.0
276.5
276.5


.2800E-02
.2800E-02
.2800E-02


200.0
200.0
200.0


274.0
276.0
276.0

W W W W W WWW WWWWWWWWWWWWWW WW WWWWWWWWW
* Recharge package *
3
0
0
0
0
.003E-01











     ****************************
            SIP package         *
     ****************************
        50         5
1.0000    .10000E-01
          0.00001
                              1
*********************************
*     Output Control package    *
*********************************
000
1         1         0
000
                                                            bot  layer 5(locat.cnstnt,fmtin,iprn)
                                                            bot  array
                                                             vcont  layer  5-6(locat,cnstnt,fmtin,ip
                                                             vcont  array
                                                             top layer  5
-------
   In part b, the IUNTT array is modified in the BASIC package to  use the SSOR solution
technique and the following SSOR package is used.
                     *********************************
                     *           SSOR package       *
                     *********************************
          50                                                                 mxiter
   1.0000    .10000E-01         1                                              accl.hclose.iprsor
MODEL OUTPUT
   Hydraulic head arrays for the model are shown in Figure 18.2.

                HEAD IN LAYER  1 AT END OF TINE STEP  1 IN STRESS PERIOD  1
1
16

2
17

3
18

4
19

5
20

6
21

7
22

8
23

9
24

10
25

11
26

12 13
27

14 15

 350.6  347.6  344.5  341.3  337.8  334.2  330.0  325.1  319.5  313.5  304.8 290.0
              HEAD IN LAYER 2 AT END OF TIME STEP  1 IN STRESS PERIOD  1
1
16

2
17

3
18

4
19

5
20

6
21
•»07 1.
7
22
*«•» /
8
23
T9*. /_
9
24
V7*» a
10
25

11
26
*i*T •*
12 13
27
•**/, 4 TZrt /
14 15
ic*. * ICT n
 349.8  346.8  343.7  340.5  337.0  333.4  329.3  324.4  318.9  312.9  304.2 290.0
              HEAD IN LAYER  3 AT END OF TIME STEP  1 IN STRESS PERIOD  1
    1      2      3      4     5      6     7      8      9     10     11     12     13     14     15
   16     17     18     19    20     21     22     23     24     25     26     27
"iwia" 398* 1""395'7*"392*9""389"9""387*i""381 "9""375*9""372*3""369*5 "366.'7""363*6""359*9*"356*6""352*4"
 349.3  346.3  343.2  339.9  336.5  332.8  328.7  323.8  318.3  312.4  303.6 290.0
              HEAD IN LAYER  4 AT END OF TIME STEP  1 IN STRESS PERIOD  1
    1      2      3      4     5      6     7      8      9     10     11     12     13     14     15
   16     17     18     19    20     21     22     23     24     25     26     27
'sw'a' "39s! i" *395". f" '392'.9' '389"9" "isK i" 'is*'."*' "375 ".9" "372'.3' '369*5' '366'.7""363!6"359'.9"356'.o"352".4"
 349.3  346.3  343.2  339.9  336.5  332.8  328.7  323.8  318.3  312.4  303.6 290.0
              HEAD IN LAYER  5 AT END OF TIME STEP  1 IN STRESS PERIOD  1
    1      2      3      4     5      6     7      8      9     10     11     12     13     14     15
   16     17     18     19    20     21     22     23     24     25     26     27
'366!^'359!6''357!7''356!6""354!4'"352!8''356!6""346!8''345!4'"369!5' 366.7 363.6  359.9  356.6  352.4
 349.3  346.3  343.2  339.9  336.5  332.8  328.7  323.8  318.3  312.4  303.6 290.0
              HEAD IN LAYER  6 AT END OF TIME STEP  1 IN STRESS PERIOD  1
    1      2      3      4     5      6     7      8      9     10     11     12     13     14     15
   16     17     18     19    20     21     22     23     24     25     26     27
'32o!6"'3i9!6-'3i9!2*'iisis'"iisis""iis!i""iify'iifii'"^^"'iidis"^^'"sis.a  31*5.4  sis.6  3*4.6
 314.2  313.9  313.5  313.1  312.7  312.3  311.9  311.5  311.2  310.8  310.4 310.0
Figure 18.2.  Hydraulic head arrays for the cross-sectional model.

                                                 18-10

-------
DISCUSSION OF RESULTS

   This problem resembles a true field application more than the previous problems.  It is, in
fact, based on an actual field study. Because this is an actual hydrostratigraphic system,
heterogeneity and variable thicknesses are a factor in the analysis. This complicates  the
model set-up considerably.  Preprocessing capabilities become more  necessary.

   The vertical leakance parameter (VCONT) incorporates both hydraulic conductivity and
vertical grid spacing.  Because VCONT is read as a two- dimensional array, each grid cell
can conceivably have a unique thickness. This is somewhat counter to the standard
orthogonality of the finite difference method, but can be used provided the grid distortion is
not too great.  Notice that vertical grid spacing is never used explicitly in MODFLOW; it is
always posed in terms of VCONT.

   A layer must always exist, therefore, a layer cannot simply vanish when a pinchout occurs.
Instead, this example models the layer as thinning to a minimal thickness and then taking on
the properties of an adjacent layer. In a more general application, properties of layers can be
zoned; thinning of layers is not always required.

   Several statements regarding desaturation appears in the model output:  NODE (1,1,1)
GOES DRY AT ITERATION 9.  This indicates that the head in that particular layer has
fallen below the specified aquifer base.  This may be a physical reality (the case here) or a
result of an oscillatory iteration history. Dry  nodes in the latter case are a problem because
nodes are  not allowed to resaturate in  MODFLOW.  A "domino effect" may ensue once
nodes begin to dry up as a result of oscillatory iteration; the flow system is altered as a  result
of a dry node, followed by more dry nodes, etc.  This type of behavior can be minimized by
specifying acceleration parameters and seeds such that an asymptotic solution is approached
from a condition of higher head.

   The SSOR solution  technique is superior to SIP in this particular  application. Because the
cross-section is taken along a row, the model solves the entire vertical slice by direct means.
Some iteration  is performed (7) because of non-linearities due to the upper water table and
the dry nodes.  Considerably more iterations would have resulted if the cross-section had been
oriented along a column. In that case a "slice" would consist of six  nodes (1 row x  6 layers)
and 27 slices would have been solved.  The SIP solution technique requires some adjustment
to the seed before it will converge.  A convergent solution using 27  iterations was achieved
using a seed of 0.00001.

   Cross-sectional models can often be useful in conceptualization exercises such as this. The
user should be  careful to align the cross-section along a relatively straight streamtube that has
minimal change in width.
                                         18-11

-------
                                     PROBLEM 19
                    Application of a Ground water Flow Model to a
                                 Water Supply Problem
INTRODUCTION
   Groundwater flow models arc often used in water resource evaluations to assess the long-
term productivity of local or regional aquifers.  This exercise presents an example of an
application to a local system and involves calibration to an aquifer test and prediction using
best estimates of aquifer properties.  Of historical interest, this problem is adapted from one
of the first applications of a digital model to a water resource problem (Finder and
Bredehoeft, 1968).  The specific objective of their study was to assess whether a glaciofluvial
aquifer could provide an adequate water supply for a village in Nova Scotia.

PROBLEM STATEMENT AND DATA

   The aquifer is located adjacent to the Musquodoboit River,  1/4-mile northwest of the
village of Musquodoboit Harbour, as shown in Figure 19.1.  The aquifer  is a glaciofluvial
deposit consisting of coarse sand, gravel, cobbles, and boulders deposited in a typical  U-
shaped glacial valley cut into the slates and quartzites of the Meguma group and the granite
intrusives of Devonian age. The contrast in permeability between the granitic and
metamorphic rocks  and the glaciofluvial valley fill is so great (approximately 106) that the
bedrock is considered as impermeable in the aquifer analysis.  The aquifer, which is up to 62
feet thick, is extensively  overlain by recent alluvial deposits of sand, silt, and clay.  The
alluvial  deposits are less permeable and act as confining beds.  A cross-section through the
valley is given in Figure 19.2.

   A pumping test was conducted to evaluate the aquifer  transmissivity and storage
coefficient, and to estimate recharge from the river.  The test was ran for 36 hours using  a
well  discharging at  0.963 cubic feet per second (432 gallons per minute)  and three
observation wells (see inset of Figure 19.2 for locations).  The test was discontinued when the
water level in the pumping well became stable.  Initial estimates of aquifer parameters were
calculated using the Theis curve and the early segment of the drawdown  curves for the
observation wells.   The results were somewhat variable, ranging from 1.15  ftVs to  1.45 ft2/s.
A quasi-steady state formula for estimating transmissivity  yielded results  on the order of 0.3
ftVs. Because of the close proximity of boundaries,  the pumping test results are difficult  to
analyze  using usual analytical methods.

   A listing of the  data set for the MODFLOW model is provided on page 19-4. The aquifer
is treated as confined, with transmissivity  zones  to account for thickness and facies changes.
The ratio between zones of transmissivity (1,2, and 4) are given in the data set; absolute
values of transmissivity are not given.  A  map of the transmissivity zones and model
boundaries is given in Figure 19.3.
                                          19-1

-------
   A uniform value of storage coefficient is used in the analysis.  The model is used to
simulate drawdown, hence an initial head condition of 0.0 ft is used.  Recharge is not
specified because only drawdown is simulated.  A river is simulated using the  RIVER
package.  Its location is shown in Figure 19.4.  Other pertinent data is given in Table 19.1.
        CENOZOIC
          PLEISTOCENE AND RECEHT
                RECENT ALLUVIUM
                GLACIO-FLUVIAL DEPOSITS
PALEOZOIC
 DEVONIAN
        GRANITE
                                                            SCALE 1:12,600
Figure 19.1.  Geologic map of the Musquodoboit Harbor region.  Inset is the well
              configuration for the pump test conducted on this aquifer (from Finder
              and Bredehoeft, 1968).
                                          19-2

-------
              LEGEND
CENOZOIC

  PLEISTOCENE AND RECENT

       RECENT ALLUVIUM

       GLACIO-FLUVIAL DEPOSITS


PALEOZOIC AND PRECAMBRIAN

       GRANITE AND SLATE
                                                                         N
                                                                         B
         Scale
           Horizontal:
           Vertical:
               1 in
               1 in
948 ft
130 ft
Figure 19.2.  Geologic cross-section through the Musquodoboit Harbor region (from
            Finder and Bredehoeft, 1968).
                                      19-3

-------
*********************************
*         Basic package         *
*********************************
Musquodoboit Harbor problem
1/6/92 pit
1 44 55 1 1
11 12 0 14 0 0 0 0 19 0 0 22
0 1
1 K40I2) 1
000000000000000000000001 10
000000000000000
000000000000000000000001 1 1
000000000000000
000000000000000000000001 1 1
000000000000000
0000000000000000000000001 1
000000000000000
0000000000000000000000001 1
000000000000000
00000000000000000000000001
111100000000000
00000000000000000000000000
111100000000000
00000000000000000000000000
111111111000000
0000000000000000000001 1 1 1 1
111111111110000
0000000000000000000001 1 1 1 1
111111111110000
OOOOOOOOOOQ0000000001 1 1 1 1 1
111111000000000
00000000000000000000111111
000000000000000
0000000000000000001 1 1 1 1 11 1
000000000000000
000000000000000001 1 1 1 11 111
000000000000000
00000011000110011111111111
000000000000000
00011111011111111111111111
000000000000000
11111111111111111111111111
000000000000000
11111111111111111111111111
00000 0.0 00000000
00111111111111111111111111
000000000000000
00001111111111111111111111
000000000000000
00000011111111111111111111
000000000000000
00000000011111111111111111
000000000000000
00000000001111111111111111
000000000000000
00000000000111111111111111
000011111110000
00000000000011111111111111
111111111111000
00000000000000111111111111
111111111111100
00000000000000000111111111
111111111111110
00000000000000000001 1 1 1 1 1 1
111111111111111
0000000000000000001 1 1 1 1 1 1 1
111111111111111
0000000000000000001 1 1 1 1 1 1 1
111111111111110
00000000000000000011111111
111111111110000
00000000000000000001 1 1 1 1 1 1
111111111000000
00000000000000000001111111


0 0

0 0

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1


0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1


0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1


0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1


0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1


0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1


0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1


0 0

0 0

0 0

0 0

0 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 0

1 1

1 1

1 1

1 1

1 1

1 1

1*1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1


0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

0

0

0

1

1

1

1

0

0

1

1

1

1

1

1

1

1

1


0

0

0

0

0

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1


0 0

0 0

0 0

0 0

0 0

1 1

1 1

1 1

1 1

1 1

1 1

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1
19-4
                                                              headngd)
                                                              headngC25
                                                              nlay,nron,neol,nperfitmuni
                                                              iunit array
                                                              iapart,istrt
                                                              ibotindC locat, iconst, fmtin, I prn)

-------
111111
000000
111111
000000
1111
0000
1  1 1
000
1111
       1  1
       0  0
     1 1  1
     000
       1  1
 000000
 111111
 000000
 111111
 000000
 111110
 000000
 111110
 000000
 111100
 000000
 100000
 000000
 000000
     000.
       0
.12960E+06
111000000
0000000000000111111111111111111111
111000000
0000000000001111111111111111111111
111100000
0000000000001111111111111111111111
111100000
0000000000000111111111111111111111
110000000
0000000000000111111111111111111111
100000000
0000000000000111111111111111111111
000000000
0000000000011111111111111111111111
000000000
0000000000011111111111111111111111
000000000
0000000001111111111111100001111111
000000000
0000000001111111111100000000111111
000000000
0000000000110000000000000000110000
000000000

.QOOE+00
     151.4140

     ****************»******»»***»•«••
     *  Block Centered Flow Package *
     IT********************************
     0
0
0
0
0
11
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
1.000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
t.ooo
1.000
.0000
.100E+01
.1001*03
.100E+03
.1006+01
.1006+01 (7G11
.0000
.0000
.0000
.0000 1
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000 1
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000 1
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
1 .000 1
1.000
.0000


.4)
0000
0000
0000
.000
0000
0000
0000
0000
0000
0000
0000
.000
0000
0000
0000
0000
0000
0000
0000
.000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
.000
0000
0000



.0000
.0000
.0000
1.000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
1.000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
1.000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
1.000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
1.000
.0000
.0000
.0000


12
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
1.000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
1.000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
1.000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
1.000
.0000
.0000
.0000



.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
1.000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
1.000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
1.000
.0000
.0000
.0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000

                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000
                                                       .0000

                                                       .0000
                                                       .0000
                                                       .0000
                                                       1.000
                                                       .0000
                                                       .0000
                                                       .0000

                                                       .0000
                                                       .0000
                                                       .0000
                                                       1.000
                                                       .0000
                                                       .0000
                                                       .0000

                                                       .0000
                                                       .0000
                                                       .0000
                                                       1.000
                                                       .0000
                                                       .0000
                                                       .0000
                                                                 hnoflo
                                                                 shead(locat,cnstnt)
                                                                 perlen,nstp,tsmuU
                                                                  iss,ibcfcb
                                                                  tayeon
                                                                  t rpy(Iocat,cnstnt)
                                                                  delr(locat,cnstnt)
                                                                  delc(Iocat,cnstnt)
                                                                  sfKlocat, cnstnt)
                                                                  trans(locat,cnstnt,fmtin,iprn)
                                                                  trans array
                                       19-5

-------
.0000
.0000
,0000
.0000
.0000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
1.000
1.000
1.000
1.000
1.000
,0000
.0000
.0000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
.0000
.0000
.0000
1.000
.0000
.0000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
1.000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
1.000
.0000
.0000
.0000
.0000
.0000
1.000
1.000
.0000
.0000
.0000
.0000
.0000
.0000
1.000
1.000
.0000
.0000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
1.000
.0000
.0000
.0000
.0000
.0000
1.000
1.000
.0000
.0000
.0000
.0000
.0000
.0000
1.000
1.000
.0000
.0000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
1.000
1.000
.0000
.0000
.0000
.0000
.0000
.0000
1.000
1.000
.0000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
.0000
1.000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
.0000
.0000
1.000
1.000
.0000
.0000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
.0000
1.000
1.000
.0000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
1.000
1.000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
.0000
1.000
1.000
.0000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
1.000
1.000

.0000
.0000
.0000
1.000
1.000
1.000
.0000

.0000
.0000
.0000
1.000
1.000
1.000
.0000

.0000
.0000
.0000
1.000
1.000
1.000
1.000

.0000
.0000
.0000
1.000
1.000
1.000
1.000

.0000
.0000
.0000
1.000
1.000
1.000
1.000

.0000
.0000
1.000
1.000
1.000
1.000
.0000

.0000
.0000
1.000
1.000
1.000
.0000
.0000

.0000
.0000
1.000
1.000
1.000
.0000
.0000

.0000
.0000
1.000
1.000
1.000
.0000
.0000

1.000
.0000
1.000
19-6

-------
1.000
1.000
1.000
.0000
.0000
.0000
1.000
1.000
1.000
1.000
1.000
.0000
.0000
2.000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
4.000
1.000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
1.000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
2.000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
4.000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
2.000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
2.000
2.000
2.000
2.000
.0000
.0000
.0000
.0000
4.000
4.000
2.000
2.000
.0000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
.0000
.0000
.0000
2.000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
4.000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
2.000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
4.000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
2.000
2.000
2.000
.0000
.0000
.0000
.0000
.0000
4.000
4.000
2.000
.0000
.0000
1.000
1.000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
2.000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
4.000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
4.000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
2.000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
4.000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
.0000
2.000
2.000
2.000
.0000
.0000
.0000
.0000
.0000
4.000
4.000
2.000
.0000
1.000
1.000
1.000
.0000
.0000
.0000
1.000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
1.000
1.000
' 1.000
1.000
1.000
.0000
.0000
.0000
2. 000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
4.000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
2.000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
4.000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
4.000
2.000
2.000
2.000
.0000
.0000
.0000
.0000
.0000
4.000
4.000
2.000
.0000
1.000
1.000
1.000
.0000
.0000
.0000
1.000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
1.000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
2.000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
4.000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
4.000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
4.000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
4.000
2.000
2.000
2.000
.0000
.0000
.0000
.0000
4.000
4.000
4.000
2.000
.0000
1.000
1.000
1.000'
.0000
.0000
.0000
1.000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
1.000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
2.000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
2.000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
4.000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
1.000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
2.000
1.000
1.000
1.000
.0000
.0000
.0000
.0000
4.000
2.000
2.000
2.000
.0000
.0000
.0000
.0000
4.000
4.000
4.000
2.000
.0000
1.000
1.000
1.000
.0000
.0000

1.000
1.000
1.000
1.000
1.000
.0000
.0000

1.000
1.000
1.000
1.000
1.000
.0000
.0000

1.000
1.000
1.000
1.000
1.000
.0000
.0000

2.000
1.000
1.000
1.000
1.000
.0000
.0000

4.000
1.000
1.000
1.000
1.000
.0000
.0000

4.000
1.000
1.000
1.000
1.000
.0000
.0000

.0000
2.000
1.000
1.000
1.000
.0000
.0000

.0000
4.000
2.000
2.000
2.000
.0000
.0000

.0000
4.000
4.000
2.000
2.000
.0000
1.000
19-7

-------
1.000
.0000
.0000
4.000
4.000
4.000
4.000
1.000
1.000
,0000
.0000
4.000
4.000
4.000
4.000
1.000
1.000
.0000
.0000
.0000
4.000
4.000
4.000
1.000
1.000
.0000
.0000
.0000
4.000
4.000
4.000
1.000
1.000
.0000
.0000
.0000
4.000
4.000
4.000
2.000
1.000
.0000
.0000
.0000
4.000
4.000
4.000
2.000
1.000
.0000
.0000
.0000
4.000
4.000
4.000
2.000
1.000
.0000
.0000
.0000
4.000
4.000
4.000
2.000
.0000
.0000
.0000
.0000
4.000
4.000
4.000
4.000
.0000
.0000
.0000
.0000
1.000
.0000
.0000
4.000
4.000
4.000
4.000
1.000
1.000
.0000
.0000
4.000
4.000
4.000
4.000
1.000
1.000
.0000
.0000
.0000
4.000
4.000
4.000
1.000
1.000
.0000
.0000
.0000
4.000
4.000
4.000
1.000
1.000
.0000
.0000
.0000
4.000
4.000
4.000
1.000
1.000
.0000
.0000
.0000
4.000
4.000
4.000
2.000
1.000
.0000
.0000
.0000
4.000
4.000
4.000
2.000
1.000
.0000
.0000
.0000
4.000
4.000
4.000
2.000
.0000
.0000
.0000
.0000
4.000
4.000
4.000
2.000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
4.000
4.000
4.000
2.000
1.000
1.000
.0000
.0000
4.000
4.000
4.000
4.000
1.000
1.000
.0000
.0000
.0000
4.000
4.000
4.000
1.000
1.000
.0000
.0000
.0000
4.000
4.000
4.000
1.000
1.000
.0000
.0000
.0000
4.000
4.000
4.000
1.000
1.000
.0000
.0000
.0000
4.000
4.000
4.000
1.000
1.000
.0000
.0000
.0000
4.000
4.000
4.000
1.000
.0000
.0000
.0000
.0000
4.000
4.000
4.000
1.000
.0000
.0000
.0000
.0000
4.000
4.000
4.000
2.000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
4.000
4.000
4.000
2.000
1.000
.0000
.0000
.0000
4.000
4.000
4.000
2.000
1.000
1.000
.0000
.0000
4.000
4.000
4.000
4.000
1.000
1.000
.0000
.0000
.0000
4.000
4.000
4.000
1.000
1.000
.0000
.0000
.0000
4.000
4.000
4.000
1.000
1.000
.0000
.0000
.0000
4.000
4.000
4.000
1.000
1.000
.0000
.0000
.0000
4.000
4.000
4.000
1.000
.0000
.0000
.0000
.0000
4.000
4.000
4.000
1.000
.0000
.0000
.0000
.0000
4.000
4.000
4.000
1.000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
4.000
4.000
4.000
1.000
1.000
.0000
.0000
.0000
4.000
4.000
4.000
2.000
1.000
.0000
.0000
.0000
4.000
4.000
4.000
2.000
1.000
1.000
.0000
.0000
.0000
4.000
4.000
4.000
1.000
1.000
.0000
.0000
4.000
4.000
4.000
4.000
1.000
1.000
.0000
.0000
4.000
4.000
4.000
4.000
1.000
1.000
.0000
.0000
4.000
4.000
4.000
4.000
1.000
.0000
.0000
.0000
.0000
4.000
4.000
4.000
1.000
.0000
.0000
.0000
.0000
4.000
4.000
4.000
1.000
.0000
.0000
.0000
.0000
.0000
.0000
4.000
4.000
4.000
4.000
1.000
1.000
.0000
.0000
.0000
4.000
4.000
4.000
1.000
1.000
.0000
.0000
.0000
4.000
4.000
4.000
2.000
1.000
.0000
.0000
.0000
4.000
4.000
4.000
2.000
1.000
1.000
.0000
.0000
4.000
4.000
4.000
2.000
1.000
1.000
.0000
.0000
4.000
4.000
4.000
4.000
1.000
.0000
.0000
.0000
4.000
4.000
4.000
4.000
1.000
.0000
.0000
.0000
4.000
4.000
4.000
4.000
1.000
.0000
.0000
.0000
4.000
4.000
4.000
4.000
1.000
.0000
.0000
.0000
2.000

.0000
4.000
4.000
4.000
4.000
1.000
1.000

.0000
.0000
4.000
4.000
4.000
1.000
1.000

.0000
.0000
4.000
4.000
4.000
1.000
1.000

.0000
.0000
4.000
4.000
4.000
2.000
1.000

.0000
.0000
4.000
4.000
4.000
2.000
1.000

.0000
.0000
4.000
4.000
4.000
2.000
1.000

.0000
.0000
4.000
4.000
4.000
4.000
1.000

.0000
.0000
4.000
4.000
4.000
4.000
1.000

.0000
.0000
4.000
4.000
4.000
4.000
1.000

.0000
.0000
4.000
19-8

-------
4.000
4.000
4.000
4.000
.0000
.0000
.0000
.0000
4.000
4.000
4.000
4.000
1.000
.0000
.0000
.0000
2.000
4.000
4.000
4.000
1.000
.0000
.0000
.0000
2.000
4.000
4.000
4.000
.0000
.0000
.0000
.0000
2.000
4.000
4.000
4.000
.0000
.0000
.0000
.0000
2.000
2.000
4.000
4.000
.0000
.0000
.0000
.0000
2.000
2.000
2.000
4.000
.0000
.0000
.0000
.0000
2.000
2.000
2.000
2.000
.0000
.0000
.0000
.0000
2.000
2.000
2.000
2.000
.0000
.0000
.0000
.0000
2.000
.0000
2.000
.0000
4.000
4.000
4.000
4.000
.0000
.0000
.0000
.0000
4.000
4.000
4.000
4.000
.0000
.0000
.0000
.0000
2.000
4.000
4.000
4.000
.0000
.0000
.0000
.0000
2.000
4.000
4.000
4.000
.0000
.0000
.0000
.0000
2.000
4.000
4.000
4.000
.0000
.0000
.0000
.0000
2.000
2.000
4.000
4.000
.0000
.0000
.0000
.0000
2.000
2.000
2.000
4.000
.0000
.0000
.0000
.0000
2.000
2.000
2.000
2.000
.0000
.0000
.0000
2.000
2.000
.0000
2.000
2.000
.0000
.0000
.0000
2.000
2.000
.0000
2.000
.0000
4.000
4.000
4.000
2.000
.0000
.0000
.0000
.0000
4.000
4.000
4.000
4.000
.0000
.0000
.0000
.0000
4.000
4.000
4.000
4.000
.0000
.0000
.0000
.0000
2.000
4.000
4.000
4.000
.0000
.0000
.0000
.0000
2.000
4.000
4.000
4.000
.0000
.0000
.0000
.0000
2.000
4.000
4.000
4.000
.0000
.0000
.0000
.0000
2.000
2.000
2.000
4.000
.0000
.0000
.0000
.0000
2.000
2.000
2.000
2.000
.0000
.0000
.0000
2.000
2.000
.0000
2.000
.0000
.0000
.0000
.0000
2.000
2.000
.0000
2.000
.0000
4.000
4.000
4.000
2.000
.0000
.0000
.0000
.0000
4.000
4.000
4.000
2.000
.0000
.0000
.0000
.0000
4.000
4.000
4.000
4.000
.0000
.0000
.0000
.0000
2.000
4.000
4.000
4.000
.0000
.0000
.0000
.0000
2.000
4.000
4.000
4.000
.0000
.0000
.0000
.0000
2.000
4.000
4.000
4.000
.0000
.0000
.0000
2.000
2.000
2.000
2.000
.0000
.0000
.0000
.0000
2.000
2.000
2.000
2.000
.0000
.0000
.0000
.0000
2.000
2.000
.0000
2.000
.0000
.0000
.0000
.0000
2.000
2.000
.0000
2.000
.0000
4.000
4.000
4.000
1.000
.0000
.0000
.0000
2.000
4.000
4.000
4.000
2.000
.0000
.0000
.0000
2.000
4.000
4.000
4.000
2.000
.0000
.0000
.0000
.0000
4.000
4.000
4.000
4.000
.0000
.0000
.0000
.0000
2.000
4.000
4.000
4.000
.0000
.0000
.0000
.0000
2.000
4.000
4.000
.0000
.0000
.0000
.0000
2.000
2.000
2.000
2.000
.0000
.0000
.0000
.0000
2.000
2.000
2.000
2.000
.0000
.0000
.0000
.0000
2.000
2.000
.0000
2.000
.0000
.0000
.0000
.0000
2.000
2.000
.0000
2.000
.0000
4.000
4.000
4.000
1.000
.0000
.0000
.0000
2.000
4.000
4.000
4.000
1.000
.0000
.0000
.0000
2.000
4.000
4.000
4.000
2.000
.0000
.0000
.0000
2.000
4.000
4.000
4.000
2.000
.0000
.0000
.0000
2.000
2.000
4.000
4.000
.0000
.0000
.0000
.0000
2.000
2.000
4.000
4.000
.0000
.0000
.0000
.0000
2.000
2.000
2.000
2.000
.0000
.0000
.0000
.0000
2.000
2.000
2.000
2.000
.0000
.0000
.0000
.0000
2.000
2.000
2.000
2.000
.0000
.0000
.0000
.0000
2.000
.0000
.0000
2.000
.0000
4.000
4.000
4.000
1.000

.0000
.0000
2.000
4.000
4.000
4.000
1.000

.0000
.0000
2.000
4.000
4.000
4.000
1.000

.0000
.0000
2.000
4.000
4.000
4.000
.0000

.0000
.0000
2.000
4.000
4.000
4.000
.0000

.0000
.0000
2.000
2.000
4.000
4.000
.0000

.0000
.0000
2.000
2.000
2.000
4.000
.0000

.0000
.0000
2.000
2.000
2.000
2.000
.0000

.0000
.0000
2.000
2.000
2.000
2.000
.0000

.0000
.0000
2.000
.0000
2.000
.0000
.0000
19-9

-------
.0000
.0000
.0000
.0000
.0000
.0000
2.000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
2.000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
2.000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
2.000
.0000
.0000

 *          Well package        *
 *********************************
29
32 -.963
 *********************************
 *         River package         *
 *********************************
49
49
1
1
1
1










1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0

18
18
19
19
20
20
20
21
21
22
22
22
23
23
24
24
24
24
25
25
25
25
26
26
27
27
28
28
28
28
28
27
27
27
27
28
29
29
30
30
31
31
32
32
33
33
33
33
33


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49


0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0'
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0


.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02


-10.
-10.
•10.
-10.
-10.
-10.
-10.
-10.
•10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
•10.
-10.
-10.
-10.
-10.
nwwell, iwelcb
itmp
layer,row,col,q
                                                              nwrivr,irivcb
                                                              itmp
                                                              layer,row,col,stage,cond,rbot
                               19-10

-------
                                          *********
                              SIP package
        50        5

1.0000    .10000E-03
1.00000
mxiter,nperm

accl.hclose,ipcalc.wseed,iprsip
                  *********************************
                  *     Output Control package   *
9 33
1 1
1 0
1 1
1 0
1 1
1 0
1 1
1 0
1 1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
                                                                               ihedfm,iddnfm,ihedun,
                                                                               incode.ihddfl.ibudfl,
                                                                               hdpr,ddpr,hdsv,ddsv
                                                                               incode.ihddfl.ibudfl,
                                                                               hdpr,ddpr,hdsv,ddsv
                                                                               ineode.ihddfl.ibudfl,
                                                                               hdpr,ddpr,hdsv,ddsv
                                                                               ineode.ihddfl.ibudfl,
                                                                               hdpr, ddpr,hdsv,ddsv
                                                                               incode,ihddfl,ibudfl,
                                                                               hdpr,ddpr,hdsv »ddsv
                                                                               incode.ihddfl.ibudfl,
                                                                               hdpr,ddpr,hdsv,ddsv
                                                                               incode.ihddfl.ibudfl,
                                                                               hdpr,ddpr,hdsv, ddsv
                                                                               incode.ihddfl.ibudfl,
                                                                               hdpr,ddpr,hdsv,ddsv
                                                                               incode.ihddfl.ibudfl,
                                                                               hdpr,ddpr,hdsv,ddsv
                                                                               incod*,ihddfl,1budfi,
                                                                               hdpr,ddpr,hdsv,ddsv
                                                                               incodt.fhddfl.fbudfl,
                                                                               hdpr,ddpr,hdsv,ddsv
                                                                               incode.ihddfl.ibudfl,
                                                                               hdpr,ddpr,hdsv,ddsv
                                                                               incode.ihddfl.ibudfl,
                                                                               hdpr,ddpr,hdsv,ddsv
                                                                               incode.ihddfl.ibudfl,
                                                                               hdpr,ddpr,hdsv,ddsv
                                                                               incode.ihddfl.ibudfl,
                                                                               hdpr,ddpr,hdsv,ddsv
                                                                       iddnun
                                                                       icbcfKstep 1)

                                                                       icbcfKstep 2}

                                                                       icbcfKstep 3}

                                                                       icbcfKstep 4}

                                                                       icbcflCstep 5)

                                                                       icbcfKstep 6)

                                                                       icbcfKstep 7}

                                                                       icbcfKstep 8)

                                                                       icbcfKstep 9)

                                                                       icbcfKstep 10)

                                                                       icbcfKstep 11)

                                                                       icbcfKstep 12)

                                                                       icbcfKstep 13}

                                                                       icbcfKstep 14)

                                                                       icbcfKstep 15)
                                               19-11

-------
Part a)     Run the model with the data set provided.  Plot the drawdowns at the observation
           wells and compare to the field data shown in Table  19.2 and Figure 19.5,
           Estimate better values of transmissivity and storage coefficient.  Do not change
           location of transmissivity zones. Compare results and continue to adjust T and S
           until you are satisfied with the results.

Part b)     Make a predictive run for 1000 days at the same pumping rate with the values of
           T and S that were obtained in Part a.

Part c)     Make some conclusions:

           How good is your history match?

           What additional changes might improve it?

           How important is river leakage?

           How appropriate is the confined model approximation?

           How much confidence do you have in your prediction?

           Is the system at steady-state at 1000 days?

           What are some weaknesses in this calibration/prediction procedure?

           What does the modeling indicate regarding the feasibility of using this aquifer as a
           water supply?
                                         19-12

-------
                     10
                              15
                                                       30
                                                               35
                                                                                                 55
     5-
    10 -
    15
    20-
    35-
    30-
    40-
















A
+










































A
+










































A
+
+








































O
0
A
+








































O
O
A
+
+







































O
o
A
A
+






































O
O
o
o
A
+
+





































O
o
o
o
o
A
+







































0
o
o
A
+






































O
o
o
o
o
A
+





































O
o
o
o
o
A
-t-
+



































O
o
o
0
o
o
o
+
+
+


































0
o
o
o
o
0
o
A
+
+
+


































o
0
o
o
0
o
A
+

+
















•

















O
O
o
o
o
o
A
A

+
+
































0
o
0
o
0
o
o
o
A

+
+















A
A















O
O
o
o
o
o
o
o
A

+
+















A
A
A













0
O
O
0
O
O
0
O
o
A


+













A
A
A
A
A












O
O
O
O
O
O
O
0
o
o
A


+








A
A



A
A
A
A













O
O
O
O
O
O
O
0
O
O
A


+

+




+
A
A
A
A
A
A
A
A
A
A











O
O
0
o
0
o
0
o
o
o
0
o
A


+

+




+
+
A
A
A
A
A
A
A
A
A









O
O
O
O
O
O
0
o
o
o
o
o
o
o
A


+

+




+
+

A
A
A
A
A
A
A
A









O
0
O
o
o
o
o
o
o
o
0
o
o
o
A


+

+




+
+

A
A
A
A
A
A
A
A

0
O
0





O
O
0
o
0
o
o
o
0
o
o
0
o
o
A


+

+




+



A
A
A
A
A
A
A

O
0
o
0
0



o
o
o
o
o
o
0
o
o
o
o
o
o
o
A


+

+




+



A
A
A
A
A
A
A


O
O
O
O
O


O
0
o
o
o
o
0
o
o
o
0
o
0
o
A
+

+

+




+




A
A
A
A
A
A



O
O
O
O
O
0
0
0
o
o
o
o
o
o
o
o
o
o
0
o
A
+

+

+




+




A
A
A
A
A




O
O
O
0
O
0
O
0
O
O
O
o
o
0
o
o
o
o
0
o
A
A

+

+




+





A
A
A
A





O
O
0
O
0
O
0
O
0
O
o
o
0
o
o
o
o
0
o
A
A

+

+




+





A
A
A
A






O
O
O
O
O
O
O
O
0
o
0
o
0
o
o
o
o
o
A
A

+

+




+





A
A
A







O
O
0
o
o
o
o
o
o
o
0
o
0
o
o
o
o
o
A
A

+

+




+





+
A
A








O
O
O
O
o
o
o
o
o
o
o
o
o
o
o
o
o
A
A

+

+




+





+
A
A








O
O
O
O
O
O
O
O
0
O
O
O
O
O
o
o
o
A
A

+

+




+





+
A
A








O
O
O
O
0
o
0
o
o
0
o
o
o
o
o
o
o
A
A

+

+




+





+
A
A
A







O
O
0
O
0
O
0
O
O
0
O
0
o
0
o
0
o
A
A

+

+




+





+
A
A
A
A
A




O
O
o
o
o
o
0
o
o
0
o
o

o
o
0
o
o
A
A

+

+




+

+

+

+
A
A
A
A
A




O
O
O
o
o
o
o
o
o
o
0



o
o
o
o



+

+




+

+

+

+
A
A
A
A






O
O
O
O
O
O
O
0
o










A
+

+




t

+

+

+
A
A
A
A






O
O
O
O
O
O













A
A

+

+


+

+

+

+
A
A
A
A






O
O
O
O
0
O













0
A
A
+
+
+


+



+

+
A
A
A
A






O
O
O
O
0
O













O
0
A
A
A
+


+



+

+
A
A
A
A






O
O
O
0
O
0













o
o
o
A
A
A
+
+
+



+
+
+
+
A
A







O
0
O
O
O
O













o
o
o
o
A
A
A
A
+


+
+
+
+
+
A
A







O
O
O
O
O
O













O
O
O
O
O
A
A
A
A
+

+
+
+
+
+
A
A









O
O
O
O












O
O
O
O
O
O
O
O
O
A
A

+
+
+
+
+
A










O
O
O
O












O
O
o
o
o
o
o
o
o
o
A
A
+
-t-
+
+












0
o
0













0
o
o
o
o
o
o
o
o
o
o
A
A
+
+













O
o
o













o
o
o
o
o
o
o
o
o
0
o
o
A
A














O
o
o













0
o
o
o
o
o
o
o
o
o
o
o
o
















o
o













0
o
o
o
o
0
o
o



o
o
















o
o













o
o
o
o
o
o
0
0





































o
o
o
o
o
o







































o
o
o
0
o








































o
o
o
o









































o
o















o r-i
A T-2
+ r-4
Figure 19.3 Model boundary and transmissivity zones used in the numerical model. Inactive cells contain no symbol; a
            circle represents a relative transmissivity of 1, a triangle represents a relative transmissivity of 2, and a plus
            represents a relative transmissivity of 4.

-------
                  10
                          15
                           I
20
 I
                                           25
 1 -
5-
10 -
15-
30
 I
                                                           35
                                                           i
                                                                    40
45
 i
50
 I
   A A
ao
as-
30-
35-
40-
55
 I
                                                                                                  A RIVER

                                                                                                  * PUMPING WELL

                                                                                                  ® OBSERVATION WELL
    Figure 19.4  Location of the river boundary condition, pumping well, and observation wells use in the numerical model.

-------
Table 19.1.  Input data for the water supply problem
          Grid:                            44 rows, 55 columns, 1 layer
          Grid Spacing:                    Uniform 100 ft
          Initial Head:                      0.0 ft
          Transmissivity:                   Non-uniform spatially, 3 zones
          Storage Coefficient:               Uniform spatially
          Closure Criterion:                 0.001
          Numbr of time steps              10
          Time Step Multiplier:             1.414
          Length of Simulation:             36 hours
          Production Well Location:         row 29, column 32
          Pumping Rate:                   0.963 ft3/s (432 gpm)
          River Stage:                      0.0
          River Conductance:               0.02 ftVs
          River Bottom Elevation:           -10 ft
Table 19.2.  Observed drawdown data from aquifer test
Time (min)
1
4
10
40
100
400
1000
2000
3000
Drawdown (ft)
Well 1 Well 2
0.17
0.26
0.33
0.48
0.57
0.79
0.99
' 1.19
1.33
0.04
0.12
0.16
0.22
0.29
0.51
0.70
0.86
0.98
Well 3
0.00
0.01
0.02
0.08
0.14
0.30
0.50
0.68
0.78
                                        19-15

-------
                            -I--J-L a -ILUU.-.J	I-L
                  _-LJJLUL
                    I  I I I I 11
                   -mrnr
                   -laaLUU
                    i  i i i in
                   -1. a A LU L.
J--I- 1.1.1 LUU
 I  I I I I I 111
-i--i-mrnr
 	1-1-1.1 LUU
 i  i i i i 11 n
-i—i-i aa LUU
   i i i i i in
   i i i i 1111
   •i-mrnr
   i i i i 11 n
   i i i i i in
          -i—i-i a a LUU
              i i i 1111
                              i  i i i i in
                              i  i i i i in
                              i  i iiiMI
                              i  i i i i in
                              i  i iiiMI
                            -i.-J-iaaiuu
                            -j. -j— i a a luu
                            -i--i-iaaiuu
  laaLUU
  L a aluu
  L J l LU L
  l  i i 11 ii
  TT7F
                                                                  i I i i 11
                                                                  m rn
                                                                -i-iaaiu
                                                                 i i i i 111
                              i  i i i i in
                             - -i- L a a L
                              i  i i i
                              i  i
                         i i i
                        i i i i 111
                       -i-mrn
                        i i i i 111
                        i i i i 111
                       -i-iaaiu
                        i i i i 111
                          i i 111
                         i i i 11 M
                         I I M I II
                          i i 11 M
                    i i i i HI
                    i i i i in
                    Laaiuu
                    i i i
                    i i i i M
                    i i i i in
                    I I I I Ml
                    I I I I III
                    l a a LUU
                    laaLUU
                                        aLUII
                                    -i- L J a LU I
                                     i i  i i i in
                                      mm i
                                    _i_iaaLUi
                                     i i  i i 11 ii
                    l jamiL
                    i i 1 1 in
   aiLUL
    i i MI
  mrnr
  i.a a LUU
  i i i i MI
  Laauuu
  i i i i in
  l i i i in
--TTTrnr
   i i i in
  i i i i in
                                                     iiii
                                                   _-i-Laai.uu
                                                     I  I I I I III
                                                     i  i i i i in
                                                   --i-TIT rnr
                                                     i  i i i i in
                                                     i  i i i i in
                                   10         100        1000
                            TIME   (minutes)
                           10000
Figure 19.5.  Drawdown (ft) versus time (min) for the aquifer test conducted at
             Musquodoboit Harbor.  The top line represents observation well  1, the

             bottom line represents observation well 3.
MODEL INPUT


   Input data sets for the model were given on page 19-3. For part a, the transmissivity

multiplier that gave the best match for Finder and Bredehoeft (1968) was 0.0685 while the

storage coefficient was 0.06. In part b, the simulation time (PERLEN) was changed to 1000

days, with 30 time steps (NSTEP), and time step multiplier (TSMULT) of 1.414 in the

BASIC Package.


MODEL OUTPUT


   A comparison of modeled to observed drawdown data for part a is given in Figure 19.6.
Various combinations of transmissivity and storage coefficients yield the drawdowns shown in
                                       19-16

-------
Figures 19.7 and 19.8, respectively.  The drawdown data for the base case is given in Table
19.3.  A plot of drawdown for part b is given in Figure 19.9.
      10:3
        1-
O
Q
     0.1  -
Q
   0.01
        0.1
                        x x x x x well  1
                        + + +• + + well  2
                        * * * * * well  3
                        	— observed  data
  I I T I I III *  I* 1 I I I I II
                                          I   I  I Til I ll|   I  1 T I II I Ij
       10        100       1000
TIME   (minutes)
10000
Figure 19.6.  Comparison of modeled to observed drawdown (ft) data for the base case.
                                19-17

-------
       1-
o
Q
Of  0.1
Q
0.01
0.1
                         X

                         +
                                    + + + + + base case
                                    x x,x xx 2 times T
                                    ***** 0.5  times T
                                    	 observed  data
                 1111
                  1
                               I  I i I I
      10       100      1000
TIME   (minutes)
                                                    10000
Figure 19.7. Comparison of modeled to observed drawdown in well 1 for the base case
          and for a 2-fold increase and reduction in transmissivity.
                              19-18

-------
       1-
o
Q
    0.1 -
   0.01
                                      + + + + + base case

                                      X X X X X S = 0.1
                                             5=0.005
                                             observed data
       0.1
      10       100      1000     10000
TIME   (minutes)
Figure 19.8.  Comparison of modeled to observed drawdown in wells for the base case

          and for storage coefficients of 0.1 and 0.005.
                             19-19

-------
Table 19.3.   Modeled drawdown data for the base case. Transmissivities were 0.0685
                , 0.137 frVs, and 0,2740 ft2/s and storage coefficient was 0.06.
Time (min)
4.98
12.0
22.0
36.1
56.0
84.1
124
180
260
372
531
456
1074
1524
2160
Drawdown (ft)
Well 1 Well 2
0.03
0.09
0.17
0.27
0.37
0.47
0.57
0.67
0.77
0.86
0.95
1.04
1.14
1.23
1.33
0.00
0.01
0.03
0.07
0.12
0.18
0.25
0.33
0.41
0.50
0.59
0.68
0.77
0.86
0.96
Well 3
0.00
0.00
0.01
0.02
0.04
0.07
0.11
0.17
0.23
0.30
0.38
0.46
0.55
0.64
0.74
                                       19-20

-------
Figure 19.9.  Drawdown (ft) after 1000 days of pumping at 0.963 ftVs.
                                      19-21

-------
DISCUSSION OF RESULTS

   This problem illustrates one type of calibration or history match. In this case aquifer
parameters were adjusted in the model to match observed drawdown from a short-term
transient event.  Within the constraints of the problem statement, adjustments to transmissivity
and storage coefficient resulted in the match shown in Figure 19.6. The match is good ta late
time, but not in early time. Adjustments to transmissivity change the magnitude of drawdown
at a given time (Figure 19.7) while adjustments to storage coefficient changes the shape of
the curve before equilibrium is attained (Figure 19.8).  The poor match in early time appears
to he the result of  the storage properties.  A decrease in storage coefficient would have the
desired effect of increasing drawdown in early  time, but would also increase it beyond
observed values in later time.  To circumvent this dilemma, Finder and Bredehoeft (1968)
introduced  a time-dependent storage coefficient to approximate drainage of the aquifer
system.  The initial value of storage coefficient of 0.003 was allowed to increase linearly with
time to a maximum of 0.06 after 10 minutes of pumping.  This is not a standard application
and requires either numerous restart simulations or a code modification. Another
approximation is to specify a partially convertible aquifer (LAYCON=2) in the BCF package.
A closer match (see Figure 19.10) to early time behavior is obtained with  a primary storage
factor (SF1) of 0.003, a secondary storage factor (SF2) of 0.06, and an aquifer top elevation
(TOP) of -0.1 ft. Both the time-dependent storage adjustment by Finder and  Bredehoeft and
the current magnitude-dependent adjustment are fairly crude approximations to what appears
to be a delayed yield effect.

   The  slightly  imperfect match to late-time data for the MODFLOW  model base case is the
result of using Finder and Bredehoeft's (1968)  late-time storage coefficient without regard to
the early-time factor that they  used. As was illustrated in Figure 19.8, a higher constant value
of storage coefficient (0.1) results in a better late-time match.

   River leakage is important  because steady-state flow conditions depend on the quantity of
water entering the  system through the river bed.  When the system is at steady state, the
pumpage will be balanced by river recharge. The system is close to steady state after 125
days (timestep 24) of pumping as may be  seen from the storage  contribution  (0.0055 ftVs)
relative  to the river leakage (0.9574 ft3/s) in the mass balance. The model is more sensitive
to river  conductance in late time than in early time.  This is shown in Figure 19.11.  The
results of all  sensitivity simulations  for well 1 are given in Table 19.4.

   Several potential weaknesses exist in this calibration procedure. The aquifer test provides
confidence in parameters close to the pumping well, but less confidence in the
characterization distant from the well. The variability in thickness and facies is apparent in
the cross-section of Figure 19.2, and yet the representation is fairly simple.  Because no wells
exist to  monitor the effect on the other side of the river, it is difficult to have complete
confidence in the characterization of the aquifer/river interaction. This is  important because
the degree  of connection will ultimately govern the productivity of the aquifer.  Finally, the
need to  introduce the delayed-yield  effect  is not satisfying.  Although it is likely that delayed
yield is occurring, the representation in the model is very crude.  The transient calibration
procedure performed here is well suited for a localized aquifer system where the ultimate
                                          19-22

-------
source of water is close to the pumping well. Additional confidence in the calibration could
be obtained through a steady-state history match to water levels through the aquifer.

   The prediction indicates that the aquifer can supply the village with the desired quantity of
water with minimal drawdown in the aquifer. The long term drawdown was shown in Figure
19.9. The results obtained by Pinder and Bredehoeft (1968) and Finder and Frind (1972) are
similar to the current results.  This good comparison provides confidence in the applicability
of MODFLOW to a field problem.
       10-a
         1-
o
Q
     0.1  -
o
    0.01
x x x x x well  1
+ + + + + well  2
* * * * * well  3
	 observed  data
         0.1
1          10         100       1000
    TIME   (minutes)
              10000
Figure 19.10.  Comparison of modeled drawdown for the drawdown-dependent storage
             coefficient.
                                     19-23

-------
      10q
       1 -
o
Q
    0.1 i
Q
   0.01
                                                   x *
                                 + + + + + baSQ case
                                 X X X X X C = 0.2
                                 * * *** C=0,002
                                 	 observed  data
     I I  I I I I ll|   I I  I I 1 I'll |    I I  I ! (Ill]  I  I I I I I I I ]   I  I I I I I I 11
0.1         1         10       100      1000    10000
               TIME  (minutes)
Figure 19.11.  Comparison of modeled to observed drawdown in well 1 for the base
           case and for order of magnitude increase and decrease in river
           conductance.
                             19-24

-------
Table 19.4,   Drawdown (ft) versus time in observation well  1 for variations in
             transmissivity, storage coefficient, and river leakance
Time (min) Base Case
4.98
2.0
22.0
36.1
56.0
84.1
124
180
260
372
531
756
1074
1524
2160
0.03
0.09
0.17
0.27
0.37
0.47
0.57
0.67
0.77
0.86
0.95
1.04
1.14
1.23
1.33
Transmissivity
2X 1/2X
0.04
0.09
0.15
0.21
0.27
0.33
0.38
0.43
0.48
0.53
0.59'
0.64
0,70
0,76
0.83
0.02
0.07
0.16
0.28
0.44
0.61
0.79
0.98
1.16
1.34
1.51
1.67
1.83
1.99
2.14
Drawdown (ft)
Storage Coefficient
0.1 0.005
0.01
0.05
0.10
0.17
0.26
0.35
0.44
0.54
0.63
0.73
0.82
0.91
1.00
1.09
1.19
0.33
0.57
0.75
0.88
1.00
1.11
1.22
1.33
1.44
1.55
1.67
1.80
1.93
2.06
2.18
River Leakance
0.2 0.002
0.03
0.09
0.17
0.26
' 0.36
0.45
0.53
0.60
0.66
0.70
0.74
0:78
0.80
0.82
0.84
0.03
0.09
0.17
0.27
0.37
0.48
0.58
0.68
0.78
0.88
0.99
1.10
1.21
1.33
1.47
                                        19-25

-------
                                    PROBLEM 20
                    Application of a Groundwater Flow Model to a
                                 Hazardous Waste Site
INTRODUCTION

   Despite its inability to assess the mechanisms of contaminant transport, a groundwater flow
model can provide useful information on various remedial alternatives for hazardous waste
sites.  Specifically, the flow model can give information on the hydraulic effects, such as flow
rates, drawdowns, and flow directions resulting from the remedial alternatives.  A
contaminant transport model is necessary if data on concentration reduction, mass fluxes, and
travel times are desired.  This exercise shows how a flow model  may be applied to a site,
how model input may be adjusted to represent various remedial alternatives, and how model
output is interpreted to assess the remediation.

   This problem is derived from an analysis of conceptual remedial designs at a hazardous
waste site (Andersen et al., 1984). The study used an early version of the  U.S. Geological
Survey groundwater flow model, referred to as USGS2D (Trescott et al., 1976). The model
was used to assess the relative effectiveness of a low permeability cap, an  upgradient drain,
and an upgradient slurry wall.  Various combinations of these features were analyzed for their
hydraulic merits.  Combined with engineering  and economic considerations, the results of the
groundwater modeling formed the basis of the design which was eventually proposed.

PROBLEM STATEMENT AND DATA

   The waste site is underlain by shallow unconsolidated materials of the Cohansey
Formation. The Cohansey consists of an upper sandy zone that varies from 0 to 30 ft in
thickness and a lower silty zone that is  10  to 20 ft thick.  A strong contrast in permeability
between the two units is apparent from  the location of groundwater seeps at the contact
between the two units.  Underlying the  Lower Cohansey is a clay unit of very low
permeability. Of most importance at the waste site is the potential for contaminated
groundwater migration in the Upper Cohansey and subsequent discharge into surface  waters.
Further details on the hydrogeology of the  site is given in  Andersen et al. (1984).

   A groundwater flow model was calibrated based on observed groundwater levels and
discharge measurements from an adjacent stream. The model considers two-dimensional
unconfined flow in the Upper Cohansey and uses natural hydrologic features as boundary
conditions. A finite-difference grid (Figure 20.1) was designed using smaller spacing (30 ft)
near the landfill  site where detail was required and larger spacing away from the site near  the
boundary.  Uniform values of hydraulic conductivity (42.5 ft/d), recharge (24 in/yr), and
specific yield (0.28) were used, but a non-uniform aquifer bottom elevation was used.
Part a)     Use the data set given on page 20-4 to run the steady-state model.  Save the
           hydraulic heads on disk for later use in the transient remedial simulations.
                                         20-1

-------
Part b)     Simulate the effect of an impermeable clay clap by making adjustments to the
           recharge array.  The extent of the cap is shown in  Figure 20.2.  Run for 30.8 yrs
           with 20 time steps and a time step multiplier of 1.5.  Print out mass balances of
           all time steps and hydraulic heads at time steps 8,  11, 14, 16 and 20.  Use a
           specific yield of 0.28.

Part c)     Simulate the effect of an impermeable clay cap and a low permeability slurry
           wall.  Make adjustments to the hydraulic conductivity array to simulate the wall.
           The grid cells that contain the wall  will have a conductivity  of IxlO"6  times that of
           the aquifer.  The extent of the wall  is shown in Figure 20.2. Use the  same time
           stepping and printout specifications as were given in part b.

Part d)     Simulate the effect of an impermeable clay cap, a low permeability slurry wall,
           and a  drain. Use  the parameters shown in Table 20.1 in the DRAIN package to
           simulate the drain. The extent of the drain is shown in Figure 20.2.  Use the
           same time stepping and printout specifications as were given in part b.

Part e)     Simulate the effect of an impermeable cap and a drain.  Use the same time
           stepping and printout specifications as were given in part b.
                                          20-2

-------
9
                   1 -
                  10 -

                  15-
                  20-
                  25-
                  30
                  35-
                                         5    10    15
                                         i      1     I
20
 I
25  30
 1    1
35
 i
                                                                                                        •CONSTANT HEAD
                  Figure 20.1 Finite-difference grid showing the location of specified head cells for the steady-state model.

-------
                   >•••••«••*«*«*««»»«»»*••»••****
                   *         Basic package        *
                   *********************************
LIPARI  LANDFILL SIMULATIONS
1/10/92   PFA  steady state run
         1        39        37
 11   0   0  0  0  0  0 18 19  0
0 22


0
1
000000
0 1 1
0 1 1
0 1 1
0-1 1
0-1 1
0-1 1
0-1
0-
0-
0-
0-
0-
0-1
0-1
0-1
0-1
0-1
0-1
0-1
0-1 1
0-1 1
0-1 1
0-1 1
0-1 1
0-1 1
0-1 1
0-1 1
0-1 1
0.1 1
1 1
0-1 1
0-1 1
0-1 1
0-1 1
0 0-1
On. 1
U 1
0 0-1






















1
1
1
1
1
1
1



1
1
1

















0 0-1-1-











1
1
1
1
1
1
-1
0
000000

0




1(4012)
0000000000000000000000000000000
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 1
1 1
1 1
U4 4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

















1

1














1















1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1
1


1 1 1
1 1 1
1 1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 4
1 1
1 1





































1111111111111
1111111111111
1111111111111
1111
1111
1111
1111
1111
1111
1111
1111
1 1
1 1
1
1
1
1
1
1
1 1
1 1
1 1
1 1
1
1
1
1
1
M
!
1 1 1
1111
1111
1111-






















































1




















































1 1 1
1 1
1 1
1 1
1 1
1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1
1 1
1 1
1 1
1 1
11111
11111
11111
11111
11111
11111
1111
1111
1111

1100000
1-1-1 0000

























.

11-1000
















1-1 0 0
1 1-1 0
1 1-1 0
1 1-1 0
1 1-1 0
1 1-1 0
1 1-1 0
1 1-1 0
1 1-1 0
1 1-1 0
1 1-1 0
1 1-1 0
1 1-1 0
1 1-1 0
1 1-1 0
1 1-1 0
111-0
111-0
111-0
1
1 - 0
111-0
1
1 - 0
1 1 1- - 0
11-1000
-1
n_
-1000
ft ft ft n
-100000000000
11111-100000000000
1 1 1 1-1-1 00000000000
111-10000000000000
-1-1-1 00000000000000

* n ft ft ft
0000000000000000000000000000000
0000000000000000000000000000000
0000000000000000000000000000000
99.

0
0
0
0
0
132
132
125
120
120
131
131
123
118
118
130
130
120
110
110
130
130
120
105
105
126
1
00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
1.C8F10.2)
0
0
0
0
0
132
132
125
120
120
131
131
123
118
" 118
130
130
120
110
110
130
130
120
105
98
126
00
.00
.00
.00
.00
.00
.00
00
00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
0
0
0
0
0
132
132
125
120
120
131
131
123
118
118
130
130
120
110
110
130
130
120
105
98
126
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00

132.00 132.00 132.00 132.00 132.00
132.00 132.00 125.00 125.00 125.00
120.00 120.00 120.00 120.00 120.00
120.00 120.00 120.00 120.00 120.00
120.00 120.00

131.00 131.00 131.00 131.00 131.00
131.00 131.00 123.00 123.00 123.00
118.00 118.00 118.00 118.00 118.00
118.00 118.00 118.00 118.00 118.00
118.00 118.00

130.00 130.00 130.00 130.00 130.00
130.00 130.00 120.00 120.00 120.00
110.00 110.00 110.00 110.00 110.00
110.00 110.00 110.00 110.00 110.00
110.00 110.00

130.00 130.00 130.00 130.00 130.00
130.00 130.00 120.00 120.00 120.00
120.00 120.00 110.00 110.00 105.00
105.00 105.00 105.00 105.00 105.00
98.00 98.00

126.00 126.00 126.00 126.00 126.00
headngd)
headng(2)
nlay,nrow,ncol,nper,itmuni
iunit array
iapart,istrt
ibound(locat,iconst,fmtin,iprn)
ibound array
                                                                                hnoflo
                                                                                shead(Iocat,const,fmt i n,iprn)
                                                 20-4

-------
126.00
115.00
110.00
105.00
123.00
123.00
115.00
110.00
105.00
120.00
120.00
110.00
110.00
100.00
118.00
118.00
105.00
105.00
105.00
116.00
116.00
105.00
105.00
95.00
115.50
115.50
105.00
105.00
95.00
115.00
115.00
105.00
105.00
95.00
114.50
114.50
105.00
105.00
95.00
114.00
114.00
105.00
105.00
95.00
113,50
113.50
110.00
105.00
95.00
113.00
113.00
105.00
105.00
95.00
112.50
112.50
105.00
105.00
95.00
112.00
112.00
105.00
105.00
95.00
111.50
111.50
101.20
105.00
95.00
111.30
111.30
110.00
105.00
95.00
111.00
111.00
126.00
115.00
110.00
105.00
123.00
123.00
115.00
110.00
100.00
120.00
120.00
110.00
110.00
95.00
118.00
118.00
105.00
105.00
95.00
116.00
116.00
105.00
105.00
90.00
115.50
115.50
105.00
105.00
90.00
115.00
115.00
105.00
105.00
90.00
114.50
114.50
105.00
105.00
90.00
114.00
114.00
105.00
105.00
90.00
113.50
113.50
105.00
105.00
90.00
113.00
113.00
105.00
105.00
90.00
112.50
112.50
105.00
105.00
90.00
112.00
112.00
101.20
105.00
90.00
111.50
111.50
105.00
105.00
90.00
111.30
111.30
105.00
105.00
90.00
111.00
111.00
126.00
115.00
110.00
100.00
123.00
123.00
115.00
110.00
95.00
120.00
120.00
110.00
110.00
86.00
118.00
118.00
105.00
105.00
85.50
116.00
116.00
105.00
105.00
85.00
115.50
115.50
105.00
105.00
84.50
115.00
115.00
105.00
105.00
84.00
114.50
114.50
105.00
105.00
84.00
114.00
114.00
105.00
105.00
84.00
113.50
113.50
105.00
105.00
84.00
113.00
113.00
105.00
105.00
84.00
112.50
112.50
101.20
105.00
84.00
112.00
112.00
105.00
105.00
84.00
111.50
111.50
105.00
105.00
84.00
111.30
111.30
105.00
105.00
84.00
111.00
111.00
126.00
115.00
110.00
93.00
123.00
123.00
115.00
110.00
88.00
120.00
120.00
110.00
110.00
86.00
118.00
118.00
105.00
105.00
85.50
116.00
116.00
105.00
105.00
85.00
115.50
115.50
105.00
105.00
84.50
115.00
115.00
105.00
105.00
84.00
114.50
114.50
105.00
105.00
84.00
114.00
114.00
105.00
105.00
84.00
113.50
113.50
105.00
105.00
84.00
113.00
113.00
105.00
105.00
84.00
112.50
112.50
101.20
105.00
84.00
112.00
112.00
105.00
105.00
84.00
111.50
111.50
105.00
105.00
84.00
111.30
111.30
105.00
105.00
84.00
111.00
111.00
126.00
110.00
110.00
93.00
123.00
123.00
115.00
110.00
88.00
120.00
120.00
110.00
110.00
86.00
118.00
118.00
105.00
105.00
85.50
116.00
116.00
105.00
105.00
85.00
115.50
115.50
105.00
105.00
84.50
115.00
115.00
105.00'
105.00
84.00
114.50
114.50
105.00
105.00
84.00
114.00
114.00
105.00
105.00
84.00
113.50
113.50
105.00
105.00
84.00
113.00
113.00
105.00
105.00
84.00
112.50
112.50
105.00
105.00
84.00
112.00
112.00
100.20
105.00
84.00
111.50
111.50
100.20
105.00
84.00
111.30
111.30
105.00
105.00
84.00
111.00 •
111.00
115.00
110.00
110.00

123.00
115.00
115.00
110.00

120.00
110.00
110.00
110.00

118.00
110.00
105.00
105.00

116.00
110.00
105.00
105.00

115.50
110.00
105.00
105.00

115.00
110.00
105.00
105.00

114.50
110.00
105.00
105.00

114.00
110.00
105.00
105.00

113.50
110.00
105.00
105.00

113.00
110.00
105.00
105.00

112.50
110.00
105.00
105.00

112.00
110.00
105.00
105.00

111.50
110.00
105.00
105.00

111.30
110.00
100.20
105.00

111.00
110.00
115.00
110.00
110.00

123.00
115.00
110.00
105.00

120.00
110.00
110.00
110.00

118.00
105.00
105.00
105.00

116.00
110.00
105.00
105.00

115.50
110.00
105.00
105.00

115.00
110.00
105.00
105.00

114.50
110.00
105.00
105.00

114.00
110.00
105.00
105.00

113.50
110.00
105.00
105.00

113.00
110.00
105.00
105.00

112.50
110.00
105.00
105.00

112.00
110.00
105.00
105.00

111.50
110.00
105.00
105.00

111.30
110.00
105.00
105.00

111.00
110.00
115.00
110.00
110.00

123.00
115.00
110.00
105.00

120.00
110.00
110.00
105.00

118.00
105.00
105.00
105.00

116.00
105.00
105.00
105.00

115.50
105.00
105.00
105.00

115.00
110.00
105.00
105.00

114.50
110.00
105.00
105.00

114.00
110.00
105.00
105.00

113.50
110.00
105.00
105.00

113.00
110.00
105.00
105.00

112.50
110.00
105.00
105.00

112.00
110.00
105.00
100.00

111.50
110.00
105.00
100.00

111.30
102.20
105.00
100.00

111.00
102.20
20-5

-------
110.00
105,00
95.00
110.80
110.80
110.00
105.00
95.00
110.60
110.60
110.00
105.00
95.00
110.40
110.40
108.00
105.00
95.00
109.00
109.00
107.00
105.00
95.00
108.00
108.00
107.00
105.00
95.00
107.00
107.00
106.00
100.20
101.00
106.00
106.00
108.00
108.00
96.00
105.00
108.00
108.00
108.00
92.00
103.00
108.00
108.00
102.00
90.00
102.00
108.00
108.00
102.00
100.00
101.00
108.00
108.00
102.00
100.00
100.00
108.00
108.00
100.00
100.00
100.00
106.00
106.00
101.00
101.00
100.00
106.00
106.00
102.00
102.00
100.00
104.00
104.00
105.00
105.00
90.00
110.80
110.80
105.00
105.00
90.00
110.60
110.60
105.00
105.00
90.00
110.40
110.40
105.00
105.00
90.00
109.00
109.00
105.00
105.00
90.00
108.00
108.00
105.00
105.00
90.00
107.00
107.00
105.00
102.00
90.00
106.00
106.00
108.00
100.20
86.00
105.00
108.00
108.00
102.00
87.00
103.00
108.00
108.00
100.00
90.00
102.00
108.00
108.00
100.00
100.00
101.00
108.00
108.00
100.00
100.00
100.00
108.00
108.00
100.00
100.00
100.00
106.00
106.00
101.00
101.00
100.00
106.00
106.00
102.00
102.00
100.00
104.00
104.00
105.00
105.00
84.00
110.80
110.80
105.00
105.00
84.00
110.60
110.60
105.00
105.00
84.00
110.40
110.40
105.00
105.00
84.00
109.00
109.00
105.00
105.00
84.00
108.00
104.20
105.00
105.00
84.00
107.00
104.20
105.00
102.00
85.00
106.00
104.20
108.00
108.00
86.00
105.00
104.20
108.00
102.00
87.00
108.00
104.20
108.00
99.00
90.00
108.00
103.20
108.00
100.00
100.00
108.00
103.20
108.00
100.00
100.00
108.00
104.20
108.00
100.00
100.00
106.00
102.20
106.00
101 .00
101.00
100.00
106.00
106.00
102.00
102.00
100.00
104.00
103.00
105.00
105.00
84.00
110.80
110.80
105.00
105.00
84.00
110.60
110.60
105.00
105.00
84.00
110.40
110.40
105.00
105.00
84.00
109.00
104.20
105.00
105.00
84.00
108.00
108.00
105.00
105.00
84.00
107.00
107.00
105.00
102.00
84.00
106.00
106.00
108.00
108.00
86.00
105.00
108.00
108.00
102.00
87,00
108.00
108.00
108.00
97.00
90.00
108.00
108.00
108.00
100.00
100.00
108.00
108.00
108.00
100.00
100.00
108.00
108.00
ios:oo
100.00
100.00
106.00
106.00
106.00
101 .00
101.00
106.00
106.00
103.00
102.00
102.00
104.00
104.00
103.00
105.00
101.00
84.00
110.80
110.80
105.00
105.00
84.00
110.60
110.60
105.00
105.00
84.00
110.40
104.20
105.00
105.00
84.00
109.00
109.00
105.00
105.00
84.00
108.00
108.00
105.00
105.00
84.00
107.00
107.00
105.00
102.00
84.00
106.00
106.00
108.00
100.00
86.00
105.00
108.00
108.00
98.00
87.00
108.00
108.00
102.00
96.00
90.00
108.00
108.00
102.00
100.00
100.00
108.00
108.00
102.00
100.00
100.00
108.00
108.00
102.00
100.00
100.00
• 106.00
106.00
103.00
101.00
101.00
106.00
106.00
102.00
102.00
102.00
104.00
104.00
103.00
100.20
105.00

110.80
110.00
100.20
105.00

110.60
103.20
105.00
105.00

110.40
108.00
105.00
105.00

109.00
107.00
105.00
105.00

108.00
107.00
105.00
105.00

107.00
106.00
105.00
102.00

106.00
108.00
108.00
100.00

108.00
108.00
108.00
95.00

108.00
108.00
102.00
94.00

108.00
108.00
102.00
100.00

108.00
108.00
102.00
100.00

108.00
108.00
102.00
100.00

106.00
106.00
103.00
101.00

106.00
106.00
102.00
102.00

104.00
104.00
103.00
105.00
105.00

110.80
102.20
105.00
105.00

110.60
110.00
100.20
105.00

110.40
108.00
100.20
105.00

109.00
107.00
105.00
105.00

108.00
107.00
105.00
105.00

107.00
106.00
105.00
102.00

106.00
108.00
108.00
96.00

108.00
108.00
108.00
93.00

108.00
108.00
102.00
93.00

108.00
108.00
102.00
100.00

108.00
108.00
102.00
100.00

108.00
108.00
102.00
100.00

106.00
106.00
103.00
101.00

106.00
106.00
102.00
102.00

104.00
105.00
103.00
105.00
100.00

110.80
110.00
105.00
100.00

110.60
110.00
105.00
100.00

110.40
108.00
105.00
100.00

109.00
107.00
100.20
100.00

108.00
107.00
100.20
100.00

107.00
106.00
105.00
102.00

106.00
108.00
108.00
96.00

108.00
108.00
108.00
96.00

108.00
108.00
102.00
90.00

108.00
108.00
102.00
100.00

108.00
108.00
102.00
100.00

108.00
108.00
102.00
100.00

106.00
106.00
101.00
101.00

106.00
106.00
102.00
102.00

104.00
105.00
103.00
20-6

-------
103.00
103.00
100.00
103.00
103.00
103.00
103.00
100.00
102.00
102.00
102.00
102.00
100.00
100.00
100.00
100.00
100.00
86400.
103.00
103.00
100.00
103.00
103.00
103.00
103.00
100.00
102.00
102.00
102.00
102.00
100.00
100.00
100.00
100.00
100.00
11.
103.00
103.00
100.00
103.00
103.00
103.00
103.00
100.00
102.00
102.00
102.00
102.00
100.00
100.00
100.00
100.00
100.00

103.00
103.00
100.00
103.00
103.00
103.00
103.00
101.00
102.00
102.00
102.00
102.00
100.00
100.00
100.00
100.00
100.00

103.00
103.00
100.00
103.00
103.00
103.00
103.00
102.00
102.00
102.00
102.00
102.00
100.00
100.00
100.00
100.00
100.00

103.00

103.00
103.00
103.00
103.00

102.00
102.00
102.00
102.00

100.00
100.00
100.00
100.00


103.00

103.00
103.00
103.00
103.00

102.00
102.00
102.00
102.00

100.00
100.00
100.00
100.00


103.00

103.00
103.00
103.00
103.00

102.00
102.00
102.00
102.00

100.00
100.00
100.00
100.00


                  *********************************
                  *  Block Centered Flow Package  *
                  *********************************
        1
1
                                                   ,OOOE+01  3.OOOE+01  3.OOOE+01
                                                   .OOOE+01  3.OOOE+01  3.OOOE+01
 0.
 0.
0.
0.
0.  0.  0.
         0 0.100E+01
        11 0.100E+OU8E10.0)
 2.OOOE+01 6.000E+02 3.000E+02 2.000E+02 1.400E+02 1.000E+02 8.OOOE+01 6.OOOE+01
 3.OOOE+01 3.OOOE+01 3.OOOE+01 3.OOOE+01 6.OOOE+01 8.OOOE+01 8.OOOE+01 8.OOOE+01
 8.OOOE+01 8.OOOE+01 8.OOOE+01 3.OOOE+01 8.OOOE+01 8.OOOE+01 8.OOOE+01 8.OOOE+01
 3.OOOE+01 3.OOOE+01 3.OOOE+01 3.OOOE+01 8.OOOE+01 1.000E+02 1.400E+02 2.000E+02
 3.000E+02 4.000E+02 4.000E+02 5.200E+02 2.OOOE+01
        11 0.100E+OK8E10.0)
 2.OOOE+01 4.000E+02 4.000E+02 4.000E+02 4.000E+02 3.000E+02 2.000E+02 1.400E+02
 1.000E+02 8.OOOE+01 6.OOOE+01 3.OOOE+01 3.OOOE+01 3
 3.OOOE+01 3.OOOE+01 3.000E+01 3.OOOE+01 3.000E+01 3
 3.OOOE+01 6.000E+01 6.000E+01 8.000E+01 1.000E+02 1.000E+02 1.000E+02 1.000E+02
 1.000E+02 1.000E+02 1.000E+02 1.000E+02 1.000E+02 1.000E+02 2.OOOE+01
         0  4.92E-04
        11       1.0(20F4.0)
          0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
          0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
  0.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.
100.100.100.100.100.100.100.100.100.100.100.100.  0.  0.  0.  0.  0.
  0.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.
100.100.100.100.100.100.100.100.100.100.100.100.100.  0.  0.  0.  0.
  0.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.
100.100.100.100.100.100.100.100.100.100.100.100.100.100.  0.  0.  0.
  0.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.
100.100.100.100.100.100.100.100.100.100.100.100.100. 95. 95.  0.  0.
  0.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.
100.100.100.100.100.100.100.100.100.100.100.100.100.100. 95. 90.  0.
  0.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.
100.100.100.100.100.100.100.100.100.100.100.100.100. 95. 90. 85.  0.
  0.100,100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.
100.100.100.100.100.100.100.100.100.100.100.100. 95. 90. 85. 80.  0.
  0. 95.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.
100.100.100.100.100.100.100.100.100.100.100. 98. 93. 85. 83. 80.  0.
  0. 90. 95.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.
100.100.100.100.100.100.100.100.100.100.100. 98. 93. 85. 83. 80.  0.
  0. 90. 95.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.
100.100.100.100.100.100.100.100.100.100.100. 98. 93. 85. 83. 80.  0.
  0. 90. 95.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.
100.100.100.100.100.100.100.100.100.100.100. 98. 93. 85. 83. 80.  0.
  0. 90. 95.100.100.100.100.100.100.100.100.100.101.100.100.100.100.100.100.100.
100.100.100.100.100.100.100.100.100.100.100. 98. 93. 85. 83. 80.  0.
  0. 90. 95.100.100.100.100.100.100.100.100.101.102.101.100.100.100.100.100.100.
100.100.100.100.100.100.100.100.100.100.100. 98. 93. 85. 83. 80.  0.
  0. 90. 95.100.100.100.100.100.100.100.101.102.103.102.101.100.100.100.100.100.
100.100.100.100.100.100.100.100.100.100.100. 98. 93. 85. 83. 80.  0.
  0. 90. 95.100.100.100.100.100.100.101.102.103.104.103.102.101.100.100.100.100.
100.100.100.100.100.100.100.100.100.100.100. 98. 93. 85. 83. 80.  0.
  0. 90. 95.100.100.100.100.100.101.102.103.104.105.104.103.102.101.101.101.101.
100.100.100.100.100.100.100.100.100.100.100. 98. 93. 85. 83. 80.  0.
  0. 90. 95.100.100.100.100.101.102.103.104.105.105.104.103.102.101.101.101.101.
100.100.100.100.100.100.100.100.100.100.100. 98. 93. 85. 83. 80.  0.
  0. 90. 95.100.100.100.100.101.103.104.105.105.105.104.103.102.101.101.101.101.

                                                 20-7
                                                                                perlen.nstp,tsmult
               iss.ibcfcb
               Iayeon
               trpy(locat,cnstnt)
               delr(locat,cnstnt)
               delr array
                                                                                delcdocat,cnstnt)
                                                                                dele array
hy(locat,cnstnt)
botdocat, cnstnt, fmt in, iprn)
bot array

-------
100.
  0.
100.
  0.
100.
  0.
100.
  0.
100.
  0.
100.
  0.
100.
  0.
100.
  0.
100.
  0.
100.
  0.
100.
  0.
101.
  0.
101.
  0.
101.
  0.
101.
  0.
100.
  0.
100.
  0.
  0.
  0.
  0.
  0.
  0.
  0.
  0.
100.
 90.
100.
 90.
100.
 90.
100.
 90.
100.
 90.
100.
 90.
100.
 90,
100.
 90,
100,
 91,
100,
 92,
100.
 96.
100,
 97.
101,
 97,
101,
 98,
100.
 98,
100,
  0,
100.
  0,
  0.
  0,
  0,
  0,
  0,
  0,
  0.
100.100.
 95.100.
100.100.
 95.100.
100.100.
 95.100.
100.100.
 95.ICC.
100.1CU.
 95.100.
100.100.
 95.100.
100.100.
 95.100.
100.100.
 96.100.
100.100.
 97.100.
100.100.
 98.100.
100.100.
 99.101.
100.100.
100.102.
101.100.
100.102.
101.100.
 99.101.
 99. 99.
 99.100.
 99. 99.
 99.100.
100,  0.
 99.100.
  0.
 99.
  0.
 99.
  0.
  0.
  0.
100.100
100.100
100.100
ICO.100
100.100
1C3.100
100.100,
1CQ.1CQ
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.101
100.100
100,101
100.100
100.101
 98. 98
102.103
 98. 98
103.104
 98. 98
106.105
 98. 98
103.104
 98. 98
101.102
  0.  0
101.102
  0.  0
101.102
  0.  0
 99. 99
  0.  0
 99
  0.
  0.
  0.
,100.100,
,100.101,
.10C.SOC,
,:oc.ioi,
,100.10T,
,100.10,.',
.'oc.ioo,
,101.102,
,100.100,
,101.102,
,100.100,
,101.102,
,100.100,
,101.103,
,100.100,
,102.104,
,100.100,
.103.105,
, 99. 98
,103.105,
, 98. 96,
,105.105.
, 97. 95
,105.105
,   0.   0
,105.104,
.   0.   0
,104.104,
.   0.   0
,102.102.
,   0.   0
,102.102,
.   0.   0
,102.102
.   0.   0,
.   0.
.   0.
.   0.
.   0.
.   0.
.   0.
 100.100.
 103.104.
 100,100.
 1C3.104.
 100.100.
 103.104.
 100.100,
 103.104.
 100.100.
 103.105.
 100.100.
 103.105,
 100.100.
 105.105,
 100.100.
 105.104,
 100. 98.
 105.104.
 98. 96,
 104.104,
 96. 94.
 104.104.
 94. 92,
 104.104,
  0.  0,
 104.103,
  0.  0.
 104.104,
  0.  0.
 102.102,
  0.  0,
 102.102,
  0.  0,
 102.102.
  0.  0.
,  0.
  0.
,  0.
,  0.
,  0.
,  0.
100. 98.
105.105.
100. 98.
105.105.
100. 98.
105.105,
100. 98,
105.104.
100. 98.
105.104,
100. 98,
104.104,
100. 98.
104.104,
100. 98.
104.104.
 98. 96.
104.104,
 93. 92.
104.104,
 91. 90,
104.104,
 91.  0,
103.103,
  0.  0,
103.103,
  0.  0,
104.104,
  0.  0,
102.102.
  0.  0,
102.102,
  0.  0,
102.102.
  0.  0.
  0.
  0.
  0.
  0.
  0.
  0.
 93
104
 93
104
 95
104
 93
104
 93
104
 93
104
 93
104
 93
104
 93
103
 93
103
 90
103
 88
103
  0
103
  0
104
  0
102
  0
102
  0
102
  0
  0
  0
  0
  0
  0
  0
 85. 83
 104.103
 85. 83.
 'C4.103.
 85. 83.
 103.102.
 85. 83.
 103.102.
. 85, 83.
,103.102.
, 85. 83.
,103.102.
 85. 83.
,103.102.
, 85. 83.
,103.102.
 85. 83.
,103.102.
 85. 83.
,102.102.
, 35. 83.
,103.102.
, 85. 83.
,103.102.
,   0.   0.
,103.102.
,   0.   0.
,104.103.
,   0.   0.
,102.102.
,   0.   0.
,102.102,
,   0.   0,
,102.102.
,   0.   0.
,   0.
,   0.
,   0.
.   0.
,   0.
,   0.
   ao.  o.
 .102.101.101.
 .  80.  0.
 .102.101.101.
   80.  0.
  102.101.101.
   80.  0.
  102.101.101.
   80.  0.
  102.101
   80.  0
  102.101
   80.  0
  102.101
        0
       .101
       .101
       .101
 80.
101.101.
 80.   0.
101.
 80.
          101
         .101
         .101
    101.101
      0.
101.101.101
 80.  0.
102.101
 80.  0,
102.101
  0.  0.
102.102.101.
  0.  0.
103.103.103,
  0.  0.
102.102.102,
  0.  0.
102.102.102,
  0.  0.
102.102.102
      0.
0.
0.
0.
0.
0.
0.
  0.
  0.
  0.
  0.
  0.
  0.
  0.
               *********************************
               *        Recharge package       *
               *********************************
     1         0
     0         0
     0   6.34E-8

               *********************************
               *           SIP package         *
               *««»**•»••>**»*«•«»•«•••«*•**»**•
    50         5
   1.0       .01         0      .002          1
      0.
      0.
      0.
      0.
      0.
      0.
101.100.

101,100.

101.100.

101.100.

101.100.

101,100.

101.101.

101.101.

101.101.

101.101.

101.101.

101.101.

101.101.

102.102.

101.101.

101.101.

101.  0.

  0.  0.

  0,  0.

  0.  0.
                                                                                  nrchop,i rchcb
                                                                                  inrech.inirch
                                                                                  rech*«**************«
                   *     Output Control  package   *
                   *********************************
                            30
                              1
                              1
                                                                              ihedfm,iddnfm,ihedun,iddnun
                                                                              incode,ihddfI,ibudfI,icbcfI
                                                                              hdpr,ddpr,hdsv,ddsv
                                                  20-8

-------


IS




JO-




a-
















33-































* *






























*













&




a











*












4
•




*











X











A
a
+




4











M










&
«
•V
4-




+











*









&
9
+
+•
4-




4-











¥







A
&
*
4-
4-
+
+




+











*






A
«
*
+
+
•»•
+
+




4-











M





d
•






+




•)•











M




a
9
4-
+
4-
+
4-
+
+
4-




+











*




a
a
a
4-
4-
4-
+
+
4-
4-




4-










*






A
A
«
0
*
+
+
+
4-




4










X








&
A
£
•
a
4-
4-




+•










X











A
A
ffl
«




4-










X













A
i




+







































































































































































                                                                * CONSTANT HEAD
                                                                A DRAIN

                                                                O WALL
                                                                + CAP
                                                               o    ioa rr
Figure 20.2. Grid cells representing the impermeable clay cap, the slurry wall, and the
            drain.
                                        20-9

-------
Table 20.1. Attributes of the drain used in Part d
Row
17
17
18
18
19
19
20
20
21
21
22
22
23
23
24
24
25
25
26
26
27
27
28
28
29
30
31
32
33
34
Column
19
20
18
21
17
21
16
22
16
22
15
22
14
23
13
23
12
24
11
24
11
25
11
26
11
11
11
11
11
11
Elevation (ft)
101.2
101.2
101.2
100.2
101.2
100.2
102.2
100.2
102.2
100.2
102.2
100.2
103.2
100.2
104.2
100.2
104.2
100.2
104.2
100.2
104.2
100.2
104.2
100.2
104.2
104.2
103.3
103.2
104.2
102.2
Conductance
(ft?/s)
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
                                      20-10

-------
MODEL INPUT

   The input data for the steady-state simulation of part a was given in the problem statement.
For part b, the input is shown below.  Note that the initial conditions are read from the binary
file created from the steady-state run.
                    *********************************
                    *         Basic package        *
                    *********************************
   LIPARI LANDFILL SIMULATIONS
   1/16/92  PFA  part  b cap only
           1        39       37
    11  0  0 0  0  0  0 18 19  0
0 22
0 0
1 K40I23
0000000000000000000000000000000000000
011111111
011111111
0111 11
0-111 11
0-111 11
0-111 11
0-111 11
0-1111 11
0-1111 11
0-1111 11
0-
o-
0-
0-
0-
0-
0-
0-
0-
0*
0*
o-
0-
Q-
0-
0-
0-
0-
0-
111 11
111111
111111
111111
111111
111111
111111
111111
111111
111111
11111



















111111
111111
111111
111111
111111
111 11
111 11















1111111111
1111
1111
1111
1111
1111
1111
1111
1111
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1111
11111
1111
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1
111111 11
111111 1
111111 1
111 1 1
111 111
111 111
111 111
111 111
111 111























111111111
111111111
11111 111
111 111 11111 111
0-1 111 111 11111 111
0-1 111 111 11111 111











































































































11111
11111
1 1












4
4 *
It























-
-
-
1
1
1
1
1
4

























1
1 1
1 1
1 1
1 1
1 1






















1 1 1
1 1 1
1 1 1













100000
-1-1 0000
1-1000
11-100
111-10
111-10
111-10
111-10
1111-10
1111-10
1111-10
1111-10
1111-10
1111-10
1111-10
11111-10
11111-10
11111-10
1-1 0
1-1 0
1-1 0
1-1 0
1-1 0
1-1 0
1-1 0
-1-1 0
-000
1 1 1 1-1- -000
-1-1-1-1-1 0- 0000
00000000000
00000000000
0-1 111 111111111 111111 1-1-1 00000000000
0-1 1 1 111111111 111111-10000000000000
00-1 1 111111111 1 1-1-1-1-1 00000000000000
0 (
3*1 1 1. . 1.1-1. 1.1. 1»1.1.1« *1 ^ f

JOOOOOOOOOOOOOOOOO
00-1 1 -10000000000000000000000000000000
0 0-1-1- 00000000000000000000000000000000
0000000000000000000000000000000000000
         99.
         •31        1.
     9.72e08        201.5000
headng(l)
headng(2)
rUay,nron,ncol ,nper, i tmuni
iunit array
iapart.istrt
ibound(locat,i const,fmt1n,iprn)
ibound  array
                                            hnoflo
                                            sheadClocat,cnstnt)
                                            perlen,nstp,tsmult
                                              20-11

-------
                   ****************
                                           *********
                   *  Block Centered Flow Package  *
                   *********************************
         0         0
 1
         0 0.100E+01
        11 0.100E+OK8E10.0)
 2.OOOE+01 6.OOOE+02 3.OOOE+02 2.OOOE+02 1.400E+02 1.000E+02 8.OOOE+01  6.OOOE+01
 3.OOOE+01 3.OOOE+01 3.OOOE+01 3.OOOE+01 6.OOOE+01 8.OOOE+01 8.OOOE+01  8.OOOE+01
 8.OOOE+01 8.OOOE+01 8.OOOE+01 8.OOOE+01 8.OOOE+01 8.OOOE+01 8.OOOE+01  8.OOOE+01
                                                                                 iss.ibcfcb
                                                                                 Iayeon
                                                                                 trpy(locat,cnstnt)
                                                                                 delr(locat.cnstnt)
                                                                                 delr array
 3.OOOE+01 3.OOOE+01 3.OOOE+01 3.
 3.OOOE+02 4.OOOE+02 4.OOOE+02 5.
        11 0.100E+OK8E10.0)
 2.000E+01 4.000E+02 4.000E+02 4,
 1. OOOE+02 8.OOOE+01 6.000E+01 3.
                                 OOOE+01 8.000E+01
                                 200E+02 2.OOOE+01
                                       1.000E+02 1.400E+02  2.OOOE+02
                                 OOOE+02 4.OOOE+02 3.OOOE+02 2.OOOE+02 1.400E+02
 3.OOOE+01 3.OOOE+01 3.OOOE+01
                                 OOOE+01 3.OOOE+01 3.OOOE+01  3.OOOE+01
                                 OOOE+01 3.OOOE+01 3.OOOE+01  3.OOOE+01
                                                             1.
                                                               OOOE+02
                                                               OOOE+01
                                                             OOOE+01
                                                             OOOE+01
                                                             OOOE+02
                                                                     delc(local,cnstnt)
                                                                     dele array
                                                      0.
                                                      0.
                                                          0.
                                                          0.
                                                  0.
                                                  0.
                                                                  0.
                                                                  0.
                          0.   0.   0.
 3.OOOE+01 6.000E+01 6.OOOE+01 8.OOOE+01 1.OOOE+02 1.OOOE+02
 1.OOOE+02 1.OOOE+02 1.OOOE+02 1.OOOE+02 1.OOOE+02 1.OOOE+02 2
         0       .28
         0  4.92E-04
        11       1.0C20F4.0)
  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.   0
  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.   0
  0.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.
100.100.100.100.100.100.100.100.100.100.100.100.   0.  0.  0.  0.   0.
  0.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.
100.100.100.100.100.100.100.100.100.100.100.100.100.  0.  0.  0.   0.
  0.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.
100.100.100.100.100.100.100.100.100.100.100.100.100.100.  0.  0.   0.
  0.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.
                       .100.100.100.100.100.100.100. 95. 95.  0.   0.
                       .100.100.100.100.100.100.100.100.100.100.100.100.100.100.
                       .100.100.100.100.100.100.100.100. 95. 90.   0.
                       .100.100.100.100.100.100.100.100.100.100.100.100.100.100.
100.100.100.100.100.100.100.100.100.100.100.100.100. 95. 90. 85.   0.
  0.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.
100.100.100.100.100.100.100.100.100.100.100.100.  95. 90. 85. 80.   0.
  0. 95.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.
100.100.100.100.100.100.100.100.100.100.100. 98.  93. 85. 83. 80.   0.
  0. 90. 95.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.
       .100.100.100.100.100.100.100.100.100. 98.  93. 85. 83. 80
                       .100.100.100.100.100.100.100.100
           .100.100.100.100.100.100.100.100. 98.  93
           .100.100.100.100.100.100.100.100.100.100
           .100.100.100.100.100.100.100.100. 98.  93
           .100.100.100.100.100.100.100.100.100.101
           .100.100.100.100.100.100.100.100. 98
100.100.100.100.100.100.
  0.100.100.400.100.100.
100.100.100.100.100.100.
  0.100.100.100.100..100.
100.100.
  0.  90.
100.100.
         95.100.100.100.
       .100.
  0. 90.  95.
100.100.100.
  0. 90.  95.
100.100.100.
                                       .  85
                                       .100
                                       .  85
                                                        100.100.
                                                         83.  80.
                                                        100.100.
                                                       .  83.  80.
                                                   ,100.100.100.
                                                   ,  85. 83.  80.
                                                    100.100.100.
                                                      0.
100.100.100.100.100.
  0.  90. 95.100.100.
100.100.100.100.100.
  0.  90. 95.100.100.
                                                     85.
                   .100.100.100.101.102.103.104.105.104.103
100.100.100.100.100.100.100.100.100.100.100. 98. 93. 85. 83
  0. 90. 95.100.100.100.100.101.102.103.104.105.105.104.103
100.100.100.100.100.100.100.100.100.100.100
  0. 90. 95.100.100.100.100.101
100.100.100.100.100.100.100.100
  0. 90. 95.100.100.100.100.101
       .100.100.100.100.100.100
                           .101
                           .100
                                                                  0.
                                                            102.101.10V
       .  95.
       .100.
       .  95,
100.100.100.100.
100.100.100.100.
                                       .105
                                       .100
                                       .105
                               .100.100.100. 98.
                               .103.104.105.105.
                               .100.100.100. 98.
 98.  93.  85
105.105.104
 98.  93.  85
105.104.104
     93
    104
     93
                                                         83. 80.
                                                     85
                                                    104,
                                                     85,
          0.
103.102.101.101,
 83.  80.  0.
103.102.101.101,
     80.  0.
    102.101.101
     80.  0.
 83
103
 83
                               .103.104
                               .100.100
                               .103.104
100.100
  0.  90
100.100
  0.  90
100.100.100.100.100.100.100.100.100.100.100.  98.  93.  85.  83.  80.   0.
  0.  90. 95.100.100.100.101.102.103.104.105.104.104.103.102.102.101.101
100.100.100.100.100.100.100.100.100.100.100.
  0.  90. 95.100
100.100.100.100
     90. 95.100
                         sfUlocat.cnstnt)
                         hy(locat.cnstnt)
                         bot (I ocat, cnstnt, f tnt i n, i prn)
                         bot array
                      0.
                    100.100.100.100.
                      0.
                    100.100.100.100.
                                                                           .100.
   .100.
  0.  90. 95.100.100.100.100.100.100.100.100.101.102.101.100.100.100.100.100.100.
100.100.100.100.100.100.100.100.100.100.100. 98.  93.  85.  83.  80.   0.
  0.  90. 95.100.100.100.100.100.100.100.101.102.103.102.101.100.100.100.100.100.
        100.100.100.100.100.100.  98.  93.  85.  83.  80.   0.
        100.100.100.100.101.102.103.104.103.102.101.100.100.100.100.
        100.100.100.100.100.100.  98.  93.  85.  83.  80.   0.
                                                102.101.101.101.101.
                                                 80.
                                                            101.101.

                                                            101.101.

                                                            101.100.

                                                            101.100.
            100.100.100.100.102.103.104.105.105.104.103.102.102.101.101.101.100.
                                                                       ,101.100.
                                             98. 93. 85. 83. 80.  0.
                100.100.101.102.103.105.105.104.104.103.102.102.101.101.101.100.
                100.100.100.100.100.100.100. 98. 93. 85. 83. 80.  0.
  0. 90. 95.100.100.100.101.102.103.105.104.104.104.103.102.102.101.101.101.100.
100.100.100.100.100.100.100.100.100.100.100. 98. 93. 85. 83. 80.  0.
                                                  20-12

-------
0. 90. 95.
100.100.100.
0. 90. 96.
100.100.100.
0. 91. 97.
100.100.100.
0. 92. 98.
100.100.100.
0. 96. 99.
101.100.100.
0. 97.100.
101.101.101.
0. 97.100.
101.101.101.
0. 98. 99.
101.100. 99.
0. 98. 99.
100.100. 99.
0. 0. 99.
100.100.100.
0, 0. 99.
0. 0. 0.
0. 0. 99.
0. 0. 0.
0. 0. 99.
0. 0. 0.
0. 0. 0.
0. 0. 0
100.100.100.
100.100.100.
100.100.101.
100.100.100.
100.100.101.
100.100.100.
100.100.101.
100. 98. 98.
101.102.103.
100. 98. 98.
102.103.104.
100. 98. 98.
102,104.105.
100. 98. 98.
101.103.104.
99. 98. 98.
100.101.102.
99. 0. 0.
100.101.102.
0. 0. 0.
100.101.102.
0. 0. 0.
99. 99. 99.
0. 0. 0.
99. 99. 0.
0. 0. 0.
0. 0. 0.
. 0. 0. 0
101.
100.
102.
100.
103.
99.
103.
98.
105.
97.
105.
0.
105.
0.
104.
0.
102.
0.
102.
0.
102.
0.
0.
0.
0.
0.
0.
. 0
103.105.
100.100.
104.105.
100.100.
105.105.
98. 98,
105.104.
96. 96.
105.104.
95. 94.
105.104.
0. 0.
104.104.
0. 0.
104.104.
0. 0.
102.102.
0. 0.
102.102.
0. 0.
102.102.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
. 0. 0
105.104.
100.100.
104.104.
98. 98.
104.104.
96. 93.
104.104.
94. 91.
104.104.
92. 91.
104.103.
0. 0.
103.103.
0. 0.
104.104.
0. C.
102.10?.
0. ').
102.102.
0. 0.
102.102.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
. 0. 0
104.104.103.102.102.
98. 93. 85. 83. 80.
104.104.103.102.101.
96. 93. 85. 83. 80.
104.103.103.102.101.
92. 93. 85. 83. 80.
104.103.102.102.101.
90. 90. 85. 83. 80.
104.103.103.102.102.
0. 88. 85. 83. 80.
103.103.103.102.102.
0. 0, 0. 0. 0.
103.103.103.102.102.
0. 0. 0. 0. 0.
104. 104.104. 103. 103.
0. 0. 0. 0. 0.
102.102.102.102.102.
0. 0. 0. 0. 0.
102.102.102.102.102.
0. 0. 0. 0. 0.
102.102.102.102.102.
0. 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. 0. 0,
. 0. 0. 0. 0. 0
101.
0.
101.
0.
101.
0.
101.
0.
101.
0.
101.
0.
102.
0.
103.
0.
102.
0.
102.
0.
102.
0.
0.
0.
0.
0.
0.
. 0
101.101.101,
101.101.101.
101.101.101,
101.101.101.
101.101.101,
101.101.101,
101.101.101,
103.102.102,
102.101.101,
102.101.101,
102.101. 0
0. 0. 0
0. 0. 0
0. 0. 0


1
0

18
1.0
1.0
1.0
1.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
1.0
1
1
.0
.0

w
0
0
« W w w m m m www WWW w w ww W W w wwwmwmw 'm'm'mww




nr
in
6.34E-8C20F4.Q) r«
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
T.O
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1,0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0 1.0 1.0 1.0 1.0 1.0 .0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 .0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 .0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 .0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 .0 1.0 1.0 1.0 1.0 1.0
1.0 1,0 1.0 1.0 1.0 1.0 .0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 .0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 .0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 .0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 .0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 .0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 .0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 .0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 .0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 -1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 .0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 .0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 .0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 .0 1.0 1.0 1.0 1.0 1.0 J.O
1.0 1.0 1.0 1.0 1.0 .0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 .0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

1.0 re

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

0.0

0.0

                               nrchop,irchcb
                               fnreeh.inirch
                               rech(Iocat,cnstnt,fmin,iprn)
20-13

-------
1.0
0.0
1.0
0.0
1.0
0.0
1.0
0.0
1.0
0.0
1.0
0.0
1.0
0.0
1.0
0.0
1.0
0.0
1.0
0.0
1.0
0.0
1.0
0.0
1.0
0.0
1.0
0.0
1.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
1.0
.0
.0
.0
.0
.0
.0
.0
0.0
1.0
0.0
1.0
0.0
1.0
0.0
1.0
0.0
1.0
0.0
1.0
0.0
1.0
0.0
1.0
0.0
1.0
0.0
1.0
0.0
1.0
1.0
1.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
0.0
1.0
0.0
1.0
0.0
1.0
0.0
1.0
0.0
1.0
0.0
1.0
0.0
1.0
0.0
1.0
0.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0 1
1.0 1
.0
.0
.0
.0
.0
.0 1
.0
.0
.0
.0
.0 1
.0 1
0.0
1.0
0.0 (
1.0
0.0
1.0
0.0
1.0
0.0
1.0
0.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
).0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
1.0
.0
.0
.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
.0
.0
.0
.0
.0
.0
.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0
.0 1.0 1.0 1.0 1.0 1.0 1.0
.0 .0 1.0 .0 1.0 1.0 0.0 0.0 0.0 0.0
.0 .0 .0 .0 1.0 1.0 1.0
.0 .0 .0 .0 1.0 0.0 0.0 0.0 0.0 0.0
.0 .0 .0 .0 1.0 1.0 1.0
.0 .0 .0 .0 0.0 0.0 0.0 0.0 0.0 0.0
.0 .0 .0 .0 1.0 1.0 1.0
.0 .0 .0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
.0 .0 .0 1.0 1.0 1.0 1.0
.0 .0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
.0 1.0 1.0 1.0 1.0 1.0 1.0
.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
.0 1.0 1.0 1.0 1.0 1.0 1.0
.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
.0 1.0 1.0 1.0 1.0 1.0 1.0
.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
.0 1.0 1.0 1.0 1.0 1.0 1.0
.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
.0 1.0 1.0 1.0 1.0 1.0 1.0
.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
.0 1.0 1.0 1.0 1.0 1.0 1.0
.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
.0 1.0 1.0 1.0 1.0 1.0 1.0
.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
.0 1.0 1.0 1.0 1.0 1.0 1.0
.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
.0 1.0 1.0 1.0 1.0 1.0 1.0
.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 KO 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0
            *********************************
                       SIP package
            *********************************
 50
1.0
  4
  0
  0
  0
  0
  0
  0
  0
  0
  0
  0
  0
  0
  0
  0
  0
  1
  0
  0
  0
  0
  5
.01
.002
            *********************************
            *     Output Control package    *
•WWW'
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
•rwwwwwwwwwwv
30
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
rwwwwwwwwwwwwwwwww
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
•xiter.npara
accl.hclose,ipcalc.useed,iprsip
                                                              ihedfm.iddnfm.fhedun.
                                                              incode.ihddfl.ibudfl.
                                                              hdpr.ddpr.hdsv.ddsv
                                                              incode.ihddfl.ibudfl,
                                                              hdpr.ddpr.hdsv.ddsv
                                                              incode.ihddfl.ibudfl,
                                                              hdpr.ddpr.hdsv.ddsv
                                                              incode.ihddfl.ibudfl,
                                                              hdpr.ddpr.hdsv.ddsv
                                                              incode.ihddfl.ibudfl.
                                                              hdpr.ddpr.hdsv.ddsv
                                                              incode.ihddfl.ibudfl,
                                                              hdpr.ddpr.hdsv.ddsv
                                                              incode.ihddfl.ibudfl,
                                                              hdpr.ddpr.hdsv.ddsv
                                                              incode.ihddfl.ibudfl.
                                                              hdpr.ddpr.hdsv.ddsv
                                                              incode.ihddfl.ibudfl,
                                                              hdpr.ddpr.hdav.ddtv
                                                              incode.ihddfl.ibudfl.
                                                                iddnun
                                                                icbcfKstep 1)

                                                                icbcfKstep 2)

                                                                icbcfKstep 3)

                                                                icbcfKstep 4)

                                                                icbcfKstep 5)

                                                                icbcfKstep 6)

                                                                icbcfKstep 7)

                                                                icbcfKstep 8)

                                                                icbcfKstep 9)

                                                                icbcfKstep 10)
                                        20-14

-------
            0
            1
            0
            0
            0
            0
            0
            1
            0
            0
            0
            1
            0
            0
            0
            0
            0
            0
            0
             1
                   1
                   0
                   0
                   0
                   0
                   0
                   1
                   0
                   0
                   0
                   1
                   0
                   0
                   0
                   0
                   0
                   0
                   0
                   1
                   0
1
0
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
incode,ihddfl,ibudfl,icbcfl
-------
0.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.00
1.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.000.00
0.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.00
1.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.000.00
0.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.00
1.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001,000.00
0.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.00
1.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.000.00
0.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.00
1.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.000.00
0.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001E-61E-6
1.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.000.00
0.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001E-61.001E-6
1.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.000.00
0.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.0011-61.001.001.00
11-61.001.001.001.001.001.001.001.001.001.001.001.001.001.001.000.00
0.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001E-61.001.001.00
1E-61.001.001.001.001.001.001.001.001.001.001.001.001.001.001.000.00
0,001.001.001.001.001.001.001.001.001.001.001.001.001.001.001E-61.001.001.001.00
1E-61.001.001.001.001.OOJ.001.001.001.001.001.001.001.001.001.000.00
0.001.001.001.001.001.001.001.001.001.001.001.001.001.001E-61.001.001.001.001.00
1.001E-61.001.001.001.001.001,001.001.001.001.001.001.001.001.000.00
0.001.001.001.001.001.001.001.001.001.001.001.001.001E-61.001.001.001.001.001.00
1.001E-61.001.001.001.001.001.001.001.001,001.001.001.001.001.000.00
0.001.001.001.001.001.001.001.001.001.001.001.001E-61.001.001.001.001.001.001.00
1.001.001E-61.001.001.001.001.001.001.001.001.001.001.001.001.000.00
0.001.001.001.001.001.001.001.001.001.001.001E-61.001.001.001.001.001.001.001.00
1.001.0011-61.001.001.001.001.001.001.001.001.001.001.001.001.000.00
0.001.001.001.001.001.001.001.001.001.001.001E-61.001.001.001.001.001.001.001.00
1.001.001.0011-61.001.001.001.001.001.001.001.001.001.001.001.000.00
0.001.001.001.001.001.001.001.001.001.001.001E-61.001.001.001.001.001.001.001.00
1.001.001.001.001E-61.001.001.001.001.001.001.001.001.000,000.000.00
0.001.001.001.001.001.001.001.001.001.001.0011-61.001.001.001.001.001.001.001.00
1.001.001.001.001.001.001.001.001.001.001.001.001.001.000.000.000.00
0.001.001.001.001.001.001.001.001.001.001.001E-61.001.001.001.001,001.001.001.00
1.001.001.001.001.001.001.001.001.001.001.000.001.000.000.000.000.00
0.001.001.001.001.001.001.001.001,001.001.001E-61.001.001.001.001.001.001.001.00
1.001.001.001.001.001.000.000.000.000.000.000.000.000.000.000.000.00
0.001.001.001.001.001.001.001.001.001.001.001E-61.001.001.001.001.001.001.001,00
1.001.001.001.001.001.000.000.000.000.000.000.000.000.000.000.000.00
0.001.001.001.001.001.001.001.001.001.001.001E-61.001.001.001.001.001.001.001.00
1.001.001.001.001.001.000.000.000.000.000.000.000.000.000.000.000.00
0.001.001.001.001.001.001.001.001.001.001.001E-61.001.001.001.001.001.001.001.00
1.001.001.001.000.000.000.000.000.000.000.000.000.000.000.000.000.00
0.000.001.001.001.001.001,001.001.001.001.001.001.001.001.001.001.001.001.001.00
1.001.001.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00
0.000.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.000.00
0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00
0.000.001.001.001.001.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00
0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00
0.000.001.001.001.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00
0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00
0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00
0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000,00
        11       1.0{20F4,0)                                                      bot(locat,cnstnt,fmtin,iprn)
  0.  0,  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.   0.   0.   0.   0.   0.   0.   0.  0. bot array
  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.   0.   0.   0.   0.   0.
  0.100.100.100.100.100.100.100.-100.100.100.100.100.100.100.100.100,100.100.100.
100.100.100.100.100.100.100.100.100.100.100.100.   0.   0.   0.   0.   0.
  0.100.100.100.100.100.100.100.100.100.100.100.100.100.100,100.100,100.100.100.
100.100.100.100.100.100.100.100.100.100.100.100.100.   0.   0.   0.   0.
  0.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.
100.100.100.100.100.100.100.100.100.100.100.100.100.100.   0.   0.   0.
  0.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.
100.100.100.100.100.100.100.100.100.100.100.100.100.  95.  95.   0.   0.
  0.100.100.100.100.100.1X10.100.100.100.100.100.100.100.100.100.100.100.100.100.
100.100.100.100.100.100.100.100.100.100.100.100.100.100.  95.  90.   0.
  0.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.
100.100.100.100.100.100.100.100.100.100.100.100.100.  95.  90.  85.   0.
  0.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.
100.100.100.100.100.100.100,100.100.100.100.100.  95.  90.  85.  80.   0.
  0, 95.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.
100.100.100.IOff.100.100.100.100.100.100.100.  98.  93.  85.  83.  80.   0.

                                                  20-16

-------
  0
100
  0
100
  0
100
  0
100
  0
100
  0
100
  0
100
  0
100
  0
100
  0
100
  0
100
  0
100
  0
100
  0
100
  0
100
  0
100
  0
100
  0
100
  0
100
  0
100
  0
101
  0
101
  0
101
  0
101
  0
100
  0
100
  0
  0
  0
  0
  0
  0
  0
  0
.  90.  95.100
.100.100.100
.  90.  95.100
.100.100.100
.  90.  95.100
.100.100.100
.  90.  95.100
.100.100.100
.  90.  95.100
.100.100.100
.  90.  95.100
.100.100.100
.  90.  95,100
.100.100.100
.  90.  95.100
.100.100.100
.  90.  95.100
.100.100.100
.  90.  95.100
.100.100.100
.  90.  95.100
.100.100.100
.  90.  95.100
.100.100.100
.  90.  95.100
,100.100.100
.  90.  95.100
.100.100.100
.  90.  95.100
.100.100.100
.  90.  95.100
.100.100.100
.  90.  95.100
.100.100.100
.  90.  96.100
.100.100.100
.  91.  97.100
.100.100.100
.  92.  98.100
.100.100.100
.  96.  99.101
.100.100.100
.  97.100,102
.101.101.100
.  97.100.102
.101.101.100
.  98.  99.101
.100.  99.  99
,  98.  99.100
.100.  99.  99
.   0.  99.100
,100.100.   0
.   0.  99.100
       0
0.
0. 99.
0.  0.
        0
       99
        0
0. 99. 99
0.  0.  0
0.  0.  0
0.  0.  0
,100.100.
,100.100.
 100.100.
.100.100,
,100.100,
,100.100,
,100.100,
,100.100,
,100.100,
,100.100,
,100.100,
,100.100,
.100.100,
.100.100,
.100.100,
,100.100.
.100.100.
.100.100,
,100.100,
,100.100,
.100.100.
,100.100,
.100.100,
,100.100,
,100.100,
,100.100,
,100.100,
,100.100.
,100.100.
,100.100,
.100.100,
,100.100.
.100.100,
,100.100.
,100.101,
.100.100,
.100.101,
,100.100.
,100.101,
, 98.  98.
,102.103.
, 98.  98,
,103.104,
, 98.  98,
,104.105,
, 98.  98,
,103.104,
, 98.  98,
,101.102,
.   0.   0.
,101.102.
,   0.   0.
,101.102
,   0.
, 99.
   0.
 99.
.   0.
,   0.
,   0.
 0,
99
 0.
 0
 0
 0
 0,
100.100.
100.100.
100.100.
100.100,
100.100,
100.100.
100.100,
100.100,
100.100,
100.100,
100.100,
100.100,
100.100,
100.100.
100.100,
100.100,
100.101,
100.100,
100.101,
100.100,
100.101.
100.100,
100.101.
100.100,
100.102,
100.100,
101.102,
100.100.
101.102,
100.100,
101.102
100.100
101.103
100.100
102.104
100.100
103.105
 99. 98
103.105
 98. 96
105.105
 97. 95
105.105,
  0.  0,
105.104
  0.  0,
104.104,
  0.  0,
102.102,
  0.  0,
102.102,
  0.  0.
102.102,
  0.  0,
  0.  0,
100.100
100.100,
100.100,
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.100
100.101
100.100
101.102
100.100
102.103
100.100
103.104
100.100
103.104
100.100
103.104
100.100
103.104
100.100
103.104
100.100
103.105
100.100
103.105
100.100
105.105
100.100
105.104
100. 98
105.104
 98. 96
104.104
 96. 94
104.104
 94. 92
104.104
  0.  0
104.103
  0.  0
104.104
  0.  0
102.102
  0.  0
102.102
  0.  0
102.102
  0.  0
  0.  0
.100.100.100.
.100.  98.  93.
.100.100.100.
.100.  98.  93,
.100.100.100.
.100.  98.  93.
.100.100.101.
.100.  98.  93.
.100.101.102.
.100.  98.  93,
.101.102.103.
.100.  98.  93.
.102.103.104.
.100.  98.  93.
.103.104.105.
.100.  98.  93.
.104.105.105.
.100.  98.  93.
.105.105.105.
.100.  98.  93,
.105.105.104,
.100.  98.  93.
.105.105.104.
.100.  98.  93.
.105.105.104.
.100.  98.  93.
.105.104.104.
.100.  98.  93.
.105.104.104.
.100.  98.  93,
.104.104.104,
.100.  98.  93.
.104.104.104,
.100.  98.  93,
.104.104.104,
.  98,  96.  93,
,104,104.103,
.  93.  92.  93,
.104.104.103.
,  91.  90.  90,
,104.104.103,
.91.   0.  88.
.103.103.103,
,   0.   0.   0.
.103.103.103,
.   0.   0.   0,
.104.104.104.
.   0.   0.   0,
.102.102.102
.   0.   0
.102.102.102
.   0.   0.   0
.102.102.102
       0.   0
                                             0.
                       0.
                       0.
                       0.
                       0.
                       0.
      0.
      0.
      0.
      0.
      0.
  0.
  0.
  0.
  0.
  0.
0.
0.
0.
0.
0.
0.
0.
 100.100,
 85. 83,
 100.100,
, 85. 83
,100.100
, 85. 83
,100.100
 85. 83
,101.100
, 85. 83
,102.101
, 85. 83
.103.102
, 85. 83
,104.103
, 85. 83
,104.103
, 85. 83
,104.103
, 85. 83
,104.103
, 85. 83
,104.103
. 85. 83
,103.102
, 85. 83
,103.102
. 85. 83
,103.102
. 85. 83
.103.102
. 85. 83
,103.102
. 85. 83
.103.102
. 85. 83
.103.102
. 85. 83
.102.102
, 85. 83
,103.102
. 85. 83
,103.102
,  0.   0
,103.102
,  0.   0
,104.103
,  0.   0
 102.102
  0.   0
 102.102
  0.   0
 102.102
  0.   0
                                                       100.100.100.
                                                        80.   0.
                                                       100.100.100,
                                                      ,  80.   0.
                                                      ,100.100.100,
                                                      ,  80.   0.
                                                      ,100.100.100,
                                                      ,  80.   0.
                                                      .100.100.100,
                                                      ,  80.   0.
                                                      ,100.100.100,
                                                      ,  80.   0.
                                                      ,101.100.100,
                                                      .  80.   0.
                                                      ,102.101
                                                      ,  80.   0.
                                                      .102.101
                                                      ,  80.   0.
                                                      ,102.101.101
                                                      ,  80.   0.
                                                      ,102.101.101
                                                             0.
                                                              .101

                                                              .101
                                                        80.
                                                       102.101,
                                                             0,
                                                               101
       0.
       0.
       0.
       0.
       0.
       0.
  0.
  0.
  0.
  0.
  0.
  0.
 80,
.102.101
 80.  0.
102.101.101
 80.  0.
102.101.101
, 80.  0.
102.101
, 80.  0
,102.101
 80.  0
,101.101
, 80.  0.
,101.101.101
, 80.  0
,101.101
, 80.  0.
.102.101.101
, 80.  0.
.102.101.101
,  0.  0.
,102.102.101
,  0.  0.
,103.103.103
,  0.  0.
,102.102,102
,  0.  0.
,102.102.102
,  0.  0.
,102.102.102
  0.  0.
  0.  0.   0,
                                                              .101
                                                              .101

                                                              .101
                                                              .101
                                                              .101
                                                         0.
                                                         0.
                                                         0.
                                                         0.
                                                         0.
      0.
      0.
      0.
      0.
      0.
100.100.

100.100.

100.100.

100.100.

100.100.

100.100.

100.100.

101.101.

101.101.

101.101.

101.100.

101.100.

101.100.

101.100.

101.100.

101.100.

101.101.

101.101.

101.101.

101.101,

101.101.

101.101.

101.101.

102.102.

.101.101.

101.101.

101.  0.

  0.  0.

  0.  0.

  0.  0.
                                                20-17

-------
   In part d, the DRAIN package shown below is added to represent the drain.  It is invoked
in the BASIC package in the IUNTT array.  All other parameters are the same as in part c.
                    *********************************
                    *        Drain package        *
                    *********************************
          30
          30
           1
           1
           1
           1
           1
           1
           1
           1
           1
           1
           1
           1
           1
           1
           1
           1
           1
           1
           1
           1
           1
           1
           1
           1
           1
           1
           1
           1
           1
           1
17
17
18
18
19
19
20
20
21
21
22
22
23
23
24
24
25
25
26
26
27
27
28
28
29
30
31
32
33
34
19
20
18
21
17
21
16
22
16
22
15
22
14
23
13
23
12
24
11
24
11
25
11
26
11
11
11
11
11
11
101,
101.
101.
100.
101.
100.2
102.2
100.2
102.2
100.2
102.2
100.2
103.2
100,2
104.2
100.2
104.2
100.2
104.2
100.2
104.2
100.2
104.2
100.2
104
104
103,
103,
104,
102.2
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
nwdrn.tdrncb
itmp
layer,row,cot.elevation,cond
In part e,  the BCF package of part b and the DRAIN package of part d are used. The other
packages  are the same as those used in part d.
                                               20-18

-------
MODEL OUTPUT

   Hydraulic head contours at 2.69 years in the vicinity of the landfill are shown for four of
the five cases in Figures 20.3 a-d.  Hydraulic heads along column 19 of the model are given
in Table 20.2 for the steady state (part a) and the wall and cap scenario (part c).  These are
compared to the results of the original study, which used the USGS2D code (Trescott et al.,
1976).  Shown  in Table 20.3 are hydraulic heads along column  19 for each remedial
alternative. These are  plotted in Figure 20.4. Finally, the  drain discharge versus time is
shown for each scenario involving  a drain in Table 20.4.
          1200   1400   1600   1800   2000   2200   2400   2600          3000
       1810 -
       1610 r
       1410 -
       1210 -
       1010 -
        810 -
        610 -
        410  -
        210  -
                                                                         1810
                                                                         1610
                                                                         1410
   1210
 - 1010
          1200   1400   1600    1800   2000   2200   2400   2600   2800
 - 810
 - 610
 - 410
 - 210
3000
Figure 20.3a, Hydraulic head (ft) contours In the vicinity of the landfill for the steady-
              state case (a).
                                         20-19

-------
                     1200   1400   1600  1800  2000  2200  2400  2600  2800  3000
                   1810 -
                   1610 -
                   1410 -
                  1210 -
                  1010 -
                    1200  1400  1600  1900  2000  2200  2400  2600  2800  3000
                                                                              1810
                                                                              1610
                                                                              1410
                                                                              1210
                                                                            -  1010
                   810
                   610
                   410
                   210
                                                                            - 810
                                                                            - 610
                                                                           - 410
                                                                           - 210
Figure 20.3b.  Hydraulic head (ft) contours in the vicinity of the landfill for the case
                involving a cap (b)«
                    1200  1400   1600  1800  2000  .2200  2400  2600  2800  3000
                  1810 -
                  1610 -
                  1410 -
                 1210 r
                 1010 -
                                                                             1810
                                                                           - 1610
                                                                           7 1410
                                                                             1210
                                                                           - 1010
                  810 -
                  610
                  410  -
                  210
                                                                           - 810
                                                                           - 610
                                                                           - 410
                                                                          - 210
                    1200   1400   1600   1808  2000  2200  2400  2600  2800  3000
Figure 20.3c.  Hydraulic head (ft) contours in the vicinity of the landfill for the case
                involving a cap and a slurry wall (c).
                                              20-20

-------
        1200   1400    1600    1800    2000    2200    2400   2600   2900   3000
     1810 -
     1610 -
     1410 -
     1210 -
     1010 -
      810 -
      610
      410 -
      210
  1810
- 1610
-: 1410
-1210
-1 1010
             l    I   i   l    i    l   i   l    i   i    l   (    i   l    i   i    i
        1200   1400    1600    1800    2000   2200   2400   2600   2B00   3000
- 810
  610
- 410
- 210
Figure 20.3d, Hydraulic head (ft) contours in the vicinity of the landfill for the case
              involving a cap and a drain (e).
                                        20-21

-------
Table 20.2  Comparison of MODFLOW results versus USGS2D results for the steady-
           state case (Part a) and the wall and cap scenario (Part c) at 6.08 yr.
           Hydraulic heads (ft) along column 19 of each model are shown
Row
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Steady
MODFLOW
127.19
126.71
125.90
124.72
123.30
122.07
121.13
120.41
119.84
119.38
119.08
118.87
118.66
118.44
118.23
118.00
117.76
117.52
117.28
117.03
116.79
116.54
116.29
116.03
115.64
115.11
1 14.47
113.63
112.67
111.68
110.60
109.30
107.75
105.77
103.00
State
USGS2D
127.20
126.72
125.91
124.72
123.30
122.07
121.13
120.41
119.84
119.33
119.07
118.85
118.65
118.44
118.22
117.99
117.75
117.52
117.27
117.03
116.73
116.53
116.23
116.03
115.64
115.13
114.47
113.63
112.67
111.67
110.60
109.30
107.75
105.77
103.00
Well and
MODFLOW
127.43
126.98
126.26
125.22
124.02
123.05
122.37
121.90
121.56
121.33
121.21
121.13
121.06
121.01
120.98
120.96
117.65
103.52
103.52
103.51
103.51
103.50
103.49
103.49
103.47
103.46
103.43
103.41
103.40
103.40
103.41
103.46
103.57
103.58
103.00
Cap
USGS2D
127.43
126.98
126.26
125.22
124.02
123.05
122.37
121.90
121.57
121.33
121.21
121.13
121.06
121.01
120.98
120.95
117.65
103.50
103.49
103.49
103.49
103.48
103.48
103.47
103.45
103.44
103.42
103.40
103.39
103.39
103.41
103.45
103.57
103.58
103.00
                                     20-22

-------
Table 20.3. Hydraulic heads (ft) along column 19 of the model at 2.69 years for each
            remedial alternative simulation
Row
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Cap
Part b
127.16
126.67
125.84
124.61
123.12
• 121.81
120.80
120.01
119.38
118.85
118.50
118.26
118.01
117.76
117.50
117.22
116.93
116.64
116.34
116.04
115.75
115.45
115.15
114.85
1 14.39
113.78
113.06
112.13
111.11
110.09
109.05
107.85
106.53
105.03
103.00
Wall, Cap
Partc
127.40
126.95
126.22
125.18
' 123.98
123.01
122.33
121.86
121.53
121.30
121.17
121.09
121.03
120.98
120.94
120.92
117.72
104.87
104.87
104.98
104.85
104.84
104.82
104.80
104.76
104.71
104.63
104.53
104.41
104.29
104.16
103.99
103.85
103.69
103.00
Wall, Cap, Drain
Part d
127.00
126.47
125.58
124.22
122.55
121.04
119.32
118.85
118.04
117.36
116.90
116.58
116.24
118.90
115.54
101.20
117.60
104.64
104.63
104.62
104.61
104.59
104.57
104.55
104.52
104.46
104.38
104.28
104.18
104.08
103.98
103.84
103.75
103.64
103.00
Cap, Drain
Part e
127.00
126.47
125.58
124.22
122.55
121.04
119.82
118.85
118.05
117.37
116.91
116.58
116.25
115.91
115.55
101.20
101.37
101.49
101.59
101.68
101.78
101.87
101.96
102.05
102.19
102.34
102.49
102.64
102.80
102.93
103.05
103.22
103.44
103.52
103.00
                                      20-23

-------
   125.00  -i
   120.00 -
   115.00 -
 0)
 >
 0)
 L.
 
-------
Table 20.4.  Drain discharge (ftVs) versus time for the well, cap, and drain scenario
            (Part d) and the cap and drain scenario (Part e).
Time
(yrs)
0.012
0.022
0.038
0.061
0.096
0.149
0.228
0.347
0.525
0.792
1.29
1.79 '
2.69
Wall, Cap, Drain
Part d
0.18341
0.17723
0.17258
0.06823
0.16312
0.15915
0.15411
0.15068
0.14740
0.14305
0.14137
0.14122
0.13893
Cap, Drain
Part e
0.33867
0.32242
0.30579
0.28748
0.26566
0.24384
0.22018
0.19714
0.17784
0.16098
0.15083
0.14626
0.14244
DISCUSSION OF RESULTS

   This problem is an example of how a flow model may be applied to assess the
effectiveness of various remedial alternatives for sites where contaminant migration is the
major concern.  The purpose of  the original study was to provide input to engineering
decisions. Due to data and time constraints many simplifying assumptions were made.  The
original model configuration  has generally been preserved; little, if anything, has been
changed to accommodate new technology or new knowledge of the behavior of various
remedial alternatives.

   The cap is simulated simply by limiting recharge.  In this case, the cap was assumed to be
completely impermeable. A  more reasonable approximation is to allow some recharge based
on calculations of cap  effectiveness. It was further assumed that any precipitation on the cap
would be collected before running off and having the opportunity to recharge the aquifer.
The effect on the water table of  the cap (part b) is to decrease the hydraulic head beneath the
cap by one to two feet (see Figures 20.3b and 20.4).  Of more importance is the limitation of
percolation through the unsaturated zone and subsequent transport of contaminants to the
water table.  The cap was simulated in all cases because there was no doubt whether it should
be used.
                                        20-25

-------
   The slurry well is simulated by assigning a hydraulic conductivity of IxlO'6 times that of
the aquifer within the grid block representing the well.  Assuming a 30 ft wide grid block,
this is equivalent to a 2 ft wide wall of hydraulic conductivity 2.83 x  W6 ft/d or IxlO"9 cm/s.
This is a very low hydraulic conductivity and essentially represents the wall as impermeable.
The purpose of the wall is to reduce flow through the landfill area and to reduce head beneath
the cap.  As shown  in Figure 20.3c, the wall is effective in deflecting water around the
landfill.  Combined with the drain, the wall allows the drain to collect primarily clean water,
thereby limiting treatment costs and reducing the amount of water the drain must transmit.
The wall also allows the water table in the landfill area to drop more  slowly and causes the
amount of solute discharging downgradient to be spread  over time. When the wall is used
without a drain, some upgradient buildup occurs as the water is diverted  around the landfill
area.  A minor conceptual problem is apparent from Figure 20.4.  A buildup of head occurs
on the node representing the wall as a result of the recharge on the low permeability wall.
Because of the relatively coarse discretization, the entire 30 ft width of the grid block is of
low permeability and cannot absorb the recharge.  It would probably be most appropriate to
assume  that water would run off the wall into the  more permeable aquifer material.
Consequently, recharge could have been redistributed to other nodes in this model  or, more
accurately distributed in a finer gridded model.

   The drain is simulated using the DRAIN package of MODFLOW.  In the original study,
constant head cells were used to represent the drain. This was done primarily because a drain
package was not a part of the USGS2D code, but  also to assess the maximum amount of flow
which could be diverted to the drain. In this application, the DRAIN package was used, but a
relatively high conductance based on cell area and aquifer hydraulic conductivity was input.
The high conductance value had the net effect of making the drain very similar to  a constant-
head node.  An added benefit of using the DRAIN package was the differentiation in the
mass  balance between true drain discharge and other constant-head discharge.

   The drain causes an immediate lowering of the head in the vicinity of the landfill.
However, without the slurry wall, a gradient is established where water flows from the
landfill  area into the drain. Because water comes from both inside and outside the landfill
area,  flow rates are  initially almost twice as high as  when a wall is in place (see Table 20.4).
The drain without the wall is the most effective of all the alternatives in  lowering  head in the
landfill  area.  Notice in Figure 20.3d that parts of the Upper Cohansey are desaturated after
only 2.69 years.

   A possible  weakness of the model configuration of the drain was the need to specify the
drain  elevation close to the aquifer base.  Two-dimensional flow simulated by the  model
begins to lose some accuracy near  the drains where, due to drain placement, flow  becomes
vertical. Andersen et al., (1984) discuss some of the problems associated with drain
placement near the aquifer base and suggest an alternate means of assessing drain  flux with
the model.

   Several other scenarios and combinations of remedial measures were simulated  in the
original study. These included a shorter drain, a less penetrating drain, a smaller cap, a
shorter  wall, and a drain at greater distance from the wall.  The original  study also focused on
discharge of contaminated groundwater to the seeps downgradient of the landfill.  Seep

                                         20-26

-------
discharge was obtained by summing fluxes to pertinent constant-head nodes.  Individual nodal
discharges may be obtained by invoking the cell-by-cell flow option in the BCF package.
The original study also combined the numerical results with analytical results as a checking
procedure and to verify the validity of simplifying assumptions used in the numerical model.
An advective travel time was derived analytically from model results. A more  sophisticated
method of assessing advective contaminant migration with a flow model is to use a particle
tracking module, such as MODPATH (Pollack,  1989).
                                         20-27

-------
                                   REFERENCES
Andersen, P.P., C.R. Faust, and J.W. Mercer, 1984. Analysis of conceptual designs for
      remedial measures at Lipari Landfill, New Jersey. Ground Water Vol. 22, no. 2 pp
      176-190.

Bear, J., 1972. Dynamics of fluids in porous media. American Elsevier, New York.

Bennett, D., Kontis, A.L. and Larson, S.P., 1982. Representation of multiaquifer well effects
      in three-dimensional ground-water flow simulation, Ground Water v. 20, no. 3, pp.
      334-341.

Bredehoeft, J.D., and G.F. Finder, 1970, Digital analysis of areal flow in multiaquifer
      groundwater systems:  a three-dimensional model.  Water Resources Res., 6, pp 883-
      888.

Faust, C.R., P.N. Sims, C.P. Spalding, P.P. Andersen, and D.E. Stephenson, 1989.  FTWORK:
      a three dimensional groundwater flow and solute transport code. Westinghouse
      Savannah River Company WSRC-RP-89-1085.

Franke, O.L.,  Reilly, T.E., and Bennett, G.D., 1987.  Definition of boundary and initial
      conditions in the analysis of saturated ground-water flow systems — An introduction:
      U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3,
      Chapter B5.

Freeze, R.A. and J. Cherry, 1979.   Groundwater, Prentice Hall, Englewood Cliffs, NJ 604 pp.

GeoTrans, 1988. SEFTRAN:  A simple and efficient two-dimensional groundwater flow and
      transport model, Version  2.7. Software documentation.

Hantush,  M.S., 1960.   Modification of Theory of Leaky Aquifers, Journal of Geophysical
      Research, 65 pp. 3713-3725.

McDonald, M.G., 1984.  Development of a multi-aquifer well option for a modular ground-
      water flow model. Proceedings of the FOCUS conference on practical applications of
      groundwater models. NWWA.

McDonald, M.G. and  Harbaugh, A.W., 1988.  A modular three-dimensional finite-difference
      ground-water flow model: U.S. Geological Survey Techniques of Water Resource
      Investigations, Book 6 Chapter Al.

Moench,  A.F. and T.A Prickett,  1972.   Radial flow in an infinite aquifer undergoing
      conversion from artesian  to water table conditions. Water Resources Research.  Vol 8,
      No. 2  pp. 494-499.
                                         R-l

-------
Papadopulos, I.S., 1965.  "Nonsteady flow to a well in an infinite anisotropic aquifer,"  Symp.
       Internn. Assoc, Sci. Hydrology, Dubrovnik.

Finder, G.F. and ID, Bredehoeft, 1968. Application of the digital computer for aquifer
       evaluation.  Water Resources Research, Vol. 4, pp.  1069-1093.

Finder, G.F. and E.O. Frind, 1972.  Application of Galerkins procedure to aquifer analysis.
       Water Resources Research, Vol. 8, pp 108-120.

Pollack, D.W., 1989. Documentation of computer programs to compute and display pathlines
       using results from the USGS modular three dimensional finite difference groundwater
       flow model,  U.S. Geological Survey Open File Report 89-381.

Prickett, T.A., and C.G.  Lonnquist, 1971.  Selected computer techniques for groundwater
       resource evaluation.  Illinois State Water Survey, Bulletin 55, 62 pp.

Reilly, T.E., Franke, O.L., and Bennett, G.D., 1987.  The principle of superposition and its
       application in ground-water hydraulics: U.S. Geological Survey Techniques of Water-
       Resources Investigations, Book 3, Chapter B6.

Rushton, K.R. and L.M. Tomlinson, 1977.  Permissible mesh spacing in aquifer problems
       solved by finite differences, Journal of Hydrology 34:63.76.

Theis, C.V. 1935. The relation between the lowering of the piezometrie surface and the rate
       and duration of discharge of a well using groundwater storage. Trans. Amer.
       Geophys. Union, 2, pp 519-524.

Trescott, P.C., G.F.  Finder, S.P, Larson, 1976. Finite-difference model for aquifer simulation
       in two dimensions with results of numerical experiments: U.S. Geological Survey
       Techniques of Water-Resources Investigation, Book 7, Chapter Cl» 116  p.

van der Heijde, P.K.M. and R.A.  Park, 1986. Report of findings and discussion of selected
       groundwater modeling issues,  Study conducted under cooperative agreement CR-
       812603 with the  U.S. Environmental Protection Agency, R.S. Kerr Environmental
       Research Laboratory, Ada, OK 74820
                                          R-2

-------
                                  APPENDIX A
                           Abbreviated Input Instructions

These input instructions are intended as a quick reference for the experienced user. Most
explanations that are contained in the complete input instructions given in package
documentation have been omitted. The format of input fields is given only for those records
that contain fields that are not 10 characters wide. Each input item, for which format is not
given,, is identified as either a record or an array. For records, the fields contained in the
record are named. For arrays, only the array name is given. Input fields which contain  codes
or flags are described. All other field and array descriptions  have  been dropped.

                                    Array Input

The real  two-dimensional array reader (U2DREL), the  integer two-dimensional  array reader
(U2DINT), and the real one-dimensional array reader (U1DREL) read one array-control record
and, optionally, a data array in a format
specified  on the  array-control record.
FOR REAL ARRAY READER (U2DREL or U1DREL)
      Data:     LOCAT  CNSTNT    FMTIN
      Format;   110      F10.0        5A4
FOR INTEGER ARRAY READER (U2DINT)
      Data:     LOCAT  ICONST     FMTIN
      Format:   110      110          5A4
                                         IPRN
                                         110

                                         IPRN
                                         110
IPRN-
is a flag indicating that the array being read should be printed and a code for
indicating the format that should be used. It is used only if LOCAT is not
equal to zero. The format codes are different for each of the three modules.
IPRN is set to zero when the specified value exceeds those defined in the
chart below. If IPRN is less than zero, the array will not be  printed.
                         U2DREL
                         10G11.4
                         11G10.3
                         9G13.6
                         15F7.1
                         15F7.2
                         15F7.3  '
                         15F7.4
                         20F5.0
                         20F5.1
                         20F5.2
                         20F5.3
                         20F5.4
                         10G11.4
                          U2DINT
                          10111
                          6011
                          4012
                          3013
                          2514
                          2015
U1DREL
10G12.5
                                        A-l

-------
LOCAT—indicates the location of the data which will be put in the array.
      If LOCAT < 0, unit number for unformatted records.
      If LOCAT = 0, all elements are set equal to CNSTNT or ICONST.
      If LOCAT > 0, unit number for formatted records.
                               Basic Package Input

Input for the Basic (BAS) Package except for output control is read from unit 1 as specified
in the main program. If necessary, the unit number for BAS input can be changed to meet the
requirements of a particular computer. Input for the output control option is read from the
unit number specified in IUNIT(12).

FOR EACH SIMULATION
      1. Record:   HEADNG(32)
      2. Record:   HEADNG (continued)
      3. Record:   NLAY   NROW    NCOL             NPER
ITMUNI
      4. Data:     IUNTT(24)
         Format:  2413

  8CF  WEL  DRN  RIV   EVT  XXX  GHB   RCH    SIP   XXX  SOR   OC
   1      2      3     4      5     6      7      8      9      10     11     12

      5. Record:   IAPART ISTRT
      6. Array:   IBOUND(NCOL,NROW)
                 (One array for each layer in the grid)
      7. Record:   HNOFLO
      8. Array:   Shead(NCOL,NROW)
                 (One array for each layer in the grid)

FOR EACH STRESS PERIOD
      9. Data:     PERLEN NSTP TSMULT

ITMUNI-is the time unit of model data.
         0 - undefined     3 -  hours
          1 - seconds      4 -  days
         2 - minutes      5 -  years
      Consistent length and time units must be used for all model data.  The user may
      choose one length unit and one time unit to be used to specify all input data.
lUNTT-is a 24-element table of  input units for use by all major options.
IAPART--indicat.es whether array BUFF is separate from array RHS.
     If IAPART= 0, the arrays  BUFF and RHS occupy the same space. This option
                   conserves  space. This option should be used unless some other package
                   explicitly says  otherwise.
     If IAPART * 0,   the arrays BUFF and RHS occupy different space.
                                      A-2

-------
ISTRT—indicates whether starting heads are to be saved.
     If ISTRT = 0,  starting heads are not saved.
     If ISTRT * 0,  starting heads are saved.
IBOUND—is the boundary array.
     If IBOUND(I,J,K) < 0, cell I,J,K has a constant head.
     If IBOUND(I,J,K) = 0, cell IJ,K is inactive.
     If IBOUND(I,J,K) > 0, cell IJ,K is active.
HNOFLO-is the value of head to be assigned to all inactive cells.
Shead-is head at the start of the simulation.
PERLEN-is the length of a stress period.
NSTP—is the number of time steps in a stress period.
TSMULT—is the multiplier for the length of successive time steps.
                               Output Control Input

Input to Output Control is read from the unit specified in IUNIT(12), All printer output goes to
unit 6 as specified in the main program. If necessary, the unit number for printer output can be
changed to meet the requirements of a particular computer.

FOR EACH 'SIMULATION
      1. Record:  IHEDFM    IDDNFM IHEDUN     IDDNUN
FOR EACH TIME STEP
      2. Record:  INCODE    IHDDFL  IBUDFL     ICBCFL
      3. Record:  Hdpr        Ddpr     Hdsv        Ddsv
(Record 3 is read 0, 1, or NLAY times, depending on the value of INCODE.)

IHEDFM-is a code for the format in which heads will be printed.
IDDNFM—is a code for the format in which drawdowns will be printed.
                   0-(10G11.4)     7-(20F5.0)
                   1-(11G10.3)     8-(20F5.1)
      positive-wrap  2 - (9G13.6)      9 - (20F5.2)                               ,  <
                   3-U5F7.1)     10-(20F5.3)     ..                     '  "  J  "''
      negative-strip  4 - (15F7.2)     11 - (20F5.4)
                   5-(15F7.3)     12-(10G11.4)                            ,,
                   6 - (15F7.4)                                             i—*
IHEDUN—is the unit number on which heads will be saved.
IDDNUN-is the unit number on which drawdowns will be saved.
INCODE-is the head/drawdown output code.
      If INCODE < 0, layer-by-layer specifications from the last time steps are used. Input item
      3 is not read.                                                           ,., ,
      If INCODE  = 0, all  layers are treated the same way. Input item 3 will  consist o
      record.                                                               ,*~
      IOFLG array will be read.
      If INCODE > 0, input item 3 will consist of one record for each layer.
                                      A-3

-------
IHDDFL-is a head and drawdown output flag.
     If IHDDFL = 0, neither heads nor drawdowns will be printed or saved.
  ;_.•••• If IHDDFL * 0, heads and drawdowns will be printed or saved.
IBUDFL-is a budget print flag.
     If IBUDFL = 0, overall volumetric budget will not be printed.
     If IBUDFL * 0, overall volumetric budget will be printed.
ICBCFL-is a cell-by-cell flow-term flag.
     If ICBCFL = 0, cell-by-cell flow terms are not saved or printed.
     If ICBCFL * n, cell-by-cell flow terms are printed or recorded on disk depending on flags
     set in the component of flow packages, i.e., IWELCB, IRCHCB, etc.
Hdpr--is the output flag for head printout.
     If Hdpr = 0, head is not printed for the corresponding layer.
     If Hdpr * 0, head is printed for the corresponding layer.
Ddpr—is the output flag for drawdown printout.
     If Ddpr = 0, drawdown is not printed for the corresponding layer.
     If Ddpr ?t 0, drawdown is printed for the corresponding layer.
Hdsv—is the output flag for head save.
     If Hdsv = 0, head is not saved  for the corresponding layer.
    , If Hdsv ?t 0, head is saved for the corresponding layer.
Ddsv--is the output flag for drawdown save.
     If Ddsv = 0, drawdown is not saved for the corresponding layer.
     If Ddsv * 0, drawdown is saved for the corresponding layer.
                        Block-Centered Flow Package Input

Input for the BCF Package is read from the unit specified in IUNTT(1),

FOR EACH SIMULATION
      1. Record:  ISS IBCFCB
      2, Data:    LAYCON(NLAY) (maximum of 80 layers)
       Format:  4012
         (If there are 40 or fewer layers, use one record.)

   .   3. Array:   TRPY(NLAY)
      4. Array:   DELR(NCOL)
      5. Array:   DELC(NROW)

All of the arrays (items 6-12) for layer 1 are read first; then all of the arrays for layer 2, etc.

IF THE SIMULATION IS TRANSIENT
      6. Array:   sfl(NCOL,NROW)
IF THE LAYER TYPE CODE (LAYCON) IS ZERO OR TWO
      7. Array:   Tran(NCOL,NROW)
IF THE LAYER TYPE CODE (LAYCON) IS ONE OR THREE
      8. Array:   HY(NCOL,NROW)
      9. Array:   BOT(NCOL.NROW)

                                      A-4

-------
IF THIS IS NOT THE BOTTOM LAYER                                       L _.-L.
      10. Array:  Vcont(NCOL.NROW)
IF THE SIMULATION IS TRANSIENT AND THE LAYER TYPE CODE (LAYCON) is TWO
OR THREE                                                                ^ -.:__-.
      11. Array:  sf2(NCOL,NROW)
IF THE LAYER TYPE CODE IS TWO OR THREE
      12. Array:  TOP(NCOL,NROW)                                          _..:LJ

ISS-is the steady-state flag.
      If ISS * 0, the simulation is steady state.
      If ISS = 0, the simulation is transient.                                        ..  .
IBCFCB-is a flag and a unit number.                                          :
      If EBCFCB > 0, cell-by-cell flow terms will be recorded if ICBCFL (see Output Control)
      is set.
      If IBCFCB. = 0, cell-by-cell flow terms  will not be printed or recorded.
      If IBCFCB < 0, print flow for constant-head cells if ICBCFL is set.
LAYCON-is the layer type table: 0 - confined, 1 - unconfmed,
      2 -  confmed/unconfined (T constant), and 3 - confmed/unconfined.
TRPY-is an anisotropy factor for each layer: T or K along a column to T or K along a row.
DELR—is the cell width along rows.
DELC—is the cell width along columns.
sfl--is the primary storage factor.
Tran-is the transmissivity along rows.
HY—is the hydraulic conductivity along rows.
BOT is the elevation  of the aquifer bottom.
Vcont-is  the vertical hydraulic conductivity divided by the thickness from a layer to the layer
beneath it.
sf2—is the secondary  storage factor.
TOP--is the elevation of the aquifer top.
                                      A-5

-------
                              River Package Input

   Input to the River (RIV) Package is read from the unit specified in IUNIT(4),

FOR EACH SIMULATION
     1. Record: MXRIVR IRIVCB
FOR EACH STRESS PERIOD
     2. Record:  ITMP
     3. Record: Layer Row Column Stage Cond Rbot
               (Input item 3 normally consists of one record for each river reach. If ITMP
      , .       is negative or zero, item 3 is not read.)
IRIVCB--is a flag and a unit number.
     If IRIVCB > 0, cell-by-cell flow terms will be recorded.
     If IRIVCB = 0, cell-by-cell flow terms will not be printed or recorded.
     If IRIVCB < 0, river leakage will be printed if ICBCFL is set.
ITMP—is a flag and a counter.
     If ITMP < 0, river data from the last stress period will be reused.
     If ITMP > 0, ITMP will be the number of reaches active during the current stress period.


                             Recharge Package Input

Input to the Recharge (RCH) Package is read from the unit specified in IUNIT(8).

FOR EACH SIMULATION
     1. Record: NRCHOP IRCHCB
FOR EACH STRESS PERIOD
     2. Record: INRECH INIRCH
     3. Array:  RECH(NCOL,NROW) IF THE RECHARGE OPTION IS EQUAL TO 2
     4. Array:  IRCH(NCOL,NROW)

NRCHQP-is  the recharge option code.
    .o:lv Recharge is only to "the'top- grid layer.     ;
     2 - Vertical distribution of recharge is specified in array IRCH.
     3 - Recharge is applied to the highest active cell in each  vertical column.
IRCHCB-is a flag and a unit number.
     If IRCHCB > 0, unit number for cell-by-cell flow terms.
     If IRCHCB < 0, cell-by-cell  flow terrhis will not be printed  or recorded.
INRECH-is the RECH read flag.        "
     If INRECH'< 0, recharge fluxes from the preceding stress period are used
     If INRECH > 0, an array of  recharge fluxes, RECH (Lf1), is read.
INIRCH~is similar to INRECH.  -
                                      A-6

-------
                                Well Package Input
    Input for the Well (WEL) Package is read from the unit specified in IUNIT(2),

FOR EACH SIMULATION                                          ''  .  „  J,' f'  \
      1. Record:  MXWELL   IWELCB                               •    '   .;\': "'
FOR EACH STRESS PERIOD                                               -';  ;
      2. Record:  ITMP
      3. Record:  Layer Row  Column   Q
      (Input item 3 normally consists of one record for each well. If ITMP is negative or zero,
      item 3 is not read.)                                                       - —

MXWELL-is the maximum number of wells used at any time.
IWELCB—is  a flag and a unit number.
      If IWELCB > 0, unit number for cell-by-cell flow terms.
      If IWELCB = 0, cell-by-cell flow terms will not be printed or recorded.
      If IWELCB < 0, well recharge will be printed whenever ICBCFL is set.  .-
ITMP—is a flag and a counter.
      If ITMP < 0, well data from the last stress period will be reused.
      If ITMP > 0, ITMP will be the  number of wells active during the current stress period.
                               Drain Package Input

    Input to the Drain (DRN) Package is read from the unit specified in IUNIT(3).
FOR EACH SIMULATION                                              .<  -.'  :
       1. Record:  MXDRN IDRNCB                                .. :
FOR EACH STRESS PERIOD                                        -      .     i
       2. Record:  ITMP
       3. Record: Layer    Row      Col      Elevation*   Cond  •_  ,:r.vi.i -.1; :''--J'J^i2
      (Input item 3 normally consists of one record for each dratm If riMP is negative,® zero,
      item 3  will not be read.)            ., .,_           •,     ,    •>•„•':    ,•:-.'/  1

MXPRN-is the maximum number of drain cells active at one time.         .   ;   „ -jOl-r
IDRNCB—is a flag and a unit number.         ,   ,                      ;  •  >• ,;n  i
      If IDRNCB > 0, unit number for cell-by-cell flow terms.                   ' »/r  1
      If IDRNCB = 0, cell-by-cell flow terms will not be printed or recorded,  -  jrj: ^--_-^'l_
      If IDRNCB < 0, drain leakage for each cell will be printed whenever ICBCFL^is set^
ITMP-is a flag and a counter.                     ,   .       r       ... -_-"->c,;<[  L
      If ITMP < 0, drain data from the last stress period will be reused.;    ~ .  , .     ;• >;•
      If ITMP > 0, ITMP will be the number of drains active during the current stress period.
                                      A-7

-------
                         Evapotranspiration Package Input

Input tojthe Evapotranspiration (EVT) Package is read from the unit specified in IUNIT (5).

FOR EACH SIMULATION
      1. Record: NEVTOP IEVTCB

FOR EACH STRESS PERIOD
      2. Record: INSURF     INEVTR   INEXDP    INIEVT
      3. Array:  SURF
      4. Array:  EVTR
      5. Array:  EXDP

IF THE ET OPTION IS EQUAL TO TWO
      6. Array:  IEVT

NEVTOP-is the evapotranspiration (ET) option code.
    ul -JET is^ealculated only for cells in the top grid layer.
      2 - The cell for each vertical column is specified by the user in array IEVT.

lEVTGB-ris a flag -and a unit number.
      If IEVTCB > 0, unit number for cell-by-cell flow terms.
      If IEVTCB < 0, cell-by-cell flow terms will not be printed or recorded.

INSURF-is the ET surface (SURF) read flag.
   r;  If. INSURF > 0, an array containing the ET surface elevation will be read.
      If INSURF < 0, the ET surface from the preceding stress period will be reused.

INEVTR-is similar to INSURF.

INEXDP-is similar to INSURF.

INIEVT--is similamto INSURF^  ^ -
                                      A-8 /

-------
                        General-Head Boundary Package Input

Input for the  General-Head Boundary  (GHB) Package is  read from  the unit  specified in;
IUNIT(7).

FOR EACH SIMULATION                                                >-:
     1. Record:  MXBND IGHBCB
FOR EACH STRESS PERIOD                                              ' " '3 /K
     2. Record:  ITMP                      Boundary                     ^  -
     3. Record:  Layer   Row      Column        Head        Cond    '-  A
     (Input item 3 normally consists of one record for each GHB. If ITMP is negative* -or zero,
     item 3 is not read.)

MXBND— is the maximum number of general-head boundary cells at one time.    •'       -
IGHBCB-is a flag and  a unit number.
     If IGHBCB > 0, unit number for cell-by-cell flow terms.
     If IGHBCB = 0, cell-by-cell flow terms will not be printed or recorded.        .'.  ____
     If IGHBCB < 0, boundary leakage for each cell will be printed whenever ICBCFL is set.
ITMP-is a flag and a counter.                                    .      .^   T - -
     If ITMP < 0, GHB data from the preceding stress period will be reused.
     If ITMP > 0, ITMP is the number of general-head boundaries during the current stress.-
     period.

                      Strongly Implicit Procedure Package Input

Input to the Strongly  Implicit Procedure (SIP) Package  is read  from the  unit specified in
IUNIT(9).                                                              ,  '•  "

FOR EACH SIMULATION                                  '.       .L,;    ! ; : ^
     1. Record:  MXITER NPARM
     2. Record:  ACCL   HCLOSE IPCALC  WSEED     IPRSIP     u   ;   -:l/l

IPCALC— is a flag indicating where the iteration parameter seed wifl/cdme>frora.' Eru-  ^ -TVdi
     0 - the seed will be entered by the user.
     1 - the seed will be calculated at the start of the simulation from problem parameters.
IPRSIP-is the printout interval for SIP.

                     Slice-Successive Overrelaxation Package Input

Input to  the Slice-Successive Overrelaxation (SOR) Package is read from the unit specified in
lUNIT(ll).
FOR EACH SIMULATION
      1. Record:  MXITER                    -       #.WestJaL
      2. Record:  ACCL          HCLOSE    IPRSOR Chicago. «. 606043^
IPRSOR-is the printout interval for SOR.

                                      A-9/; ,-

-------