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1. EXECUTIVE SUMMARY

This source assessment provides information on emissions and potential
emission controls for chloroform. Chloroform is one of a number of potential

hazardous air pollutants being screened by the U.S. Environmental Protection

Agency to determine if regulatory action under the Ciean Air Act is warranted.
Part of this screening procedure includes devé]opment of a source assessment
for each chemical. Other portions of the screening procedure include evaluation
of health effects data and pollutant exposure data. Based on these and other
data, the Administrator will determine if chloroform emissions should be
regulated.

Included in this report is information on all significant sources of
chloroform identified to date, emissions, current control, achievable control,
control costs, and cost-effectiveness.

Eleven source categories are discussed to varying degrees in this report.
These are:

° Pulp and paper manufacturing,

] Ethylene dichloride manufacturing,

) Chloroform production,

) Fluorocarbon 22 production, -
0 Oxybisphenoxarsine manufacturing,

° Pharmaceutical manufacturing,

() Trichloroethylene photodegradation,

) Chlorination of cooling water,

° Chlorination of drinking water,

) Chlorination of municipal wastewater, and
° Grain fumigation.
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Emissions data are reported for the eleven source categories listed
above and for Hypa1on® manufacturing. Production data on Hypalon@ manufacturing
have been claimed to be confidential and are not included in the body of this
report. The source categories listed above emit 8,740 Mg of chloroform
annually. Two sources not listed above include laboratory uses and miscellan-
eous uses. These categories are too disaggregated for reliable emission
estimates to be possible. However, assuming all chloroform production attri-
butable to miscellaneous uses ends up as air emissions, an additional 6,000 Mg
could be emitted to the atmosphere. This estimate is based on a production
level of 159,500 Mg of which 90 percent goes to chlorofluorocarbon 22 production,
5 percent is exported, and approximately 2,000 Mg is used in pharmaceutical
manufacturing. ‘

O0f the eleven source categories listed above, four form chloroform by
the reaction of chlorine with organic precursors in water. Chloroform emissions
result from intermedia transfer of chloroform from water to air. These
"inadvertent" emissions account for 74 percent of all chloroform emissions
(Figure 1-1). Although these emissions are secondary, there are methods to
control these releases, the principal method being substitution away from
chloroform forming oxidants such as free chlorine or hypochlorite to compounds
such as chlorine dioxide or chloramines.

Another secondary source of chloroform in the atmosphere is the photode-
gradation of trichlorocethylene. Control methods for this source would include
substitution to other halogenated solvents, or use of other cleaning methods.

Direct sources of chloroform emissions result from chloroform production,
its use as a solvent, and its use as an intermediate in the production of
other chemicals such as fluorocarbon 22, which uses-up to 90 percent of all
chloroform produced. Here, conventional control techniques to Timit chloroform
emissions would apply.

Source categories which emit chloroform by order of decreasing emissions
are briefly described below. Included in this discussion are potential
controls, costs, and cost-effectiveness.
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Pulp and Paper Production

Drinking Water Treatment

Pharmaceutical Production

Chloroform Production

Wastewater Treatment

TCE Photodegradation

Cooling Water Treatment

EDC Production

—_]

Hypalon Production

Fluorocarbon 22 Production

Grain Fumigation

0OBPA Production -

T ¥ T T L L) L4

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Annual emissions, 103 Mg/yr

Figure 1-1. Sources of Chloroform Emissions.
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Pulp and Paper Industry

Chloroform air emissions result from wastewater treatment facilities at
pulp and paper mills where chlorine compounds are used in pulp bleaching.
The principal source of chloroform in the pulp and paper industry is the
hypochlorite bleaching stage in pulp bleaching sequences (92 percent of
chloroform produced in pulp bleaching). Chloroform emissions from the five sub-
categories described in this report are estimated to be 3,890 Mg/yr.

A potential chloroform control method is modification of bleaching
sequences to use chlorine dioxide, which forms virtually no-chloroform, and
oxygen as substitutes for hypochlorite. Such modification requires extensive
equipment replacement and therefore would disrupt production and be very
expensive. Annualized costs for controls range from a net savings of
$25,000/yr for a 545 Mg/day kraft pulp C-E-H-D-E-D sequence to $5,550,000/yr
for a 363 Mg/day C-E-H kraft pulp bleach sequence.a The cost-effectiveness of
control ranges from $416,900/Mg to a net savings of $1,400/Mg, with a mean
cost-effectiveness for all mills of $85,600/Mg.

Drinking Water

Chlorination of drinking water for disinfection produces chloroform in
many water supply systems. Approximately 1,900 Mg/yr of chloroform evaporate
from water to air as a result of water supply chlorination.

Five chloroform control techniques have been jdentified by the O0ffice of
Drinking Water as "generally available." These potential controls are: use
of chloramines, use of chlorine dioxide, improving existing clarification,
moving the point of chlorination, and use of powdered activated carbon. The
average total annualized control costs for the largest model plant range from
$99,000 to $3,093,000 per year. The cost-effectiveness of controls depends
on the amount of chloroform controlled, and ranged from $2,800/Mg for a
100 ug/1 decrease in a large treatment plant to $877,000/Mg for a 10 ug/1
decrease in a small treatment plant.

qRefer to page 3-5 for an explanation of these symbols.
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Chloroform Production

There are six chloroform production facilities currently operating in
the U.S., with a current estimated chloroform emission total of 458 Mg/yr.
Sixty percent of these emissions are from fugitive sources such as fugitive
leaks from process components, losses from loading chloroform into transport
vessels, and several secondary emission sources. The remaining 40 percent is
due mostly to chloroform storage, with significant process vent emissions at
a few plants. Available control technology (ACT) could be used to reduce
emissions to 144 Mg/yr, mostly by controlling process fugitive sources and
storage tanks. After ACT, emissions would consist mostly of remaining
process fugitives, uncontrolled secondary emissions and in-process storage
not covered by ACT controls on main product storage tanks. For storage,
handling, and some plants' process vents, ACT consists of refrigerated
condensers. Process fugitive emissions can be controliled by a combination of
monthly inspection and maintenance, and additional equipment specifications
for some process components.

The total net annual cost for implementation of ACT for chloroform
production facilities is estimated at $525,000. About $410,000 of this total
is for control of chloroform handling, the most expensive ACT with an average
cost-effectiveness of $9,100/Mg. Almost all of the remaining cost is divided
between process fugitive controls ($51,000/yr; $380/Mg) and storage controls
($59,000/yr; $630/Mg). The net costs and cost-effectiveness of individual
controls varies significantly, due to differences in chloroform recovery
credits and the level of controls already in place. Total estimated annual
costs per plant vary from $12,300 for a plant with most ACT controls in
place, to $135,000 for a plant requiring two separate handling control systems
as well as other controls. Cost-effectiveness at the plant level is estimated
to range from $960/Mg to $5,800/Mg.

Municipal Wastewater Treatment

It is estimated that 424 Mg of chloroform are generated and released to
the environment as a result of wastewater treatment and disinfection. On
average, the amount of chloroform in wastewater decreases by 4.6 ug/1 from
influent to secondary effluent. With 9.2081 «x 7010 liters treated per day,
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national emissions from wastewater treatment are 155 Mg/yr. In addition,
chlorination of treated effluent increases chloroform concentrations in
wastewater by 8 npg/l1. Thus, an additional 269 Mg of chloroform are generated
annually as a result of disinfection of effluent.

Methods of control to reduce chloroform formation due to disinfection
include precursor removal prior to chlorination (improved clarification), or
use of a disinfectant that does not form chloroform (use of chloramines or
chlorine dioxide). Control efficiency ranges from 37 to 90 percent depending
on the method used. Annualized control costs range from $8,000 for a small
plant using chloramines to $1,120,000 for a large plant usihg improved
clarification. Cost-effectiveness ranges from $38,700/Mg for a large plant
using chloramines to $1,560,000/Mg for a small plant using improved clarification.

Trichloroethylene Photodegradation

Chloroform forms in the atmosphere as a result of photodecomposition of
trichloroethylene. It is estimated that for every ppm of trichloroethylene
emitted to the atmosphere, 7 ppb of chloroform are formed. In 1982, 67,200 Mg
of trichloroethylene were emitted to the atmosphere, resulting in the formation
of 420 Mg of chloroform. Methods of control include use of alternative
halogenated solvents for solvent degreasing, or alternative cleaning methods.

Cooling Water

Chloroform is formed when cooling water in steam electric plants is
chlorinated to prevent biofouling in heat-exchange equipment. An estimated
197 to 263 Mg/yr of chloroform are produced and emitted from cooling water
chlorination.

Potential chloroform control could be attained by using alternative
biofouling control methods such as other oxidizing chemicals, nonoxidizing
biocides, and mechanical cleaning. None of these alternatives is used widely
at this time.

Ethylene Dichloride Production

There are a total of 20 ethylene dichloride production facilities in the
U.S. It is estimated that emissions of byproduct chloroform from these
facilities are currently about 173 Mg/yr. The main emission sources include
oxychlorination reactors, purification and separation columns, and a few
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reported instances of emissions from liquid waste storage or disposal and

other waste-treatment steps. At all but two plants, all reactor and column
vents are controlled by thermal oxidation, which has efficiency of 98 percent
or greater. Applying a similar level of control to these vents at the two
remaining plants is estimated to reduce total chloroform emissions to 117 Mg/yr.
The majority of this emission reduction is due to uncontrolled column vents

at one plant. Costs and cost-effectiveness were not estimated for the few
remaining potential controls due to the high level of existing control in the
industry, and unavailability of sufficient plant-specific data.

Fluorocarbon 22 Production

There are currently six facilities in the U.S. that produce fluorocarbon 22
on a routine basis. These facilities are estimated to emit about 50 Mg,
almost entirely from storage of chloroform feedstock. With 95 percent control
of all storage emissions by refrigerated condensers, this total can be reduced
to about 5.7 Mg/yr. This would involve installation of condensers at four plants,
at a total net annual cost of $122,300. For individual plants, these controls
are estimated to cost from $2,200/Mg to $4,100/Mg, with an industry-wide
average of $2,800/Mg.

Oxybisphenoxarsine/1,3-Diisocyanate Manufacture

Oxybisphenoxarsine (OBPA) and 1,3-diisocyanate are both produced by
Aerojet General Corporation in Sacramento, California. OBPA is a fungicide
which is combined with rubber to prevent mold growth on gaskets and seals.
1,3-Diisocyanate is an intermediary in the production of polyurethane resins.

Combined chloroform emissions from these two processes amount to 23.77 Mg/yr.
Both sources are controlled by carbon adsorption. "A-third source of chloroform
emissions is a deaerator of hazardous waste prior to deep well injection.
Reported emissions from this source are 25.5 Mg/yr. There are no known
controls for this source.

Grain Fumigation

Chloroform has been used as a carrier in grain fumigation. Vulcan
Materials Company markets Chlorofume® FC 30 Grain Fumigant containing 72.2 percent
chloroform, 20.4 percent carbon disulfide, and 7.4 percent ethylene dibromide.
In 1981, 28.4 Mg of chloroform were used in this manner,
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Because of the recent cancellation of pesticide products containing EDB
(49 FR 4452), it is not known whether Vulcan plans to reformulate Chlorofume®
without EDB. If so, a potential substitute to chloroform as a carrier would
be carbon tetrachloride, which is used as a carrier in virtually all other
fumigants.

Pharmaceutical Manufacture

Specific data on uses of chloroform in the pharmaceutical industry are
very limited. A recent survey conducted by the Pharmaceutical Manufacturers
Association indicates that total direct air emissions from this source
category are on the order of 1000 Mg/yr. This total includes the known use
of chloroform as a solvent in production of Vitamin C at one Hoffman-LaRoche
plant, where total emissions are estimated at about 220 Mg/yr. Further
information is not available on one other very small Vitamin C production
facility (Pfizer, Groton, CT), or on other uses of chloroform in pharmaceutical
manufacturing.
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2. INTRODUCTION

The purpose of this report is to provide information on sources of air
emissions of chloroform. Chloroform is one of a number of chemical compounds
being screened by the U.S. Environmental Protection Agency to determine
whether they should be regulated under the Clean Air Act. Results of this
source assessment will be combined with other information, such as health
effects data and exposure data, to form a comprehensive analysis of the
threat to public health posed by chloroform. Based on all the information
available, the Administrator will then decide whether chloroform should be
regulated and if so, which regulatory mechanism under the Clean Air Act
should be used. The information presented in this report includes data on
emission sources of chloroform, current emission and emission control levels,
emission point coordinates, and an analysis of emission reduction achievable
on existing sources through use of best available control technology.

In 1982, it was estimated that 159,500 Mg of chloroform was produced.
Of this amount, approximately 90 percent is used in the production of fluoro-
carbon 22, five percent is exported, and the remainder is used by miscellaneous
sources such as laboratories, pharmaceutical companies, and dye and pesticide
companies. Of the 159,500 Mg produced, known annual emissions from primary sources
amount to approximately 1,840 Mg, or slightly greater than one percent of
production (Table 2-1). Most emissions of chloroform to the environment
result from its inadvertent formation and release (6,900 Mg/yr). Four of the
source categories which contribute to its inadvertent formation and release
form chloroform by the reaction of chlorine with organic precursors in water.
Chloroform emissions from these four categories result from the intermedia
transfer of chloroform from water to air and amount to 6,480 Mg per year.
These categories include pulp and paper manufacturing, drinking water treatment
plants, wastewater treatment plants, and cooling water treatment by power
plants. Although these emissions are secondary, there are methods to control
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TABLE 2-1. CHLOROFORM CONSUMPTION AND EMISSIONS

Chloroform
consumed, Mg/yr

Chloroform
emitted, Mg/yr

PRIMARY SOURCES

Pharmaceutical production Z,OOOa 1,000
Chloroform production - - 458
Ethylene dichloride production - 173
Hypalon® production b - 79.7
Fluorocarbon 22 production 144,000 50.2
Oxybisphenoxarsine production o 49.3
Grain fumigation 28.4 28.4
Subtotal 146,000 1,838.6
SECONDARY SOURCES
Water Sources
Pulp and paper production - 3,890
Drinking water treatment - 1,900
Wastewater treatment - 424
Cooling water treatment - 263
Air Sources
Trichloroethylene - 420
photodegradation
Subtotal - 6,897
Total 146,000 8,735.6
qstimated
beonfidential
€ Unknown
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these releases, including substitution away from chloroform-forming oxidants
such as free chlorine or hypochlorite to compounds such as chlorine dioxide
or chloramines.

Each chapter in the document describes a chloroform source cafegory.
Chapters include pulp and paper manufacturing; ethylene dichloride production;
chloroform production; fluorocarbon production; oxybisphenoxarsine/diisocyanate
manufacture; pharmaceutical manufacture; trichloroethylene photodegradation;
evaporation from boiler cooling water, drinking water and municipal wastewater;
and grain fumigation. -

One source category not discussed in this document js laboratory usage.

1 Chloroform is used

There are approximately 109,700 laboratories in the U.S.
in hospital, industrial, government, and university laboratories. It is used

as a general reagent and in high pressure liquid chromatography (HPLC).

However, aggregate data on the amount of chloroform used by laboratories

could not be guantified for two reasons. First, chloroform is sold to labora-
tories by a variety of sources. Some is purchased directly from producers;
however, most is sold by producers to distributors who buy in bulk and then
repackage or reformulate the chloroform for a specific type of end use (i.e.
general reagent vs. HPLC). Because the chain of distribution is so disaggregated,
there is no production or distribution source to provide aggregaté data on
chloroform in laboratories. One distributor stated that while the company

keeps records on "solvents" as a category, it does not keep detailed records

for specific so]vents.2

The second reason for lack of aggregate data stems from the fact that
laboratori€s do not represent a homogeneous user category. Consequently,
there is no central source of information from which- to obtain such data for
all laboratory use. However, chloroform use in laboratories does appear to
be widespread. One university reported that in a survey on carcinogenic
chemicals used in its 67 laboratories, chioroform was the most widely used,
appearing in 53 Taboratom‘es.3
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3. PULP AND PAPER INDUSTRY

INTRODUCTION

The pulp and paper industry is the largest ch]oroform‘emissions source
category, accounting for approximately 40 percent of ch1ordform air emissions
in the United States.] Chloroform is produced indirectly in process water
during the bleaching of wood pulp by the reaction of chlorine and its compounds
with lignins in pu]p.2 Chloroform formed in process water subsequently
evaporates to the atmosphere during both the treatment of process wastewater
and following treatment (from discharged mill effluent). Chloroform evaporation
from process water and wastewater is the source of chloroform air emissions
discussed in this chapter.

This chapter presents an overview of the pulp and paper industry, chloro-
form formation and fate in pulp bleaching processes, methods to reduce chloro-
form emissions, emission control costs for representative model plants,
emissions estimates for pulp mills, and cost effectiveness of emissions
control.

SOURCE DESCRIPTION

Industry Overview

The U.S. Environmental Protection Agency's Effluent Guidelines Division
has jdentified 706 operating facilities involved in the manufacture of pulp,
paper, and paperboard products.3 The mills vary in size, age, location, raw
material usage, products manufactured, production processes employed, and
effluent treatment systems used. The pulp, paper, and paperboard industry
consists of 3 major segments: integrated mills (where pulp alone or pulp and
paper or paperboard are manufactured on-site); non-integrated mills (where
paper or paperboard is manufactured but no pulp is made on-site); and secondary
fibers mills (where wastepaper is used as the primary raw material). The
Effluent Guidelines Division subcategorized mills with respect to raw materials,
processing sequences, and types of end products made. These subcategories,
which have been adopted for this report, are listed in Table 3-1.
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TABLE 3-1. PULP AND PAPER MILL SUBCATEGORIES

4

Integrated Segment

Dissolving Kraft
Market Bleached Kraft
BCT Bleached Kraft
Soda
Unbleached Kraft
- Linerboard
- Bag
Semi-Chemical
UnbTleached Kraft & Semi-Chemical
Dissolving Sulfite Pulp
- Nitration
- Viscose
- Cellophane
- Acetate
Papergrade Sulfite
Groundwood - Thermo-Mechanical
Groundwood - CMN Papers
Groundwood - Fine Papers

Nonintegrated Segment

Nonintegrated - Fine Papers
Nonintegrated - Tissue Papers
Nonintegrated - Lightweight Papers
- Lightweight
- Electrical
Nonintegrated-Filter and Nonwoven Papers
Nonintegrated-Paperboard
Mill Groupings: -
*Integrated Miscellaneous including:
- Alkaline-Miscellaneous
- Groundwood Chemi-Mechanical
- Nonwood Pulping
*Secondary Fiber-Miscellaneous
*Nonintegrated-Miscellaneous

Secondary Fibers Segment

Deink

- Fine Papers

- Tissue Papers

- Newsprint
Tissue from Wastepaper
Paperboard from Wastepaper
Wastepaper - Molded Products
Builders' Paper and Roofing Felt

* -
Groupings of miscellaneous mills, not subcategories.
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Pulping and Bleaching Process

As shown in Figure 3-1, pulp is produced by a series of steps which
includes raw material preparation, pulping, and bleaching. Bleaching generally
is followed by either papermaking or bundling of pulp for shipment to another
papermaking mill. The major raw material for pulp manufacturing is wood.

The preparation of wood for pulping includes log washing, bark removal, and
chipping. Pulping is the process in which wood fibers are separated by
dissolving or breaking the lignin holding the fibers together. At the end of
this process, the pulp mass is brown or deeply colored due to the presence of
lignins and resins.5 Thus, it must be bleached if a white or light-colored
product is to be produced. _

The purification and whitening of pulp is achieved in a series of bleaching
stages. Each stage consists of mixing the pulp over time with chemicals and
heat, and washing the pulp after reaction to remove chemical impurities.

Each stage may vary according to the chemical added, pulp consistency, temperature,
time, and pH.6 Bleach plants range from a single stage to as many as nine or

ten stages. Different bleaching stages are commonly represented by symbols

such as those shown in Table 3-2. The most common bleaching agents used to

bleach pulp are chlorine, sodium or calcium hypochlorite, and chlorine dioxide
(used in various combinations of stages). A simplified drawing of a typical
bleaching sequence is shown in Figure 3-2. As the figure shows, chlorine (C)

and chlorine dioxide (D) bleaching stages are separated by washing and alkaline
extraction (E) stages.

In the chlorine stage, chlorine combines with lignins in the pulp forming
chlorinated lignins. The chlorination reaction is_extremely rapid, requiring
as little as five minutes for completion. After thé(pulp has been saturated
with chlorine, it is washed and sent to the caustic extraction stage.

Oxidized 1ignin is solubilized in the caustic extraction stage. In this
stage, the phenolic-0H group in lignin dissolves in alkaline solution and
chlorinated lignins are degraded into smaller fragments.
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TABLE 3-2. SYMBOLS REPRESENTING BLEACHING STAGES8

Name of Chemical
stage Symbol used

Chlorination C Chlorine gas or chlorine water
Caustic Extraction E Sodium Hydroxide solution
Hypochlorite H Sodium or Calcium hypochlorite
Chlorine Dioxide D Water solution of Chlorine Dioxide
Oxygen 0 Oxygen gas and alkali
Peroxide P Hydrogen Peroxide (50% sol.)
Ozone z Gaseous ozone (2% in Oxygen)

@ atot | @ J @ J @ J
N | e [ Ju e
washer Steam wother wosher
] 3 éfﬁ |
}
| SPR———
M
N i
I
CHIORINATION ALKALL CHLORINE ALKALI I ; CHLORNINE A
EXTRACTION oIoXIDE EXTRACTION | oiooe

- !; H
C E D 3

I
I
|

R
| ‘_JJ\/

UNBLEACHED PuLp BLEACHED #uLP asher

Figure 3-2. A modern bleach sequence.9



Hypochlorite bleaching decolorizes and solubilizes the residual lignin,
dyes, and other impurities in fiber. The bleaching reaction proceeds rapidly
at first but slows down before all the 1ignin has reacted. Hypochlorite
oxidizes cellulose (wood fiber) as well as lignin and other impurities. The
oxidation of wood fibers is undesirable because it weakens the fibers and the
paper products made from them. The severity of cellulose oxidation depends
on temperature, pulp consistency, pH, and the amount of residual lignin
compared to hypochlorite concentration.

Chlorine dioxide is often used in the final two bleaching stages in the
more modern bleach plants, as shown in Figure 3-2. Bleaching with chlorine
dioxide is carried out in an acidic solution, and typically degrades cellulose
much less than hypoch]orite.]o

Chloroform Formation and Fate

The use of calcium or sodium hypochlorite for bleaching pulp is recognized
as the major source of chloroform in the pulp and paper industry.2 Data
presented in Table 3-3 show that effluent from hypochlorite bleach stages
generally contains much higher chloroform concentrations than effluent from

other stages.]]

Effluent from bleaching operations typically is discharged to on-site
pulp mill wastewater treatment plants. Table 3-4 presents chloroform levels
measured in some mill wastewater treatment plant influents and effluents for
various subcategories of pulp and paper mills. The influent and effluent
chloroform measurements in the table show a sharp decrease in wastewater
chloroform concentrations during treatment, a trend attributed to evapor‘ation.]2
The nine subcategories in which chlorine compounds are used as bleach are noted

in the table. -
CHLLOROFORM EMISSIONS CONTROL

Control Alternatives

Emissions of chloroform from pulp and paper mills may be controlled by
modifying the bleaching process to reduce or prevent chloroform formation.
Because wastewater treatment plants at pulp mills treat large quantities of
wastewater and often use several acres of stabilization ponds, capture of
chloroform from treatment plants is not feasible by any available technology.
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TABLE 3-3. AVERAGE PERCENT OF CHLOROFORM_IN BLEACH PLANT EFFLUENT
FORMED IN HYPOCHLORITE STAGES?

Chloroform Percent
from Total chloroform
hypochlorite chloroform from
Bleach stages, from bleach plant hypochlorite
plant kg/Mg of pulp kg/Mg of pulp stages
A 0.54 0.62 --
B 1.78 1.84 - --
C 1.65 1.68 --
D 0.18 ’ 0.26 --
E 0.25 0.43 --
F 1.12 1.16 --
TOTAL 5.52 5.99 92

aReference 11.
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Process modification consists of replacing hypochlorite with a chemical
such as chlorine dioxide, which produces virtually no chloroform. Different
bleaching chemicals have characteristic effects on pulp fibers, and for some
special applications hypochlorite bleaching must be retained (the bleaching
of broke, for example, which is pulp that is not baled and is reprocessed).
However, chlorine dioxide can be used in a bleach sequence to obtain a bright-
ness roughly equal to hypochlorite bleaching, and with better strength
characteristics. Again, this is due to chlorine dioxide's ability to attack
lignin without significantly degrading the wood fibers. The industry trend
the past 15 years has been to design new pulp mills to bleach with chlorine

dioxide rather than hypochlorite.'?

Molecular oxygen, which does not react to form chloroform, has been used
successfully in pulp bleaching as a separate oxidizing stage and as a chemical
supplement to the alkaline extraction stage. Oxygen, used either in a separate
oxidizing stage or as a supplement to the alkaline extraction stage, can be
considered a partial substitute for hypochlorite in bleaching.

Four categories ~ dissolving sulfite pulp, dissolving kraft pulp, deink
tissue, and deink fine paper - were assumed to continue using hypochlorite
for technical reasons. Thus, no emission reductions are presented for these
categories.

Dissolving pulps must be considered a completely separate group of
fibers because the conversion of fibers into their final state involves a
complex bleaching and purification process which often involves change of

phase.15

Bleach sequences for dissolving pulps were designed with hypochlorite
stages playing an important part in pulp treatment. The selection of a
substitute for hypochlorite in bleaching dissolving pulps poses a technical
problem which is beyond the scope of this project.

The bleaching requirements of deink pulps vary widely depending on the
proportions of groundwood, unbleached chemical fibers, and colored palper.]6
Often a single stage of hypochlorite is sufficient, but as many as five
stages are feasible for large m111s.17 Hypochlorite is used because it is

relatively inexpensive, easy to handle, and non-corrosive. Because the raw



materials and the bleaching requirements in deink mills vary widely, an
analysis of feasible substitutes for hypochlorite in these mills is beyond
the scope of this project. Thus, mills in the deink categories were assumed
to continue using hypochlorite.

Scope of Modifications

In replacing hypochlorite at a given pulp mill, several things must be
considered. Bleach sequences are designed to produce a specific end product
or variety of products. The sequence used depends on the type of wood used,
the brightness and strength characteristics desired, the degree of flexibility
desired in the sequence, and the cost. Replacing hypochlorite not only
changes the sequence, but also changes the overall effect the interrelated
stages have on the pulp. Thus, replacing hypochlorite entails more than
merely substituting another bleaching chemical. It involves replacing an
entire sequence using hypochlorite with a sequence not using hypochlorite,
considering the end products and other parameters mentioned above.

While a new pulp mill bleach sequence can readily be designed to use
chlorine dioxide {omitting hypochlorite), differences between the two chemicals
do not allow simple one-for-one replacement of hypoch]orite with chlorine
dioxide in existing mills. Because chlorine dioxide bleaches most effectively
at a pH of 3.6, its solution is much more corrosive than typical hypochlorite
bleaching solution, which has a pH of ]1.]9 Thus, in an existing pulp mill,
the hypochlorite equipment, such as bleach towers, washers, thick stock
pumps, seal tanks, and piping, can not withstand the acidic chlorine dioxide

and must be rep]aced.]8

In addition to the difference in the pH of their bleaching solutions,
chlorine dioxide and hypochlorite differ in their chemical action on pulp.
The alkalinity of a hypochlorite bleaching solution allows the reaction
products to dissolve much more readily than in the acidic chlorine dioxide
solution. When hypochlorite is used, lignin reacts and goes into solution,
exposing more lignin for further chemical attack. Chlorine dioxide is most
effective when the pulp is washed in an alkaline solution between bleach
stages to remove oxidized lignin so that more layers of lignin can be attacked.
Consequently, use of chlorine dioxide may require more alkaline extraction

stages in the bleach sequence than hypoch]orite.zo
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Generation of chlorine dioxide must also be considered. Chlorine dioxide
is highly unstable, and consequently is manufactured on-site wherever it is
used in a pulp bleaching operation. To provide the amount of chlorine dioxide
required in typical bleaching operations, a chlorine dioxide production
process is needed, as well as raw chemical storage tanks, unloading facilities,
pumps, and piping. Some pulp mills use both hypochlorite and chlorine dioxide
in bleaching pulp, while other mills using hypochlorite use no chlorine
dioxide and therefore have none of the equipment on-site needed to produce
chlorine dioxide. For pulp mills with chlorine dioxide praduction equipment,
the additional chlorine dioxide required to replace hypochlorite may be
produced from existing excess capacity; however, excess capacity may not be
available in every mill. Where chlorine dioxide is not used in bleaching,
replacement of hypochlorite with chlorine dioxide would require the purchase
and installation of a chlorine dioxide production plant and the appurtenances

1ist above.l8

In those mills where oxygen could replace or partially replace hypochlorite
as a bleaching agent, equipment for adding and mixing oxygen into the pulp
would be needed, as well as a tank for storing liquid oxygen on-site.

Model Mills

Because pulp mills vary in physical design and type of end product, the
replacement bleach sequence should be developed on a case-by-case basis.
However, several different pulp mills use a few common sequences. For this
analysis, pulp mills were categorized not only based on end product, but on
bleach sequence as well. The most common bleach sequences utilizing hypochlorite
were identified and then grouped according to their manufacturing capacity.

As a result, a large portion of U.S. mills were cafégorized based on bleach
sequence and production capacity. Each category is represented by a "model"
pulp mill characterized by a bleach sequence (utilizing hypochlorite) and
production capacity. Manufacturers of pulp bleaching equipment were contacted
to obtain information on feasible substitute sequences utilizing chlorine
18,21 The model mills, their substitute bleach sequences,
and a description of the modifications involved are presented in Table 3-5.

dioxide and oxygen.
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Emissions and Emissions Reduction

Based on the chloroform concentration data presented in Table 3-4,
chloroform emissions from each mill in the five subcategories for which
controls were considered were calculated based on estimated wastewater flow
and chloroform concentration. Estimated chloroform emissions for each mill
are presented in Tables 3-6 through 3-10. Total annual chloroform emissions
from all mills in these subcategories are estimated to be 3,340 Mg/yr.

Total chloroform production, based on influent chloroform concentrations
in mills in all nine subcategories which bleach with chlorine or chlorine-containing
compounds, is presented in Table 3-11. Approximately 3,890 Mg/yr of chloroform
are produced from pulp bleaching and emitted from eijther the mill sites or
the body of water receiving wastewater discharges.

Based on the data presented in Table 3-3, chloroform emissions from each
pulp mill were assumed to be reduced 92 percent as the result of process
modification. The estimated chioroform emission reductions at each mill are
presented in Tables 3-6 through 3-10. Emission reductions range from 4.4 Mg/year
to 154.5 Mg/year.

CONTROL COSTS

Control costs were estimated for eight model mills based on the modifica-
tions described in Table 3-5. The control costs for existing pulp mills were
drawn from the costs for the model mill that most closely matched the bleach
sequence and size of the existing mill. Where the model mills did not represent
an existing mill, the costs for that mill were computed separately.

Unit chemical costs and the basis for the capital recovery factor are
presented in Table 3-12. The capital costs that provide the basis for the
model mill estimates are presented in Table 3-13. The chemical costs and
equipment costs for bleach sequence modifications were obtained from two
leading pulp bleaching equipment manufacturers and from the pulp industry.]s’m’22
The cost from the pulp industry were obtained by the National Council for Air
and Stream Improvement (NCASI) from questionnaires sent to several major pulp
manufacturing companies in various regions of the U.S.22 A1l costs are in

mid-1983 dollars. Tables 3-14 through 3-19 present the estimated total
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TABLE 3-11. SUMMARY OF TOTAL CHLOROFORM PRODUCTION
IN PULP AND PAPER MILLS

Total chloroform Total chloroform

Mil1l subcategory production (kg/day) production (Mg/yr)
Market Bleached Kraft 1,414.6% 516.3
BCT Bleached 1,631.28 595.4
Soda and Kraft Fine Paper 1,547.92 ~ 565.0
Papergrade Sulfite 2,176.4% 794.4
Miscellaneous Integrated 2,835.4° ' 1,034.9
Dissolving Kraft 382.6P 139.6
Dissolving Sulfite 216.5° 79.0
Deink Fine 338.0° 123.4
Deink Tissue 104.1° 38.0
TOTAL 10,646.7 3,886.0

%Based on the influent chloroform concentrations presented in Tables 3-6
through 3-10.

Calculated by multiplying individual mill wastewater flows by average or
measured wastewater influent chloroform concentrations. Data were
obtained from verification sampling data in Docket WH-552, available to
the public at the Public Information Reference Unit, U.S. Environmental
Protection Agency, Washington, DC.

b
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TABLE 3-12. BASIS FOR CAPITAL COST ESTIMATES.

1. Capital recovery factor for capital 0.128 x capital
charges (10 percent interest and
16-year life)

2. Annual maintenance charges 0.05 x capital

3. Annual miscellaneous charges 0.04 x capital
(taxes, insurance, administration)

TOTAL ANNUALIZED COST FACTOR 0.218 x capital

4. Chemical costs (doHars/Mg)a

e Hypochlorite 385b
o Chlorine dioxide 1,3255
e Oxygen 225
o Sodium hydroxide 250

8Costs are based on comments from industry supplied by NCASI (mid-1983 dollars).

bWhi1e actual costs can be significantly lower or higher, this figure

represents a reasonable average of costs guoted in the comments receijved.

“This cost assumes no recovery credit for by-product hypochlorite
produced in scrubber controlling chlorine emission from CTO2 generating
process.

dInc1udes cost of magnesium salts added for resistance to fiber attack.
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TABLE 3-13. CAPITAL AND ANNUAL COSTS FOR BLEACH PLANT MODIFICATIONS1®»21:22
(mid-1983 dollars)

: =i

Capital cost Annual cost

Cost items for pulp mills (s1000) . (s1000)8

1. 1Instal) chlorine dioxide bieaching stage in place of hypochlorite

bleaching stage

e 181 Mg/day mill 3,000 654

e 363 Mg/day mill 3,500 763

e 545 Mg/day mill 4,000 872
2. Install additional chlorine didxide generating plant on site

(5.45 Mg/day CIO2 production capacity) 4,200 916
3. Storage tanks, handling facilities, pumps, and piping for chlorine

dioxide and chlorine dioxide feedstock chemcials at mills where

chlorine dioxide is not presently used

e 18] Mg/day mill 750 164

e 363 Mg/day mill 1,000 218
4. Install oxygen addition equipment to caustic extraction stage 500 109

(A1l mill capacities)

aCapital costs annualized with a factor of 0.218, the sum of the factors for capital recovery, maintenance, and
miscellaneous charges presentea in Table 3-12.
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TABLE 3-14. ESTIMATED TOTAL ANNUAL COST OF MODIFYING C-E-H-D

BLEACH SEQUENCE FOR HARDWOOD TO C-E-E
(mid-1983 dollars)

O-D SEQUENCE

Mill size (Mg/day)

Annual costs

and cost items ($1000)
181 Mg/day
1. Hypochlorite stage converted to caustic extraction
stage with oxygen addition $ 109
2. Additional chemicals:
o Sodium hydroxide, 8 kg/Mg 132
¢ Chlorine dioxide 2 kg/Mg 175
o Oxygen, 4 kg/Mg 59
3. Rental of oxygen storage tank 12
4. Hypochlorite cost, as savings, 12.5 kg/Mg - 318
TOTAL NET COST $ 168
545 Mg/day
1. Hypochlorite stage converted to caustic extraction
stage with oxygen addition $ 109
2. Additional chemicals:
e Sodium hydroxide, 8 kg/Mg 398
e Chlorine dioxide, 2 kg/Mg 526
e Oxygen, 4 kg/Mg 177
3. Rental of oxygen storage tank 12
4. Hypochlorite cost, as savings, 12.5 kg/Mg - 957
TOTAL NET COST $ 265
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TABLE 3-15. ESTIMATED TOTAL ANNUAL COST OF MODIFYING C-E-H-D
BLEACH SEQUENCE FOR SOFTWOOD TO C-EO—D-D

(mid-1983 dollars)

Mill size (Mg/day) Annual costs

and cost items ($1000)

181 Mg/day
1. Chlorine dioxide bleach stage, installed § 654
2. Chlorine dioxide generator, installed 916
3. Chlorine dioxide chemical, 5 kg/Mg - 437
4. Oxygen handling and mixing equipment, installed - 109
5. Oxygen added to caustic extraction stage, 5 kg/Mg 74
6. Oxygen storage tank rental 12
7. Hypochlorite cost, as savings, 20 kg/Mg - 509
TOTAL NET COST $ 1,693

545 Mg/day
1. Chlorine dioxide bleach stage, installed $ 763
2. Chlorine dioxide generator, installed 916
3. Chlorine dioxide chemical, 5 kg/Mg 1,315
4. Oxygen handling and mixing equipment, installed 109
5. Oxygen added to caustic extraction stage, 5 kg/Mg 222
6. Oxygen storage tank rental 12
7. Hypochlorite cost, as savings, 20 kg/Mg 1,532
TOTAL NET COST $ 1,805
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TABLE 3-16. ESTIMATED TOTAL ANNUAL COST OF MODIFYING C-E-H SULFITE
PULP BLEACH SEQUENCE TO C-E-D FOR 181 Mg/DAY MILL
(mid-1983 dollars)

Annual costs

Cost items ($1000)

1. Chlorine dioxide bleach stage, installed $ 654
2. Chlorine dioxide generator, installed 916
3. Chlorine dioxide chemical, 5 kg/Mg 524

4. Storage tanks, handling facilities, pumps, and piping for chlorine
dioxide feedstock chemicals - 164
5. Hypochlorite cost, as savings, 15 kg/Mg - 382
TOTAL NET COST $ 1,876
TABLE 3-17. ESTIMATED TOTAL ANNUAL COST.OF MODIFYING C-E-H KRAFT
PULP BLEACH SEQUENCE TO C-E_-D FOR 363 Mg/DAY MILL
(mid-1983 dollars)
- - Annual costs
Cost items ($1000)

1. Oxygen handling and mixing equipment $ 109
2. Oxygen added to caustic extraction stage, 5 kg/Mg 148
3. Oxygen storage tank rental 12
4. Chlorine dioxide bleach stage, installed “':2 763
5. Chlorine dioxide generator, installed 916
6. Chlorine dioxide chemical, 6 kg/Mg 1,051

7. Storage tanks, handling facilities, pumps, and piping for chlorine

dioxide feedstock chemicals 218

8. Hypochlorite cost, as savings, 20 kg/Mg -1,020
TOTAL NET COST $ 2,197
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TABLE 3-18. ESTIMATED TOTAL ANNUAL COST FOR MODIFYING C-E-H-E-D KRAFT
MILL BLEACH SEQUENCE TO C-E,-D-E-D FOR 545 Mg/DAY MILL

(mid-1983 dollars)

Annual costs

Cost items {$1000)
1. Chloride dioxide bleach stage, installed $ 872
2. Chlorine dioxide generator, installed 916
3. Chlorine dioxide chemical, 7 kg/Mg 1,841
4. Oxygen handling and mixing equipment, installed 109
5. Oxygen added to caustic extraction stage, 5 kg/Mg 39
6. Oxygen storage tank rental 12
7. Hypochlorite cost, as savings, 25 kg/Mg -1,915
TOTAL NET COST $ 1,850
TABLE 3-19. ESTIMATED TOTAL ANNUAL COST OF MODIFYING C-E-H-D-E-D
KRAFT PULP BLEACH SEQUENCE TO C-E-E_-D-E-D FOR
545 Mg/DAY MILL (mid-1983 dollars)
Annual costs
Cost items ($1000)
1. Oxygen handling and mixing equipment, installed $ 109
2. Oxygen added to caustic extraction stage, 5 kg/Mg 222
3. Sodium hydroxide added, 8 kg/Mg B 398
4. Oxygen storage tank rental 12
5. Hypochlorite cost, as savings, 10 kg/Mg - 766
TOTAL NET COST $ - 25 (net savings)
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annualized control costs for the eight model mills. The model mill control
costs range from a net savings of $25,000 per year (due to reduced chemical
costs) to a net cost of $2.2 million per year.

Estimated annual control costs for each existing pulp mill presently
using hypochlorite are given in Tables 3-20 through 3-24. Annualized control
costs range from a net savings of $25,000 per year to a net cost of $5.55 million
per year.

COST-EFFECTIVENESS

The cost-effectiveness of control for each existing pulp mill was computed
from estimated annual control costs and the estimated emission reductions
shown in Tables 3-6 through 3-10 and is listed for each mill in Tables 3-20
through 3-24. Table 3-25 presents a summary of control cost-effectiveness for
each subcategory. Cost-effectiveness ranges from a net savings of $1,400 per
Mg to a net cost of $417,000 per Mg.
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TABLE 3-25. SUMMARY OF CHLOROFORM CONTROL COST-EFFECTIVENESS®

$1000/Mg
Subcategory Minimum Maximum Medién Mean
Market Bleached Kraft 136.0 -0.822 -0.231 24.1
BCT Bleached Kraft 69.7 -0.575 27.6 28.6
Soda and Kraft Fine Bleached 161.5 6.2 70.9 74.0
Papergrade Sulfite 416.9 14.2 . 62.25 130.6
Miscellaneous Integrated 411.4 -1.4 88.55 102.3
Total, all categories 416.9 -1.4 64.25 85.6

3Based on mid-1983 dollars.
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4. ETHYLENE DICHLORIDE PRODUCTION

INTRODUCTION

Chloroform is formed as a byproduct during the produc;ion of ethylene
dichloride (EDC). EDC is produced from ethylene and chlorine by direct
chlorination, and ethylene and hydrogen chloride (HC1) by oxychlorination.

At most production facilities, where EDC is used on-site to produce viny]
chloride monomer (VCM), these processes are used together in what is known as
the balanced process. In the balanced process, byproduct HC1 from the cracking
of EDC to produce VCM is used in the oxychlorination process to produce about
half of the EDC required for VCM production. The remaining EDC is produced

by direct chlorination. The balanced process consists of an oxychlorination
operation, a direct chlorination operation, and product finishing and waste
treatment operation. At EDC production facilities where VCM is not produced,
EDC is typically produced by direct chlorination.

There are currently 20 facilities in the United States that produce

EDC.|
for each facility. Figure 4-1 presents plant locations. Five of these
facilities produce EDC by direct chlorination; eleven plants use the balanced

Table 4-1 lists the company, location, and annual production capacity

process with oxygen-based oxychlorination; three plants use the balanced
process with air-based oxychlorination process; and one plant manufactures
EDC by air-based oxychlorination only (see Tables 4-4 through 4-21). The
most recent estimate of domestic EDC production is 5,110 Gg, a preliminary
figure for 1983.2 With the total capacity cited in Table 5-1, the overall
EDC capacity utilization for 1983 is about 58 percent.
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1

TABLE 4-1. PRODUCERS OF ETHYLENE DICHLORIDE
Annual
capa§1tya
Manufacturer Location (x 10
ARCO Chemical Co. Port Arthur, TX 225
Borden Chemical Co. Geismar, LA 230
Diamond Shamrock Corp. Deer Park, TX 85
Dow Chemical U.S.A. Freeport, TX ) 725
Oxyster Creek, TX 550
Plaquemine, LA 940
E.I. duPont de Nemours & Co., Inc.
Conoco Chems. Co. Div. Lake Charles, LA 525
Ethyl Corp. Baton Rouge, LA 320
Pasadena, TX 100
Formosa Plastics Corp. U.S.A. Baton Rouge, LA 250
Point Comfort, TX 385
Georgia-Pacific Corp. Plaquemine, LA 750
The BF Goodrich Co.
BF Goodrich Chem. Group La Porte, TX 720
Convent Chem. Corp., subsid. Calvert City, KY 450
Convent, LA 360
PPG Industries, Inc. Lake Charles, LA 1,225
Shell Chemical Co. Deer Park, TX 635
Union Carbide Corp. Taft, LA- 70b
Texas City, TX 70b
Vulcan Materials Co. Geismar, LA 160
8,775

aCapacities are flexible depending on finishing capacities for vinyl chloride

and chlorinated solvents.

bCaptive use only.
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ARCO Chemical Co., Port Arthur, TX
Borden Chemical, Geismar, LA

Dow Chemical USA, Freeport, TX

Dow Chemical USA, Oyster Creek, TX
Dow Chemical USA, Plaquemine, LA
Conoco Chemicals, Lake Charles, LA
Ethyl Corp., Baton Rouge, LA

Ethyl Corp., Pasadena, TX

Formosa Plastics, Baton Rouge, LA
10. Georgia Pacific Corp., Plaguemine, LA
11. Diamond Shamrock, Deer Park, IX

12. BF Goodrich, La Porte, TX -

13. BF Goodrich, Calvert City, KY

14. PPG Industries, Lake Charles, LA
15. Shell Chemical Co., Deer Park, TX
16. Shell Chemical Co., Norco, LA (out of production)
17. Union Carbide Corp., Taft, LA

18. Union Carbide Corp., Texas City, TX
19. Vulcan Chemical, Geismar, LA

20. BF Goodrich/Convent, Convent, LA
21. Formosa Plastics, Point Comfort, TX

WSOV WRN -

Figure 4-1. Locations of ethylene dichloride production facilities.
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SOURCE DESCRIPTION

The process description below is based on the balanced EDC process, used
at all but six EDC plants. Plants which use only direct chlorination or
oxychlorination have the same inputs and initial processing steps described
for those parts of the balanced process below, and have the same storage
and purification steps as the balanced process.

The balanced process consists of an oxychlorination operation, a
direct chlorination operation, and product finishing and waste treatment
operations. The raw material for the direct chlorination process are
chlorine and ethylene. Oxychlorination involves the treatment of ethylene
with oxygen and HC1. Oxygen for oxychlorination generally is added by
feeding air to the reactor, although some plants use purified oxygen as feed
materia1‘3

Basic operations that may be used in a balanced process using air for
the oxychlorination step are shown in Figure 4-2. Actual flow diagrams for
production facilities will vary. The process begins with ethylene (Stream 1)
being fed by pipeline to both the oxychlorination reactor and the direct
chlorination reactor. In the oxychlorination reactor the ethylene,
anhydrous hydrogen chloride (Stream 2), and air (Stream 3) are mixed at
molar proportions of about 2:4:1, respectively, producing 2 moles of EDC
and 2 moles of water. The reaction is carried out in the vapor phase at
200 to 315°C in either fixed-bed or fluid-bed reactor. A mixture of copper

chloride and other chlorides is used as a cata]yst.3

The products of reaction from the oxychlorination reactor are quenched
with water, cooled (Stream 4), and sent to a knockout drum, where EDC and
water (Stream 5) are condensed. The condensed stréém enters a decanter,
where crude EDC is separated from the aqueous phase. The crude EDC (Stream 6)
is transferred to in-process storage, and the aqueous phase (Stream 7)
is recycled to the quench step. Nitrogen and other inert gases are typically
vented to an incinerator, although at some locations this stream is released to
the atmosphere (Vent A). The concentration of organics in the vent stream

is reduced By absorber and stripper columns or by a refrigerated condenser (not
shown in Figure 4—2).3’4
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In the direct-chlorination step of the balanced process, equimolar
amounts of ethylene (Stream 1) and chlorine (Stream 8) are reacted at a
temperature of 38 to 49°C and at pressures of 69 to 138 kPa, Most commercial
plants carry out the reaction in the 1iquid phase in the presence of a ferric
chloride cata]yst.3

Products (Stream 9) from the direct chlorination reactor are cooled
and washed with water (Stream 10) to remove dissolved hydrogen chloride
before being transferred (Stream 11) to the crude EDC storage facility.
Any inert gas fed with the ethylene or chlorine is released to the
atmosphere from the cooler (Vent B). The waste wash water (Stream 12)
is neutralized and sent to the wastewater steam stripper along with
neutralized wastewater (Stream 13) from the oxychlorination quench area
and the wastewater (Stream 14) from the drying column. The overheads
(Stream 15) from the wastewater steam stripper, which consist of recovered
EDC, other chlorinated hydrocarbons, and water, are returned to the
procegs by adding them to the crude EDC (Stream 10) going to the water
wash.

Crude EDC (Stream 16) from in-process storage goes to the drying column,
where water (Stream 14) is distilled overhead and sent to the wastewater
steam stripper. The dry crude EDC (Stream 17) goes to the heads column,
which removes 1ight ends (Stream 18) for storage and disposal or sale.
Bottoms (Stream 19) from the heads column enter the EDC finishing column,
where EDC (Stream 20) goes overhead to product storage. The tars from the
EDC finishing column (Stream 21) are taken to tar storage for disposal or

sa]e.3

A number of domestic EDC producers use oxygen:enriched air or purified
oxygen as the oxidant in the oxychlorination reactor. Figure 4-3 shows basic
operations that may be used in an oxygen-based oxychlorination process. For
a balanced process plant, the direct chlorination and purification steps are
the same as those shown in Figure 4-2, and, therefore, are not shown again in
Figure 4-3. Ethylene (Stream 1) is fed in large excess of the amount used in
the air oxychlorination process, that is, two to three times the amount needed

4-6
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to fully consume the HC1 feed (Stream 2). Oxygen (Stream 3) is also fed to

the reactor, which may be either a fixed bed or a fluid bed. After passing
through the condensation step in the quench area, the reaction products

(Stream 4) go to a knockout drum, where the condensed crude EDC and water
(Stream 5) produced by the oxychlorination reaction are separated from the
unreacted ethylene and the inert gases (Stream 6). From the knockout drums

the crude EDC and water (Stream 5) go to a decanter, where wastewater (Stream 7)
is separated from the crude EDC (Stream 8), which goes to in-process storage

as in the air-based process. The wastewater (Stream 7) is sent to the steam
stripper for recovery of dissolved orgam’cs.3 B

The vent gases (Stream 6) from the knockout drum go to a caustic scrubber
for removal of HC1 and carbon dioxide. The purified vent gases (Stream 9)
are then compressed and recycled (Stream 10) to the oxychlorination reactor
as part of the ethylene feed. A small amount of the vent gas (Vent A) from
the knockout drum is purged to prevent buildup of the inert gases entering
with the feed streams or formed during the reaction.

CHLOROFORM EMISSIONS AND CONTROLS

Identified sources of chloroform emissions at EDC production facilities
include the oxychlorination vent, column vents, particularly the heads columns,
and liquid waste storage.5 Chloroform was not detected in an emissicns test
of a direct chlorination reactor vent.6

Available chloroform emission factors for these emission points in EDC
production are listed in Table 4-2. Also listed in this table are available
control techniques and associated emission factors for controlled emissions.
Because of variations in process design and age of equipment, actual emissions
vary for each plant. Other potential sources of é%1oroform emissions for
which insufficient information was available for the development of chloroform
emission factors in a recent EPA study include secondary emissions of chloroform
from wastewater treatment and fugitive emissions from leaks in process valves,
pumps, compressors, and pressure relief valves.5 Fugitive emissions are
expected to be low or insignificant due to absence of chloroform in some
process components and the low concentrations where it does exist.
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Table 4-3 summarizes estimated current chloroform emissions from EDC
production facilities. Tables 4-4 through 4-21 provide derivations and
sources as well as control information and vent parameters for individual
facilities. In this analysis, it was assumed that the oxygen process and
thermal oxidation are in use at five facilities in Louisiana which are under
negotiated agreements to make these changes to air-based processes by the end
of 1984. These plants are Borden/Geismar, Conoco/Lake Charles, Ethyl/Baton
Rouge, Formosa Plastics/Baton Rouge, and Vulcan/Geismar. Lack of plant-
specific information on liquid waste disposal or storage and other potential
chloroform emission points made estimation of their emissions impossible.

The emission estimates presented here are based on average uncontrolled
emission factors of 0.35 kg/Mg for air process vents, and 0.06 for oxygen
process vents, and a thermal oxidizer control efficiency of 98 percent,
unless noted otherwise in Tables 4-4 through 4-21. Production rates were
estimated using the capacities cited in Table 4-1 assuming that each plant is
operating at the 58 percent national average capacity utilization cited

earlier. Unless noted, vent parameters are from a previous study.3

Chloroform emissions from the Union Carbide facilities in Texas City,
Texas and Taft, Louisiana were assumed to be negligible. Both of these
plants produce EDC by direct chlorination for captive use with an annual
production capacity of 70,000 Mg. The plant in Texas City vents emissions
from EDC production to a flare and the controlled emissions contain no measurable
chloroform.7 Information on the plant in Taft was not available; however,
based on the general similarities between the two Union Carbide facilities,
no chloroform was assumed to be emitted from the Taft plant.

Available control techniques (ACT) consist ofthermal incineration at
98 percent except where higher current control efficiencies have been reported.
For plants where current control is thermal oxidation, Tables 4-4 through 4-21
contain one entry which represents both current and ACT emissions. Where
current emissions are below those achievable by ACT, both are estimated.
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TABLE 4-3. ESTIMATED CHLOROFORM EMISSIONS FROM ETHYLENE DICHLORIDE
PRODUCTION FACILITIES
Available control

Current chloroform technique
Manufacturer Location emissions (kg/yr) emissions (kg/yr)
ARCO Port Arthur, TX 2,600 2,600
Borden Geismar, LA . 2,800 2,800
Diamond Shamrock  Deer Park, TX ™ 53,600 1,300
Dow Freeport, TX 9,000 9,000
Dow Oyster Creek, TX 6,800 6,800
Dow Plaquemine, LA 11,600 11,600
DuPont Lake Charles, LA 6,500 6,500
Ethyl Baton Rouge, LA 3,900 3,900
Ethyl Pasadena, TX 1,160 1,160
Formosa Plastics Baton Rouge, LA 3,100 3,100
Formosa Plastics Point Comfort, TX 4,730 4,730
Georgia Pacific Plaquemine, LA 9,200 9,200
B.F. Goodrich LaPorte, TX 570 570
B.F. Goodrich Calvert City, KY \ 10,720 7,050
B.F. Goodrich Convent, LA 4,180 4,180
PPG Lake Charles, LA 15,100 15,100
Shell Deer Park, TX 7,800 7,800
Vulcan Geismar, LA 19,820 19,820
TOTAL 173,180 117,210
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CONCLUSIONS

Costs and cost-effectiveness figures were not calculated for EDC production
due to the high level of current control in the industry and unavailability
of plant specific data for the few less-controlled plants. As shown in
Table 5-3, available information on current controls and emissions indicates
that all but two EDC plants are currently controlled at the level considered
available control techniques (ACT) in this study. These two plants, Diamond
Shamrock/Deer Park, TX and B.F. Goodrich/Calvert City, KY, are estimated to
account for 38 percent of current national chloroform emissions from EDC
production, with the majority of these emissions due to column vents at the
Diamond Shamrock facility, which were assumed to be essentially uncontrolled.
Application of ACT at these plants would result in a 33 percent decrease over
the current total.
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5. CHLOROFORM PRODUCTION
INTRODUCTION

Chloroform is produced by hydrochlorination of methanol feedstock,
and further chlorination of the resulting methyl chloride intermediate
product to produce chloroform and other chloromethanes. As shown in Table 5-1,
all of the chloroform production facilities in the U.S. use this basic process.
One plant also produces chloroform by methane chlorination. These two processes
are discussed in the first section below, followed by description of available
information on chloroform emissions, emission controls and control costs.

Figure 5-1 indicates the locations of chloroform production facilities.
As indicated in Table 5-1, one of the seven chloroform production facilities
(Stauffer/Louisville, KY) is currently on standby. The total production
capacity of the seven plants is 234,000 Mg/yr, including Stauffer.] The
most recent annual chloroform production figure is 159,500 Mg, a preliminary
total for 1983.2 It has been reported that DuPont plans a late-1985 completion
date for a new chloroform production unit in Corpus Christi, Texas, with

an annual production capacity of 136,400 Mg.3

SOURCE DESCRIPTION

The following descriptions of chloroform production processes are based
on EPA studies which presented configurations for hypothetical typical
p1ants.4’5 Individual plants may vary in design and operation. Stream

numbers cited in the text refer to Figures 5-2 and 5-3.
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Diamond Shamrock Corp., Belle, WV

Dow Chemical USA, Freeport, TX

Dow Chemical USA, Plaquemine, LA

Linden Chemicals and Plastics, Inc., Moundsville, WV
Stauffer Chemical Co., Louisville, KY

Vulcan Materials Co., Geismar, LA

Vulcan Materials Co., Wichita, KS

NOYOY W

Figure 5-1. Locations of chloroform production facilities.
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Methanol Hydrochlorination/Methyl Chloride Chlorination Process4

The major products of the methanol hydrochlorination/methyl chloride
chlorination process are chloroform, methyl chloride, and methylene
chloride. Some byproduct carbon tetrachloride is also produced.

Basic operations that may be used in the methanol hydrochlorination/methy!
chloride chlorination process are shown in Figure 5-2. Equimolar proportions
of gaseous methanol (Stream 1) and hydrogen chloride (Stream 2) are fed
to a hydrochlorination reactor maintained at a temperature of about
350°C. The hydrochlorination reaction is catalyzed by one of a number of
catalysts, including alumina gel, cuprous or zinc chloride on activated
carbon or pumice, or phosphoric acid on activated carbon. Methanol
conversion of 95 percent is typical.

The reactor exit gas (Stream 3) is transferred to a quench tower,
where unreacted hydrogen chloride and methanol are removed by water
scrubbing. The water discharged from the quench tower (Stream 4) is
stripped of virtually all dissolved methyl chloride and most of the
methanol, both of which are recycled to the hydrochlorination reactor
(Stream 5). The outlet liquid from the stripper (Stream 6) consists of
dilute hydrochloric acid, which is used in-house or is sent to a wastewater
treatment system.

Methyl chloride gas from the quench tower (Stream 7) is fed to the
drying tower, where it is contacted with concentrated sulfuric acid to
remove residual water. The dilute sulfuric acid effluent (Stream 8) is
sold or reprocessed.

A portion of the dried methyl chloride (Stream 9) is compressed,
cooled, and liquefied as product. The remainder (Stream 10) is fed to
the chlorination reactor along with chlorine gas (Stream 11). The
methyl chloride and chlorine react to form methylene chloride and chloroform,
along with hydrogen chloride and a small amount of carbon tetrachloride.

The product stream from the chlorination reactor is condensed and
then stripped of hydrogen chloride. The hydrogen chloride is recycled
to the methanol hydrochlorination reactor (Stream 12). The crude mixture
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of methylene chloride, chloroform, and carbon tetrachloride from the
stripper (Stream 13) is transferred to a storage tank and then fed to a
distillation column to extract methylene chloride. Bottoms from this
column (Stream 15) are distilled to extract chloroform. The chloroform
and methylene chloride product streams (Streams 14 and 16) are fed to
day tanks where inhibitors are added and then sent to storage and
loading facilities. Bottoms from chloroform distillation (Stream 17)
consist of crude carbon tetrachloride, which is stored for subsequent
sale or transferred to a separate carbon tetrachloride/perchlorcethylene
process. : -

Methane Chlorination Process5

In the methane chlorination process, chloroform is produced as a
coproduct with methyl chloride, methylene chloride, and carbon tetrachloride.
Methane can be chlorinated thermally, photochemically, or catalytically,
with thermal chlorination bejng the most commonly used method.

Figure 5-3 presents basic operations that may be used in the methane
chlorination process. Methane (Stream 1) and chlorine (Stream 2) are
mixed and fed to a chlorination reactor, which is operated at a temperature
of about 400°C and a pressure of about 200 kPa.5 Gases exiting the
reactor (Stream 3) are partly condensed and then scrubbed with chilled
crude product to absorb most of the product chloromethanes from the
unreacted methane and byproduct hydrogen chloride. The unreacted methane
and byproduct hydrogen chloride from the absorber (Stream 4) are fed’
serially to a hydrogen chloride absorber, caustic scrubber, and drying
column to remove hydrogen chloride. The purified methane (Stream 5) is
recycled to the chlorination reactor. The condensed crude chloromethane
stream (Stream 6) is fed to a stripper, where it is separated into overheads,
containing hydrogen chloride, methyl chloride, and some higher boiling
chloromethanes, and bottoms, containing methylene chloride, chloroform,
and carbon tetrachloride.
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Overheads from the stripper (Stream 7) are fed to a water scrubber,
where most of the hydrogen chloride is removed as weak hydrochloric acid
(Stream 8). The offgas from the water scrubber is fed to a dilute
sodium hydroxide scrubber solution to remove residual hydrogen chloride.
Water is then removed from the crude chloromethanes in a drying column.

The chloromethane mixture from the drying column (Stream 9) is
compressed, condensed, and fed to a methyl chloride distillation column.
Methyl chloride from the distillation column can be recycled back to the
chlorination reactor (Stream 10) to enhance yield of the other chloromethanes,
or condensed and then transferred to storage and loading as product
(Stream 11).

Bottoms from the stripper (Stream 12) are neutralized, dried, and
combined with bottoms from the methyl chloride distillation column
(Stream 13) in a crude storage tank. The crude chloromethanes (Stream 14)
pass to three distillation columns in series which extract methylene chloride
(Stream 15), chloroform (Stream 17), and carbon tetrachloride (Stream 19).
Condensed methylene chloride, chloroform, and carbon tetrachloride product
streams are fed to day storage tanks, where inhibitors may be added for
stabilization. The product streams are then transferred to storage and loading
facilities. Bottoms from the carbon tetrachloride distillation column are
typically incinerated.

CHLOROFORM EMISSIONS AND CONTROLS

Documented potential sources of chloroform emissions from chloroform
manufacture by the methyl chloride chlorination process include the venting
of inert gases from the condenser following the chloroform column, in-process
and product storage, loading product chloroform, and process fugitive emission
sources such as leaks in process valves, pumps, compressors and pressure
relief valves. In the methane chlorination process, chloroform emissions
may originate from venting inert gases from the recycle methane stream, the
emergency venting of inert gases from the distillation area, in-process and
product storage, loading product chloroform, handling and disposal of process

waste liquid, and process fugitive sources.6
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Uncontrolled Emission Factors

Tables 5-2 and 5-3 present uncontrolled emission factors for each of the
cited emission sources, from a recent EPA study.6 These tables include
source designations which refer to specific process locations in Figures 5-2
and 5-3. These emission factors are for hypothetical model plants, and
actual emissions will vary due to differences in process design, age of
equipment and other factors. In the current analysis, these emission factors
were used only where recently obtained plant-specific data were not available.
Where throughputs for specific types of loading operations-were available,
the following emission chloroform-specific factors based on the AP-42 loading
loss equation were used: )

Truck/rail loading with submerged fill: 0.0054 1b/gallon

Barge loading: 0.0045 1b/gallon
Ship Toading: 0.0018 1b/gallon

Current Emissions and Controls

Table 5-4 and Figure 5-4 summarize estimated current chloroform emissions
from operating chloroform production facilities. Fugitive emissions include
process fugitive, loading, and where applicable, secondary emissions from
process waste streams. Tables 5-5 through 5-10 provide derivations and
sources of the data summarized in Table 5-4, as well as available control
information and vent parameters.

Available Control Techniques

Current emission estimates for chloroform production facilities were
assessed to determine applicability of available emission control techniques
to significant emission sources. Table 5-11 summarfzes available control
techniques (ACT) resulting from this assessment. These controls apply to
storage, handling, and process fugitive emissions at most chloroform plants,
and to process emissions at the Diamond Shamrock and Linden Chemicals plants.
These control techniques and estimated efficiencies were based on EPA and
industry information on existing and feasible controls.
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TABLE 5-4. CURRENT CHLOROFORM EMISSIONS FROM CHLOROFORM
PRODUCTION FACILITIES

Chloroform emissions (kg/yr)

Plant Location Process Storage Fugitive Total

Diamond - 3

Shamrock Belle, WV 35,800 15,200 38,300 89,300
Dow Freeport, TX 20 2,920 113,120 116,060
Dow Plaquemine, TX 9,4002 8,600 ~ 15,300 33,300
Linden Moundsville, WV 4,950 21,600 30,440 56,990
Stauffer Louisville, KY = —ceccmcnena- On standby----=-c=ccanccaao
Vulcan Geismar, LA 310 16,060 26,100 42,470
Vulcan Wichita, KS 110 72,560 47,000 119,670
TOTAL 50,590 136,940 270,260 457,790

a .
Includes in-process storage.
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TABLE 5-11. AVAILABLE CONTROL TECHNIQUES FOR CHLOROFORM PRODUCTION FACILITIES

Source category Control technique Estimated efficiency (%)

Column vents® Refrigerated condensation 95b

Storage Vapor recovery and -35°C b
refrigerated condensation 95

Process fugitives Monthly leak detection and c
repair; equipment specifications 77

Handling Vapor recovery, -35°C refrigerated - b
condensation and leakage reduction 90

aDiamond Shamrock, Belle, WV, and Linden, Moundsville, WV.

bSee text for control efficiency derivations.

For methyl chloride chlorination. Methane chlorination process efficiency
is 76 percent. From Tables 5-2 and 5-3.
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Process vent emissions are reported to be less than one percent of
current total plant emissions for three of the chloroform production processes.
A pressure-relief valve venting the chloroform distillation column and in-process
storage at Dow/Plaquemine, LA accounts for 23 percent of the current plant
total, or about 8 percent of total uncontrolled emissions. The
intermittent nature of this source is not amenable to available standard control
devices for volatile organics, although some process modifications may be
feasible. Thus, controls were not specified for process emissions at these
four plants.

Due to the large total process emissions reported for the Diamond
Shamrock methyl chloride chlorination process at Belle, W\, available emission
data were used to design a refrigerated condenser which would provide control
of combined process emissions. Choice of a small refrigerated condenser
was based on current use of river water condensers on these process streams.
Other options include carbon adsorption, solvent absorption, and thermal
oxidation. Carbon adsorbers and solvent absorption are considerably more
complex than a condenser, and would be hard to justify in a retrofit situation.
Thermal oxidation would require auxiliary fuel, because the principal components
of this vent stream (methylene chloride and chloroform) are nonflammable. It
also would not result in recovery of product. Based on the theoretical
correlation between vapor pressure reduction and emission control for a
properly-sized condenser, a -43°C condenser would provide an additional
95 percent control of the existing 7°C process streams at this plant. This
control requirement was based on the best available data on characteristics

7,15,16

of the process emissions. The available data on process emissions

at Linden Chemical in Moundsville, WV, indicate that a similar condenser could

provide similar control at that plant. .

Similar condenser efficiency estimates were the basis for potential
storage and handling controls. A 95 percent control level for chloroform
storage requires a condenser at -35°C, based on a 20°C ambient temperature
and assuming proper sizing and design to achieve maximum effectiveness.
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Refrigerated condensation was chosen mainly because it is the principal control
currently in use for halogenated chemical storage. Refrigerated condensation is
used at six of the seven currently controlled chloroform storage facilities
cited in this chapter and Chapter 6. One fluorocarbon 22 plant (Allied/El
Segundo, CA) uses pressurized storage. Although the size of this tank is

not known, available production and emission data indicate that it is the
smallest fluorocarbon 22 plant, and that the tank is quite small relative

to those at other plants. Since pressurized storage is only a practical control
alternative for small fixed-roof tanks, it is not applicable to the larger
tanks at chloroform production plants. Refrigerated condensation can be
applied to existing fixed roof chloroform storage tanks without taking them

out of operation, a factor which may be critical for installation of controls
at the three chloroform plants which have only one main chloroform product
storage tank.

Other options for control of emissions from storage of volatile organic
compounds include: (1) rim-mounted secondary seals or fixed-roofs on
external floating roof tanks, (2) internal floating roofs on fixed roof
tanks, (3) rim-mounted secondary seals or contact internal floating roofs
for noncontact internal floating roof tanks, (4) liquid-mounted primary seals
on contact internal floating roofs, (5) rim-mounted secondary seals on
contact internal floating roofs, (6) carbon adsorption, (7) thermal oxidation,
and (8) pressure vessels. Option 1 does not apply in this case because
external floating roofs are not used for organic chemical storage (they are
generally used only on large tanks for petroleum tiquids). Options 2, 3, 4,
and 5 involve various configurations of internal floating roofs. Although
floating roofs can provide control comparable to refrigerated condensers,
chloroform's ability to dissolve rubber floating roof components would be
a problem for typical floating roofs. Use of special materials may overcome
this problem, but lack of industry experience and information on potential
rubber substitutes prevent further consideration of these options. The
need to empty and clean tanks for floating roof installation could also be
a constraint at plants without available alternate storage.
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Carbon adsorbers (Option 6) are not known to be used for control of
emissions from storage of organic chemicals, although they can provide
comparable control. Adsorbers are likely to require significantly more
operating labor or more sophisticated instrumentation to ensure efficient
desorption cycles under fluctuating input conditions. Provision of cooling
water and steam or vacuum for regeneration may be a consideration in the
vicinity of existing tanks. Disposal of cooling water, condensate and
spent carbon are additional considerations which are not encountered with
condensers. Thermal oxidation (QOption 7) is not a preferred option for
chloroform emissions alone, because chloroform is nonflammable and would .
require auxiliary fuel or joint control of more combustible hydrocarbons for
effective control. In addition, no chloroform recovery is possible with
thermal oxidation. As stated above, pressure vessels (Option 8) are not
practical for the size of main storage tanks used at chloroform plants. Use
of pressure vessels would also require abandoning existing fixed-roof tanks
and building new pressure vessels, which would be very expensive relative
to the add-on control options discussed above.

For control of handling emissions, the principal options are refrigerated
condensers, carbon adsorbers, and thermal oxidation. As discussed for
storage controls, carbon adsorbers and thermal oxidation have significant
disadvantages relative to refrigerated condensers, $o a vapor recovery system
With a -35°C refrigerated condenser was chosen as ACT. In this case, the
theoretical condenser efficiency of 95 percent was reduced to a practical

level of 90 percent due to incomplete capture of vapor recovery systems.]7

The fugitive control technique cited in Table 5-11 is based on monthly
inspection and repair of valves and pumps in Iighfy11quid and gas service,
and equipment specifications including rupture disks on gas safety/relief
valves, plugs and caps on open-ended lines, closed purge systems on sampling
connections and vented seal areas on compressors (flanges are not controlled).
This combination is estimated to have an overall fugitive emission control
efficiency of 76 to 77 percent for typical chloroform production facilities,G
and was chosen because it was selected as best demonstrated technology (BDT)
for the new source performance standard (NSPS) for synthetic organic chemical
manufacturing fugitive emissions.
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A number of secondary emission points have been reported for chloroform
production, including regeneration of molecular sieves at two plants, a waste
neutralization tank and handling of spent caustic and sulfuric acid. No ACT
were developed for these emissions, due to the intermittent, highly variable
nature of molecular sieves regeneration and the minor contribution of the
other reported emissions.

Tables 5-5 through 5-10 include the application of ACT control efficiencies
to available current emission estimates, to estimate feasible emission control
levels. Existing storage controls with efficiencies of 90-percent or
greater were assumed to remain in place under ACT. In cases where available
descriptions of plant layout made it possible to identify in-process storage
or other tanks which would not be co-located with the main storage tanks,
these tanks were not controlled at the ACT level. Where data on tank types
were not available, ACT was applied to all storage emissions, which probably
overestimates the potential control. Vent parameters for ACT were based

4,5

on model plant parameters ’" and assumed condenser exit temperatures. Table 5-12

summarizes ACT emissions.

CONTROL COSTS

The following estimates of costs of available control techniques (ACT) for
chloroform production facilities are based on previous EPA studies of
applicabie control programs and technologies, with additional data on capital
costs and utility usage supplied by industrial vendors. All costs are for
July 1982.

Process Control Costs

As stated in the preceding section, the only ACT for process emissions
are refrigerated condensers which would be retrofitted to existing river water
condensers on process vents at Diamond Shamrock/Belle, WV and Linden/Moundsville,
WV. Based on available technical data for Diamond Shamrock process em1'ss1'ons,15’]6
a tentative condenser design for 95 percent control of chloroform was
performed. This condenser would run at about -40°C, handle a flow of 4.4 acfm
and requires cooling capacity of about 9,000 BTU/hr. Along with 95 percent
control of a current chloroform emission rate of 7.5 kg/hr, this condenser would
also control other process vent components at about the same efficiency. These

components include 21.2 kg/hr of methylene chloride and 0.5 kg/hr of carbon
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TABLE 5-12. CHLOROFORM EMISSIONS FROM CHLOROFORM PRODUCTION FACILITIES
WITH AVAILABLE CONTROL TECHNIQUES
Chloroform emissions (kg/yr)

Plant Location Process Storage Fugitive Total
Diamond a

Shamrock Belle, WV 1,790 6,440 28,050 36,280
Dow Freeport, TX 20 770 24,560 25,350
Dow Plaquemine, TX 9,400° 8,600 4,050 22,050
Linden Moundsville, WV 250 6,590 6,100 12,940
Stauffer Louisville, KY = =ecocmeccccnana- On standby---------==""---
Vulcan Geismar, LA 310 16,060 16,600 32,970
Vulcan Wichita, KS 110 3,950 9,930 13,990
TOTAL 11,880 42,410 89,290 143,580

a .
Includes in-process storage.
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tetrachloride. The following cost estimate considers only recovery of
chloroform, since it is the pollutant of concern in this analysis. Credit
for recovery of other components would improve the cost effectiveness of
this condenser.

Condensers with the low temperature and small cooling requirement
cited above are not standard units in a major manufacturer's line. With
engineering costs, a customized unit could probably be built for $15,000.
Additional allowances of 18 percent of base cost for taxes, freight and
instrumentation and 74 percent for 1'nsta'l'lat1‘on]9 result in an installed
capital cost of $30,800. A previous analysis for refrigerated condensers
estimated an overall annualized capital cost factor of 29 percent, which

18

includes maintenance labor and material (6 percent), taxes, insurance
and administration (5 percent) and a capital recovery factor (18 percent).20
Applying this factor results in an annualized capital cost of about $8,900.
Based on electric utility usage rates provided by a manufacturer, this
unit would use about 5 kW/hr. Full-time operation at a cost of $0.08/kWh
would result in an annual utility bill of $3,500. Assuming an operating
labor requirement of about $19/hour,20 an annual labor cost of about $3,500
was estimated. With the emission reduction cited in Table 5-5 and 5-8, the

following estimates of net cost and cost-effectiveness were made.

21

Base capital cost $ 15,000
Installed capital cost 30,800
Annualized capital cost 8,900
Utilities 13,500
Operating labor 5;500
Annual cost $ 15,900
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Diamond Shamrock Linden

Recovery credit ($23,200) ($3,200)
Net annual cost (credit) ($7,300) $12,700
Emission reduction 34.0 Mg/yr ) 4.7 Mg/yr
Cost-effectiveness (credit) ($214/Mg) $ 2,700/Mg

Process Fugitive Control Costs

Available control technique for process fugitive emissions is a program
combining monthly inspection and repair of potential emission sources
with equipment specifications for safety/relief valves, compressor seals
and sampling connections. The control costs estimated below are based
on two different model plant sizes from a recent EPA study of fugitive
emission control costs in the synthetic organic chemical manufacturing
industry (SOCMI).22 As shown in Table 5-13, the numbers of fugitive
emission sources in these SOCMI model plants are somewhat greater than the
numbers estimated to be in chloroform service in the model plants for
methyl chloride chlorination and methane chlorination, and it is known that
the number of fugitive sources varies substantially from the model plants
in several cases. For the purposes of this study, however, it was assumed
that the SOCMI model plant costs could be used directly. Table 5-14
presents the results of applying the annualized costs below to estimated
emission reduction for the plants applying ACT in Table 5~5 through 5-10. The
methyl chloride chlorination model plant costs apply to the production
facilities using the process for which ACT is specified in Tables 5-5 through
5-10 (Diamond Shamrock/Belle WV, Dow/Freeport TX, Linden/Moundsville, WV
and Vulcan/Geismar, LA). Since both processes exist-at Vulcan/Wichita KS,
the two sets of costs would be combined for a total facility control

cost there.
Methyl chloride Methane chlorination
chlorination model plant model plant
Total installed capital $30,700 $77,600
cost
Total annualized cost $18,800 $50,700
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Storage Control Costs

The controlling factor in size and cost of the ACT refrigerated
condenser for chloroform storage is the displacement of vapors caused
by transfer from day tanks to bulk storage. A 200 gallon/minute pumping
rate was reported for the Vulcan facility at Geismar, LA.24 Base capital
cost for a condenser to handle this displacement would be about $45,000.18
It is assumed that this operating rate and capital costs would apply to
storage at all four chloroform facilities to which ACT applies. The factors
‘for installed cost and annualized capital cost discussed under Process
Control Costs also apply here, resulting in the costs shown in Table 5-15.
Utility and labor costs were also estimated using the same basic assumptions
and rates described for process controls. The basis for the costs in
Table 5-15 is an operating time of about 300 hours, based on the annual

transfer time which would be required for the estimated annual production

at Vulcan/Geismar. Expected emission reductions from Tables 5-5 through 5-10
were used to estimate recovery credits, net annual cost and cost-effectiveness
of control at each facility.

Handling Control Costs

Estimating costs for ACT control of handling emissions (vapor recovery
systems with refrigerated condensers) is subject to considerable uncertainty
due to lack of data on the characteristics of existing tank trucks, tank
cars, ships and barges, chemical loading facilities and on the cost of vapor
recovery systems for them. A cost of about $2,000 for retrofitting gasoline
tank trucks for vapor recovery has been estimated.25 Without adequate supporting
data, it is impossible to include these items in this analysis, and the costs
below are based on available condenser costs and available data on loading
operations. This results in a rough, worst-case estimates of control costs.

In particular, potential costs for smaller facilities may be substantially

overestimated.

One source reported a single loading rack operation rate of 200 gallons/minute,
at a facility with two truck-loading racks and two tank car racks.24 Assuming
no more than two racks loading chloroform at once, a base condenser cost of

$100,000 is estimated for tank truck and tank car loading at all facilities where
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ACT applies.]8 The same base cost has been used for control of barge and ship
loading at Dow/Freeport, assuming that marine loading facilities are not

close enough to truck and rail loading racks to allow use of a single

condenser. Marine loading rates may be higher than the total 400 gallons/minute
assumed for truck and rail racks, but condenser costs are not directly
proportional to loading rate, and information is not available for a more
specific estimate. Applying the installation and annualization factors
discussed under Process Control Costs results in the installed and

annualized capital costs shown below. Worst-case utility and labor costs

were also estimated using the same basic assumptions and rates described
for process controls, based on the hours required in a year for loading

of the largest plant's estimated production at 200 gallons per minute. The
total loading time estimated for Vulcan/Wichita was about 600 hours per
year. It was assumed that vapor recovery and condensation equipment would
be operated only during loading, and that labor requirements for operation
of the control system would also be equal to the estimated loading time.
Electric usage was estimated to 50 kW/hr.

Control costs
for one loading location

Base capital cost $ 100,000
Installed capital cost 205,000
Annualized capital cost 59,500
Utilities 2,400
Operating labor 11,400
Annual cost TS 0§ 73,300

Emission reductions, recovery credits, and cost-effectiveness were estimated
by applying the costs above to the total handling emission reductions
for ACT in Tables 5-5 through 5-10, as shown in Table 5-16.
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Basis of Control Costs

A1l costs are in July 1982 dollars. Costs in original references were
inflated to July 1982 using the Chemical Engineering plant cost index.26
When estimation of capital and annual costs was necessary, cost factors cited
in available EPA cost data references were used on the assumption that they
are more applicable than more generalized cost factors from other sources.

Emission reductions and product recovery credits for estimated best
controls were based only on chloroform emissions. Other compounds would also
be controlled by process and process fugitive controls, and consideration of
recovery credits for them would reduce the net costs of these controls. The

July 1982 price for chloroform used in computing recovery credits was $682/Mg
($0.33/1b).%7

Summary

Table 5-17 presents a summary of estimated costs for implementation of
ACT controls at chloroform production facilities.

COST-EFFECTIVENESS

Table 5-18 presents a summary of the estimated cost-effectiveness of the
available control techniques discussed above. This summary illustrates
the variability of ACT cost-effectiveness across plants and control types.
In some cases, relatively higher cost-effectiveness of controls is due to
some level of existing control and the cbrresponding]y lower potential emission
reduction for ACT. For example, Dow/Freeport, TX currently controls storage
emissions at 88 percent efficiency, and ACT is credited only with the marginal
control to 95 percent. In other cases, the scale of given plants and control
costs based on model plants or other point estimates may result in higher
cost-effectiveness for small plants and efficiencies of control for larger
plants. For example, the model plant fugitive control cost and relatively
high estimated fugitive emissions result in a substantial credit for fugitive
control at Dow/Freeport. On the average, however, it appears that control of
handling emissions is the most costly per megagram of chloroform controlled,
while process vent controls and process fugitive controls are somewhat less
expensive than storage controls.
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CONCLUSIONS

This preliminary analysis indicates that current chloroform emissions
from the six operating chloroform production facilities can be reduced from
about 458 Mg/yr to 144 Mg/yr, through the use of available control techniques
This overall 69 percent reduction is due mostly to control of process
fugitive emissions and storage emissions, which represent 43 and 30 percent
of the total potential control, respectively. Process fugitive controls are
reportedly in practice at only one plant, while storage emissions are controlled
to at Teast 90 percent efficiency at two plants. Control_of handling emissions
accounts for 14 percent of potential overall control with only one plant
currently controlling product loading. Control of significant process vent
emissions at two plants account for the remaining 12 percent of potential
control. As shown in Table 5-12, about 62 percent of the 144 Mg/yr remaining
after application of ACT are fugitive emissions, principally the portion of
process fugitives not affected by ACT, and uncontrolled secondary emission
sources. In-process storage tanks not covered by ACT due to distance from
principal product storage are a large part of the remaining process and
storage emissions.

The total estimated net national cost for implementation of ACT for
all sources in the chloroform production industry would be about $525,000 per
year, almost $410,000 or 78 percent of which is for control of handling
emissions. Almost all of the remaining net control cost is divided between
process fugitive and storage controls ($51,000 and $59,000 respectively).
Net costs for individual controls vary widely between plants, depending on
controils already in place and credits for recovered chloroform. Total
estimated annual costs per plant vary from $12,308 for a plant with many
ACT controls in place (Vulcan/Geismar, LA), to $435,000 for a plant assumed
to require two handling control systems, for truck/rail and marine loading,
as well as controls on process fugitives and storage. Cost-effectiveness
of individual ACT controls were estimated to range from a credit of $420/Mg
of chloroform controlled to a cost of $13,300/Mg. Combined cost-effectiveness
of all ACT controls for specific plants ranged from $960/Mg to $5,800/Mg.
Handling control systems were the most expensive on average, at $9,100/Mg, with
storage and process fugitives at %$630/Mg and $380/Mg, respectively.
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Process vent control was estimated at $2,700/Mg and a credit of $214/Mg for
the two plants with ACT for process vents.

It should be noted that this analysis is based on the inventory of
currently-operating plants, which does not include a Stauffer plant at
Louisville, KY, reportedly permanently closed, or the planned construction of
a large facility by DuPont in Corpus Christi, TX, by late 1985.
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6. FLUOROCARBON 22 PRODUCTION
INTRODUCTION

The primary use of chloroform is as a feedstock for the production of
chlorodifluoromethane, fluorocarbon 22 (CHC]FZ). Recent estimates of the
proportion of total domestic chloroform production used in fluorocarbon 22
production range up to 90 percent. The principal uses of fluorocarbon 22 are
as a refrigerant (accounting for 60 to 65 percent of recent chloroform production),
and as an intermediate in production of fluoropolymers (using 20 to 30 percent
of chloroform production). A small amount of fluorocarbon 22 is also used as

an aerosol propeﬂant.]’2

There are currently six facilities in the United States that produce
fluorocarbon 22 on a routine basis, and one which may operate on a non-routine
basis. These plants are listed in Table 6-13 the production locations are
shown on Figure 6-1. Published statistics on fluorocarbon 22 production are
not available. References indicate that the Allied plants in Elizabeth, NJ
and E1 Segundo, CA, typically produce 12,100 and 2,600 Mg/yr of fluorocarbon 22,
and that DuPont production at Louisville, KY is about 45,000 Mg/yr.4’6
Because data are not available on the non-routine production of fluorocarbon 22
at the DuPont Montague, MI facility, it will not be addressed further in this

report.

SOURCE DESCRIPTION -

Fluorocarbon 22 is produced by the catalytic liquid-phase reaction of
anhydrous hydrogen fluoride (HF) and chloroform. Basic operations that may
be used in the production of fluorocarbon 22 are shown in Figure 6-2. Chloro-
form (Stream 1), liquid anhydrous HF (Stream 2), and chlorine (Stream 3) are
pumped from storage to the reactor, along with the recycled bottoms from the
product recovery column (Stream 15) and the HF recycle stream (Stream 9).
The reactor contains antimony pentachloride as a cata1yst7 and is operated at

temperatures ranging from 0 to 200°C and pressures of 100 to 3,400 kPa.8
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TABLE 6-1. FLUOROCARBON 22 PRODUCTION FACILITIESS:42°

Company Location
Allied Chemical Corp. Elizabeth, NJ
E1 Segundo, CA

E.I. duPont de Nemours Louisville, KY

and Co., Inc.2 Montague, MI
Essex Chemical Corp.

(Racon Inc., Subsidiary) Wichita, KS
Kaiser Aluminum and

Chemical Corp. Gramercy, LA
Pennwalt Corp. Calvert City, KY

aOnly the duPont facility at Louisville routinely manufactures
fluorocarbon 22; the company's Montague plant can produce
fluorocarbon 22 on a nonroutine basis.
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OOV WA

Allied Chemical Corp., E1 Segundo, CA

Allied Chemical Corp., Elizabeth, NJ

E.I. duPont de Nemours & Co., Inc., Louisville, KY

Essex Chemical Corp. (Racon, Inc., subsidiary), Wichita, KS
Kaiser Aluminum and Chemical Corp., Gramercy, LA

Pennwalt Corp., Calvert City, KY

Figure 6-1. Locations of fluorocarbon 22 production facilities
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Vapor from the reactor (Stream 4) is fed to a distillation column, which

removes as overheads hydrogen chloride (HC1), the desired fluorocarbon
products, and some HF (Stream 6). Bottoms containing vaporized catalyst,
unconverted and underfluorinated species, and some HF (Stream 5) are
returned to the reactor. The overhead stream from the column (Stream 6)
is condensed and pumped to the HC1 recovery co]umn.7

Anhydrous HC1 byproduct (Stream 7) is removed as overheads from the
HCT recovery column, condensed, and transferred to pressurized storage
as a liquid. The bottoms stream from the HCl1 recovery column (Stream 8)
is chilled until it separates into two immiscible phases: an HF phase
and a denser fluorocarbon phase. These are separated in a phase separator.
The HF phase (Stream 9), which contains a small amount of dissolved
fluorocarbons, is recycled to the reactor. The denser phase (Stream 10),
which contains the fluorocarbons plus trace amounts of HF and HC1, is
allowed to evaporate and is ducted to a caustic scrubber to neutralize
the HF and HC1. The stream is then contacted with sulfuric acid and

subsequently with activated alumina to remove water.7

The neutralized and dried fluorocarbon mixture (Stream 11) is

compressed and sent to a series of two distillation columns. Overfluorinated

material, fluorocarbon 23, is removed as an overhead stream in the first

column (Stream 12) and fluorocarbon 22 is recovered as an overhead stream in

the second column (Stream 14).7

There are a number of process variations in fluorocarbon production.
HF may be separated from product fluorocarbons prior to hydrogen chloride
removal. Processes may also differ at the stage at which fluorocarbon 22
is separated from fluorocarbon 23: the coproduct fluorocarbons can be
separated by distillation and then cleaned separately. Fluorocarbon 23
may be vented rather than recovered. The HC1 removal system can vary with
respect to the method of removal arnd the type of byproduct acid obtained.
After anhydrous HC1 has been obtained as shown in Figure 6-2, it can
be further purified and absorbed in water. Alternatively, the
condensed overhead from catalyst distillation (Stream 6), can be treated
with water to recover an aqueous solution of HC1 contaminated with HF and
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possibly some fluorocarbons. In this case, phase separation HF recycle
is not carried out. This latter procedure is used at many older plants
in the industry.7

CHLOROFORM EMISSIONS AND CONTROLS

Identified sources of chloroform emissions at fluorocarbon 22
production facilities include losses from storage of chloroform feedstock
and process fugitive emissions from sources such as process valves, pumps,

compressors and pressure relief valves.9

None of the three process emissions identified in Figure 6-2 is a major
source of chloroform. A vent on the hydrogen chloride recovery column
accumulator purges noncondensibles and small amounts of inert gases
entering the system with the chlorine gas. While data are not available
on the emissions from this source, potential volatile organic emissions are
expected to consist of low boiling azeotropes of highly fluorinated
ethanes and methanes formed in the fluorination reactor. Vents on the product
recovery distillation columns emit only fluorocarbons 22 and 23.7

Emission Factors

Table 6-2 presents estimated emission factors for fluorocarbon 22
production facilities. In the current analysis, these factors were used
only when plant-specific data were not available.

Current Emissions and Controls

Table 6-3 summarizes estimated current chloroform emissions from
fluorocarbon 22 production facilities. Tables 6-4 through 6-9 provide
derivation and sources as well as available control information and vent
parameters for individual facilities. Where not available for existing
storage emissions, vent parameters were taken from previous studies.]3’]4
Plant-specific fugitive emission estimates were available only for the
two Allied plants. Since Allied/E1 Segundo, CA, is the smallest
fluorocarbon 22 plant, all other plants were assumed to have fugitive

emissions similar to Allied/Elizabeth, NJ.

6-6



p A3LLLORY udyIOoUR U0y pIUoda

usaq sey 4y/b3 2500°0> SO @304 UCLSSLWD PI[[043U0D Y °pajuasadd 30u Sem anbLuydad} [OU4IUOD Pa}eLIOSSe Y]
‘8jed UOLSSLWI 3ALILBNY pa||0a3u0d pajuodsua siyj Jo4 “A3itoedes jueid jo juspuadapul SIL Iled UOLSSLWD anL3Lbny,
WA RIENETEN

3
b 9ouduayaY,

yIudouad QT AL|eLIuUassSa Jo AJudLdLyjya
pajeLdosse ue yjim A3L|Loey auo Aq pajuodad ulaq sey adue|eq AodeA puB JUSA UOLIRAUISUOD Bunssaud ybiy
® JO 3S1  "JoGE- 40 aunjedaduwsd] buljedsdo 4aSuspuod e pue ) 02 40 84n3eJadwd} UOLSSLWS PIL{0AIUOIUN PBWNSSE

ue uo paseq SL ADUaLOL}Ja |RAOWRA [JY 9y} *SuoLsStwd abeao3s 03 pat|dde 4asuapuod pajedabiajas syl ;omn
*A3LiLoey eoLlaylodAy syj uryzim suoljedado asayyl JO Yoea J0U LB 40j SUOLSSLWD PaULquoOd

Judsaudad su03oey 3sayl ‘suoliedado afdiafnw o3 satjdde uoLjeubLsSap 824n0S de(ndLjaed e BUIYM SIS U]
*paonpouad zgz uoguedouon|) j0 weabebaw 4ad wmojou0|yd> jo weabojLy 03 48494 BW/OY JO SUMBY UL SA03D®4 uoLsstug,

*2-9 34anbl{ 03 pajeubisSap SJUSA 03 43JaJ4 SU311937

q
"A1LpLoey
{e2138y30dAY SLy3 wWo4j [043U0D JO |3A3| pue uoljeuanbLjiuod ut Auea Aew jueld uorjonpouad uogaedodonis uaaLb >:<m
gAu/b% €20°0>  -- -~ -- anL3Lbny
bw/b% 0 001 oue|eq JodeAa pue dA[eA
: UOL3eAUBSUOD Bunssaud yb LY
BW/6% S21°0 03 €0°0  S6 40 “J43SUBPUOD pajeudbLasay  bp/6y 4572 03 46570 v abeuao3s
4030¢e} uoL3onpau (L2y) enbtuyoay 540308} uoLjeublssp 924N0S UOLSSLW]
UoLSSLWR JU3243¢ [043U0D B|qe|LeAY UoLSSLWI 9 324no§
04040 [ Y2 uM0j0o40Yyd
pa|1043u0) pa| [ 043u0Duf

ALITIJV4 NOILONAO¥d ¢¢ NOguvI0doN1d TYIILIHLOMAH Y HO4
mmopu<m NOISSIWI WOJOYOTHD G3T10ULNOINN ANV A3 TI0YINOD  "2-9 314Vl

6-7



‘paiLdde sjo4juod ON,

JeiAl 47 01L°S GL1°05 Gv0°1 G99°t 0EL6t TvioL
005°6 004 002°01 00¢ 009 000°01 A A1) 3dBALR) 3l eMuu9q
== 0€1°1 0E1°1 00¢ o0t6 0€6 ¥1 “Adusuweay 49sLey
G20°6 SL9 00L°6 00¢ TA 005°6 SH “RILYDLM uooey
001°61 009°¢ 00L°1¢ 00¢ 00%°¢ 005° 12 A “BLLIASLNOT uodng
== SY St 77 e 0 yd ‘opunbas |3 PaLLLY
0¥8°9 099 00¥°L 00¢ 09¢ 002°L CN ‘Yisqezi|3 pPaLlLy
uoL}onpay P L04JU0)  JUIUUNY) JUSAUN) P} | 043U0) JuUdUuUNY uoL3ed07 Auedwo)
[e3jol poALILDN abea03g

(4A/bY) suoLSsSLW® WA0JoU0|Yy)

SAILTTIOV4 NOILINAOYUd ¢ NOGUYI0u0N14 WOoHd SNOISSIWI

WY04040THD  °"€-9 3718Vl

6-8



"y 2oUBURYaY

00¢ BUON AL LDNY

8€2 20°0 ST 09¢ 10y abe.03s

INDINHO3L T0YLINOD ITEYTIVAY

2002 SuoN aAL3Lbny

0£8¢ ¢50°0 1’9 p002°¢L ptUSA UOLIEAUISUO) abeu03s

SNOISSIWI LNIWIND

(Mo) (w) (w) (4£/6%) . 9nbLuyoay |oajuo) 904n0g§
*dway Jd3j9uwelLp ybLay 9jed UOLSSLUR

abueyostq JUIA JUIA UM 04040 Y]
nlG €T okl :opnyLbuo WSt 0V o0b  tapniLye]

CN ‘U3aqezi(3 :uorjedo)

patyLy :Auedwo)

CN “HLIGVZIN3/Q3ITIV 404 AYVWWNS NOISSIW3 v-9 31Evl

6-9-



_ "p 9dUDUIAY,

Sy BUON aAL3LbNyg
-- -- -- 0 burysix3 abeuo1g
INDINHIAL TOULNOI ITGVIIVAY
oS UON 9AL3LbNyY
-- -- -- 20 p}USA UOLIRAUISUOD
aJ4nssaad ybLH abeu03s
SNOISSIW3 1INJYUNJ
o) (w) (w) (4£/6%) anbLuyd3y |oazuo) 924n0S§
*dway Jd3j9weLp JybLay 9jeJd uoLSSLuL
abueyoasiq Juap JUIA WA0J040|Y)
wG€ 192 o811 :apnitbuol «8€ 199 o€E rapnitiyen
YD) ‘opunbas (3 :uotLjedo
pPotLLLY :Aueduio)

vJ “0aNn93s

13/Q317V 404 AUVWWNS NOISSIWI °G-9 374vl

6-10



"9 0UURRY,

T
)

002 auoN aaLyLbny
862 §20°0 51 00y 2 1¥ 960403 s
INDINHI3L T0YLNOD FTGVIIVAY
002 3UON 9AL3Lbny

(3udd4ad gg)

€Le 8£0°0 1°6 006°T12 49SUBpU0D pajesablajau
uowwod e 03 pajuap mmma;owm
SNOISSIWI INIYYND
(Mo) (w) (w) (4A/6%) ~anbLuyd3y [o43uo0) 303unog

*dway 4333uweLp 3ybray 9j3ed UOLSSLUR
abuaeyostqg JUIA JUap U000 Yy

wET 95 oS58 :apn31buo] w15 1T o8€ :apnitje]
Al f3LLLAsLnoT 1uotL3ed07
juodng :Auedwo?

AN “ITTIASINOT/LNOING Y04 AUVWWNS NOISSIWI

‘9-9 318vL

6-1T



.

*sudjaweded jue|d [apow YjLM SRue) OM} UIIMIAQ pauoljuodde duaMm SUOLSSLWD 36RU0OLS -SuoLsSLWA 3AL3 16Ny
9q 03 4A/6X 002 Butwnsse ;. “uA/BY Q0L°6 IB SUOLSSLWD |30} JO 9RWLYSD S,U0DRY UO PASEq SIIBU UOLSSLWT,

00¢ 1Y 9ALYLbN4
8Ed 5¢0°0 61 Siv 1ov abeu03l§
INDINHIIL TOYLNOD 379V 1IVAY
002 auoN aALy Lbn4
00¢€ ¢S0°0 1°9 0SL%Y

00¢ 2¢s0°0 1°9 0SL*Y JUON abeu03s
SNOISSIWI IN3FWUND
(Mo) (w) (w) (aKk/Bx) anbLuyosdl 0J43u0) 324n0§

*dway Jajauelp Jybtay pdl0d UOLSSLUWR

abueyosig JUIA JUap UM0J040(Y)

w00 0¢ oL6 1apny mmCOJ W0€ €V oL rapnitLaen

SN ‘e3LYdLM  :uoL3ed07]
uooey : Kuedwo)

SA “YLIHDIM/NOOVY Y04 AYVWWNS NOISSIW3 "(-9 316Vl

6-12



! "I1 9ouau3yay,

002 auoN 9AL3LbNY
8€2 G20°0 Sl 0£6 butysix3 abeuoys
INDINHIIL TOULINOD ITAVIIVAY
00¢ 9AL3 16Ny
(3usd4ad gg)
8€2 G20°0 S1 0€6 435uU3puod pajedsbluayay poDR401S
SNOISSIW3 INI¥¥ND
(Mo) (w) (w) (4A/6%) anbLuysal |[o4juo) 324Nn0§
*dway Jajauwelp 3ybLay 930U UOLSSLWI
abaeyosiqg JUBA Juap WA04040 1Y)
€1 0b 06 :spnjibuo wG2 £0 o0E :9pniylLie]
Y1 ‘Addaweday  :uoLjed07
NENR : Auedwo)

V1 AJYIWYHI/YISIVA U004 AYVWANS NOISSIWI

“8-9 318vL

6-13



"21 90uUa4ByY,

00¢ SUoy anLyLbny
8€2 620°0 S1 00§ LIy abe.o3s
INDINHIIL TOYLNOD TGV IIVAY

002 3uoN aAnL}Lbny

00¢€ 290°0 1'9 mooo.oﬂ SUON abeu0ls
SNOISSIWI LINJUUND

(Mo) (w) (w) (4K/6%) anbLuydsay [oajuo) 324N0§

*dway JdajaweLp 1619y 3304 UOLSSLWA
abuaeyosig JUBA JUap WwA04040(YJ

WOF 61 o88  opn3tbuoi W01 €0 oL FPNILIT]

M “AILD j48A[e) :uoljed0]
jlemuuaq  Auedwo)

A4 “ALID LH3ATVI/LIWMNNId 404 AYYWWNS NOISSIWI

'6-9 314vl



Available Control Techniques

Available control techniques (ACT) were assessed for storage and fugitive
emissions. For storage emissions, ACT was determined to be a refrigerated
condenser with 95 percent control efficiency. The estimated 95 percent
control of storage emissions is based on the theoretical proportionality of
emission control to vapor pressure reduction with a 20°C ambient temperature
and -35°C condenser outlet temperature. Refrigerated condensation was chosen
mainly because it is the principal control currently in use for halogenated
chemical storage. Condensers are used at six of the seven currently controlled
chloroform storage facilities cited in this chapter and Chapter 5. One
fluorocarbon 22 plant (Allied/E1 Segundo, CA) uses pressurized storage.
Although the size of this tank is not known, available production and emissions
data indicate that it is at the smallest fluorocarbon 22 plant and that the
tank is quite small relative to those at other plants. Since pressurized
storage is only a practical control alternative for small fixed-roof tanks,
it is not applicable to the larger plants. Refrigerated condensation can be
applied to existing fixed roof chloroform storage tanks without taking them
out of operation, a factor which may be critical for installation of controls
at the three fluorocarbon 22 plants which have only one chloroform storage
tanks. '

Qther options for control of emissions from storage of volatile organic
compounds include: (1) rim-mounted secondary seals or fixed roofs on external
floating roof tanks, (2) internal floating roofs on fixed roof tanks,

(3) rim-mounted secondary seals or contact internal floating roofs for
noncontact internal floating roof tanks, (4) liquid-mounted primary seals on
contact internal floating roofs, (5) rim-mounted secondary seals on contact
internal floating roofs, (6) cafbon»adsorption, (7) thermal oxidation, and
(8) pressure vessels. Option 1 does not apply to this case because external
floating roofs are not used for organic chemical storage (they are genrally
used only on large tanks for petroleum liquids). Options 2, 3, 4, and 5
involve various configurations of internal floating roofs. Although floating
roofs can provide control comparable to refrigerated condensers, chloroform's
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ability to dissolve rubber floating roof components would be a problem for
typical floating roofs. Use of special materials may overcome this problem,
but lack of industry experience and information on potential rubber substitutes
prevented further consideration of these options. The need to empty and

clean tanks for floating roof installation could also be a constraint at

plants without available alternative storage.

Carbon adsorbers (Option 6) are not known to be used for control of
emissions from storage of organic chemicals, although they can provide comparable
control. Installation and operation of carbon absorbers is considerably more
complex than for condensers. Adsorbers are likely to require significantly
more operating labor or more sophisticated instrumentation to ensure efficient
desorption cycles under fluctuating input conditions. Provision of cooling
water and steam or vacuum for regeneration may be a consideration in the
vicinity of existing tanks. Disposal of cooling water, condensate and spent
carbon are additional considerations which are not encountered with condensers.
Thermal oxidation (Option 7) is not a preferred option for chloroform emissions
alone, because chloroform is nonflammable and would require auxiliary fuel or
joint control of more combustible hydrocarbons for effective control. In
addition, no chloroform recovery is possible with thermal oxidation. As
stated above, pressure vessels (Option 8) are not practical for the size of
storage tanks used at all but the smallest fluorocarbon 22 production plant.
Use of pressure vessels would also require abandoning existing fixed-roof
tanks and building new pressure vessels, which would be very expensive relative
the add-on control options discussed above.

Fugitive chloroform emissions from fluorocarbon 22 production could
potentially be reduced by instituting a control program involving inspections,
repair and equipment specifications. These fugitive emissions are believed
to be quite small, however, estimated at 200 kg/yr or less for each plant,
and less than four percent of total potential emissions at any plant. For
this reason, ACT was not applied to process fugitive emissions.



The estimated ACT storage control efficiency of 95 percent was applied
to emissions estimated for currently uncontrolled chloroform storage at
fluorocarbon 22 production facilities, including Allied/Elizabeth, NJ,
Racon/Wichita, KS, and Pennwalt/Calvert City, KY. The 95 percent control
was also applied at DuPont/Louisville, KY, where the level of existing
control is only 55 percent (See Table 6-6). ACT did not apply to
Kaiser/Gramercy, LA, because 95 percent control will shortly be installed
there. Pressurized storage at Allied/E1 Segundo, CA, eliminates storage
emissions entirely. Of the four plants which would install refrigerated
condensers on their storage tanks, DuPont/Louisville, KY would achieve
the greatest reduction over current chloroform emissions (about 19 Mg/yr).
Note that this reduction consists of the difference between current
55 percent control and 95 percent at ACT. Pennwalt/Calvert City, KY and
Racon/Wichita, KS would control 9.5 and 9 Mg/yr respectively; Allied/Elizabeth,
NJ would reduce emissions by about 6.8 Mg/yr. This results in a national
emission reduction of about 44.4 Mg/yr. Current emissions, controlled
emissions, and emission reductions are summarized in Table 6-3. Vent parameters
for the refrigerated condensers used in ACT for chloroform storage include
their -35°C (238°K) outlet temperature, with height and diameter (15 and

0.025 meters) taken from a previous vent parameter estimate.]4

CONTROL COSTS

Table 6-10 presents estimated costs of control on chloroform storage
at the four fluorocarbon 22 plants to which ACT applies. The ACT condenser
would be sized to handle the maximum expected emission rate, which would occur
when chloroform being loaded into the bulk storage tank displaces air and
vapor in the headspace. The displacement rate would be the same as the
maximum chloroform loading rate. A worst case would involve saturation
conditions in the headspace, at ambient temperatures. '

The available information on production, chloroform storage and loading
rates at fluorocarbon 22 plants is summarized in Table 6-11. For control
cost estimation, it was assumed that the Pennwalt and Racon plants would have
chloroform load-in rates similar to the 5,000 gallon/hr maximum rate reported
for Allied/Elizabeth, and that loading capacities at DuPont/Louisville would
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be about four times this rate, or 20,000 gallons/hr. These assumptions were
based on the relative reported emissions for these plants. The estimated
production capacity of the DuPont plant was also considered.

Base capital costs for refrigerated condenser systems to handle the
above loading rates would be about $45,000 for 5,000 gallons/hr and $75,000
for 20,000 gallons/hr. These estimates are based on costs provided by an
equipment manufacturer for the flow rates, cooling rates and -35°C operating
temperature required to achieve 95 percent control of storage erm‘ssions.]5
Additional allowances of 18 percent of base cost for taxes, freight and
instrumentation and 74 percent for insta]]ation16 result iﬁ'the installed
capital costs in Table 6-10. A previous cost analysis for refrigerated
condensers estimated an overall annualized captial cost factor of 29 percent,
which includes maintenance labor and material (6 percent), taxes, insurance
and administration (5 percent) and a capital recovery factor (18 percent).7

Applying this factor results in the annualized capital costs in Table 6-10.

The condensers under consideration are air-cooled, so utilities consist
of electricity for the compressor and fan. The approximate utility costs in
Table 6-10 were based on an estimated $0.08/kWh electric rate,18 assuming
condenser operation at full capacity during loading and consumption at 15 percent
of full-capacity during idling. 5 Loading was assumed to occur 10 percent
of the time, based on actual data for Allied/Elizabeth (902 hrs/yr).4 Thus
total condenser operating time was estimated at 2060 hrs/yr. The condenser
sized for 5,000 gallon/hr loading rate would consume about 11.5 kW/hr.15 The
unit for the 20,000 gallon/hr loading rate would be about 20 percent more
efficient per gallon loaded, and thus would use about 37 kW/hr. Operating
labor is relatively constant regardless of condenser-size, and has been
estimated at 10 percent of condenser operating time{19 Ten percent of the

17

estimated operating time cited above and a labor rate of $19/hr, * result in

an annual labor cost of about $3900.

Recovery credits are based on emission reductions from Table 6-3.
Recovery credits are based on the July 1982 price for chloroform, $682/Mg
(50.33/1b).20
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A1l above costs are in July 1982 dollars. Costs in original references
were inflated to July 1982 using the Chemical Engineering plant cost index,21
except the electric utility rate for July 1982, which was projected from

available rate data.]8

COST-EFFECTIVENESS

Table 6-10 provides estimated cost-effectiveness of the storage controls
specified as available control techniques in the previous section. For
individual plants, these controls are estimated to cost from $2,200 to $4,100 per
megagram of chloroform controlled, with an industry-wide average of $2,800 per
megagram.

CONCLUSTIONS

With 95 percent control of storage emissions at the four fluorocarbon 22
plants which do not currently have that level of control, total chloroform
emissions from this source category can be reduced from about 50 Mg/yr to
about 5.7 Mg/yr, at a total annual cost of $122,300. This annual cost
includes a chloroform recovery credit of $30,200 and a pre-recovery cost of
$152,000. Overall cost-effectiveness of available control techniques is estimated
at $2,800 per megagram.
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7. OXYBISPHENOXARSINE/1,3-DIISOCYANATE MANUFACTURE
INTRODUCTION

Oxybisphenoxarsine (OBPA) and 1,3-diisocyanate are produced by Aerojet
General Corporation in Sacramento, California. OBPA is a fungicide that is
combined with rubber to prevent mold growth on gaskets and seals. 1,3-Diisocyanate
is an intermediate in the production of polyurethane resins. Both the OBPA
and diisocyanate processes use chloroform as a solvent. A third source of
chloroform emissions from the Aerojet facility is a deep well deaerator. All
three sources are described separately below.

OXYBISPHENOXARSINE

The Chemical Operations Division of Aerojet General Corporation is the
only producer of oxybisphenoxarsine. For this reason, much of the information
on the production of OBPA is limited and believed to be proprietary. It is
known that chloroform acts as a carrier solvent for OBPA.

On November 29, 1982, Aerojet received a permit to construct an activated
carbon system to reduce chloroform emissions at the OBPA facility from 635 kg/day
to 30 kg/day (95 percent control). The carbon adsorption unit is a Series 500
System manufactured by VIC Manufacturing Company. Although Aerojet estimated
95 percent control and this level is used in emission estimates, preliminary
data supplied by the County of Sacramento Air Pollution Control District
indicate the system may be achieving 98 percent coﬁ%rol.] Chloroform emissions
and stack parameters from the OBPA process are reported in Table 7-1.2

1,3-DIISOCYANATE

Like OBPA, little information is known about the Aerojet 1,3-diisocyanate
process. From other sources it is known that carbon tetrachloride can be used
as an absorbent in a scrubber which is part of a phosgene/isocyanate process

3.4

in West Virginja and Texas. Because little information was available on

the Aerojet process, it can be surmised that this is how chloroform is used.
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It is known that chloroform sources from 1,3-diisocyanate production
at Aerojet include the acid chloride area scrubber columns, the process
area scrubber column, the azide abatement area scrubber column, the Nash
vacuum system circulation vessels, the high vacuum still area knockout pot,
and the chloroform recycle area knockout pot. These sources are routed to
an inlet duct of the chloroform recovery system. The chloroform recovery
system is a carbon adsorber recently installed by VIC Manufacturing Company.
Emission rates and stack parameters from the 1,3-diisocyanate process are
reported in Table 7-1.2

DEAERATION

The design purpose of a vacuum deaerator is to remove the corrosion
contributing noncondensable gases from water, namely oxygen, nitrogen,
and carbon dioxide prior to deep well injection. Because volatile organics,
such as chloroform, have a limited solubility in water, a portion of these
materials are also removed from the deaeration process. Sources of chloroform
that supply aqueous waste to the deaeration system include both the OBPA and
the diisocyanate facility.

Aerojet estimates chloroform emissions from the deep well deaeration
facility amount to 22.7 kg/day. There are no controls on this facility. Stack
parameters are shown in Table 7-1.2
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8. PHARMACEUTICAL AND VITAMIN C PRODUCTION

This chapter presents the results of a recent survey of domestic pharmaceutical
manufacturers' chloroform usage and disposal, as well as a summary of chloroform
usage and emissions at one facility producing Vitamin C.

PHARMACEUTICAL PRODUCTION

Chloroform is one of many solvents used in the manufacture of synthetic
pharmaceuticals. Pharmaceuticals are typically made in a series of batch
operations, many of which can involve the use of solvents. These operations
include reactors, distillations, filters, extractors, centrifuges, crystallizers,
dryers and various holding tanks. Solvent emissions can occur in any of
these process steps, and can also occur from solvent storage, transfer, and
recovery systems. Solvents may be used as a reaction medium, to dissolve an
intermediate product prior to a process step, to wash an intermediate or

final product, or as a drier after a water-based production step.]

Except
for the Vitamin C production process described later in this chapter, no
information is available on specific locations, applications, or emission
points for chloroform use in the pharmaceutical industry.

The Pharmaceutical Manufacturer's Association conducted a survey of

2

solvent use by member companies in May 1984. The chloroform purchase,

emission and disposal statistics provided by this survey are as follows:

Annual chloroform purchase fiSO Mg
Direct air emissions 575 Mg
Sewer 150 Mg
Incineration 100 Mg
Contract haul 50 Mg
Other disposal or loss 250 Mg
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Respondents to this survey account for about half of the 1982 domestic sales
of ethical pharmaceuticals, so actual chloroform usage and loss rates are
significantly higher than the responses totalled above. However, it is
believed that some surveyed manufacturers may not have responded because they
do not use the subject solvents. Thus doubling the above responses would
probably result in overestimation of true chloroform usage and losses. The
"other disposal or loss" category may include off-site solvent recovery,
deep-well injection, lab-pack disposal by outside vendors and undetermined
losses.

From these statistics, it appears that roughly 1,000 Mg/yr of chloroform
may be emitted directly to the air by pharmaceutical manufacturers, with some
significant indirect atmospheric losses from chloroform disposed of in sewers.
This total includes the emissions from the Vitaminc C production process
described in the next section. The survey cited did not provide any locations
or other company or plant-specific details.

VITAMIN C PRODUCTION

Source Description

Chloroform is used as a solvent in the manufacture of crude ascorbic
acid (Vitamin C). The starting material for ascorbic acid is dextrose, which
is hydrogenated to sorbitol, fermented, and crystallized into sorbose. The
sorbose is then slurried in a solvent reactor, followed by mixture with acid
and then neutralized. Following this the material is oxidized and dried,
forming diacetone gulosonic acid (DAG). The DAG is slurried with chloroform,
followed by a rearrangement to form crude ascorbic acid. The ascorbic acid
is filtered from the chloroform-containing mother liquor, crystallized,
dried, and shipped out as a final product.3 .

Source Locations

There are two producers of Vitamin C in the U.S., Hoffman-LaRoche,
Belvidere, New Jersey, and Pfizer, Groton, Connecticut. The Hoffman-LaRoche
plant has a capacity of 30 million pounds per year, while the smaller Pfizer
plant has a capacity of 2 million pounds per year.4 The remainder of this
discussion will address only the Hoffman-LaRoche plant, since detailed information
was not gathered for the Pfizer plant.
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Chloroform Emissions and Controls

Potential chloroform emission sources in the Hoffman-LaRoche Vitamin C
production include: fugitive losses from process equipment and solvent
recovery equipment; vent emissions from the carbon adsorber used to control
process, recovery system and storage tank vents; an uncontrolled chloroform
storage tank; inadvertent spills of solvent or process materials; and
vaporization from wastewater and cooling water. Recent estimates for these

emissions are as foHows:5
Fugitive 116 Mg/yr -
Carbon adsorber vent 78 Mg/yr
Storage tank 6 Mg/yr
Spills 10 Mg/yr

Wastewater/cooling water 13 Mg/yr
Total 223 Mg/yr

The current carbon adsorber is estimated to provide 78 percent control
of ducted emissions from a large number of process unit vents, the solvent
recovery unit condensers, and three of the four storage tanks. Plans exist
to continue upgrading of this adsorber, by improving post-regeneration drying
and use of a gas chromatograph for better timing of the desorption cycle. A
realistic future control level of 95 percent is projected.6 This would
result in carbon adsorber vent emissions of less than 20 Mg/yr, compared to
the current 78 Mg/yr cited above.

Control Costs

The initial cost of the carbon adsorber itself was $34,500 in 1978, with
additional installation costs of $500,000 in 1981, and an upgrading of the
system in 1983 for $131,000. Current annual operating costs are estimated at
$40,000 for steam, $13,500 for maintenance, and $53,500 for operating labor.
The value of the recovered solvents is estimated at $218,000 per year.
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9. TRICHLOROETHYLENE PHOTODEGRADATION

SOURCE DESCRIPTION

Trichloroethylene (TCE) is a synthetic organic chemicq] used almost
exclusively (>90 percent) in degreasing operations. The chemical has
become pervasive in the environment due to fugitive emissions during
production, use, and disposal.

Production of trichloroethylene has been declining since the early
1970's. Production of trichlorethylene has fallen from 206,000 Mg in
1973 to 109,000 in 1982.1’2 This trend is expected to continue through
1987 with a 0 to 3 percent annual decline through the period.2

Only two sites in the U.S. manufacture trichloroethylene: Dow
Chemical in Freeport, Texas and PPG Industries in Lake Charles, Louisiana.
Releases from production are only a small part of the total released
each year.

Trichloroethylene uses include solvent degreasing, miscellaneous solvent
uses including the production of funigicides, cleaning fluids, and adhesives,
and as a chain terminator in polyvinyl chloride manufacture. Approximately
22 percent of all trichloroethylene manufactured is exported.2

Almost all TCE production is ultimately released to the environment,
except for 6 percent which is consumed as a feedstock or destroyed by incineration.
During or following use, as much as 79 percent of production is released to
air, 14 percent to land, and 1 percent to ambient waters.1 Once airborne,
trichloroethylene remains in the troposphere until it reacts with hydroxyl
free radicals (-OH), the principal scavenging mechanism for trichloroethylene
and most other halogenated compounds. Decomposition products include
dichloroacetyl chloride, phosgene, carbon monoxide, chloroform, hexachlorobutene,
and hydrochloric acid. The estimated residence time for trichloroethylene

in the atmosphere ranges from 11 to 15 days.3’4
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Laboratory experiments have demonstrated the photochemical formation of
chloroform from trich1oroethy1ene.5 In one study, synthetic mixtures of
trichloroethylene, nitrogen dioxide, water vapor, and a hydrocarbon mixture
were irradiated by a bank of fluorescent lamps designed to simulate the
intensity and spectral distribution of light prevailing in the lower troposphere.
The hydrocarbon mixture was a typical gasoline consisting of 60 percent
paraffins, 13 percent olefins, and 27 percent aromatics. Approximately
2 hours after initiation of the experiment, chloroform formation began.

After 48 hours, approximately 7 ppb of chloroform was formed (Figure 9-1).
Phosgene was measured at a level slightly lower than chloroform. Dichloroacetyl
chloride and HC1 were both measured during the experiment, but the concentration
could not be measured because of the procedures employed.

100

E 3
=

Time, hrs

Figure 9-1. Chloroform formation due te photochemical
decomposition of trichloroethylene.

The following reaction mechanism is believed to account for the observed
formation of the products mentioned above. The mechanism involves a
chlorine-sensitized photo-oxidation of trichloroethylene. The mechanism
accounts for the products and the time lag in the experiment mentioned above.
Time is required for the initial propagation of chlorine radicals, oxygen
radicals, and other radical species. The mechanism believed to account for
the formation of chloroform from trichlorocethylene is as follows:
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1) HCl,—Y g HT, + CT-

2)  Cl- + C,HCl;—=C,HCT,-

3)  C,HCT,» + 0,—=C,HCI,0,-

4)  CHCI,e + CHHCT, 0, —=C,HCT,0,C,HCT,

5)  C,HC1,0,+ + CoHCI,0 e —=2C,HCT,0- + 0,
6)  C,HC1,0- —=CHCICOCT, + C1-

7)  C,HC1,0—=COCT, + CHCI,

8)  CCI,CHCI0- —=CCT3+ + HCT + CO

9)  CClgr + 0,—=COC1, + Cl-

10)  CHCl,- + CT-—=CHCI,

As stated above, 109,000 Mg of trichloroethylene was produced in 1982.
Subtracting exports and assuming that 79 percent of trichloroethylene produced
enters the atmosphere, 67,200 Mg were released to the atmosphere. As shown
in Figure 9-1, for every ppm of trichloroethylene in the atmosphere, 7 ppb of
chloroform is formed, or of the 67,200 Mg of trichloroethylene released,

420 Mg of chloroform is formed. Secondary formation of chloroform from
trichloroethylene photodegradation is unlikely to cause significant ground

level concentrations. Maximum concentrations of trichloroethylene in urban
atmospheres have been reported to be 3.07 ppb, with average concentrations

being approximately 213 ppt.6 Using the ratio listed above, maximum concentrations
of chloroform in urban atmospheres due to trichloroethylene photodegradation

would be 21.5 ppt (105 ng/m3), while average concentrations would be 1.5 ppt

(7.3 ng/m3). This Tevel would account for 0.77 percent of chloroform found

in urban atmospheres.6

Because chtoroform is formed as a secondary by-product of the hydrolysis
of trichloroethylene, direct control is not possible. The only possible
means of reducing chloroform formation would be to reduce trichloroethylene
use further by continued substitution to other halogenated solvents (e.g.
1,1,1-trichloroethane, or methylene chloride), or by use of alternate cleaning
methods.
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10. COOLING WATER

In steam electric power generators, cooling water is used to condense
steam. Cooling water is often chlorinated to prevent growth of slime-forming
organisms, which inhibit the heat exchange process, on heat-exchanger tubes.‘l
Chloroform is formed in cooling water from the reaction between chlorine and
naturally-occurring organic compounds in the water. About 65 percent of
steam electric plants chlorinate to prevent fouling by slime-forming organisms.
The remaining plants either do not have a biofouling problem or use a control
method other than ch1or1‘ne.1

Two types of cooling water systems are in general use: once-through
systems and recirculating systems. Chloroform air emissions occur when
chloroform formed in cooling water evaporates to the atmosphere. Chloroform
formation and fate in cooling water is discussed below.

SOURCE DESCRIPTION

Once-Through Cooling Systems

In a once-through cooling water system, cooling water is drawn from the
water source, passed through the heat exchanger (where it absorbs heat), and
returned directly to the water source. Typically, chlorine is added to
cooling water periodically for a time period long enough to kill any organisms
growing in the heat-exchanger tubes. For example, & large coal-fired electric
plant chlorinates cooling water for 30 minutes daily.z Chloroform formed in
the cooling water is discharged to the source water and evaporates.

Recirculating Cooling Systems

In a recirculating cooling water system, cooling water is withdrawn from
the water source and passed through the condensers several times before being
discharged to the receiving water. Heat is removed from the cooling water
after each pass through the condenser. Three major methods are used for
removing heat from recirculating cooling water: cooling ponds or canals;
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mechanical draft evaporative cooling towers; and natural draft mechanical

cooling towers. Recirculating cooling water typically is chlorinated continuously.
The evaporation of water from a recirculating cooling water system in cooling

ponds or cooling towers results in an increase in the dissolved solids concen-
tration of the water remaining in the system. Scale formation is prevented

in the system by periodically bleeding off a portion of the cooling water
(blowdown) and replacing it with fresh water which has a lower dissolved

solids concentration.

Industry Capacity

The Department of Energy listed 842 steam electric generating plants in
1978 with a total generating capacity of 453,000 Mw.3 The 1982 generating
capacity was estimated to be 567,000 MW, an increase of 25 percent.4

CHLOROFORM EMISSIONS

Once-Through Cooling Systems

The amount of chloroform formed in once-through cooling systems can be
computed based on the volume of cooling water chlorinated and the chloroform
concentration resulting from chlorination. The water volume chlorinated can
be computed based on the cooling water flow rate in nuclear and nonnuclear
plants practicing chlorination and, because chlorination is intermittent, the
amount of time the water is chlorinated.

Approximately 60 percent of nonnuclear steam electric plants use once-
through cooling systems. These cooling systems used 2.0 X 1014 liters of
water in 1978.5 Based on the 25 percent increase in power generating capacity

14

estimated above, an estimated 2.5 x 10"~ liters were used in 1982.

Because the cooling requirements at nuclear plants are about the same as
for coal-fired plants, data from a coal-fired plant can be used to estimate
the once-through cooling water volume for nuclear power plants.6 The average
generating capacity of U.S. nuclear power plants is 1,600 Mw.3 The
cooling water volume at a similar-sized (1,700 MW) coal-fired plant is
5.55 x 109 11ters/day.1 Based on the ratio of generating capacities, a 1,600

9 liters/day. The eleven nuclear

MW nuclear power plant requires 5.1 x 10
plant once-through systems, therefore, use approximately 2.0 x 1013 liters/year

of cooling water.7

10-2



The total cooling water volume in once-through systems, 2.7 x 1014 1/yr,
is the sum of cooling water volumes in nuclear and nonnuclear steam electric
plants. Based on the example cited above, once-through systems are estimated
to chlorinate daily for 0.5 hour, or 2.1 percent of the operating time.2
Thus, assuming 65 percent of once-through cooling water is chlorinated 2.1 percent
of the time yields a total chlorinated volume of 3.7 x 1012 liters per year.
Using a measured 20.5 ug/1 chloroform concentration in a once-through cooling
system as a basis, an estimated total of 75.9 Mg/year of chloroform are
produced in all once-through systems from ch]om’nation.8 The entire amount

would evaporate to the atmosphere.

Recirculating Cooling Systems

The amount of chloroform produced in recirculating cooling systems can
be estimated by multiplying the blowdown volume of cooling systems by a
published cooling system chloroform production factor. Total chloroform
production in recirculating cooling systems has been estimated to be 4.32 x
10'7 kg per liter of blowdown for a continuously chlorinating cooling tower,
and 6.6 x 10‘7 kg per liter of blowdown for a cooling tower chlorinating once
per week.9

Recirculating cooling systems in nonnuclear steam electric plants discharged
3.2 x 10" Titers of blowdown in 1978.'0 It is estimated that 4.0 x 10'' liters
were discharged in 1982, based on a 25 percent increase in generating capacity.
Nuclear power plants account for 12 percent of the power generated in the
United Statés.4 Assuming that nuclear power plants produce an amount of
blowdown equal to 12 percent of the nonnuclear blowdown volume, nuclear
plants discharge 4.8 x 10]0 1/yr of blowdown. The total blowdown volume
discharged from recirculating cooling systems, 4.5'x'10H 1/yr, is the sum of
blowdown from nuclear and nonnuclear plants.

Assuming that 65 percent of recirculated cooling water is chlorinated,
11

2.9 x 10
cooling towers chlorinate continuously yields an estimate of 125 Mg/yr of
chloroform produced. Assuming all chlorinating ccoling towers chlorinate

liters/yr of blowdown are chlorinated. Assuming that all chlorinating

intermittently yields an estimate of 191 Mg/yr of chloroform produced.
Because most plants chlorinate continuously, the amount of chloroform produced
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is probably best estimated by the gquantity 125 Mg/yr. However, by estimating
chloroform production based on the assumption that all systems chlorinate
intermittently a reasonable range of potential chloroform emissions can be
established. Thus, an estimated 125 to 191 Mg/yr of chloroform are produced
in recirculating cooling systems. Virtually all the chloroform formed in
recirculating cooling systems evaporates to the atmosphere.

Summary of Chloroform Production

In conclusion, the amount of chloroform produced by chlorination in
once-through cooling systems and recirculating systems is calculated to be
between 197 and 263 Mg/yr. Seventy-two megagrams are discharged directly to
water (then evaporated to the air) by once-through systems, while 125 to
197 Mg/yr are emitted to the air by recirculating systems.

CHLOROFORM CONTROL METHODS

Chloroform emissions can be reduced by using a biofouling control method
other than chlorination. Alternatives to chlorination are other oxidizing
chemicals, nonoxidizing biocides, and mechanical c]eaning.] None of these
alternatives, however, are used widely at this time.
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11. DRINKING WATER

This chapter discusses the importance of drinking water treatment as a
source of chloroform air emissions and the potential effectiveness of chloro-
form formation control techniques. A brief description of-water treatment
processes is presented, followed by a discussion of chloroform formation,
emissions potential, chloroform control techniques, and the cost-effectiveness
of control technigues.

SOURCE DESCRIPTION

The purpose of drinking water treatment is to make the water safe and
attractive for the consumer by removing contaminants in the raw water. The
principal contaminants of concern in most water sources are pathogenic
bacteria, turbidity and suspended materials, color, tastes and odor, trace
organic compounds, and hardness.] Figure 11-1 shows schematic flowsheets for
two typical water treatment plants. Sedimentation, preceded by alum addition,
mixing, and flocculation, removes a large percentage of suspended materials
including bacteria, sediment, and turbidity. Chlorine addition oxidizes
certain chemicals and kills pathogenic bacteria. The sand filters remove
unsettled floc particles and suspended bacteria. Where needed, carbon
powder can remove certain amounts of trace organic compounds.

CHLOROFORM FORMATION

Chloroform is formed during chlorination of drinking water by a complex
reaction mechanism between chlorine and organic precursors in raw water. The
organic precursors are natural aquatic humic substances such as humic and
fulvic acids.2 Major factors influencing this reaction are the amount and
type of precursor material present in raw water, temperature, pH, and
chlorine dose.3 These factors influence both the chloroform formation rate
and the terminal chloroform concentration. The reaction rate between chlorine
and precursor material is important because the reaction can continue to form

11-1



Source Source

a Lime

-+ Alum - Alum
- Lime b | Carbon
‘ 4 1

l Flocculation I I Flocculation
Chlorine

¥ ) {#—D Chlorine
Sludge - : Sludge - :
Sedimentation | Sedimentation
basin - basin -
Backwash Carbon
water Ba‘zl:tlgsh Y dioxide
: -<-—-—+ fi l .
Sand fitter Sand filter
. Brine
To storage reservoir Zeolite beds
or distribution system
Note: The small uniabeled . ﬂ Chiorine
squares represent 4
chemical feeding
devices To storage
reservoir or distribution
system
{a) Conventional (b} For waters requiring
for most surface complete treatment
waters reguiring including sofiening

complete treatment

Figure 11-1. Schematic of typical water treatment p]ants.4
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chloroform in water distribution mains long after the water has left the
treatment plant. Data show that as much as 87 percent of the chloroform

5 The
time-dependent nature of the chloroform formation reaction is an important
consideration in evaluating chloroform air emissions and control techniques.

formation potential can remain in the water following treatment.

The extent and severity of chloroform in the Nation's drinking water was
shown by two surveys conducted by EPA: The National Organics Reconnaissance
Survey (NORS) made in 1975 and the National Organics Monitoring Survey (NOMS)
made in 1977.6’7 The NORS analyzed raw and treated water samples from 80
U.S. cities to determine the organic compound content of the water, including
chloroform concentrations. The samples were collected and iced for shipment,
but not dechlorinated. Thus, the NORS chloroform concentrations in finished
drinking water are minima for those locations. The chloroform concentrations
in raw water samples ranged from zero to one ug/1. The NOMS analyzed
drinking water in 113 U.S. cities, including many of the same cities sampled
in the NORS. Both surveys were done prior to the establishment of a maximum
contaminant level (MCL) for trihalomethanes, and thus represent the level of
contamination generally present before controls. The results of the NORS and
NOMS and the 1980 population of the cities where samples were taken are
presented in Table 11-1. As shown by the table, chloroform concentrations
range from "not detected" to 311 ug/1. Both groundwater and surface water
sources were surveyed.

CHLOROFORM EMISSIONS

Chloroform Emissions Potential

Chloroform air emissions result when chloroform in water is transferred
to air by evaporation. An experiment has shown that the concentration of
chloroform in a cup of stirred water decreased by one-half every 20 minutes.8
Chloroform formed in drinking water potentially can be emitted at points
where the water system is open to the air, such as at the water treatment
plant, in open storage reservoirs for treated water, at the consumer's tap,
and in the sewerage system. Because the transfer rate of chloroform from
water to air is dependent on water depth, chloroform transfer to air in water

treatment unit processes would be much slower than in the experimental result
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TABLE 11-1. CHLOROFORM CONCENTRATION AND POPULATION FOR 137 CITIES

e N = zame e

NOMS , NORS, Average, Population,
City ug/1 ug/1 ug/1 1650
Albuguergque, NM ND 0.4 0.2 331,767
Amariilo, TX 7.6 -- 7.6 149,230
Annandale, VA 79 67 73 49,524
Atlanta, GA 33 36 4.5 425,022
Baltimore, MD 41 32 36.5 786,775
Baton Rouge, LA 3 -- 3 219,419
Billings, MT 4 -- 4 66,798
Birmingham, AL 28 -- 28 284,413
Bismark, ND 56 -- 56 43,485
Boise, ID 8 - 8 102,451
Boston, MA 3.4 4 3.7 582,994
Brownsville, TX 10 a 12 11 34,997
Buffalo, NY 3.5 10 6.8 357,870
Burlington, VT * 63 -- . 63 37,712
Camden, AR 12 40 26 15,356
Cape Girardeau, MO 31 116 73.5 34,361
Casper, WY 35 - 35 51,018
Cheyenne, WY 81 - 81 47,283
Charleston, SC 171 195 183 69,510
Charlotte, NC 36 - 36 314,447
Chattanooga, TN 37 30 33.5 169,565
Chicago, IL 14 15 14.5 3,005,072
Cincinnati, OH -- 45 45 385,457
Clarinda, IA -- 48 48 5,458
Cleveland, OH 12 18 15 573,822
Clinton, IL - 4 4 8,014
Coalinga, CA -- 16 16 5,593
Columbus, OH 208 134 171 584,871
Concord, CA 16 31 23.5 103,255
Corvallis, OR ND 26 13 40,960
Dallas, TX 18 18 18 504,078
Bavenport, IA 63 88 75.5 103,264
Dayton, OH 4 8 6 203,371
Denver, CO 15 14 14.5 492,365
Des Moines, IA ND - ND 191,003
Detroit, MI 9 17 10.5 1,203,339
Dos Palos, CA -- 61 61 3,123
Douglas, AK -- 40 40 19,528
Duluth, MN 7 -- 7 92,811
Elizabeth, NJ 27 -- 27 106,201
Erie, PA 18 - 18 119,123
Eugene, OR 19 - 19 105,624
Fort Wayne, IN 62 -- 62 172,196
Fort Worth, TX 3 - k. 385,164
Fresna, CA ND - ND - 213,202
Grand Forks, ND - 3 3 43,765
Grand Rapids, MI 438 -- 48 181,843
Greenville, MS ND 17 8.5 40,513
Hackensack, NJ 44 -- 42 35,039
Hagerstown, MD 40 -- 40 34,132
Hartford, CT 13 -- 13 136,392
Hopewell, VA - 6 6 23,397
Houma, LA 91 134 112.5 32,602
Houston, TX 123 -- 123 1,595,138
Huntington, WY 7.2 23 15.1 63,684
CONTINUED
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TABLE 11-1. (CONTINUED)
NOMS , NORS, Average, Popuiation,
City ug/1 ug/1 wg/3 1980
Huron, SD 193 309 251 13,000
Idaho Falls, ID -- 2 2 39,590
I1lwaco, WA 174b 167 - 168.5 604
Indianapolis, IN 36 31 33.5 700,807
Jackson, MS 267 -- 267 202,895
Jacksonville, FL 9 9 9 540,920
Jersey City, NJ 42 -- 42 223,532
Kansas City, MO 29 24 26.5 448,159
Las Vegas, NV 22 - 22 164,674
Lawrence, MA -- 91 91 63,175
Lincoln, ND 5 4 4.5 656
Little Falls, NJ 64a 59 61.5 11,496
Little Rock, AR 71 -- 71 158,461
Logansport, LA - 28 28 1,565
Los Angeles, CA 32 32 32 2,966,850
Louisville, KY 67 -- 67 298,451
Madison, WI ND - ND 170,616
Manchester, NH 61 -- 61 90,936
Melbourne, FL 271 -- 271 46,536
Memphis, TN 4 0.9 2.5 646,356
Miami, FL -- 311 311 346,865
Milwaukee, WI 8.8 9 . 8.9 636,212
Monroe, LA 46 -- 46 57,597
Montgomery, AL 55 = ¢ 55 177,857
Mount Clemons, MI 18 8.5 11.7 18,806
Nashviile, TN 8 16 12 455,651
Newark, DE .- 0.5 0.5 25,247
New Haven, CT 30 -- a0 126,109
Newport, RI 74 103 88.5 29,259
New York, NY -- 22 22 7,071,639
Norfolk, VA 70 - 70 266,979
Oakland, CA 31 44 37.4 339,337
Oklahoma City, 0K 200 -~ 200 403,213
Omaha, NB 42 -- 42 314,255
Oshkosh, WI -- 26 26 49,620
Ottumwa, IA -- 0.9 0.9 27,381
Philadephia, PA -- 86 86 1,688,210
Phoenix, AZ 127 9 68 789,704
Pigqua, OH -- 131 131 20,480
Pittsburgh, PA 19 8 13.5 423,938
Portland, ME 4.4 -- 4.4 61,572
Portland, OR 7 -- 7 366,383
Poughkeepsie, NY 50 -- 50 - 29,757
Providence, RI 5 -~ 5 156,804
Provo, UT 19 - 19 74,108
Pueblo, CO 12 2 7 161,686
Rhinebeck, NY -- 8 8 2,542
Richmond, VA 17 -— 17 219,214
Rockford, IL ND - ND 139,712
Rome, GA 65 -- 65 29,654
Sacramento, CA 5.6 -- 5.6 275,741
Salt Lake City, UT 20 20 20 163,033
San Antonio, TX ND 0.2 0.1 785,880
San Diego, CA 35 52 43.5 875,538
San Francisco, CA 76 41 58.5 678,374
CONTINUED
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TABLE 11-1. (CONTINUED)

NOMS NCRS, Average, Population,
City ug/1 ug/1 ug/} 1980

San Juan, PR -- 47 47 -~
Sante Fe, NM 60 - 60 48,953
Seattle, WA -- 15 15 493,846
Sioux Falls. SD 41 - 41 81,343
Spokane, WA ND - ND 171,300
Springfield, MA 18 -- 18 152,319
St. Croix, VI 62 -- 62 .-
St. Louis, MO 8.1 55 31.6 453,085
St. Paul, MN 8.6 -- 8.6 270,230
Strasburg, PA -- ND ND 1,999
Syracuse, NY 8.6 -- 8.6 170,105
Tacoma, WA 1.5 - 1.5 158,501
Tampa, FL 109 - . 109 271,523
Toledo, OH 20 - 20 354,635
Toms River, NJ -- 0.6 0.6 7,465
Topeka, KS 118 88 103 115,266
Tucson, AZ -- 0.2 0.2 330,537
Tulsa, 0K 20 -- 20 360,919
Washington, OC 53 3} 47 638,333
Waterbury, CT 77 93 85 103,266
Waterford Township, NY 48 -- 48 2,405
Wheeling, WV 70 a 72 71 43,070
Whiting, IN 1.2 -- 1.2 5,630
Wichita, XS 6.1 0.5 3.3 279,272
Wilmington-Stanton, DE 18 23 20.5 75,690
Youngstown, OH - 80 80 115,436
Yuma, AZ 27 -- 27 42,433

3phase 11 sample.
Bphase 111 sample.
cAverage of 2 samples.
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cited above. Consumer uses other than drinking, such as washing, watering,
cooking, bathing, and industrial processes, subjects water to conditions such
as aeration, agitation, boiling, stirring, sprinkling, and periods of -
quiescence that, according to results of experiments, promote chloroform

evaporation.B’9

As shown by Figure 11-2, chloroform is formed over a period of time from
the reaction of chlorine with organic precursors in the water. Hence, the
chloroform formation potential of chlorinated water is not reached for
several days after chlorine addition. Because typical water treatment takes
less than 10 hours (from alum mix to final disinfection), in many cases the
majority of chloroform in tap water will form in the distribution system
after treatment. Considering the chloroform water-to-air transfer rate and
the time-dependence of the chloroform formation reaction, the potential for
chloroform air emissions is greatest after water leaves the treatment plant.
Most chloroform air emissions from drinking water, therefore, probably result
from consumer use of water in the area served by the distribution system.

Chloroform Emissions Estimates

National Emissions Estimates--

The chloroform concentrations from different U.S. cities shown in
Table 11-1 indicate that the chloroform formation potential of source waters
varies widely across the country. Chloroform produced in drinking water can
be estimated by averaging the concentrations measured in the NORS and NOMS,
then muitiplying the average chloroform concentration by the guantity of
water chlorinated in the U.S. annually. The volume of water treated in each
city was estimated by multiplying the population by the estimated water
consumption of 587 liters per capita per day (155 éa]?ons per capita per
day).]O If a city was sampled in both NORS and NOMS, the data were averaged.
The amount of chloroform generated in each of the 137 cities sampled was
divided by the total amount of water treated to give a weighted average of
41 ug/1 of chloroform. The national quantity of water chlorinated was
estimated by multiplying the population served by primary water supplies
(214,000,000) by the estimated per capita consumption, yielding an estimated

4.6 x 10]3 liters per year chlorinated drinking water. Multiplying the
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Figure 11-2. Chloroform formation potential in raw and treated water.
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national average chloroform concentration of 41 ug/1 by the national quantity
of chlorinated drinking water yields 1,900 Mg/yr chloroform produced from
chlorination. Discounting the relatively small amount of tap water ingested,
almost all of the chloroform produced evaporates to the atmosphere.

Model Plant Emissions Estimates--

The Office of Drinking Water has developed six different-sized model water

treatment plants for the purpose of estimating chloroform control costs.

These model plants were developed to cover the range of treatment plant sizes
serving greater than 10,000 people. Treatment plant capacities, average
water production, and the estimated average population served by each system
size are presented in Table 11-2. The model plants were used to estimate the
quantity of chloroform produced annually in different-sized treatment plants
at various concentration levels. The quantities are presented for a range of
concentrations because chloroform formation varies considerably between U.S.
water treatment plants. The annual chloroform produced from chlorination in
each system size at concentrations between 10 nug/1 and 100 ug/1 is presented
in Table 11-3. The quantities produced range from 36.5 kg/yr to 35,478 kg/yr.

CHLOROFORM CONTROL METHODS

Chloroform in drinking water is presently regulated by the National
Interim Primary Drinking Water Regulations; Trihalomethanes (40 CFR Part 142).
The rule establishes a maximum total trihalomethane (TTHM) contaminant level
of 0.10 mg/1 for all public water systems serving more than 10,000 persons
and specifies what treatment methods a system may be required to install or
use to comply with the TTHM MCL. While trihalomethanes in drinking water
also include bromoform, dibromochloromethane, and bromodichloromethane,

chioroform is the predominant species.

The TTHM rule identifies two categories of control methods: (1) those
technologies or treatment techniques determined to be '"generally available",
taking costs into consideration; and (2) those technologies or treatment
techniques not determined to be "generally available", but which may be
available to some systems. The control methods identified in the TTHM rule
are presented below as potential chloroform controls.
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TABLE 11-2. MODEL WATER PLANTS AND AVERAGE POPULATION SERVEDZ

|
| Plant Average

capgcity, Average wateg population
10°7/d production, 10°1/d served?

16 . 10 17,035

35 22 37,480

69 43 73,254

102 64 109,029

286 190 ) 323,680

1,362 972 1,655,877

4Based on average per capita consumption of 587 liters/day.

TABLE 11-3. ANNUAL CHLOROFORM PRODUCTION IN MODEL PLANTS
AT VARIOUS CONCENTRATIONS

System
average
water Annual chloroform production at given concentration (kg)
production,
1061/d 10 ng/1 20 ug/1 50 ug/1 100 ng/}
10 36.5 73 182.5 365
22 80.3 160.6 - - 401.5 803
43 157 314 784.8 1,569.6
64 233.6 467.2 1,168 2,336
190 693.5 1,387 3,467.5 6,935
972 3,547.8 7,095.6 17,739 35,478
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Effective control techniques for 1imiting chloroform in drinking water
follow three approaches: precursor removal prior to chlorination; chloroform
removal following chlorination; and use of a disinfectant that does not react
with precursors to form chloroform.

EPA has identified the best technologies, treatment techniques and other
means generally available, taking costs into consideration, that can be used
by community water systems for controlling total trihalomethanes, including

13 The five techniques listed by EPA as being "generally available"

chloroform.
(also called Group I techniques) are: use of chloramines as an alternate or
supplemental disinfectant or oxidant; use of chlorine dioxide as an alternate
or supplemental disinfectant or oxidant; improving existing clarification for
precursor removal; moving the point of chlorination to reduce chloroform
formation and, where necessary, replacing chlorine used as a pre-oxidant with
chloramines, chlorine dioxide, or potassium permanganate; and the use of
powdered activated carbon (PAC) for chloroform precursor or chloroform
reduction seasonally or intermittently at dosages not to exceed 10 mg/1 on

an average annual basis.

In addition, EPA has identified five other methods not considered
"generally available" (also called Group Il methods) that must be studied for
technical and economic feasibility for TTHM reduction in the event Group I
methods are not effective in reducing TTHMs sufficiently in a particular
water system. These five Group II methods are: dintroduction of off-line
water storage; aeration for reduction of chloroform; introduction of clarification;
consideration of alternate sources of raw water; and use of ozone as an
alternate or supplemental disinfectant or oxidant.13 0f these, only aeration
does not reduce chloroform production; rather, aeration transfers chloroform

from water to air. Thus, aeration is not an air emissions control technique.

Generally Available Control Methods

Use of Chloramines--

Chloramines, which have been widely used for many years in the United
States as a drinking water disinfectant, do not react with organic precursor
material to form ch]or*oform..l4 Several cities in the U.S. have already

15,16

reduced chloroform in drinking water by using chloramines. Chloramines

are produced in treatment plant water from the reaction of free chlorine and
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ammonia. In chlorine-ammonia treatment for primary disinfection, chlorine

and ammonia are added to the water simultaneously or in succession typically
at a 4:1 chlorine to ammonia ratio. Although the reaction to form chloramines
occurs in hundredths of a second at high temperatures and optimum pH (8.3),
it proceeds at much slower rates at lower temperatures and other pH values.
If ammonia addition is delayed, or if the reaction between free chlorine and
ammonia proceeds slowly, free chlorine could be present for several minutes
or even several hours.

17

Several cities have reduced chloroform concentrations by using chloramines.
The Louisville Water Company reduced the total trihalomethane {mostly chloroform)
concentration by adding ammonia to drinking water 10 minutes after adding
c:hlor‘ine].5 The trihalomethane concentration was reduced from 150 pg/1 to
15 ug/1.

Breakpoint chlorination, the practice of adding chlorine until all
natural nitrogen compounds in the water have formed combined chlorine, was
replaced by chlorine and ammonia addition following lime softening at a
treatment plant in Miami, Florida. As a result, the chloroform concentration
in finished water decreased from an average of over 100 ug/1 to an average of
approximately 10 ug/1.16 Moreover, the persistence of the chloramine
residual has eliminated the need for chlorine booster stations.

As 'shown by these ytilities, the use of chloramines can significantly
reduce chloroform levels in treated water. Reductions of 90 percent and
controlled chloroform concentrations of 10 ug/1 are possible.

Use of Chlorine Dioxide --

Laboratory studies and use in water treatment plants show that chlorine
dioxide will disinfect without forming chloroform. ~Severa1 plants in the
United States presently use chlorine dioxide for taste and odor control,
disinfection, oxidation of organics, and removal of iron, manganese and

18

color. Chlorine dioxide is an excellent biocide with an ability to

inactivate bacteria and viruses at a rate close to that of free chlorine.

Chlorine dioxide equipment can be retrofitted into water treatment
plants. Existing chlorination equipment can be used as standby. Because
chlorine dioxide is unstable, it must be generated and used on-site. Reactor
vessels are available from U.S. manufacturers, but the simplicity of design
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18 Small amounts of

has encouraged several plants to fabricate their own.
chlorine are carried over in chlorine dioxide production and form free chlorine
in the water. However, a study has shown that even when the free chlorine
concentration is half that of chlorine dioxide, chloroform formation is

reduced by 90 perc:ent.]9

Improved Existing Clarification --

Improved clarification can often lower chloroform concentrations in
treated water by removing a larger fraction of organic precursor material.
In conventional clarification, coagulants such as iron salts and aluminum
sulfate (alum), calcium hydroxide (if softening is also a goal), and polymers
are used in different types of water treatment plants to remove color and
turbidity from raw water.20 A typical clarification process involves
coagulant addition and mixing, flocculation, and sedimentation. While
coagulation is most often considered a treatment technique for turbidity
reduction, the process plays an important part in removing organics, including
chloroform precursors such as humic and fulvic acids. This role occurs both
because some organic materials are absorbed on suspended particles (turbidity)
and because direct interactions of the natural humic materials (usually
20 The
American Water Works Association Research Committee on Coagulation has

recognized as color) take place with the coagulants themselves.

concluded that both iron salts and alum are effective in removing humic and
fulvic acids from water, and that cationic polymers that interact with
anionic humates can be useful as coagulants for organics remova].Z] Thus,
improved clarification could be expected to lower chloroform concentrations
in treated water by removing a larger fraction of chloroform precursors.

Because the organic content of raw water can Va}y greatly between
sources, any change in coagulant dose or type or in water pH for the purpose
of improving clarification precursor removal should be tested for
source-specific removal efficiency. The degree of improvement in clarification
possible in a treatment plant depends on the level of treatment already
practiced in the clarification process. Some water treatment plants may
already be operating the coagulation-sedimentation process near a level of

maximum organics removal while others may not. 22
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Moving the Point of Chlorination--

Moving the chlorination point in a treatment plant to control chloroform
is a technique closely associated with clarification. This technique is
applicable to water treatment plants that chlorinate raw water (prechlorination)
or gravity-settled water before it is treated with coagulant and clarified by
sedimentation. As described abtove, raw water often contains certain amounts
of organic chloroform precursor materials that can be removed by gravity
settling or coagulation and sedimentation. If chlorine is added before
gravity settling or coagulation and sedimentation, it reacts with the
precursors to form chloroform before the precursors can be removed. Because
gravity settling and coagulation-sedimentation take a relatively large amount
of time (compared to other water treatment unit processes), prechlorination
allows considerable time for chloroform formation.z3 Thus, in many cases,
moving chlorination to a point after coagulation and sedimentation reduces
the amount of precursor material that the chlorine can react with, and
consequently reduces the amounts of chloroform produced in the water.

Moving the chlorination point has been ineffective in reducing chloroform
in some water treatment plants and quite effective in others (assumed from a
reduction of total trihalomethanes). The potential effectiveness of moving
the chlorination point can be determined by measuring the removal of precursors
at different points in the treatment train. This technique best reduces
chloroform concentrations if a high percentage of chloroform precursors are
settled out during clarification.

Use of Powdered Activated Carbon--

Powdered activated carbon (PAC) can be used to remove both chloroform
and chloroform precursors from water through adsor‘pfion.z4 According to one
study on Ohio River water, about 77 mg/1 PAC is needed to lower chloroform
formation potential from 200 nug/1 to 100 ug/].25 Because the use of such
high dosages is likely to cause sludge problems as well as be prohibitively
expensive, the TTHM drinking water rule recommends Timiting PAC use to an

annual average of 10 mg/l.]3

In some treatment plants where high chloroform
concentrations are experienced seasonally, intermittent high dosages of PAC
may sufficiently reduce peak chloroform levels without exceeding the 10 mg/1

annual average.
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Additional Control Methods Not Considered Generally Available

In addition to the five Group I control methods described above as
"generally available", EPA has identified five Group II control methods that
must be considered in the event that none of the Group I control techniques
reduces trihalomethane concentrations sufficiently. The five Group II
methods are described briefly below.

Off-Line Water Storage--

Off-1ine water storage in a reservoir before coagulation, flocculation,
and sedimentation has been practiced by some utilities for many years. The
purpose of this treatment is to provide an extended period of time for solids
to settle out, trereby reducing the load on the treatment process, mitigating
extreme changes in water quality from stormwater runoff, and providing a

source of water during intermittent pollution episodes.26

Aeration for Chloroform Removal--

Reration has long been used in drinking water treatment to reduce taste
and odors, remove carbon dioxide, and oxidize iron and manganese for subsequent
removal. While aeration may be appropriate and effective for controlling
chloroform as a drinking water contaminant in some situations, it is not an
air emissions control technique.

Introduction of Clarification--

Many treatment plants currently treat their water without sedimentation
or filtration. The addition of either of these clarification processes might
remove a substantial fraction of chloroform precursors, and would also contribute
to the removai of pathogens and to more effective disinfection.

Alternate Source of Raw Water--

Some utilities may have access to other sources of raw water that are low
in precursor concentrations. The use of a new water source may result in
overall water treatment savings as well as a reduction in chloroform levels.

The technical and economic feasibility of an alternate water source must
be determined for each site. Costs for changing source water can be quite
high and vary widely.

11-15



Use of QOzone--

Ozone can be used in water treatment as an alternate or supplemental
disinfectant or oxidant. Ozone is an efficient disinfectant that does not
form chloroform. It is widely used for disinfection in Europe, Canada, and
the Soviet Um‘on.27 Communities in the United States which have added ozone
to their water treatment have had 1ittle difficulty in obtaining the necessary

28

guidance, equipment, and service help. Pilot-scale ozonation systems and

maintenance service contracts can be obtained from manufacturers.

The disadvantages of ozone are its higher cost than éh1orine, lack of
sufficient residual protection, and its potential for forming organic byproducts
with unknown health risks.zg

A typical ozone installation utilizes a dosage of 3 mg/1 with a detention
time of 10 minutes, from an ozone generator with a capacity to produce 4.5 mg/1.

CHLOROFORM CONTROL COSTS

The estimated costs of applying Group I chloroform control methods to
different sizes of water treatment plants are discussed and presented below.
Capital costs, operating costs, and design criteria are presented for each
Group I chloroform control method applied to the six model treatment plant
sizes presented in Table 11-3.

Use of Chloramines

For the purpose of estimating costs, the design criteria for using
chloramines are: addition of ammonia to chlorinated water at a 4:1 chlorine
to ammonia ratio to produce chloramines; an average combined chlorine residual
of 3 mg/1; use of existing chlorine feed equipment and addition to ammonia
feed and storage equipment; and use of either aqueous or anhydrous ammom'a.30
The total annualized costs for this method, presented in Table 11-4, range

from $8,000 for the smallest system to $99,000 for the largest system.

Use of Chlorine Dioxide

The design criteria for estimating the costs of using chlorine dioxide
are: chlorine dioxide at a dose of 1 mg/1 would replace chlorine as the
disinfectant; a reaction vessel would be used to combine one part chlorine
with one part sodium chlorite; and existing chlorination equipment would be
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TABLE 11-4. TOTAL ANNUA%}ZED COST OF CONTROLLING CHLOROFORM BY USING
CHLORAMINES
Average Average Annualized Average Average
Plant water capital capital annual total
capacity, production, cost, cost, operating annualized
10% 1/day 108 1/day $1,000 $1,0008 cost, $1,000 cost, $1,000
16 10 28 3 5 8
35 22 36 4 7 11
69 43 60 7 13 20
102 64 70 8 17 25
286 190 99 12 40 51
1,362 972 208 25 175 99

3gased on a 20-year life and 10

percent interest.
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modified to feed smaller amounts of chlorine, saving 1.5 mg of chlorine per
1iter.32 The capital and operating costs for using chlorine dioxide are
presented in Table 11-5. The total annualized costs range from $22,000 for
the smallest plant to $997,000 for the largest plant.

Use of Improved clarification

The costs for improving clarification are based on increasing the alum
dosage by 10 mg/1; installing a polymer feed system which will add polymer at
the rate of 0.5 mg/1; and improving the inlet baff1ing.32 The total annualized
costs, presented in Table 11-6, range from $17,000 for the smallest system to
$1.12 mi1lion for the largest system.

Modifying Chlorination

The costs for modifying chlorination are based on the assumptions that
chlorine will be added to a point following sedimentation and that an alternate
oxidant will replace chlorine (used in prechlorination). The possible alternate
oxidants are potassium permanganate (at a dosage of 0.5 mg/1), hydrogen
peroxide (at 2.0 mg/1), chlorine dioxide (at 0.5 mg/1), and chloramines (at 2.0 mg/1
The average annualized costs presented in Table 11-7 are based on replacing
chlorine with potassium permanganate (the least cost by replacement chemical).
The annualized costs are $7,000 for the smallest size category and $317,000 for
the largest category.

33

Use of Powdered Activated Carbon

The costs for using PAC are based on the following criteria: all PAC
storage and feed equipment exists on site; the average annual PAC dosage is
7.5 mg/1; the use of PAC results in additional sludge disposal costs; and PAC
is delivered in bulk quantities.34 The annual cost of using PAC is proportional
to the quantity used and is presented in Table 11-8. The annual cost for the
smallest size category is $32,000, and for the largest size category $3.09 million.

CHLOROFORM CONTROL COST-EFFECTIVENESS

The cost-effectiveness of reducing potential chloroform air emissions
from chlorinated municipal drinking water is the ratio of the cost of
applying a control method in a treatment plant to the resulting reduction in
chloroform emissions. For this analysis, all reductions in chloroform
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TABLE 11-5. TOTAL ANNUALIZED3§0$T OF CONTROLLING CHLOROFORM BY USING
CHLORINE DIOXIDE
Average Average Annualized Average Average
Plant water capital capital annual total
capacity, production, cost, cost, operating annualized
10% 1/day 10% 1/day $1,000 $1,0002 cost, $1,000 cost, $1,000
16 10 47 6 16 22
35 22 55 6 29 35
69 43 63 7 54 61
102 64 120 14 73 87
286 190 174 20 201 221
1,362 972 420 49 948 997

3Based on a 20-year 1ife and 10 percent interest (capital recovery

factor = 0.1175).

TABLE 11-6. TOTAL ANNUALIZED COST OESCONTROLLING CHLOROFORM BY
IMPROVING CLARIFICATION

Average Average Annualized Average Average

Plant water capital capital annual total
capacity, production, cost, cost,a operating annualized
108 1/day 10% 1/day $1,000 $1,000 cost, $1,000 cost, $1,000

16 10 34 4 13 17

35 22 46 5 25 30

69 43 70 8 . 49 57

102 64 92 11 ) 71 82

286 190 198 23 208 231

1,362 972 626 74 1,046 1,120

%Based on a 20-year life and 10 percent interest.
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TABLE 11-7. TOTAL ANNUALIZED COST OF CONTROLLING CHLOROFORM BY
MODIFYING CHLORINATION®’

Average Average Annualized Average Average
Plant water capital capital annual total
capacity, production, cost, cost,a operating annual
10% 1/day 108 1/day $1,000 $1,000 cost, $1,000 cost, $1,000
16 10 15 2 5 7
35 22 16 2 10 12
69 43 20 2 17 19
102 64 25 3 23 26
286 190 29 3 62 65
1,362 972 52 6 311 317

3Based on a 20-year life and 10 percent interest.

TABLE 11-8. TOTAL ANNUALIZED COST OF CONTROLLING CHLOROFORM BY USING
POWDERED ACTIVATED CARBON3*

Average Average Annualized Average Average

Plant water capital capital annual total

capacity, production, cost, cost, operating annual
10% 1/day 106 1/day $1,000 $1,000 cost, $1,000 cost, $1,000

16 10 0] 0 32 32

35 22 0 0 70 70

69 43 0 0 137 137

102 64 0 0 . 203 203

286 190 0 0 606 606

1,362 972 0 0 3,093 3,093
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formation in treated water were considered reductions in air emissions. The
cost-effectiveness of the Group I control methods described above are

presented below. The reductions achievable by these control techniques vary
from plant to plant, and depend on the quality of water and treatment

processes in place. The rate of chloroform formation, the chloroform

formation potential, and the effectiveness of any chloroform reduction
technique are dependent upon type and quantity of precursors present as well

as parameters such as pH and temperature. Thus, there is no general one-to-one
correspondence between control technique and level of control achieved.

Because the results of any given control method have been shown to vary
considerably between treatment’p1ants, no typical control efficiency can be
ascribed to a particular control method. Hence, the cost-effectiveness of a
control method cannot be estimated based on an assumed control efficiency.
Cost-effectiveness can, however, be estimated based on the amount of chloroform
"controlled". This amount, in turn, can be calculated from the reduction in
chloroform concentration in treated water resulting from applying a control
method. As shown in Table 11-3, for example, the guantity of chloroform
produced annually in the smallest model plant increases or decreases by
36.5 kg for each 10 ug/1 increase or decrease in chloroform concentration,
regardless of the initial concentration. Because the cost of a control
method for a specific plant size is constant, the cost-effectiveness of
control depends on the quantity of chloroform controlled (or, in other words,
on the decrease in ctloroform concentration in treated water resulting from
control). The cost-effectiveness of each control method is presented in
Tables 11-9 through 11-13 for concentration reductions ranging from 10 ug/1
to 100 ug/1. Using these tables, the cost-effectiveness of a particular
control method can be estimated for a plant for vary{hg amounts of control.
The cost-effectiveness is the same for a given increment of concentration
reduction in a plant, whatever the initial concentration. For example,
in the smallest model plant (10 million 1/d average production) the cost-effectivenes
of using chloramines (Table 11-9) will be $110,000/Mg for a 20 ug/1 decrease
in the chloroform concentration whether the concentration was reduced from
120 ug/1 to 100 ng/1 or from 25 ug/1 to 5 ug/l.
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CONCLUSIOGNS

While the amount of chloroform present in drinking water generally is
small, it will evaporate from water during consumer use, exposing consumers
to chloroform air emissions. The trihalomethane drinking water standard
requires the TTHM concentration to be Tess than 0.10 mg/1, a standard that
most community water supplies have complied with. The Office of State Programs
receives from the States only reports of violations of the MCL by water
treatment systems and therefore has no information on how many systems have
38 The cost-effectiveness of the Group I
control techniques presently used is variable, but based on reasonable assump-
tions is shown to range from $2,800/Mg to $877,000/Mg (Tables 11-9 thtrough
11-13). Any reduction in chloroform concentration beyond the present levels

had to implement control measures.

in treatment plants may require control techniques not considered generally
available by the Office of Drinking Water. These treatment technigues certainly
would cost more than the Group I techniques discussed above, and may not be
applicable to every plant.
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12. MUNICIPAL WASTEWATER TREATMENT

Chloroform is formed in municipal wastewater by the reaction of organic
compounds in wastewater with chlorine containing compounds entering the
sewerage system (such as sodium hypochlorite or bleach), or by the reaction
of organic compounds in the effluent with chlorine used for disinfection.
Tests by EPA's Effluent Guidelines Division on 50 POTW's showed that on
average chloroform concentrations in wastewater dropped 4.6 ng/1, from 15 ug/1
in the influent to 10.4 ug/1 in the secondary effluent. Tests by EPA's
Effluent Guidelines Division on secondary effluent indicate that the average
chloroform concentration in municipal wastewater increases 8 ug/1 following
chlorine disim’ec’cion..I

In 1982, 8,480 Publicly Owned Treatment Works (POTW's) chlorinated
effluent for disinfection, with a combined flow of 92,081,000 cubic meters
per day (24,325 mgd).2 Applying the 4.6 ug/1 factor to the amount of wastewater
treated, 154.6 Mg/yr of chloroform are emitted from POTW's. Applying the
8 ug/1 factor to the amount of wastewater disinfected annually, 268.9 Mg of
chloroform is generated per year following wastewater treatment.

Although all of the chloroform is originally in water, tests indicate
that the majority of chloroform generated ends up in the air. Volatilization
from water depends on the solubility, vapor pressure and molecular weight of
the pollutant and physical properties (e.g. flow velocity, depth, and turbulence)
of the water body and atmosphere above it. Chloroform has a vapor pressure
(Pvp) of 0.32 atm at 20°C and a water solubility (S) of 67 mo1/m3. Thus,

Henry's law constant (Pvp/S) is calculated to be 4.8 x 10'3 atm-ms/mo1. When

3

Henry's law constant is >10~ atm-m3/m01, volatilization is rapid and the

resistance of the water film dominates volatilization.
CONTROL TECHNIQUES, COSTS, AND COST-EFFECTIVENESS

Control techniques discussed below apply to controlling chloroform
formation during disinfection. Control techniques for limiting chloroform
formation include precursor removal prior to chlorination, and use of a
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disinfectant that does not react with precursors to form chloroform. A third
option, chloroform removal following chlorination, would not be viable because
this method removes chloroform from water by aeration thus hastening the
intermedia transfer to air.

Precursor Removal

Although precursor removal prior to chlorination is possible, the practice
of improved clarification to remove precursors is not practiced by POTW's.
Improved clarification would require addition of coagulants such as iron
salts and aluminum sulfate (alum) during the clarification stage. Addition
of coagulants would increase flocculation and settling of fbta] suspended
solids. This would reduce the amount of precursors because some organic
material is adsorbed on suspended particles.

Best demonstrated efficiency by use of improved clarification at water
treatment plants indicates that improved clarification offers 37 percent

3

removal efficiency.” Thus, on average, chloroform formation in treated

wastewater could be reduced from 8 to 5 ug/1.

Control costs for improving clarification are based on using alum at a
dosage of 10 mg/1; installing a polymer feed system which adds polymer at a
rate of 0.5 mg/1; and improving inlet baff1ing.4 These costs were derived
for drinking water treatment systems and applied to POTW's. The total annualized
costs, presented in Table 12-1, range from $17,000 for the smallest system to
$1.12 million for the largest system.

The cost-effectiveness of installing improved clarification would range
from $1.56 million per Mg for the smallest facility to $1.05 million per Mg
for the largest facility (Figure 12-1). Reductions in chloroform formation
potential, costs, and cost-effectiveness are shown in Table 12-2.

Chlorine Substitution

Chloramines--

Use of chloramines as a drinking water disinfectant has been used in the
United States for many years and could also be used as a substitute for chlorine
at wastewater treatment facilities. Chloramines, unlike chlorine, do not react
with precursor material to form chloroform. Chloramines are produced in treatment
plant water from the reaction of free chlorine and ammonia. When chlorine is
added to water, two reactions take place to form free chlorine species. The
hydrolysis reaction is
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TABLE 12-1. TOTAL ANNUALIZED COST OF CONTROLLING CHLOROFORM BY

IMPROVING CLARIFICATION

Average Avefage Annualized Average Average

capscity, produce on st st erat i
105 1/day 105 1/day $1,000 $T,000° cost, $1.000 c?,’s‘?falifﬁ‘éo

16 10 34 4 13 17

35 22 46 5 25 A 30

69 43 70 8 49 57

102 64 92 11 71 82

286 190 198 23 208 231

1,362 972 626 74 1,046 1,120

a .
Based on a 20-~year life and 10 percent interest.

TABLE 12-2. CHLOROFORM REDUCTION POTENTIAL, COSTS, AND COST-EFFECTIVENESS
OF IMPROVED CLARIFICATION
Average CHClj Average CHC13
Average amount produced prior produced after CHC13 Total

of water to improved improved reduction annualized Cost-
treated, clarification, clarification, potential, costs, effectiveness
106 1/day Mg/yrd Mg/yrb Mg/yr $1,000 $106/Mq

10 2.9 x 1072 1.83 x 1072 1.09 x 1072 17 1.56

22 6.42 x 1072 4.02 x 1072 2.4 x 1072 30 1.25

43 1.25 x 107 7.85 x 1072 4.65 x 1072 57 1.23

64 1.87 x 107 1.17 x 107" 7.0 x 1072 82 1.17

190 5.55 x 107 . 3.47 x 107 2.08 x 107 231 R

972 2.84 x 10° 1.77 x 10° 1.07 x 10° 1,120 1.05

3Based on an average CHC13 increase of 8 ug/?}

bBased on an average CHC]3 increase of 5 ug/!
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C12 + HZO ==HOC1 + C1 + H.

The jonization reaction is
HoCl===0C1" + H'.

When ammonia is added to the water the following reaction takes place to form
monochloramine:

HOC1 + NH3-——— NHZC1 + H20.

In chlorine-ammonia treatment for primary disinfection, chlorine and ammonia
are added to the water simultaneously or in succession typically at a 4:1
chlorine to ammonia ratio. Although the reaction to form chloramines occurs
in-hundredths of a second at high temperatures and optimum pH (8.3), it proceeds
at much slower rates at lower temperatures and other pH va]ues.5 If ammonia
addition is delayed, or if the reaction between free chlorine and ammonia
proceeds slowly, free chlorine could be present for several minutes or even
several hours.

The jonization reaction described above is highly influenced by pH, with
hypochlorous acid (HOC1) the dominant species at low pH.and hypochlorite ion
(0C17) dominant at high pH values. The chloramine species present are also

influenced by pH. The reaction equation

+ —————
H + 2NH2C1..-—-NH4 + NHCL2

indicates that although mostly monochloramine is formed when excess ammonia is
present at high pH (>8), lowering the pH will cause formation of dichloramine
with the position of this equilibrium determined by the pH.6 Thus, the pH
determines the relative quantities of species present.

It has been estimated that use of chloramines can reduce chloroform
formation by 90 percent. Thus, on average, chloroform formation in treated
wastewater would be reduced from 8 to 0.8 ug/1.

For the purpose of estimating costs, the design criteria for using chloramines

are: addition of ammonia to chlorinated water at a 4:1 chlorine to ammonia
ratio to produce chloramines; an average combined chlorine residual of 3 ug/1;
use of existing chlorine feed equipment and addition of ammonia feed and
storage equipment; and use of either aqueous or anhydrous ammom'a.7 The total
annualized costs for this method, presented in Table 12-3, range from $8,000
for the smallest system to $99,000 for the largest system.
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TABLE 12-3. TOTAL ANNUALIZED COST OF CONTROLLING CHLOROFORM BY USING

CHLORAMINES
Average Average Annualized Average Average
Plant water capital capital annual total

capacity, production, cost, cost, operating annualized
10% 1/day 10% 1/day $1,000 $1,0002 cost, $1,000 cost, $1,000

16 10 28 3 5 8

35 22 36 4 7 11

69 43 60 7 13 20

102 64 70 8 17 25

286 190 99 12 40 51

1,362 972 208 25 175 99

3ased on a 20-year life and 10 percent interest.

TABLE 12-4. CHLOROFORM REDUCTION POTENTIAL, COSTS, AND COST-EFFECTIVENESS
BY USING CHLORAMINES

Average CHC1 Average CHC
gr gr

Average amount produced pri produced aft CHC Total
of water to use of use of reduct?on annualized Cost-
treated, choramines, chloramines, potential, costs, effectiveness
106 1/day Mg/yrd Mg/yrb Mg/yr $1,000 $1,000/Mg
10 2.92 x 1072 2.92 x 1073 2.63 x 1072 - 8 304
22 6.42 x 1072 6.42 x 1073 5.78 x 1072 n 190
43 1.25 x 1071 1.25 x 1072 1.13 x 107 20 177
64 1.87 x 107] 1.87 x 1072 1.68 x 107" 25 149
190 5.55 x 107 5.55 x 1072 5.0 x 107! 51 102
972 2.84 x 10° 2.84 x 10° 2.56 x 10° 99 38.7

3gased on an average CHC13 increase of 8 ug/1
bBased on an average CHC13 increase of 0.8 ug/l
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The cost-effectiveness for using chloramines range from $304,000 per Mg
for the smallest facility to $38,700 per Mg for the largest facility (Figure 12-1).
Reductions in chloroform formation potential, costs, and cost-effectiveness
are shown in Table 12-4.

Chlorine Dioxide--

Laboratory studies and use in drinking water treatment plants show that
chlorine dioxide will disinfect without forming chloroform. Chlorine dioxide
equipment can be retrofitted into water treatment plants. Existing chlorination
equipment can be used as a standby. Because chlorine dioxide is unstable, it
must be generated and used on-site. Reactor vessels are available from U.S.
manufacturers, but the simplicity of design has encouraged several plants to
fabricate their own.8 In water treatment plants, chlorine dioxide is usually
generated in reactors by three different methods: reacting chlorine gas and
sodium chlorite; reacting sodium chlorite and a strong acid; or by mixing
sodium hypochlorite, acid, and sodium chlorite. Small amounts of chlorine are
carried over in chlorine dioxide production and form free chlorine in the
water. However, a study has shown that even when the free chlorine concentration
is half that of chlorine dioxide, chloroform formation is reduced by 90 percent.9

The design criteria for estimating the costs of using chlorine dioxide
are: chlorine dioxide at a dose of 1 mg/1 would replace chlorine as the
disinfectant; a reaction vessel would be used to combine one part chlorine
with one part sodium chlorite; and existing chlorination equipment would be
modified to feed smaller amounts of chlorine, saving 1.5 mg of chlorine per
1iter.4 The capital and operating costs for using chlorine dioxide are presented
in Table 12-5. The total annualized costs range from $22,000 for the smallest
plant to $997,000 for the largest plant. -

The cost-effectiveness of using chlorine dioxide ranges from $608,000/Mg
for the smallest facility to $370,000/Mg for the largest facility (Figure 12-1).
Reductioné in chloroform formation potential, costs, and cost effectiveness
are shown in Table 12-6.
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TABLE 12-5.

TOTAL ANNUALIZED COST OF CONTROLLING

CHLORINE DIOXIDE

CHLOROFORM BY USING

Average Average Annualized Average Average

Plant water capital capital annual total
capacity, production, cost, cost, operating annualized
108 1/day 10% 1/day $1,000 $1,0002 cost, $1,000 cost, $1,000

16 10 47 6 16 22

35 22 55 6 29 35

69 43 63 7 54 61

102 64 120 14 73 87

286 190 174 20 201 221

1,362 972 420 49 948 997

Based on a 20-year Tife and 10

TABLE 12-6.

CHLOROFORM REDUCTION POTENTIAL, COSTS, AND

percent interest

BY USING CHLORINE DIOXIDE

COST-EFFECTIVENESS

Average CHC'I3

Average CHC1

Average amount produced priof produced aftgr CHC1 Total

of water to use of use of reduction annualized Cost-
treated, chlorine dioxide chlorine dioxide, potential, costs, effectivenass
106 1/day Mg/yrd Mg/yrDP . Ma/yr $1,000 $1,000

10 2.92 x 1072 2.92 x 1073 2.63 x 1072 16 608

22 6.42 x 1072 6.42 x 1073 5.78 x 1072 29 502

43 1.25 x 107 1.25 x 1072 1.13 x 107 54 479

64 1.87 x 107 1.87 x 1072 1.68 x 107 73 435

190 5.55 x 107" 5.55 x 1072 5.0 x 107 201 402

972 2.84 x 10° 2.84 x 107 2.56 x 10° 948 370

3Based on an average CHC]3 increase of 8 ug/1

bBased on an average CHC]3 increase of 0.8 ug/1
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13. GRAIN FUMIGATION
INTRODUCTION

Chloroform is registered as a pesticide to control certain insects which
commonly appear in stored, raw bulk grains. Vulcan Materials Company markets
Chlorofume® FC 30 Grain Fumigant (Reg. No. 5382-15), which contains 72.2 percent
chloroform, 20.4 percent carbon disulfide, and 7.4 percent ethylene dibromide.]
Chlorofume® is produced as a ready-to-use fumigant. The end users primarily
are small farm establishments which require inexpensive pesticide control.
Ch]orofumec)provides this feature because it can be applied by one person.
Some fumigants require physically turning the supply of stored grain, a labor

intensive and thus costly operation.

Chloroform as an ingredient in pesticides has been subject to considerable
regulatory scrutiny in the last decade. Vulcan Materials Company originally
obtained registration acceptance in 1968. In April 1976, the EPA issued a
"Notice of Presumption Against Continued Registration of a Pesticide Product --
Chloroform (Trichloromethane)." The Notice was issued because of oncogenic
effects in rats and mice as reported in a 1976 study by the National Cancer
Institute. Continued study of chloroform ultimately resulted in returning it
to the normal registration process.2

Recently there has been considerable debate on the use of ethylene
dibromide (EDB) as a grain fumigant. On February -6, 1984 EPA cancelled
registrations of pesticide products containing EDB (49 FR 4452). It is not
known whether Vulcan plans to reformulate its product without EDB or not.

EMISSIONS

It is estimated that from 10,000 to 12,000 gallons per year of chloroform
were used in grain fumigants from 1976 to 1979.1 Vulcan reported sales of
Chlorofume® (72.2 percent chloroform) of 7,000 gallons in 1981. This represents
5,054 gallons or 19,131 liters of chloroform. With a density of 1.48 kg/1,
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28,400 kg or 28.4 Mg of chloroform were used in the application of grain

fumigants. It is assumed that 100 percent of this volatilized during, and
subsequent to, application. Thus 28.4 Mg of chloroform are emitted to air as
a result of grain fumigation.

CONTROL TECHNIQUES

The only viable alternative for controlling releases of chloroform from
grain fumigation would be to substitute another carrier such as carbon
tetrachloride for chloroform. Carbon tetrachloride is used currently as a
carrier in grain fumigation and is used in essentially all other fumigant
mixtures. The best available estimates for average annual carbon tetra-
chloride use are 11,500 to 14,800 Mg between 1976 and 1979,3 and 12,800 Mg
for 1977 and 1978.4 Thus, chloroform accounts for only 0.2 percent of the
carriers used in grain fumigation, with carbon tetrachloride accounting for
the remainder.
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