

United States Environmental Protection Agency Office of Water Office of Environmental Information Washington, DC EPA-841-B-07-009

National Rivers and Streams Assessment Field Operations Manual

April 2009

This page is intentionally blank

NOTICE

The intention of the National Rivers and Streams Assessment project is to provide a comprehensive "State of the Flowing Waters" assessment for rivers and streams across the United States. The complete documentation of overall project management, design, methods, and standards is contained in four companion documents:

- National Rivers and Streams Assessment: Quality Assurance Project Plan (EPA-841-B-07-007)
- National Rivers and Streams Assessment: Site Evaluation Guidelines (EPA-841-B-07-008)
- National Rivers and Streams Assessment: Field Operations Manual (EPA-841-B-07-009)
- National Rivers and Streams Assessment: Laboratory Methods Manual (EPA-841-B-07-010)

This document (*Field Operations Manual*) contains a brief introduction and procedures to follow at the base location and on-site, including methods for sampling water chemistry (grabs and *in situ* measurements), periphyton, benthic macroinvertebrates, sediment enzymes, fish composition, fish tissue (at non-wadeable sites), a fecal indicator, and physical habitat. These methods are based on the guidelines developed and followed in the Western Environmental Monitoring and Assessment Program (Baker, et al., 1997), the methods outlined in Concepts and Approaches for the Bioassessment of Non-wadeable Streams and Rivers (Flotemersch, et al., 2006), and methods employed by several key states that were involved in the planning phase of this project. Methods described in this document are to be used specifically in work relating to the National Rivers and Streams Assessment. All Project Cooperators must follow these guidelines. Mention of trade names or commercial products in this document does not constitute endorsement or recommendation for use. Details on specific methods for site evaluation and sample processing can be found in the appropriate companion document.

The citation for this document is:

USEPA. 2007. National Rivers and Streams Assessment: Field Operations Manual. EPA-841-B-07-009. U.S. Environmental Protection Agency, Washington, DC.

This page is intentionally blank

TABLE OF CONTENTS

TABLE	OFC	ONTEN	TS	v
LIST C	F TABI	_ES		xi
LIST C	F FIGL	JRES		xv
ACRO	NYMS/	ABBRE	VIATIONS	xvii
CONT	ACT LIS	ST		xviii
1.0			ID	
	1.1		/ Design	
			Target Population and Sample Frame	
			Replacing Sites	
	1.2		on of NRSA Indicators	
	1.3		ption of NRSA Indicators	
	1.4		mental Material to the Field Operations Manual	
2.0			ATIONS SUMMARY	
	2.1		ng Scenario	
			Non-wadeable Sites	
	2.2		Wadeable Sites Jing Data and Other Information	
	2.2		and Health	
	2.5		General Considerations	
			Safety Equipment	
			Safety Guidelines for Field Operations	
3.0	BASE		CTIVITIES	
	3.1		parture Activities	
			Daily Itineraries	
		3.1.2	Instrument Checks and Calibration	22
		3.1.3	Equipment and Supply Preparation	22
	3.2	Post S	ampling Activities	23
		3.2.2	Inspect and Prepare Samples	
		3.2.3	Equipment Cleanup and Check	
		3.2.4 3.2.5	Supply Inventory Shipment of Samples and Forms	
			Status Reports and Communications	
4.0			PROCEDURES	
4.0	4.1		erification Activities	
	4.1	4.1.1	Locating the X-Site	
			Determining the Sampling Status of a Stream	
			Sampling During or After Rain Events	
	4.2		out the sampling reach	
	4.3		ing Sample Protocols for High or Low Flows	
			Streams with Interrupted Flow	
			Partially Wadeable Sites	
			Braided Rivers and Streams	
5.0	NON-V	VADEA	BLE RIVERS	49

5.1		Quality	49
	5.1.1	In Situ Measurements of Dissolved Oxygen, pH, Temperature, and	
		Conductivity	49
		5.1.1.1 Summary of Method	49
		5.1.1.2 Equipment and Supplies	
		5.1.1.3 Multi-Probe Sonde	49
		5.1.1.4 Sampling Procedure	
	5.1.2	Water Chemistry Sample Collection and Preservation	
		5.1.2.1 Summary of Method	52
		5.1.2.2 Equipment and Supplies	52
		5.1.2.3 Sampling Procedure	54
	5.1.3	Secchi Disk Transparency at Non-Wadeable Sites	54
		5.1.3.1 Summary of Method	.54
		5.1.3.2 Equipment and Supplies	.55
		5.1.3.3 Sampling Procedure	.55
	5.1.4	Sediment Enzymes	
		5.1.4.1 Summary of Method	
		5.1.4.2 Equipment and Supplies	
		5.1.4.3 Sampling Procedure	
5.2	Physic	al Habitat Characterization in Non-Wadeable Rivers and Streams	
	5.2.1	Equipment and Supplies	
	5.2.3	Summary of Workflow	
	5.2.4	Habitat Sampling Locations on the Study Reach	
	5.2.5	Work Flow and Reach Marking	
	5.2.6	Reconnaissance	
	5.2.7	Thalweg Profile	
	0.2	5.2.7.1 Thalweg Depth Profile	
		5.2.7.2 Pole Drag for Snags and Substrate Characteristics	
		5.2.7.3 Channel Habitat Classification	
	5.2.8	Channel Margin ("Littoral") and Riparian Measurements	
	0.2.0	5.2.8.1 Channel Margin Depth and Substrate	
		5.2.8.2 Large Woody Debris	
		5.2.8.3 Bank Angle and Channel Cross-Section Morphology	
		5.2.8.4 Canopy Cover (Densiometer)	
		5.2.8.5 Riparian Vegetation Structure	
		5.2.8.6 Fish Cover, Algae, Aquatic Macrophytes	
		5.2.8.7 Human Influences	
		5.2.8.8 Riparian "Legacy" Trees and Invasive Alien Species	
	5.2.9	Channel Constraint Assessment	
		Debris Torrents and Recent Major Floods	
5.3		yton	
5.5	5.3.1	Summary of Method	
	5.3.1	Equipment and Supplies	
	5.3.2 5.3.3	Sampling Procedure	
		Sample Processing in the Field	
E 4	5.3.4		
5.4		c Macroinvertebrates	
	5.4.1	Summary of Method	
	5.4.2		
	5.4.3		
	5.4.4	Sample Processing in Field	94

	5.5	Fish		98
		5.5.1		
		5.5.2	Equipment and Supplies	
		5.5.3	Sampling Procedure	
		5.5.4	Processing Fish	
		5.5.5	Taxonomic Quality Assurance/Quality Control	
	5.6		issue	
		5.6.1	Summary of Method	
		5.6.2	Equipment and Supplies	
		5.6.3	Sampling Procedure	
	5.7		Indicator (Enterococci)	
		5.7.1	Summary of Method	
		5.7.2	Equipment and Supplies	
		5.7.3	Sampling Procedure	
6.0			STREAMS	
0.0	6.1		Quality	
	0.1	6.1.1	In Situ Measurements of Dissolved Oxygen, pH, Temperature, and	115
		0.1.1	Conductivity	115
			6.1.1.1 Summary of Method	
			6.1.1.2 Equipment and Supplies	
			6.1.1.3 Multi-Probe Sonde	
			6.1.1.4 Sampling Procedure	
		6.1.2	Water Chemistry Sample Collection and Preservation	
		0.1.2	6.1.2.1 Summary of Method	
			6.1.2.2 Equipment and Supplies	
			6.1.2.3 Sampling Procedure	
		6.1.3	Sediment Enzymes	
		0.1.5	6.1.3.1 Summary of Method	
			6.1.3.2 Equipment and Supplies	
			6.1.3.3 Sampling Procedure	
	6.2	Dhysic	al Habitat Characterization—Wadeable Streams	
	0.2	6.2.1	Components of the Habitat Characterization	
		6.2.1	Habitat Sampling Locations within the Reach	
		6.2.3	Logistics and Work Flow	
		6.2.4	Thalweg Profile and Large Woody Debris Measurements	
		0.2.4	6.2.4.1 Thalweg Profile	
			6.2.4.2 Large Woody Debris Tally	
		6.2.5	Channel and Riparian Measurements at Cross-Section Transects	
		0.2.5	6.2.5.1 Slope and Bearing	
			6.2.5.2 Substrate Size and Channel Dimensions	
			6.2.5.3 Bank Characteristics	
			6.2.5.5 Riparian Vegetation Structure	
			6.2.5.6 Instream Fish Cover, Algae, and Aquatic Macrophytes	151
			6.2.5.7 Human Influence	
			6.2.5.8 Cross-section Transects on Side Channels	
			6.2.5.9 Riparian "Legacy" Trees and Invasive Alien Species	
		6.2.6	Channel Constraint, Debris Torrents, Recent Floods, and	100
		0.2.0	Discharge	150
			6.2.6.1 Channel Constraint	
				103

			6.2.6.2 Debris Torrents and Recent Major Floods	163
			6.2.6.3 Stream Discharge	164
			6.2.6.4 Velocity-Area Procedure	166
			6.2.6.5 Timed Filling Procedure	169
			6.2.6.6 Neutrally-Buoyant Object Procedure	170
		6.2.7	Equipment and Supplies	
	6.3	Periph	iyton	173
		6.3.1	Summary of Method	173
		6.3.2	Equipment and Supplies	173
		6.3.3	Sampling Procedure	
		6.3.4	Sample Processing in the Field	
	6.4	Benth	ic Macroinvertebrates	175
		6.4.1	Summary of Method	175
		6.4.2	Equipment and Supplies	175
		6.4.3	Sampling Procedure	176
		6.4.4	Sample Processing in Field	176
	6.5	Fish		182
		6.5.1	Summary of Method	182
		6.5.2	Equipment and Supplies	182
		6.5.3	Sampling Procedure	186
		6.5.4	Processing Fish	189
		6.5.5	Taxonomic Quality Assurance/Quality Control	190
	6.6	Fecal	Indicator (Enterococci)	196
		6.6.1	Summary of Method	196
		6.6.2	Equipment and Supplies	196
		6.6.3	Sampling Procedure	196
7.0	FINAL	SITE A	ACTIVITIES	198
	7.1	Gener	al Site Assessment	
		7.1.1	Watershed Activities and Disturbances Observed	199
		7.1.2	Site Characteristics	199
		7.1.3	General Assessment	
	7.2	Proce	ssing the Fecal Indicator, Chlorophyll a, and Periphyton Samples	201
		7.2.1	Equipment and Supplies (Fecal Indicator)	
		7.2.2	Procedures for Processing the Fecal Indicator Sample	201
		7.2.3	Equipment and Supplies (Chlorophyll a from Water Sample)	203
		7.2.4	Procedures for Processing the Chlorophyll a Water Sample	204
		7.2.5		
			Procedures for Processing the Periphyton Samples	
	7.3	Data F	Forms and Sample Inspection	208
	7.4	Launc	h Site Cleanup	208
8.0	FIELD		ITY CONTROL	
	8.1	Repea	at and Duplicate Sampling	
		8.1.1	Repeat Sampling	210
		8.1.2	Duplicate Sampling	
	8.2		Evaluation and Assistance Visits	
		8.2.1	Specifications for QC Assurance	
		8.2.2	Reporting	212
9.0	LITER	ATURE	E CITED	213

APPENDIX A LIST OF EQUIPMENT AND SUPPLIES	A-1
APPENDIX B FIELD FORMS	B-1
Boatable Forms Packet	B-3
Wadeable Forms Packet	B-33
APPENDIX C SHIPPING AND TRACKING GUIDELINES	C-1
APPENDIX D COMMON & SCIENTIFIC NAMES OF FISHES OF THE UNITED S	STATES D-1
APPENDIX E PPCP and PFC SAMPLES AT SELECTED URBAN SITES	E-1

This page is intentionally blank

LIST OF TABLES

Table 1-2. Summary table of indicators for wadeable sites
Table 2-2. General health and safety considerations. 17 Table 2-3. General safety guidelines for field operations. 19 Table 3-1. Stock solutions, uses, and methods for preparation. 23 Table 3-2. Postsampling equipment care 25 Table 4-1. Landscape and NHDPlus attributes for the watershed page (data were summarized from NHDPlus attributes for site verification. 37 Table 4-2. Equipment and supplies list for site verification. 37 Table 4-3. Site Verification Procedures. 39 Table 4-4. Guidelines to determine the influence of rain events. 40 Table 4-5a. Laying out the sampling reach at non-wadeable sites 41 Table 4-5b. Laying out the sampling reach at wadeable sites 43 Table 4-7. Sliding the sampling reach at wadeable sites 43 Table 4-8. Reach layout modifications for interrupted streams. 47 Table 4-9. Modifications for braided streams. 47 Table 5.1-1. Equipment and supplies—DO, pH, temperature, and conductivity 49 Table 5.1-2. Sampling procedure for non-wadeable sites. 52 Table 5.1-3. Equipment and supplies.Secchi disc transparen
Table 2-3. General safety guidelines for field operations. 19 Table 3-1. Stock solutions, uses, and methods for preparation. 23 Table 3-2. Postsampling equipment care 25 Table 4-1. Landscape and NHDPlus attributes for the watershed page (data were summarized from NHDPlus and NLCD2001) 35 Table 4-2. Equipment and supplies list for site verification. 37 Table 4-3. Site Verification Procedures. 39 Table 4-4. Guidelines to determine the influence of rain events. 40 Table 4-5a. Laying out the sampling reach at non-wadeable sites 41 Table 4-5b. Laying out the sampling reach at wadeable sites 43 Table 4-7. Sliding the sampling reach at wadeable sites 43 Table 4-8. Reach layout modifications for interrupted streams. 47 Table 4-9. Modifications for braided streams 47 Table 5.1-1. Equipment and supplies—DO, pH, temperature, and conductivity 49 Table 5.1-2. Sampling procedure—temperature, pH, conductivity and dissolved oxygen. 51 Table 5.1-3. Equipment and supplies—water chemistry sample collection and preservation. 52 Table 5.1-4. Sam
Table 3-1. Stock solutions, uses, and methods for preparation. 23 Table 3-2. Postsampling equipment care 25 Table 4-1. Landscape and NHDPlus attributes for the watershed page (data were summarized from NHDPlus and NLCD2001) 35 Table 4-2. Equipment and supplies list for site verification. 37 Table 4-3. Site Verification Procedures 39 Table 4-4. Guidelines to determine the influence of rain events 40 Table 4-5a. Laying out the sampling reach at non-wadeable sites 41 Table 4-5b. Laying out the sampling reach at wadeable sites 43 Table 4-7. Sliding the sampling reach 46 Table 4-8. Reach layout modifications for interrupted streams 47 Table 4-9. Modifications for braided streams 47 Table 5.1-1. Equipment and supplies—DO, pH, temperature, and conductivity 49 Table 5.1-2. Sampling procedure—temperature, pH, conductivity and dissolved oxygen. 51 Table 5.1-3. Equipment and supplies—water chemistry sample collection and preservation. 52 Table 5.1-4. Sampling procedure for non-wadeable sites—water chemistry sample collection and preservation. 52 Tabl
Table 3-2.Postsampling equipment care25Table 4-1.Landscape and NHDPlus attributes for the watershed page (data were summarized from NHDPlus and NLCD2001)35Table 4-2.Equipment and supplies list for site verification37Table 4-3.Site Verification Procedures39Table 4-4.Guidelines to determine the influence of rain events40Table 4-5a.Laying out the sampling reach at non-wadeable sites41Table 4-5b.Laying out the sampling reach at wadeable sites43Table 4-7.Sliding the sampling reach46Table 4-8.Reach layout modifications for interrupted streams47Table 4-9.Modifications for braided streams48Table 5.1-1.Equipment and supplies—DO, pH, temperature, and conductivity49Table 5.1-2.Sampling procedure—temperature, pH, conductivity and dissolved oxygen51Table 5.1-3.Equipment and supplies—water chemistry sample collection and preservation52Table 5.1-4.Sampling procedure for non-wadeable sites—water chemistry sample collection54Table 5.1-5.Equipment and supplies—Secchi disc transparency55Table 5.1-6.Sampling procedure at non-wadeable sites—Secchi disk transparency55Table 5.1-7.Equipment and supplies—sediment enzymes56Table 5.2-1.Checklist of equipment and supplies for physical habitat59Table 5.2-2.Components of river physical habitat protocol61Table 5.2-5.Channel unit categories69
Table 4-1. Landscape and NHDPlus attributes for the watershed page (data were summarized from NHDPlus and NLCD2001)
summarized from NHDPlus and NLCD2001)
Table 4-2.Equipment and supplies list for site verification.37Table 4-3.Site Verification Procedures.39Table 4-3.Guidelines to determine the influence of rain events40Table 4-4.Laying out the sampling reach at non-wadeable sites41Table 4-5b.Laying out the sampling reach at wadeable sites43Table 4-7.Sliding the sampling reach at wadeable sites43Table 4-8.Reach layout modifications for interrupted streams47Table 5.1-1.Equipment and supplies—DO, pH, temperature, and conductivity49Table 5.1-2.Sampling procedure—temperature, pH, conductivity and dissolved oxygen.51Table 5.1-3.Equipment and supplies—water chemistry sample collection and preservation.52Table 5.1-4.Sampling procedure for non-wadeable sites—water chemistry sample collection54Table 5.1-5.Equipment and supplies—Secchi disc transparency55Table 5.1-6.Sampling procedure at non-wadeable sites—Secchi disk transparency55Table 5.1-7.Equipment and supplies—sediment enzymes56Table 5.2-1.Checklist of equipment and supplies for physical habitat59Table 5.2-2.Components of river physical habitat protocol61Table 5.2-3.Thalweg profile procedure66Table 5.2-5.Channel unit categories69
Table 4-3.Site Verification Procedures39Table 4-3.Guidelines to determine the influence of rain events40Table 4-4.Laying out the sampling reach at non-wadeable sites41Table 4-5a.Laying out the sampling reach at wadeable sites43Table 4-5b.Laying out the sampling reach at wadeable sites43Table 4-7.Sliding the sampling reach46Table 4-8.Reach layout modifications for interrupted streams47Table 5.1-1.Equipment and supplies—DO, pH, temperature, and conductivity49Table 5.1-2.Sampling procedure—temperature, pH, conductivity and dissolved oxygen51Table 5.1-3.Equipment and supplies—water chemistry sample collection and preservation52Table 5.1-4.Sampling procedure for non-wadeable sites—water chemistry sample collection54Table 5.1-5.Equipment and supplies—Secchi disc transparency55Table 5.1-6.Sampling procedure at non-wadeable sites—Secchi disk transparency55Table 5.1-7.Equipment and supplies—sediment enzymes56Table 5.2-1.Checklist of equipment and supplies for physical habitat.59Table 5.2-2.Components of river physical habitat protocol61Table 5.2-3.Thalweg profile procedure.66Table 5.2-5.Channel unit categories69
Table 4-4.Guidelines to determine the influence of rain events40Table 4-5a.Laying out the sampling reach at non-wadeable sites41Table 4-5b.Laying out the sampling reach at wadeable sites43Table 4-5b.Sliding the sampling reach at wadeable sites43Table 4-7.Sliding the sampling reach46Table 4-8.Reach layout modifications for interrupted streams47Table 5.1-1.Equipment and supplies—DO, pH, temperature, and conductivity49Table 5.1-2.Sampling procedure—temperature, pH, conductivity and dissolved oxygen51Table 5.1-3.Equipment and supplies—water chemistry sample collection and preservation52Table 5.1-4.Sampling procedure for non-wadeable sites—water chemistry sample collection54Table 5.1-5.Equipment and supplies—Secchi disc transparency55Table 5.1-6.Sampling procedure at non-wadeable sites—Secchi disk transparency55Table 5.1-7.Equipment and supplies—sediment enzymes56Table 5.2-1.Checklist of equipment and supplies for physical habitat59Table 5.2-2.Components of river physical habitat protocol61Table 5.2-4.Thalweg profile procedure66Table 5.2-5.Channel unit categories69
Table 4-5a.Laying out the sampling reach at non-wadeable sites41Table 4-5b.Laying out the sampling reach at wadeable sites43Table 4-5b.Sliding the sampling reach at wadeable sites43Table 4-7.Sliding the sampling reach46Table 4-8.Reach layout modifications for interrupted streams47Table 5.1-1.Equipment and supplies—DO, pH, temperature, and conductivity49Table 5.1-2.Sampling procedure—temperature, pH, conductivity and dissolved oxygen51Table 5.1-3.Equipment and supplies—water chemistry sample collection and preservation52Table 5.1-4.Sampling procedure for non-wadeable sites—water chemistry sample collection54Table 5.1-5.Equipment and supplies—Secchi disc transparency55Table 5.1-6.Sampling procedure at non-wadeable sites—Secchi disk transparency55Table 5.1-7.Equipment and supplies—sediment enzymes56Table 5.2-1.Checklist of equipment and supplies for physical habitat59Table 5.2-2.Components of river physical habitat protocol61Table 5.2-3.Thalweg profile procedure66Table 5.2-4.Thalweg profile procedure66
Table 4-5b.Laying out the sampling reach at wadeable sites43Table 4-7.Sliding the sampling reach46Table 4-7.Reach layout modifications for interrupted streams47Table 4-8.Reach layout modifications for interrupted streams47Table 4-9.Modifications for braided streams48Table 5.1-1.Equipment and supplies—DO, pH, temperature, and conductivity49Table 5.1-2.Sampling procedure—temperature, pH, conductivity and dissolved oxygen51Table 5.1-3.Equipment and supplies—water chemistry sample collection and preservation52Table 5.1-4.Sampling procedure for non-wadeable sites—water chemistry sample collection54Table 5.1-5.Equipment and supplies—Secchi disc transparency55Table 5.1-6.Sampling procedure at non-wadeable sites—Secchi disk transparency55Table 5.1-7.Equipment and supplies—sediment enzymes56Table 5.2-1.Checklist of equipment and supplies for physical habitat59Table 5.2-2.Components of river physical habitat protocol61Table 5.2-3.Thalweg profile procedure66Table 5.2-4.Thalweg profile procedure66
Table 4-7.Sliding the sampling reach46Table 4-8.Reach layout modifications for interrupted streams47Table 4-9.Modifications for braided streams48Table 5.1-1.Equipment and supplies—DO, pH, temperature, and conductivity49Table 5.1-2.Sampling procedure—temperature, pH, conductivity and dissolved oxygen51Table 5.1-3.Equipment and supplies—water chemistry sample collection and preservation52Table 5.1-4.Sampling procedure for non-wadeable sites—water chemistry sample collection54Table 5.1-5.Equipment and supplies—Secchi disc transparency55Table 5.1-6.Sampling procedure at non-wadeable sites—Secchi disk transparency55Table 5.1-7.Equipment and supplies—sediment enzymes56Table 5.2-1.Checklist of equipment and supplies for physical habitat59Table 5.2-2.Components of river physical habitat protocol61Table 5.2-5.Thalweg profile procedure66Table 5.2-5.Channel unit categories69
Table 4-8.Reach layout modifications for interrupted streams.47Table 4-9.Modifications for braided streams48Table 5.1-1.Equipment and supplies—DO, pH, temperature, and conductivity49Table 5.1-2.Sampling procedure—temperature, pH, conductivity and dissolved oxygen5151Table 5.1-3.Equipment and supplies—water chemistry sample collection and preservation
Table 4-9.Modifications for braided streams48Table 5.1-1.Equipment and supplies—DO, pH, temperature, and conductivity49Table 5.1-2.Sampling procedure—temperature, pH, conductivity and dissolved oxygen
Table 5.1-1.Equipment and supplies—DO, pH, temperature, and conductivity
Table 5.1-2.Sampling procedure—temperature, pH, conductivity and dissolved oxygen51Table 5.1-3.Equipment and supplies—water chemistry sample collection and preservation
Table 5.1-3.Equipment and supplies—water chemistry sample collection and preservation
Table 5.1-4.Sampling procedure for non-wadeable sites—water chemistry sample collection
Table 5.1-4.Sampling procedure for non-wadeable sites—water chemistry sample collection
54Table 5.1-5.Equipment and supplies—Secchi disc transparency55Table 5.1-6.Sampling procedure at non-wadeable sites—Secchi disk transparency55Table 5.1-7.Equipment and supplies—sediment enzymes56Table 5.2-1.Checklist of equipment and supplies for physical habitat59Table 5.2-2.Components of river physical habitat protocol61Table 5.2-4.Thalweg profile procedure66Table 5.2-5Channel unit categories69
Table 5.1-5.Equipment and supplies—Secchi disc transparency55Table 5.1-6.Sampling procedure at non-wadeable sites—Secchi disk transparency55Table 5.1-7.Equipment and supplies—sediment enzymes56Table 5.2-1.Checklist of equipment and supplies for physical habitat59Table 5.2-2.Components of river physical habitat protocol61Table 5.2-4.Thalweg profile procedure66Table 5.2-5Channel unit categories69
Table 5.1-6.Sampling procedure at non-wadeable sites—Secchi disk transparency
Table 5.1-7.Equipment and supplies—sediment enzymes56Table 5.2-1.Checklist of equipment and supplies for physical habitat59Table 5.2-2.Components of river physical habitat protocol61Table 5.2-4.Thalweg profile procedure66Table 5.2-5Channel unit categories69
Table 5.2-1.Checklist of equipment and supplies for physical habitat
Table 5.2-2.Components of river physical habitat protocol61Table 5.2-4.Thalweg profile procedure66Table 5.2-5Channel unit categories69
Table 5.2-4.Thalweg profile procedure
Table 5.2-5 Channel unit categories
0
Table 5.2-7. Procedure for tallying large woody debris
Table 5.2-8. Procedure for bank angle and channel cross-section 75
Table 5.2-9. Procedure for canopy cover measurements 79
Table 5.2-10. Procedure for characterizing riparian vegetation structure 80
Table 5.2.11. Procedure for estimating fish cover 81
Table 5.2-12. Procedure for estimating human influence 82
Table 5.2-13. Procedure for identifying riparian legacy trees and alien invasive species 83
Table 5.2-14. Procedures for assessing channel constraint 85
Table 5.3-1. Equipment and supplies list for periphyton at non-wadeable sites
Table 5.3-2. Procedure for collecting composite index samples of periphyton at non-
wadeable sites
Table 5.4-1. Equipment and supplies list for benthic macroinvertebrate collection at non- wadeable sites
Table 5.4-2. Procedure for benthic macroinvertebrate sampling at non-wadeable sites

Table 5.4-3.	Procedure for compositing samples for benthic macroinvertebrates at non- wadeable sites	97
Table 5.5-1.	Equipment and supplies — fish assessment at non-wadeable sites	
Table 5.5-2.	Procedure for electrofishing at non-wadeable sites.	
Table 5.5-3.	Procedure for processing fish at non-wadeable sites.	
Table 5.5-4.	Procedure for laboratory identification of fish samples.	
Table 5.5-5.	Procedure for vouchering of fish samples.	
Table 5.6-1.	Equipment and supplies—fish tissue collection at non-wadeable sites	
Table 5.6-2.	Recommended target species for fish tissue collection (in order of	
	preference) at non-wadeable sites	110
Table 5.6-3.	Sampling procedure for fish composite samples at non-wadeable sites	
Table 5.7-1.	Equipment and supplies list for fecal indicator sampling at non-wadeable	
	sites	112
Table 5.7-2.	Procedure for fecal indicator (Enterococci) sample collection at non-	
	wadeable sites	112
Table 6.1-1.	Equipment and supplies—DO, pH, temperature, and conductivity	.115
Table 6.1-2.	Sampling procedure-temperature, pH, conductivity and dissolved oxygen	
Table 6.1-3.	Equipment and supplies—water chemistry sample collection and	
	preservation	118
Table 6.1-4.	Sampling procedure for wadeable sites—water chemistry sample collection	.119
Table 6.1-5.	Equipment and supplies—sediment enzymes	
Table 6.1-6.	Sampling procedure—sediment enzymes	
Table 6.2-1.	Components of physical habitat characterization	
Table 6.2-2.	Thalweg profile procedure	
Table 6.2-3.	Channel unit and pool forming element categories	
Table 6.2-4.	Procedure for tallying large woody debris	
Table 6.2-5.	Procedure for obtaining slope and bearing data	
Table 6.2-6.	Modified procedure for obtaining slope and bearing data	
Table 6.2-7.	Substrate measurement procedure	
Table 6.2-8.	Procedure for measuring bank characteristics	145
Table 6.2-9.	Procedure for canopy cover measurements	
Table 6.2-10.	Procedure for characterizing riparian vegetation structure	
Table 6.2-11.		
Table 6.2-12.	Procedure for estimating human influence	155
Table 6.2-13.	Procedure for identifying riparian legacy trees	158
Table 6.2-14.	Procedures for assessing channel constraint	.161
	Velocity-Area procedure for determining stream discharge	
Table 6.2-16.	Timed filling procedure for determining stream discharge	.169
Table 6.2-17.	Neutrally buoyant object procedure for determining stream discharge	.170
Table 6.2-18.	Checklist of equipment and supplies for physical habitat	.172
Table 6.3-1.	Equipment and supplies list for periphyton at wadeable sites	.173
Table 6.3-2.	Procedure for collecting composite index samples of periphyton at	
	wadeable sites	.173
Table 6.4-1.	Equipment and supplies list for benthic macroinvertebrate collection at	
	wadeable sites	.175
Table 6.4-2.	Procedure for benthic macroinvertebrate sampling at wadeable sites	.179
Table 6.4-3.	Procedure for preparing composite samples for benthic macroinvertebrates	
	at wadeable sites	
Table 6.5-1.	Equipment and supplies — fish assessment at wadeable sites	
Table 6.5-2.	Procedure for electrofishing at wadeable sites <500 m	.187

Table 6.5-3.	Procedure for electrofishing at wadeable sites >500 m	188
Table 6.5-4.	Procedure for processing fish at wadeable sites	189
Table 6.5-5.	Procedure for laboratory identification of fish samples.	191
Table 6.5-6.	Procedure for vouchering fish samples.	192
Table 6.6-1.	Equipment and supplies list for fecal indicator sampling at wadeable sites	196
Table 6.6-2.	Procedure for fecal indicator (Enterococci) sample collection at wadeable	
	sites	196
Table 7.1.	Equipment and supplies list for fecal indicator sample	201
Table 7.2.	Processing procedure—fecal indicator sample	201
Table 7.3.	Equipment and supplies list for chlorophyll a processing	203
Table 7.4.	Processing procedure—chlorophyll a sample	204
Table 7.5.	Equipment and supplies list for periphyton sample processing	204
Table 7.6.	Procedure for ID/enumeration samples of periphyton	205
Table 7.7.	Procedure for preparing chlorophyll samples of periphyton	205
Table 7.8.	Procedure for preparing ash-free dry mass (AFDM) samples of periphyton	206
Table 7.9.	Procedure for preparing acid alkaline phosphatase activity samples for	
	periphyton	208
Table 8.1.	General information noted during field evaluation	211

This page is intentionally blank

LIST OF FIGURES

Figure 2-1.	Field sampling scenario for non-wadeable sites.	11
Figure 2-2.	Field sampling scenario for wadeable sites.	
Figure 2-3.	Example sample labels for sample tracking and identification	
Figure 3-1.	Overview of base site activities.	
Figure 3-2.	Tracking and Sample Status Form	
Figure 3-3.	Tracking (Batched and Retained) Form	
Figure 3-5.	Sample packaging and shipping procedures	
Figure 4-1.	Watershed page	
Figure 4-2.	Site page.	
Figure 4-3.	Verification Form (page 1)	
Figure 4-4.	Verification Form (page 2)	44
Figure 4-5.	Sampling reach features for a non-wadeable site	
Figure 5.1-1.	Field Measurement Form.	50
Figure 5.1-2.	Sample Collection Form, Side 1	53
Figure 5.1-3.	Secchi disk diagram (EPA, 1991)	55
Figure 5.1-4.	Sample Collection Form, Side 2.	58
Figure 5.2-1.	River reach sample layout	63
Figure 5.2-2.	Littoral-Riparian Plots for characterizing riparian vegetation, human	
-	influences, fish cover, littoral substrate, and littoral depths	64
Figure 5.2-3.	Thalweg Profile Form	68
Figure 5.2-4.	Channel/Riparian Transect Form, page 1 (front side)	71
Figure 5.2-5.	Channel/Riparian Transect Form, page 2 (back side)	
Figure 5.2-8.	Field form for Riparian "Legacy" Trees and Invasive Alien Plants (Page 1)	
Figure 5.2-9.	Types of multiple channel patterns	86
Figure 5.4-1.	Transect sample design for collecting benthic macroinvertebrates at non-	
	wadeable sites.	
Figure 5.4-2.	Benthic macroinvertebrate collection at non-wadeable sites.	
Figure 5.5-1.	Fish Collection Form, Side 1.	
Figure 5.5-2.	Transect sampling design for fish sampling at non-wadeable sites	
Figure 5.6-1.	Fish Gear and Voucher/Tissue Sample Information.	
Figure 6.1-1.	Field Measurement Form.	
Figure 6.1-2.	Sample Collection Form, Side 1	
Figure 6.1-3.	Sample Collection Form, Side 2.	
Figure 6.2-1.	Reach layout for physical habitat measurements (plan view).	.127
Figure 6.2-3.	Large woody debris influence zones (modified from Robison and Beschta, 1990).	.135
Figure 6.2-4.	Channel slope and bearing measurements.	
Figure 6.2-5.		
Figure 6.2-6.		
	Channel/Riparian Cross-section Form.	
	Riparian zone and instream fish cover plots for a stream cross-section	
-	transect	.152
Figure 6.2-13.	Riparian and instream fish cover plots for a stream with minor and major	
	side channels	.156
Figure 6.2-14.	Channel/Riparian Cross-section Form for an additional major side channel	
	transect	
⊢igure 6.2-15.	Riparian "Legacy" Tree and Invasive Alien Plants Form (Page 1)	.160

Figure 6.2-16.	Channel Constraint Form, showing data for channel constraint	162
•	Types of multiple channel patterns.	
Q	Torrent Evidence Assessment Form.	165
Figure 6.2-19.	Layout of channel cross-section for obtaining discharge data by the	
	velocity-area procedure.	166
Figure 6.2-21.	Use of a portable weir in conjunction with a calibrated bucket to obtain an	
-	estimate of stream discharge	171
Figure 6.4-1.	Benthic macroinvertebrate collection at wadeable sites.	177
Figure 6.4-2.	Transect sample design for collecting benthic macroinvertebrates at	
-	wadeable sites	178
Figure 6.5-1.	Fish Collection Form for Small Wadeable Streams, Side 1	184
Figure 6.5-2.	Fish Collection Form for Large Wadeable Streams (Subreach A-B)	185
Figure 6.5-4.	Fish Identification Lab Sheet.	195
Figure 7.1.	Final site activities summary.	198
Figure 7.2.	Site Assessment Form.	200
Figure 8.1.	Summary of the repeat and duplicate sampling design.	209
•		

ACRONYMS/ABBREVIATIONS

AFDM ANC APA CPR DBH DI DO DOC EMAP EPA ETOH	ash-free dry mass acid neutralizing capacity acid/alkaline phosphatase activity cardiopulmonary resuscitation diameter at breast height deionized dissolved oxygen dissolved organic carbon Environmental Monitoring and Assessment Program Environmental Protection Agency
GIS	ethyl alcohol geographic information system
GPS	global positioning device
HDPE	high density polyethylene
IBI	Index of Biotic Integrity
LWD	large woody debris
NAD	North American Datum
NAWQA	National Water-Quality Assessment Program
NHD	National Hydrography Dataset
	ammonium
NIST	National Institute of Standards
NO ₃	nitrate
NRSA	National Rivers and Streams Assessment
	"observed" over "expected"
OSHA PFD	Occupational Safety and Health Administration personal floatation device
P-Hab	physical habitat
PSI	pounds per square inch
PVC	polyvinyl chloride
QAPP	Quality Assurance Project Plan
QA/QC	quality assurance/quality control
SOPs	Standard Operating Procedures
TN	total nitrogen
тос	total organic carbon
ТР	total phosphorus
TSS	total suspended solids
USGS	United States Geological Survey
WSA	Wadeable Streams Assessment

Final Manual Date: April 2009 Page xviii

CONTACT LIST

Information Management Coordinator

Marlys Cappaert Computer Sciences Corporation 200 S.W. 35th Street Corvallis, OR 97333 (541) 754-4467 (541) 754-4799 fax <u>cappaert.marlys@epa.gov</u>

Field Logistics Coordinator

Jennifer Pitt Tetra Tech Center for Ecological Sciences 400 Red Brook Blvd., Suite 200 Owings Mills, MD 21117 410-356-8993 410-356-9005 fax jennifer.pitt@tetratech.com

USEPA HEADQUARTERS

Ellen Tarquinio USEPA Office of Water Office of Wetlands, Oceans and Watersheds 1200 Pennsylvania Avenue, NW (4503T) Washington, D.C. 20460-0001 (202) 566-2267 tarquinio.ellen@epa.gov Treda Smith USEPA Office of Water Office of Wetlands, Oceans and Watersheds 1200 Pennsylvania Avenue, NW (4503T) Washington DC 20460 202-566-0916 Smith.treda@epamail.epa.gov

USEPA REGIONAL CONTACTS

USEPA Region 1

Tom Faber USEPA Region 1 – New England Regional Laboratory 11 Technology Drive North Chelmsford, MA 01863-2431 (617) 918-8672 faber.tom@epa.gov

USEPA Region 3

Louis Reynolds USEPA Wheeling Operations Office 303 Methodist Building 11th and Chapline Streets Wheeling, WV 26003 (304) 234-0244 reynolds.louis@epa.gov

USEPA Region 2

Darvene Adams USEPA Facilities Raritan Depot 2890 Woodbridge Avenue Edison, NJ 08837-3679 (732) 321-6700 adams.darvene@epa.gov

USEPA Region 4

Larinda Tervelt USEPA Region 4 61 Forsyth Street, S.W. Atlanta, GA 30303-8960 (404) 562-9448 tervelt.larinda@epa.gov

USEPA Region 5

USEPA Region 6

Final Manual Date: April 2009 Page xix

Sarah Lehmann USEPA Region 5 77 West Jackson Boulevard Chicago, IL 60604-3507 (312) 353-4328 <u>lehmann.sarah@epa.gov</u>

USEPA Region 7

Gary Welker USEPA Region 7 901 North Fifth Street Kansas City, KS 66101 (913) 551-7177 welker.gary@epa.gov

USEPA Region 9

Janet Hashimoto USEPA Region 9 75 Hawthorne Street San Francisco, CA 94105 (415) 972-3452 hashimoto.janet@epa.gov Mike Schaub USEPA Region 6 1445 Ross Avenue Suite 1200 Dallas, TX 75202-2733 (214) 665-7314 schaub.mike@epa.gov

USEPA Region 8

Tina Laidlaw USEPA Region 8 Montana Office 10 West 15th Street, Suite 3200 Helena, MT 59626 406-457-5016 Iaidlaw.tina@epa.gov

USEPA Region 10

Gretchen Hayslip USEPA Region 10 1200 Sixth Avenue Seattle, WA 98101 (206) 553-1685 hayslip.gretchen@epa.gov This page is intentionally blank

1.0 BACKGROUND

This manual describes field protocols and daily operations for crews to use in the National Rivers and Streams Assessment (NRSA). The NRSA is a probability-based survey of our Nation's rivers and streams and is designed to:

- Assess the condition of the Nation's rivers and streams
- Establish a baseline to compare future rivers and streams surveys for trends assessments
- Evaluate changes in condition from the 2004 Wadeable Streams Assessment
- Help build State and Tribal capacity for monitoring and assessment and promote collaboration across jurisdictional boundaries

This is one of a series of water assessments being conducted by states, tribes, the U.S. Environmental Protection Agency (EPA), and other partners. In addition to rivers and streams, the water assessments will also focus on coastal waters, lakes, and wetlands in a revolving sequence. The purpose of these assessments is to generate statistically-valid reports on the condition of our Nation's water resources and identify key stressors to these systems.

The goal of the NRSA is to address two key questions about the quality of the Nation's rivers and streams:

- What percent of the Nation's rivers and streams are in good, fair, and poor condition for key indicators of water quality, ecological health, and recreation?
- What is the relative importance of key stressors such as nutrients and pathogens?

The NRSA is designed to be completed during the index period of late May through the end of September. Field crews will collect a variety of measurements and samples from predetermined sampling locations (located with an assigned set of coordinates), and from randomized stations along the sampling reach.

1.1 Survey Design

EPA selected sampling locations using a probability based survey design. Sample surveys have been used in a variety of fields (e.g., election polls, monthly labor estimates, forest inventory analysis) to determine the status of populations or resources of interest using a representative sample of a relatively few members or sites. Using this survey design allows data from the subset of sampled sites to be applied to the larger target population, and assessments with known confidence bounds to be made.

The objectives, or design requirements, for the National Rivers and Streams Assessment are to produce:

- estimates of the 2008-2009 status of all flowing waters nationally and regionally (9 aggregated Omernik ecoregions),
- estimates of the 2008-2009 status of wadeable streams and non-wadeable rivers nationally and regionally (9 aggregated Omernik ecoregions),
- estimates of the 2008-2009 status of urban flowing waters nationally, and

 estimates of the change in status in wadeable streams between 2008-2009 and 2004, nationally and regionally (nine aggregated Omernik ecoregions).

With input from the states and other partners, EPA used an unequal probability design to select 900 wadeable streams and 900 non-wadeable rivers. For purposes of this study, a wadeable stream segment is defined being >50% wadeable; if it is <50% wadeable, it is defined as non-wadeable. To evaluate change in wadeable streams from the 2004 WSA, 450 of the 900 wadeable sites were selected using an unequal probability design from the WSA original sites. The result was the selection of 1800 river and stream sites, with approximately 10%, or 200, of these sites scheduled for revisits. **The NRSA design is explicitly stratified by state.** An "oversample" of additional sites also is available so that any state wishing to conduct a state scale assessment could be accommodated.

1.1.1 Target Population and Sample Frame

The target population consists of all streams and rivers within the 48 contiguous states that have flowing water during the study index period excluding portions of tidal rivers up to head of salt. The study index period extends from late May to the end of September and is characterized by base flow conditions. The target population includes the Great Rivers. Run-of-the-river ponds and pools with a residency time of less than 7 days, are included while reservoirs are excluded. Tidal freshwater rivers and streams are included above the head of salt. For the purposes of this study the head of salt is < .05ppt. Please refer to the Site Evaluation Guidelines (*EPA-841-B-07-008*) and the NRSA Web site (http://www.epa.gov/owow/riverssurvey/index.html) for more detailed information on the target population.

The sample frame was derived from the National Hydrography Dataset, NHD-Plus, from 1:100,000 scale maps. Attributes that are used in the NRSA design include:

- State
- EPA Region
- NAWQA Mega Region
- Omernik Ecoregion Level 3
- WSA aggregated ecoregions
- Strahler order (1st through 8th+)
- Strahler order categories
- Urban (site is within "urban" boundary)

1.1.2 Replacing Sites

Sites are organized to be replaced within each state. If a stream or river site is evaluated and it is determined that it cannot be sampled, then it is to be replaced by another site within the state. Sites that are coded as 1st through 4th order are to be replaced by oversample sites that are coded 1st through 4th order, ignoring order **within this range**. For example, a 2nd order stream would be replaced by the next 1st, 2nd, 3rd or 4th order stream on the state list. Sites that are coded as 5th through 10th order are to be replaced by oversample sites that are coded 5th through 10th order are to be replaced by oversample sites that are coded 5th through 10th order, again ignoring order within the range. For example, a 5th order river would be replaced by the next 5th, 6th, 7th, 8th, 9th, or 10th order river on the state list. In each case the **next site** that is **within the Strahler order range** is used for the replacement. Please refer to the *Site Evaluation Guidelines (EPA-841-B-07-008)* for more detailed information.

1.2 Selection of NRSA Indicators

As part of the indicator selection process, EPA worked with state and tribal partners and technical expert consultants through technical conferences and indicator workgroup teleconferences. The Agency formed a National Rivers and Streams Assessment Steering Committee with state and regional representatives to develop and refine methodologies. This section summarizes the Steering Committee recommendations to EPA for selecting NRSA indicators.

The EPA and partners developed screening and evaluation criteria and identified potential indicators based on recommendations received at the Large Rivers Assessment Planning Meeting in San Antonio, Texas (January 10-12, 2007), and the National Rivers and Streams Planning Session held in Washington, D.C, (April 12, 2007). Key screening and evaluation criteria included indicator applicability on a national scale, the ability of an indicator to reflect various aspects of ecological condition, repeatability, and cost-effectiveness.

Participants in indicator discussions included partners and consultants with a technical background in water monitoring program design and execution, as well as those with knowledge of state and regional water monitoring programs. Workgroup participants provided feedback on indicators, field protocols, and analytical procedures for the NRSA. EPA, states, tribes, and others discussed approaches and options on the chemical, physical, and biological parameters to be measured. Participants explored the technical and budgetary feasibility of sampling and analysis methods, the use of specialized technologies (e.g., remote sensing), practical considerations for completing the assessment (e.g., use of volunteers, availability of labs, timeframes, funding), and emerging pollutants and contaminant issues.

The remainder of this section briefly describes the indicators that will be used for the NRSA to assess water quality, ecological integrity, recreational value, and site characteristics (also see Table 1-1 and Table 1.2).

1.3 Description of NRSA Indicators

In Situ Water Quality Measurements

Measurements for temperature, pH, dissolved oxygen (DO), and conductivity will be taken with a calibrated water quality probe meter or multi-probe sonde at the X-site (center) transect in each river or stream. This information will be used to detect extremes in condition that might indicate impairment.

Secchi Disk Transparency

A Secchi disk is a commonly used black and white patterned disk used to measure the clarity of water in visibility distance.

Water Chemistry and Associated Measurements

Water chemistry measurements will be used to determine the acidic conditions and nutrient enrichment, as well as classification of water chemistry type.

Sediment Enzymes

Benthic organisms are in intimate contact with river sediments, and they are influenced by the physical and chemical properties of the sediment. Sediment enzyme activity serves as a functional indicator of key ecosystem processes. Analytical tests include DIN, DIC, TP and TN.

Chlorophyll a

Chlorophyll a is the pigment that makes plants and algae green. Its measurement is used to determine algal biomass in the water.

Periphyton Assemblage

Periphyton are diatoms and soft-bodied algae that are attached or otherwise associated with channel substrates. They can contribute to the physical stability of inorganic substrate particles, and provide habitat and structure. Periphyton are useful indicators of environmental condition because they respond rapidly and are sensitive to a number of anthropogenic disturbances, including habitat destruction, contamination by nutrients, metals, herbicides, hydrocarbons, and acidification.

Benthic Macroinvertebrate Assemblage

Benthic macroinvertebrates are bottom-dwelling animals without backbones ("invertebrates") that are large enough to be seen with the naked eye ("macro"). Examples of macroinvertebrates include: crayfish, snails, clams, aquatic worms, leeches, and the larval and nymph stages of many insects, including dragonflies, mosquitoes, and mayflies. Populations in the benthic assemblage respond to a wide array of stressors in different ways so that it is often possible to determine the type of stress that has affected a macroinvertebrate assemblage (Klemm et al., 1990). Because many macroinvertebrates have relatively long life cycles of a year or more and are relatively immobile, the structure of the macroinvertebrate assemblage is a response to exposure of present or past conditions.

Fish Assemblage

Monitoring of the fish assemblage is an integral component of many water quality management programs. The assessment will measure specific attributes of the overall structure of the ichthyofaunal community to evaluate biological integrity and water quality.

Physical Habitat Assessment

The physical habitat assessment of the sampling reach and the riparian zone (the region lying along a bank) will serve three purposes. First, habitat information is essential to the interpretation of what ecological condition is expected to be like in the absence of many types of anthropogenic impacts. Second, the habitat evaluation is a reproducible, quantified estimate of habitat condition, serving as a benchmark against which to compare future habitat changes that might result from anthropogenic activities. Third, the specific selections of habitat information collected aid in the diagnosis of probable causes of ecological degradation in rivers and streams. For example, some of the data collected will be used to calculate relative bed stability (RBS). RBS is an estimate of stream stability that is calculated by comparing the mean sediment size present to the sediment size predicted by channel and slope.

In addition to information collected in the field by the physical habitat assessment, the physical habitat description of each site includes many map-derived variables such as stream

order and drainage area. Furthermore, an array of information, including watershed topography and land use, supplements the physical habitat information. Together with water chemistry, the habitat measurements and observations describe the variety of physical and chemical conditions that are necessary to support biological diversity and foster long-term ecosystem stability.

Fecal Indicator (Enterococci)

Enterococci are bacteria that are endemic to the guts of warm blooded creatures. These bacteria, by themselves, are not considered harmful to humans but often occur in the presence of potential human pathogens (the definition of an indicator organism). Epidemiological studies of marine and fresh water bathing beaches have established a direct relationship between the density of *enterococci* in water and the occurrence of swimming-associated gastroenteritis.

Fish Tissue

The fish tissue contaminants indicator, which measures bioaccumulation of persistent toxics, is used to estimate national risks of fish consumption to humans. Various studies have been done on fish tissue contaminants focusing on different parts of the fish (e.g., whole fish, fillets, livers). The NRSA will focus on fillets because of its emphasis on human health.

Other Indicators / Site Characteristics

Pharmaceuticals and Personal Care Products (PPCP) will be sampled from fish tissue and water column at 154 pre-selected sites. These sites are defined as urban, boatable sites and will have an additional water grab taken to look at these emerging contaminants. Observations and impressions about the site and its surrounding catchment by field teams will be useful for ecological value assessment, development of associations and stressor indicators, and data verification and validation.

Table 1-1. Summary table of indicators for non-wadeable sites

Indicator	Specs/Location in Sampling Reach
In Situ measurements (pH, DO, temperature, conductivity)	Measurements taken at X site at midchannel; readings are taken at 0.5 m depth
Water chemistry (TP, TN [NH ₄ , NO ₃), basic anions and cations, alkalinity [ANC], DOC, TOC, TSS, conductivity	Collected from a depth of 0.5 m at the cross site at the center of the stream
Secchi Disk transparency	Measured at X site at midchannel
Chlorophyll a	Collected as part of water chemistry and periphyton samples
Sediment enzymes	Collected from 11 locations systematically placed at each site and combined into a single composite sample
Periphyton	Collected from 11 locations systematically placed at each site and combined into a single composite sample
Benthic macroinvertebrate assemblage (Littoral)	Collected from 11 locations systematically placed at each site and combined into a single composite sample
Fish Assemblage	Sampled throughout the sampling reach at specified locations
Physical habitat assessment	Measurements collected throughout the sampling reach at specified locations
Fecal indicator (enterococci)	Collected at the last transect one meter off the bank
Fish Tissue	Target species collected throughout the sampling reach as part of fish assemblage sampling
Drainage area	Done at desktop, and used in target population selection
Characteristics of watershed	Done at desktop using GIS and verified by state agencies
PPCP (Only at pre-defined urban sites)	Collected only at specified sites at the X site

Indicator	Specs/Location in Sampling Reach
In Situ measurements (pH, DO, temperature, conductivity)	One set of measurements taken at the X site in the center of the stream; readings are taken at 0.5 m depth
Water chemistry (TP, TN [NH ₄ , NO ₃), basic anions and cations, alkalinity [ANC], DOC, TOC, TSS, conductivity	Collected from a depth of 0.5 m at the X site at the center of the stream
Chlorophyll a	Collected as part of water chemistry and periphyton samples
Sediment enzymes	Collected from 11 locations systematically placed at each site and combined into a single composite sample
Periphyton	Collected from 11 locations systematically placed at each site and combined into a single composite sample
Benthic macroinvertebrate assemblage (Littoral)	Collected from 11 locations systematically placed at each site and combined into a single composite sample
Fish Assemblage	Sampled throughout the sampling reach at specified locations
Physical habitat assessment	Measurements collected throughout the sampling reach at specified locations
Fecal indicator (enterococci)	Collected at the last transect one meter off the bank
Drainage area	Done at desktop, and used in target population selection
Characteristics of watershed	Done at desktop using GIS and verified by state agencies

1.4 Supplemental Material to the Field Operations Manual

The Field Operations Manual describes field protocols and daily operations for crews to use in the NRSA. Following these detailed protocols will ensure consistency across regions and reproducibility for future assessments. Before beginning sampling at a site, crews should prepare a packet for each site containing pertinent information to successfully conduct sampling. This includes a road map and set of directions to the site, topographic maps, land owner access forms, sampling permits (if needed), site evaluation forms and other information necessary to ensure an efficient and safe sampling day.

Field crews will also receive a quick-reference handbook that contains tables and figures summarizing field activities and protocols from the Field Operations Manual. This waterproof handbook will be the primary field reference used by field teams after completing the required field training session. The field teams are also required to keep the field operations manual available in the field for reference and for possible protocol clarification.

Large-scale and/or long-term monitoring programs such as those envisioned for national surveys and assessments require a rigorous QA program that can be implemented consistently by all participants throughout the duration of the monitoring period. Quality assurance is a required element of all EPA-sponsored studies that involve the collection of environmental data (USEPA 2000a, 2000b). Field teams will be provided a copy of the integrated Quality Assurance

and Project Plan (QAPP). The QAPP contains more detailed information regarding QA/QC activities and procedures associated with general field operations, sample collection, measurement data collection for specific indicators, and data reporting activities. For more information on the Quality Assurance procedures, refer to the *National Rivers and Streams Assessment: Quality Assurance Project Plan (EPA 841-B-07-007).*

Related NRSA documents include the following: National Rivers and Streams Assessment: Quality Assurance Project Plan (EPA 841-B-07-007), National Rivers and Streams Assessment: Site Evaluation Guidelines (EPA 841-B-07-008), and National Rivers and Streams Assessment: Laboratory Methods Manual (EPA 841-B-07-010 or 841-B-07-011). These documents are available at: <u>http://www.epa.gov/owow/riverssurvey/index.html</u>.

2.0 DAILY OPERATIONS SUMMARY

This Field Operations Manual will be used for sampling at both wadeable and nonwadeable sites. The same indicators will be collected (with the exception of Secchi transparency and fish tissue, which are only collected at non-wadeable sites), but the sampling will be conducted with different protocols and equipment. This section presents a general overview of the activities that a field team is to conduct during a typical 1-day sampling visit to a site, whether wadeable or non-wadeable. General guidelines for recording data using standardized field data forms and sample labels are also presented. Finally, safety and health considerations and guidelines related to field operations are described.

2.1 Sampling Scenario

The Field methods for the NRSA are designed to be completed in one field day for most sites. Depending on the time needed for both the sampling and travel for the day, an additional day may be needed to complete sampling or for pre-departure and post-sampling activities (e.g., cleaning equipment, repairing gear, shipping samples, and traveling to the next site). Remote sites with lengthy or difficult approaches may require more time, and field crews will need to plan accordingly.

Each field team should define roles and responsibilities for each team member to organize field activities efficiently. Minor modifications to the sampling scenario may be made by teams; however the sequence of sampling events presented in the Figures 2-1 and 2-2 cannot be changed and is based on the need to protect some types of samples from potential contamination and to minimize holding times once samples are collected.

2.1.1 Non-wadeable Sites

A field crew for a non-wadeable field team typically will consist of four or five people in 2 boats. A minimum of two people are always required in a boat together to execute the sampling activities and to ensure safety. Typically, in non-wadeable sites, two crew members will work in the "habitat" boat, and two or three will work in the "fish" boat. One crew member on each boat is primarily responsible for boat operation and navigation. Any additional team members may either help collect samples, or may remain on the bank to provide logistical support. A daily field sampling scenario showing how the work load may be split between team members is presented in Figure 2-1. The following sections further define the sampling sequence and the protocols for sampling activities.

2.1.2 Wadeable Sites

A field crew for wadeable sites will typically consist of four people. Any additional team members may either help collect samples, or may remain on the bank to provide logistical support. A daily field sampling scenario showing how the work load may be split between team members is presented in Figure 2-2. The following sections further define the sampling sequence and the protocols for sampling activities.

The field team arrives at the site in the early morning to complete the sampling in a single day. The sampling sequence is to:

verify site and locate x-site (whole crew),

Divide into 2 groups and:

- conduct *in situ* measurements of dissolved oxygen, pH, temperature, and conductivity
- take Secchi disk transparency depth measurements at non-wadeable sites,
- collect water chemistry and chlorophyll a,
- conduct physical habitat characterization,
- collect periphyton samples,
- collect benthic samples,
- collect sediment enzyme samples,
- collect fish samples,
- collect fish tissue samples at non-wadeable sites,
- collect fecal indicator sample,
- filter fecal indicator, *chlorophyll a,* and periphyton samples,
- preserve and prepare all samples for shipment,
- review field forms,
- report sampling event,
- ship time-sensitive samples.

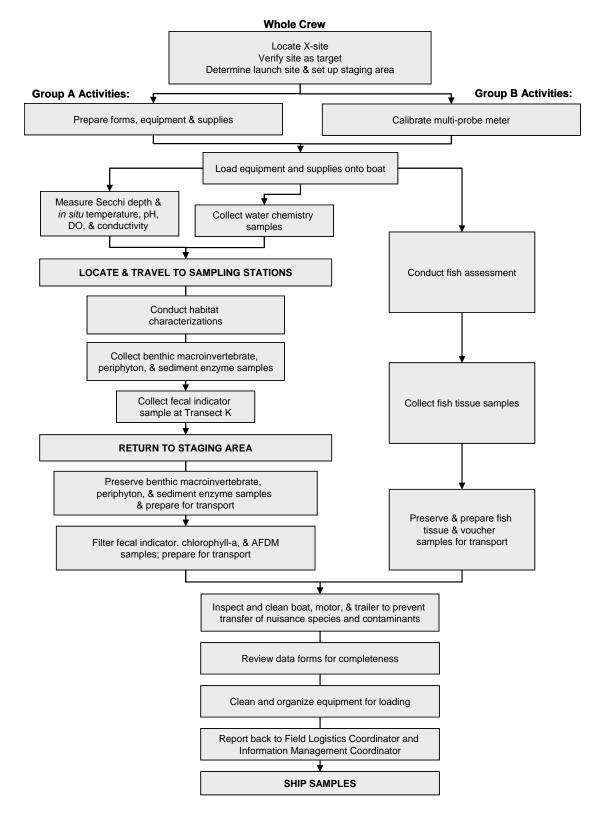


Figure 2-1. Field sampling scenario for non-wadeable sites.

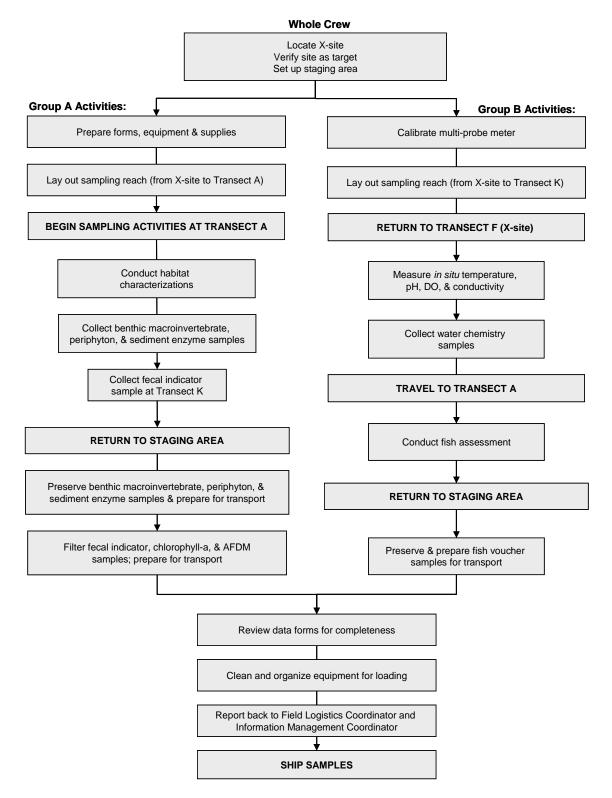


Figure 2-2. Field sampling scenario for wadeable sites.

2.2 Recording Data and Other Information

All samples need to be identified and tracked, and associated information for each sample must be recorded. To assist with sample identification and tracking, labels are preprinted with sample ID numbers (Figure 2-3).

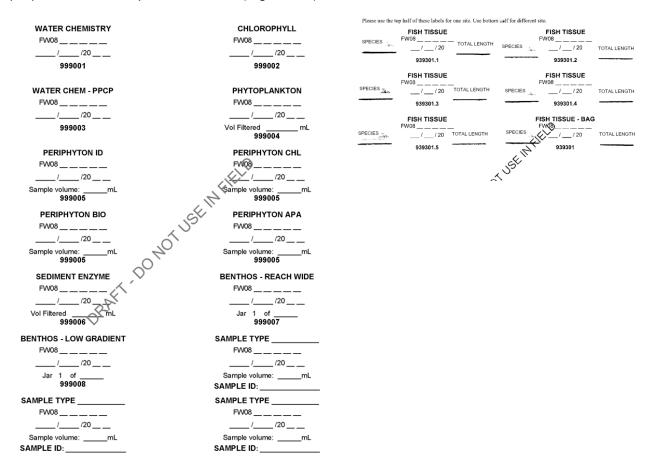


Figure 2-3. Example sample labels for sample tracking and identification.

It is imperative that field and sample information be **recorded accurately, consistently, and legibly**. The cost of a sampling visit coupled with the short index period severely limits the ability to resample a site if the initial information recorded was inaccurate or illegible. Guidelines for recording field measurements are presented in Table 2-1.

Table 2-1. Guidelines for recording field measurements and tracking information		
Activity	Guidelines	
Field Measurements		
Data Recording	Record measurement values and observations on data forms preprinted on water- resistant paper.	
	Use No. 2 pencil only (fine-point indelible markers can be used if necessary) to record information on forms.	
	Record data and information using correct format as provided on data forms.	
	Be sure to accurately record site IDs and sample numbers. For revisit samples use (<i>site ID</i>)-R to indicate the samples are from revisit sites. For duplicate samples, use (site ID)-D to indicate the samples are duplicates.	
	Print legibly (and as large as possible). Clearly distinguish letters from numbers (e.g., 0 versus O, 2 versus Z, 7 versus T or F, etc.), but do not use slashes.	
	In cases where information is recorded repeatedly on a series of lines (e.g., physical habitat characteristics), do not use "ditto marks" (") or a straight vertical line. Record the information that is repeated on the first and last lines, and then connect these using a wavy vertical line.	
	When recording comments, print or write legibly . Make notations in comments field only; avoid marginal notes. Be concise, but avoid using abbreviations or "shorthand" notations. If you run out of space, attach a sheet of paper with the additional information, rather than trying to squeeze everything into the space provided on the form.	
Data Qualifiers (Flags)	Use only defined flag codes and record on data form in appropriate field.	
	K = Measurement not attempted or not recorded.	
	Q = Failed quality control check; remeasurement not possible.	
	U = Suspect measurement; remeasurement not possible.	
	Fn = Miscellaneous flags ($n = 1, 2, etc.$) assigned by a field team during a particular sampling visit (also used for qualifying samples).	
	Explain reason for using each flag in comments section on data form.	
Sample Labels	Use adhesive labels with preprinted ID numbers and follow the standard recording format for each type of sample.	
	Use a pencil to record information on label. Cover the completed label with clear tape.	
	Record sample ID number from label and associated collection information on sample collection form preprinted on water-resistant paper.	
Sample Collection and Tracking		
Sample	Use only defined flag codes and record on sample collection form in appropriate	
Qualifiers	field.	
(Flags)	K = Sample not collected or lost before shipment; resampling not possible.	
	U = Suspect sample (e.g., possible contamination, does not meet minimum	

Table 2-1. Guidelines for recording field measurements and tracking information

Activity	Guidelines
	acceptability requirements, or collected by non-standard procedure).
	Fn = Miscellaneous flags (<i>n</i> =1, 2, etc.) assigned by a field team during a particular sampling visit (also used for field measurements).
	Explain reason for using flags in "Comments" on sample collection form.
Review of Labels and Data Collection Forms	Compare information recorded on labels and sample collection form for accuracy before leaving site.
	Review labels and data collection forms for accuracy, completeness, and legibility before leaving site.
	The Field Team Leader must review all labels and data collection forms for consistency, correctness, and legibility before transfer to the Information Management Center.

2.3 Safety and Health

Collection and analysis of samples can involve significant risks to personal safety and health. This section describes recommended training, communications, and safety considerations, safety equipment and facilities, and safety guidelines for field operations.

2.3.1 General Considerations

Important considerations related to field safety are presented in Table 2-2. It is the responsibility of the state or contractor project leader to ensure that the necessary safety courses are taken by all field personnel and that all safety policies and procedures are followed. Please follow your own agency's health and safety protocols, or refer to the *Health and Safety Guidance for Field Sampling: National Rivers and Streams Assessment* (available from the EPA Regional Coordinator) and *Logistics of Ecological Sampling on Large Rivers* (Flotemersch, et al. (editors) 2000). Additional sources of information regarding safety-related training include the American Red Cross (1979), the National Institute for Occupational Safety and Health (1981), U.S. Coast Guard (1987) and Ohio EPA (1990).

Field crew members should become familiar with the hazards involved with sampling equipment and establish appropriate safety practices prior to using them. Make sure all equipment is in safe working condition. Personnel must consider and prepare for hazards associated with the operation of motor vehicles, boats, winches, tools, and other incidental equipment. Boat operators should meet any state requirements for boat operation and be familiar with U.S. Coast Guard rules and regulations for safe boating contained in a pamphlet, *"Federal Requirements for Recreational Boats,"* available from a local U.S. Coast Guard Director or Auxiliary or State Boating Official (U.S. Coast Guard, 1987). Life jackets must be worn by crew members at all times on the water. All boats with motors must have fire extinguishers, boat horns, life jackets or flotation cushions, and flares or communication devices. Boats should stay in visual contact with each other, and should use 2-way radios to communicate.

Primary responsibility for safety while electrofishing rests with the crew chief. Electrofishing units may deliver a fatal electrical shock, and should only be used by qualified, experienced operators. Field crew members using electrofishing equipment must be insulated from the water, boat, and electrodes via rubber boots and linesman gloves. Use chest waders with nonslip soles and linesman gloves. DO NOT wear breathable waders while electrofishing. If waders become wet inside, stop fishing until they are thoroughly dry or use a dry pair. Avoid contact with the anode and cathode at all times due to the potential shock hazard. If you perspire heavily, wear polypropylene or some other wicking and insulating clothing instead of cotton. If it is necessary for a team member to reach into the water to pick up a fish or something that has been dropped, do so only after the electrical current is off and the anode is removed from the water. Do not resume electrofishing until all individuals are clear of the electroshock hazard. The backpack electrofishing equipment is equipped with a 45° tilt switch that interrupts the current. Do not make any modifications to the electrofishing unit that would hinder this safety switch. Avoid electrofishing near unprotected people, pets, or livestock. Discontinue activity during thunderstorms or rain. Team members should keep each other in constant view or communication while electrofishing. For each site, know the location of the nearest emergency care facility. Although the team leader has authority, each team member has the responsibility to question and modify an operation or decline participation if it is unsafe.

Table 2-2. General health and safety considerations.

Recommended Training

- First aid and cardiopulmonary resuscitation (CPR)
- Vehicle safety (e.g., operation of 4-wheel drive vehicles)
- Boating and water safety; whitewater safety if applicable
- Field safety (weather, personal safety, orienteering, site reconnaissance of prior to sampling
- Equipment design, operation, and maintenance
- Handling of chemicals and other hazardous materials

Communications

- Check-in schedule
- Sampling itinerary (vehicle used & description, time of departure & return, travel route)
- Contacts for police, ambulance, hospitals, fire departments, search and rescue personnel
- Emergency services available near each sampling site and base location
- Cell (or satellite) phone and VHF radio if possible

Personal Safety

- Field clothing and other protective gear including lifejackets for all team members
- Medical and personal information (allergies, personal health conditions)
- Personal contacts (family, telephone numbers, etc.)
- Physical exams and immunizations

A communications plan to address safety and emergency situations is essential. All field personnel need to be fully aware of all lines of communication. Field personnel should have a daily check-in procedure for safety. An emergency communications plan should include contacts for police, ambulance, fire departments, hospitals, and search and rescue personnel.

Proper field clothing should be worn to prevent hypothermia, heat exhaustion, sunstroke, drowning, or other dangers. Field personnel must be able to swim, and personal flotation devices must be used. Chest waders made of rubberized or neoprene material must always be worn with a belt to prevent them from filling with water in case of a fall. A personal flotation device (PDF) and suitable footwear must be worn at all times while on board a boat.

Many hazards lie out of sight in the bottoms of rivers and streams. Broken glass or sharp pieces of metal embedded in the substrate can cause serious injury if care is not exercised when walking or working with the hands in such environments. Infectious agents and toxic substances that can be absorbed through the skin or inhaled may also be present in the water or sediment. Personnel who may be exposed to water known or suspected to contain human or animal wastes that carry causative agents or pathogens must be immunized against tetanus, hepatitis, typhoid fever, and polio. Biological wastes can also be a threat in the form of viruses, bacteria, rickettsia, fungi, or parasites.

2.3.2 Safety Equipment

Appropriate safety apparel such as waders, linesman gloves, safety glasses, etc. must be available and used when necessary. First aid kits, fire extinguishers, and blankets must be readily available in the field. Cellular or satellite telephones and/or portable radios should be provided to field teams working in remote areas in case of an emergency. Supplies (e.g., clean water, anti-bacterial soap, ethyl alcohol) must be available for cleaning exposed body parts that may have been contaminated by pollutants in the water.

2.3.3 Safety Guidelines for Field Operations

General safety guidelines for field operations are presented in Table 2-3. Personnel participating in field activities should be in sound physical condition and have a physical examination annually or in accordance with organizational requirements. All surface waters and sediments should be considered potential health hazards due to potential toxic substances or pathogens. Persons must become familiar with the health hazards associated with using chemical fixing and/or preserving agents. Chemical wastes can be hazardous due to flammability, explosiveness, toxicity, causticity, or chemical reactivity. All chemical wastes must be discarded according to standardized health and hazards procedures (e.g., National Institute for Occupational Safety and Health [1981]; U.S. EPA [1986]).

During the course of field research activities, field teams may observe violations of environmental regulations, may discover improperly disposed hazardous materials, or may observe or be involved with an accidental spill or release of hazardous materials. In such cases it is important that the proper actions be taken and that field personnel do not expose themselves to something harmful. The following guidelines should be applied:

First and foremost, protect the health and safety of all personnel. Take necessary steps to avoid injury or exposure to hazardous materials. If you have been trained to take action such as cleaning up a minor fuel spill during fueling of a boat, do it. However, you should always err on the side of personal safety.

Field personnel should never disturb or retrieve improperly disposed hazardous materials from the field to bring back to a facility for "disposal". To do so may worsen the impact, incur personal liability for the team members and/or their respective organizations, cause personal injury, or cause unbudgeted expenditure of time and money for proper treatment and disposal of the material. Notify the appropriate authorities so they may properly respond to the incident.

For most environmental incidents, the following emergency telephone numbers should be provided to all field teams: State or Tribal department of environmental quality or protection, U.S. Coast Guard, and the U.S. EPA regional office. In the event of a major environmental incident, the National Response Center may need to be notified at 1-800-424-8802.

Table 2-3. General safety guidelines for field operations

- Two crew members must be present during all sample collection activities, and no one should be left alone while in the field. Boats should proceed together down the river.
- Use caution when sampling in swift or deep water. Wear a suitable PFD and consider using a safety tether held by an assistant.
- Use extreme care walking on riprap. Rocks can shift unexpectedly and serious falls are possible.
- Field crew members using electrofishing equipment must be insulated from the water, boat, and electrodes via non-breathable waders and linesman gloves. Use chest waders with nonslip soles.
- Electrofishing units may deliver a fatal electrical shock, and should only be used by qualified, experienced operators.
- Do not attempt to collect samples from vertical or near vertical banks.
- Professional-quality breathable waders with a belt are recommended for littoral sampling only, and at a safe distance from the electrofishing sampling. Neoprene boots are an alternative, but should have sturdy, puncture-resistant soles.
- Use caution using the Ponar-type samplers. The jaws are sharp and may close unexpectedly.
- Exposure to water and sediments should be minimized as much as possible. Use gloves if necessary, and clean exposed body parts as soon as possible after contact.
- All electrical equipment must bear the approval seal of Underwriters Laboratories and must be properly grounded to protect against electric shock.
- Use heavy gloves when hands are used to agitate the substrate during collection of benthic macroinvertebrate samples.
- Use appropriate protective equipment (e.g., gloves, safety glasses) when handling and using hazardous chemicals.
- Crews working in areas with poisonous snakes must check with the local Drug and Poison Control Center for recommendations on what should be done in case of a bite from a poisonous snake.
- Any person allergic to bee stings, other insect bites, or plants (i.e., poison ivy, oak, sumac, etc.) must take proper precautions and have any needed medications handy.
- Field personnel should also protect themselves against deer or wood ticks because of the potential risk of acquiring pathogens that cause Rocky Mountain spotted fever and Lyme disease.
- Field personnel should be familiar with the symptoms of hypothermia and know what to do in case symptoms occur. Hypothermia can kill a person at temperatures much above freezing (up to 10°C or 50°F) if he or she is exposed to wind or becomes wet.
- Field personnel should be familiar with the symptoms of heat/sun stroke and be prepared to move a suffering individual into cooler surroundings and hydrate immediately.
- Handle and dispose of chemical wastes properly. Do not dispose any chemicals in the field.

This page is intentionally blank

3.0 BASE SITE ACTIVITIES

Field teams conduct a number of activities at their base site (i.e., office or laboratory, camping site, or motel). These include tasks that must be completed both before departure to the site and after return from the field (Figure 3-1). Close attention to these activities is required to ensure that the field teams know (1) where they are going, (2) that access is permissible and possible, (3) that equipment and supplies are available and in good working order to complete the sampling effort, and (4) that samples are packed and shipped appropriately.

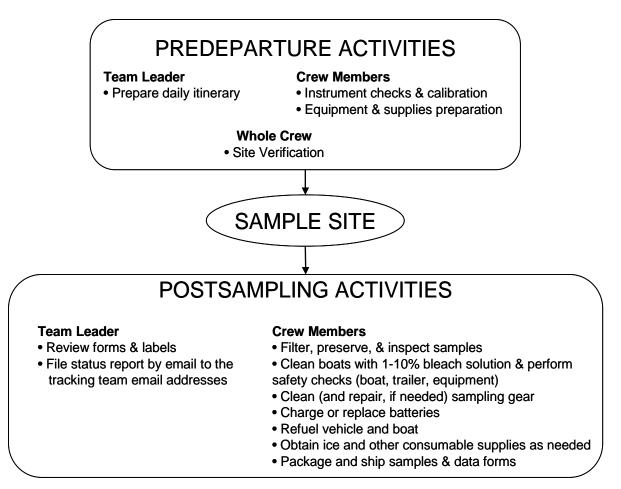


Figure 3-1. Overview of base site activities.

3.1 **Predeparture Activities**

Predeparture activities include the development of a daily itinerary, instrument checks and calibration, and equipment and supply preparation. Procedures for these activities are described in the following sections.

3.1.1 Daily Itineraries

The Field Team Leaders are responsible for developing daily itineraries. This entails compiling maps, contact information, copies of permission letters, and access instructions (a "site packet"). Additional activities include confirming the best access routes, calling the landowners or local contacts, confirming lodging plans, and coordinating rendezvous locations with individuals who must meet with field teams prior to accessing a site. Changes in the itinerary during the week, such as canceling a sampling day, must be relayed by the crew leader to the Field Logistics Coordinator as soon as possible.

3.1.2 Instrument Checks and Calibration

Each field team must test and calibrate instruments prior to sampling. Calibration can be conducted prior to departure for the site or at the site, with the exception of dissolved oxygen (DO) calibration. Because of the potential influence of altitude, DO calibration is to be performed only at the site. Field instruments include a global positioning system (GPS) receiver, a multiprobe unit for measuring DO, pH, temperature, and conductivity, and electrofishing equipment. Field teams should have access to backup instruments if any instruments fail the manufacturer performance tests or calibrations. Prior to departure, field teams must:

- Turn on the GPS receiver and check the batteries. Replace batteries immediately if a battery warning is displayed.
- Test and calibrate the multi-probe meter. Each field team should have a copy of the manufacturer's calibration and maintenance procedures. All meters should be calibrated according to manufacturer specifications provided along with the meter. Once a week, crews should check their multiprobe against the provided Quality Check Solution. This QCS is provided to all crews in their base kits and is used to check pH and conductivity measurements.
- Turn on the electrofishing unit and check the batteries. Be sure to have fully charged backup batteries. If using a gas powered electrofishing unit, check the oil and gas supply.

3.1.3 Equipment and Supply Preparation

Field teams must check the inventory of supplies and equipment prior to departure using the equipment and supplies checklists provided in Appendix A; use of the lists is mandatory. Specific equipment will be used for wadeable vs. non-wadeable sites; be sure to bring both sets of equipment if you are unsure what type of site you will be visiting that day. Pack meters, probes, and sampling gear in such a way as to minimize physical shock and vibration during transport. Pack stock solutions as described in Table 3-1. Follow the regulations of the Occupational Safety and Health Administration (OSHA).

Solution	Use	Preparation
Bleach (1-10%)	Clean nets, gear, and inside of boat	Add 10 -100 mL bleach to 1 L distilled water.
Calibration QCS	QCS for pH and conductivity calibration	None (included in site kits)
Lugol's	Preserve periphyton ID samples	None (included in site kits)
95% Ethanol	Preserve benthic samples	None
Formalin	Preserve fish voucher samples	None

Table 3-1.	Stock solutions	. uses. and	d methods for	preparation.
		,,		

Site kits of consumable supplies for each sampling site will be delivered based on the schedule each crew provides prior to the sampling season. Field crew leaders MUST provide a schedule in order to receive the site kits. If your schedule changes, report the change as soon as possible to the Field Logistics Coordinator (Jennifer Pitt: jennifer.pitt@tetratech.com; copy Tara.Kolodiej@tetratech.com; 410-356-8993). The site kit will include data forms, labels, sample jars, bottles, filters, and other supplies (see complete list in Appendix A). The teams must inventory these site kits before departure. The teams should also label and package the sample containers into site kits prior to departure. Container labels should not be covered with clear tape until all information is completed during sampling at the river/stream. Store extra site kits of sampling supplies in the vehicles. Inventory these extra site kits prior to each site visit.

3.2 Post Sampling Activities

Upon return to the launching location after sampling, the team must review all completed data forms and labels for accuracy, completeness, and legibility and make a final inspection of samples. If information is missing from the forms or labels, the Field Team Leader is to provide the missing information. The Field Team Leader is to initial all data forms after review. If obtainable samples are missing, the site should be rescheduled for complete sampling. Other post sampling activities include: inspection and cleaning of sampling equipment, supply inventory, sample and data form shipment, and communications.

3.2.1 Review Data Forms and Labels

The field crew leader is ultimately responsible for reviewing all data forms and labels for accuracy, completeness, and legibility. Ensure that written comments use no "shorthand" or abbreviations. The data forms must be thoroughly reviewed. Upon completing the review, the field crew leader must initial the field forms to indicate that they are ready to be sent to the Information Management Center. Each sample label must also be checked for accuracy, completeness, and legibility. The field crew leader must cross-check the sample numbers on the labels with those recorded on the data forms.

3.2.2 Inspect and Prepare Samples

All samples need to be inspected and appropriately preserved and packaged for transport. Check that all samples are labeled, and all labels are completely filled in. Check that each label is covered with clear plastic tape. Check the integrity of each sample container, and be sure there are no leaks. Make sure that all sample containers are properly sealed. Make sure that all sample containers are properly preserved for storage or immediate shipment.

3.2.3 Equipment Cleanup and Check

All equipment and gear must be cleaned and disinfected between sites to reduce the risk of transferring nuisance species and pathogens. Species of primary concern in the U.S. include Eurasian watermilfoil (Myriophyllum spicatum), zebra mussels (Dreissena polymorpha), New Zealand mud snails (Potamopyrgus antipodarum), Myxobolus cerebralis (sporozoan parasite that causes salmonid whirling disease), and *Batrachochytrium dendrobatidis* (a chytrid fungus that threatens amphibian populations). Field crews must be aware of regional species of concern, and take appropriate precautions to avoid transfer of these species. There are several online resources regarding invasive species, including information on cleaning and disinfecting gear, such as the Whirling Disease Foundation (www.whirling-disease.org), the USDA Forest Service (Preventing Accidental Introductions of Freshwater Invasive Species, available from http://www.fs.fed.us/invasivespecies/documents/Aquatic is prevention.pdf), and the California Dept. of Fish and Game (Hosea and Finlayson 2005). General information about freshwater invasive species is available from the U.S. Geological Survey Nonindigenous Aquatic Species website (http://nas.er.usgs.gov), the Protect Your Waters website that is co-sponsored by the U.S. Fish and Wildlife Service (http://www.protectyourwaters.net/hitchhikers), and the Sea Grant Program (http://www.sgnis.org).

Handle and dispose of disinfectant solutions properly, and take care to avoid damage to lawns or other property. Table 3-2 describes equipment care. Inspect all equipment, including nets, boat, and trailer, and clean off any plant and animal material. Prior to leaving a site, drain all bilge water and live wells in the boat. Inspect, clean, and handpick plant and animal remains from vehicle, boat, motor, and trailer. Before moving to the next site, if a commercial car wash facility is available, wash vehicle, boat, and trailer and thoroughly clean (hot water pressurized rinse--no soap). Rinse equipment and boat with 1% - 10% bleach solution to prevent the spread of exotics. Note that many organizations now recommend **against** using felt-soled wading boots in affected areas due to the difficulty in removing myxospores and mudsnails.

3.2.4 Supply Inventory

A site kit containing field forms, labels, and consumable supplies (see App. A) will be provided to the field crews for each sampling site. Site kits will be shipped out based on the schedule that each field crew provides prior to the start of the sampling season. Field crew leaders MUST provide a schedule in order to receive the site kits. Crews should include in this schedule the primary fish taxonomist at each site. If your schedule changes, please report the change as soon as possible to the Field Logistics Coordinator (Jennifer Pitt: jennifer.pitt@tetratech.com; copy Tara.Kolodiej@tetratech.com; 410-356-8993). Prior to sampling, inspect each site kit to ensure all supplies are included. Store an extra, complete backup site kit in the vehicle. Check the inventory of supplies and equipment at the end of the day using the checklists provided in Appendix A. Make sure specific supplies are not running low due to sampling errors, accidental loss, or increased demand at certain sites (e.g., some sites may require extra benthic macroinvertebrate bottles). Make sure you have enough site kits for sites that will require duplicate samples.

Table 3-2. Postsampling equipment care

1. Clean for biological contaminants.

- Prior to departing site, drain all water from live wells and buckets used to hold and process fish, and drain all bilge water from the boat.
- Inspect motor, boat, trailer, sampling gear, waders, boots, etc. for evidence of mud, snails, plant fragments, algae, animal remains, or debris, and remove using brushes or other tools.
- At the base location, inspect and rinse periphyton sampling equipment, dip nets, kick nets, waders, and boots with water and dry. Use one of the procedures below to disinfect gear if necessary.

Additional precautions to prevent transfer of Whirling Disease spores, New Zealand mudsnails, and amphibian chytrid fungus.

Before visiting the site, consult the site dossier and determine if it is in an area where whirling disease, New Zealand mud snails, or chytrid fungus are known to exist. Contact the local State fishery biologist to confirm the existence or absence of these organisms.

If the stream is listed as "positive" for any of the organisms, or no information is available, avoid using felt-soled wading boots, and, after sampling, disinfect all fish and benthos sampling gear and other equipment that came into contact with water or sediments (i.e., waders, boots, etc.) by one of the following procedures:

Option A:

- 1. Soak gear in a 10% household bleach solution for at least 10 minutes, or wipe or spray on a 50% household bleach solution and let stand for 5 minutes
- 2. Rinse with clean water (do not use stream water), and remove remaining debris
- 3. Place gear in a freezer overnight or soak in a 50% solution of Formula 409® antibacterial cleaner for at least 10 minutes or soak gear in 120°F (49°C) water for at least 1 minute.
- 4. Dry gear in direct sunlight (at least 84 °F) for at least 4 hours.

Option B:

- 1. Soak gear in a solution of Sparquat® (4-6 oz. per gallon of water) for at least 10 minutes (Sparquat is especially effective at inactivating whirling disease spores).
- 2. Place gear in a freezer overnight or soak in 120°F (49°C) water for at least 1 min.
- 3. Dry gear in direct sunlight (at least 84 °F) for at least 4 hours.

2. Clean and dry other equipment prior to storage.

- Rinse coolers with water to clean off any dirt or debris on the outside and inside.
- Rinse periphyton sampling equipment with tap water at the base location.
- Make sure conductivity meter probes are rinsed with deionized water and stored moist.
- Rinse carboy and all beakers used to collect water chemistry samples three times with deionized water. Place beakers in a 1-gallon sealable plastic bag with a cube container for use at the next stream.
- Check nets for holes and repair or locate replacements.
- 3. Inventory equipment and supply needs and relay orders to the Field Logistics Coordinator.
- 4. Remove GPS, multi-probe meter, and electrofishing unit from carrying cases and set up for predeparture checks and calibration. Examine the oxygen membranes for cracks, wrinkles, or bubbles. Replace if necessary, allowing sufficient time for equilibration.
- 5. Recharge/replace batteries as necessary.
- 6. Replenish fuel and oil; if a commercial car wash facility is available, thoroughly clean vehicle and boat (hot water pressurized rinse—no soap).

3.2.5 Shipment of Samples and Forms

The field team must ship or deliver time-sensitive samples (i.e., water chemistry, *chlorophyll a*) to the appropriate analytical laboratories as soon as possible after collection. Other samples (see App. C) may be shipped or delivered in batches provided they can be adequately preserved. Batched samples should be shipped every two weeks. Field teams are to fill out one sample tracking form for each sample shipment. On each sample tracking form, the following information must be recorded:

- Airbill or package tracking number
- Date sample(s) were sent
- Site ID where each sample was collected
- Sample type code:

CHEM – Chemistry	ENTE – Enterococci
CHLA – Chlorophyll a	BERW – Benthos (reach-wide sample)
SEDE – Sediment enzymes	BELG – Benthos (low gradient)
PERI – Periphyton	FTIS – Fish Tissue
PAPA – Periphyton APA	VOUC Fish voucher sample

- Date when the sample(s) was collected (1st day if sampling took >1 day)
- Site visit number (e.g., 1 for first visit, 2 for re-visit)
- Sample ID number encoded on label
- Number of containers for each sample
- For Fish Tissue samples (FTIS), record species and length of each fish specimen under Comments
- Any additional comments

Packaging and shipping guidelines for each type of sample are summarized in Figure 3-3. **Detailed sample shipping instructions are presented in Appendix C.**

After checking the Field Forms for completeness and accuracy, the Field Crew Leader will make copies of all Field Forms and retain the copies. The <u>original</u> forms will be mailed to **Marlys Cappaert in the FedEx envelope provided in the site kit.** A pre-addressed airbill will be provided. The original forms must be sent because they are printed specifically to be used in a scanner for automated data entry. Field forms may be retained and mailed in batches throughout the field season (about every 2 weeks) when it is convenient to make the copies.

3.2.6 Status Reports and Communications

After each sampling event, the field crew leader must file a status report via email. This status report email must be sent before the water chemistry/*chlorophyll* sample is shipped, and no later than the following morning after **each** sampling event. An electronic tracking and sample status report form will be emailed to the field crew leaders after their training session. **Complete the tracking and sample status report form for each site, even sites that are**

visited but not sampleable, and email the form to <u>SampleTracking@epa.gov</u>. If you are not able to fill out the electronic form, the Tracking and Sample Status form provided in the field kits can be faxed on a non VOIP fax machine or called into the number provided on the bottom of the TSS form.

The separate, scanable Tracking and Sample Status form (Fig 3.2) provided in the set of field forms must be filled out first; the information from this form will be used to fill out the status report form. The scanable Tracking and Sample Status form will then be shipped in the container with the samples. A tracking form must accompany every sample.

You must follow a standardized naming convention when naming the electronic status report files. The naming convention for fresh samples is "labid_siteid_datecollected.doc:"

ex. WRS_FW08OR123_05_05_2008.doc

For batch/retained samples, the naming convention is "BR_siteid_datecollected.doc:"

ex. BR_FW08OR123_05_05_2008.doc (in this case, the site id and date collected will refer to the first sample on the page)

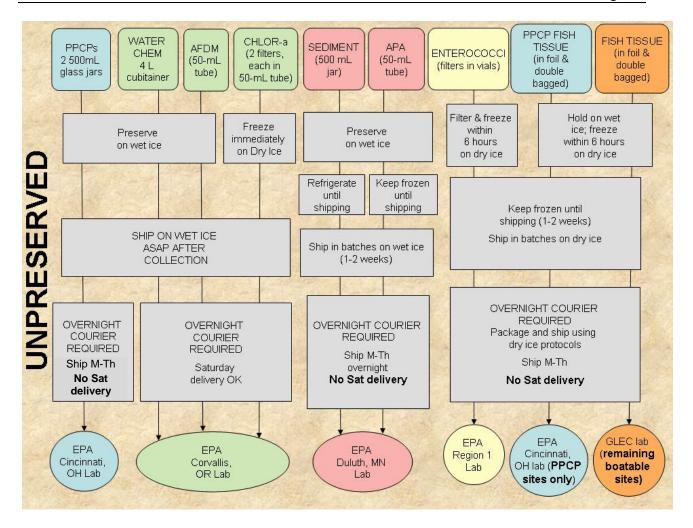
It is very important to complete the status report **after every sampling event**. This will enable the Field Logistics Coordinator to track sampling progress. More importantly, it will enable the Information Management Center to track which samples were collected at each site, and to immediately track the shipment of the time-sensitive water chemistry and *chlorophyll* samples that will be shipped after each sampling event. If the form cannot be emailed by the following morning after sampling, fax the scanable Tracking and Sample Status form (Fig 3.2) or phone in ALL of the information (read the ENTIRE form to the voice mail machine) to the Information Management Coordinator:

Information Management Coordinator: Marlys Cappaert

Sample Tracking (phone): 541-754-4663; Sample Tracking (fax): 541-754-4637

A second form will be provided to track batched and retained samples while they are being held and when they are in transit to the appropriate laboratory. This form must be filled out and emailed right away when samples are brought into your lab or holding facility, and then again when the samples are shipped. The scanable Tracking (Batched and Retained) Form (Fig 3.3) will be filled out and shipped in the container with the samples.

The field crews should call or email the Field Logistics Coordinator (Jennifer Pitt; 410-356-8993; Jennifer.Pitt@tetratech.com) to report any problems encountered. The Field Logistics Coordinator monitors all aspects of field sampling activities. The Field Logistics Coordinator and Information Management Coordinator will contact the EPA Headquarters Coordinator regularly to provide regional updates throughout the sampling period. The EPA Headquarters Coordinator will maintain a database of all sampling activities and reconnaissance information. For questions or problems related to fish tissue or PPCP water sampling, contact Leanne Stahl or Blaine Snyder. See Appendix E for contact information. The EPA Regional Coordinator serves as the central point of contact for information exchange among field teams, the management and QA staffs, the information management team, and the public. A list of EPA Regional Coordinators and their contact information can be found at the beginning of this manual on page xv.


.

SITE ID: FW08 XX C	000	Visit #: • 1 0	2 D	ate Collected: 0	7.10.1.1.2.0.08
SENT BY: J. SHMC	E	SENDER PHONE:	(123) 456-7890	0
State of Site Location:	X X UPS ○ Hand Deliv	ream: XX-/	DATE SEN		12008
	Si	te Status Report			
SAMPLEABLE	NOT SAMPLEABLE	Temporarily Not Sampleable		SAMPL	E STATUS
O Wadeable	O Dry - Visited	O Not Boatable	0	No Samples	All Sample Types
Boatable	O Dry - Not Visited		If only	Collected some samples were of	collected collected
O Partial Wadeable	O Wetland	O Other		the second s	O Enterococci (ENTE)
O Partial Boatable	O Map Error	NO ACCESS	Contraction of the second s	r Chl (WCHL)	O Sediment (SEDE)
O Wadeable Interrupted		O Access Denied			O Fish Tissue (FTIS)
O Boatable Interrupted	O Other	O Inaccessible	Sector States		O Bent Reachwide (BERW)
C Altered	Other	O Temp Inaccessible			O Bent Low Gradient (BELG O Phytoplankton (PHYT)
Status Comments			Orenpi		O Phytopiankton (PHTT)
9.9.9.0.0.5.2					
Sample Types	Condition Codes	Chain of Custo	dv		Contact Information
CHEM - Water Column Chlorophyll PCHL - Periphyton Chlorophyll PBIO - Periphyton Biomass	Filled in by recipie C = Cracked jar F = Frozen L = Leaking ML = Missing label NP = Not preserved W = Warm OK = Sample OK T = Thawed			Tracking Help Marlys Cappa PH: 541-754-4 Lab: Attn: Phil Moi c/o U.S. EPA 1350 Goodnig Corvallis, OR	: ert 467 naco, Dynamac ht Ave 97333
					787 epamail.epa.gov
	EAX TH	IIS FORM TO 541-7	54-463	7	Draft

Figure 3-2. Tracking and Sample Status Form

SENT BY: JOHN DO	67	SEND	NE: (123) 456 -72	890	STAT	E OF CATION:	XX	TEAM: XX-	1
Complete this top section f			AMPLES - UNPRE			ation in wh	en samole		
SHIPPED O FedEx O						0	arroumpio		_
AIRBILL/TRACKING NUMBER:					ATE SEM	NT:	_/	/ 2 0	
Site ID	Date Sample Collected MM/DD/YYYY	Visit	Sample ID	Sample	Туре	# of Containers		Comments	Cond
FW08		01							
FW08	i i i i i i i i i i i i i i i i i i i	01							1
EW08		01							+
FW08	4	02		·	<u> </u>	-			
FW08		02		1-1-1-				-	_
FW08		02		<u> </u>					
FW08		01 02							
DATE : 0.7.1.1.5	12008		DEQ 12: PITAL CITY,)	34 MA					
Site ID	Date Sample Collected	1	Sample ID	Sample	Туре	# of Containers	Co	mmonts	Cond
FW08 X X 0.0,0	07/01/2008	●1 02	999007	BE	R.W.	1			
FW08 X.X.0.0.0		01 02	999008	BE		1			-
FW08 X. X. 0.0.2		•1 02	999027	BE		1			
FW08 X. X. 0.0.3		●1 02	999037	8.F.	RN	1			
FW08 X X 0.0.4		•1 02	999047	BE	- 25	2			
FW08 X X 0.0 5		●1 02	999057	B.E.	_	1			
	Lab		Chain of Cu	12	-	mple Ty	pes	Condition Co	odes
O MED - DULUTH			Filled in by re	ecipient	PRESER	VED - RETA Benthos Re		Filled in by re	cipient
			Date Received:		BELG - E	Senthos Lov ish Vouche	w Gradient	C = Cracked F = Frozen	jar
O FISH TISSUE LAB			// Received by:	-	PERI - Pe	eriphyton I	D (.1)	L = Leaking ML = Missin	g label
	3		Kocewea by.		SEDE - S	ERVED - B lediment Er sh Tissue		NP = Not pro W = Warm	
O BENTHIC LAB						eriphyton / nterococci		OK = Sampl T = Thawed	
			Tracking Help: Marlys Cappaert						
 ○ FISH MUSEUM ○ OTHER 			p) 541-754-4467					Draft	

*PPCP samples are only collected at a subset of pre-selected sites

Figure 3-4. Sample packaging and shipping procedures for unpreserved samples

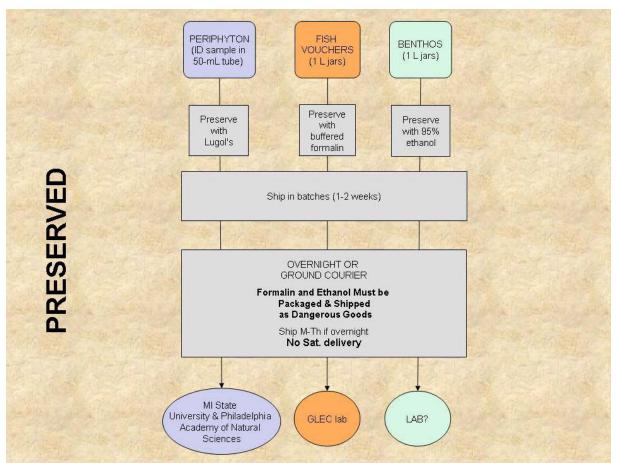
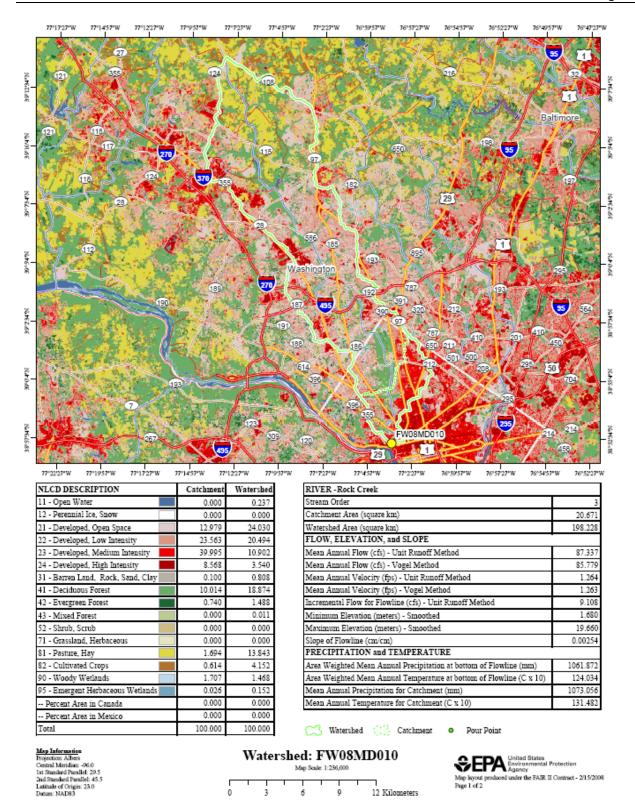


Figure 3-5. Sample packaging and shipping procedures.

4.0 INITIAL SITE PROCEDURES

When you arrive at a site, you must first confirm you are at the correct site, and then determine if the site meets the criteria for sampling and data collection activities (See Site Evaluation Guidelines EPA-841-B-07-008). Inspect the selected reach for appropriate access, safety, and general conditions. Decide whether the site is at base flow condition and not unduly influenced by rain events which could affect the representativeness of field data and samples. If you determine that the site can be sampled, lay out a defined reach within which all sampling and measurement activities are conducted.

4.1 Site Verification Activities


4.1.1 Locating the X-Site


River and stream sampling points were chosen using the National Hydrography Dataset (NHD), in particular NHD-Plus, following a systematic randomized selection process (Stevens and Olsen, 2004). Each point is referred to as the "X-site." The "X-site" is the mid-point of the sampling reach, and it will determine the location and extent for the rest of the sampling reach. The latitude/longitude of the "X-site" is listed on the site spreadsheet that was distributed by the EPA Regional Coordinators.

Conditions encountered at rivers and streams across the country will vary tremendously. To orient the crews and help them anticipate sampling and access challenges, EPA MED prepared site dossiers for all of the sampling sites. Each dossier contains maps with the X-site plotted, and they show general conditions at each site at two scales. The "watershed" scale page shows the position of the site in the landscape and stream network. The "site" scale page shows the area around the site where samples will be taken.

Watershed Page Overview

The watershed page (Figure 4-1) shows land cover (National Land Cover Data 2001), cities, major roads, stream networks, and county, state, watershed and catchment boundaries of the site's watershed. The map scale and level of detail for this page varies according to watershed size. Catchments (nominally, a site's local watershed) are spatially nested within the stream's watershed. Catchment boundaries and hydrologic connectivity were defined in the National Hydrography Dataset Plus (<u>http://www.horizon-systems.com/nhdplus/;</u> NHDPlus) using a Digital Elevation Model (DEM). Watersheds are aggregates of all the catchments upstream from a site. In small watersheds, the catchment may be the entire watershed. In large watersheds, the catchment may not be visible. Pour-points are the downstream end of the watershed. Catchment and watershed attributes (Table 4-1) include areas downstream of the site to the pour-point.

0

б

Table 4-1. Landscape and NHDPlus attributes for the watershed page (data were summarized fromNHDPlus and NLCD2001)

Measure	Scale	Units
Area	Catchment	km ²
	Watershed	
NLCD2001 land cover classes	Catchment	% area
	Watershed	
Mean annual precipitation	Catchment	mm
Mean annual temperature	Catchment	C° x 10
Stream order	Stream (flowline)	Strahler units
Flow	Stream (flowline)	cfs
Velocity	Stream (flowline)	fps
Elevation	Stream (flowline)	meters
Slope	Stream (flowline)	cm/cm
Area-weighted mean annual precipitation	Stream (flowline)	mm
Area-weighted mean annual temperature	Stream (flowline)	C° x 10

Site Page Overview

The site page (Figure 4-2) shows the area immediately surrounding the sampling site. The sampling site, roads, and stream lines are labeled on an aerial photograph. Aerial imagery is provided by ArcGIS Online and features i-cubed Nationwide Select imagery. This dataset consists of imagery from various sources and time periods. For more information on the imagery in these maps, please see <u>http://arcgisonline.esri.com</u> (Layer name: ESRI_Imagery_World_2D). Road data is provided by the U.S. EPA and features 2007 Tele Atlas North America data. The catchment boundary and pour-point are noted. The map scale is fixed at 1:8,000. In some wide rivers, the scale ratio was reduced in order to show shorelines. Sampling stations within the site are distributed according to mean channel width (refer to National Rivers and Streams Assessment Field Operations Manual; EPA 841-B-07-009, 2008). Tabular information includes Site ID, river name, stream order, state, county, latitude and longitude coordinates of the site. An inset map locates the site in the state.

Table 4-2 is the checklist for equipment and supplies required to conduct site verification protocols described in this section. It is a subset of the checklist in Appendix A that is used at a base site to assure that all equipment and supplies are taken to and available at the site. While traveling from a base location to a site, record a detailed description of the route taken on page 1 of the Verification Form (Figure 4-3). This information will help others find the site again in the future. Upon reaching the X-site, confirm its location and verify that you are at the correct stream. Use all available means to accomplish this, including map coordinates, locational data from the GPS, and any other evidence such as signs or conversations with local residents, and record the information on page 1 of the Verification Form (Figure 4-3). Complete a verification

form for each site visited (regardless of whether you end up sampling it), following the procedures described in Table 4-3.

For locating and verifying site	 Sampling permit and landowner access(if required) Field Operations Manual and/or laminated quick reference guide Site dossier, including access information, site spreadsheet with map coordinates, street and/or topographic maps with "X-site" marked NRSA Fact Sheets GPS unit (preferably one capable of recording waypoints) with manual, reference card, extra battery pack Surveyor's flagging tape (to mark transects if not using GPS waypoints) Laser rangefinder 50 m or 100 m measuring tape with reel (if not using rangefinder)
For recording measurements	 Clipboard #2 pencils Site Verification Form Fine-tipped indelible markers to write on flagging

Table 4-2. Equipment and supplies list for site verification.

4.1.2 Determining the Sampling Status of a Stream

After you confirm the location of the X-site, evaluate the stream reach surrounding the Xsite and classify the stream into one of three major sampling status categories: sampleable, non-sampleable, or no access (Table 4-3). The primary distinction between "Sampleable" and "Non-Sampleable" streams is based on the presence of a defined stream channel, water content during base flow, and adequate access to the site.

Even if there is no water at the X-site coordinates, you may still sample the site as an "interrupted flow" stream (Section 4.3.1). If the channel is dry at the X-site, determine if there is water present anywhere within the sampling reach. *There must be greater than 50% water throughout the channel reach*. If there are isolated pools of water within the reach that equal greater than 50% of the reach length, proceed to sample using the modified procedures outlined in Section 4.3.1. If less than 50% of the reach has water , classify the site as "Dry-visited" on the verification form. NOTE: Do not "slide" the reach (Section 4.2) for the sole purpose of obtaining more water to sample (e.g., the downstream portion of the reach has water, but the upstream portion does not).

Record the sampling status and pertinent site verification information on the Verification Form (Figure 4-3). If the site is non-sampleable or inaccessible, no further sampling activities are conducted. Replace the site with the first oversample site on the state list within the appropriate Strahler order category (Section 1.1.2). Notify the EPA Regional Coordinator and Field Logistics Coordinator (Section 3.2.6) that the site was replaced.

SITE NAME: PILO	T RIVER	DATE: 07/01/200	8 VISIT	• 1 02 03
	oo State of S	Site Location: Don't forge		TEAM: XX-1
	STREAM/RIVER VE	RIFICATION INFORMATION		
Stream/River Verified by (fill O Other (Describe He		⊃ Local Contact ● Signs ● R ○ Not Verifi		l Topo. Map in Comments)
Coordinates	Latitude North	Longitude West	# of Satellites	Are GPS Coordinate w/i 10 Sec. of map?
Degrees, Minutes, and Seconds MAP OR Decimal Degrees	4.5 0.7 1.3	1.2.1 0.7 43	0 ≤3	● Yes
GPS Degrees, Minutes, and Seconds OR Decimal Degrees	4.5 0.7 1.7	1.2.1 0.7 5.0	@ ≥4	O No GPS Datum Used (e.g. NAD27):
				NAD 84
A.V.C.A		MPLE THIS SITE?	(14.00.4.CON)	
YES IF	YES, check one below	ONO If NO, check on	e below	
 Partial - Sampled by boat (> Wadeable Interrupted - Not Boatable Interrupted - Not of 	g (>50% of reach sampled). Explain belo •50% of reach sampled). Explain below. continuous water along reach continuous water along reach nnel Present but differs from Map	O Map Error - No evidence cha	e or Pond) -TEMPOR Int crew - Res ent crew - Res	ARY chedule for this year schedule for this year to Reach Site)
GENERAL COMMENTS	3:			
	(EAST BANK). PI	BENTON, GO SOUT DELIC LAUNCH SITE A OUT SITE AT CANY	T FIR	ST CREEK

Figure 4-3. Verification Form (page 1).

Table 4-3.Site Verification Procedures

- 1. Find the stream/river location in the field corresponding to the X-site coordinates and the "X" marked on the maps prepared for each site in the site dossier. Record the routes taken and other directions on the Verification Form so that others can visit the same location in the future. If the site is non-wadeable, locate public or private launch sites.
- 2. Use a GPS receiver to confirm the latitude and longitude at the X-site with the coordinates provided for the site (datum = NAD 27). Record these on the Verification Form.
- 3. Use all available means to insure you are at the correct stream/river as marked on the map, including 1:24,000 USGS maps, topographic landmarks, road maps, signs, local contacts, etc.
- 4. Scan the channel upstream and downstream from the X-site, decide if the site is sampleable, and mark the appropriate circle on the verification form. If the channel is dry at the X-site, determine if water is present within 75 m upstream and downstream of the X-site. Assign one of the following sampling status categories to the stream. Record the category on the Verification Form.

SAMPLEABLE CATEGORIES

- <u>Wadeable</u> Continuous water, ≥50% wadeable
- Boatable
- <u>Partial</u> Sampled by wading (>50% of reach sampled)
- Partial Sampled by boat (>50% of reach sampled)
- <u>Wadeable Interrupted</u>: not continuous water along reach
- <u>Boatable Interrupted</u>: not continuous water along reach
- <u>Altered Channel</u>: Stream/river channel present but differs from map.

NON-SAMPLEABLE CATEGORIES

Permanent

- <u>Dry Channel</u>: Less than 50% water within the reach. Record as "Dry-Visited." If site was determined to be dry (or otherwise non-perennial) from another source and/or field verified before the actual sampling visit, record as "Dry-Not visited".
- <u>Wetland</u>: Standing water present, but no definable stream channel. If wetland is surrounding a stream channel, define the site as Target but restrict sampling to the stream channel.
- <u>Map Error</u>: No evidence that a water body or stream channel was ever present at the X-site.
- <u>Impounded stream</u>: Stream is submerged under a lake or pond due to man-made or natural (e.g., beaver dam) impoundments. If the impounded stream is still wadeable, record it as "Altered" and sample.
- <u>Other</u>: Examples would include underground pipelines, or a non-target canal. A sampling site must meet both of the following criteria to be classified as a non-target canal:
 - The channel is constructed where no natural channel has ever existed.
 - The sole purpose/usage of the reach is to transfer water. There are no other uses of the waterbody by humans (e.g., fishing, swimming, boating).

Temporary

- Not Boatable need a different crew
- <u>Not Wadeable</u> need a different crew
- <u>Other</u>: The site could not be sampled on that particular day, but is still a target site. Examples might include a recent precipitation event that has caused unrepresentative conditions.

NO ACCESS TO SITE CATEGORIES

- Access Permission Denied: You are denied access to the site by the landowners.
- <u>Permanently Inaccessible</u>: Site is unlikely to be sampled by anyone due to physical barriers that prevent access to the site (e.g., cliffs).
- <u>Temporarily Inaccessible</u>: Site cannot be reached due to barriers that may not be present at a future date (e.g. forest fire, high water, road temporarily closed, unsafe weather conditions)

5. Do not sample non-target or "Non-sampleable" or "No Access" sites. Fill in the "NO" circle for "Did you sample this site?" and check the appropriate circle in the "Non-Sampleable" or "No Access" section of the Verification Form; provide detailed explanation in comments section.

4.1.3 Sampling During or After Rain Events

Avoid sampling during high flow rainstorm events. It is often unsafe to be in the water during such times. In addition, biological and chemical conditions during such episodes are often quite different from those during baseflow. On the other hand, sampling cannot be restricted to only strict baseflow conditions. It would be next to impossible to define "strict baseflow" with any certainty at an unstudied site. Such a restriction would also greatly shorten the index period when sampling activities can be conducted. Thus, some compromise is necessary regarding whether to sample a given stream because of storm events. To a great extent, this decision is based on the judgment of the field team. Some guidelines to help make this decision are presented in Table 4-4. The major indicator of the influence of storm events will be the condition of the stream itself. If you decide a site is unduly influenced by a storm event, do not sample the site that day. Notify the Field Logistics Coordinator or other central contact person to reschedule the stream for another visit.

Table 4-4. Guidelines to determine the influence of rain events

- If it is running at bank full discharge or the water seems much more turbid than typical for the class of stream do not sample it that day.
- Do not sample that day if it is unsafe to be in the water.
- Keep an eye on the weather reports and rainfall patterns. Do not sample a stream during periods of prolonged heavy rains.
- If the stream seems to be close to normal summer flows, and does not seem to be unduly influenced by storm events, sample it even if it has recently rained or is raining.

4.1.4 Site Photographs

Taking site photographs is an optional activity, but should be considered if the site has unusual natural or man-made features associated with it. If you do take photographs with a digital camera at a site, date-stamp the photograph and include the site ID. Alternatively, start the sequence with one photograph of an 8.5×11 inch piece of paper with the site ID, waterbody name, and date printed in large, thick letters. After the photo of the site ID information, take at least two photographs at the X-site, one in the upstream direction and one downstream. Take any additional photos you find interesting after these first three pictures. Keep a log of your photographs and briefly describe each one.

4.2 Laying out the sampling reach

Unlike chemistry, which can be measured at a point, most of the biological and habitat structure measures require sampling a certain length of a stream to get a representative picture of the ecological community. A length of 40 times the channel width is necessary to characterize the habitat and several biotic assemblages associated with the sampling reach. Establish the sampling reach about the X-site using the procedures described in Tables 4-5a (non-wadeable sites) and 4-5b (wadeable sites). It is **highly recommended** that you lay out the sampling reach for large, non-wadeable sites before you go in the field using maps, aerial photos, and/or GIS software. This will save time on the field day.

Scout the sampling reach to make sure it is clear of obstacles that would prohibit sampling and data collection activities. Record the channel width used to determine the reach length, and the sampling reach length upstream and downstream of the X-site on page 2 of the Verification Form as shown in Figure 4-4. Figures 4-5 and 4-6 illustrate the principal features of the established sampling reach for both non-wadeable and wadeable sites, including the location of 11 cross-section transects used for collecting samples and physical habitat measurements. The figures also show the specific sampling stations on each cross-section transect at the two different types of sites for collection of sediment enzyme, periphyton, and benthic macroinvertebrate samples.

Before leaving the stream, complete a rough sketch map of the stream reach you sampled on page 2 of the Verification Form (Figure 4-4). In addition to any other interesting features that should be marked on the map, note any landmarks/directions that can be used to find the X-site for future visits.

Table 4-5a. Laying out the sampling reach at non-wadeable sites

Laying out the sampling reach at the base site (recommended at boatable sites)

- 1. On an aerial photo or a 1:100:000 topographic map, locate the X-site using the coordinates provided for the site and the maps prepared in the site dossier for the site.
- Determine the average wetted width of the channel at the X-site using maps and/or aerial photographs. To get an average, determine the wetted width of the channel at 5 places of "typical" width within approximately 5 channel widths upstream and downstream from the X-site. Average the 5 readings together and round to the nearest 1 m.
- 3. Multiply the average wetted width by 40 to determine the reach length. If the average width is <4 m, use 150 m as a **minimum** reach length. If the average width is >100 m, use 4 km as a **maximum** reach length.
- 4. From the X-site, measure a distance of 20 channel widths downstream using GIS software. Be careful to measure all of the bends of the river/stream; do not artificially straighten out the line of measurement. The downstream endpoint is marked as Transect K. Measure 20 channel widths upstream from the X-site; the upstream end of the reach is marked as Transect A.
- 5. Measure 1/10 of the reach length downstream from Transect A, and mark this spot as Transect B. Continue marking the 11 transects A K in increments of 1/10 of the reach length. Enter the waypoints for the transects into a GPS unit so the transects are easy to find on the sampling day.
- Assign the sampling station at Transect A randomly (e.g., use the seconds display on a digital watch to select the initial sampling station: 1 5 = Left Bank, 6 9 = Right Bank). From here, three stations will be on the first (randomly selected) side of the river, then 2 on the other, then 2 on the first side, and so on through Transect K (as shown in Figure 4-5).
- 7. When you are at the site, "ground truth" the wetted width measurements and proceed to Steps 9 & 10 to see if the layout needs to be adjusted.

Laying out the sampling reach in the field

8. Use a laser range finder to determine the wetted width of the channel at 5 places of "typical" width within approximately 5 channel widths upstream and downstream from the X-site. Average the 5 readings together and round to the nearest 1 m. If the average width is <4 m, use 150 m as a minimum reach length. If the average width is >100 m, use 4 km as a maximum reach length. Record this width on page 2 of the Site Verification Form.

For channels with "interrupted flow", estimate the width based on the unvegetated width of the channel (again, with a 150 m minimum and 4 km maximum).

- 9. Check the condition of the stream about the X-site by having one team member go upstream and one downstream. Each person proceeds until they can see the stream to a distance of 20 times the average channel width (equal to one-half the sampling reach length) determined in Step 1.
- 10. Determine if the reach needs to be adjusted about the X-site due to confluences with higher order

streams (downstream), or a change to a lower order streams (upstream), impoundments (lakes, reservoirs, ponds), physical barriers (e.g., falls, cliffs), or because of access restrictions to a portion of the initially-determined sampling reach. Refer to Table 4-6 for specific instructions.

11. Starting at the X-site (or the new midpoint of the reach if it had to be adjusted as described in Step 10), measure a distance of 20 channel widths downstream using a GPS unit, laser rangefinder, or tape measure. Be careful to measure all of the bends of the river/stream; do not artificially straighten out the line of measurement. Enter the channel to make measurements only when necessary to avoid disturbing the stream channel prior to sampling activities. The downstream endpoint is flagged as Transect K. The upstream end of the reach is flagged as Transect A.

12. Sampling Stations at non-wadeable sites

At Transect A, use the seconds display on a digital watch to select the initial sampling station for transect samples: 1 - 5 = Left Bank, 6 - 9 = Right Bank. Mark "L" or "R" on the transect flagging.

- 13. Measure 1/10 of the reach length downstream from Transect A. Flag this spot as Transect B. Assign the sampling station systematically after the first random selection as shown in Figure 4-5. Three stations will be on the first side of the river, then 2 on the other, then 2 on the first side, and so on through Transect K.
- 14. Proceed downstream with a GPS unit, laser rangefinder, or tape measure and flag the positions of 9 additional transects (labeled "C" through "K" as you move upstream) at intervals equal to 1/10 of the reach length. Continue to assign the sampling stations systematically.

Table 4-5b. Laying out the sampling reach at wadeable sites

 Use a surveyor's rod, tape measure, or laser range finder to determine the wetted width of the channel at 5 places of "typical" width within approximately 5 channel widths upstream and downstream from the X-site. Average the 5 readings together and round to the nearest 1 m. If the average width is <4 m, use 150 m as a minimum reach length. If the average width is >100 m, use 4 km as a maximum reach length. Record this width on page 2 of the Site Verification Form.

For channels with "interrupted flow", estimate the width based on the unvegetated width of the channel (again, with a 150 m minimum and 4 km maximum).

- 2. Check the condition of the stream about the X-site by having one team member go upstream and one downstream. Each person proceeds until they can see the stream to a distance of 20 times the average channel width (equal to one-half the sampling reach length) determined in Step 1.
- 3. Determine if the reach needs to be adjusted about the X-site due to confluences with higher order streams (downstream), a change to a lower order streams (upstream), impoundments (lakes, reservoirs, ponds), physical barriers (e.g., falls, cliffs), or because of access restrictions to a portion of the initially-determined sampling reach. Refer to Table 4-7.
- 4. Starting at the X-site (or the new midpoint of the reach if it had to be adjusted as described in Step 3), measure a distance of 20 channel widths down one side of the stream using a GPS unit, laser rangefinder, or tape measure. Be careful not to "cut corners". Enter the channel to make measurements only when necessary to avoid disturbing the stream channel prior to sampling activities. This endpoint is the downstream end of the reach, and is flagged as Transect "A".

5. Sampling Stations at wadeable sites:

- At Transect A, use the seconds display on a digital watch to select the initial sampling station for standard transect samples: 1-3="Left", 4-6="Center", 7-9=Right. Mark "L", "C", or "R" on the transect flagging; the 3 potential collection points are roughly equivalent to 25%, 50%, and 75% of the channel width, respectively.
- 6. Measure 1/10 of the required reach length upstream from transect A. Flag this spot as transect B. Assign the sampling station systematically after the first random selection (Figure 4-6 & Table 4-6).
- 7. Proceed upstream with the tape measure and flag the positions of 9 additional transects (labeled "C" through "K" as you move upstream) at intervals equal to 1/10 of the reach length. Continue to assign the sampling stations systematically.
- 8. Benthic macroinvertebrates at "low gradient" streams: A second, separate composite is collected at low gradient streams to include the edge habitats (0%, 50%, and 100% channel width). The initial sampling station will be the first to the right of the one selected for the standard sample (Table 4-5). For example, if the sampling station for transect A (standard), was "C", then the initial transect A sampling station for the second sample would be "R". This second pattern would be R, L, C, R,

	LLOT RI	VER	DATE: 0.7.	D. 1. 1 2 0 D	8 VISIT:	01 02 0
SITE ID: FW	08 XX 000	0				AM: XX-/
		STREAM/RIVER	REACH DETERMI	NATION		
hannel Width	DISTANCE (m) FROM X-SITE	Total Reach			
Reach (m)	Ipstream Length	Downstream Length	Length Intended (m)	Co	omment	
.4.2.	. 8.4.0			FISHING REA	CH = 84	10 m
Î		OX K	FOREST			
	For case		PASTURIE	FOREST		
	APPON COMPY	OREST P	PASTURIE	FOREST ELOW Bio/Chem		Forms
	Fe	OR BET	PASTURIS CAPPER UNI	FLOW	Habitat	Forms Review
Joe St	FI	OR EST P NAME	PASTURIS CAPPER UNI	E FLOW Bio/Chem	A STREET STREET	Review
JOE SH GEORGE	FI	OREST P NAME	PASTURIS CAPPER UNI	E FLOW Bio/Chem	0	Review
Joe St	FU IMOE DOE	OREST P NAME	PASTURIS CAPPER UNI	E FLOW Bio/Chem	0	Review

Figure 4-4. Verification Form (page 2)

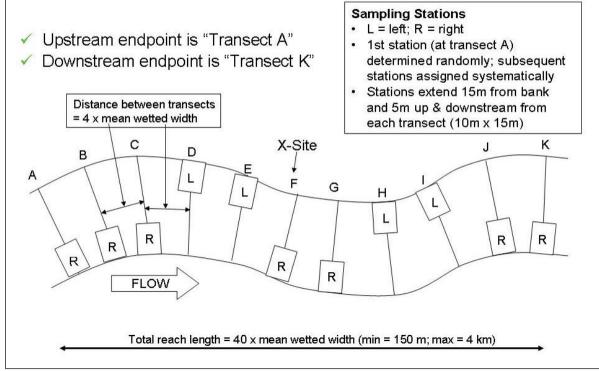


Figure 4-5. Sampling reach features for a non-wadeable site.

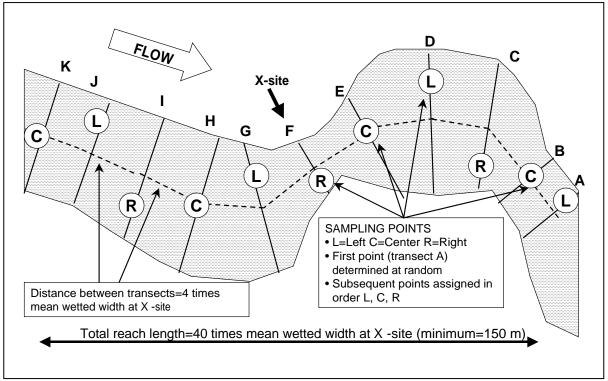


Figure 4-6. Sampling reach features for a wadeable site.

Table 4-6. Sample point distribution in wadeable streams (the Transect A sample point for the standard sample is randomly selected; the secondary sample point distribution is used only to collect the second benthic macroinvertebrate sample in low gradient wadeable streams (L=left, C=center, R=right))

		PRI	MARY	SAMP	LE						
Transect A	Transect	В	С	D	Е	F	G	Н	I	J	К
If you randomly select "LEFT"	Then continue sequence	С	R	L	С	R	L	С	R	L	С
SEC	ONDARY SAMPL	E- Low	gradie	ent ben	thic ma	croinve	ertebra	ate onl	у		
Transect A	Transect	В	С	D	E	F	G	Н	I	J	К
Select next in sequence to start 2 nd pattern "CENTER"	Then continue sequence	R	L	С	R	L	С	R	L	С	R

There are some conditions that may require sliding the reach about the X-site (i.e., the X-site is no longer located at the midpoint of the reach) to avoid features we do not wish to or physically cannot sample across. Sliding the reach involves noting the distance of the barrier, confluence, or other restriction from the X-site, and flagging the restriction as the endpoint of the reach. Add the distance to the other end of the reach, such that the total reach length remains the same, but it is no longer centered about the X-site. Table 4-7 describes when you should and should not slide the sampling reach.

Table 4-7. Sliding the sampling reach

- 1. Slide the reach if you run into an impoundment (lake, pond, or reservoir), so that the lake/stream confluence is at one end.
- 2. Slide the reach if you run into an impassible barrier (e.g., waterfall, cliff, navigation dam) so that the barrier is at one end.
- 3. When you are denied access permission to a portion of the reach, you can slide the reach to make it entirely accessible; use the point of access restriction as the endpoint of the reach.
- 4. Note the distance of the barrier, confluence, or other restriction from the X-site, and flag the restriction as the endpoint of the reach. Add the distance to the other end of the reach, so the total reach length remains the same, but it is no longer centered about the X-site.
- 5. Do not slide the reach so that the X-site falls outside of the reach boundaries.
- 6. Do not proceed upstream into a lower order stream or downstream into a higher order stream when laying out the stream reach (order is based on 1:100,000 scale maps).
- 7. **Do not slide a reach to avoid man-made obstacles** such as bridges, culverts, rip-rap, or channelization. These represent important features and effects to study.
- 8. Do not slide a reach to gain more water to sample if the flow is interrupted (Section 4.3.1).
- 9. Do not slide a reach to gain better habitat for benthos or fish,

4.3 Modifying Sample Protocols for High or Low Flows

4.3.1 Streams with Interrupted Flow

You cannot collect the full complement of field data and samples from streams that are categorized as "Interrupted" (Table 4-8). Note that no data should be collected from streams that are completely "Dry" as defined in Table 4-8. Interrupted streams will have some cross-sections amenable to biological sampling and habitat measurements and some that are not. To be considered target, streams must have greater than 50% water in the reach length within the channel (can be isolated pools). Modified procedures for interrupted streams are presented in Table 4-8. Samples for water chemistry (Section 5) will be collected at the X-site (even if the reach has been adjusted by "sliding" it). If the X-site is dry and there is water elsewhere in the sample reach, collect the sample from a location having water with a surface area >1 m² and a depth >10 cm.

Collect data for the physical habitat indicator along the entire sample reach from interrupted streams, regardless of the amount of water present at the transects. Obtain depth measurements along the deepest part of the channel (the "thalweg") along the entire sampling reach to provide a record of the "water" status of the stream for future comparisons (e.g., the percent of length with intermittent pools or no water). Other measurements associated with characterizing riparian condition, substrate type, etc., are useful to help infer conditions in the stream when water is flowing.

Table 4-8. Reach layout modifications for interrupted streams

- Streams with less than 50% of reach length containing water (not necessarily continuous) are considered dry and are not sampled.
- If more than 50% of the channel has water and if the X-site is dry but there is flowing water or a pool of water having a surface area > 1 m² and a depth > 10 cm somewhere along the defined sampling reach, take the water sample at the pool or flowing water location that is nearest to the X-site. Note that the sample was not collected at the X-site and where on the reach the sample was collected on the field data form.
- Do not collect a water sample if there is no acceptable location within the sampling reach. Record a "K" flag for the chemistry sample on the sample collection form and explain why the sample was not collected in the comments section of the form.

Physical Habitat, Periphyton, Sediment Enzymes, and Benthic Macroinvertebrates

- Obtain a complete thalweg profile for the entire reach. At points where channel is dry, record depth as 0 cm and wetted width as 0 m.
- At each of the transects (cross-sections), sample the stream depending on flow status:

<u>DRY CHANNEL</u>: No surface water anywhere in cross-section; collect all physical habitat data. Use the unvegetated area of the channel to determine the channel width and the subsequent location of substrate sampling points. Record the wetted width as 0 m. Record substrate data at the sampling points located in the unvegetated, but dry, channel. Do not collect periphyton, sediment enzymes, or benthic macroinvertebrates from this transect.

<u>DAMP CHANNEL</u>: No flowing water at transect, only puddles of water < 10 cm deep; collect all physical habitat data. Do not collect periphyton, sediment enzymes, or benthic macroinvertebrates from this transect.

<u>WATER PRESENT</u>: Transect has flow or pools > 10 cm deep; collect all data and measurements for physical habitat, periphyton, sediment enzymes, benthic macroinvertebrate, and fish indicators, using standard procedures.

4.3.2 Partially Wadeable Sites

Some wadeable sites will have sections that are too deep or swift to wade safely, and it will be impossible to do all of the wadeable sampling protocols at every transect. At these sites, keeping safety in mind, try to do as much sampling and data collection as you can with the wadeable procedures. The amount of sampling that can actually be done while wading will depend on the extant conditions. Only sample or measure what can be done **safely**. Make detailed comments on the Verification Form describing what the conditions were like and where sampling occurred. Use the sketch map on the back of the Verification Form to indicate problem areas and where samples were collected if you had to go off transect. If barriers prohibit physically reaching the X-site, then the site is not a Sampleable site; it should be coded as "No Access - Inaccessible" on the Verification Form.

4.3.3 Braided Rivers and Streams

Depending upon the geographic area and/or the time of the sampling visit, you may encounter a stream having "braided" channels, which are characterized by numerous subchannels that are generally small and short, often with no obvious dominant channel. If you encounter a braided stream, establish the sampling reach using the procedures presented in Table 4-9. Figuring the mean width of extensively braided rivers and streams for purposes of setting up the sample reach length is challenging. For braided channels, measure the mean width and bankfull width as defined in the physical habitat protocols (Sections 5.2 and 6.2). For relatively small streams (mean bankfull width \leq 15 m) the sampling reach is defined as 40 times the mean bankfull width. For larger streams (>15 m), sum the actual wetted width of all the braids and use that as the width for calculating the 40 channel width reach length. If there is any question regarding an appropriate reach length for the braided system, it is better to overestimate. Make detailed notes and sketches on the Verification Form (Fig. 4-3 and Fig. 4-4) about what you did. It is important to remember that the purpose of the 40 channel width reach length is to sample enough stream to incorporate the variability in habitat types. Generally, the objective is to sample a long enough stretch of a stream to include 2 to 3 meander cycles (about 6 pool-riffle habitat sequences). In the case of braided systems, the objective of this protocol modification is to avoid sampling an excessively long stretch of stream. In a braided system where there is a 100 m wide active channel (giving a 4 km reach length based on the standard procedure) and only 10 m of wetted width (say five, 2 m wide braids), a 400 m long sample reach length is likely to be sufficient, especially if the system has fairly homogenous habitat throughout its length.

Table 4-9. Modifications for braided streams

1. Estimate the mean width as the bankfull channel width as defined in the physical habitat protocol.

- If the mean width is \leq 15 m, set up a 40 x channel width sample reach in the normal manner.
- If >15 m, sum up the actual wetted width of all the braids and use that as the width for calculating the 40 x channel width reach length. Remember the minimum reach length is always 150 m.
- If the reach length seems too short for the system in question, set up a longer sample reach, taking into consideration that the objective is to sample a long enough stretch of a stream to include at least 2 to 3 meander cycles (about 6 pool-riffle habitat sequences).

2. Make detailed notes and sketches on the Verification Form about what you did.

5.0 NON-WADEABLE RIVERS

5.1 Water Quality

This section describes the procedures and methods for the field collection and analysis of the water quality indicators (in-situ measurements, water chemistry, Secchi Disk transparency, and sediment enzymes) from **non-wadeable** streams and rivers. Refer to Appendix E for PPCP water sampling procedures at the designated urban river sites.

5.1.1 In Situ Measurements of Dissolved Oxygen, pH, Temperature, and Conductivity

5.1.1.1 Summary of Method

Measure dissolved oxygen (DO), pH, temperature, and conductivity using a calibrated multi-parameter water quality meter (or sonde). Take the measurements mid-channel at the X-site. Take the readings at 0.5 m depth. Measure the site depth accurately before taking the measurements. Take care to avoid the probe contacting bottom sediments, as the instruments are delicate.

5.1.1.2 Equipment and Supplies

Table 5.1-1 provides the equipment and supplies needed to measure dissolved oxygen, pH, temperature, and conductivity. Record the measurements on the Field Measurement Form, as seen in Figure 5.1-1.

For taking measurements and calibrating the water quality meter	 Multi-parameter water quality meter with pH, DO, temperature, and conductivity probes. Extra batteries De-ionized and tap water Calibration cups and standards QCS calibration standard Barometer or elevation chart to use for calibration
For recording measurements	Field Measurement FormPencils (for data forms)

Table 5.1-1. Equipment and supplies—DO, pH, temperature, and conductivity

5.1.1.3 Multi-Probe Sonde

Dissolved Oxygen Meter

Calibrate the DO meter prior to each sampling event. It is recommended that the probe be calibrated in the field against an atmospheric standard (ambient air saturated with water) prior to launching the boat. In addition, manufacturers typically recommend periodic comparisons with a DO chemical analysis procedure (e.g., Winkler titration) to check accuracy and linearity.

	FIE	LD MEASURE	MENT FO	RM - BOATA	BLE	ру (I	nitieli;	=
SITE ID	: FW08 ¥>	(00)		DATE: 0	q[1]	200	.9.	
			a na stratica dita		and a start and the second second second	sheer dent		Galiba d
strument manu	ufacturer and model:	1. 90, 0.0		veyor w		Sond	<u>e</u>	_
lı	nstrument (D number	" <u>EPA 12</u>	3456	Opera	tor: <u>J</u> , DO	و		
	Thermometer Reading (°C)	Sensor Reading (℃)	Flag		Comments	•		
가 같은 사람이 가 나라. 이 같은 사람이 가 다 같은	15.2	15.0						
anti din stati	, , <u>, , , , , , , , , , , , , , , , , </u>	Ba	rometric	Calibration		Displayed		
	Elevation		ressure nm Mg)	Value	·	Value		Fleg
	20	0.0m		1.0.0.0		0.0.0	Omg/L .●%	
	N.	1 Description	Cal. STD 1	Value	Cal. STD 2 Descript	ion	Cal. STD :	2 Valu
	DHTE	Suffer.	-7	00 pt	+ 4 Bat	1	4.	00
	1 ¹ 11111		ilbration Verifie	d with Quality Con		. 0.0		<u></u>
k 2010 noba tenibah Karingan		QCS Descrip		•	QCS True	QCS Me	beruae	Flag
				2 0	1 0.9		00	
al an		NIST PL	1		<u> </u>		90	
ACPANCE IN MINE	Cal. STD	1 Description	Cal. STD 1	Value %	Çû. STD 2 Descript	ion	Cal. STD	z valu
	KCI.	Standard	147	<u></u>				
		c	2	ମ କିର୍ମ୍ Quality Con				
		QCS Descrip	ation Operation		QCS True (µ5/cm @25°C)	QCS Meas	ured (µS/cm @25°C)	Fla
n an tha tha an thail An thairte an thailte	Dilute	NJST Pho	son the t	when	75,		I	
				i ali manda da el alimpi de la como el la como de la com Como de la como de la co Como de la como de la c				
		and the second second						
			<u></u>					
ANSECT:			Left Ctr. Right Ctr	O CENTER	O Left Ctr	Ŏ Lef	7	
	(Ime of Day (HH:MM)			0:15				
PO (mg/L) XX.X			9.7				
Temp	. (°C) XX.X			20.4				
	рн хх.хх			7,77				
Cond. (µ\$/cm)	@25°C) XX,X			<u> </u>		· · · · ·		
	d to 25°C ? Q Y		ON	OY ON	OY OF	Y C) N	
epth Disk Disa	appears (m)			<u>. L. A.O</u>		<u> </u>		
Depth Disk Rea	· · · · · ·	·		<u>0.f.</u> .l.				
Clear	to Bottom?	<u> </u>	<u> </u>	<u> </u>	0	0		
			t com service monetary Alazarian di saara di Ala	ANTAL AREA DATA	na an an tao an tao an tao an Tao an tao an	a da ser a ser	an e gortykasy of Second Contracts	244 B
A STATE AND A S								
an a							12. F.	

Figure 5.1-1. Field Measurement Form.

pH Meter

Calibrate the pH meter prior to each sampling event. Calibrate the meter in accordance with the manufacturer's instructions and with the team agency's existing SOP. You must also conduct a quality control check with the provided standard to verify the calibration and periodically evaluate instrument precision (see Section 3.1.2). Once a week, each crew must check their multi-probe against the QCS that was in each base kit. Any irregularities must be reported to the Field logistics coordinator immediately.

Temperature Meter

Check the accuracy of the sensor against a thermometer that is traceable to the National Institute of Standards (NIST) at least once per sampling season. The entire temperature range encountered in the NRSA should be incorporated in the testing procedure and a record of test results kept on file.

Conductivity Meter

Calibrate the conductivity meter prior to each sampling event. Calibrate the meter in accordance with the manufacturer's instructions. The entire conductivity range encountered in the NRSA should be incorporated in the testing procedure and a record of test results kept on file. You must also conduct a quality control check with the provided standard to verify the calibration and periodically evaluate instrument precision (see Section 3.1.2). Once a week, each crew must check their multi-probe against the QCS that was in each base kit. Any irregularities must be reported to the Field logistics coordinator immediately.

5.1.1.4 Sampling Procedure

Table 5.1-2 presents step-by-step procedures for measuring dissolved oxygen, pH, temperature, and conductivity.

Table 5.1-2. Sampling procedure—temperature, pH, conductivity and dissolved oxygen.

- 1. Check meter and probes and calibrate according to manufacturer's specifications.
- 2. Check the calibration against the provided QCS solution for pH and conductivity and record the results on the field sheet as the QCS Measured value. This should be done at least once a week.
- 3. Record the true value of the QCS solution from the stock solution container on the field sheet as QCS True.
- 4. Samples are taken mid-channel, at the X site, at a depth of 0.5 meters or at a mid-depth if less than 1 meter deep.
- 5. Lower the sonde in the water and measure DO, pH, temperature, and conductivity at 0.5 m depth.
- 6. Record the measurements on the Field Measurement Form.
- 7. Flag any measurements that the team feels needs further comment or when a measurement cannot be made.
- 8. If sampling at the X-site is not possible, move to another part of the reach to take the measurements (as close to the X-site as possible), record the letter of the nearest transect in the "TRANSECT" box and more detailed reasons and/or information in the Comments section.

5.1.2 Water Chemistry Sample Collection and Preservation

5.1.2.1 Summary of Method

The water chemistry samples will be analyzed for total phosphorus (TP), total nitrogen (TN), total ammonia-nitrogen (NH₄), nitrate (NO₃), basic anions, cations, total suspended solids (TSS), turbidity, acid neutralizing capacity (ANC, alkalinity), dissolved organic carbon (DOC), and total organic carbon (TOC). You will also collect a 2-L sample in an amber Nalgene bottle to be filtered on shore for later analysis of *chlorophyll a* (See Section 7 for filtration procedure). Store all samples in darkness on ice in a closed cooler. After you filter the *chlorophyll a* samples, the filters must be kept frozen until ready to ship.

Collect the samples at mid-channel at the X-site of the river from a depth of 0.5 meters. Use the 3 L Nalgene beaker to fill the individual sample bottles. The 3 L Nalgene beaker will be rinsed and re-used at each sampling location.

5.1.2.2 Equipment and Supplies

Table 5.1-3 provides the equipment and supplies needed to collect water samples at the index site. Record the Water Sample Collection and Preservation data on the Sample Collection Form, Side 1 as seen in Figure 5.1-2.

For collecting samples	 Laser Rangefinder Nitrile gloves one 2-L amber Nalgene bottle (<i>chlorophyll</i>) 4-L cube container 3 L Nalgene beaker Cooler with ice Field Operations Manual and/or laminated Quick Reference Guide
For recording measurements	 Sample Collection Form Field Measurement Form Pencils (for data forms) fine-tipped indelible markers (for labels)

Table 5.1-3. Equipment and supplies—water chemistry sample collection and preservation

Final Manual Date: April 2009 Page 53

	SAMP	LE CO			RM - BC		LE (Fro	(Initia	ewed by als): —	🔳
SITE ID:FW08	x×3	000		_	C		411	.4.1.2	0.0.9	-
		transfer and the							.: ·	
Sample ID	Sample Category *	Chilled	. ร. อันจากแจ้งไหวกับจ าย	vénne nevné terr	han dalah dal	Comma		ldaga yan salah s	antine ann airean 🔥	in a san ay dawidd
999001	● P O P	۲								
	O₽ O₽	0								
			on Argenian. Andre Argenia	TB22		(PAS)	na la falla a La falla a			
Sample ID	Sample Category *	Volum Filter (mL)	d Frozei	1	(979)/2002 (6. 1 [.]).		Comments			
9,9,9.0.0.2		1200								
	OP OP		0							-
	a da ar		a a substantia de la subs	noverske se se A Se se state se Se	2000 - 199 0				аларанан санан аларанан аларан Аларанан аларанан алар	
Sample ID	Sample Category	, Chilled	nal a na na si walib a	an an Ang ang barang ang barang sa		Contine	nts	<u>,</u>	<u> </u>	na dan matakan
9.9.9.0.0.4	€ F O D	•				and the second sec				
	OP OD	0								
							4810-0710-071-071-071-071-071-071-071-071-			
Dominant Habitat: (ONL PER TRANSECT) O DT	Ос ●L Ог Он Оп	Ос О Ф F О О 07	ျပင္ပ			Ос ОL ФГ ОМ Оп	Ос О∟ ●	● C O L O F O M O GT		Ос ●L ОF ОМ О⊓
	Ос О∟ ● Г О № О от	● ¢ 0 0 ⊧ 0 0 ¤				00°0″ 00°0″	0 00 00 00 00 00		⊾ ≎ 005	0 ● 0 ° ⊧ 0 00 ₽
	೦೯ € ೦೯೦ ರ	0 ⊧ 0 ° ● 6 0 °	с О г О с от О с 🖲 от	(∰) F () ⊂ C G () O ()		Ог Ос Өс Оот	О ⊧ ● ¢ О 6 О 0т	О⊧ Фс Ос Оот	●	О́ ғО́ с Ф сО от
			RA QUP O FU GL O RI QUGI				BPORA ORIGECL OGT			OPORA BRIOGL ODT
Habitat:			Subs			_	Chan		_	• _
C = Coarse Substrate / LWD F = Organic Fine Muds / Sand OT = Other (Explain is comman	M = Macr	ophyte bed	F = Fi	he / Sand G :	ate OT = Oth	ver (Explain in section below)		fle RA≏Ra		tion below)
		an gan say		Serger Constant of the second s		na an a				
9.9.9.0.0.7.	O P	0.1	71) Sealus	trate w	sas ucd		in di seconda di		2
	OP OP		0							

Flag codes: K = No measurement or observation made; U = Suspect measurement or observation; F1, F2, etc. = misc. flags assigned by field crew. Explain all flags in comment sections.

*Sample Categories: P = Primary, D = Field Duplicate

04/07/2009 NRSA Sample Collection Boatable 2009

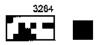
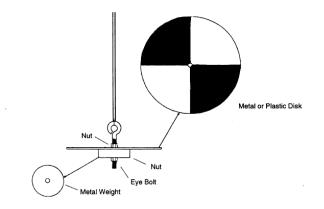


Figure 5.1-2. Sample Collection Form, Side 1.

5.1.2.3 Sampling Procedure

Table 5.1-4 describes the sampling procedures for collecting water chemistry samples in non-wadeable streams and rivers. Refer to Appendix E for PPCP water sampling procedures at the designated urban river sites.


Table 5.1-4. Sampling procedure for non-wadeable sites—water chemistry sample collection

- 1. Collect the water samples from the X-site in a flowing portion near the middle of the stream.
- 2. Put on nitrile gloves. Make sure not to handle sunscreen or other chemical contaminants until after the sample is collected.
- 3. Rinse the 3-L Nalgene beaker three times with water, and discard the rinse downstream.
- 4. Remove the cube container lid and expand the cube container by pulling out the sides. **NOTE: DO NOT BLOW into the cube container to expand them, this will cause contamination.**
- 5. Fill the 3-liter beaker with water and slowly pour 30 50 mL into the cube container. Cap the cube container and rotate so that the water contacts all the surfaces. Discard the water downstream. Repeat this rinsing procedure 2 more times.
- 6. Fill the beaker with water and pour into the cube container. Repeat as necessary to fill the cube container. Let the weight of the water expand the cube container. Pour the water slowly as the cube container expands. Fill the cube container to at least three-fourths of its maximum volume. Rinse the cube container lid with water. Eliminate any air space from the cube container, and cap it tightly. Make sure the cap is tightly sealed and not on at an angle.
- Fill the 3-liter beaker with water and slowly pour 30 50 mL into the 2 L amber Nalgene bottle. Cap the bottle and rotate so that the water contacts all the surfaces. Discard the water downstream. Repeat this rinsing procedure 2 more times.
- 8. Fill the beaker with water and pour into the 2 L amber Nalgene bottle. Cap the bottle tightly
- 9. Place the cube container and bottle in a cooler (on ice or water) and shut the lid. If a cooler is not available, place the cube container in an opaque garbage bag and immerse it in the stream.
- 10. Record the Sample ID on the Sample Collection Form along with the pertinent stream information (stream name, ID, date, etc.). Note anything that could influence sample chemistry (heavy rain, potential contaminants) in the Comments section. If sampling at the X-site is not possible, move to another part of the reach to collect the sample (as close to the X-site as possible), record the letter of the nearest transect and more detailed reasons and/or information in the Comments section.

5.1.3 Secchi Disk Transparency at Non-Wadeable Sites

5.1.3.1 Summary of Method

A Secchi disk is a black and white patterned disk used to measure water clarity (see Figure 5.1-3). A Secchi disk transparency reading will be collected mid-channel at the X-site. The Secchi disk will be affixed to the end of a solid metered rod (e.g., Schedule 80 PVC pipe, or equivalent) and lowered into the water until it disappears from sight. Measurements are recorded at the depth that the disk disappears and again when it reappears. The reading is taken on the shady side of the boat, without sunglasses, hat or view aids.

5.1.3.2 Equipment and Supplies

Table 5.1-5 lists the equipment and supplies needed to measure Secchi disc transparency. Record the Secchi disk readings on the Field Measurement Form, Side 1 as seen in Figure 5.1-1.

Table 5.1-5.	Equipment and supplies—Secchi disc transparency
--------------	---

For taking measurements and calibrating the water quality meter	 20 cm diameter Secchi disk and calibrated sounding rod (marked in half centimeter intervals) Tape measure (in centimeters)
For recording measurements	Field Measurement FormPencils (for data forms)

5.1.3.3 Sampling Procedure

Because different people measuring Secchi disk transparency at the same site may obtain different results (due to differences in vision and interpreting disk disappearance and reappearance), one team member will conduct Secchi disk measurements for all sites. Table 5.1-6 lists the procedure for Secchi disk transparency at non-wadeable sites.

If the water is shallow and clear, the Secchi disk might reach the bottom and still be visible. If this is the case, it is important to not stir up the bottom sediments while anchoring the boat. Be sure to move the boat away from the anchor before taking the reading. If the disk is visible at the bottom, indicate this on the form.

Table 5.1-6. Sampling procedure at non-wadeable sites—Secchi disk transparency

1. Measure Secchi disk transparency mid-channel at the X-site.

2. Confirm that the lowering rod is firmly attached to the Secchi disk.

- 3. Remove sunglasses and hats. Also, **do not** use view scopes or other visual aids. If wearing prescription sunglasses, temporarily replace them with regular clear lens prescription glasses.
- 4. Lower the Secchi disk over the shaded side of the boat until it disappears.
- 5. Read the depth indicated on the lowering rod. If the disappearance depth is <1.0 meter, determine the depth to the nearest 0.05 meter by marking the line at the nearest depth marker and measuring the remaining length with a tape measure. Otherwise, estimate the disappearance depth to the nearest 0.1 meter. Record the disappearance depth on the Sample Collection Form.
- 6. Lower the disk a bit farther and then slowly raise the disk until it reappears and record the reappearance depth on the Field Measurement Form.
- 7. Note any conditions that might affect the accuracy of the measurement in the comments field.

5.1.4 Sediment Enzymes

5.1.4.1 Summary of Method

Collect sediment samples at the 11 sampling stations at each site and combine all stations at a site, resulting in a single 500 mL sample per site. Collect fine surface sediments (top 5 cm) using a spoon or dredge. Store samples on ice until shipment to the laboratory for processing. Samples will be analyzed for available DIN, NH₄, DIP, TP, TN, total carbon (TC), and enzyme activity.

5.1.4.2 Equipment and Supplies

Table 5.1-7 lists the equipment and supplies needed to collect sediment enzyme samples. Record collection data on Side 2 of the Sample Collection Form, as seen in Figure 5.1-4.

For collecting samples	 Petite Ponar sampler with plastic tub, drop line, and spare pinch pin Standard Ponar may substitute. Graduated plastic bucket with lid 	 Large stainless steel spoon for collecting & mixing sediment composite 500-mL plastic bottle for storing sediment sample
For recording measurements	Sample Collection FormSample labelsPencils	Fine-tipped indelible markers (for labels)Clear tape strips

Table 5.1-7. Equipment and supplies—sediment enzymes
--

5.1.4.3 Sampling Procedure

Near each of the macroinvertebrate and periphyton sampling locations, collect a finegrained sediment sample using a spoon. If the depth is too great to reach the bottom with the spoon, a "petite Ponar" grab sampler can be used to collect sediment and the stainless steel spoon can take the sample to be added to the composite bucket from the ponar. The objective is to collect a 500-mL composite sample that is representative of depositional areas at the site. The composite sample will be subsampled in the laboratory for multiple analyses. Table 5.1-8 presents step-by-step procedures for collecting sediment enzyme samples.

Table 5.1-8. Sampling procedure—sediment enzymes

- 1. Collect a sediment sample at each of the 11 transect sampling stations, near the periphyton and macroinvertebrate sample locations. Make sure each subsample comprises an approximately equal portion of the total composite. You may collect sediment between stations to insure at least 500 mL of composite volume (note any deviations from standard procedure in a comment.)
- 2. Locate sediment samples in areas or patches of fine-grained substrate (silty sand, silt, clay, muck) in a zone bounded on the shore side by the apparent low-water mark from daily flow fluctuations (often detected by the presence of periphyton or attached filamentous algae just below the low-water mark) and bounded on the river side by the 0.3-m depth contour (recommended maximum sample depth; deeper sampling may be possible). If samples cannot be safely collected by wading at a station due to vertical banks or other reason go to step 5.
- 3. Avoid the area that has just been kick sampled for macroinvertebrates. Sampling up-stream from the kick sample location is recommended. If fine substrates are not present within 5 m up- or downstream from the station, flag the station on the form.
- 4. If fine substrate is present, use the stainless steel spoon to collect a sample (approximately one spoonful of sediment) from the top 5 cm of substrate. Place the sample in a clean bucket. Use gloves for handling sediment. Do not assume rip rapped shorelines lack fine-grained sediment. Look for fines between the large rocks.
- 5. If the littoral zone cannot be waded, use a petite Ponar (or similar) sampler deployed from the boat to collect a sediment sample adjacent to the station. (Use caution with Ponar samplers. The jaws are sharp and may close unexpectedly. Replace frayed lines and worn parts.) Raise the Ponar sampler from the water and into a plastic tub rather than from the boat deck. This prevents feet from getting under the sampler. Release the petite Ponar sample into a tub and use the scoop to collect about 15 x 15 cm (6 x 6 inches) of the top 5 cm of the sample. Using the stainless steel spoon, take a one spoon grab from the top layer of sediment captured in the Ponar. Place this in the composite bucket and discard the rest.
- 6. Repeat steps 2-5 at each of the 11 littoral stations. Record the total number of replicates (stations) included in the composite. Note in a comment the stations at which sediment was collected using a non-wading method.
- 7. It is important that a sufficient sediment (not less than 500 mL) composite sample for analysis be collected. If multiple stations have no fine sediment, it is permissible to collect extra sample at stations that do have fine sediment or between stations. *Be sure to note this in a comment.*
- 8. Using the stainless steel spoon, thoroughly mix the composite sample and transfer 500 mL into the 500 mL plastic bottle. Place in a in a cooler with ice for final labeling and preservation.
- 9. Prepare a label for the sample jar. Using a fine-point indelible marker, fill in the site # and sample date. Place the label on the jar and cover it with clear tape. Record the sample ID and other data on sampling form. Place the sample on ice or in a refrigerator. Do not freeze sediment samples. The sediment enzyme sample has a two week holding time.

SITE	ID: F	W08 X	xood	0				DAT	E: Ø	71	01	1200	8			
				COM	POSIT	EPER	RIPHYTO	N SAN	APLE -	Prim	ary		ample Colle	ected (
S	ample ID		Sample Category		o construint		olume (mL	1								
9.9	9.0.0	5	P P			4 5	50		Number of trans		ansect	ects sampled (0-11);				
Assem	nblage ID (-mL tube)		Chlorophyll (.2)						mass (.				PA (.4)			
ample Vol. (mL)		Preserved	Sample Vo		Flag	Frozen	Sample	(GF Vol. (mL)	Flag	r) Froze	n Sa	(50-mL tube) Sample Vol. (mL) Flag Fr				
40		•	2	5		•		25				50		•		
					POS	ITE PE	RIPHYT		MPLE	- Dup	licate	Nos	Sample Colle	ected (
S	ample ID		Sample Category		Compo	osite Vo	lume (mL)		Num	per of tr	ansects	s sampled (0)-11):			
· · · · ·			O P O D		-											
	nblage ID -mL tube)	(.1)			phyll (. F filter)				nass (.3 /F Filter				PA (.4)			
ample Vol. (mL)		Preserved	Sample Vo		Flag	Frozen	1 Sample	Vol. (mL)	Flag	Froze	n Sa	mple Vol. (mL)	Flag	Frozen		
		0				0				0				0		
Flag					-	c	Comments			-	-					
	lag codes: K xplain all flag	= No measu	urement or obs	servation n					-0.46	Vincent	nisc. flags	assigned by fiel	Currin Line An	cted (
E	xplain all flag	Sample	nt sections.		No. c		T CHEMIS		-0.46	S		No Si	ld crew. ample Collec	cted C		
Sampl	e ID	Sample Category	* Composite	Volume	SI				-0.46	S	nisc. flags Commente	No Si	Currin Line An	cted C		
Sampl	e ID	Sample Category	* Composite		No. c	EDIMEN of Ch			-0.46	S		No Si	Currin Line An	cted C		
Sampl	e ID	Sample Category O P O D	* Composite	Volume	SI No. c Transe	EDIMEN of Ch	Illed	STRY / E	ENZYME	S		No Si	Currin Line An	cted C		
Sampl	e ID	Sample Category O P O D O P	Composite	Volume O O	SI No. c Transe		NT CHEMIS illed	STRY / E	250 mL)	S		No Si s No Si	ample Colleg			
Sampl	e ID 0, 0, 6	Sample Category O P O D O D O D Sample	* Composite	Volume	SI No. c Transe		Illed	olume =	250 mL) Volume I (Target =	Filtered 50 mL)	comment:	No Si	ample Colle	cted C		
Sample 9.9.9.0	e ID e ID e ID e ID e ID o per line	Sample Category P D D D Sample Cate- gory *	Composite 	E Volume	SI No. c Transe	EDIMEN of children ch	NT CHEMIS illied Cl (Target V Filt. Start Time	olume =	250 mL) Volume I	Filtered 50 mL) Filt. 3	Filt. 4	No Si No Si Filt, End Time (hhmm)	ample Colle ample Collec Time Frozen (hhmm)	cted C		
Sample 9.9.9.0 Sample One unique II	e ID e ID e ID e ID e ID o per line	Sample Category D D D D D Sample Cate- gory* P D D D D D D D D D D D D D D D D D D	Composite	Volume 0,0 E Depth Collecte	SI No. c Transe	EDIMEN of children ch	CI (Target V Filt. Start Time (hhmm)	olume =	250 mL) Volume I Target = Filt. 2	Filtered 50 mL)	comment:	No Si s No Si Filt, End Time	ample Colle ample Collec Time Frozen	cted C		
Sample 9.9.9.0 Sample One unique II	e ID e ID e ID e ID e ID o per line	Sample Category P D P D P D D Sample Cate- gory* P D D D P D D D D D D D D D D D D D D	Composite 	E Volume	SI No. c Transe	EDIMEN of children ch	CI (Target V Filt. Start Time (hhmm)	olume =	250 mL) Volume I Target = Filt. 2	Filtered 50 mL) Filt. 3	Filt. 4	No Si No Si Filt, End Time (hhmm)	ample Colle ample Collec Time Frozen (hhmm)	cted C		
Sample 9.9.9.0	e ID e ID e ID e ID e ID o per line	Sample Category O P O D O P O D O P O D O P O D O P O D O P O D O D O P O D O D O D O D O D O D O D O D O D O D	Composite 	E Volume	SI No. c Transe	EDIMEN of children ch	CI (Target V Filt. Start Time (hhmm)	olume =	250 mL) Volume I Target = Filt. 2	Filtered 50 mL) Filt. 3	Filt. 4	No Si No Si Filt, End Time (hhmm)	ample Colle ample Collec Time Frozen (hhmm)	cted C		
Sampi 9.9.9.9.4 Sample One unique II 5.0.0.4	e ID e ID e ID e ID e ID o per line	Sample Category O P O D O D O D O D O D O D O D O D O D O D	Composite 	E Volume	SI No. c Transe	EDIMEN of Ch ch Ch Ch Ch Ch Ch Ch Ch Ch Ch C	Cl (Target V Filt Start Time (hhmm)	olume =	250 mL) Volume I Target = Filt. 2	Filtered 50 mL) Filt. 3	Filt. 4	No Si No Si Filt, End Time (hhmm)	ample Colle ample Collec Time Frozen (hhmm)	cted C		
Sampi 9.9.9.9.0 Sample One unique II 5.0.0.1 Flag	e ID 0.0.6 e ID 0 per line 0,2.0 	Sample Category P P P P P P P P P P P P P P P P P P P	Composite 	Volume O,O E Depth Collecte (m) O, 3	SI No. c Transe	EDIMEN of Ch ch Ch Ch Ch Ch Ch Ch Ch Ch Ch C	CI (Target V Filt Start Time (hhmm) I 1000	olume = Filt. 1 50	250 mL) Volume I Target = Filt. 2	Filtered 50 mL) Filt. 3	Filt. 4	No Si No Si Filt, End Time (hhmm)	ample Colle ample Collec Time Frozen (hhmm)	cted C		
Sampi 9.9.9.9.0 Sample One unique II 5.0.0.1 Flag	e ID 0.0.6 e ID 0 per line 0,2.0 	Sample Category P P P P P P P P P P P P P P P P P P P	Time Collected (hhmm)	Volume O,O E Depth Collecte (m) O, 3	SI No. c Transe	EDIMEN of Ch ch Ch Ch Ch Ch Ch Ch Ch Ch Ch C	CI (Target V Filt Start Time (hhmm) I 1000	olume = Filt. 1 50	250 mL) Volume I Target = Filt. 2	Filtered 50 mL) Filt. 3	Filt. 4	No Si No Si Filt, End Time (hhmm)	ample Colle ample Collec Time Frozen (hhmm)	cted C		

Figure 5.1-4. Sample Collection Form, Side 2.

5.2 Physical Habitat Characterization in Non-Wadeable Rivers and Streams

Physical habitat in rivers includes all those physical attributes that influence or provide sustenance to river organisms. Physical habitat varies naturally; thus, expectations differ even in the absence of anthropogenic disturbance. Within a given physiographic-climatic region, river drainage area and channel gradient are likely to be strong natural determinants of many aspects of river habitat, because of their influence on discharge, flood stage, and stream power (the product of discharge times gradient). Kaufmann (1993) identified 7 physical habitat attributes important in influencing stream ecology that are likely applicable in rivers as well. They include:

- Channel Dimensions
- Channel Gradient
- Channel Substrate Size and Type
- Habitat Complexity and Cover
- Riparian Vegetation Cover and Structure
- Anthropogenic Alterations
- Channel-Riparian Interaction

The protocol defines the length of each sampling reach proportional to river wetted width and then systematically places measurements to statistically represent the entire reach. Stream thalweg depth measurements, habitat classification, and mid-channel substrate observations are made at very tightly spaced intervals; whereas channel "littoral" and riparian stations for measuring or observing substrate, fish cover, large woody debris, bank characteristics and riparian vegetation structure are spaced further apart. The tightly spaced depth measures allow calculation of indices of channel structural complexity, objective classification of channel units such as pools, and quantification of residual pool depth, pool volume, and total stream volume.

5.2.1 Equipment and Supplies

Table 5.2-1 lists the equipment and supplies required to conduct all the activities described for characterizing physical habitat. This checklist is similar to the checklist presented in Appendix A, which is used at the base location (Section 3) to ensure that all of the required equipment is brought to the river. Use this checklist to ensure that equipment and supplies are organized and available at the river site in order to conduct the activities efficiently.

Table 5.2-1.	Checklist of equipment and supplies for physical habitat
--------------	--

For making measurements	 Surveyor's telescoping leveling rod (round profile, metric scale, 7.5m extended) Convex spherical canopy densiometer (Lemmon Model B), modified with taped "V" GPS 1 roll each colored surveyor's flagging tape (2 colors) 2 pair chest waders 1 or 2 fisherman's vest with lots of pockets and snap fittings. Digital camera with extra memory card & battery

For recording	 2 covered clipboards (lightweight, with strap or lanyard)
data	 Soft (#2) lead pencils
	 11 plus extras Channel/Riparian Transect Forms
	 11 plus extras Thalweg Profile Forms
	 1+ extras field Form: Stream Verification Form
	 1+ extras field Form: Field Measurement Form
	 1+ extras field Form: Sample Collection Form
	1+ extras field Form: Riparian "Legacy" Trees and Invasive Alien Plants
	 1+ extras field Form: Channel Constraint
	1+ extras field Form: Fish Gear and Voucher/Tissue Information Form
	 1+ extras field Form: Fish Collection Form
	 1+ extras field Form: Visual Assessment Form

5.2.2 Components of the Field Habitat Assessment

Field data collection for the physical habitat assessment is accomplished in a single float down each sampling reach. River sample reach lengths are defined as 40 x the wetted width at the x-site, with a minimum of 150m and maximum of 4km. To characterize mid-channel habitat (Table 5.2.2), they measure a longitudinal thalweg (or mid-channel) depth profile, record the presence of snags and off-channel habitats, classify main channel habitat types, characterize mid-channel substrate, and locate the 11 transect locations for littoral/riparian sampling and other habitat observations. At each of the 11 transects (A-K), they measure channel wetted width, bankfull channel dimensions, incision, GPS lat/long, and then assess near-shore, shoreline, and riparian physical habitat characteristics by measuring or observing littoral depths, riparian canopy cover, substrate, large woody debris, fish cover, bank characteristics, riparian vegetation structure, presence of large ("legacy") riparian trees, non-native riparian and aquatic species, and evidence of human activities. After all the thalweg and littoral/riparian measurements and observations are completed, the crews estimate the extent and type of channel constraint.

Table 5.2-2. Components of river physical habitat protocol

Thalweg Profile:

At 10 equally spaced intervals between each of 11 transects (100 along entire reach):

• Classify habitat type, record presence of backwater and off-channel habitats. Determine dominant substrate visually or using sounding rod.

At 10 equally spaced intervals between each of 11 transects (100 along entire reach):

Record the presence of mid-channel snags

Measure thalweg (maximum) depth using Sonar or rod

Littoral/Riparian Cross-Sections: @ 11 transects at equal intervals along reach length:

Measure/estimate from one chosen bank on 11 transects :

Wetted width and Mid-channel bar width (laser range finder).

Bankfull width (laser) and height (pole and clinometer used as level).

Incision height (pole and clinometer used as level).

Bank angle (estimate)

Riparian canopy cover (densiometer) in four directions from chosen bank.

Shoreline Substrate in the first 1m above waterline (dominant and subdominant size class).

In 20m long Littoral Plot extending streamward 10m from chosen bank : 1

Littoral depth at 5 locations systematically-spaced within plot (Sonar or sounding rod). Dominant and Subdominant substrate size class at 5 systematically-spaced locations (visual or sounding rod).

Tally large woody debris in littoral plot and in bankfull channel by size and length class. Areal cover class of fish concealment and other features, including:

filamentous algae	overhanging vegetation	aquatic macrophytes
undercut banks	large woody debris	boulders and rock ledges
brush/small woody debri	s live trees or roots	artificial structures

In 20m long Riparian Plot extending 10m landward starting at bankfull margin--both sides of river:¹

Estimate areal cover class and type (e.g., woody) of riparian vegetation in Canopy, Mid-Layer, and Ground Cover layers

Observe and record human activities and disturbances and their proximity to the channel. Record species of alien (non-native) trees, shrubs, grasses visible within riparian plot.

Looking upstream and downstream from each Transect (both sides of river):

Look for largest visible tree within 100m from the water's edge or as far as you can see, if less: Estimate diameter (Dbh), height, species, and distance from river edge.

For the whole sampling reach, after completing thalweg and littoral/riparian measurements:*

• Classify channel type and degree of constraint, identify features causing constraint, estimate the percentage of constrained channel margin for the whole reach, and estimate the bankfull and valley widths.

¹Note: Boundaries for visual observations are estimated by eye.

5.2.3 Summary of Workflow

Table 5.2-3 lists the activities performed at and between each transect for the physical habitat characterization. The activities are performed along the chosen river bank and mid-channel (thalweg profile).

Table 5.2-3. Summary of workflow—river physical habitat characterization

A. At the chosen bank on first transect (farthest upstream):

Read GPS Lat./Long. and record it in the Transect (Shoreline) space on the field form.

Move boat in a "loop" within 10 x 20 m littoral plot, measuring 5 littoral depths and probing substrate.

Estimate dominant and subdominant littoral substrate, based on probing the 5 locations.

Estimate areal cover of fish concealment features in 10 x 20 meter littoral plot.

Tally LWD within or partially within the 10 x 20 meter littoral plot.

Do densiometer measurements at bank (facing upstream, downstream, left, right).

Choose bank angle class, estimate bankfull height, width and channel incision. (Note that width and incision estimates incorporate both left and right banks.).

Tally LWD entirely out of water but at least partially within the bankfull channel.

Estimate and record distance to riparian vegetation on the chosen bank.

Make visual riparian vegetation cover estimates for the 10 x 20 meter riparian plot <u>on both sides</u> of the channel. (Riparian plot starts where perennial vegetation begins or <u>at bankfull</u> channel margin, whichever is closest to the wetted river margin. The plot continues 10m back from the bankfull line).

Identify taxa, height, diameter at breast height (Dbh), and distance from riverbank of largest tree as far as you can see confidently upstream and downstream within 100m of the wetted river margin.

From a regional listing, record alien invasive tree, shrub, or grass taxa within in the 10m x 20m riparian plots on either side of the river.

Make visual human disturbance tally on both sides of the river. Use the same plot dimensions as for riparian vegetation -- except that if a disturbance item is observed in the river <u>or within the bankfull channel</u>, the proximity code is "B", the closest rating; "C" if within the riparian plot. If the item is only observed beyond (outside) the riparian plot, the proximity code is "P".

Get out far enough from the bank so you can see downstream. Then use the laser rangefinder to sight and record the distance to the intended position of the next downstream transect.

B. Thalweg Profile:

As soon as you get out from the bank after doing transect activities, take the first of 10 thalweg depth measurements and substrate/snag probes using sonar and pole -- also classify habitat type and record presence of side-channels and backwaters.

Estimate thalweg measurement distance increments using the GPS course-tracking and trip-meter functions. Alternatively, estimate these distances by keeping track of boat lengths or channel-width distances traversed; each one is 1/10th the distance between transects (also one-half channel-width, which can help you keep track of your downstream progress).

C. <u>Repeat the Whole Process</u> (for the remaining 10 transects and spaces in between).

D. Channel Constraint Assessment

After completing the Thalweg Profile and Littoral-Riparian measurements and observations at all 11 Transects, complete the classification and estimation of channel constraint type, frequency of contact with constraining features, and the width ratio of bankfull channel divided by valley width. You may wish to refer to the individual transect assessments of incision and constraint.

5.2.4 Habitat Sampling Locations on the Study Reach

Measurements are made at two scales of resolution along the mid-channel length of the reach; the results are later aggregated and expressed for the entire reach, a third level of resolution (Figure 5.2-1). Section 4 describes the procedures for locating the X-site, or the midpoint of the sample reach. This sampling location is marked on the maps provided to the field crews in the site dossiers prior to sampling. Sections 4.2 and 5.2.3 describe the protocol for delineating a sample reach that is 40 times its width. Those sections also describe the protocol for measuring out (with a laser range finder or GIS software) and locating the 11 littoral/riparian stations where many habitat measurements will be made (Figure 5.2-3). The distance between each of these transects is 1/10th the total length of the sample reach.

The <u>thalweg profile measurements</u> are spaced as evenly as practicable over the entire sample reach length. In addition, they must be sufficiently close together to not "miss" deep areas and habitat units that are in a size range of about 1/3 to 1/2 of the average channel width. To set the interval between thalweg profile measurements, measure the wetted channel width with a laser rangefinder at 5 locations near the X-site and multiply the average width by 40 to set the river sample reach length. Then divide that reach length by 100 to set the thalweg increment distance. Following these guidelines, you will be making 100 evenly-spaced thalweg profile measurements, are made. If the thalweg is too deep or not physically possible to be measured to, estimate the depth to the best of your ability and flag it on the field form.

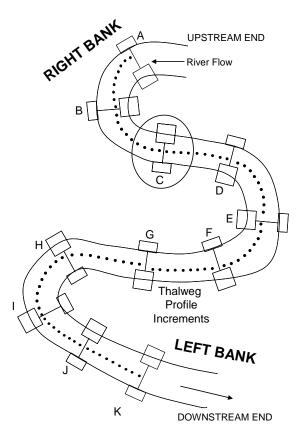


Figure 5.2-1. River reach sample layout.

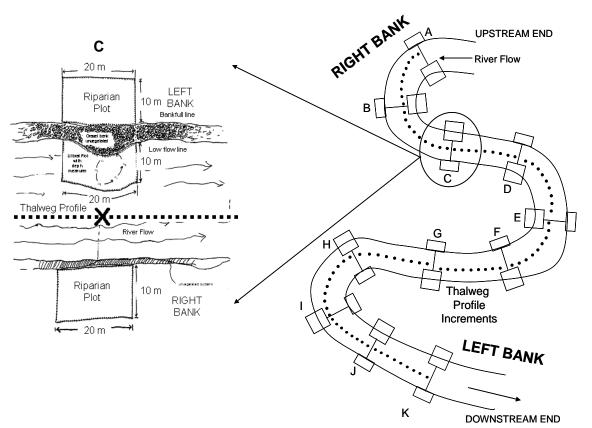


Figure 5.2-2. Littoral-Riparian Plots for characterizing riparian vegetation, human influences, fish cover, littoral substrate, and littoral depths.

5.2.5 Work Flow and Reach Marking

After finding adequate put-in and take-out locations, the team may opt to mark the upstream end of the sample reach end with colored flagging. In a single midstream float down the 40 channel-width reach, the 2-person habitat team accomplishes a reconnaissance, a sonar/pole depth profile, and a pole-drag to tally snags and characterize mid-channel substrate. The float is interrupted by stops at 11 transect locations for littoral/riparian observations. They determine (and mark – optional, but recommended) the intended position of each successive downstream transect using a global positioning system (GPS) or a laser range finder. Each transect is located 4 channel-width's distance from the preceding transect immediately upstream. The crew then floats downstream along the thalweg to the new transect location, making thalweg profile measurements and observations at 10 evenly-spaced increments along the way. When they reach the new downstream transect location, they stop to do cross-section, littoral, and riparian measurements, recording the actual GPS latitude/longitude of the transect position. In addition, while they are stopped at a cross-section station, the crew can fill out the habitat "typing" entries retrospectively and prospectively for the portion of the stream distance that is visible up- and downstream. They will also collect biological and sediment samples.

GPS coordinates are determined for the actual locations of each transect stop. If GPS unit also has course tracking, trip-meter (accumulated distance and bearing), and waypoint setting/navigation features, we recommend using it to locate thalweg measurement

points (use course tracking and trip meter). Equipping the boat with a bow or stern anchor to stop at transect locations can greatly ease the shore marking operation and shoreline measurement activities, though such equipment can be dangerous in white-water rivers.

5.2.6 Reconnaissance

The habitat crew will also record reconnaissance and safety notes at this time. They will inform the second boat of the route, craft, and safety precautions needed during its subsequent electrofishing activities. They also assist the electrofishing boat crew over jams and help to conduct shuttles (this can take considerable time where put-ins and take-outs are distant). As the team floats downstream, they may choose and communicate to the electrofishing crew the most practical path to be used when fishing with a less maneuverable boat, taking into consideration multiple channels, blind channels, backwaters, alcoves, impassible riffles, rapids, jams, and hazards such as dams, bridges and power lines. They determine if and where tracking or portages are necessary.

5.2.7 Thalweg Profile

"Thalweg" refers to the flow path of the deepest water in a river channel. The thalweg profile is a longitudinal survey of maximum depth and several other selected characteristics at 100 near-equally spaced points along the centerline of the river between the two ends of the river reach (Figure 5.2-1). For practical reasons, field crews will approximate a thalweg profile by sounding along the river course that they judge is deepest, but also safely navigable. **Locations for observations and measurements along the path of this profile are determined using the GPS course-tracking and trip-meter features (recommended)**, or by visually estimating distances based upon the river width. Data from the thalweg profile allows calculation of indices of residual pool volume, river size, channel complexity, and the relative proportions of habitat types such as riffles and pools. The procedure for obtaining thalweg profile measurements is presented in Table 5.2-2. Record data on the Thalweg Profile Form as shown in Figure 5.2-3.

5.2.7.1 Thalweg Depth Profile

A thalweg depth profile of the entire 40 channel-width reach is approximated by a sonar or sounding rod depth profile while floating downstream along the deepest part of the channel (or closest navigable path). In the absence of a recording fathometer (sonar depth sounder with strip-chart output or electronic data recorder), the crew records depths at frequent, relatively evenly-spaced downstream intervals while observing a sonar display and holding a surveyor's rod off the side of the boat (see Section 5.2.7.2). The sonar screen is mounted so that the crewmember can read depths on the sonar and the rod at the same time. The sonar sensor may need to be mounted at the opposite end of the boat to avoid mistaking the rod's echo for the bottom, though using a narrow beam (16 degree) sonar transducer minimizes this problem. It is easy to hold the sounding rod vertically if you are going at the same speed as the water. If the thalweg is too deep to safely be recorded, estimate the depth and note on comments form.

5.2.7.2 Pole Drag for Snags and Substrate Characteristics

The procedure for dragging the thalweg pole to detect underwater snags and substrate characteristics is presented in Table 5.2-4. While floating downstream, one crewmember holds a calibrated PVC sounding rod or surveying rod down vertically from the gunwale of the boat, dragging it lightly on the bottom to simultaneously "feel" the substrate, detect snags, and

measure depth with the aid of sonar. The crewmember shall record the dominant substrate type sensed by dragging the rod along the bottom (bedrock/hardpan, boulder, cobble, gravel, sand, silt & finer) on the Thalweg Profile Form (Figure 5.2-3). Substrate characteristics are recorded at every thalweg depth measurement (e.g., 10 determinations between transects A and B). In shallow, fast-water situations, where pole-dragging might be hazardous, crews will estimate bottom conditions the best they can visually and by using paddles and oars. If unavoidable, suspend measurements until out of whitewater situations, but make notes and appropriately flag observations concerning your best judgments of depth and substrate.

Table 5.2-4. Thalweg profile procedure

- 1. Determine the interval between transects based on the mean wetted width used to determine the reach length. Transects are at 4 channel-width spacings; thalweg depth, snags, off-channel habitats and other downstream longitudinal profile observations are recorded at intervals of 0.4 channel-width.
- 2. Complete header information on the Thalweg Profile Form, noting transect pair (up- to downstream).
- 3. Begin at the upstream transect (station "1" of "10"). Determine the locations to take measurements using the course-tracking and trip-meter functions of the GPS. Alternatively, estimate your position.

Thalweg Depth Profile

- a) While floating downstream along the thalweg, record depths at frequent, even-spaced intervals while observing a sonar display and holding a surveyor's rod off the side of the boat.
- b) A depth recording every 0.4 channel-width distance is required, yielding 10 measurements between channel/riparian cross-section transects.
- c) If the depth is >0.5 meters, or contains a lot of air bubbles, the sonar fathometer will not give reliable depth estimates. In this case, record depths using a calibrated sounding rod. In shallow, fast-water situations depths may have to be visually estimated to the nearest 0.5 m.
- d) Measure depths to nearest 0.1 m and record in the "SONAR" or "POLE" column.

Pole Drag for Snags and Substrate Characteristics

From the gunwale of the boat, hold a surveying rod or calibrated PVC sounding rod down vertically into the water. (CAUTION: Hold the rod over the side or stern of the raft; otherwise it could be jerked out of your hands if it catches on an obstruction in fast water.)

Lightly drag the rod on the river bottom to "feel" the substrate and detect snags.

Record the presence of snags hit by the rod or seen visually, plus the dominant substrate type sensed by dragging the rod along the bottom.

Circle the appropriate "SUBSTRATE" type and record the presence/absence of "SNAGS".

If it is too deep to safely measure the substrate type, estimate the type based on knowledge and surrounding measurements and flag the date.

Channel Habitat Classification

Classify and record the channel habitat type at increments of every 0.4 channel width.

Check for off-channel and backwater habitat at increments of every 0.4 channel width.

If channel is split by a bar or island, navigate and survey the channel with the most flow.

When a side channel is encountered, circle "Y" in the "OFF-CHANNEL" column beginning with the point of divergence from the main channel, continuing downriver until the side channel converges with the main channel.

Circle the "CHANNEL HABITAT" and record side channels as described in (d) above.

Proceed downriver to the next station, and repeat the above procedures.

Record GPS waypoint (Lat/Long) midstream and at shoreline location on each transect in decimal degrees. Repeat the above procedures until you reach next transect. Set a waypoint location for the transect location midstream and at the adjacent bank. Record waypoints that you set for channel bends, transect mid-stream, and transect shoreline locations on the Channel-Riparian Transect Form corresponding to the downstream end of the thalweg sub-reach you just traversed.

After completing activities at the shoreline, prepare a new Thalweg Profile Form, then repeat the above procedures for each of the reach segments, until you reach the downriver end of the reach (Transect "K").

			Second Comments	08 × × 00					8			E: 0				1.1.1		1	8		
	_	1		A-B OE		0 C-	D () D-Е	0	E-F							0,	J-K			_
RH = P	aen	ROCKIN	312.52	DTH OR ROUGH	100000	CEP T		CAP)			C	HANNE	L HA		тсо	DES	+		OTH	IER	
BL = B CB = 0 GR = 0 SA = S FN = S	SOU COE SAN	LDER (2 BLE (64 RSE TO D (0.06 T / CLAY /	50 TO 4000 mm) TO 250 mm) - (T FINE GRAVEL (- BASKETBALL ENNIS BALL TO 2 TO 64 mm) - (L TY - UP TO LAD RITTY)	TO CAP BASKE ADYBU	R) ETBALI G TO 1	L)		8			GL RI RA CA FA	= Gli = Rif = Ra = Ca = Fal t = Dry	de fle pid scade Ils	nel			Ch	Chan annel ckwat		Dff
	-			REMEM	BER:	A = (Jpstro						stream	n end	of Re	ach.				_	
	-		DEPTH (Either)						G PR	OFIL	E	_								1
STA		SNAG role one)	UNITS: O	ft Om		_	Cin	SUBS cle one 5 for eac		e Code				Circle	one Cl	L HAE hannel I lach sta	labitat		CI	DFF HAN, de one)	FLA
0	,	r 🕲	5		BH	BL	СВ	GR	SA	FN	от	0	GL	RI	RA	CA	FA	DR	Y	٢	
1	1	Ø	6		BH	BL	СВ	GR	SA	FN	от	PO	•	RI	RA	CA	FA	DR	Y	Ø	
2		r 🔞	8		BH	BL	СВ	GR	SA	FN	от	PO	0	RI	RA	CA	FA	DR	Y	0	
3	-	r 🕅	6		BH	BL	СВ	GR	SA	FN	от	PO	0	RI	RA	CA	FA	DR	Y	N	
4	-	r 🕅	4		BH	BL	СВ	GR	SA		от	PO	6	RI	RA	CA	FA	DR	Y	0	_
5	+		6		BH	BL	СВ	Ē	SA	FN	от	PO	(GL)	RI	RA	CA	FA	DR	Y	Ø	
6	\vdash		3		BH	BL	œ	GR	SA	FN	от	PO	GL	1	RA	CA	FA	DR	-	Ø	_
7		r 🕅	5		BH	BL	СВ	GR	SA	FN	от	PO	6	RI	RA	CA	FA	DR	0) N	_
8	C	D N	6		BH	BL	СВ	GR	SA	(FN)	от	PO	6	RI	RA	CA	FA	DR	C) N	
9	,	r 🔊	7		BH	BL	СВ	GR	SA) FN	от	PO	0	RI	RA	CA	FA	DR	Ē) N	
10	1	YN			BH	BL	СВ	GR	SA	FN	от	PO	GL	RI	RA	CA	FA	DR	Y	N	
11		r N			BH	BL	СВ	GR		FN		PO	GL	RI	RA	CA	FA	DR	Y	N	
FLA	AG	-			-	_	_	_	CC	MME	NT		-	_	_				_		
		-																			
		_	_																		
																		0			
														-				_			
	_									-			-							-	
-	-	-	_		-	-	_											-			

Figure 5.2-3. Thalweg Profile Form.

5.2.7.3 Channel Habitat Classification

Classify and record channel habitat types shown in Table 5.2-5 at a spatial resolution of about 0.5 channel-widths and check presence of off-channel and backwater habitat at every 0.4 channel-width increment. The procedures for classifying channel habitat are presented in Table 5.2-2. Designate side channels, backwaters and other off-channel areas independent of the main-channel habitat type. Main channel habitat units are at least half as long as the channel is wide. (e.g., if there is a small, deep, pool-like area at the thalweg within a large riffle area, don't record it as a pool unless it occupies an area about half as wide or long as the channel is wide).

Class (Code) ^a	Description
Pools (PO):	Still water, low velocity, smooth, surface, deep compared to other parts of channel
Glide (GL)	Water moving slowly, with a smooth, unbroken surface. Low turbulence.
Riffle (RI)	Water moving, with <u>small ripples, waves and eddies</u> —waves not breaking, <u>surface</u> <u>tension not broken</u> . Sound: "babbling", "gurgling".
Rapid (RA)	Water movement rapid and turbulent, surface with <u>intermittent whitewater</u> with breaking waves. Sound: continuous rushing, but not as loud as cascade.
Cascade (CA)	Water movement rapid & very turbulent over steep channel bottom. Most of the water surface is broken in <u>short, irregular plunges, mostly whitewater</u> . Sound: roaring.
Falls (FA)	Free falling water over vertical or near vertical drop into plunge, water turbulent and white over high falls. Sound: splash to roar. (Do not navigate raft over a waterfall!).
Dry channel (DR)	No water in the channel.
Off-channel	Side-channels, sloughs, backwaters, and alcoves separated from the main channel.
^a In order for a chan	nel habitat unit to be distinguished, it must be at least half as wide or long as the channel is wide.

 Table 5.2-5
 Channel unit categories

<u>Mid-channel bars, islands, and side channels within a thalweg profile</u> require some guidance. Mid-channel bars are defined as channel features below the bankfull flow level that are dry during baseflow conditions (Section 5.2.8.3 defines bankfull channel). Islands are channel features that are dry even when the river is at bankfull flow. If a mid-channel feature is as high as the surrounding flood plain, it is considered an island. Both mid-channel bars and islands cause the river to split into side channels. If a bar or island is encountered along the thalweg profile, navigate and survey the channel that carries the most flow. Note side channels are present but do not sample them.

When side channels are present, on the Thalweg Profile form check the "Off-Channel" column. These checkmarks will begin at the point of divergence from the main channel, continuing downstream to the point of convergence with the main channel. In the case of a slough or alcove, the "off-channel" checkmarks should continue from the point of divergence downstream to where the off-channel feature is no longer evident. When major side channels occur, flag the "Off-Channel" checkmarks and indicate in the comments section that the feature is a side channel. For dry and intermittent rivers, record zeros for depth and wetted width in places where no water is in the channel. Record habitat type as dry channel (DR).

5.2.8 Channel Margin ("Littoral") and Riparian Measurements

This section covers channel margin depth and substrate, large woody debris, bank angle, channel cross-section morphology, canopy cover, riparian vegetation structure, fish cover, and human influences. Record measurements on the Channel/Riparian Transect Form (Figures 5.2-4 and 5.2-5).

													Arriv	al Time	Lea	ave Tin	ne
SITI	E ID:	FW	08 X	xoc	00		DA	TE: 0	71	01	2	008	10	: 1.5	1.0		1.5
TRA	NSE	ст: О	A O	во		DO	E	FO		H OI	ОJ	окох	Chos	en bank s	side:		Right
				Transec Midstrea	1	S Latitu	1 7	1 mm ss.s	1.9	GPS		de - ddd mm ss. 074	29				
				Transec Bank	hand	< 1	7	1 .	2.7		and have	27.4	2 1				
					TOPAL		TPATE	EINFOR	and a second	LA	<u> </u>	<u>, , , ,</u>	2.1		DEPTH O	0.4	m
SH	ORE	BOT	TOM						FROM ()	(ONE):			SONAR	XX P	OLE X.X	-	AG
MOC	SEC	DOM	SEC	CLAS						ttoral Dep	oths ^H	lag			0.4		
RS	RS	RS	RS		and the second se			the state of the s	er than			_			06		
RR XB	RR XB	RR XB	RR XB						er than					-	0.0		
SB	(SB)	SB	(SB)							- (Meter		o car) Meterstick)			0.6		
CB	CB	CB	CB							ball to B			1		0.5		
GG	GC	GC	GC							arble to					0.4	-	
GF	GF	GF	GF							ug to m							
SA	SA	SA	SA	SA =	Sand	(0.06 to	o 2 m	m) - (Gr	itty - up	to Lady	bug siz	e)		BANK CH	ARACTERIS	TICS	100
FN	FN	FN	FN				and the second second	(Not G							X.XX	(m)	FLAG
HP WD	HP WD	HP WD	HP WD		= Wood				dated Fi	ne Subs	trate)		Wetted	Width	4	7.0	
OT	OT	OT	OT					nent be	low)	_	_		Bar Wi	đth		0	
					Noti TALL	*			1011)	CHEC	CK IF UNI	MARKED	Bankfu	ll Width	7	5	
LARG	SE WO	ereo.c. an	Service Service	0702020000	0.000	onnerste og	PIECE	Flag			ARE ZE	RO 🤍	Bankfu	l Height	1	0	
DIAME				1	tted Chanr			-		II/Part in Bar		mel			0	9	
LARGE	END	LENGTH	5-15 m	15-3	10 m	> 30	m	LENGT	H 5-15 m	15-30	m	> 30 m	Incised	Height			ĸ
0.3 - 0	.6 m		-	11									BANK			300	V = Near
					2			1					CIRCLE ON			1	Vertical
					1					lui			v			1	(>75*)
0.6 - 0	.8 m			-	-		-	1	_		-	-	- ·		S = 5	teep	1
	_			-				-			3		s		(30-)	15*)	
0.8 - 1.	0 m					*		11				1.57	0	G = G	radual		X
							2		2				0	(5-3		K	/
> 1.0		1			_				_				F	F = Flat ((5*)		1
			1														
		RING/DI practical		E (Opti	onal): D	etermine	slope	if feasible	in terms	of time and	d distanc	es. Record GPS	INTENDE	D transect xxx (m):	ACTUAL I spacing		
				SI	ope and	d Bearin	ng not	determi	ned (use	map) ())			20	110	0	
		Slope	Back		Distance	Wa	ý							LU	14	0	
		XX.X %	0-3		(m)	Poin	t#			+ dd mm s		1	Longitude -	ddd mm ss	.5	Flag	_
-	MAIN	2.0	18	73	420	6		4.5	0.7	3.2	<u>l</u> . <u>1</u>	1.2	1.0.	2.4.	3.2		
points	1st																
vpoi	200			-		-	-	<u> </u>	<u> </u>			<u> </u>					-
Supple Wayr	2ND		-	-		-			<u> </u>		_••				_•		-
S	3RD							·	<u> </u>	h	_·						
Flag				Co	mments												
K	N	OT	ERA	ACE	-	INC	(\$10	NNO	TM	FASU	RED						
			-	_	-	_	-	_				_	_			_	
		_	-						_						_		
							_			_							

Figure 5.2-4. Channel/Riparian Transect Form, page 1 (front side).

SITE ID: FW	08 XX 000		DATE:	1. 7.	0.1.1.2	00	8	
RANSECT: A O E	OC OD OE	OFOGOHO	ol o J	око		en bank sid		O Rig
VISUAL RIPARI	2 = Moderate (10-	-40%) E = Broadleaf Everg	reen		FISH COVER/	0 = Abser 1 = Spare 2 = Moder	(<10%	9
RIPARIAN VEGETATION COVER	4 =Very Heavy (>	75%) N = None			OTHER n x 20m Plot)	3 = Heavy 4 = Very P	(40-75 1eavy (>75%	5%) 5)
(10m x 20m Plot)	Left Bank Canopy	Right Bank (>5 m high)	Flag		amentous Algae		one) 2 3 4	Flag
Woody Vegetation Type BIG Trees (Trunk	DCEMN	DCEON			Macrophytes	00	2 3 4	
>0.3 m DBH) SMALL Trees (Trunk	0 1 (2) 3 4	0 1 2 3 4			Woody Debris >0.3 m (BIG)	0 1 (2) 3 4	
<0.3 m DBH)	0 (1) 2 3 4 Understory	0 (1) 2 3 4 (0.5 to 5 m high)			h/Woody Debris <0.3 m (SMALL)		2 3 4	
Woody Vegetation Type	O C E M N	D C E M 🕥			Trees in Stream verhanging Veg.	~	2 3 4	
Woody Shrubs & Saplings Non-Woody Herbs,	0 1 2 3 4	0 1 2 3 4			<1 m of Surface		2 3 4	-
Grasses, & Forbs	0 (1) 2 3 4 Ground C	0 1 2 3 4 over (<0.5 m high)			Undercut Banks Ioulders/Ledges	*	2 3 4	-
Woody Shrubs & Saplings	0 1 2 3 4	0 1 2 3 4			ficial Structures	-	2 3 4	
Non-Woody Herbs, Grasses and Forbs	0 1 2 3 4	0 1 ② 3 4			CHANN	EL CONS		-
Barren, Bare Dirt or Duff	0 1 2 3 4	0 1 2 3 4		Di	STANCE FROM		IRAINT	•
HUMAN INFLUENCE Wall/Dike/Revetment	Left Bank	Right Bank		TO RIP	ARIAN VEGET			0
/Riprap/Dam Buildings	Фрсв	ОРСВ	_			IRCLE ONE		
Pavement/Cleared Lot	Фрсв	Фрсв		C C	hannel is <u>Constra</u>	ined.		_
Road/Railroad	С В С В	о 🕑 с в	F2	B C	nannel is in <u>Broa</u>	1 Valley but C	onstrained b	y Incision.
Pipes (Inlet/Outlet)	ФРСВ	💿 Р С В			hannel is in <u>Narro</u>	w Valley but	NOT very cor	nstrained.
Landfill/Trash	о р 🕜 В	© РСВ		U c	nannel is <u>Uncons</u>	trained in Bro	ad Valley.	
Park/Lawn	ОРСВ	ОРСВ	_			HECK ONE		
Row Crops Pasture/Range/Hay Field	ФРСВ	ОРСВ	_	• YE	S I COULD RE	ADILY SEE O	OVER THE BA	ANK.
Logging Operations	ОРСВ	Орсв	_	ONC	I COULD NO	T READILY	SEE OVER TH	HE BANK.
Mining Activity	Орсв	Орсв		FLA	G			
Flag	C	omments					CANOPY DENS	ITY @ BANK
F2 RAILROAD	GRADE					D	ENSIOMETER (0 TO 17 MA
				_	_		UP	0
						_	DOWN	1
			_		-		LEFT	8
							RIGHT	12
							FLAG	

Figure 5.2-5. Channel/Riparian Transect Form, page 2 (back side).

5.2.8.1 Channel Margin Depth and Substrate

Channel margin depths are measured along the designated shoreline at each transect within the 10m x 20m littoral plot that is centered on the transect. Dominant and sub-dominant bottom substrates are determined and recorded at 5 systematically-spaced locations that are located by eye within the 10m x 20m plot. The procedure for obtaining channel margin depth and substrate measurements is described in more detail in Table 5.2-6. Record these measurements on the Channel/Riparian Transect Form as shown in Figure 5.2-4. Identify the dominant and subdominant substrate present along a shoreline swath 20 meters long and 1 meter back from the waterline. The substrate size class choices are as shown in Table 5.2-6.

Table 5.2-6. Channel margin depth and substrate procedure

- 1. Fill in the header information on page 1 of a Channel/Riparian Transect Form. Be sure to indicate the letter designating the transect location.
- 2. Measure depth and observe bottom substrates within the 10m x 20 m littoral plot that is centered on each transect location.
- 3. Determine and record the depth and the dominant and subdominant substrate size class at 5 systematically-spaced locations estimated by eye within this 10m x 20m plot and 1m back from the waterline. If the substrate particle is "artificial" (e.g. concrete, asphalt), choose the appropriate size class, flag the observation and note that it is artificial in the comment space.

Code	Size Class	Size Range (mm)	Description
RS	Bedrock (Smooth)	>4000	Smooth surface rock bigger than a car
RR	Bedrock (Rough)	>4000	Rough surface rock bigger than a car
XB	Large Boulders	>1000 to 4000	Meter stick to Car size
SB	Small Boulders	>250 to 1000	Basketball to Meter stick size
СВ	Cobbles	>64 to 250	Tennis ball to basketball size
GC	Gravel (Coarse)	>16 to 64	Marble to tennis ball size
GF	Gravel (Fine)	> 2 to 16	Ladybug to marble size
SA	Sand	>0.06 to 2	Gritty – up to ladybug size,
FN	Fines	<0.06	Silt Clay Muck (not gritty between fingers)
HP	Hardpan		Firm, consolidated fine substrate
WD	Wood	Regardless of Size	Wood & other organic particles
ОТ	Other	Regardless of Size	Concrete, metal, tires, etc. (note in comments)

- 4. On page 1 of the Channel/Riparian Transect Form, circle the appropriate shore and bottom substrate type and record the depth measurements ("SONAR" or "POLE" columns).
- 5. Repeat Steps 1 through 4 at each new cross-section transect.

5.2.8.2 Large Woody Debris

Large Woody Debris (LWD) is defined as woody material with small end diameter of \geq 30 cm (1ft) and length of \geq 5 m (15 ft). These size criteria are larger than those used in wadeable streams because of the lesser role that small wood plays in controlling velocity and morphology of larger rivers. The procedure for tallying LWD is presented in Table 5.2-7. For each tally (<u>Wood All/Part in Wetted Channel</u> and <u>Dry but All/Part in Bankfull Channel</u>), the field form (Figure 5.2-4) provides 12 entry boxes for tallying debris pieces visually estimated within three length and four diameter class combinations. Tally each LWD piece in only one box. Do not tally woody debris in the area between channel cross-sections, but the presence and location of

large debris dams and accumulations should be mapped (sketched) and noted in the thalweg profile comments.

For each LWD piece, first <u>visually estimate</u> its length and its large and small end diameters and place it in one of the diameter and length categories. The diameter classes on the field form (Figure 5.2-4) refer to the <u>large end diameter</u>. Sometimes LWD is not cylindrical, so it has no clear "diameter". In these cases visually estimate what the diameter would be for a piece of wood with circular cross-section that would have the same volume. When evaluating length, include only the part of the LWD piece that has a diameter >0.3m (1 ft). Count each of the LWD pieces as one tally entry and include the whole piece when assessing dimensions, even if part of it is outside of the bankfull channel. If you encounter massive, complex debris jams, estimate their length, width, and height. Estimate the diameter and length of large "key" pieces and judge the average diameter and length of the other pieces making up the jam. Record this information in the comments section of the form.

Table 5.2-7. Procedure for tallying large woody debris

Note: Tally pieces of large woody debris (LWD) within the 11 transects of the river reach at the same time the shoreline measurements are being determined. Include all pieces whose large end is located within the transect plot in the tally. Tally wood that is at least partially within the wetted channel separately from that that is not presently wetted, but still within or directly above (bridging) the bankfull channel

- 1. LWD is tallied in 11 "plots" systematically spaced over the entire length of the stream reach. These plots are each 20 m long in the upstream-downstream direction (10m up, 10m down). They are positioned along the chosen bank and extend from the shore in 10m towards mid-channel and then all the way to the bankfull margin.
- Tally all LWD pieces within the plot that are at least partially within the presently wetted (baseflow) channel. First, determine if a piece is large enough to be classified as LWD (small end diameter 30 cm [1 ft.]; length 5 m [15 ft.])
- 3. For each piece of LWD, determine its diameter class **based on the diameter of the large end** (0.3 m to < 0.6 m, 0.6 m to <0.8 m, 0.8 m to <1.0 m, or >1.0 m), and the **length class of the LWD pieces based on the part of its length that has diameter** ≥30 cm. Length classes are 5m to <15m, 15m to <30m, or >30m.
 - If the piece is not cylindrical, visually estimate what the diameter would be for a piece of wood with circular cross-section that would have the same volume.
 - When estimating length, include only the part of the LWD piece that has a diameter >0.3 m (1 ft.)
- 4. Place a tally mark in the appropriate diameter × length class tally box in the "WOOD ALL/PART IN WETTED CHANNEL" section of the Channel/Riparian Transect Form.
- 5. Tally all shoreline LWD pieces along the littoral plot that are at least partially within or above (bridging) the bankfull channel, but not in the wetted channel. For each piece, determine the diameter class based on the diameter of the **large end** (0.3 m to < 0.6 m, 0.6 m to <0.8 m, 0.8 m to <1.0 m, or >1.0 m), and the **length class based on the length of the piece that has diameter** ≥**30 cm.** Length classes are 5m to <15m, 15m to <30m, or >30m.
- 6. Place a tally mark for each piece in the appropriate diameter × length class tally box in the "DRY BUT ALL/PART IN BANKFULL CHANNEL" section of the Channel/Riparian Transect Form.
- 7. After all pieces within the segment have been tallied, write the total number of pieces for each diameter \times length class in the small box at the lower right-hand corner of each tally box.
- 8. Repeat Steps 1 through 7 for the next river transect, using a new Channel/Riparian Transect Form.

5.2.8.3 Bank Angle and Channel Cross-Section Morphology

Bank angles of undercut, vertical, steep, and gradual are visually estimated as defined on the field form (Figure 5.2-4). Observations are made from the wetted channel margin up 5 m (a canoe's length) into the bankfull channel margin on the previously chosen side of the stream.

You will measure or estimate the wetted width, mid-channel bar width, bankfull height and width, the amount of incision, and the degree of channel constraint. These are assessed for **the whole channel (left and right banks)** at each of the 11 cross-section transects. Record each on the Channel/Riparian Transect Form (Figure 5.2-4). The procedures for obtaining bank angle and measurements of channel cross-section morphology are presented in Table 5.2-8.

Wetted width is the width of the channel containing free-standing water; if >15 m, it can be measured with a laser rangefinder. **Mid-channel bar width**, the width of exposed midchannel gravel or sand bars, is included within the wetted width, but is also recorded separately. In channel cross-section measurements, the wetted and bankfull channel boundaries include mid-channel bars. Therefore, the wetted width is measured as the distance between wetted left and right banks. Measure across and over mid-channel bars and boulders. If islands are present, treat them like bars, but flag these measurements and indicate in the comments that the "bar" is an island. If you are unable to see across the full width of the river when an island separates a side channel from the main channel, record the width of the main channel, flag the observation, and note in the comments section that the width pertains only to the main channel.

Table 5.2-8. Procedure for bank angle and channel cross-section

- 1. Visually estimate the bank angle (undercut, vertical, steep, gradual), as defined on the field form. Bank angle observations refer to the area from the wetted channel margin up 5 m (canoe's length) into the bankfull channel margin on the previously chosen side of the river. Circle the angle in the "BANK ANGLES" section of the Channel/Riparian Transect Form.
- 2. Hold the surveyor's rod vertically, with its base planted at the water's edge. Examine both banks, then determine the channel *incision* as the *height up from the water surface to elevation of the first terrace of the valley floodplain* (Note this is at or above the bankfull channel height). Whenever possible, use the clinometer as a level (positioned so it reads 0% slope) to measure this height by transferring (backsighting) it onto the surveyor's rod. Record this value in the *INCISED HEIGHT* field of the bank characteristics section on the field data form.
- 3. While still holding the surveyor's rod as a guide, and sighting with the clinometer as a level, examine both banks to measure and record the *height of bankfull flow above the present water level*. Look for evidence on one or both banks such as:
 - An obvious slope break that differentiates the channel from a relatively flat floodplain terrace higher than the channel.
 - A transition from exposed stream sediments to terrestrial vegetation.
 - Moss growth on rocks along the banks.
 - Presence of drift material caught on overhanging vegetation.
 - A transition from flood- and scour-tolerant vegetation to that which is relatively intolerant of these conditions.
- 4. Record the *wetted width* value determined when locating substrate sampling points in the *BANK CHARACTERISTICS* section of the field data form. Also determine the *bankfull channel width* and the *width of exposed mid-channel bars* (if present).
- 5. Repeat Steps 1 through 6 at each cross-section transect, (including any additional side channel transects established when islands are present). Record data for each transect on a separate field data form.

Bankfull flows are large enough to erode the stream bottom and banks, but frequent enough (every 1 to 2 years) to not allow substantial growth of upland terrestrial vegetation.

Consequently, in many regions, it is these flows that have determined the width and depth of the channel. Estimates of the bankfull dimensions of stream channels are extremely important in EMAP surveys. They are used to calculate shear stress and bed stability (see Kaufmann et al., 1999). Unfortunately, we have to depend upon evidence visible during the low-flow sampling season. If available, consult published rating curves relating expected bankfull channel dimensions to stream drainage area within the region of interest. Graphs of these rating curves can help you get a rough idea of where to look for field evidence to determine the level of bankfull flows. Curves such as these are available from the USGS for streams in most regions of the U.S. (e.g., Dunne and Leopold 1978; Harrelson et al. 1994, Leopold 1994). To use them, you need to know the contributing drainage area to your sample site. Interpret the expected bankfull levels from these curves as a height above the streambed in a riffle, but remember that your field measurement will be a height above the present water surface of the stream. Useful resources to aid your determination of bankfull flow levels in streams in the United States are video presentations produced by the USDA Forest Service for western streams (USDA Forest Service 1995) and eastern streams (USDA Forest Service 2002).

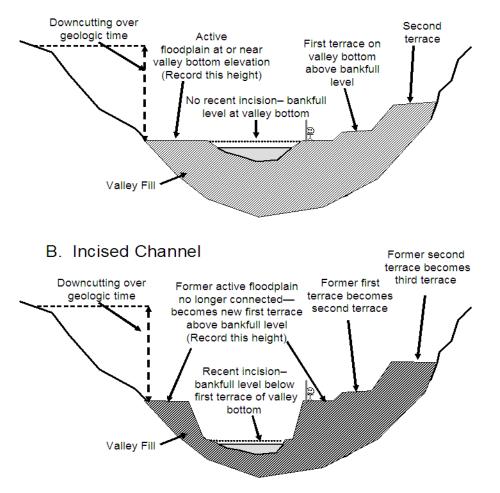
After consulting rating curves that show where to expect bankfull levels in a given size of stream, estimate the bankfull flow level by looking at the following indicators:

- First look at the stream and its valley to determine the active floodplain. This is a depositional surface that frequently is flooded and experiences sediment deposition under the current climate and hydrological regime.
- Then look specifically for:
- An obvious break in the slope of the banks.
- A change from water-loving and scour-tolerant vegetation to more drought-tolerant vegetation.
- A change from well-sorted stream sediments to unsorted soil materials.

In the absence of clear bankfull indications, consider the previous season's flooding as the best evidence available (note: you could be wrong if very large floods or prolonged droughts have occurred in recent years.). Look for:

- Drift debris ("sticky wickets" left by the previous seasons flooding).
- The level where deciduous leaf-fall is absent on the ground (carried away by previous winter flooding).
- Unvegetated sand, gravel or mud deposits from previous year's flooding.

In years that have experienced large floods, drift material and other recent high flow markers may be much higher than other bankfull indicators. In such cases, base your determination on less-transient indicators such as channel form, perennial vegetation, and depositional features. In these cases, flag your data entry and also record the height of drift material in the comments section of the field data form.


We use the vertical distance (height) from the observed water surface up to the level of the first major valley depositional surface (Figure 5.2-6) as a measure of the degree of *incision* or *downcutting* of the stream below the general level of its valley. This value is recorded in the **incised height** field. It may not be evident at the time of sampling whether the channel is downcutting, stable, or aggrading (raising its bed by depositing sediment). However, by

recording incision heights measured in this way and monitoring them over time, we will be able to tell if streams are incising or aggrading.

If the channel is not greatly incised, bankfull channel height and incision height will be the same. However, if the channel is incised greatly, the bankfull level will be below the level of the first terrace of the valley floodplain, making "Bankfull Height" smaller than "Incision" (Figure 5.2-6). Bankfull height is never greater than incision height. Look for evidence of recent flows (within about 1 year) to distinguish bankfull and incision heights, though recent flooding of extraordinary magnitude may be misleading. In cases where the channel is cutting a valley sideslope and has oversteepened and destabilized that slope, the bare "cutbank" against the steep hillside at the edge of the valley is not necessarily an indication of recent incision. In such a case, the opposite bank may be lower, with a more obvious terrace above bankfull height; choose that bank for your measurement of incised height. Examine both banks to determine incision height and bankfull height. Remember that incision height is measured as vertical distance to the first terrace above bankfull; if terrace heights differ on left and right banks, choose the lower of the two terraces. Even when guite constrained by their valley sideslopes, large rivers often have flood terraces above bankfull height. In some cases, though, your sample reach may be in a steep "V" shaped valley or gorge formed over eons, and the slopes of the channel banks simply extend uphill indefinitely, not reaching a terrace before reaching the top of a ridge. In such cases, record incision height values equal to bankfull values and make appropriate comments that no terrace is evident. Similarly, when the river is extremely incised below an ancient terrace or plateau, (e.g., the Colorado River in the Grand Canyon), you may crudely estimate the terrace height if it is the first one above bankfull level. If you cannot estimate the terrace height, make appropriate comments describing the situation.

Finally, assess the **local degree of river channel constraint** (i.e., at the transect) by following the guidelines on the form (Figure 5.2-5) regarding the relationships among channel incision, valley sideslope, and width of the valley floodplain. You will also do an overall assessment of channel constraint for the whole river reach; see Section 5.2.9 for a discussion of constraint concepts and assessment procedures.

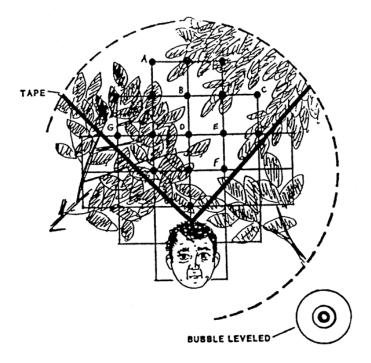


Figure 5.2-6. Schematic showing bankfull channel and incision for channels. (A) not recently incised, and (B) recently incised into valley bottom. Note level of bankfull stage relative to elevation of first terrace on valley bottom (stick figure included for scale)

5.2.8.4 Canopy Cover (Densiometer)

Measure vegetative cover over the reach at the chosen bank at each of the 11 transects (A-K). with a Convex Spherical Densiometer. Tape the densitometer exactly as shown in Figure 5.2-7 to limit the number of grid intersections to 17. Densiometer readings can range from 0 (no canopy cover) to 17 (maximum canopy cover). Four measurements are obtained at each cross-section transect (upriver, downriver, left, and right). The procedure for obtaining canopy cover data is presented in Table 5.2-8. Record the counts in the "Canopy Density @ Bank" section of the Channel/Riparian Transect Form as shown in Figure 5.2-4.

Figure 5.2-7. Schematic of modified convex spherical canopy densiometer (From Mulvey et al., 1992). In this example, 10 of the 17 intersections show canopy cover, giving a densiometer reading of 10. Note proper positioning with the bubble leveled and face reflected at the apex of the "V."

Table 5.2-9. Procedure for canopy cover measurements

- 1. Take densiometer readings at a cross-section transect while anchored or tied up at the river margin.
- 2. Hold the densiometer 0.3 m (1 ft) above the surface of the river. Holding the densiometer level using the bubble level, move it in front of you so your face is just below the apex of the taped "V".
- 3. At the channel margin measurement locations, count the number of grid intersection points within the "V" that are covered by either a tree, a leaf, a high branch, or the bank itself.
- 4. Take 1 reading each facing upstream (UP), downstream (DOWN), left bank (LEFT), and right bank (RIGHT). Right and left banks are defined with reference to an observer facing downstream.
- 5. Record the UP, DOWN, LEFT, and RIGHT values (0 to 17) in the "CANOPY COVER @ BANK" section of the Channel/Riparian Transect Form.
- 6. Repeat Steps 1 through 5 at each cross-section transect. Record data for each transect on a separate field data form.

5.2.8.5 Riparian Vegetation Structure

Riparian vegetation observations apply to the riparian area upstream 10 m and downstream 10 m from each of the 11 transects. They include the visible area from the river bankfull margin back a distance of 10 m (30 ft) shoreward from both the left and right banks, creating a 10m X 20m riparian plot on each side of the river (Figure 5.2-2). The riparian plot dimensions are estimated, not measured. Table 5.2-9 presents the procedure for characterizing riparian vegetation structure and composition. Figure 5.2-5 illustrates how measurement data

are recorded in the "Visual Riparian Estimates" section of the Channel/Riparian Transect Form, side 2.

Table 5.2-10. Procedure for characterizing riparian vegetation structure

- 1. Anchor or tie up at the river margin at a cross-section transect; then make the following observations to characterize riparian vegetation structure.
- 2. Estimate the distance from the shore to the edge of the riparian vegetation plot; record it just below the title "Channel Constraint" on the Channel/Riparian Transect Form, side 2.
- 3. Facing the left bank (left as you face downstream), estimate a distance of 10 m back into the riparian vegetation, beginning at the bankfull channel margin. Estimate the cover and structure of riparian vegetation within an estimated 10 m x 20 m plot centered on the transect, and starting where perennial vegetation begins or at the bankfull river margin (whichever is closest to the river shoreline). On steeply-sloping channel margins, estimate the riparian plot dimensions as if they were projected down from an aerial view.
- 4. Within this 10 m × 20 m area, conceptually divide the riparian vegetation into 3 layers: a CANOPY (>5m high), an UNDERSTORY (0.5 to 5 m high), and a GROUND COVER layer (<0.5 m high).
- 5. Within this 10 m × 20 m area, determine the dominant woody vegetation type for the CANOPY LAYER (vegetation > 5 m high) as either <u>D</u>eciduous, <u>C</u>oniferous, broadleaf <u>E</u>vergreen, <u>M</u>ixed, or <u>N</u>one. Consider the layer "Mixed" if more than 10% of the areal coverage is made up of the alternate vegetation type. If the dominant vegetation type in the canopy layer is not woody, record the vegetation type as "<u>N</u>one". Indicate the appropriate vegetation type in the "VISUAL RIPARIAN ESTIMATES" section of the Channel/Riparian Cross-section and Thalweg Profile Form.
- 6. Determine separately the areal cover class of large trees (> 0.3 m [1 ft] diameter at breast height [DBH]) and small trees (< 0.3 m DBH) within the canopy layer. Estimate areal cover as the amount of shadow that would be cast by a particular layer alone if the sun were directly overhead. Record the appropriate cover class on the field data form ("0" = absent, zero cover; "1" = sparse, <10%; "2" = moderate, 10-40%; "3" = heavy, 40-75%; or "4" = very heavy, >75%).
- 7. Look at the UNDERSTORY layer (vegetation between 0.5 and 5 m high). Determine the dominant **woody** vegetation type for the understory layer as described in Step 5 for the canopy layer. If the dominant vegetation type in the understory is not woody (e.g., herbaceous), record the vegetation type as "<u>N</u>one".
- 8. Determine the areal cover class for woody shrubs and saplings separately from non-woody vegetation within the understory, as described in Step 6 for the canopy layer.
- Look at the GROUND COVER layer (vegetation < 0.5 m high). Determine the areal cover class for woody shrubs and seedlings, non-woody vegetation, and the amount of bare ground or duff (dead organic material) present as described in Step 6 for large canopy trees.
- 10. Repeat Steps 1-9 for all transects, using a separate field data form for each transect.

You will estimate the areal cover separately in each of the three vegetation layers. Note that the areal cover can be thought of as the amount of shadow cast by a particular layer alone when the sun is directly overhead. <u>The maximum cover in each layer is 100%</u>, so the sum of the <u>areal covers for the combined three layers could add up to 300%</u>. When rating vegetation cover types, mixtures of two or more subdominant classes might all be given sparse ("1") moderate ("2") or heavy ("3") rankings. One very heavy cover class with no clear subdominant class might be ranked "4" with all the remaining classes either moderate ("2"), sparse ("1") or absent ("0"). Two heavy classes with 40-75% cover can both be ranked "3".

5.2.8.6 Fish Cover, Algae, Aquatic Macrophytes

Over a defined length and distance from shore at the sampling locations, crews shall estimate by eye and by sounding the proportional cover of fish cover features and trophic level

indicators including large woody debris, rootwads and snags, brush, live trees in the wetted channel, undercut banks, overhanging vegetation, rock ledges, aquatic macrophytes, filamentous algae, and artificial structures.

The procedure to estimate the types and amounts of fish cover is outlined in Table 5.2-10. Record data in the "Fish Cover/Other" section of the Channel/Riparian Transect Form as shown in Figure 5.2-5. Crews will estimate the areal cover of all of the fish cover and other listed features that are in the water and on the banks within the 10m x 20m plot (refer to Figure 5.2-2).

Table 5.2.11. Procedure for estimating fish cover

- 1. Stop at the designated shoreline at a cross-section transect and estimate a 10 m distance upstream and downstream (20 m total length), and a 10 m distance out from the banks to define a 20 m x 10 m littoral plot.
- 2. Examine the water and the banks within the 20 m x 10 m littoral plot for the following features and types of fish cover: filamentous algae, aquatic macrophytes, large woody debris, in-channel live trees or roots, brush and small woody debris, overhanging vegetation, undercut banks, boulders, and artificial structures.
- 3. For each cover type, estimate its areal cover by eye and/or by sounding with a pole. Record the appropriate cover class in the "FISH COVER/OTHER" section of the Channel/Riparian Transect Form ("0"=absent: zero cover, "1"=sparse: <10%, "2"=moderate: 10-40%, "3"=heavy: 40-75%, or "4"=very heavy: >75%).
- 4. Repeat Steps 1 through 3 at each cross-section transect, recording data from each transect on a separate field data form.

Filamentous algae pertains to long streaming algae that often occur in slow moving waters. Aquatic macrophytes are water loving plants in the river, including mosses, that could provide cover for fish or macroinvertebrates. If the river channel contains live wetland grasses, include these as macrophytes. Woody debris are the larger pieces of wood that can provide cover and influence stream morphology (i.e., those pieces that would be included in the large woody debris tally [Section 5.2.8.2]). Brush/woody debris pertains to the smaller wood that primarily affects cover but not morphology. The entry for trees or brush within one meter of the surface is the amount of brush, twigs, small debris etc. that is not in the water but is close to the stream and provides cover. "Live Trees or Roots" are living trees that are within the channel -- estimate the areal cover provided by the parts of these trees or roots that are inundated. For ephemeral channels, estimate the proportional cover of these trees that is inundated during bankfull flows. Boulders are typically basketball to car sized particles. Many streams contain artificial structures designed for fish habitat enhancement. Streams may also have in-channel structures discarded (e.g., cars or tires) or purposefully placed for diversion, impoundment, channel stabilization, or other purposes. Record the cover of these structures on the form.

5.2.8.7 Human Influences

For the left and right banks at each of the 11 detailed Channel/Riparian Cross-Sections, evaluate the presence/absence and the proximity of 11 categories of human influences outlined in Table 5.2-11. Record human influences on the Channel/Riparian Transect Form (Figure 5.2-5). You may mark "P" more than once for the same human influence observed outside of more than one riparian observation plot (e.g. at both Transect D and E). The rule is that you count human disturbance items as often as you see them, BUT NOT IF you have to site through a previously counted transect or its 10x20 meter riparian plot.

Table 5.2-12. Procedure for estimating human influence

- 1. Stop at the designated shoreline at a cross-section transect, look toward the left bank (left when facing downstream), and estimate a 10m distance upstream and downstream (20 m total length). Also, estimate a distance of 10 m back into the riparian zone to define a riparian plot area.
- Examine the channel, bank and riparian plot area adjacent to the defined river segment for the following human influences: (1) walls, dikes, revetments, riprap, & dams; (2) buildings; (3) cleared lot, pavement (e.g., paved, graveled, dirt parking lot, foundation); (4) roads or railroads, (5) inlet or outlet pipes; (6) landfills or trash (e.g., cans, bottles, trash heaps); (7) parks or maintained lawns; (8) row crops; (9) pastures, rangeland, or hay fields; (10) logging; and (11) mining (include gravel mining).
- 3. For each type of influence, determine if it is present and what its proximity is to the river and riparian plot area. Consider human disturbance items as present if you can see them from the cross-section transect. Do not include them if you have to site through another transect or its 10 m × 20 m riparian plot.
- 4. For each type of influence, record the proximity class in the "HUMAN INFLUENCE" part of the "VISUAL RIPARIAN ESTIMATES" section of the Channel/Riparian Transect Form. Proximity classes are:

	⋅B ("Bank")	Present within the defined 20 m river segment and located in the stream or on the wetted or bankfull bank.
	·C ("Close")	Present within the 10×20 m riparian plot area, but above the bankfull level.
	P ("Present")	Present, but observed outside the riparian plot area.
	·O ("Absent")	Not present within or adjacent to the 20 m river segment or the riparian plot area at the transect
5.	Repeat Steps 1 thro	ugh 4 for the opposite bank.

6. Repeat Steps 1 through 5 for each cross-section transect, recording data for each transect on a separate field form.

5.2.8.8 Riparian "Legacy" Trees and Invasive Alien Species

At each littoral-riparian station (A-K), search for the largest tree visible. Confine your search to within 100m (or as far as you can see) from the wetted bank on either side of the river from each transect upstream and downstream. Classify this tree as broadleaf deciduous, coniferous, or broadleaf evergreen (classify western larch as coniferous). Identify, if possible, the species or the taxonomic group of this tree from the list provided in Table 5.2-12 (also on field form) and estimate its height, diameter at breast height (dbh) and distance from the wetted margin of the river. You may need to use binoculars to make these determinations. Enter this information on the left hand column of the field form for Riparian "Legacy" Trees and Invasive Alien Plants (Figure 5.2-8). If the largest tree is a dead "snag", enter "Snag" as the taxonomic group. Note that the tree you choose may not truly be a "Legacy" tree; we use this data to determine if there are Legacy Trees along the stream reach.

Search in the 10 m x 20 m riparian and littoral plots on both banks for the presence of any invasive alien species listed in the NRSA Invasive Species Guide provided to each field crew. Document the species observed on the Riparian "Legacy" Trees and Invasive Alien Plants form (Figure 5.2-8), answering the question of whether each of the target species is present in the plot. If you have a camera, document the species with a photograph. If you observe no alien taxa within the riparian and littoral plots, but can confidently identify them outside of the plots, include your observations in the comments portion of the form. If the river is too wide to effectively observe the far bank at a transect, record what you observe for the plot on the near bank, record a "U" flag, and explain in the comments section of the form.

Table 5.2-13. Procedure for identifying riparian legacy trees and alien invasive species

Legacy Trees:

Beginning at Transect A, look upstream and downstream as far as you can see within the 100m of the wetted bank but look no further downstream than half of the distance to the next transect. Locate the legacy tree from within that area.

Classify this tree as broadleaf deciduous, coniferous, or broadleaf evergreen (classify western larch as coniferous). Identify, if possible, the species or the taxonomic group of this tree from the list below.

- 1. Acacia/Mesquite
- 2. Alder/Birch
- 3. Ash
- 4. Cedar/Cypress/Sequoia
- 5. Fir (including Douglas Fir, Hemlock)
- 6. Juniper
- 7. Maple/Boxelder
- 8. Oak
- 9. Pine

- 10. Poplar/Cottonwood
- 11. Snag (Dead Tree of Any Species)
- 12. Spruce
- 13. Sycamore
- 14. Willow
- 15. Unknown, other Broadleaf Evergreen
- 16. Unknown or Other Conifer
- 17. Unknown or Other Deciduous
- 18. Elm

NOTE: If the largest tree is a dead "snag", enter "Snag" as the taxonomic group. Estimate the height of the potential legacy tree, its diameter at breast height (dbh) and its distance from the wetted margin of the stream. Enter this information on the left hand column of the Riparian "Legacy" Trees and Invasive Alien Plants field form.

Alien Invasive Species:

Examine the 10m x 20m riparian and littoral plots on both banks for the presence of alien species. (Species lists will be provided)

Record the presence of any species listed within the plots on either the left or right bank on the Riparian "Legacy" Trees and Invasive Alien Species field form. If none of the species listed is present in the plots at a given transect, fill in the circle indicating "None" for this transect. Repeat for each remaining transect (B through K). At transect "K", look upstream a distance of 4 channel widths) when locating the legacy tree.

Any invasive species seen but not included on this list should be written in the comments section.

		SITE ID:		SOMS	FWOS XX 000		DATE	0.21	02/01/20	008		ĥe C
		LARGEST POTE	ST PO	TENTIAL	LEGACY 1	TREE VISIBLE	NTIAL LEGACY TREE VISIBLE FROM THIS STATION	ALI	EN PLANT SPI ARIAN PLOTS	ALIEN PLANT SPECIES PRESENT IN LEFT AND RIGHT RIPARIAN PLOTS, AND INSTREAM FISH COVER PLOT	LEFT AND RIG	
Tr Lis	Trees not Visible	(m)		Height (m)	Dist. from wetted margin (m)	Type	Taxonomic Category		Che	Check all that are present	sent .	
U	0 • 0	0-0.1 .13 .375	0.75-2	 <5 <5 5-15 <0 15-30 <0 >30 	0	 Deciduous Coniferous Broadleaf Evergreen 	POPLAR / COTTON NOOD	NONE	O E Wtrmilf O Hydrilla O E Wtrchest	O W Hyacinth O O Yiw Fitheart O O P Lstrife O	G Reed OMF Rose Fiwr Rush O Spurge Salt Ced	ge
	000	0 0-0.1 0 0 .1-3 0 • .375	0.75-2 0	O <5 O 5-15 ● 15-30 O >30	15	O Deciduous O Coniferous O Broadleaf Evergreen	SNAG-		O E Wtrmilf O Hydrilla O E Wtrchest	O W Hyacinth O O Ylw Fitheart O P Lstrife O	O G Reed O MF Rose O Flwr Rush O Spurge O Salt Ced	aso
0	000	0 0-0.1 • 0 .13 0 0 .375	0 *2	⊖ <5 ⊖ 5-15 ● 15-30 ⊖ >30	2	Deciduous O Coniferous Broadleaf Evergreen	OTHER (ELM)	NONE	O E Wtrmilf O Hydrilla O E Wtrchest	O W Hyacinth O O Yiw Fitheart O P Lstrife O	G Reed OMF Rose Flwr Rush Spurge Salt Ced	aso
		INSTR	INSTRUCTIONS	SNO			TAXONOMIC CATEGORIES			ALIEN SPECIES	IES	1
front in the	al Legac our searc naximum deable Si m left an nsect (for nsect (for om left a	Potential Legacy trees are defin within your search area, which is within maximum limits as follows: Wadeable Streams: Confine 50 m from left and right bank and next transect (for 'K' look upstream Non-wadeable Rivers: Confir Non-wadeable Rivers: Confir on from left and right bank and too m from left and right bank and upstream as far	e define blich is a ollows: onfine s hk and bstream ostream nk and as far a	Potential Legacy trees are defined as the largest tree within your search area, which is as far as you can see within maximum limits as follows: Wadeable Streams: Confine search to no more tha 50 m from left and right bank and extending upstream thext transect (for Yr look upstream 4 channel widths) Non-wadeable Rivers: Confine search to no more to Non-wadeable Rivers: Confine search to no more to more the mark theam and downstream as far as you can see	Potential Legacy trees are defined as the largest tree within your search area, which is as far as you can see, but within maximum limits as follows: Wadesble Streams. Confine earch to no more than 50 m from left and right bank and extending upstream to next transect (for K' look upstream 4 channel widths) Non-wadesble Rivers: Confine search to no more than Non-wadesble Rivers: Confine search to no more than too from fielt and right bank and extending both too from fielt and right bank and extending both upstream and downstream as far as you can see		Acacia/Mesquite Aider/Birch Ash Ash Daple/Boxelder Poplar/Cottonwood Sycamore Unknown or Other Deciduous	E Wtrmilf Hydrilla E Wtrchest W Hyacinth Yw Fitheart P Lstrife G Reed Flwr Rush		Eurasian water milfoil Hydrilla European water chestnut Yetlow Floating Heart Purple loosestrife Giant Reed Salt Codar	Myriophyllum spicatum Hydrilla verticillata Trapa natans Trapa natans Nympholides peltata Lythrum salicaria Arundo donax Brundou sumbellatus	i spicatum cillata assipes peltata aria x bellatus
confidently Alien Plar right bank	confidently. Alien Plants: Co right bank	onfine sea	rch to ri	parian plot	confidently. Alien Plants: Confine search to riparian plots on left and right bank		Cedar/Cypress/Sequoia Fir (including Douglas fir and hemlock) Juniper	MF Rose Spurge	Multi-flora rose Leafy Spurge	ra rose ourge	Euphorbia esula	ra sula
/ar	deable St	Wadeable Streams: 10 m x 10 m Non-wadeable Rivers: 10 m x 20 m	10 m × 10	E 02		Spruce	Spruce Unknown or Other Conifer			COMMENTS		
10	and Plan	Not all aliens are to be identified in all Manual and Plant Identification Guide	tion Gu	n all states. lide.	See Field	Unknow	Unknown or Other Broadleaf Evergreen					
						Snag (D	Snag (Dead tree of any species)					

Figure 5.2-8. Field form for Riparian "Legacy" Trees and Invasive Alien Plants (Page 1)

.....

5.2.9 Channel Constraint Assessment

After completing the thalweg profile and littoral-riparian measurements and observations, visualize the stream at bankfull flow and evaluate the degree, extent and type of channel constraint, following the procedure in Table 5.2-12. Figure 5.2-9 illustrates anastomosing and braided channel types. Use the definitions on the Channel Constraint Assessment form (Figure 5.2-10) to classify the channel. Estimate the percent of the channel margin in contact with constraining features (for unconstrained channels, this is 0%). To aid in this estimate, you may wish to refer to the individual transect assessments of incision and constraint. Finally, estimate the "typical" bankfull channel width and visually estimate the average width of the valley floor. (valley floor width can often be determined from 1:24,000-scale topographic maps).

Table 5.2-14. Procedures for assessing channel constraint

NOTE: These activities are conducted after completing the thalweg profile and littoral-riparian measurements and observations, and represent an evaluation of the entire stream reach. Record this information on the Channel Constraint Form.

CHANNEL CONSTRAINT: Determine the degree, extent, and type of channel constraint based on envisioning the stream at **bankfull flow**.

Classify the stream reach channel pattern as predominantly **one** channel, an **anastomosing** channel, or a **braided** channel.

One channel may have occasional in-channel bars or islands with side channels, but feature a predominant single channel, or a dominant main channel with a subordinate side channel.

Anastomosing channels have relatively long major and minor channels branching and rejoining in a complex network separated by vegetated islands, with no obvious dominant channel.

Braided channels also have multiple branching and rejoining channels, separated by unvegetated bars. Subchannels are generally small, short, and numerous, often with no obvious dominant channel.

After classifying the channel pattern, determine whether the channel is constrained within a narrow valley, constrained by local features within a broad valley, unconstrained and free to move about within a broad floodplain, or free to move about, but within a relatively narrow valley floor.

Then examine the channel to ascertain the bank and valley features that constrain the stream. Entry choices for the type of constraining features are bedrock, hillslopes, terraces/alluvial fans, and human land use (e.g., a road, a dike, landfill, rip-rap, etc.).

Estimate the percent of the channel margin in contact with constraining features (for unconstrained channels, this is 0%).

Finally, estimate the "typical" bankfull channel width. To aid in this estimate, you may wish to refer to the individual transect assessments of incision and constraint that were recorded on the Channel/Riparian Cross-Section Forms.

Visually estimate the average width of the valley floor. If the valley is wider than you can directly estimate, record the distance you can see and mark the box on the field form.

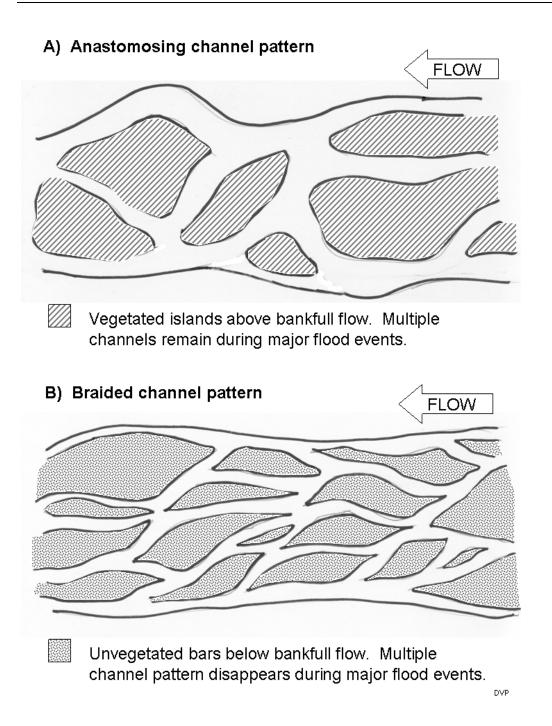


Figure 5.2-9. Types of multiple channel patterns.

SITE FV	108 XX 000	_	DATE: 0. 7.1.0	12008
		CHANNEL CONSTRAIN	ŧΤ	
CHANNEL PAT	TERN (Fill in one)			
One cha				
	nosing (complex) channel - (F			
O Braided numerou	channel - (Multiple short chann s mid-channel bars.)	nels branching and rejoining	- mainly one channel bro	oken up by
CHANNEL CON	STRAINT(Fill in one)			
	very constrained in V-shape anel during flood)	d valley (i.e. it is very unlike	ly to spread out over vall	ey or erode a
Channel	is in Broad Valley but channe not commonly spread over valle	el movement by erosion durir ev floor or into multiple chan	ng floods is constrained	by Incision (Flood
O Channel	is in Narrow Valley but is not or (< ~10 x bankfull width)			ively narrow
O Channel	is Unconstrained in Broad V ut over flood plain, or easily cut	alley (i.e. during flood it can new channels by erosion)	fill off-channel areas and	d side channels,
	G FEATURES (Fill in one)			
O Bedrock	(i.e. channel is a bedrock-dom	inated gorge)		
O Hillslope	(i.e. channel constrained in na	errow V-shaped vallev)		
	(i.e. channel is constrained by i		am gravel/soil deposits)	
	1997 - De la calegaria de la c		5	
	Bank Alterations (i.e. constrair training features	ied by rip-rap, landfill, dike, r	oad, etc.)	
			Percent of Char	nnel Margin Examples
	nannel length with margin th constraining feature:	(0-100%) %>	Martar	Marthand
Bankfull widt	h:		100%	100%
Valley width	Visual Estimated Average):		Asa	A
Note: Be sure t	o include distances between both side	s of valley border for valley width.	1200	SA !!
	nnot see the valley borders, record you can see and mark this box.	the O	50%	\$ 50%
Comments				

Figure 5.2-10. Channel Constraint Form.

5.2.10 Debris Torrents and Recent Major Floods

Debris torrents, or lahars, differ from conventional floods in that they are flood waves of higher magnitude and shorter duration, and their flow consists of a dense mixture of water and debris. Their high flows of dense material exert tremendous scouring forces on streambeds. For example, in the Pacific Northwest, flood waves from debris torrents can exceed 5 meters deep in small streams normally 3 m wide and 15 cm deep. These torrents move boulders in excess of 1 m diameter and logs >1 m diameter and >10 m long. In temperate regions, debris torrents occur primarily in steep drainages and are relatively infrequent, occurring typically less than once in several centuries. They are usually set into motion by the sudden release of large volumes of water upon the breaching of a natural or human-constructed impoundment, a process often initiated by mass hillslope failures (landslides) during high intensity rainfall or snowmelt. Debris torrents course downstream until the slope of the stream channel can no longer keep their viscous sediment suspension in motion (typically <3% for small streams); at this point, they "set up", depositing large amounts of sediment, boulders, logs, and whatever else they were transporting. Upstream, the torrent track is severely scoured, often reduced in channel complexity and devoid of near-bank riparian vegetation. As with floods, the massive disruption of the stream channel and its biota are transient, and these intense, infrequent events will often lead to a high-quality complex habitat within years or decades, as long as natural delivery of large wood and sediment from riparian and upland areas remains intact.

In arid areas with high runoff potential, debris torrents can occur in conjunction with flash flooding from extremely high-intensity rainfall. They may be nearly annual events in some steep ephemeral channels where drainage area is sufficient to guarantee isolated thunderstorms somewhere within their boundaries, but small enough that the effect of such storms is not dampened out by the portion of the watershed not receiving rainfall during a given storm.

Because they may alter habitat and biota substantially, infrequent major floods and torrents can confuse the interpretation of measurements of stream biota and habitat in regional surveys and monitoring programs. Therefore, it is important to determine if a debris torrent or major flood has occurred within the recent past. After completing the thalweg profile and channel/riparian measurements and observations, examine the stream channel along the entire sample reach, including its substrate, banks, and riparian corridor, checking the presence of features described on the Torrent Evidence Assessment Form (Figure 5.2-11). It may be advantageous to look at the channel upstream and downstream of the actual sample reach to look for areas of torrent scour and massive deposition to answer some of the questions on the field form. For example, you may more clearly recognize the sample reach as a torrent deposition area if you find extensive channel scouring upstream. Conversely, you may more clearly recognize the sample reach as a torrent scour reach if you see massive deposits of sediment, logs, and other debris downstream.

TID: FW08 XX 000 DATE: 0,7/01/2008	SI
TORRENT EVIDENCE	
Please fill in any of the following that are evident.	
ICE OF TORRENT SCOURING:	VID
01 - Stream channel has a recently devegetated corridor two or more times the width of the low flow channel. This corridor lacks riparian vegetation with possible exception of fireweed, even-aged alder or cottonwood seedlings, grasses, or other herbaceous plants.	0
02 - Stream substrate cobbles or large gravel particles are NOT IMBRICATED. (Imbricated means that they lie with flat sides horizontal and that they are stacked like roof shingles – imagine the upstream direction as the top of the "roof." a torrent scour or deposition channel, the stones are laying in unorganized patterns, lying "every which way." In addit many of the substrate particles are angular (not "water-worn.")	0
03 - Channel has little evidence of pool-riffle structure. (For example, could you ride a mountain bike down the channel	0
04 - The stream channel is scoured down to bedrock for substantial portion of reach.	0
05 - There are gravel or cobble berms (little levees) above bankfull level.	0
06 - Downstream of the scoured reach (possibly several miles), there are massive deposits of sediment, logs, and othe debris.	0
07 - Riparian trees have fresh bark scars at many points along the stream at seemingly unbelievable heights above the channel bed.	0
08 - Riparian trees have fallen into the channel as a result of scouring near their roots.	0
ICE OF TORRENT DEPOSITS:	EVID
09 - There are massive deposits of sediment, logs, and other debris in the reach. They may contain wood and boulder that, in your judgement, could not have been moved by the stream at even extreme flood stage.	0
10 - If the stream has begun to erode newly laid deposits, it is evident that these deposits are "MATRIX SUPPORTED." This means that the large particles, like boulders and cobbles, are often not touching each other, but have silt, sand, a other fine particles between them (their weight is supported by these fine particles – in contrast to a normal stream deposit, where fines, if present, normally "fill-in" the interstices between coarser particles.)	0
IDENCE:	NO
11 - No evidence of torrent scouring or torrent deposits.	
COMMENTS	-

Figure 5.2-11. Torrent Evidence Form.

5.3 Periphyton

5.3.1 Summary of Method

Collect periphyton from the near-shore shallows at each of the sampling stations located on the 11 cross-section transects ("A" through "K") established within the sampling reach. Collect periphyton samples at the same time as sediment enzyme samples (Section 5.1.4) and benthic macroinvertebrate samples (Section 5.4). Prepare one composite sample of periphyton for each site. At the completion of the day's sampling activities, but before leaving the site, prepare four types of laboratory samples (an ID/enumeration sample to determine taxonomic composition and relative abundances, a *chlorophyll* sample, a biomass sample (for ash-free dry mass [AFDM]), and an acid/alkaline phosphatase activity [APA] sample) from the composite periphyton sample.

5.3.2 Equipment and Supplies

Table 5.3-1 is a checklist of equipment and supplies required to conduct periphyton sample collection and processing activities. This checklist is similar to the checklist presented in Appendix A, which is used at the base location (Section 3) to ensure that all of the required equipment is brought to the river.

For collecting samples	 Large Funnel (15-20 cm diameter) 12-cm² area delimiter (3.8 cm diameter pipe, 3 cm tall) Stiff-bristle toothbrush with handle bent at 90° angle 1-L wash bottle for stream water 500-mL plastic bottle for the composite sample with marked volume gradations 60-mL plastic syringe with 3/8" hole bored into the end Aspirator Cooler with bags of ice Field Operations Manual or laminated Quick Reference Guide
For recording measurements	 Sample Collection Form Soft (#2) lead pencils for recording data on field forms Fine-tipped indelible markers for sample labels Sample labels (4 per set) with the sample ID number Clear tape strips for covering labels

Table 5.3-1. Equipment and supplies list for periphyton at non-wadeable sites

5.3.3 Sampling Procedure

At each of the 11 transects, collect samples from the sampling station assigned during the layout of the reach. Collect the substrate selected for sampling from a depth no deeper than 0.5 m. If you cannot collect a sample because the location is too deep, skip the transect. The procedure for collecting samples and preparing a composite sample is presented in Table 5.3-2. Collect one sample from each of the transects and composite in one bottle to produce one composite sample for each site. Record the volume of the sample on the Sample Collection Form as shown in Figure 5.1-4.

Table 5.3-2. Procedure for collecting composite index samples of periphyton at non-wadeable sites

- 1. Starting with Transect "A", collect a single sample from the assigned sampling station using the procedure below.
 - a) Collect a sample of hard substrate (rock or wood) that is small enough (< 15 cm diameter) and can be easily removed from the river. Place the substrate in a plastic funnel which drains into a 500-mL plastic bottle with volume graduations marked on it.
 - b) Use the area delimiter to define a 12-cm² area on the upper surface of the substrate. Dislodge attached periphyton from the substrate within the delimiter into the funnel by brushing with a stiff-bristled toothbrush for 30 seconds. Take care to ensure that the upper surface of the substrate is the surface that is being scrubbed, and that the entire surface within the delimiter is scrubbed.
 - c) Fill a wash bottle with river water. Wash the dislodged periphyton from the piece of substrate, brush, delimiter and funnel into the 500-mL bottle. Use an appropriate amount of water to bring the sample up to the next gradation. Doing so should result in collecting approximately 45mL of sample at each transect.
 - d) If no coarse sediment (cobbles or larger) are present:
 - Use the area delimiter to confine a 12-cm² area of soft sediments.
 - Either:

Vacuum the top 1 cm of sediment from within the delimited area into a de-tipped 60- mL syringe.

Use an aspirator to suction the top 1 cm of sediment from within the delimited area into the sample bottle.

- Empty the syringe into the same 500-mL plastic bottle as above.
- e) Put the bottle in a cooler on ice while you travel between transects and collect the subsequent samples. (The samples need to be kept cool and dark because a chlorophyll sample will be filtered from the composite.)
- 2. Repeat Step 1 for transects "B" through "K". Place the sample collected at each sampling site into the single 500-mL bottle to produce the composite index sample.
- 3. After samples have been collected from all 11 transects, thoroughly mix the 500-mL bottle regardless of substrate type.
- 4. Record the total volume of the composite sample in the periphyton section of the Sample Collection Form.
- 5. If you are unable to collect a sample at any location, mark it on the field form and record the volume of overall sample collected.

5.3.4 Sample Processing in the Field

You will prepare four different types of laboratory samples from the composite index samples: an **ID/enumeration sample** (to determine taxonomic composition and relative abundances), a **chlorophyll sample**, a **biomass sample** (for ash-free dry mass [AFDM]), and an **acid/alkaline phosphatase activity** (APA) sample. All the sample containers required for an individual site should be sealed in plastic bags until use to avoid external sources of contamination (e.g., dust, dirt, or mud) that are present at site shorelines. Please refer to Sections 7.2.5 and 7.2.6 processing the periphyton samples.

5.4 Benthic Macroinvertebrates

5.4.1 Summary of Method

Collect benthic macroinvertebrate composite samples using a D-frame net with 500 μ m mesh openings. Take the samples from the sampling stations at the 11 transects equally distributed along the targeted reach. Composite all sample material and field-preserve with ~95% ethanol.

5.4.2 Equipment and Supplies

Table 5.4-1 shows the checklist of equipment and supplies required to complete the collection of benthic macroinvertebrates at non-wadeable sites. This checklist is similar to the checklist presented in Appendix A, which is used at the base location to ensure that all of the required equipment is brought to the site.

Table 5.4-1. Equipment and supplies list for benthic macroinvertebrate collection at non-wadeable sites

For collecting samples	 Modified kick net (D-frame with 500 µm mesh) and 4-5 ft handle Spare net(s) and/or spare bucket assembly for end of net Buckets, plastic, 8- to 10-qt Sieve bucket with 500 µm mesh openings (U.S. std No. 35) Watchmakers' forceps Wash bottle, 1-L capacity labeled "STREAM WATER" Funnel, with large bore spout 	 Small spatula, spoon, or scoop to transfer sample Sample jars, 1-L HDPE plastic suitable for use with ethanol 95% ethanol, in a proper container Cooler (with absorbent material) for transporting ethanol & samples Plastic electrical tape Scissors Field Operations Manual or laminated Quick Reference Guide
For recording measurements	 Composite benthic sample labels with & without preprinted ID numbers Blank labels on waterproof paper for inside of jars 	 Soft (#2) lead pencils Fine-tip indelible markers Clear tape strips Sample Collection Form

5.4.3 Sampling Procedure

Collect benthic macroinvertebrate samples at the 11 transects and within the sampling stations for non-wadeable streams. The process for selecting the sample stations is described in the Initial Site Procedures Section (Section 4). Collect all benthic samples at non-wadeable sites from the dominant habitat type within the 10 m x 15 m randomly selected sampling station at each transect (Figure 5.4-1). Take 1 linear meter sweep at the dominant habitat type. Record the benthic macroinvertebrate collection data on the Sample Collection Form, Side 1 as seen in Figure 5.1-2.

The sampling process for collecting benthic samples from non-wadeable sites is illustrated in Figure 5.4-2 and described in Table 5.4-2.

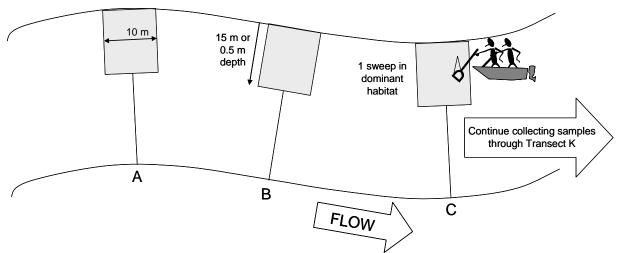


Figure 5.4-1. Transect sample design for collecting benthic macroinvertebrates at non-wadeable sites.

5.4.4 Sample Processing in Field

Use a 500 µm mesh sieve bucket placed inside a larger bucket full of site water while sampling to carry the composite sample as you travel around the site. It is recommended that teams carry a sample bottle containing a small amount of ethanol with them to enable them to immediately preserve larger predaceous invertebrates such as helgramites and water beetles. Doing so will help reduce the chance that other specimens will be consumed or damaged prior to the end of the field day. Once the sample from all stations is composited, sieved and reduced in volume, store in a 1-liter jar and preserve with 95% ethanol. Multiple jars may be required if detritus is heavy (Table 5.4-3). It is suggested that no more than 5 1-L jars be used at any site. If more than one jar is used for a composite sample, use the "extra jar" label provided; record the SAME sample ID number on this "extra jar" label. DO NOT use two different sample numbers on two jars containing one single sample. Remove any inorganic material (rocks, debris, etc) before preserving sample. Cover the labels with clear tape. The sample ID number is also recorded with a No. 2 lead pencil on a waterproof label that is placed inside each jar. Be sure the inside label and outside label describe the same sample. If there is a large amount of organic material in the sample, or there are adverse field conditions (i.e. hot, humid weather), place sample in a 1-L jar with ethanol after each station.

Record information for each composite sample on the Sample Collection Form as shown in Figure 5.1-2. If a sample requires more than one jar, make sure the correct number of jars for the sample is recorded on the Sample Collection Form. **Do not fill out the collection form until you have collected (or confirmed at the site that you will collect) samples.** If forms are filled out before you arrive at the site, and then no samples are collected, a lot of time is wasted by others later trying to find samples that do not exist. If you are unable to collect a sample at any station, make note of it on the sample collection form. Place the samples in a cooler or other secure container for transporting and/or shipping to the laboratory (see Appendix C).

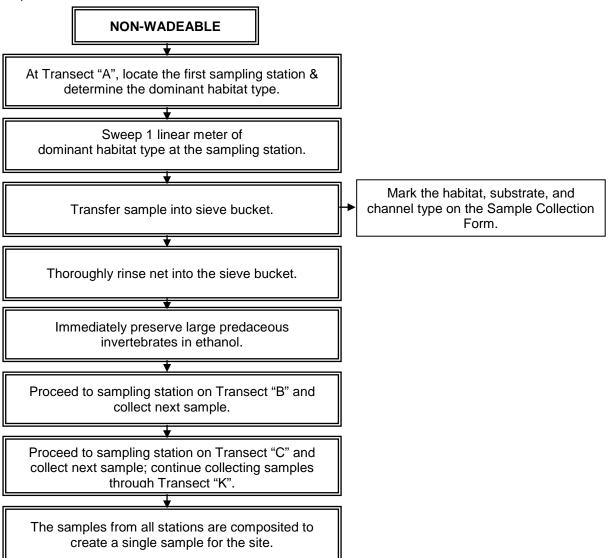


Figure 5.4-2. Benthic macroinvertebrate collection at non-wadeable sites.

Table 5.4-2. Procedure for benthic macroinvertebrate sampling at non-wadeable sites

- 1. After locating the sampling station site according to procedures described in the physical habitat section, identify the dominant habitat type within the plot:
 - Rocky/cobble/gravel/large woody debris
- Organic fine mud or sand

Macrophyte beds

- Leaf Pack
- Use the D-frame dip net (equipped with 500 µm mesh) to sweep through 1 linear meter of the most dominant habitat type within the 10m x 15m sampling station, making sure to disturb the substrate enough to dislodge organisms.
 - If the dominant habitat is rocky/cobble/large woody debris it may be necessary to exit the boat and disturb the substrate (e.g., overturn rocks, logs) using your feet while sweeping the net through the disturbed area.
 - Because a dip-net is being used for sampling, the maximum depth for sampling will be approximately 0.5 m; therefore, in cases in which the depth of the river quickly drops off it may be necessary to sample in the nearest several meters to the shore.
- 3. After completing the 1 linear meter sweep, remove all organisms and debris from net and place them in a bucket following sample processing procedures described in the following section.
- 4. Record the sampled habitat type on the Sample Collection Form.
 - a) Fine/sand: not gritty (silt/clay/muck <0.06 mm diam.) to gritty (up to ladybug sized 2 mm diam.)
 - b) Gravel: fine to coarse gravel (ladybug to tennis ball sized; 2 mm to 64 mm diam.)
 - c) **C**oarse: Cobble to boulder (tennis ball to car sized; 64 mm to 4000 mm)
 - d) Other: bedrock (larger than car sized; > 4000 mm), hardpan (firm, consolidated fine substrate), wood of any size, aquatic vegetation, etc.). Note "other" substrate in comments on field form.
- 5. Identify the channel habitat type where the sampling sweep was located. Mark the appropriate channel habitat type for the transect on the Sample collection Form.
 - a) **P**ool; Still water; low velocity; smooth, glassy surface; usually deep compared to other parts of the channel
 - b) GLide: Water moving slowly, with smooth, unbroken surface; low turbulence
 - c) **RI**ffle: Water moving, with small ripples, waves, and eddies; waves not breaking, and surface tension is not broken; "babbling" or "gurgling" sound.
 - d) **RA**pid: Water movement is rapid and turbulent; surface with intermittent "white water" with breaking waves; continuous rushing sound.
- 6. Proceed to the next sampling station and repeat steps 1-5. The organisms and detritus collected at each station on the river should be combined in a single bucket to create a single composite sample for the river. After sampling at all 11 stations is completed, process the composite sample in the bucket according to procedures described in the following section.
- 7. If the sample contains primarily organic material, or if adverse weather conditions exist (i.e. hot humid weather) process the sample at each station by placing it in a 1-L nalgene jar with ethanol. Follow instructions in Table 5.4-3.
- 8. Immediately preserve larger predaceous invertebrates such as helgramites and water beetles in ethanol.

Table 5.4-3. Procedure for compositing samples for benthic macroinvertebrates at non-wadeable sites

Estimate the total volume of the sample in the sieve and determine how large a jar will be needed for the sample (500-mL or 1-L) and how many jars will be required. It is suggested that no more than 5 1-L jars are used at each site.

Fill in a sample label with the Sample ID and date of collection. Attach the completed label to the jar and cover it with a clear tape strip. Record the Sample ID for the composite sample on the Sample Collection Form. For each composite sample, make sure the number on the form matches the number on the label.

Wash the contents of the sieve to one side by gently agitating the sieve in the water. Wash the sample into a jar using as little water from the wash bottle as possible. Use a large-bore funnel if necessary. If the jar is too full pour off some water through the sieve until the jar <u>is not more</u> than 1/3 full, or use a second jar if a larger one is not available. Carefully examine the sieve for any remaining organisms and use watchmakers' forceps to place them into the sample jar. Remove any inorganic material, such as gravel, by rinsing the material, examining it and removing it from the sample.

• If a 2nd jar is needed, fill in a label that does not have a pre-printed ID # on it. Record the ID # from the pre-printed label prepared above in the "SAMPLE ID" field of the label. Attach the label to the 2nd jar and cover it with a strip of clear tape. Record the number of jars on the Sample Collection Form. **Make sure the number you record matches the actual number of jars used.** Write "Jar *N* of *X*" on each sample label using a waterproof marker. **Try to use no more than 5 jars per site.**

Place a waterproof label inside each jar with the following information written with a #2 lead pencil:

Site ID

•

- Type of sampler and mesh size used
- Name of site
- Date of collection

Jar "N" of "X"

Collectors initials

Number of stations sampled

Completely fill the jar with 95% ethanol (no headspace). It is very important that sufficient ethanol be used, or the organisms will not be properly preserved. Existing water in the jar should not dilute the concentration of ethanol below 70%.

 NOTE: Composite samples can be transported back to the vehicle before adding ethanol if necessary. In this case, fill the jar with stream water, then drain using the net (or sieve) across the opening to prevent loss of organisms, and replace with ethanol at the vehicle.

Replace the cap on each jar. Slowly tip the jar to a horizontal position, then gently rotate the jar to mix the preservative. Do not invert or shake the jar. After mixing, seal each jar with plastic tape.

Store labeled composite samples in a container with absorbent material that is suitable for use with 70% ethanol until transport or shipment to the laboratory.

5.5 Fish

5.5.1 Summary of Method

The fish sampling method is designed to provide a representative sample of the fish community, collecting all but the rarest fish inhabiting the site. It is assumed to accurately represent species richness, species guilds, relative abundance, size, and anomalies. The goal is to collect fish community data that will allow the calculation of an Index of Biotic Integrity (IBI) and Observed/Expected (O/E) models. Boat electrofishing is the preferred method of sampling. If electrofishing is not possible due to safety concerns, high turbidity, or extremes in conductivity, complete the "Not Fished" section of the field form and comment why.

The time and effort necessary to sample the reach in its entirety is prohibitive in the context of the survey, thus sub-sampling is required. Electrofishing will occur in a downstream direction at all habitats along alternating banks (see section 5.5.3), over a length of 20 times the mean channel width (Transects A through F). Collection of a minimum of 500 fish is required. If this target is not attained, sampling will continue until 500 individuals are captured or the downstream extent of the site (transect K) is reached. Identification and processing of fish should occur at the completion of each transect. If sampling cannot happen at any individual transect, record it on the field collection form.

5.5.2 Equipment and Supplies

Table 5.5-1 shows the checklist of equipment and supplies required to complete the nonwadeable fish assessment. This checklist is similar to the one presented in Appendix A, which is used at the base location to ensure that all of the required equipment is brought to the site. Record fish collection data on the Fish Collection Form, Side 1 (Fig. 5.5-1). Additional sheets may be necessary – remember to indicate the transect on each form.

For collecting samples	 Boat, motor, and trailer (and necessary safety equipment) Gasoline and oil (if using a 2 cycle) Boat electrofishing equipment Pulsator Control Box Foot Pedal Anode Droppers Generator Linesman's Gloves Hearing Protection Tow barge electrofishing equipment Probes with extensions. Appropriate switching box Dip nets (non-conductive handles) ¼" mesh Scientific collection permit 	 GPS with transect waypoints preloaded Several Leak-proof HDPE jars for fish voucher specimens (various sizes from 250 mL – 4L) 1scalpel for slitting open large fish before preservation 1 container of 10% buffered formalin 1 Minnow net for dipping small fish from live well 2 measuring boards (3 cm size classes) 1 set Fish ID keys Field Operations Manual and/or laminated Quick Reference Guide Digital camera with extra memory card & battery
For recording measurements	Sample labelsSample Collection FormClear tape strips	Soft (#2) lead pencilsFine-tip indelible markers

	site id: FW08 XX 000		DATE: 0.7.1	0.7101120		00		PAGE:	-	of 1	~	
SUBREA	SUBREACH: O A-B O B-C O C-D O D-E O E-F	0 F-G 0 G-H	HO NO NO NO	Shock	834 (s)	Distance Sampled	84	(m)	O FISHED NONE COLLECTED	D NONE	COLLEC	TEL
			DOMINANT SUBREACH CHARACTERISTICS	TERISTICS			G (for subr	each char	FLAG (for subreach characteristics) :	: (
SUBST	P	O other		Macrophyte	0		Overhanging Veg.	ing Veg.	O other	er		
ā	DEPTH O < 0.5 m > 0.6 to 2 m O > 2 m	BANK OV	O Wooded Herbaceous	D Barren		O Armored	O Riprap		O other			
Tag No.	Common Name		Tally	Total Count	t Vouch.	Min		Anom. Mor Count Co	Anom. Mortality Photo(s) Count Count Taken		Final Count	Flag
10	GREEN SUNFISH		100- 448-	01	2	90	130		0	0 1		
20	UNKNOON SUCKER 1		Ja	Э	0	300	525	0	0	۸.	-	B
03			1	1	0	500		0 0	•	۲	-	
ho	MOUNTAIN SUCKER		111	М	1	190	250	0 0	0	۲		
os			1411	р	1	180	270	0 0		٥۲	-	
									0	0 ۲	-	
									0	0۲		
									0	0 ۲		
									0	0 Y		
								_	0	0 ۲		-
									0	0 ٢	-	
								-	0	٥ ۲	-	
1	Flag Comment			Tag	Pho	Photo File						
	FI POSSIBLE HYBRID (BRIDGELIP		X MOUNTAIN)	02	1146	M6-0032						
				02	I'M G-	(MG-0033						
				20	IM 6	1m6 0034						1
				20	ING	1M6-0035	1					
Z				20	IM G	1 M 6-0036						
L				20	IRA G	1RA 6-0037						
Dra				03	ING	ING 0038	~					

Figure 5.5-1. Fish Collection Form, Side 1.

5.5.3 Sampling Procedure

Sampling will begin at the upstream half of the overall site, representing 20 times the mean channel width. The total distance fished will depend upon the number of individuals captured. Shoreline electrofishing will begin at transect A and proceed in a downstream direction, alternating banks and terminating with the completion of subreach E-F (Figure 5.5-2). Determination of the initial stream bank sampling location at transect A (i.e., right or left bank) corresponds to the sequence established for physical habitat sampling and is determined at random. Subreaches A-B, B-C, and C-D are sampled along the same bank before alternating to the opposite bank to complete subreaches D-E and E-F. Each subreach is sampled for a maximum of 700 seconds per subreach. Identification and processing of the sample should be completed prior to beginning the next subreach. A minimum of 500 specimens is required. If fewer than 500 individuals are captured, sampling must continue on alternating banks (again following the pattern laid out for physical habitat sampling) until the minimum number is attained or the downstream extent of the site (transect K) is reached (Figure 5.5-2).

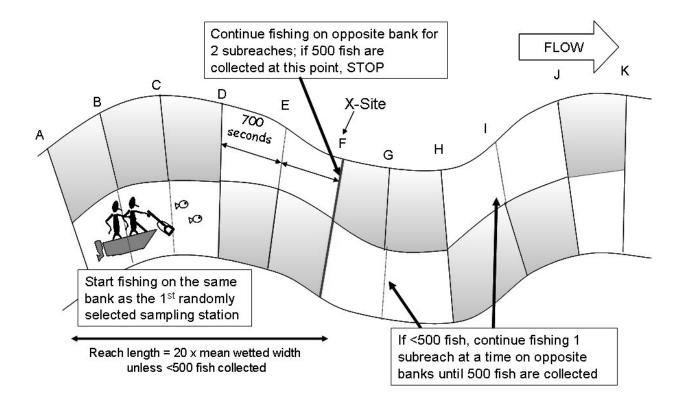


Figure 5.5-2. Transect sampling design for fish sampling at non-wadeable sites.

The sampling crew should consist of one boat operator (also controlling the electrofishing unit) and one dip-netter (1/4" mesh dip nets) situated at the bow. Prior to sampling each subreach, the crew should determine the most appropriate gear for the segment (e.g., boat or barge electrofishing units). Electrofishing should proceed downstream at a pace equal to or slightly greater than the prevailing current to maximize capture efficiency. It may be necessary to maneuver the electrofishing unit in and around complex habitat; however,

discretion should be used in sampling these areas in order to maintain equal effort between subreaches. Total effort expended (i.e., button time) over the five subreaches should be approximately 3500 seconds. If additional subreaches are sampled, additional time will be spent. To reduce stress and mortality, immobilized fish should be netted immediately and deposited into a live-well for processing. For safety, all crew members are required to wear personal floatation devices and insulated gloves. Polarized sunglasses and caps to aid vision are also required. Table 5.5-2 provides the procedure for electrofishing in non-wadeable streams.

Table 5.5-2. Procedure for electrofishing at non-wadeable sites.

- 1. Review all collecting permits to determine if any sampling restrictions are in effect for the site. In some cases, you may have to cease sampling if you encounter certain State- or Federally-listed species.
- Boat electrofishing will be used in non-wadeable streams, and the direction of fishing will be downstream. If conductivity, turbidity, or safety precludes electrofishing, complete the "NOT FISHED" field on the Fish Collection Form and comment why.
- 3. The sampling reach is defined as 20 times the mean channel width, corresponding to transects A through F unless < 500 individuals are captured.
- 4. Shoreline electrofishing between each transect will occur on alternating banks following the sequence established in the physical habitat procedures. Sampling will begin on the bank selected at random and continue from transect A downstream for 700 seconds or until the next transect is reached. Subreaches B-C and C-D are fished similarly; subreaches D-E and E-F will then be sampled on the opposite bank. If fewer than 500 individuals are captured, sampling should continue until the minimum catch is attained or the last subreach (J-K) is fished. Follow the systematic rotation of banks such that up to two subreaches would be fished on the same bank prior to switching to the opposite bank. Crews must complete each of the additional subreaches as described above, do not stop in the middle of any subreach, even if the 500 fish minimum is attained before the end of the subreach.
- 5. Set unit to pulsed DC and test settings outside of the sampling area. Start the electrofisher, set the timer, and depress the switch to begin fishing. Typical settings are: 500-1000VDC; 8-20A; and 120 Hz. If fishing success is poor, increase the pulse width first and then the voltage. Increase the pulse rate last to minimize mortality or injury to large fish. If mortalities occur, first decrease pulse rate, then voltage, then pulse width.
- 6. Once the settings on the electrofisher are adjusted to sample effectively and minimize injury and mortality, begin sampling at the upstream reach (Transect A). Electrofishing proceeds downstream in close proximity to the bank and at a pace equal to or slightly greater than the prevailing current to maximize capture efficiency. Crews may "nose in" to habitat to effectively sample but should not remain in that habitat for too long. Generally effort (i.e., button time) should be 700 seconds per subreach. At sites with maximum reach length (4km) it is likely that the entire subreach (400m) will not be fished. Depending upon the habitat complexity, variable distances may be fished in the time allotted. Distance sampled is recorded on the Fish Collection Form.
- 7. Recommended mesh size on dip nets is 6mm (1/4"). Dip netters should actively capture stunned fish, removing them from the electric field and immediately placing them in the livewell. Special attention should be devoted to netting small and benthic fishes as well as fishes that may respond differently to the current.
- 8. Process fish at the completion of each subreach to reduce mortality and track sampling effort. Release fish in a location that eliminates the likelihood of recapture.
- 9. Complete header information on the Fish Collection Form. Record the number of seconds fished and the estimated distance fished (as tracked by GPS or measured by range finder).
- 10. Repeat Steps 6 through 8 until subreach E-F and 500 individuals are captured or at a maximum,

subreach J-K is finished.

5.5.4 Processing Fish

Process fish when fish show signs of stress (e.g., loss of righting response, gaping, gulping air, excessive mucus). Change water or stop fishing and initiate processing as soon as possible. Similarly, State- and Federally-listed threatened or endangered species or large game fish should be processed and released as they are captured. If periodic processing is required, fish should be released in a location that prevents the likelihood of their recapture.

Use the Fish Collection Form – Large Wadeable/Boatable/Raftable. If several forms are needed, use an extra form and note the page number on the top of the form as well as the subreach sampled (i.e. Page 1 of 3). Taxonomic identification and processing should only be completed on specimens greater than 25 mm total length and by crew members designated as "fish taxonomic specialists" by EPA regional coordinators. Fish are tallied by species, evaluated for maximum and minimum length, and examined for the presence of DELT (Deformities, Eroded Fins, Lesions and Tumors) anomalies. Common names of species should follow those established under the American Fisheries Society's publication, "Common and Scientific Names of Fishes from the United States, Canada and Mexico" (Nelson, et al. 2004). A list of species common to freshwater systems of the United States is presented in Appendix D.

Species not positively identified in the field should be separately retained (up to 20 individuals per species) for laboratory identification. Common names for retained species should be assigned as "unknown", followed by its common family name and sequential lettering to designate separate species (e.g., UNKNOWN SCULPIN A). Following positive laboratory identification, field form information should be updated to reflect the actual species count and number in the Final Count field. For example, if a sample of 20 specimens of species A is later identified as 15 individuals of species A and 5 of species B, the Final Count of species A should be corrected by assigning 25% to species B and 75% to species A. Table 5.5-3 presents the procedure for processing fish.

Table 5.5-3. Procedure for processing fish at non-wadeable sites.

- 1. Complete all header information accurately and completely. If no fish were collected, complete the "NONE COLLECTED" field on the Fish Collection Form.
- 2. Complete the information on the Fish Gear and Voucher/Tissue Sample Information Form.
- 3. Only identify and process individuals > 25mm in total length, ideally handling specimens only once. Record the common name on the first blank line in the "COMMON NAME" Field of the Fish Collection Form.
- 4. Fill in the Tag Number. The tag number is a number starting with 01 and continuing sequentially to a number equal to the total number of species collected within the entire sample reach. Each reoccurrence of a species within the entire reach should be assigned the same tag number as it was assigned initially. For example, if a bluegill is assigned tag number 01 when processing fish from the first subreach, all bluegills from the other subreaches will also be assigned tag number 01. The purpose of the tag number is to connect species identifications with subsequent verification and voucher collections.
- 5. If a species cannot be positively identified, assign it a sequential tag number in the Tag Number Field and leave the "COMMON NAME" Field Blank. Flag this line and indicate in the "COMMENT" field its common family name (e.g., UNKNOWN SCULPIN A). Retain a maximum subsample of 20 individuals for in-house laboratory identification of Unknowns. Do not include the number of each species retained solely for in-house lab verification in the Voucher Count column of the fish

collection form. This column is reserved only for those fish that are to be sent in for independent re-identification as part of a complete voucher collection.

- 6. Process species listed as threatened and endangered first and return individuals immediately to the stream. Photograph specimens for verification purposes if conditions permit and stress to individuals will be minimal. Indicate if photographed on Fish Collection Form. If individuals are killed, prepare them as verification specimens and preserve them in field.
- 7. Tally the number of individuals of each species collected in the "TALLY" box on the Fish Collection Form and record the total number in the "TOTAL COUNT" field on the form. Do not enter a total for fishes that must be identified in the laboratory.
- 8. Measure the total length of the largest and smallest individual to provide a size range for the species. Record these values in the "LENGTH" area of the Fish Collection Form. If only one fish is collected, leave the maximum field blank.
- 9. Examine each individual for external anomalies and tally those observed. Readily identify external anomalies including missing organs (eye, fin), skeletal deformities, shortened operculum, eroded fins, irregular fin rays or scales, tumors, lesions, ulcerous sores, blisters, cysts, blackening, white spots, bleeding or reddening, excessive mucus, and fungus. After all of the individuals of a species have been processed, record the total number of individuals affected in the "ANOMALIES" Field of the Fish Collection Form.
- 10. Record the total number of mortalities due to electrofishing or handling on the Fish Collection Form.
- 11. Follow the appropriate procedure to prepare voucher specimens and/or to select specimens for tissue samples. Release all remaining individuals so as to avoid their recapture.
- 12. For any line with a fish name, ensure that all spaces on that line are filled in with a number, even if it is zero.

5.5.5 Taxonomic Quality Assurance/Quality Control

5.5.5.1 Sample Preservation

Fish retained for laboratory identification or voucher purposes should be placed in a large sample jar containing a 10% buffered formalin solution in a volume equal to or greater than the total volume of specimens. Individuals larger than 200 mm in total length should be slit along the right side of the fish in the lower abdominal cavity to allow penetration of the solution.

Fish retained for laboratory identification or as vouchers should be preserved in the field following the precautions outlined in the MSDS. All personnel handling 10% buffered formalin must read the MSDS (Appendix D). Formalin is a potential carcinogen and should be used with extreme caution, as vapors and solution are highly caustic and may cause severe irritation on contact with skin, eyes, or mucus membranes. Wear vinyl or nitrile gloves and safety glasses, and always work in a well-ventilated area.

5.5.5.2 Laboratory Identification of Fish

Fish that are difficult to identify in the field should be kept for laboratory identification or to verify difficult field identifications. Table 5.5-4 outlines the laboratory identification process and completing the Fish Collection Form. Field crews may use a supplemental Fish Identification Lab sheet such as that shown in Figure 6.5-4 for internal laboratory use only. Crews should retain the Fish verification sample – contact your regional EPA coordinator if you cannot store the samples at your facility.

Do not include the number of each species retained solely for in-house lab verification in the Voucher Count column of the fish collection form. This column is reserved only for those fish that are to be sent in for independent re-identification as part of a complete voucher collection.

Field crews should not retain the Fish Collection Form(s) if the laboratory identification process cannot be completed within a short period of time. If the time needed to complete the identification/verification is expected to exceed two weeks, make copies of the Fish Collection Form(s) and send the entire pack of original data forms to the Information Management Coordinator. When the identification/verification process is complete, make the necessary changes to the copied Fish Collection Form(s) and send them as soon as possible to the Information Management Coordinator as well.

Table 5.5-4. Procedure for laboratory identification of fish samples.

- 1. Fish may be retained for routine laboratory identification and verification purposes. Fish tags are provided with each site kit. Crews may use these tags at their discretion in order to identify fish at their laboratory.
- 2. Retained fish should be placed in a large sample jar containing a 10% buffered formalin solution in a volume equal to or greater than the total volume of specimens. Individuals larger than 200mm in total length should be slit along the right side of the fish in the lower abdominal cavity to allow penetration of the solution.
- 3. Following fixation for 5 to 7 days, the volume of formalin should be properly discarded and replaced with tap water for soaking specimens over a 4-5 day period. Soaking may require periodic water changes and should continue until the odor of formalin is barely detectable. Final storage of specimens is done in 45%-50% isopropyl alcohol or 70% ethanol. Formalin is a potential carcinogen and should be used with extreme caution, as vapors and solution are highly caustic and may cause severe irritation on contact with skin, eyes, or mucus membranes. Wear vinyl or nitrile gloves and safety glasses, and always work in a well-ventilated area.
- 4. Formalin must be disposed of properly. Contact your regional EPA coordinator if your laboratory does not have the capability of handling waste formalin.
- 5. Unknown fish are identified to species in the laboratory. You may use a Fish Identification Lab Sheet such as the one presented in Figure 6.5-4.
- 6. Fill in the Unknown species name in the "COMMON NAME" field of the Fish Collection Form and make certain the "FINAL COUNT" field is correct.
- 7. If species field identifications were incorrect, correct the "COMMON NAME" Field by completely erasing the Common Name and replacing the correct name. Add an additional Common Name if needed. Make certain the "FINAL COUNT" field is correct. If the "COMMON NAME" Field was incorrect or cannot be cleanly erased, cross out the line of data and fill out a new line with the correct "COMMON NAME" and "FINAL COUNT".

5.5.5.3 Voucher Specimens

Approximately 10% of each field crews' sites will be randomly pre-selected for reidentification by an independent taxonomist. A minimum of one complete voucher is required for each person performing field taxonomy and will consist of either preserved specimen(s) or digital images representative of all species in the sample, including common species. Multiple specimens per species can be used as vouchers, if necessary (i.e., to document different life or growth stages, or sexes). Note that a complete sample voucher does not mean that all individuals of each species will be vouchered, only enough so that independent verification can be achieved.

Digital images should be taken as voucher documentation for species that are recognized as Rare, Threatened, or Endangered – they should not be killed. Digital images should also be taken of fish specimens too large for preservation.

Certain states or regions may require that more fish vouchers are taken. Check with your state/regional coordinators to determine if your team will be required to collect complete vouchers at more than 10% or your sites.

For the sample voucher, specimen containers should be labeled with the sample number, site ID number, site name, and collection date. There should be <u>no taxonomic</u> <u>identification</u> labels in or on the container, or in any of the digital photos.

Choose individual specimens that are intact and in good condition, such that reidentification will be possible. Fish that are damaged, have significant scale loss or those that have been dead for a significant amount of time prior to preservation should be avoided if possible. Fish in pristine condition and those possessing clear identification characteristics are preferred. Additionally, fish that are preserved while still live will typically flare their fins and gills and will allow for easier re-identification in the laboratory.

Place one or more representative specimens of each species in plastic mesh sleeves along with one of the corresponding tag number labels provided in your site kit. (Several fish may be placed in a single mesh sleeve, as long as they are of the same species). Ensure that the tag numbers in the voucher collection match the tag numbers on the fish collection data forms. Seal both ends of the mesh sleeve with zip ties and place it inside the voucher collection jar with the appropriate preservative. Unknown fish may be identified in the laboratory as described in section 5.5.5.2 and subsequently included in the voucher collection.

Record the total number of each fish species retained for voucher purposes in each subreach on the fish collection form. Record the voucher sample ID number on the fish gear / voucher / fish tissue collection form. If no voucher is prepared for the site, fill in the "no vouchers preserved" circle on the fish gear form.

Table 5.5-5. Procedure for vouchering of fish samples.

- 1. Approximately 10% of each field crews' sites will be randomly pre-selected for re-identification by an independent taxonomist. A minimum of one complete voucher is required for each person performing field taxonomy and will consist of either preserved specimen(s) and/or digital images representative of all species in the sample, even common species.
- 2. Take digital images as voucher documentation for species that are recognized as Rare, Threatened, or Endangered; or when fish specimens are too large for preservation.
- 3. For the sample voucher, label the specimen containers with the sample number, site ID number, site name, and collection date. Do not put taxonomic identification labels in or on the container.
- 4. Place one or more representative specimens of each species in plastic mesh sleeves along with one of the corresponding tag number labels provided in your site kit. (Several fish may be placed in a single mesh sleeve, as long as they are of the same species).
- 5. Ensure that the tag numbers in the voucher collection match the tag numbers on the fish collection data forms.
- 6. Seal both ends of the mesh sleeve with zip ties and place it inside the voucher collection jar with the appropriate preservative.
- 7. Unknown fish may be identified in the laboratory as described in section 5.5.5.2 and subsequently included in the voucher collection.
- 8. Record the total number of each fish species retained for voucher purposes in each subreach on the fish collection form.
- 9. Record the voucher sample ID number on the fish gear / voucher / fish tissue collection form.
- 10. If no voucher is prepared for the site, fill in the "no vouchers preserved" circle on the fish gear form.

5.5.5.4 Photovouchering

Digital imagery should be used for fish species that cannot be retained as preserved specimens (e.g., RTE species; or very large bodied fish). Views appropriate and necessary for an independent taxonomist to accurately identify the specimen should be the primary goal of the photography. Additional detail for these guidelines is provided in Stauffer et al. (2001), and is provided to all field crews as a handout.

The recommended specifications for digital images to be used for photovouchering include: 16-bit color at a minimum resolution of 1024x768 pixels; macro lens capability allowing for images to be recorded at a distance of less than 4 cm; and built-in or external flash for use in low-light conditions. Specimens should occupy as much of the field of view as possible, and the use of a fish board is recommended to provide a reference to scale (i.e., ruler or some calibrated device) and an adequate background color for photographs. Information on Station ID, Date and TAG NUMBER should also be captured in the photograph, so that photos can be identified if file names become corrupted. All photovouchered species should have at least a full-body photo (preferably of the left side of the fish) and other zoom images as necessary for individual species, such as lateral line, ocular/oral orientation, fin rays, gill arches, or others. It may also be necessary to photograph males, females, or juveniles.

Images should be saved in medium- to high-quality jpeg format, with the resulting file name of each picture noted one the Fish Collection Form. It is important that time and date stamps are accurate, as this information can also be useful in tracking the origin of photographs.

Because close-up photography is difficult in the best of conditions with typical point and shoot cameras, it might be best to take high quality pictures at a greater distance so that the image can be zoomed with a PC. It is recommended that images stored in the camera be transferred to a PC or storage device at the first available opportunity. At this time the original file should be renamed to follow the logic presented below:

F01_CT003_20080326_A.jpg

Where: **F** = fish **01** = TAG NUMBER **CT003** = state (Connecticut) and site number **20080326** = date (yyyymmdd) **A** = first of several pictures of same fish (e.g., A, B, C)

Field crews should maintain files for the duration of the sampling season. Notification regarding the transfer of all images to the existing database will be provided at the conclusion of the sampling. Only keep photos that are useful for identifications. If photos are to be submitted as vouchers, burn a CD of those photos that can be submitted along with the voucher jar.

5.6 Fish Tissue

5.6.1 Summary of Method

You will collect one predator species composite from each target site for human health related analyses. The focus is on fish species that commonly occur throughout the region of interest, and that are sufficiently abundant within a sampling reach. Each composite sample will consist of five adult fish of the same species that are similar in size (the smallest individual in the composite is no less than 75% of the total length of the largest individual). Collection occurs in the sampling reach.

5.6.2 Equipment and Supplies

Table 5.6-1 lists the equipment and supplies necessary for field crews to collect fish tissue samples. This list is comparable to the checklist presented in Appendix A, which provides information to ensure that field teams bring all of the required equipment to the site. Record the fish tissue sampling data on the Fish Gear and Voucher/Tissue Sample Information Form (Figure 5.6-1).

For collecting fish composite sample	 Electrofishing equipment (including variable voltage pulsator unit, wiring cables, generator, electrodes, dip nets, protective gloves, boots, and necessary safety equipment) Scientific collection permit Sampling vessel (including boat, motor, trailer, oars, gas, and all required safety equipment) 	 Coast Guard-approved personal floatation devices Maps of target sites & access routes Global Positioning System (GPS) unit Livewell and/or buckets Measuring board (millimeter scale) Clean nitrile gloves
For storing and preserving fish composite sample	 Aluminum foil (solvent-rinsed and baked) Heavy-duty food grade polyethylene tubing Large plastic (composite) bags 	 Knife or scissors Dry Ice Plastic cable ties Coolers
For documenting the fish composite sample	Fish Collection FormsClipboard	 Sample Identification Labels #2 pencils Fine tipped indelible markers
For shipping the fish composite samples	Preaddressed FedEx airbillCoolers	Tracking FormChain-of-custody labelsPacking/strapping tape

Table 5.6-1. Equipment and supplies—fish tissue collection at non-wadeable sites

	SITE ID: FW08XX 000 Urban DA	TE: 0.7 1	<u>211</u>	20	0.8 PAGE: 1 of 1
	t Fished - No Permit O Not Fished - Equipment Failure O t Fished - Permit Restriction O Not Fished - Site Conditions Prohi		her (Expl	ain Belov	V) O Fished - None Collected
O Fis	hed All 10 Subreaches	breaches			
COMN	TARGET TONING LENGTH E DOUM (D	SUBREACH	ES R	EQUI	(co)
	Iter ibility: ● Good O Poor Temp (°C): <u>22</u> Cond (uS) <u>1250</u>	01	More than	n 1 metho	od used to collect fish?
ELECT	No. of	des: Number	1 Dia	ameters (. /2 O cm Wave Form: O AC O DC Pulsed I
Volts (50-100	Watts: likely 400 (bp),	Pulse Rate: pps or Hz	6.0	Amp	s: (may not be vided for bp)2 Pulse Width (ms)
		ch Length npled (m)	5.0.2	Avg.	Subreach Length (m) 8.4 Flag: Fl
_	VOUCHER SAMPLE INFOR	RMATION	ONOV	OUCHER:	S PRESERVED
	Sample ID Category • Preserved		_	Comm	sents
9.3	OP a				
	ÖD 0		0.000		
CAL	FISH TISSUI		O NO SA		
1.1	IPLE ID 9.3.9.3.0.1 Common Name	Total Length(mm)	Subreact	h Frozen	Comments
.1	LARGEMOUTH BASS	320	A		Primary
.2	LARGEMOUTH BASS	340	B	•	Primary
.3	LARGEMOUTH BASS	300	B	•	Primary
.4	LARGEMOUTH BASS	320	D	•	Primary
.5	LARGEMOUTH BASS	330	E	•	Primary
FLAG			MENT		
FI	PULSE WIDTH Net AVAILABLE FOR THIS	UNIT			
_			_		
			_	_	

Figure 5.6-1. Fish Gear and Voucher/Tissue Sample Information

5.6.3 Sampling Procedure

The fish tissue indicator will be collected using the same gear and procedures used to collect the fish community assemblage. Collection of individuals for fish tissue occurs in the sample reach during the fish community assemblage sampling. If the five fish are not collected during the community sampling, sample for up to one additional hour. If the sample is still not collected, call the Logistics Coordinator at the end of the day and record on the field collection form. If the target species are unavailable, the fisheries biologist will select an alternative species (i.e., a species that is commonly consumed in the study area, with specimens of harvestable or consumable size, and in sufficient numbers to yield a composite) to obtain a fish composite sample from the species that are available. Recommended target species, listed in order of preference, are given in Table 5.6-2.

Table 5.6-2.	Recommended target species for fish tissue collection (in order of preference) at
non-wadeab	le sites

	Family name	Common name	Scientific name	Length Guideline (Estimated Minimum)
		Largemouth bass	Micropterus salmoides	~280 mm
		Smallmouth bass	Micropterus dolomieu	~300 mm
s		Black crappie	Pomoxis nigromaculatus	~330 mm
Species ence)	Centrarchidae	White crappie	Pomoxis annularis	~330 mm
amefish Speci of preference)		Channel Catfish	Ictalurus punctatus	~300 mm
ïsh efe		Blue Catfish	Ictalurus furcatus	~300 mm
mef of pr	lctaluridae	Flathead Catfish	Pylodictis olivaris	~350 mm
Predator/Gamefish (in order of prefe		Walleye/sauger	Sander vitreus /S. canadensis	~380 mm
date n or	Percidae	Yellow perch	Perca flavescens	~330 mm
E Le	Percichthyidae	White bass	Morone chrysops	~330 mm
	Esocidae	Northern pike	Esox lucius	~430 mm
		Brown trout	Salmo trutta	~300 mm
		Rainbow trout	Oncorhynchus mykiss	~300 mm
	Salmonidae	Brook trout	Salvelinus fontinalis	~330 mm

The procedures for collecting and processing fish composite samples are presented in Table 5.6-3.

Table 5.6-3. Sampling procedure for fish composite samples at non-wadeable sites

- 1. Put on clean nitrile gloves before handling the fish. Do not handle any food, drink, sunscreen, or insect repellant until after the composite sample has been collected, measured, and wrapped.
- 2. Rinse potential target species/individuals in ambient water to remove any foreign material from the external surface and place in clean holding containers (e.g., livewells, buckets). Return non-target fishes or small specimens to the river or stream.
- 3. Retain one predator species composite from each site. The composite must consist of 5 fish of adequate size to provide a total of 500 grams of edible tissue for analysis (refer to Table 5.6-2 for

minimum species length guidelines). Select fish for each composite based on the following criteria:

- all are of the same species,
- all satisfy legal requirements of harvestable size (or weight) for the sampled river, or at least be of consumable size if no legal harvest requirements are in effect,
- all are of similar size, so that the smallest individual in a composite is no less than 75% of the total length of the largest individual, and
- all are collected at the same time, i.e., collected as close to the same time as possible, but no more than one week apart (Note: Individual fish may have to be frozen until all fish to be included in the composite are available for delivery to the designated laboratory).

Accurate taxonomic identification is essential in assuring and defining the organisms that have been composited and submitted for analysis. Under no circumstances should individuals from different species be used in a single composite sample.

- 4. Measure each individual fish to determine total body length. Measure total length of each specimen in millimeters, from the anterior-most part of the fish to the tip of the longest caudal fin ray (when the lobes of the caudal fin are depressed dorsoventrally).
- 5. Record sample number, species retained, specimen length, site ID, and sampling date on the Fish Collection Form (Figure 5.5-1) in black ink. Mark site type ("Urban" or "Non-urban") next to the site identification number at the top left of the fish form, and write primary or duplicate in the comment section. Make sure the sample identification numbers recorded on the collection form match those on the sample labels.
- 6. Remove each fish retained for analysis from the clean holding container(s) (e.g., livewell) using clean nitrile gloves. Dispatch each fish using a clean wooden bat (or equivalent wooden device).
- 7. Wrap each fish in extra heavy-duty aluminum foil with the dull side in (foil provided by EPA as solvent-rinsed, oven-baked sheets).
- 8. Prepare a Sample Identification Label for each sample, ensuring that the label information matches the information recorded on the Fish Collection Form. **Be sure to include fish species and specimen length on each label.**
- 9. Cut a length of food grade tubing (provided by EPA) that is long enough to contain each individual fish and to allow extra length on each end to secure with cable ties. Place each foil-wrapped specimen into the appropriate length of tubing. Seal each end of the tubing with a plastic cable tie. Attach the fish sample label to the outside of the food-grade tubing with clear tape and secure the label by taping around the entire fish (so that tape sticks to tape).
- 10. Place all the wrapped fish in the composite from each site in a large plastic bag and seal with another cable tie.
- 11. After each sample is packaged, place it immediately on dry ice for shipment. If samples will be carried back to a laboratory or other facility to be frozen before shipment, wet ice can be used to transport wrapped and bagged fish samples in the coolers to a laboratory or other interim facility.
- 12. If possible, keep all (five) specimens designated for a particular composite in the same shipping container (ice chest) for transport.
- 13. Samples may be stored temporarily on dry ice (replenishing the dry ice daily). You have the option, depending on site logistics, of:
 - shipping the samples packed on dry ice in sufficient quantities to keep samples frozen for up to 48 hours (50 pounds are recommended), via priority overnight delivery service (e.g., Federal Express), so that they arrive at the sample preparation laboratory within less than 24 hours from the time of sample collection, or

- freezing the samples within 24 hours of collection at ≤-20°C, and storing the frozen samples until shipment within 2 weeks of sample collection (frozen samples will subsequently be packed on dry ice and shipped to the sample preparation laboratory via priority overnight delivery service).
- 14. Ship fish tissue samples from urban sites to the EPA NERL lab in Cincinnati, OH and from nonurban sites to the GLEC lab in Traverse City, MI on Monday through Thursday.

5.7 Fecal Indicator (Enterococci)

5.7.1 Summary of Method

Collect a fecal indicator sample at the last transect (Transect K) after all other sampling is completed. Samples must be filtered and the filters must be frozen within 6 hours of collection. Use a pre-sterilized, 250 ml bottle and collect the sample approximately 1 m off the bank at about 0.3 meter (12 inches) below the water surface. Following collection, place the sample in a cooler, chill for at least 15 minutes, and maintain on ice prior to filtration of four 50 mL volumes. (Samples must be filtered and frozen on dry ice within 6 hours of collection). In addition to collecting the sample, look for signs of disturbance throughout the reach that would contribute to the presence of fecal contamination to the waterbody. Record these disturbances on the Site Assessment Form (Figure 7-2).

5.7.2 Equipment and Supplies

Table 5.7-1 provides the equipment and supplies needed to collect the fecal indicator sample. Record the sample data on the Sample Collection Form, Side 2 (Figure 5.1-4).

For collecting samples	 nitrile gloves pre-sterilized, 250 ml sample bottle 	sodium thiosulfate tabletWet icecooler
For recording measurements	 Sample Collection Form Fecal Indicator sample labels (4 vial labels and 1 bag label) Pencils (for data forms) 	 Fine tipped indelible markers (for labels) Clear tape strips

 Table 5.7-1. Equipment and supplies list for fecal indicator sampling at non-wadeable sites

5.7.3 Sampling Procedure

The procedure for collecting the fecal indicator sample is presented in table 5.7-2.

Table 5.7-2. Procedure for fecal indicator (Enterococci) sample collection at non-wadeable sites

- 1. Put on nitrile gloves.
- 2. Select a sampling location at transect K that is approximately 1 m from the bank and approximately 0.3m deep. Approach the sampling location slowly from downstream or downwind.
- 3. Lower the un-capped, inverted 250 ml sample bottle to a depth of 1 foot below the water surface, avoiding surface scum, vegetation, and substrates. Point the mouth of the container away from the body or boat. Right the bottle and raise it through the water column, allowing bottle to fill completely. If the depth does not reach 0.3m along the transect at 1 m from the bank, take the sample and flag it on the field form.
- 4. After removing the container from the water, discard a small portion of the sample to allow for proper

mixing before analyses.

- 5. Add the sodium thiosulfate tablet, cap, and shake bottle 25 times.
- 6. Store the sample in a cooler on ice to chill (not freeze). Chill for at least 15 minutes and do not hold samples longer than 6 hours before filtration and freezing.

This page is intentionally blank

6.0 WADEABLE STREAMS

6.1 Water Quality

This section describes the procedures and methods for the field collection and analysis of the water quality indicators (in-situ measurements, water chemistry, and sediment enzymes) from wadeable streams and rivers.

6.1.1 In Situ Measurements of Dissolved Oxygen, pH, Temperature, and Conductivity

6.1.1.1 Summary of Method

You will measure dissolved oxygen (DO), pH, temperature, and conductivity by using a multi-parameter water quality meter (or sonde). Take all measurements at the X site at 0.5 m depth, or mid-depth if depth is <1 m. The site depth must be accurately measured before taking the measurements, and care should be taken to avoid the probe contacting bottom sediments.

6.1.1.2 Equipment and Supplies

Table 6.1-1 provides the equipment and supplies needed to measure dissolved oxygen, pH, temperature, and conductivity. Record the measurements on the Field Measurement Form, as seen in Figure 6.1-1.

For taking measurements and calibrating the water quality meter	 Multi-parameter water quality meter with DO, pH, temperature, and conductivity probes. Extra batteries De-ionized and tap water Calibration cups and standards QC calibration standard Barometer or elevation chart to use for calibration
For recording measurements	Field Measurement FormPencils (for data forms)

Table 6.1-1. Equipment and supplies—DO, pH, temperature, and conductivity

		CALIBRATIO	N INFORMA		1 2 0 0						
	facturer and model: YSI	MODEL 8.	5								
In	strument ID number: EPA 6	4321		Operator: J.	DOE						
	Thermometer Sensor Readi Reading (℃) (℃)	^{ng} Flag	Com	nents							
EMPERATURE	15.2 15.0			1.00							
	Elevation OR	Barometric Pressure	Cal	ibration	Display	ed					
DO		(mm Hg)	, · · · ·	/alue	Value		Flag				
		<u> </u>	1.0.0	2.0 0 mg/L ●%		2. ^{0 mg/L}					
	Cal. STD 1 Description	Cal. ST	D 1 Value	Cal. STD 2 De	scription	Cal. STD	2 Value				
	pH 7 BUFFER		.00	PH 4 Bo	FFER	4.	00				
рН			ity Control Sample (Q	CS)		685					
	QCS De	scription	QCS True	QCS M	leasured	Flag					
_	DILUTE MIST PHOSPH	ATE BUFFEL	٤	6.9	86	.9.5	FI				
	Cal. STD 1 Description	Cal. ST	D 1 Value	Cal. STD 2 De	scription	Cal. STD 2 Value					
	KCI STANDARD	14									
CONDUCTIVITY	Calibration Verified with Quality Control Sample (QCS)										
	QCS De	scription	QCS True (µS/c @25	QCS True (µS/cm @25°C) QCS Measured (µS/cm @25°C) Flag							
	DILUTE NIST PHOSPH	AT BUFF	75.3	83	8.2						
Flag											
					_						
		2 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1									
-	Field Measurements	MID CHANN	EL O OTH	ER							
	F (hh:mm)	9:15									
	DO(mg/L) XX.X	8.9									
	Temp. (°C) XX.X	9.3									
	pH XX.XX	6.7.5									
	Cond. (µS/cm@25℃) XX.X	320.4									
	Corrected to 25°C ?	ON ON									
		0.2									
	Visible on bottom?	YES									
Flag	Flag	Comments									
. mg		Comments									

Figure 6.1-1. Field Measurement Form.

6.1.1.3 Multi-Probe Sonde

Dissolved Oxygen Meter

Calibrate the DO meter prior to each sampling event. We recommend that the probe be calibrated in the field against an atmospheric standard (ambient air saturated with water) prior to sampling. In addition, manufacturers typically recommend periodic comparisons with a DO chemical analysis procedure (e.g., Winkler titration) to check accuracy and linearity.

pH Meter

Calibrate the pH meter prior to each sampling event. Calibrate the meter in accordance with the manufacturer's instructions and with the team agency's existing SOP. You must also conduct a quality control check with the provided standard to verify the calibration and periodically evaluate instrument precision (see Section 3.1.2). Crews must check their probe once a week against the provided Quality Control Standard (QCS) and record the information on the data forms.

Temperature Meter

You must check the accuracy of the sensor against a thermometer that is traceable to the National Institute of Standards (NIST) at least once per sampling season. The entire temperature range encountered in the NRSA should be incorporated in the testing procedure and a record of test results kept on file.

Conductivity Meter

Calibrate the conductivity meter prior to each sampling event. Calibrate the meter in accordance with the manufacturer's instructions. The entire conductivity range encountered in the NRSA should be incorporated in the testing procedure and a record of test results kept on file. You must also conduct a quality control check with the provided standard to verify the calibration and periodically evaluate instrument precision (see Section 3.1.2). Crews must check their probe once a week against the provided QCS and record the information on the data forms.

6.1.1.4 Sampling Procedure

Table 6.1-2 presents step-by-step procedures for measuring dissolved oxygen, pH, temperature, and conductivity.

Table 6.1-2. Sampling procedure—temperature, pH, conductivity and dissolved oxygen

- 1. Check meter and probes and calibrate according to manufacturer's specifications.
- 2. Wadeable Sites: Measurements are taken at the X site at a depth of 0.5 meters or at mid-depth if less than 1 meter deep.
- 3. Lower the sonde in the water and measure DO, pH, temperature, and conductivity at 0.5 m depth.
- 4. Record the measurements on the Field Measurement Form.
- 5. If sampling at the X-site is not possible, move to another part of the reach to collect the sample (as close to the X-site as possible), record the letter of the nearest transect in the "TRANSECT" box and more detailed reasons and/or information in the Comments section.
- 6. Flag any measurements that need further comment (or when a measurement cannot be made).

6.1.2 Water Chemistry Sample Collection and Preservation

6.1.2.1 Summary of Method

The water chemistry samples will be analyzed for total phosphorus (TP), total nitrogen (TN), total ammonia-nitrogen (NH₄), nitrate (NO₃), basic anions, cations, total suspended solids (TSS), turbidity, acid neutralizing capacity (ANC, alkalinity), dissolved organic carbon (DOC), and total organic carbon (TOC). You will collect a grab sample in one 4-L cube container and in one 2-L amber Nalgene bottle from the X site at the center of the reach. Store all samples on ice in a closed cooler.

6.1.2.2 Equipment and Supplies

Table 6.1-3 provides the equipment and supplies needed to collect water samples at the index site. Record the Water Sample Collection and Preservation data on the Sample Collection Form, as seen in Figure 6.1-2.

For collecting samples	 Nitrile gloves 4-L cube container for wadeable sites 2-L amber Nalgene bottle 3 L Nalgene beaker Cooler with ice DI water (for cleaning beaker and carboy between sites) Field Operations Manual and/or laminated Quick Reference Guide
For recording measurements	 Sample Collection Form Field Measurement Form Pencils (for data forms) Fine tipped indelible markers

Table 6.1-3. Equipment and supplies—water chemistry sample collection and preservation
--

6.1.2.3 Sampling Procedure

Table 6.1-4 presents step-by-step procedures for collecting water chemistry samples at wadeable sites.

Table 6.1-4. Sampling procedure for wadeable sites—water chemistry sample collection

- 1. Collect the water samples from the X-site in a flowing portion near the middle of the stream.
- 2. Put on nitrile gloves. Make sure not to handle sunscreen or other chemical contaminants until after the sample is collected.
- 3. Rinse the 3-L Nalgene beaker three times with water, and discard the rinse downstream.
- 4. Remove the cube container lid and expand the cube container by pulling out the sides. **NOTE: DO NOT BLOW into the cube container to expand them, this will cause contamination.**
- Fill the 3-liter beaker with water and slowly pour 30 50 mL into the cube container. Cap the cube container and rotate so that the water contacts all the surfaces. Discard the water downstream. Repeat this rinsing procedure 2 more times.
- 6. Fill the beaker with water and pour into the cube container. Repeat as necessary to fill the cube container. Let the weight of the water expand the cube container. Pour the water slowly as the cube container expands. Fill the cube container to at least three-fourths of its maximum volume. Rinse the cube container lid with water. Eliminate any air space from the cube container, and cap it tightly. Make sure the cap is tightly sealed and not on at an angle.
- Fill the 3-liter beaker with water and slowly pour 30 50 mL into the 2 L amber Nalgene bottle. Cap the bottle and rotate so that the water contacts all the surfaces. Discard the water downstream. Repeat this rinsing procedure 2 more times.
- 8. Fill the beaker with water and pour into the 2 L amber Nalgene bottle. Cap the bottle tightly
- 9. Place the cube container and bottle in a cooler (on ice or water) and shut the lid. If a cooler is not available, place the cube container in an opaque garbage bag and immerse it in the stream.
- 10. Record the Sample ID on the Sample Collection Form along with the pertinent stream information (stream name, ID, date, etc.). Note anything that could influence sample chemistry (heavy rain, potential contaminants) in the Comments section. If sampling at the X-site is not possible, move to another part of the reach to collect the sample (as close to the X-site as possible), record the letter of the nearest transect and more detailed reasons and/or information in the Comments section.

6.1.3 Sediment Enzymes

6.1.3.1 Summary of Method

Collect sediment samples at the 11 sampling stations along each reach and combine for all stations at a site, resulting in a single 500 mL sample per site. Collect fine surface sediments (top 5 cm) using a scoop, spoon or dredge. Store samples on ice until shipment to the laboratory. Samples will be analyzed for available DIN, NH₄, DIP, TP, TN, total carbon (TC) and enzyme activity.

6.1.3.2 Equipment and Supplies

Table 6.1-5 lists the equipment and supplies needed to collect sediment enzyme samples. Record collection data on the Sample Collection Form, as seen in Figure 6.1-2.

For collecting samples	 4 L graduated plastic bucket Large stainless steel spoon for 500 mL plastic jar for storing 	•
For recording measurements	Sample Collection FormSample labels	PencilsFine tipped indelible markersClear tape strips

Table 6.1-5. Equipment and supplies—sediment enzymes

		9		S	AMPI	.е с	OLL	ECT		I FC	RM	I - V	VAE)EA	BLE	E (Fr	ont]	tinitia	wed by N:		_		
4	16387		SITE	ID:	FW08								D	ATE:		/		_1	2	0			
s S	ample l	in ser D		Sample		Comments																	
99	90		1	Category		-																	
<u> </u>	<u> </u>			Õ٩	0	╈																	
	in a second	61.202.a		O D		ume	شائلا مزرک					الية السية المحمد ال	 2011 - 2020	1.24. 	 		<u></u>	.auti	:			O	
	Sample	ID		Sample Category	+ Filler	oð (mL	Fro	zen		Comments													
9.9.	9.0) <u>O</u>	<u>2</u>	٥Þ	120	o∂ ●																	
												-44,000											
s S	alessee Iample I	ense D	10.8	Sample	Chille	_		, star pro		all șa.	and and a		Con	ment	9 -3 8	8-19- -		i Selono i	÷	e dad	an an sta		
a a	<u>6</u> 0	<u>^</u>	ω	Category P O D	•	a Comments																	
<u>-4.3.</u>	<u></u>	<u>. Y.</u>		Ō٩																			
				. O ¤									e E							1. 		O	
			A	В		С		D		E	4	F	÷ 6	j.		Н		I		J	ŀ	<	
BSTRATE ne/Sand	CHAN. Pool	Sub.	Chan. O P		ihan. S DPO	ub. Chi FO	_	_	Sub. OF	Chan. O 5	10,1			Chan	. Sul	+	8ub.	Ghan.	6ub.	Chaun. OP	8ub. ⊖ ⊧	Chui O I	
avel	Glide	06	🖨 GL	6 6	9 GL 🏈	GÔ	GF () G	OGL	. @ G	City City		00	-	0.6	10	6 () (4	. 0 •	0 01	0.	• 01		•	
98 7 88	Riffie	٥c	O RI	00		c 🏟	RI 🌘 C	RI	0%		ိင်	💼 R	· O •	O R	10		00		၀၀		٥٠	Ò,	
har:	Rapid	00	ON			0	RA () C	() R) 10 R)) RA	00	OR					00		00	0 **			
	are po od	2699 -	3/2-	O P			1 1		in in s to	as ir sõnd	a r (18)				1.4.00.20	an de la capa An de la capa An de la capa	₩****	3° 4				1	
4.4.4	<u>7.0</u> ,	<u>0,</u> ï	-	0 ¤ 0 ¤	0.1	_		<u>ب</u> و مر															
4121-242		Protino		Ŏ¤	 	(a sa bara	an an an an	14 A. 1		a name		e de sed		49 N G	in an			···· ···	- M. 1991 (*		
		er an Feisil								5 (ų į					Ŷ				, 			
Dominant Substrate:	0 F	0 ¢	Q ⊧	0 0	OF C	C C	O.	© 0	F 0	• O	//// /) c (F ()))	Q F	● c (2 F 1	ः २०१	D F	0 -	O⊧		
MEA TRANSPORT	00	O of O five	O ≏ O P	•••		-) 6 ()) 7 ()				-) 07 (-		0 a	<u> </u>		-	O G O P	O or O RA	O G O P		
Channel: NEN TRANSECT	LA	Ġ GL	ŏ o	Ō QL				GL 🍝						Õ ⊆L		Õ GL 🤆		Ō GL (Ö N O	😨 GL	ŏ	ē۹	
Dominant Edge: (L and Rj	Ū.≋	Ō₩		O M		9 (9 (s Q	A O	MIO	RC) м () a Ç	Q s Q m	Q V Q R		Ou OR	QM∤		🗣 м	Q v Q R	Q۳	
d gje ;	ိုင်	🛑 ос эт	٥ ^٢	O OG QT		06	0 m	060	<u>င်မှ</u> ၂	oc (C Subst	Q of	064	0.	0 0G	0 0	or I	00			0 09 07	<u>ိ</u> န်	• C 01	
l = Unden . = Leaf Li				= Rooty deposit			crophyte or Ca-D		ant		ne/Sa		C≖Co Other			rate		nen pol Ri Rapid					
	inter a state	ndonasis d Ir Sales		(2) (n - 1 0 V (1) (n)			mment s			(որհեկերոր Ի նիչչ էն Հայ մին		comn	nent se	ction b	ekw)				ment se		iaw)	
с С	G Z	ე (9.8		P		•	· \:/e.162	8 W I W	NY 201938		9-5126°	erwitz.	V:	: • : •	star de la	54.94S		50.00	86818	ter Kiali	। अन्यद्वी ।	
1,7	. ໆ . \		<u>. c</u>	<u>- </u>				+															
					D							ervatio	an; F1, F	2, ecc.	= miac	. flega es	isigned	by field	crew.	Explain	all		
n	lags in co	mmeni	section	is. "Sam j		ries: F	= Prima	ry, D =						-		-	-						

Figure 6.1-2. Sample Collection Form, Side 1.

Draft	Draft SAMPLE COLLECTION FORM - WADEABLE (Back)														_			
SITE	SITE ID: FW08 DAT												2_0_					
				COMPO	DSITE P	ERIPH	YTON S	SAM	IPLE -	Prim	ary		No S	ample Co	llected 🔘			
Sa	ample ID		Sample Category *		omposite													
					<u> </u>		_	Number of transects sampled (0-11):										
	blage ID mL tube)		0	Chlorophy (GF/F fil	Biomass (.3) APA (.4) (GF/F Filter) (50-mL tube)													
Sample Vol. (mL)	Flag	Preserve	d Sample V			zen S	ample Vol.			Froze	en s	Sample	Flag	Frozen				
		0			()				С	>				0			
COMPOSITE PERIPHYTON SAMPLE - Duplicate No Sample Collection													llected O					
Sample ID Sample Composite Volume (ml.)																		
			Category *						Numt	oer of tr	anse	cts sa	mpled (C)-11):				
	blage ID mL tube)		Ť	Chlorop (GF/F					nass (.3 F Filter)				APA (.4) (50-mL tube)					
Sample Vol. (mL)	Flag	Preserve	d Sample V	ol. (mL) F	lag Fro	ozen S	ample Vol.	(mL)	Flag	Froze	en 🛛	Sample	Vol. (mL)	Flag	Frozen			
					C	<mark>)</mark>			$\langle \cdot \rangle$	C C)				0			
Flag	ag Comments																	
<u> </u>																		
							Š											
						.0	•											
	ag codes: K ags in comm		surement or ob Is.	servation mad	ie; U = Sus	eci measu	rement or ot	bserva	tion; F1, F	2, etc. = 1	flags as	signed	by field cre	w. Explain a	ıll			
						IENT CH	EMISTR	Y/E	NZYME	S			No Sa	mple Coll	ected 🔿			
Sample	ID	Sampl Categor	y * Composite	omposite Volume Transacts Chilled Comments														
			0	EN	TEROCO	CCI (Ta	rget Volu	me = :	250 mL)				No S	ample Col	ected O			
Comple	ID	Sample	Time	Depth	Sample	Filt. \$	Start	١	/olume F		**	Fil	_					
Sample One unique ID		Cate- gory *	Collected (hhmm)	Collected (m)	Volume (mL)	Tir (hhr			Target = Filt. 2				Time ihmm)	Frozen (hhmm				
		O₽ O□																
r		ΟP				+						+			+-			
<u> </u>		OD																
		O۶																
Flag						Comm	ent											

* Sample Categories: P = Primary, D = Duplicate; F = Filter Blank (Enterococci sample only) Filter blank is collected at visit where field duplicate sample is NOT taken. ** If <25 ml of buffer solution was used to rinse filter, indicate with an F flag and note in comment section which filter(s) were affected along with the approximate volume(s) of buffer solution used.

NRSA Sample Collection - Wadeable 03/06/2008

Figure 6.1-3. Sample Collection Form, Side 2.

6.1.3.3 Sampling Procedure

Near each of the macroinvertebrate and periphyton sampling locations, collect a finegrained sediment sample using either a hand scoop or spoon sampler. The objective is to collect a 500-mL composite sample that is representative of depositional areas at the site. The composite sample will be subsampled in the lab for multiple analyses. Table 6.1-6 presents step-by-step procedures for collecting sediment enzyme samples.

Table 6.1-6. Sampling procedure—sediment enzymes

- Collect a sediment sample at each of the macroinvertebrate and periphyton sample locations. Make sure each of the subsamples comprises an approximately equal portion of the total composite. It is permissible to collect sediment between stations to insure a composite volume of at least 500 mL. (Note any deviations from standard procedure in a comment.)
- 2. Locate sediment samples in areas or patches of fine-grained substrate (silty sand, silt, clay, muck) in a zone bounded on the shore side by the apparent low-water mark from daily flow fluctuations and bounded on the river side by the 0.3-m (usually about mid-biceps) depth contour (recommended maximum sample depth; deeper sampling may be possible). The low-water mark at a site can often be detected by the presence of periphyton or attached filamentous algae just below the low-water mark. If samples cannot be safely collected by wading at a station due to vertical banks or other reason go to step 5.
- 3. Be sure to avoid the area that has just been kick sampled for macroinvertebrates. Sampling upstream from the kick sample location is recommended. If fine substrates are not present within 5 m up- or downstream from the station, flag the station on the form.
- 4. If fine substrate is present, use a stainless steel spoon to collect a sample of about 50ml or one spoonful from the top 5 cm of substrate. Place the sample in a clean bucket. Use gloves for handling sediment. Do not assume rip rapped shorelines lack fine-grained sediment. Look for fines between the large rocks.
- 5. Repeat steps 2-4 at each of the 11 littoral stations. Record the total number of replicates (stations) included in the composite. Note in a comment the stations at which sediment was collected using a non-wading method.
- 6. It is important that a sufficient sediment (not less than 500 mL) sample for analysis be collected. If multiple stations have no fine sediment, it is permissible to collect extra sample at stations that do have fine sediment or between stations. Be sure to note this in a comment.
- 7. Using the stainless steel spoon, thoroughly mix the composite sample and transfer 500 mL into the 500 mL plastic bottle. Place in a cooler with ice for final labeling and preservation.
- 8. Prepare a label for the sample jar. Using a fine-point indelible marker, fill in the site # and sample date. Place the label on the jar and cover it with clear tape. Record the sample ID and other data on sampling form. Place the sample on ice or in a refrigerator. Do not freeze sediment samples. The sediment enzyme samples have a 2 week holding time.

6.2 Physical Habitat Characterization—Wadeable Streams

Physical habitat in streams includes all those physical attributes that influence or provide sustenance to organisms within the stream. The physical habitat of a stream varies naturally, thus expectations differ even in the absence of anthropogenic disturbance. Within a given physiographic-climatic region, stream drainage area and overall stream gradient are likely to be strong natural determinants of many aspects of stream habitat. This is because of their influence on discharge, flood stage, and stream power (the product of discharge times gradient). Kaufmann (1993) identified seven general physical habitat attributes important in influencing stream ecology:

- Channel Dimensions
- Channel Gradient
- Channel Substrate Size and Type
- Habitat Complexity and Cover
- Riparian Vegetation Cover and Structure
- Anthropogenic Alterations
- Channel-Riparian Interaction

The procedures are employed on a support reach length 40 times its baseflow wetted width, as described in Section 4. Measurement points are systematically placed to statistically represent the entire reach. Stream depth and wetted width are measured at very tightly spaced intervals, whereas channel cross-section profiles, substrate, bank characteristics and riparian vegetation structure are measured at larger intervals. Woody debris is tallied along the full length of the sampling reach, and discharge is measured at one location. The tightly spaced depth and width measures allow calculation of indices of channel structural complexity, objective classification of channel units such as pools, and quantification of residual pool depth, pool volume, and total stream volume.

6.2.1 Components of the Habitat Characterization

There are five components of the physical habitat characterization (Table 6.2-1). Measurements are recorded on 11 copies of a two-sided field form, and separate forms for recording slope and bearing measurements, recording observations concerning riparian legacy (large) trees and alien invasive riparian plants, assessing the degree of channel constraint, and recording evidence of debris torrents or recent major flooding. The thalweg profile is a longitudinal survey of depth, habitat class, presence of deposits of soft/small sediments, and presence of off-channel habitats at 100 equally spaced stations (150 in streams less than 2.5 m wide) along the centerline between the two ends of the sampling reach. Thalweg refers to the flow path of the deepest water in a stream channel. Wetted width is measured and substrate size is evaluated at 21 equally spaced cross-sections (at 11 regular transects [A through K], and 10 supplemental cross-sections spaced midway between each of these). Data for the second component, the woody debris tally, are recorded for each of 10 segments of stream located between the 11 regular transects. The third component, the channel and riparian characterization, includes measures and/or visual estimates of channel dimensions, substrate, fish cover, bank characteristics, riparian vegetation structure, presence of large (legacy) riparian trees, nonnative (alien) riparian plants, and evidence of human disturbances. These data are obtained at each of the 11 equally-spaced transects established within the sampling reach. In addition, measurements of the stream slope and compass bearing between stations are obtained, providing information necessary for calculating reach gradient, residual pool volume, and channel sinuosity. The fourth component, assessment of channel constraint, debris torrents, and major floods, is an overall assessment of these characteristics for the whole reach, and is undertaken after the other components are completed.

Component	Description
Thalweg Profile (Section 6.2.4.1)	 Measure maximum depth, classify habitat and pool-forming features, and check presence of backwaters, side channels and loose, soft deposits of sediment particles at 10-15 equally spaced intervals between each of 11 transects (100 or 150 individual measurements along entire reach). Measure wetted width and evaluate substrate particle size classes at 11 cross-section transects and midway between them (21 width measurements and substrate cross-sections).
Woody Debris Tally (Section 6.2.4.2)	 Between each of the channel cross-sections, tally large woody debris numbers within and above the bankfull channel according to specified length and diameter classes (10 separate tallies).
Channel and Riparian Characterization (Section 6.2.5)	 At 11 transects (21 for substrate size) placed at equal intervals along reach: Measure: channel cross-section dimensions, bank height, bank undercut distance, bank angle, slope and compass bearing (backsight), and riparian canopy density (densiometer). Visually Estimate^a: substrate size class and embeddedness; areal cover class and type (e.g., woody trees) of riparian vegetation in Canopy, Mid-Layer and Ground Cover; areal cover class of fish concealment features, aquatic macrophytes and filamentous algae. Observe & Record^a: Presence and proximity of human disturbances, presence of large trees, and presence of invasive riparian plants.
Assessment of Channel Constraint, Debris Torrents, and Major Floods (Section 6.2.6)	 After completing thalweg and transect measurements and observations, identify features causing channel constraint, estimate the percentage of the channel margin that is constrained for the whole reach, and estimate the ratio of bankfull/valley width. Check evidence of recent major floods and debris torrent scour or deposition.
Discharge (Section 6.2.6.3)	 Measure water depth and velocity at 0.6 depth at 15 to 20 equally spaced intervals across one carefully chosen channel cross-section. In very small streams, measure discharge by timing the passage of a neutrally buoyant object through a segment whose cross-sectional area has been estimated or by timing the filling of a bucket.

Table 6.2-1. Co	mponents of phys	sical habitat cha	racterization
-----------------	------------------	-------------------	---------------

³ Substrate size class is estimated for a total of 105 particles taken at 5 equally-spaced points along each of 21 crosssections. Depth is measured and embeddedness estimated for the 55 particles located along the 11 regular transects A through K. Cross-sections are defined by laying the surveyor's rod or tape to span the wetted channel. Woody debris is tallied over the distance between each cross-section and the next cross-section upstream. Riparian vegetation and human disturbances are observed 5m upstream and 5m downstream from the cross-section transect. They extend shoreward 10m from left and right banks. Fish cover types, aquatic macrophytes, and algae are observed within the channel 5m upstream and 5m downstream from the cross-section stations. These boundaries for visual observations are estimated by eye.

6.2.2 Habitat Sampling Locations within the Reach

Measurements are made at two scales of resolution along the length of the reach; the results are later aggregated and expressed for the entire reach, a third level of resolution. Figure 6.2-1 illustrates the locations within the reach where data for the different components of the physical habitat characterization are obtained. Many channel and riparian features are characterized on 11 cross-sections and pairs of riparian plots spaced at 4 channel-width intervals (i.e., transect spacing = 1/10th the total reach length). The thalweg profile measurements must be spaced evenly over the entire support reach. In addition, they must be sufficiently close together that they do not miss deep areas and major habitat units. Follow these guidelines for choosing the increment between thalweg profile measurements:

- Channel Width < 2.5 m increment = 1.0 m
- Channel Width 2.5 to 3.5 m increment = 1.5 m
- Channel Width > 3.5 m increment = 0.01 × (reach length)

Following these guidelines, make 150 evenly spaced thalweg profile measurements in the smallest category of streams, 15 between each detailed channel cross-section. In all of the larger stream sizes, you will make 100 measurements, 10 between each cross-section.

6.2.3 Logistics and Work Flow

The five components (Table 6.2-1) of the habitat characterization are organized into four grouped activities:

1. Thalweg Profile and Large Woody Debris Tally (Section 6.2.4). Two people proceed upstream from the downstream end of the sampling reach (see Figure 6.2-1) making observations and measurements at the chosen increment spacing. One person is in the channel making width and depth measurements, and determining whether soft/small sediment deposits are present under his/her staff. The other person records these measurements, classifies the channel habitat, records presence/absence of side channels and off-channel habitats (e.g., backwater pools, sloughs, alcoves), and tallies large woody debris. Each time this team reaches a flag marking a new cross-section transect, they start filling out a new copy of the Thalweg Profile and Woody Debris Form. They interrupt the thalweg profile and woody debris tallying activities to complete data collection at each cross-section transect as it comes. When the crew member in the water makes a width measurement at channel locations midway between regular transects (i.e., A, B, K), she or he also locates and estimates the size class of the substrate particles on the left channel margin and at positions 25%, 50%, 75%, and 100% of the distance across the wetted channel. Procedures for this substrate tally are the same as for those at regular cross-sections, but data are recorded on the thalweg profile side of the field form.

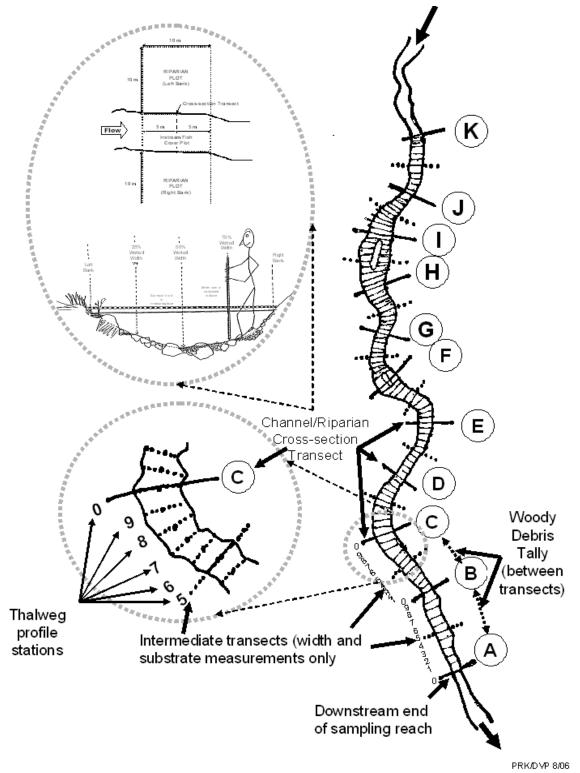


Figure 6.2-1. Reach layout for physical habitat measurements (plan view).

2. Channel/Riparian Cross-Sections (Section 6.2.5). One person proceeds with the channel cross-section dimension, substrate, bank, and canopy cover measurements. The second person records those measurements on the Channel/ Riparian Cross-section Form while making visual estimates of riparian vegetation structure, instream fish cover, and human disturbance specified on that form. They also make observations to complete the riparian "legacy" tree field form. Slope is measured by measuring the difference in elevation between each transect and bearing is determined by backsighting to the previous transect. Supplementary points may need to be located and flagged (using a different color) if the stream is extremely brushy, sinuous, or steep to the point that you cannot sight for slope and bearing measures between two adjacent transects.

The work flow for the thalweg profile and channel cross described above can be modified by delaying the measurements for slope and bearing and the woody debris tally until after reaching the upstream end of the reach. Backsighting and wood tallies can be done on the way back down (Note that in this case, the slope and bearing data form would have to be completed in reverse order).

- 3. Channel Constraint and Torrent Evidence (Section 6.2.6). After completing observations and measurements along the thalweg and at all 11 transects, the field crew completes the overall reach assessments of channel constraint and evidence of debris torrents and major floods.
- 4. Stream Discharge. Discharge measurements are made after collecting the water chemistry sample. They are done at a chosen optimal cross-section (but not necessarily at a transect) near the X-site. However, do not use the electromagnetic current meter close to where electrofishing is taking place. Furthermore, if a lot of channel disruption is necessary and sediment must be stirred up, wait on this activity until all chemical and biological sampling has been completed.

6.2.4 Thalweg Profile and Large Woody Debris Measurements

6.2.4.1 Thalweg Profile

Thalweg refers to the flow path of the deepest water in a stream channel. The thalweg profile is a longitudinal survey of maximum flow path depth and several other selected characteristics at 100 or 150 equally spaced points (termed *stations*) along the length of the reach measured along the centerline of the channel. Data from the thalweg profile allows calculation of indices of residual pool volume, stream size, channel complexity, and the relative proportions of habitat types such as riffles and pools. One person walks upstream carrying a fiberglass telescoping (1.5 to 7.5 m) surveyor's rod and a 1-m metric ruler (or a calibrated rod or pole, such as a ski pole, shovel handle, wooden dowel, or old billiard cue). A second person on the bank or in the stream carries a clipboard with 11 copies of the field data form.

The procedure for obtaining thalweg profile measurements is presented in Table 6.2-2. Record data on the Thalweg Profile and Woody Debris Data Form as shown in Figure 6.2-2. Use the surveyor's rod and a metric ruler or calibrated rod or pole to make the required depth and width measurements at each station, and to measure off the distance between stations as you proceed upstream. You may need to make minor adjustments to align each 10th measurement to be one increment short of the next transect. In streams with average widths less than 2.5 m, make thalweg measurements at 1-meter increments. Because the minimum reach length is set at 150 meters, there will be 15 measurements on a field data form: Station 0 at the transect plus

14 additional stations between it and the next transect upstream. Use the five extra lines on the thalweg profile portion of the data form (Figure 6.2-2) to record these measurements.

Table 6.2-2. Thalweg profile procedure

- 1. Determine the increment distance between measurement stations based on the wetted width used to determine the length of the reach. Using a laser rangefinder or surveyor's rod:
 - For widths \leq 2.5 m, establish stations every 1 m (150 total).
 - For widths > 2.5 and \leq 3.5 m, establish stations every 1.5 m (100 total).
 - For widths > 3.5 m, establish stations at increments equal to 0.01 times the reach length (100 total).
- 2. Complete the header information on the Thalweg Profile and Woody Debris Form, noting the transect pair (downstream to upstream). Record the increment distance determined in Step 1 in the *INCREMENT* field on the field data form.
- 3. Begin at the downstream end (*station 0*) of the first transect (transect A).
- 4. Measure the wetted width at station 0, and at either station 5 (if the stream width defining the reach length is ≥ 2.5 m), or station 7 (if the stream width defining the reach length is < 2.5 m). Wetted width is measured across and over mid-channel bars and boulders. Record the width on the field data form to the nearest 0.1 m. For streams with interrupted flow, where no water is in the channel at the station or transect, record zeros for wetted width.</p>
- NOTE: If a mid-channel bar is present at a station where wetted width is measured, measure the wetted width across and including the bar, but also measure the bar width and record it on the field data form.
- 5. At station 5 or 7 (see above) classify the size of the bed surface particle at the tip of your depth measuring rod at the left wetted margin and at positions 25%, 50%, 75%, and 100% of the distance across the wetted width of the stream. This procedure is identical to the substrate size evaluation procedure described for regular channel cross-sections (transects *A K*), except that for these midway supplemental cross-sections, substrate size is entered on the thalweg profile side of the field form.
- 6. At each thalweg profile station, use a calibrated pole or rod to locate the deepest point within the deepest flow path (*the thalweg*), which may not always be found at mid-channel (and may not always be the absolute deepest point in every channel cross-section). Measure the thalweg depth to the nearest cm from the substrate <u>surface</u> to the water surface, and record it on the thalweg profile form. Read the depth on the **side** of the rod to avoid inaccuracies due to the wave formed by the rod in moving water.
- NOTE: For streams with interrupted flow if there is no water at a transect, record zeros for depth.
- NOTE: Obtain thalweg depths at all stations. If the thalweg is too deep to measure directly, stand in shallower water and extend the surveyor's rod or pole at an angle to reach the thalweg. Determine the angle by resting the clinometer on the upper surface of the rod and reading the angle on the external scale of the clinometer. Leave the depth reading for the station blank, and record a U flag to indicate a non-standard procedure was used. Record the water level on the rod and the rod angle in the comments section of the field data form. For deeper depths, use the same procedure with a taut string as the measuring device. Tie a weight to one end of a length of string or fishing line, and toss the weight into the deepest channel location. Draw the string up tight and measure the length of the line that is under water. Measure the string angle with the clinometer exactly as done for the surveyor's rod. If a direct measurement cannot be obtained, make the **best estimate** you can of the thalweg depth, and use a U flag to identify it as an estimated measurement.
- 7. At the point where the thalweg depth is determined, observe if unconsolidated, loose (*soft*) deposits of small diameter (≤16mm) sediments are present directly beneath your ruler, rod, or pole. *Soft/ small sediments* are defined here as fine gravel, sand, silt, clay or muck readily apparent by "feeling" the bottom with the rod. Record presence or absence in the *SOFT/SMALL SEDIMENT* field on the field data form. *Note: A thin coating of fine sediment or silty algae coating the surface of cobbles should not be considered soft/small sediment. However, fine sediment coatings should be identified in the*

comments section of the field form when determining substrate size and type.

- 8. Determine the channel unit code and pool forming element codes for the station. Record these on the field data form using the standard codes provided. For dry and intermittent streams, where no water is in the channel, record habitat type as dry channel (*DR*).
- 9. If the station cross-section intersects a mid-channel bar, indicate the presence of the bar in the *BAR WIDTH* field on the field data form.
- 10. Record the presence or absence of a side channel at the station's cross-section in the *SIDE CHANNEL* field on the field data form.

Record the presence or absence of quiescent off-channel aquatic habitats, including sloughs, alcoves and backwater pools in the *BACKWATER* column of the field form.

- 11. Proceed upstream to the next station, and repeat Steps 2 through 11.
- 12. Repeat Steps 2 through 12 until you reach the next transect. At this point complete Channel/ Riparian measurements at the new transect (Section 6.2.5). Then prepare a new Thalweg Profile and Woody Debris Form and repeat Steps 2 through 12 for each of the reach segments, until you reach the upstream end of the sampling reach (transect *K*). At transect *K*, you will have completed 10 copies of the Thalweg Profile and Woody Debris Form, one for each segment (*A* to *B*, *B* to *C*, etc.).

Measure thalweg depths at all stations. Missing depths at the end of the reach (e.g., due to the stream flowing into or out of a culvert or under a large pile of debris) can be tolerated, but those in the middle of the reach are more difficult to deal with. Flag any missing measurements using a K code and explain the reason in the comments section of the field data form. At points where a direct depth measurement cannot be made, make your best estimate of the depth, record it on the field form, and flag the value using a U code (nonstandard measurement). explaining that it is an estimated value in the comments section of the field data form. Where the thalweg points are too deep for wading, measure the depth by extending the surveyor's rod at an angle to reach the thalweg point. Record the water level on the rod, and the rod angle, as determined using the external scale on the clinometer (vertical = 90°). In analyzing these data we calculate the thalweg depth as the length of the rod (or string) under water multiplied by the trigonometric sine of the rod angle. (For example, if 3 meters of the rod are under water when the rod held at 30 degrees (sine=0.5), the actual thalweg depth is 1.5 meters.) These calculations are done after field forms are returned for data analysis. On the field form, crews are required only to record the wetted length of the rod under the water, a U code in the flag field (to indicate a nonstandard technique), and a comment to the right saying "depth taken at an angle of xx degrees." If a direct measurement of the thalweg depth is not possible, make the best estimate you can of the depth, record it, and use a U flag and a comment to note it is an estimated value.

0 C-D 0 D-E 0 E-F	Total Reach Length (m): 230											S.						FLAG	PIECES BRIDGE ABOVE BANKFULL CHANNEL	m 5-15m >15m						
A-B 0 B-C 0 F-G 0 G-H	Total Rea	THALWEG PROFILE COMMENTS										CONFLUENCG						CHECK IF UNMARKED BOXES ARE ZERO	PIECES BRIE	Length 1.5-5m				2		-
TRANSECT:	2.3	THALWEG			1			BOULDER										CHECH	ULL CHANNEL	>15m						
	Increment (m) X.X:							IS A B				CHANNEL						EBRIS 5 m length)	PIECES ALLIPART IN BANKFULL CHANNEL	5-15m	unt.	4		L	-	
8 0 0	Increme							BAR				SIDE						LARGE WOODY DEBRIS [2.10 cm small and diamater; 2.1.5 m length)	PIECES ALUI	Length 1.5-5m	1 +++	9				
12	LY:	BACK WATER	2	B ×	C) ×	¢ Ø	z Ø	z Ø	N (O)	× Ø	\$ ×	× ®	z ×	x >	× ≻	N >	N X	LARGE	METER	LARGE END Le	01-003 m			0.3-0.6 m	0.6-0.8 m	~0.8 m
101	A-B ON	SIDE	× ®	(R) >	×	3	œ ×	A 8	× ®	B ×	× ®	ž	X N	N Y	X N	X N	N X	Г	10	IAF	0.1	-	DES		2001	×
DATE: 0,7 10,1 12	For Transect A-B ONLY:	FORM	2	2	2	2	F	F	F	L	F	L						FLAG					POOL FORM CODES CHANNEL UNIT CODES	PT = Pool, Tranch PL = Pool, Lateral Scour PB = Pool, Backwater	PD = Pool, impoundir GL = Gida RI = Ratia RA = Rapid	# Cascade # Falls # Dry Chennel
DAT	Ĕ	CHANNEL UNIT CODE	RI			RI	PT -	PT	PT	PT	PT	PT							A FV	(DMD)			CODES CHAN			CA DR DR
		SOFT /SMALL SEDI- MENT	œ ×	(B) >	× 10	× (N)	œ ×	ž	N Ø	N (D)	z Ø	N Q	z ×	N Y	N X	N Y	N X	Ē	GF SA	TRATE and			POOL FORM	W = Large Woody Dehris R = Roctwed B = Boukler of Bedrock	F = Unknown, flux COMBINATIONS: eg. WR, ER, WRS	
0	OFILE	BAR WIDTH1 vsent XX.X	0.0					0.2										∝	54	TS (for SUBSTRATE and LWD				TO CAR)	O METERSTICK) METBALL) TENNIS BALL) BLED	2 SUCE) ATE)
XOD	THALWEG PROFILE	P1	z	n D	N (O)	z 🕗	z Ø	N (S)	X X	X N	ě ,	Y (1)	X N	X N	X N	N Y	X X	ET :	88	COMMENTS			ASS CODES	THAN A CAR	- BASKETBALL 71 45 BALL TO BAS) - (MARBLE TO 7 DYRUG TO MARB	UP TO LADYBUG () ED FINE SUBSTR
FW08 XX 0D0	THAL	WETTED WIDTH (m) (XXXX)	3.6					3.2										Station (5 or 7)	2	0			SUBSTRATE SIZE CLASS CODE	RR = веряск (ясисн) - (цакаев тими а сан) RC = соисяетелемии,т X8 = Lo, воислея (160 то 400 mm) - метеретис	R (256 TO 1000 mm) TO 250 mm) - (TEN AVEL (16 TO 64 mm - (2 TO 16 mm) - (LA	TO 2 mmi - (GRUTTY - MUCK - (NOT GRUTT FIRM, CONSOLIDATI
SITE ID:		THALWEG DEPTH (cm) (XXX)	14	13	27	46	40	35	34	77	53	57						SUBSTRATE					SUBST SUBST	RR = REDROCK (RC = CONCRETE/ XB = LG. BOULDER	SE = SM, poulDER (25) TO 1000 mmi - BASKETBALL TO METERSTICK) F CB = COBBLIG 104 TO 200 mmi - TENASS BALL TO BASKETBALL) GC = COMBLE GARVEL (19 TO 44 mm) - MARBLE TO TENBRIS BALL) GC = FORG FORAVEL (19 TO 46 mm) - IAADTHLE TO TENBRIS BALL) 49.	5A = 5AND [0.04] FN = 5k.T/ CLAY / HP = HARDPAN - []
		STA- TION D	0	-	2	9	4	S *	9	2.	80	6	10	11	12	13	14	subs		FLAG						Draft

Figure 6.2-2. Thalweg Profile and Woody Debris Form.

At every thalweg station, determine by sight or feel whether deposits of *soft/small* sediments are present on the channel bottom. These particles are defined as substrate equal to or smaller than fine gravel (\leq 16 mm diameter). These soft/small sediments are **different** from *Fines* described when determining the substrate particle sizes at the cross-section transects (Section 6.2.5.2). If the channel bottom is not visible, determine if soft/small sediment deposits are readily obvious by feeling the bottom with your boot, the surveyor's rod, or a calibrated rod or pole.

Measure wetted width at each transect (station *0*), and midway between transects (station 5 for larger streams having 100 measurement points, or station 7 for smaller streams having 150 measurement points). The wetted width boundary is the point at which substrate particles are no longer surrounded by free water. Estimate substrate size for five particles evenly spaced across each midway cross-section using procedures described for substrate at regular cross-sections (Section 6.2.5.2), but at the supplemental cross-sections, only the size class (not distance and depth) data are recorded.

While recording the width and depth measurements and the presence of soft/small sediments, the second person evaluates and records the habitat class and the pool forming element (Table 6.2-3) applicable to each of the 100 (or 150) measurement points along the length of the reach. Make channel unit scale habitat classifications at the thalweg of the crosssection. The habitat unit itself must meet a minimum size criteria in addition to the qualitative criteria listed in Table 6.2-3. Before being considered large enough to be identified as a channel-unit scale habitat feature, the unit should be at least as long as the channel is wide. For instance, if there is a small deep (pool-like) area at the thalweg within a large riffle area, do not record it as a pool unless it occupies an area about as wide or long as the channel is wide. If a backwater pool dominates the channel, record PB as the dominant habitat unit class. If the backwater is a pool that **does not dominate** the main channel, or if it is an **off-channel** alcove or slough (large enough to offer refuge to small fishes), circle Y to indicate presence of a backwater in the BACKWATER column of the field form, but classify the main channel habitat unit type according to characteristics of the main channel. Sloughs are backwater areas having marsh-like characteristics such as vegetation, and alcoves (or side pools) are deeper areas off the main channel that are typically wide and shallow (Helm 1985, Bain and Stevenson 1999). When trying to identify the pool forming element for a particular pool, remember that most pools are formed at high flows, so you may need to look for elements that are dry at baseflow, but still within the bankfull channel (e.g., boulders or large woody debris).

	Channel Unit Habitat Classes ^a
Class (Code)	Description
Pools: Still water, low vel channel:	ocity, a smooth, glassy surface, usually deep compared to other parts of the
Plunge Pool (PP)	Pool at base of plunging cascade or falls
Trench Pool (PT)	Pool-like trench in the center of the stream
Lateral Scour Pool (PL)	Pool scoured along a bank
Backwater Pool (<i>PB</i>)	Pool separated from main flow off the side of the channel (large enough to offer refuge to small fishes). Includes sloughs (backwater with marsh characteristics such as vegetation), and alcoves (a deeper area off a wide and shallow main channel)
Impoundment Pool(PD)	Pool formed by impoundment above dam or constriction.
Pool (<i>P</i>)	Pool (unspecified type)
Glide (<i>GL</i>)	Water moving slowly, with a smooth, unbroken surface. Low turbulence.
Riffle (<i>RI</i>)	Water moving, with <i>small ripples, waves and eddies</i> waves not breaking, <i>surface tension not broken</i> . Sound: babbling, gurgling.
Rapid (<i>RA</i>)	Water movement rapid and turbulent, surface with <i>intermittent whitewater</i> with breaking waves. Sound: continuous rushing, but not as loud as cascade.
Cascade (CA)	Water movement rapid and very turbulent over steep channel bottom. Much of the water surface is broken in <i>short, irregular plunges, mostly whitewater.</i> Sound: roaring.
Falls (<i>FA</i>)	<i>Free falling water</i> over a vertical or near vertical drop into plunge, water turbulent and white over high falls. Sound: from splash to roar.
Dry Channel (<i>DR</i>)	No water in the channel, or flow is submerged under the substrate (<i>hyporheic flow</i>).
	annel habitat unit to be distinguished, it must be at least as wide or long as the channel is el backwater pools, which are noted as present regardless of size).

Table 6.2-3. Channel unit and pool forming element categories

	Categories of Pool-forming Elements ^b
Code	Category
Ν	Not Applicable, Habitat Unit is not a pool
W	Large Woody Debris.
R	Rootwad
В	Boulder or Bedrock
F	Unknown cause (unseen fluvial processes)
WR, RW, RBW	Combinations
OT	Other (describe in the comments section of field form)

^b In determining the pool forming element, remember that most pools are formed at high flows, so you may need to look at features, such as large woody debris, that are dry at baseflow, but still within the bankfull channel.

6.2.4.2 Large Woody Debris Tally

Large Woody Debris is defined here as woody material with a small end diameter of at least 10 cm (4 in.) **and** a length of at least 1.5 m (5 ft.). The procedure for tallying LWD is presented in Table 6.2-4. The tally includes all pieces of LWD that are at least partially in the baseflow channel (Zone 1), in the *bankfull channel* (Zone 2, flood channel up to bankfull stage), or spanning above the bankfull channel (Zone 3), as shown in Figure 6.2-3. The *bankfull channel* is defined as the channel that is filled by moderate sized flood events that typically recur every one to two years. LWD in or above the bankfull channel is tallied over the entire length of the reach, including the area between the channel cross-section transects. Pieces of LWD that are not at least partially within Zones 1, 2, or 3 are not tallied.

Table 6.2-4. Procedure for tallying large woody debris

Note: Tally pieces of large woody debris (LWD) within each segment of stream while the thalweg profile is being determined. Include all pieces in the tally whose large end is found within the segment.

- 1. Scan the stream segment between the two cross-section transects where thalweg profile measurements are being made.
- 2. Tally all LWD pieces within the segment that are at least partially within the bankfull channel. Determine if a piece is LWD (*small end diameter* ≥10 cm [4 in.], **and** length ≥1.5 m [5 ft.])
- 3. For each piece of LWD, determine the class based on the *diameter of the large end* (0.1 m to < 0.3 m, 0.3 m to <0.6 m, 0.6 m to <0.8 m, or >0.8 m), and the class based on the *length* of the piece (1.5m to <5.0m, 5m to <15m, or >15m).
 - If the piece is not cylindrical, visually estimate what the diameter would be for a piece of wood with circular cross-section that would have the same volume.
 - When estimating length, include only the part of the LWD piece that has a diameter >10 cm (4 in)
- 4. Place a tally mark in the appropriate diameter × length class tally box in the *PIECES ALL/PART IN BANKFULL CHANNEL* section of the Thalweg Profile and Woody Debris Form.
- 5. Tally all LWD pieces within the segment that are not actually within the bankfull channel, but are at least partially spanning (bridging) the bankfull channel. For each piece, determine the class based on the diameter of the **large end** (0.1 m to < 0.3 m, 0.3 m to <0.6 m, 0.6 m to <0.8 m, or >0.8 m), **and** the class based on the **length** of the piece (1.5 m to <5.0 m, 5 m to <15 m, or >15 m).
- 6. Place a tally mark for each piece in the appropriate diameter × length class tally box in the *PIECES BRIDGE ABOVE BANKFULL CHANNEL* section of the Thalweg Profile and Woody Debris Form.
- 7. After all pieces within the segment have been tallied, write the total number of pieces for each diameter \times length class in the small box at the lower right-hand corner of each tally box.
- 8. Repeat Steps 1 through 7 for the next stream segment, using a new Thalweg Profile and Woody Debris Form.

6.2.5 Channel and Riparian Measurements at Cross-Section Transects

6.2.5.1 Slope and Bearing

Measure bearing by *sighting* between transects (e.g., transect *B* and *A*, *C* and *B*, etc.) as shown in Figure 6.2-4. To measure the bearing between adjacent transects, follow the procedure presented in Table 6.2-5. Record bearing data on the Slope and Bearing Form as shown in Figure 6.2-5.

Slope is typically measured by two people, one holding a surveyor's rod and the second sighting through the surveyor's level. Be sure that the person is standing (or holding the marked pole) at the water's edge holding the rod at the surface of the water. The intent is to get a measure of the *water surface* slope, which may not necessarily be the same as the bottom slope. The surveyor's level is leveled according to the manufacturer's recommendations which is generally to adjust the three screw leveling feet until the bubble is centered. Level is checked in all planes to be measured. If the level does not "self level" in all measured planes the user should check the instruction manual for suggested options. Elevation readings are made at each transect and the difference between each elevation reading is recorded as the change in elevation. NOTE: Multiple transect elevations can often be made for each setup of the level, but every time the transit is moved requires re-measuring the last transect elevation from the last setup. You cannot use elevations from previous setups because the relative height of the transit has changed.

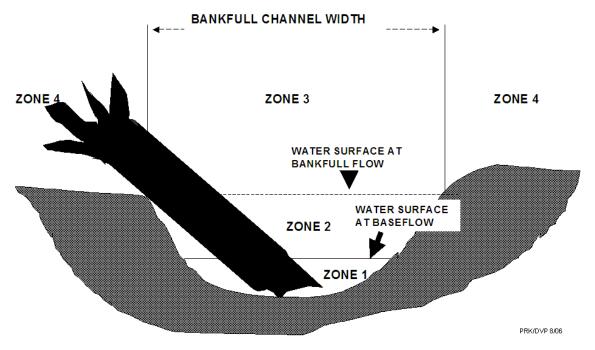


Figure 6.2-3. Large woody debris influence zones (modified from Robison and Beschta, 1990).

To calculate sinuosity from bearing measurements, it does not matter whether or not you adjust your compass bearings for magnetic declination, but it is important that you are **consistent** in the use of magnetic or true bearings throughout all the measurements you make on a given reach. Note in the comments section of the Slope and Bearing Form which type of bearings you are taking, so the measurements can be used to describe reach aspect. Also, guard against recording *reciprocal bearings* (erroneous bearings 180 degrees from what they should be). The best way to do this is to know where the primary (cardinal) directions are in the field: (north [0 degrees], east [90 degrees], south [180 degrees], and west [270 degrees]), and insure that your bearings "make sense."

As stated earlier, it may be necessary to set up intermediate (supplemental) slope and bearing points between a pair of cross-section transects if you do not have direct line-of-sight along (and within) the channel between stations (see Figure 6.2-4). This can happen if brush is too heavy, or if there are sharp slope breaks or tight meander bends. *If you would have to sight across land to measure slope or bearing between two transects, then you need to make one or more supplemental measurements* (i.e., do not "short-circuit" a meander bend). Mark these supplemental locations with a different color of plastic flagging than used for the cross-section transects to avoid confusion. Record these supplemental slope and bearing measurements, along with the proportion of the stream segment between transects included in each supplemental measurement, in the appropriate sections of the Slope and Bearing Form (Figure 6-5). Note that the main slope and bearing observations are always downstream of supplemental observations are always downstream fransect). Similarly, first supplemental observations are always downstream of second supplemental observations.

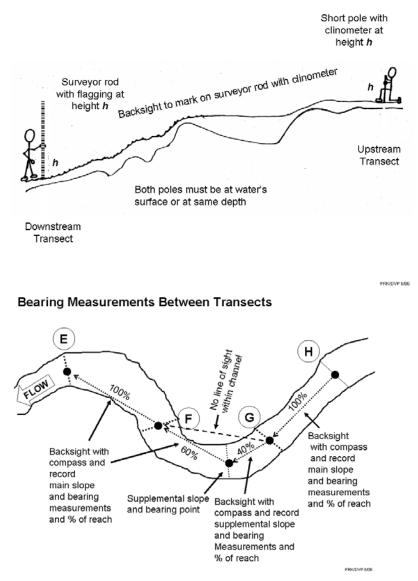


Figure 6.2-4. Channel slope and bearing measurements.

Because of ease of use, portability, and cost, hand-held clinometers were previously used to determine slope. In this instance, the field crews will have access to more sophisticated instrumentation (e.g., surveyor's level), and have field personnel who are experienced in the use of these instruments. The Slope and Bearing Form (Figure 6-5) is designed to allow for different methods and/or different units of measuring slope. Mark the appropriate method circle (instead of *CL*; method codes are identified in Tables 6.2-5 and 6.2-6), and mark the *CM* circle (instead of the % circle) if the method or instrument measures the change in elevation rather than the percent slope.

Table 6.2-5. Procedure for obtaining slope and bearing data

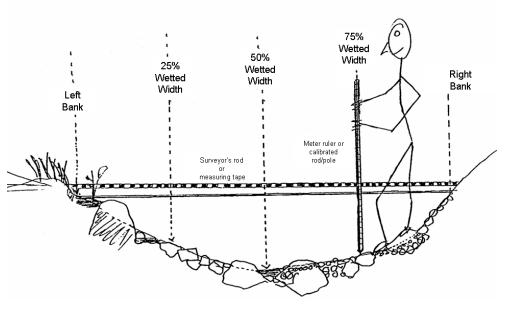
- 1. Determine a location at transect K to hold a surveyor's rod that will be visible from a point between transect J and transect K:
 - a) Set up the instrument at a point approximately halfway between points J and K and where a clear line of sight is possible.
 - b) Position the staff at point K, holding the bottom of the staff at the water level and the staff as vertical as possible and the numbers facing the instrument.
 - c) Site the staff and record the reading to the nearest centimeter.
 - d) Move the staff to point J and gently swivel the instrument to face the next reading. Hold the staff as before, vertically, with the bottom at the water level and the numbers facing the instrument.
 - e) Site the staff and record the reading to the nearest centimeter.
 - f) Repeat measurements between each transect.
 - g) The difference in the readings is the height difference or gradient.
- Note: In small streams with a clear line of site it may be possible to set the instrument up once and make readings to several transects from a single set up. Simply record the readings for each transect and do not skip transects.
 - If you are backsighting from a supplemental point, record the bearing in the appropriate *SUPPLE-MENTAL* section of the Slope and Bearing Form.
- 2. Proceed to the next cross-section transect (or supplementary point), and repeat Steps a g above. Instrument Setup:
 - a) Extend the tripod legs to approximately eye level and set the legs firmly into the ground; adjust the legs so that they form a regular triangle and are firmly set with no wobble. Adjust the legs so that the base plate is approximately level.
 - b) Hold the instrument on the tripod and start the centering screw. Ensure the adjustable feet are roughly evenly adjusted. While the centering screw is still loose slide the instrument on the base plate until the bubble is approximately centered in the circular level. Tighten the centering screw.
 - c) Adjust the leveling foot screws until the bubble is exactly level in the center circle.
 - d) Self Leveling instruments can now be swiveled gently on the base plate and maintain level as long as the tripod remains steady.
 - e) Adjust focus, brightness and parallax according to manufactures specifications.
 - f) The instrument is ready to make measurements.

^a Method codes are: *CL*=clinometer, *TR*=transit, *HL*=hand level, *WT*=Water tube, *LA*=laser level, *OTHER*=method not listed (describe in comments section of form).

		SITE ID:	FW08 XX 000	000		DATE:	0.7101	12008	21		
9		MAIN (MAIN (always used)	()	FIRST SI	FIRST SUPPLEMENTAL	ITAL	SECOND	SECOND SUPPLEMENTAL	NTAL	
TRANSECT & METHOD		Slope(%) or Elev. Diff. (cm) Mark Units for every Transect	BEARING 0 - 359	PROPOR- TION %	Slope(%) or Elev. Diff. (cm)	BEARING 0 - 359	PROPOR- TION %	Slope(%) or Elev. Diff. (cm)	BEARING 0 - 359	PROPOR- TION %	FLAG
A < B O HL		3.5	2.0.3	5.0	2.7	226	50	D.3.	2.2.0	10	-
	O Other O WT		218	4.0	2.0	2.0.3	3.0	0.2	2,3,0	3.0	-
C C D O HL	O TR O WT O Other	0.1 0.1 	1.8.1	1,0,0].]	-	-].].	-	-	-
	O TR O WT O Other	- %	1.7.9	1001].].,,,,			-
	O TR O WT O Other	- %	1.9.3	1.0,0,1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-	-				-
	O TR O WT O Other	""	2,1,1	1.0,0	1,	-	-		-		-
	O TR O WT O Other	1	1.7.7	2.5	0.2	1.6.3	5.2.]	-		-
		143	1.7.6	1.0.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-	-].	-	1	-
	O TR O WT O Other	2 %	1.8.9	1,0,0	1	1 1 1]	-	1 1 1	. <i>E.</i> I
10 H O	O TR O WT O Other	0.0	1.8.9	1,0,0]		1]	-	1	.F.Z.
14	FLAG				COMMENT					FLOW T	T B
-	FI	CLINDMETER	R. READING =	0	BUT THERE IS	F 15 76	KCEPTAL	PERCEPTABLE FLOW		1	First Supple- mental
fierC	F2	CLINOMETER		26=0,	WITH NO PERCEPTABLE FLOW	PERCEP	TABLE	FLOW			Main

Table 6.2-6. Modified procedure for obtaining slope and bearing data

Use this procedure if you are starting at the **upstream transect** (*K*), after completing the thalweg profile and other cross-section measurements at transects *A* through *K*.


1. Stand in the center of the channel at the upstream cross-section transect. Determine if you can see the center of the channel at the next cross-section transect downstream without sighting across land (i.e., do not "short-circuit" a meander bend). If not, you will have to take supplementary slope and bearing measurements.

Mark a surveyor's rod and a calibrated rod (or meter ruler) at the same height. If a shorter pole or ruler is used, measure the height from the ground to the opening of the clinometer when it is resting on top.

- 2. Have one person take the marked surveyor's rod to the downstream transect. Hold the rod vertical with the bottom at the same level as the water surface. If no suitable location is available at the stream margin, position the rod in the water and note the depth.
 - If you have determined in Step 1 that supplemental measurements are required for this segment, walk downstream to the furthest point where you can stand in the center of the channel and still see the center of the channel at the upstream cross-section transect . Remember that your line of sight cannot "cross land." Mark this location with a different color flagging than that marking the cross-section transects.
- 3. Place the base of the calibrated rod at the level as the surveyor's rod (either at the water surface or at the same depth in the water).
- 4. Place the clinometer on the calibrated rod at the height determined in Step 2. With the clinometer, sight back downstream to the flagged height on the surveyor's rod at the downstream transect (or at the supplementary point).
 - If you are sighting to the next downstream transect, read and record the **percent** slope in the *MAIN* section on the Slope and Bearing Form for the **downstream transect** (e.g., *J* < *K*), which is at the **bottom** of the form (i.e., you are completing the form in reverse order). Record the *PROPORTION* as 100%.
 - If you are backsighting from a supplemental point, record the slope (%) and proportion (%) of the stream segment that is included in the measurement in the appropriate *SUPPLEMENTAL* section of the Slope and Bearing Form. The last sighting to a downstream transect (from either the upstream transect or the nearest upstream supplemental point) is always recorded as the *MAIN* reading.
- 5. Stand in the middle of the channel at upstream transect (or at a supplemental point), and sight with your compass to the middle of the channel at the downstream transect (or at a supplemental point). Record the bearing (degrees) in the same section of the Slope and Bearing form (Supplemental or Main) as you recorded the slope in Step 6.
- 6. Proceed to the next cross-section transect (or to a supplementary point), and repeat Steps 3 through 7 above.

6.2.5.2 Substrate Size and Channel Dimensions

Substrate size and embeddedness are evaluated at 5 points at each of the 11 transects (refer to Figure 6.2-6). Substrate size is also evaluated at 10 additional cross-sections located midway between each of the 11 regular transects (*A-K*). In the process of measuring substrate particle sizes at each channel cross-section, the wetted width of the channel and the water depth at each substrate sample point are measured (at the 10 midway cross-sections, only substrate size and wetted width are recorded). If the wetted channel is split by a mid-channel bar (see Section 6.2.4.1), the five substrate points are centered between the wetted width boundaries regardless of the mid-channel bar in between. Consequently, substrate particles selected in some cross-sections may be "high and dry". *For cross-sections that are entirely dry, make measurements across the unvegetated portion* of the channel.

PRK/DVP 8/06

Figure 6.2-6. Substrate sampling cross-section.

The substrate sampling points along the cross-section are located at 0, 25, 50, 75, and 100 percent of the measured wetted width, with the first and last points located at the water's edge just within the left and right banks. The procedure for obtaining substrate measurements is described in Table 6.2-7 (including all particle size classifications). Record these measurements on the Channel/Riparian Cross-section side of the field form, as shown in Figure 6.2-7. For the supplemental cross-sections midway between regular transects,

Table 6.2-7. Substrate measurement procedure

- 1. Fill in the header information on page 1 of a Channel/Riparian Cross-section Form. Indicate the crosssection transect. At the transect, extend the surveyor's rod or metric tape across the channel perpendicular to the flow, with the "zero" end at the left bank (facing downstream).
- NOTE: If a side channel is present, and contains 16 49% of the total flow, establish a secondary crosssection transect. Use a separate field data form to record data for the side channel, designating it as a secondary transect by marking both the X-TRA SIDE CHANNEL circle and the associated primary transect letter (e.g., XA, XB, etc.). Collect all channel and riparian cross-section measurements from the side channel.
- Divide the wetted channel width channel by 4 to locate substrate measurement points on the cross-section. In the *DISTLB* fields of the form, record the distances corresponding to 0% (*LFT*), 25% (*LCTR*), 50% (*CTR*), 75% (*RCTR*), and 100% (*RGT*) of the measured wetted width. Record these distances at Transects *A-K*, but just the wetted width at midway cross-sections.
- 3. Place your sharp-ended meter stick or calibrated pole at the *LFT* location (0 m). Measure the depth and record it on the field data form. (Cross-section depths are measured only at regular transects *A-K*, not at the 10 midway cross-sections).
 - Depth entries at the left and right banks may be 0 (zero) if the banks are gradual.
 - If the bank is nearly vertical, let the base of the measuring stick fall to the bottom (i.e., the depth at the bank will be > 0 cm), rather than holding it suspended at the water surface.
- 4. Pick up the substrate particle that is at the base of the meter stick (unless it is bedrock or boulder), and visually *estimate its particle size*, according to the following table. Classify the particle according to its **median diameter** (the middle dimension of its length, width, and depth). Record the size class code on the field data form. (Cross-section side of form for transects *A-K*; special entry boxes on Thalweg Profile side of form for midway cross-sections.)

Code	Size Class	Size Range (mm)	Description
RS	Bedrock (Smooth)	>4000	Smooth surface rock bigger than a car
RR	Bedrock (Rough)	>4000	Rough surface rock bigger than a car
HP	Hardpan	>4000	Firm, consolidated fine substrate
LB	Boulders (large)	>1000 to 4000	Yard/meter stick to car size
SB	Boulders (small)	>250 to 1000	Basketball to yard/meter stick size
СВ	Cobbles	>64 to 250	Tennis ball to basketball size
GC	Gravel (Coarse)	>16 to 64	Marble to tennis ball size
GF	Gravel (Fine)	> 2 to 16	Ladybug to marble size
SA	Sand	>0.06 to 2	Smaller than ladybug size - gritty between fingers
FN	Fines	≤0.06	Silt Clay Muck (not gritty between fingers)
WD	Wood	Regardless of Size	Wood & other organic particles
RC	Concrete	Regardless of size	Record size class in comment field
ОТ	Other	Regardless of Size	Metal, tires, car bodies etc. (describe in comments)

5. Evaluate substrate embeddedness as follows at each transects. For particles larger than sand, examine the surface for stains, markings, and algae. Estimate the average % embeddedness of particles in the 10 cm circle around the measuring rod. Record this value on the field data form. For sand and smaller particles, you will not be able to pick up an individual particle, but a "pinch" of fine particles between your fingers. Determine and record the dominant size of particles in the "pinch." By definition, sand and fines

are embedded 100%; bedrock and hardpan are embedded 0%.

6. Move to the next location on the transect, and repeat Steps 4 - 6 at each location. Repeat Steps 1 - 6 at each transect, including any additional side channel transects established if islands are present.

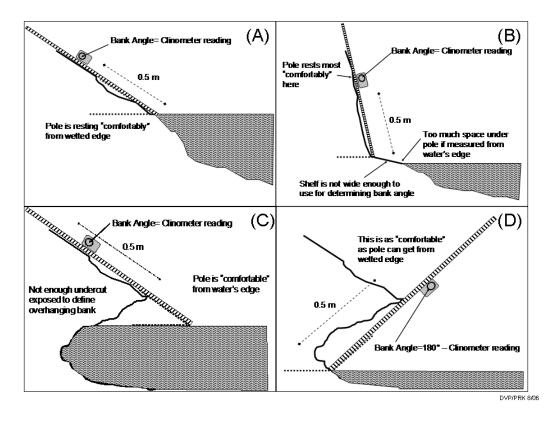
record substrate size and wetted width data on the thalweg profile side of the field form. To minimize bias in selecting a substrate particle for size classification, it is important to concentrate on correct placement of the measuring stick along the cross-section, and to select the particle right at the bottom of the stick (not, for example, a more noticeable large particle that is just to the side of the stick). Classify the particle into one of the size classes listed on the field data form (Figure 6.2-7) based on the middle dimension of its length, width, and depth. This *median dimension* determines the sieve size through which the particle can pass. When you record the size class as *Other*, assign an *Fn* flag on the field data form and describe the substrate type in the comments section of the field form, as shown in Figure 6.2-7.

At substrate sampling locations on the 11 regular transects (*A-K*), examine particles larger than sand for surface stains, markings, and algal coatings to estimate embeddedness of all particles in the 10 cm diameter circle around the substrate sampling point. Embeddedness is the fraction of a particle's volume that is surrounded by (embedded in) sand or finer sediments on the stream bottom. By definition, record the embeddedness of sand and fines (silt, clay, and muck) as *100 percent*, and record the embeddedness of hardpan and bedrock as *0 percent*.

6.2.5.3 Bank Characteristics

The procedure for obtaining bank and channel dimension measurements is presented in Table 6.2-8. Data are recorded in the *BANK MEASUREMENTS* section of the Channel/Riparian Cross-section Form as shown in Figure 6.2-7. Bank angle and bank undercut distance are determined on the left and right banks at each cross-section transect. Figure 6.2-8 illustrates how bank angle is determined for several different situations. The scale at which bank angle is characterized is approximately 0.5 m. A short (approx. 1-m long) pole is used to determine bank angle. The angle is determined based on the pole resting on the ground for about 0.5 m. Other features include the wetted width of the channel (as determined in Section 6.2.5.2), the width of exposed mid-channel bars of gravel or sand, estimated incision height, and the estimated height and width of the channel at bankfull stage as described in Table 6-8. *Bankfull height* and *incised height* are both measured relative to the present water surface (i.e. the level of the wetted edge of the stream). This is done by placing the base of the small measuring rod at the bankfull elevation and sighting back to the survey rod placed at the water's edge using the clinometer as a level (i.e., positioned so the slope reading is 0%.). The height of the clinometer above the base of the smaller rod is subtracted from the elevation sighted on the surveyor's rod.

		vergreen	Elan	1 101	-			G		_					- 00	Flag									F.2		
X-tra Side Channel		E = Broadiaaf Eve M = Mixed	ä	VIBO UIRIN) C E M N	O 2 3 4	(D 2 3 4	C E	1 2 3	1 2 3 4	(>1234	123	1 @ 3 4	= Within 10 m B = On	Right Bank	OP C B	Ø P C B	● P C B	0 @ C B	0 🖗 c в	ФРСВ	OP CB	OP C B	0 P 🕲 B	OP C B	Ф с в
LL.	tt (0%)	2 = Moderate (10-40%) 3 = Heavy (40-75%) 4 = Very (40-75%)	Terrer Annal	(hgh)	@ z	4 0		N D		4	Ē	4	°	4 0	P=>10 m C=		B 0	в (8	8	8	B 0	B (0	-	9	в	8
J OK O	0 = Abser	2 = Mode 3 = Heavy	June Horl	Canopy (>5 m high	C E M	023	O 2 3	D C E M N		1 3 3	Ground Cover (<0.5	1 2 3	1 2 3	1 ② 3	0 = Not Present P	Left Bank	OP C	P C	P C	0 C)P C	O L C	P C	P C	P C	P C	Q b c
H OI O	VISITAL DIDADIAN	ESTIMATES	RIPARIAN	VEGETATION COVER	Woody Vegetation Type	BIG Trees (Trunk 0 >0.3 m DBH) 0	SMALL Trees (Trunk 0 <0.3 m DBH) 0	Woodv Vegetation Type	-	Non-Woody Herbs, 0 Grasses, & Forbs		& Saplings 0	Non-Woody Herbs, 0 Grasses and Forbs	Barren, Bare Dirt 0 or Duff			Wall/Dike/Revetment /Riprap/Dam	Buildings	Cleared Lot	Road/Railroad 0	Pipes (Inlet/Outlet)	Landfill/Trash 6	Park/Lawn	Row Crops	ge/Hay Field 0	Logging Operations	Mining Activity 6
T: OG O	VISIN	ESI	RIPA	VEGETATI	Woody Veg	BIG	SMALL	Woody Vea	Woo	Non-W Grass		M	Non-W Grasse	Barro	HUMAN	INFLU	Wall/Dike		Pavement/Cleared	Ro	Pipes (2			Pasture/Range/Hay Field	Logging	Mir
TRANSECT:	(0%) (<10%)	(10-40%) (40-75%) (>75%)	Flag		4	4	4	4	4	4	4	4						6	-				F1, F2, ment				
0.8			(circle one) Cover in Channel	0 2 3 ·	1 2 3	023	0 2 3	1 2 3	1 2 3	Q 2 3 4	1 2 3 4	1 2 3 4			MENTS			Flag	12	14	4		pect sample; flags in com				1 al Capito
2 0		111	Cove		0	•	•	0	0	0	0	0			ASURE		0-17Max	CanR		Left	Right		U = Sus plain all				
101	LIGHT	COVER/	OTHER	Filamentous Algae	Macrophytes	Woody Debris >0.3 m (BIG)	Brush/Woody Debris <0.3 m (SMALL)	Live Trees or Roots	Overhanging Veg. =<1 m of Surface	Undercut Banks	Boulders	Artificial Structures			CANOPY COVER MEASUREMENTS		DENSIOMETER (0-17Max)	Liag	5	_	R		Flag codes: K = Sample not collected; U = Suspect sample; F1, F2, etc. = flag assigned by field crew. Explain all flags in comment		te	2	AT CTAEAM
0.7			_	u.			Bru	T				R I		m	NOPY		B	1	00	10	4		= Sampli		Commonte		
DATE:	MATION	ad. 1% Flag	0	0	O FI	0	60	Embed. (%)		ck)		100	100		CA			CenUp		CenL	CenDwn		g codes: K . = flag as:	sections.			A C CPUICD
ī	NFOR	s Embed. 0-100%	100	100		100	9	-		sterstick to car) ketball to meterstick)	all) s ball)	102				t	_			_	_		Fla	sec		1	KC
000	LIONALI	Size Class Code	FN	SA	5	FN	GF		ar)	Meterstick to car) lasketball to mete	I to Basketball) ble to Tennis ball)	to marble) Ladvbud si	Substrate)		IS		Flag										TRACKS
FW08 X X	OSS-SECI	Depth XXX cm	01	15	17	14	0	SS CODES	arger than a c	to 4000 mm) - (E	64 mm) - (Mart	im) - (Ladybug (Grittv - up to	ot Gritty) solidated Fine	t below)	UREMEN	Undercut		0.3	0	5.5	0.5	2.2	0.3	6.0			CATTLE
SITE ID: FI	SUBSTRATE CROSS-SECTIONAL INFORMATION	Dist LB XX.XX m	0.00	1.38	2.75	4.13	5.50	SUBSTRATE SIZE CLASS CODES	RR = Bodrock (Rough) - (Larger than a car) RC = Concrete/Asthalt	XB = Large Boulder (1000 to 4000 mm) - (Meterstick to car) SB = Small Boulder (250 to 1000 mm) - (Basketball to meter	(64 to 250 mn Gravel (16 to	ravel (2 to 16 m .06 to 2 mm) -	ay / Muck - (No n - (Firm, Cont	- (Any Size) Write commen	BANK MEASUREMENTS	Bank Angle	0 - 360	40	60	Wetted Width XXX.X m	Bar Width XX.X m	Bankfull Width XXX.X m	Bankfull Height XX.X m	Incised Height XX.X m	Flac	+	
=	IBST		Left	LCtr		RCtr	Right	STRA	= Bedroo	= Large I	= Cobble	= Fine Gr	= Silt / Cl = Hardpa	= Wood	BA	i		Left	Right	etted W	Bar V	kfull W	nkfull H	cised H	-	-	fisio


Figure 6.2-7. Channel/Riparian Cross-section Form.

.

Table 6.2-8. Procedure for measuring bank characteristics

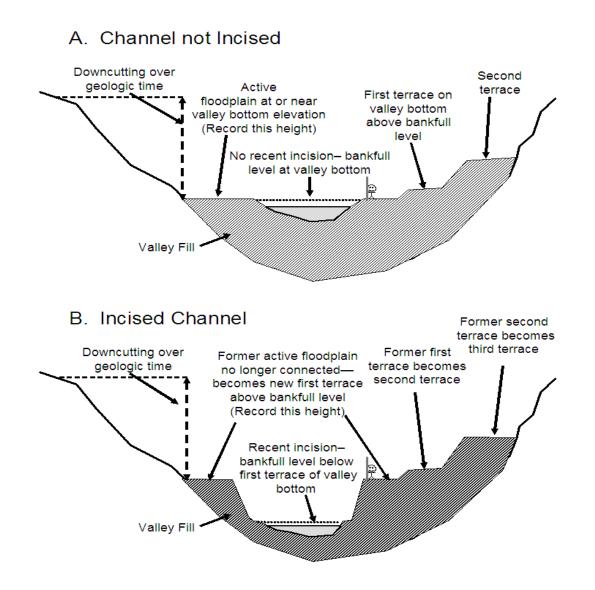
- 1. To measure *bank angle*, lay a meter ruler or a short (approx. 1-m long) rod down against the left bank (determined as you face downstream), with one end at the water's edge. At least 0.5 m of the ruler or rod should be *resting comfortably* on the ground to determine bank angle. Lay the clinometer on the rod, and read the bank angle in degrees from the external scale on the clinometer. Record the angle in the field for the left bank in the *BANK MEASUREMENT* section of the Channel/Riparian Cross-section Form.
 - A *vertical bank* is 90°, *overhanging banks* have angles >90° approaching 180°, and more gradually sloped banks have angles <90°. To measure bank angles >90°, turn the clinometer (which only reads 0 to 90°) over and subtract the angle reading from 180°.
 - If there is a large boulder or log present at the transect, measure bank angle at a nearby point where conditions are more representative.
- 2. If the bank is *undercut*, measure the horizontal distance of the undercutting to the nearest 0.01 m. The undercut distance is the distance from the water's edge out to the point where a vertical plumb line from the bank would hit the water's surface. Record the distance on the field data form. Measure submerged undercuts by thrusting the rod into the undercut and reading the length of the rod that is hidden by the undercutting.
- 3. Repeat Steps 1 and 2 on the right bank.
- 4. Hold the surveyor's rod vertical, with its base planted at the water's edge. Examine both banks, then determine the channel *incision* as the *height up from the water surface to elevation of the first terrace of the valley floodplain* (Note this is at or above the bankfull channel height). Whenever possible, use the clinometer as a level (positioned so it reads 0% slope) to measure this height by transferring (backsighting) it onto the surveyor's rod. Record this value in the *INCISED HEIGHT* field of the bank measurement section on the field data form.
- 5. While still holding the surveyor's rod as a guide, and sighting with the clinometer as a level, examine both banks to measure and record the *height of bankfull flow above the present water level*. Look for evidence on one or both banks such as:
 - An obvious slope break that differentiates the channel from a relatively flat floodplain terrace higher than the channel.
 - A transition from exposed stream sediments to terrestrial vegetation.
 - Moss growth on rocks along the banks.
 - Presence of drift material caught on overhanging vegetation.
 - A transition from flood- and scour-tolerant vegetation to that which is relatively intolerant of these conditions.
- 6. Record the *wetted width* value determined when locating substrate sampling points in the *WETTED WIDTH* field in the bank measurement section of the field data form. Also determine the *bankfull channel width* and the *width* of *exposed mid-channel bars* (if present). Record these values in the *BANK MEASUREMENT* section of the field data form.
- 7. Repeat Steps 1 through 6 at each cross-section transect, (including any additional side channel transects established when islands are present). Record data for each transect on a separate field data form.

Bankfull flows are large enough to erode the stream bottom and banks, but frequent enough (every 1 to 2 years) to not allow substantial growth of upland terrestrial vegetation. Consequently, in many regions, it is these flows that have determined the width and depth of the channel. Estimates of the bankfull dimensions of stream channels are extremely important in EMAP surveys. They are used to calculate shear stress and bed stability (see Kaufmann et al., 1999). Unfortunately, we have to depend upon evidence visible during the low-flow sampling season. If available, consult published rating curves relating expected bankfull channel dimensions to stream drainage area within the region of interest. Graphs of these rating curves can help you get a rough idea of where to look for field evidence to determine the level of bankfull flows. Curves such as these are available from the USGS for streams in most regions of the U.S. (e.g., Dunne and Leopold 1978; Harrelson et al. 1994, Leopold 1994). To use them, you need to know the contributing drainage area to your sample site. Interpret the expected bankfull levels from these curves as a height above the streambed in a riffle, but remember that your field measurement will be a height above the present water surface of the stream. Useful resources to aid your determination of bankfull flow levels in streams in the United States are video presentations produced by the USDA Forest Service for western streams (USDA Forest Service 1995) and eastern streams (USDA Forest Service 2002).

Figure 6.2-8. Determining bank angle under different types of bank conditions. (A) typical, (B) incised channel, (C) undercut bank, and (D) overhanging bank.

After consulting rating curves that show where to expect bankfull levels in a given size of stream, estimate the bankfull flow level by looking at the following indicators:

- First look at the stream and its valley to determine the active floodplain. This is a
 depositional surface that frequently is flooded and experiences sediment deposition
 under the current climate and hydrological regime.
- Then look specifically for:
- An obvious break in the slope of the banks.
- A change from water-loving and scour-tolerant vegetation to more drought-tolerant vegetation.
- A change from well-sorted stream sediments to unsorted soil materials.


In the absence of clear bankfull indications, consider the previous season's flooding as the best evidence available (note: you could be wrong if very large floods or prolonged droughts have occurred in recent years.). Look for:

- Drift debris ("sticky wickets" left by the previous seasons flooding).
- The level where deciduous leaf-fall is absent on the ground (carried away by previous winter flooding).
- Unvegetated sand, gravel or mud deposits from previous year's flooding.

In years that have experienced large floods, drift material and other recent high flow markers may be much higher than other bankfull indicators. In such cases, base your determination on less-transient indicators such as channel form, perennial vegetation, and depositional features. In these cases, flag your data entry and also record the height of drift material in the comments section of the field data form.

We use the vertical distance (height) from the observed water surface up to the level of the first major valley depositional surface (Figure 6.2-9) as a measure of the degree of *incision* or *downcutting* of the stream below the general level of its valley. This value is recorded in the *INCISED HEIGHT* field. It may not be evident at the time of sampling whether the channel is downcutting, stable, or aggrading (raising its bed by depositing sediment). However, by recording incision heights measured in this way and monitoring them over time, we will be able to tell if streams are incising or aggrading.

If the channel is not greatly incised, bankfull channel height and incision height will be the same (i.e., the first valley depositional surface is the active floodplain). However, if the channel is incised greatly, the bankfull level will be below the level of the first terrace of the valley floodplain, making bankfull channel height less than incision height (Figure 6.2-10). *Bankfull height is never greater than incision height.* You may need to look for evidence of recent flows (within about one year) to distinguish bankfull and incision heights. In cases where the channel is cutting a valley sideslope and has oversteepened and destabilized that slope, the bare "cutbank" against the steep hillside at the edge of the valley is not necessarily an indication of recent incision. In such a case, the opposite bank may be lower, with a more obvious terrace above bankfull height; choose that bank for your measurement of incised height. Examine both banks to more accurately determine incision height and bankfull height. Remember that incision height is measured as *the vertical distance to the first major depositional surface above bankfull* (whether or not it is an active floodplain or a terrace. If terrace heights differ on left and right banks (both are above bankfull), choose the lower of the two terraces. In many cases your sample reach may be in a "V" shaped valley or gorge formed over eons, and the slope of the channel banks simply extends uphill indefinitely, not reaching a terrace before reaching the top of a ridge (Figure 6.2-10). In such cases, record incision height values equal to bankfull values and make appropriate comment that no terrace is evident. Similarly, when the stream has extremely incised into an ancient terrace, (e.g., the Colorado River in the Grand Canyon), you may crudely estimate the terrace height if it is the first one above bankfull level. If you cannot estimate the terrace height, make appropriate comments describing the situation.

Figure 6.2-9. Schematic showing relationship between bankfull channel and incision. (A) not recently incised, and (B) recently incised into valley bottom. Note level of bankfull stage relative to elevation of first terrace (abandoned floodplain)on valley bottom. (Stick figure included for scale).

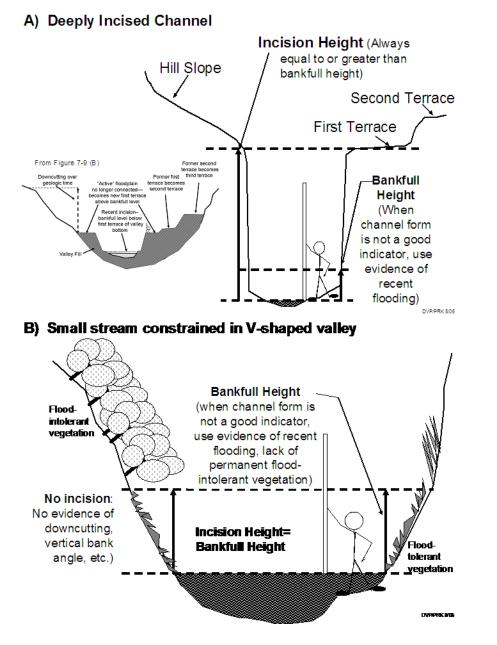
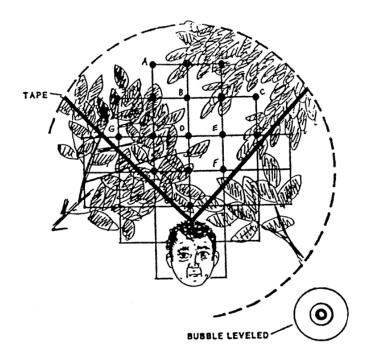



Figure 6.2-10. Determining bankfull and incision heights for (A) deeply incised channels, and (B) streams in deep V-shaped valleys. (Stick figure included for scale).

6.2.5.4 Canopy Cover Measurements

Canopy cover over the stream is determined at each of the 11 cross-section transects. A spherical densiometer (model *A*- **convex type**) is used (Lemmon 1957). Mark the densiometer with a permanent marker or tape exactly as shown in Figure 6.2-11 to limit the number of square grid intersections read to 17. Densiometer readings can range from 0 (no canopy cover) to 17 (maximum canopy cover). Six measurements are obtained at each cross-section transect (four measurements in each of four directions at mid-channel and one at each bank).

Figure 6.2-11. Schematic of modified convex spherical canopy densiometer. From Mulvey et al. (1992). Note proper positioning with the bubble leveled and face reflected at the apex of the "V". In this example, 10 of the 17 intersections show canopy cover, giving a densiometer reading of *10*.

The procedure for obtaining canopy cover data is presented in Table 6.2-9. Hold the densiometer level (using the bubble level) 0.3 m above the water surface with your face reflected just below the apex of the taped "V", as shown in Figure 6.2-11. Concentrate on the 17 points of grid intersection on the densiometer that lie within the taped "V". If the reflection of a tree or high branch or leaf overlies any of the intersection points, that particular intersection is counted as having cover. For each of the six measurement points, record the number of intersection points (maximum=17) that have vegetation covering them in the *CANOPY COVER MEASUREMENT* section of the Channel/Riparian Cross-section Form as shown in Figure 6.2-7.

Table 6.2-9. Procedure for canopy cover measurements

1. At each cross-section transect, stand in the stream at mid-channel and face upstream.

- 2. Hold the densiometer 0.3 m (1 ft) above the surface of the stream. Level the densiometer using the bubble level. Move the densiometer in front of you so your face is just below the apex of the taped "V".
- 3. Count the number of grid intersection points within the "V" that are covered by either a tree, a leaf, or a high branch. Record the value (0 to 17) in the *CENUP* field of the canopy cover measurement section of the Channel/Riparian Cross-section and Thalweg Profile Form.
- 4. Face toward the left bank (left as you face downstream). Repeat Steps 2 and 3, recording the value in the *CENL* field of the field data form.
- 5. Repeat Steps 2 and 3 facing downstream, and again while facing the right bank (right as you look downstream). Record the values in the *CENDWN* and *CENR* fields of the field data form.
- 6. Move to the water's edge (either the left or right bank). Repeat Steps 2 and 3 again, this time facing the bank. Record the value in the *LFT* or *RGT* fields of the field data form. Move to the opposite bank and repeat.
- 7. Repeat Steps 1 through 6 at each cross-section transect (including any additional side channel transects established when islands are present). Record data for each transect on a separate field data form.

6.2.5.5 Riparian Vegetation Structure

The previous section (6.2.5.4) described methods for quantifying the cover of canopy over the stream channel. The following visual estimation procedures supplement those measurements with a semi-quantitative evaluation of the type and amount of various types of riparian vegetation. Additional measures within the riparian zone (legacy trees and invasive riparian plants) are described in Section 6.2.5.9.

Riparian vegetation observations apply to the riparian area upstream 5 meters and downstream 5 meters from each of the 11 cross-section transects (refer to Figure 6.2-1). They include the visible area from the stream back a distance of 10m (~30 ft) shoreward from both the left and right banks, creating a 10 m × 10 m riparian plot on each side of the stream (Figure 6.2-12). The riparian plot dimensions are estimated, not measured. On steeply sloping channel margins, the 10 m × 10 m plot boundaries are defined as if they were projected down from an aerial view.

Table 6.2-10 presents the procedure for characterizing riparian vegetation structure and composition. Figure 6.2-7 illustrates how measurement data are recorded on the Channel/Riparian Cross-section Form. Conceptually divide the riparian vegetation into 3 layers: the *Canopy* layer (> 5 m high), the *Understory* layer (0.5 to 5 m high), and the *Ground cover* layer (< 0.5 m high). Note that several vegetation types (e.g., grasses or woody shrubs) can potentially occur in more than one layer. Similarly note that some things other than vegetation are possible entries for the *Ground cover* layer (e.g., barren ground).

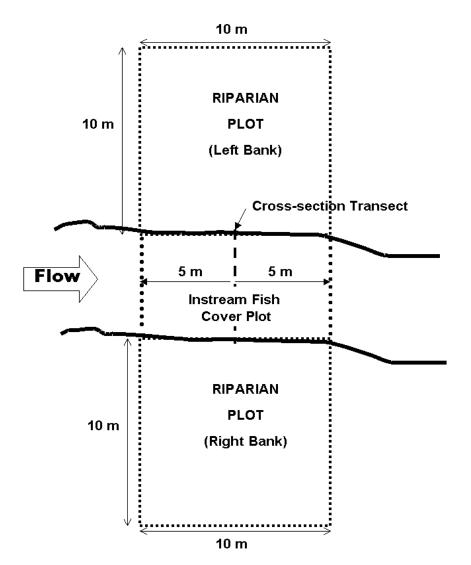


Figure 6.2-12. Riparian zone and instream fish cover plots for a stream cross-section transect.

Table 6.2-10. Procedure for characterizing riparian vegetation structure

- 1. Standing in mid-channel at a cross-section transect, estimate a 5 m distance upstream and downstream (10 m total length).
- 2. Facing the left bank (left as you face downstream), estimate a distance of 10 m back into the riparian vegetation.

On steeply-sloping channel margins, estimate the distance into the riparian zone as if it were projected down from an aerial view.

- 3. Within this 10 m × 10 m area, conceptually divide the riparian vegetation into 3 layers: a *Canopy Layer* (>5 m high), an *Understory* (0.5 to 5 m high), and a *Ground Cover* layer (<0.5 m high).
- 4. Within this 10 m × 10 m area, determine the dominant vegetation type for the CANOPY LAYER (vegetation >5 m high) as either Deciduous, Coniferous, broadleaf Evergreen, Mixed, or None. Consider the layer Mixed if more than 10% of the areal coverage is made up of the alternate vegetation type. Indicate the appropriate vegetation type in the VISUAL RIPARIAN ESTIMATES section of the Channel/Riparian Cross-section Form.
- 5. Determine separately the areal cover class of large trees (≥0.3 m [1 ft] diameter at breast height [dbh]) and small trees (<0.3 m dbh) within the canopy layer. Estimate areal cover as the amount of shadow that would be cast by a particular layer alone if the sun were directly overhead. Record the appropriate cover class on the field data form (*0=absent*: zero cover, *1=sparse*: <10%, *2=moderate*: 10-40%, *3=heavy*: 40-75%, or *4=very heavy*: >75%).
- 6. Look at the UNDERSTORY layer (vegetation between 0.5 and 5 m high). Determine the dominant **woody** vegetation type for the understory layer as described in Step 4 for the canopy layer. If there is no woody vegetation in the understory layer, record the type as **N**one.
- 7. Determine the areal cover class for woody shrubs and saplings separately from non-woody vegetation within the understory, as described in Step 5 for the canopy layer.
- 8. Look at the *GROUND COVER* layer (vegetation <0.5 m high). Determine the areal cover class for woody shrubs and seedlings, non-woody vegetation, and the amount of bare ground present as described in Step 5 for large canopy trees.
- 9. Repeat Steps 1 through 8 for the right bank.
- 10. Repeat Steps 1 through 9 for all cross-section transects (including any additional side channel transects established when islands are present). Use a separate field data form for each transect.

Before estimating the areal coverage of the vegetation layers, record the type of *woody* vegetation (*broadleaf* **D***eciduous*, **C***oniferous*, *broadleaf* **E***vergreen*, **M***ixed*, or **N***one*) in each of the two taller layers (Canopy and Understory). Consider the layer *Mixed* if more than 10% of the areal coverage is made up of the alternate vegetation type. If there is no woody vegetation in the understory layer, record the type as None.

Estimate the areal cover separately in each of the three vegetation layers. Note that the areal cover can be thought of as the amount of shadow cast by a particular layer alone when the sun is directly overhead. *The maximum cover in each layer is 100%, so the sum of the areal covers for the combined three layers could add up to 300%.* The four areal cover classes are *Absent, Sparse* (<10%), *Moderate* (10 to 40%), *Heavy* (40 to 75%), and *Very Heavy* (>75%). These cover classes and their corresponding codes are shown on the field data form (Figure 6.2-7). When rating vegetation cover types for a single vegetation layer, mixtures of two or more subdominant classes might all be given *Sparse* (*1*), *Moderate* (*2*), or *Heavy* (*3*) ratings. One *Very Heavy* cover class with no clear subdominant class might be rated *4* with all the remaining classes rated as either *Moderate* (*2*), *Sparse* (*1*) or *Absent* (*0*). Note that within a given vegetation layer, two cover types with 40-75% cover can both be rated *3*, but no more than one cover type could receive a rating of *4*.

6.2.5.6 Instream Fish Cover, Algae, and Aquatic Macrophytes

The procedure to estimate the types and amounts of instream fish cover is outlined in Table 6.2-11. Data are recorded on the Channel/Riparian Cross-section Form as shown in Figure 6.2-7. Estimate the areal cover of all of the fish cover and other listed features that are in the water and on the banks 5 m upstream and downstream of the cross-section (see Figure 6.2-12). The areal cover classes of fish concealment and other features are the same as those described for riparian vegetation (Section 6.2.5.5).

The entry *FILAMENTOUS ALGAE* refers to long streaming algae that often occur in slow moving waters. *AQUATIC MACROPHYTES* are water-loving plants, including mosses, in the stream that could provide cover for fish or macroinvertebrates. If the stream channel contains live wetland grasses, include these as aquatic macrophytes. *WOODY DEBRIS* are the larger pieces of wood that can influence cover and stream morphology (i.e., those pieces that would be included in the large woody debris tally [Section 6.2.4]). *BRUSH/WOODY DEBRIS* refers to smaller wood pieces that primarily affect cover but not morphology. *LIVE TREES OR ROOTS* are living trees that are within the channel – estimate the areal cover provided by the parts of these trees or roots that are inundated. *OVERHANGING VEGETATION* includes tree branches, brush, twigs, or other small debris that is not in the water but is close to the stream (within 1 m of the surface) and provides potential cover. *BOULDERS* are typically basketball- to car-sized particles. *ARTIFICIAL STRUCTURES* include those designed for fish habitat enhancement, as well as in-channel structures that have been discarded (e.g., concrete, asphalt, cars, or tires) or deliberately placed for diversion, impoundment, channel stabilization, or other purposes.

Table 6.2-11. Procedure for estimating instream fish cover

- 1. Standing mid-channel at a cross-section transect, estimate a 5m distance upstream and downstream (10 m total length).
- 2. Examine the water and both banks within the 10-m segment of stream for the following features and types of fish cover: *filamentous algae, aquatic macrophytes, large woody debris, brush and small woody debris, in-channel live trees or roots, overhanging vegetation, undercut banks, boulders, and artificial structures.*
- 3. For each cover type, estimate the areal cover. Record the appropriate cover class in the *FISH COVER/OTHER* section of the Channel/Riparian Cross-section Form:

0=absent: zero cover, 1=sparse: <10%, 2=moderate: 10-40%, 3=heavy: >40-75%, or 4=very heavy: >75%).

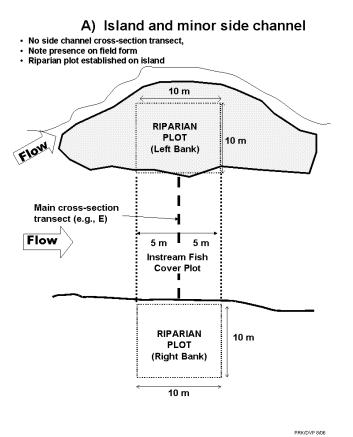
4. Repeat Steps 1 through 3 at each cross-section transect (including any additional side channel transects established when islands are present). Record data from each transect on a separate field data form.

6.2.5.7 Human Influence

For the left and right banks at each of the 11 detailed Channel and Riparian Cross-sections, evaluate the presence/absence and the proximity of 11 categories of human influences with the procedure outlined in Table 6.2-12. Relate your observations and proximity evaluations to the stream and riparian area within 5 m upstream and 5 m downstream from the station (Figure 6.2-12). Four proximity classes are used: In the stream or on the bank within 5 m upstream or downstream of the cross-section transect, present within the 10 m \times 10 m

riparian plot but not in the stream or on the bank, present outside of the riparian plot, and absent. Record data on the Channel/Riparian Cross-section Form as shown in Figure 6.2-7. If a disturbance is within more than one proximity class, record the one that is closest to the stream (e.g., *C* takes precedence over *P*).

A particular influence may be observed outside of more than one riparian observation plot (e.g., at both transects D and E). Record it as present at every transect where you can see it without having to sight through another transect or its 10 m × 10 m riparian plot.


Table 6.2-12. Procedure for estimating human influence

- 1. Standing mid-channel at a cross-section transect, look toward the left bank (left when facing downstream), and estimate a 5 m distance upstream and downstream (10 m total length). Also, estimate a distance of 10 m back into the riparian zone to define a riparian plot area.
- Examine the channel, bank and riparian plot area adjacent to the defined stream segment for the following human influences: (1) walls, dikes, revetments, riprap, and dams; (2) buildings; (3) pavement/cleared lots (e.g., paved, gravelled, dirt parking lot, foundation); (4) roads or railroads, (5) inlet or outlet pipes; (6) landfills or trash (e.g., cans, bottles, trash heaps); (7) parks or maintained lawns; (8) row crops; (9) pastures, rangeland, hay fields, or evidence of livestock; (10) logging; and (11) mining (including gravel mining).
- 3. For each type of influence, determine if it is present and what its proximity is to the stream and riparian plot area. Consider human disturbance items as present if you can see them from the cross-section transect. Do not include them if you have to sight through another transect or its 10 m ×10 m riparian plot.
- 4. For each type of influence, record the appropriate proximity class in the *HUMAN INFLUENCE* part of the *VISUAL RIPARIAN ESTIMATES* section of the Channel/Riparian Cross-section Form. Proximity classes are:
 - *B*(*Bank*) Present within the defined 10 m stream segment and located in the stream or on the stream bank.
 - C(Close) Present within the 10 × 10 m riparian plot area, but away from the bank.
 - *P*(*Present*) Present, but outside the riparian plot area.
 - *O*(*Absent*) Not present within or adjacent to the10 m stream segment or the riparian plot area at the transect
- 5. Repeat Steps 1 through 4 for the right bank.
- 6. Repeat Steps 1 through 5 for each cross-section transect, (including any additional side channel transects established when islands are present). Record data for each transect on a separate field form.

6.2.5.8 Cross-section Transects on Side Channels

If the wetted channel is split by an island, and the estimated flow in the side channel is less than or equal to 15% of the total flow, the bank and riparian measurements are made at each side of the main channel (the minor side channel is ignored other than to note its presence on the thalweg profile form), so one riparian plot is established on the island as shown in Figure 6.2-13. If an island is present that creates a major side channel containing **more than 15%** of the total flow (Section 6.2.4.1), an additional cross-section transect is established for the side channel as shown in Figure 6.2-13. Separate substrate, bank and riparian measurements are made for side channel transects. Data from the additional side channel transect are recorded on a separate Channel/Riparian Cross-section Form as shown in Figure 6.2-14. Riparian plots

established on the island for each transect may overlap (and be < 10 m shoreward) if the island is less than 10 m wide at the transect.

PRR/DVP 0/06

Figure 6.2-13. Riparian and instream fish cover plots for a stream with minor and major side channels.

F <u>X</u> -tra Side Channel		1 = sparse (*10'%) U = Contretours 2 = Moderate (10-40%) E = Broadlast Evergreen 3 = Heavy (40-75%) M = Mixed 4 = Voron Heaver (*757%) M = Nore-	ia		N OCEMN	4 0 1 2 3 4	4 (1 2 3 4	to 5 m high) N D C F M N	0 0 0 0	4 0 1 2 3	0.5 m high)	4 0 0 2 3 4	4 0 0 2 3 4	4 0 ① 2 3 4	= >10 m C = Within 10 m B = On Bank	Right Ban		в 0 Ø с в	в ОРСВ	в 0 Ф с в	в Фрсв	в Øрсв	B O P C B	B @ P C B	B 0 P C B	ВСРСВ	в 🙆 Р С В
O DO CO			1 off Bank	Canopy (>5 m high	O C E M	0 ① 2 3	0 1 3 3	O C F M N	ŝ	1 2 1	/er	0 (1) 2 3	0 0 2 3	01 2 3	0 = Not Present P	eft Bank	o e	D B	O P C	OP C	O P C	0 - 0	O P C	OP C	O P C	OP C 1	OP C
T: OG OB OC	INVIOLOGICA INTERNA	ESTIMATES	RIPARIAN	VEGETATION COVER	Woody Vegetation Type	BIG Trees (Trunk >0.3 m DBH)	SMALL Trees (Trunk <0.3 m DBH)	Woody Vegetation Type	Woody Shrubs &	Non-Woody Herbs,	OLGOBER, G LOUID	Woody Shrubs & Saplings	Non-Woody Herbs, Grasses and Forbs	Barren, Bare Dirt or Duff	HUMAN	Wall/Dite/Pevetment	/Riprap/Dam	Buildings	Pavement/Cleared Lot	Road/Railroad	Pipes (Inlet/Outlet)	Landfill/Trash	Park/Lawn	Row Crops	Pasture/Range/Hay Field	Logging Operations	Mining Activity
TRANSECT	(0%) (<10%)	(10-40%) (40-75%) (>75%)	one) Flag	4	4	4	4	4	4	4	4	4					unin a	fair					le; F1, F2, mment				
800	0 = Absent 1 = Sparse	2	Cover in Channel	1 2 3	1 2 3	0 2 3	1 (2) 3	O 2 3	1 2 3	1 2 3	1 2 3	1 2 3			SEMENTS			F	٥	16	9		uspect samp all flags in co				
<u>ال</u> م	0 +			Algae (0)	hytes @	ebris (BIG) 0	ebris 0	toots 0	Veg. 0	ianks 0	Boulders	tures 0			MFASUE		שווו-ח	CenR		Left	Right		cted; U = Si /. Explain a				
1012	1012	COVER	OIHER	Filamentous Algae	Macrophytes	Woody Debris >0.3 m (BIG)	Brush/Woody Debris <0.3 m (SMALL)	Live Trees or Roots	Overhanging Veg. =<1 m of Surface	Undercut Banks	Bou	Artificial Structures			CANOPY COVER MEASUREMENTS		DENSIOMETER (U-1/Max)	\vdash	2	9	~		imple not colle od by field crev		Comments	211011	
DATE:	NATION	d. % Flag	0	0	0		0	Embed. (%)		()		100	100		CANO			CenUp		CenL	CenDwn		Flag codes: K = Sample not collected; U = Suspect sample; F1, F2, etc. = flag assigned by field crew. Explain all flags in comment	sections.	Com		
1	INFORM	s Embed. 0-100%	100	001	001	100	oal			to car) meterstic	sall) e hall)	lun -				F							Fla,	sec			
000	IONAL	Size Class Code	PN N	SA	SA	FN	F		ar)	Meterstick asketball t	to Basket	to marble)	Substrate)		5		Flag										
FW08 XX	DSS-SECT	Depth XXX cm	0	20	35	15	0	S CODES	arger than a c	4000 mm) - (1000 mm) - (B	4 mm/ - (Mart	n) - (Ladybug Grittv - un to	(Gritty)	below)	UREMENT	Undercut	Dist. (m)	0	9	2.0	0.0	3.5	0.3	0.9			
SITE ID: FV	SUBSTRATE CROSS-SECTIONAL INFORMATION	Dist LB XX.XX m	0.00	0.50	1.00	1.50	3.00	SUBSTRATE SIZE CLASS CODES	ock (Smooth) - (L ock (Rough) - (Li	XIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	le (64 to 250 mm) te Gravel (16 to 6	Sravel (2 to 16 mi (0.06 to 2 mm) - (olay / Muck - (Not an - (Firm, Cons	WD = Wood - (Any Size) OT = Other (Write comment below)	BANK MEASUREMENTS	Bank Angle			45	Wetted Width XXX.X m	Bar Width XX.X m	Bankfull Width XXX.X m	Bankfull Height XX.X m	Incised Height XX.X m	Flac	22	
-	BS		-	-	-	RCtr	Right	STRA	Bedro	Large	Coars	Fine C	Silt / C	- Wood	8	t.		Left	Right	tted V	Bar	kfull V	kfull	pesi			field

Figure 6.2-14. Channel/Riparian Cross-section Form for an additional major side channel transect.

6.2.5.9 Riparian "Legacy" Trees and Invasive Alien Species

Follow the procedures in Table 6.2-13 to locate the **largest** tree associated with each transect. The tree you choose may not truly be an old *legacy* tree – just choose the largest you see. We use these data to determine if there are true legacy trees somewhere within the support reach. Note that only one tree is identified for each transect between that transect and the next one upstream; at transect *K*, look upstream a distance of 4 channel widths. Record the type of tree, and, if possible, the taxonomic group (using the list provided in Table 6.2-13) on the left-hand column of the Riparian "Legacy" Trees and Invasive Alien Plants form (Figure 6.2-15). Estimate the height of the tree and the diameter at breast height (dbh), and mark the appropriate height and dbh classes on the form. Estimate and record the distance of the legacy tree from the wetted margin of the stream.

Search in the 10 m x 10 m riparian and littoral plots on both banks for the presence of any invasive alien species listed in the NRSA Invasive Species Guide provided to each field crew. Document the species observed on the Riparian "Legacy" Trees and Invasive Alien Plants form (Figure 5.2-8), answering the question of whether each of the target species is present in the plot. If you have a camera, document the species with a photograph. If you observe no alien taxa within the riparian and littoral plots, but can confidently identify them outside of the plots, include your observations in the comments portion of the form. If the river is too wide to effectively observe the far bank at a transect, record what you observe for the plot on the near bank, record a "U" flag, and explain in the comments section of the form.

Table 6.2-13. Procedure for identifying riparian legacy trees

Legacy Trees:

- Beginning at Transect A, look upstream and downstream as far as you can see confidently. Search both sides of the stream downstream to the next transect. Locate the largest tree visible within 100m (or as far as you can see, if less) from the wetted bank.
- Classify this tree as broadleaf deciduous, coniferous, or broadleaf evergreen (classify western larch as coniferous). Identify, if possible, the species or the taxonomic group of this tree from the list below.
 - 1. Acacia/Mesquite
 - 2. Alder/Birch
 - 3. Ash
 - 4. Cedar/Cypress/Sequoia
 - 5. Fir (including Douglas Fir, Hemlock)
 - 6. Juniper
 - 7. Maple/Boxelder
 - 8. Oak

- 10. Poplar/Cottonwood
- 11. Snag (Dead Tree of Any Species)
- 12. Spruce
- 13. Sycamore
- 14. Willow
- 15. Unknown, other Broadleaf Evergreen
- 16. Unknown or Other Conifer
- 17. Unknown or Other Deciduous

9. Pine

NOTE: If the largest tree is a dead "snag", enter "Snag" as the taxonomic group.

Estimate the height of the potential legacy tree, its diameter at breast height (dbh) and its

distance from the wetted margin of the stream. Enter this information on the left hand column of the Riparian "Legacy" Trees and Invasive Alien Plants field form.

Alien Invasive Plants:

Examine the 10m x 10m riparian and littoral plots on both banks for the presence of alien species. (Species lists will be provided)

Record the presence of any species listed within the plots on either the left or right bank on the Riparian "Legacy" Trees and Invasive Alien Species field form. If none of the species listed is present in the plots at a given transect, fill in the circle indicating "None" for this transect. Repeat for each remaining transect (B through K). At transect "K", look upstream a distance of 4 channel widths when locating the legacy tree.

6.2.6 Channel Constraint, Debris Torrents, Recent Floods, and Discharge

6.2.6.1 Channel Constraint

After completing the thalweg profile and riparian/channel cross-section measurements and observations, envision the stream at bankfull flow and evaluate the degree, extent and type of channel constraint, using the procedures presented in Table 6.2-14. Record data on the Channel Constraint Assessment Form (Figure 6.2-16). First, classify the stream reach channel pattern as predominantly a *single channel*, an *anastomosing channel*, or a *braided channel* (Figure 6.2-17):

- 1. Single channels may have occasional in-channel bars or islands with side channels, but feature a predominant single channel, or a dominant main channel with a subordinate side channel.
- 2. Anastomosing channels have relatively long major and minor channels (but no predominant channel) in a complex network, diverging and converging around many vegetated islands. Complex channel pattern remains even during major floods.
- 3. *Braided channels* also have multiple branching and rejoining channels, (but no predominant channel) *separated by unvegetated bars*. Channels are generally smaller, shorter, and more numerous, often with no obvious dominant channel. During major floods, a single continuous channel may develop

After classifying the channel pattern, determine whether the channel is constrained within a narrow valley, constrained by local features within a broad valley, unconstrained and free to move about within a broad floodplain, or free to move about, but within a relatively narrow valley floor. Then examine the channel to ascertain the bank and valley features that constrain the stream. Entry choices for the type of constraining features are bedrock, hillslopes, terraces/alluvial fans, and human land use (e.g., a road, a dike, landfill, rip-rap, etc.). Estimate the percent of the channel margin in contact with constraining features (for unconstrained channels, this is 0%). To aid in this estimate, you may wish to refer to the individual transect assessments of incision and constraint. Finally, estimate the "typical" bankfull channel width and estimate the average width of the valley floor either with a topographic map or visually. If you cannot directly estimate the valley width (e.g., it is further than you can see, or if your view is blocked by vegetation), record the distance you can see and mark the appropriate circle on the field form.

LARGEST Trees DBH visible (m)							
	1	FWOS XX000		DATE	0.7.10	0.210112008	
	T POTENTIAL	LEGACY TI	REE VISIBLE	LARGEST POTENTIAL LEGACY TREE VISIBLE FROM THIS STATION	ALIEN	ALIEN PLANT SPECIES PRESENT IN LEFT AND RIGHT RIPARIAN PLOTS, AND INSTREAM FISH COVER PLOT	LEFT AND RIGHT ISH COVER PLOT
	Height (m)	Dist. from wetted margin (m)	Type	Taxonomic Category		Check all that are present	sent .
0 0-0.1 0.75-2 • 13 0>2 0.3-75	75-2 • <5 2 0 5-15 0 15-30 0 >30	01	 Deciduous Coniferous Broadleaf Evergreen 	POPLAR / COTTON NOOD	NONE	O E Wtrmilf O W Hyacinth O G Reed O Hydrilla O Ylw Fitheart O Fiwr Rush O E Wtrchest O P Lstrife O Salt Ced	O G Reed O MF Rose O Fiwr Rush O Spurge O Salt Ced
0.0.0.1 0.75-2	75-2 () <5 2 () 5-15 () 5-15 () 5-30	15	O Deciduous O Caniferous O Evergreen	SWAG	NONE	O E Wtrmitf O W Hyacinth O G Reed O Hydrilla O Ylw Fitheart O Fiwr Rush O E Wtrchest I P Lstrife O Salt Ced	O G Reed O MF Rose O Fiwr Rush O Spurge O Salt Ced
0 0-0.1 0.75-2 0 1.3 0 >2 0 .3.75	75-2 0 <5 2 0 5-15 0 5-30 0 >30	2	 Deciduous Coniferous Broadleaf Evergreen 	OTHER (ELM)	None	O E Witmilf O W Hyacinth O G Rood O Hydrilia O Yiw Fitheart O Flwr Rush O E Wrtchest I P Lstrife O Sait Ced	O G Reed O MF Rose O Flwr Rush C Spurge O Salt Ced
INSTRU	INSTRUCTIONS			TAXONOMIC CATEGORIES		ALIEN SPECIES	ES
			Acacia/	Acacia/Mesouthe	E Wtrmilf	Eurasian water milfoil	Myriophyllum spicatum
Potential Legacy trees are defined as the largest tree within your search area, which is as far as you can see, but within maximum limits as follows: Wardeaha Streame: Confine search to no more than	defined as the k ch is as far as yt ows:	argest tree ou can see, bu o more then		Alder/Birch Ash Mapie/Boxeider	Hydrilla E Wtrchest W Hyacinth	Hydrilla European water chestnut Nater Hyacinth	Hydrilla verticillata Trapa natans Eichhornia crassipes
50 m from left and right bank and extending upstream to	and extending u	upstream to	Oak		Ylw Fitheart		Nymphoides peltata
next transect (for 'K' look upstream 4 channel widths) Non-wadeable Rivers', Confine search to no more than	stream 4 channe	l widths)		rupiar/cononwood Sycamore	G Bood	Purple loosestrife	Lythrum salicaria
100 m from left and right bank and extending both	k and extending	both			G Need	Eloworing Puch	Rutomic umballatue
upstream and downstream as far as you can see	s far as you can	see	Unknow	Unknown or Other Deciduous	Salt Ced	Salt Cedar	Tamarix spp.
confidently.			Cedar/C	Cedar/Cypress/Sequoia	MF Rose	Multi-flora rose	Rosa multiflora
Alien Plants: Confine search to riparian plots on left and	th to riparian plo	ts on left and	Fir (inclu Juniper	Fir (including Douglas fir and hemlock)	Spurge	Leafy Spurge	Euphorbia esula
t bank Wadeable Streams: 10 m x 10 m Non-wadeable Rivers: 10 m x 20 m	n x 10 m 0 m x 20 m		Pine Spruce Unknow	Pine Spruce Unknown or Other Conffer		COMMENTS	
Not all aliens are to be identified in all Manual and Plant Identification Guide.	fied in all states. on Guide.	states. See Field	Unknow	Unknown or Other Broadleaf Evergreen			
			Snag (D	Snag (Dead tree of any species)			

Figure 6.2-15. Riparian "Legacy" Tree and Invasive Alien Plants Form (Page 1)

Table 6.2-14. Procedures for assessing channel constraint

NOTE: These activities are conducted after completing the thalweg profile and littoral-riparian measurements and observations, and represent an evaluation of the entire stream reach.

CHANNEL CONSTRAINT: Determine the degree, extent, and type of channel constraint based on envisioning the stream at **bankfull flow**.

Classify the stream reach channel pattern as predominantly a **single** channel, an **anasto-mosing** channel, or a **braided** channel.

Single channels may have occasional in-channel bars or islands with side channels, but feature a predominant single channel, or a dominant main channel with a subordinate side channel.

Anastomosing channels have relatively long major and minor channels branching and rejoining in a complex network separated by vegetated islands, with no obvious dominant channel.

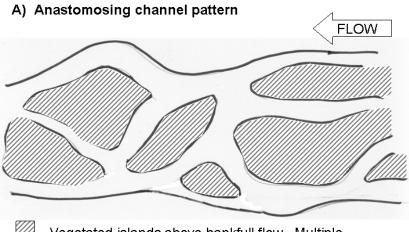
Braided channels also have multiple branching and rejoining channels, separated by unvegetated bars. Subchannels are generally small, short, and numerous, often with no obvious dominant channel.

After classifying the channel pattern, determine whether the channel is constrained within a narrow valley, constrained by local features within a broad valley, unconstrained and free to move about within a broad floodplain, or free to move about, but within a relatively narrow valley floor.

Then examine the channel to ascertain the bank and valley features that constrain the stream. Entry choices for the type of constraining features are bedrock, hillslopes, terraces/alluvial fans, and human land use (e.g., a road, a dike, landfill, rip-rap, etc.).

Based on your determinations from Steps 1 through 3, select and record one of the constraint classes shown on the Channel Constraint Form.

Estimate the percent of the channel margin in contact with constraining features (for unconstrained channels, this is 0%). Record this value on the Channel Constraint Form.


Finally, estimate the "typical" bankfull channel width, and visually estimate the average width of the valley floor. Record these values on the Channel Constraint Form.

NOTE: To aid in this estimate, you may wish to refer to the individual transect assessments of incision and constraint that were recorded on the Channel/Riparian Cross-Section Forms.

NOTE: If the valley is wider than you can directly estimate, record the distance you can see and mark the circle on the field form.

SITE FW08 XX000		DATE: 0 7 1 0	12008
	CHANNEL CONSTRAIN	ιт	
CHANNEL PATTERN (Fill in one)			
O Anastomosing (complex) channel -	Relatively long major and min	or channels branching	and rejoining)
 Braided channel - (Multiple short chan numerous mid-channel bars.) 			
CHANNEL CONSTRAINT(Fill in one)			
O Channel very constrained in V-shap new channel during flood)	ed valley (i.e. it is very unlike	ly to spread out over vall	ey or erode a
Channel is in Broad Valley but channel flows do not commonly spread over values	lley floor or into multiple chan	nels.)	- Sc Sc.
 Channel is in Narrow Valley but is no valley floor (< ~10 x bankfull width) 			
 Channel is Unconstrained in Broad spread out over flood plain, or easily cu 	Valley (i.e. during flood it can ut new channels by erosion)	fill off-channel areas and	d side channels,
CONSTRAINING FEATURES (Fill in one)			
O Bedrock (i.e. channel is a bedrock-dor	minated gorge)		
O Hillslope (i.e. channel constrained in r	narrow V-shaped valley)		
Ferrace (i.e. channel is constrained by	its own incision into river/stre	am gravel/soil deposits)	
O Human Bank Alterations (i.e. constra	ined by rip-rap, landfill, dike, r	road. etc.)	
O No constraining features			
Percent of channel length with margin	1.0.0.%>	Percent of Char	nnel Margin Examples
in contact with constraining feature:	(0-100%)	MATOTA	Most wand
Bankfull width:		100%	100%
Valley width (Visual Estimated Average):	.500 (m)	wash	A
Note: Be sure to include distances between both sid	les of valley border for valley width.	No.	1 AA
If you cannot see the valley borders, record distance you can see and mark this box.	d the	50%	50%
Comments			

Figure 6.2-16. Channel Constraint Form, showing data for channel constraint.

Vegetated islands above bankfull flow. Multiple channels remain during major flood events.

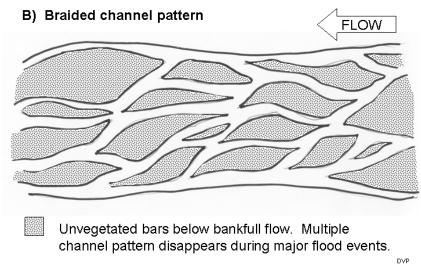


Figure 6.2-17. Types of multiple channel patterns.

6.2.6.2 Debris Torrents and Recent Major Floods

Debris torrents, or lahars, differ from conventional floods in that they are flood waves of higher magnitude and shorter duration, and their flow consists of a dense mixture of water and debris. Their high flows of dense material exert tremendous scouring forces on streambeds. For example, in the Pacific Northwest, flood waves from debris torrents can exceed 5 meters deep in small streams normally 3 m wide and 15 cm deep. These torrents move boulders in excess of 1 m diameter and logs >1 m diameter and >10 m long. In temperate regions, debris torrents occur primarily in steep drainages and are relatively infrequent, occurring typically less than once in several centuries. They are usually set into motion by the sudden release of large volumes of water upon the breaching of a natural or human-constructed impoundment, a process often initiated by mass hillslope failures (landslides) during high intensity rainfall or snowmelt. Debris torrents course downstream until the slope of the stream channel can no longer keep their viscous sediment suspension in motion (typically <3% for small streams); at this point, they "set up", depositing large amounts of sediment, boulders, logs, and whatever

else they were transporting. Upstream, the *torrent track* is severely scoured, often reduced in channel complexity and devoid of near-bank riparian vegetation. As with floods, the massive disruption of the stream channel and its biota are transient, and these intense, infrequent events will often lead to a high-quality complex habitat within years or decades, as long as natural delivery of large wood and sediment from riparian and upland areas remains intact.

In arid areas with high runoff potential, debris torrents can occur in conjunction with flash flooding from extremely high-intensity rainfall. They may be nearly annual events in some steep ephemeral channels where drainage area is sufficient to guarantee isolated thunderstorms somewhere within their boundaries, but small enough that the effect of such storms is not dampened out by the portion of the watershed not receiving rainfall during a given storm.

Because they may alter habitat and biota substantially, infrequent major floods and torrents can confuse the interpretation of measurements of stream biota and habitat in regional surveys and monitoring programs. Therefore, it is important to determine if a debris torrent or major flood has occurred within the recent past. After completing the thalweg profile and channel/riparian measurements and observations, examine the stream channel along the entire sample reach, including its substrate, banks, and riparian corridor, checking the presence of features described on the Torrent Evidence Assessment Form (Figure 6.2-18). It may be advantageous to look at the channel upstream and downstream of the actual sample reach to look for areas of torrent scour and massive deposition to answer some of the questions on the field form. For example, you may more clearly recognize the sample reach as a torrent deposition area if you find extensive channel scouring upstream. Conversely, you may more clearly recognize the sample reach as a torrent scour reach if you see massive deposits of sediment, logs, and other debris downstream.

6.2.6.3 Stream Discharge

Stream discharge is equal to the product of the mean current velocity and vertical crosssectional area of flowing water. Discharge measurements are critical for assessing trends in streamwater acidity and other characteristics that are very sensitive to streamflow differences. Discharge should be measured at a suitable location within the sample reach that is as close as possible to the location where chemical samples are collected, so that these data correspond. Discharge is usually determined after collecting water chemistry samples.

No single method for measuring discharge is applicable to all types of stream channels. The preferred procedure for obtaining discharge data is based on "velocity-area" methods (e.g., Rantz and others, 1982; Linsley et al., 1982). For streams that are too small or too shallow to use the equipment required for the velocity-area procedure, two alternative procedures are presented. One procedure is based on timing the filling of a volume of water in a calibrated bucket. The second procedure is based on timing the movement of a neutrally buoyant object (e.g., an orange or a small rubber ball) through a measured length of the channel, after measuring one or more cross-sectional depth profiles within that length.

SI	TE ID: FW08 XX000 DATE: 0,7/01/2008
-	TORRENT EVIDENCE
	Please fill in any of the following that are evident.
EVID	ENCE OF TORRENT SCOURING:
0	01 - Stream channel has a recently devegetated corridor two or more times the width of the low flow channel. This corridor lacks riparian vegetation with possible exception of fireweed, even-aged alder or cottonwood seedlings, grasses, or other herbaceous plants.
0	02 - Stream substrate cobbles or large gravel particles are NOT IMBRICATED. (Imbricated means that they lie with flat sides horizontal and that they are stacked like roof shingles – imagine the upstream direction as the top of the "roof.") In a torrent scour or deposition channel, the stones are laying in unorganized patterns, lying "every which way." In addition many of the substrate particles are angular (not "water-worn.")
0	03 - Channel has little evidence of pool-riffle structure. (For example, could you ride a mountain bike down the channel?)
0	04 - The stream channel is scoured down to bedrock for substantial portion of reach.
0	05 - There are gravel or cobble berms (little levees) above bankfull level.
0	06 - Downstream of the scoured reach (possibly several miles), there are massive deposits of sediment, logs, and other debris.
0	07 - Riparian trees have fresh bark scars at many points along the stream at seemingly unbelievable heights above the channel bed.
0	08 - Riparian trees have fallen into the channel as a result of scouring near their roots.
EVID	ENCE OF TORRENT DEPOSITS:
0	09 - There are massive deposits of sediment, logs, and other debris in the reach. They may contain wood and boulders that, in your judgement, could not have been moved by the stream at even extreme flood stage.
0	10 - If the stream has begun to erode newly laid deposits, it is evident that these deposits are "MATRIX SUPPORTED." This means that the large particles, like boulders and cobbles, are often not touching each other, but have silt, sand, and other fine particles between them (their weight is supported by these fine particles – in contrast to a normal stream deposit, where fines, if present, normally "fill-in" the interstices between coarser particles.)
NO	VIDENCE:
•	11 - No evidence of torrent scouring or torrent deposits.
-	COMMENTS
	COMMENTS
-	

Figure 6.2-18. Torrent Evidence Assessment Form.

6.2.6.4 Velocity-Area Procedure

Because velocity and depth typically vary greatly across a stream, accuracy in field measurements is achieved by measuring the mean velocity and flow cross-sectional area of many increments across a channel (Figure 6.2-19). Each increment gives a subtotal of the stream discharge, and the whole is calculated as the sum of these parts. Discharge measurements are made **at only one carefully chosen channel cross-section within the sampling reach**. It is important to choose a channel cross-section that is as much like a canal as possible. A glide area with a "U" shaped channel cross-section that is free of obstructions provides the best conditions for measuring discharge by the velocity-area method. You may remove rocks and other obstructions to improve the cross-section before any measurements are made. However, because removing obstacles from one part of a cross-section affects adjacent water velocities, you must not change the cross-section once you commence collecting the set of velocity and depth measurements.

The procedure for obtaining depth and velocity measurements is outlined in Table 6.2-15. Record the data from each measurement on the Stream Discharge Form as shown in Figure 6.2-20. In the field, data will be recorded using only one of the available procedures.

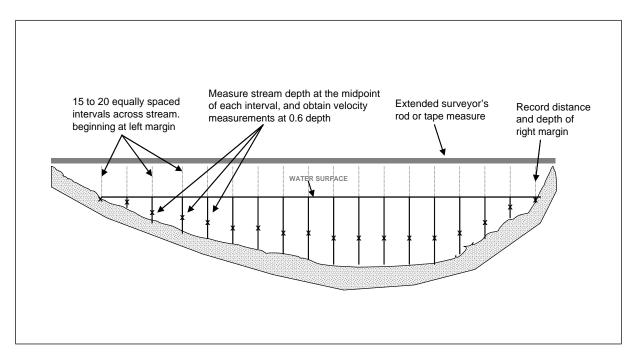


Figure 6.2-19. Layout of channel cross-section for obtaining discharge data by the velocity-area procedure.

Table 6.2-15. Velocity-Area procedure for determining stream discharge

- 1. Locate a cross-section of the stream channel for discharge determination that has most of the following qualities (based on Rantz and others, 1982):
 - Segment of stream above and below cross-section is straight
 - Depths mostly greater than 15 centimeters, and velocities mostly greater than 0.15 meters/second. Do not measure discharge in a pool.
 - "U" shaped, with a uniform streambed free of large boulders, woody debris or brush, and dense aquatic vegetation.
 - Flow is relatively uniform, with no eddies, backwaters, or excessive turbulence.
- 2. Lay the surveyor's rod (or stretch a measuring tape) across the stream perpendicular to its flow, with the "zero" end of the rod or tape on the left bank, as viewed when looking downstream. Leave the tape tightly suspended across the stream, approximately one foot above water level.
- Attach the velocity meter probe to the calibrated wading rod. Check to ensure the meter is functioning properly and the correct calibration value is displayed. Calibrate (or check the calibration) the velocity meter and probe as directed in the meter's operating manual. Fill in the "VELOCITY AREA" circle on the Stream Discharge Form.
- 4. Divide the total wetted stream width into 15 to 20 equal-sized intervals. To determine interval width, divide the width by 20 and round up to a convenient number. Intervals should not be less than 10 cm wide, even if this results in less than 15 intervals. The first interval is located at the left margin of the stream (left when looking downstream), and the last interval is located at the right margin of the stream (right when looking downstream).
- 5. Stand downstream of the rod or tape and to the side of the first interval point (closest to the left bank if looking downstream).
- 6. Place the wading rod in the stream at the interval point and adjust the probe or propeller so that it is at the water surface. Fill in the appropriate "Distance Units" and "Depth Units" circles on the Stream Discharge Form. Record the distance from the left bank and the depth indicated on the wading rod on the Stream Discharge Form.

Note for the first interval, distance equals 0 cm, and in many cases depth may also equal 0 cm. For the last interval, distance will equal the wetted width (in cm) and depth may again equal 0 cm.

- 7. Stand downstream of the probe or propeller to avoid disrupting the stream flow. Adjust the position of the probe on the wading rod so it is at 0.6 of the measured depth below the surface of the water. Face the probe upstream at a right angle to the cross-section, even if local flow eddies hit at oblique angles to the cross-section.
- 8. Wait 20 seconds to allow the meter to equilibrate, then measure the velocity. Fill in the appropriate "Velocity Units" circle on the Stream Discharge Form. Record the value on the Stream Discharge Form. Note for the first interval, velocity may equal 0 because depth will equal 0.
 - For the electromagnetic current meter (e.g., Marsh-McBirney), use the lowest time constant scale setting on the meter that provides stable readings.
 - For the impeller-type meter (e.g., Swoffer 2100), set the control knob at the mid-position of "DISPLAY AVERAGING". Press "RESET" then "START" and proceed with the measurements.
- 9. Move to the next interval point and repeat Steps 6 through 8. Continue until depth and velocity measurements have been recorded for all intervals. Note for the last interval (right margin), depth and velocity values may equal 0.
- 10. At the last interval (right margin), record a "Z" flag on the field form to denote the last interval sampled.
- 11. If using a meter that computes discharge directly, check the "Q" circle on the discharge form, and record calculated discharge value. In this case, you do not have to record the depth and velocity data

for each interval.

_	SITE ID:	FW0	8 X X 00	0	1.2	DATE	0.7.10	1,2,0,0	.8
		Ve	locity A	rea			• Tir	ned Filling	
	t Cm		pth Units ft 🌘 cm	Velocity O ft/s XX.X		Repeat	Volume (L)	Time (s)	Flag
_	Dist. from Ba	ink	Depth	Velocity	Flag	1	4.0	1.0.5	FI
1		0	0	0	FI	2	4.0	1.1.2	
2	-	20	6	- 0.10		3	4.0	10.8	<u> </u>
3	4	0	6	0.30		4			
4	6	0	12	0.59		5	4.0	1.1.0	<u> </u>
5	8	0	15	0.37			4.0	10.7	<u> </u>
6	10	0	15	0.34			Noutral	Bouyant Ob	laat
7	(2	0	24	0.43			Float 1	Float 2	Float 3
8	14	0	27	0.37		Float Dist. Oft • m			
9	16	0	40	0.43		Float Time	10		.1.2.
10	18	0	40	0.37		(s) Flag	 E ,		
11	20	0	46	0.30			F Cross Section	ons on Float Reach	<u> </u>
12	2:	0	37	0.27			Upper Section	and the second	Lower Section
13	24	10	30	0.25		Width ⊖ft ●m	2.5	1.8	3.0
14	26	0	24	0.15		Depth 1	. 1.0	C	. 1.2
15	28	0	15	0.10		⊖ft ∰cm		<u>5</u>	
16	30	0	0	0		Depth 2	<u> </u>	_1.5	
17	_					Depth 3		20	.1.5
18						Depth 4			1
19									
20						Depth 5	5		5
•	Q Value			ge is determine cord value here		0.24	⊖ cfs	● m³/s FL	AG FI
Flag		-				nments			
F			or All	FOUR M			21.1.0/		
	2.011	14	n n sh	POULS M	STHOPS		ww.		
	-			_			_		

Figure 6.2-20. Discharge Form, showing data recorded for all discharge measurement procedures.

6.2.6.5 Timed Filling Procedure

In channels too "small" for the velocity-area method, discharge can sometimes be measured by filling a container of known volume and timing the duration to fill the container.

"Small" is defined as a channel so shallow that the current velocity probe cannot be placed in the water, or where the channel is broken up and irregular due to rocks and debris, and a suitable cross-section for using the velocity area procedure is not available. This can be an extremely precise and accurate method, but requires a natural or constructed spillway of freefalling water. If obtaining data by this procedure will result in a lot of channel disturbance or stir up a lot of sediment, wait until after all biological and chemical measurements and sampling activities have been completed.

Choose a cross-section of the stream that contains one or more natural spillways or plunges that collectively include the entire stream flow. A temporary spillway can also be constructed using a portable V-notch weir, plastic sheeting, or other materials that are available onsite. Choose a location within the sampling reach that is narrow and easy to block when using a portable weir. Position the weir in the channel so that the entire flow of the stream is completely rerouted through its notch (Figure 6-3). Impound the flow with the weir, making sure that water is not flowing beneath or around the side of the weir. Use mud or stones and plastic sheeting to get a good waterproof seal. The notch must be high enough to create a small spillway as water flows over its sharp crest.

The timed filling procedure is presented in Table 6.2-16. Make sure that the entire flow of the spillway is going into the bucket. Record the time it takes to fill a measured volume on the Discharge Measurement Form as shown in Figure 6-2. Repeat the procedure 5 times. If the cross-section contains multiple spillways, you will need to do separate determinations for each spillway. If so, clearly indicate which time and volume data replicates should be averaged together for each spillway; use additional Stream Discharge Form if necessary.

Table 6.2-16. Timed filling procedure for determining stream discharge

NOTE: If measuring discharge by this procedure will result in significant channel disturbance or will stir up sediment, delay determining discharge until all biological and chemical measurement and sampling activities have been completed.

- 1. Choose a cross-section that contains one or more natural spillways or plunges, or construct a temporary one using on-site materials, or install a portable weir using a plastic sheet and on-site materials.
- 2. Fill in the "TIMED FILLING" circle in the stream discharge section of the Stream Discharge Form.
- 3. Position a calibrated bucket or other container beneath the spillway to capture the entire flow. Use a stopwatch to determine the time required to collect a known volume of water. Record the volume collected (in liters) and the time required (in seconds) on the Stream Discharge Form.
- 4. Repeat Step 3 a total of 5 times for each spillway that occurs in the cross-section. If there is more than one spillway in a cross-section, you must use the timed-filling approach on all of them. Additional spillways may require additional data forms

6.2.6.6 Neutrally-Buoyant Object Procedure

In very small, shallow streams with no waterfalls, where the standard velocity-area or timed-filling methods cannot be applied, the neutrally buoyant object method may be the only way to obtain an estimate of discharge. The required pieces of information are the mean flow velocity in the channel and the cross-sectional area of the flow. The mean velocity is estimated by measuring the time it takes for a neutrally buoyant object to flow through a measured length of the channel. The channel cross-sectional area is determined from a series of depth measurements along one or more channel cross-sections. Since the discharge is the product of mean velocity and channel cross-sectional area, this method is conceptually very similar to the standard velocity-area method.

The neutrally buoyant object procedure is described in Table 6.2-17. Examples of suitable objects include plastic golf balls (with holes), small sponge rubber balls, or small sticks. The object must float, but very low in the water. It should also be small enough that it does not "run aground" or drag bottom. Choose a stream segment that is roughly uniform in cross-section, and that is long enough to require 10 to 30 seconds for an object to float through it. Select one to three cross-sections to represent the channel dimensions within the segment, depending on the variability of width and/or depth. Determine the stream depth at 5 equally spaced points at each cross-section. Three separate times, measure the time required for the object to pass through the segment that includes all of the selected cross-sections. Record data on the Stream Discharge Form as shown in Figure 6.2-20.

Table 6.2-17. Neutrally buoyant object procedure for determining stream discharge

- 1. Fill in the "NEUTRALLY BUOYANT OBJECT" circle on the Stream Discharge Form.
- 2. Select a segment of the sampling reach that is deep enough to float the object freely, and long enough that it will take between 10 and 30 seconds for the object to travel. Mark the units used and record the length of the segment in the "FLOAT DIST." field of the Stream Discharge Form.
- 3. If the channel width and/or depth change substantially within the segment, measure widths and depths at three cross-sections, one near the upstream end of the segment, a second near the middle of the segment, and a third near the downstream end of the segment.

If there is little change in channel width and/or depth, obtain depths from a single "typical" crosssection within the segment.

- 4. At each cross-section, measure the wetted width using a surveyor's rod or tape measure, and record both the units and the measured width on the Stream Discharge Form. Measure the stream depth using a wading rod or meter stick at points approximately equal to the following proportions of the total width: 0.1, 0.3, 0.5, 0.7, and 0.9. Record the units and the depth values (not the distances) on the Stream Discharge Form.
- 5. Repeat Step 4 for the remaining cross-sections.
- 6. Use a stopwatch to determine the time required for the object to travel through the segment. Record the time in the "FLOAT TIME" field of the Stream Discharge Form.
- 7. Repeat Step 6 two more times. The float time may differ somewhat for the three trials.

Figure 6.2-21. Use of a portable weir in conjunction with a calibrated bucket to obtain an estimate of stream discharge.

6.2.7 Equipment and Supplies

Table 6.2-18 lists the equipment and supplies required to conduct all the activities described for characterizing physical habitat. This checklist is similar to the checklist presented in Appendix A, which is used at the base location (Section 3) to ensure that all of the required equipment is brought to the stream.

Table 6.2-18.	Checklist of equipment and supplies for physical habitat
---------------	--

For taking	 Surveyor's telescoping leveling rod (round profile, metric scale, 7.5 m extended)
measurements	 50 m or 100 m measuring tape & reel
	 Laser rangefinder (400 ft. distance range) and clear waterproof bag
	 Digital camera with extra memory card & battery
	 Two ½-inch diameter PVC pipe, 2-3 m long: Two of these, each marked at the same height (for use in slope determinations involving two persons)
	 Meter stick, or a short rod or pole (e.g., a ski pole) with cm markings for thalweg measurements, or the PVC pipe for slope determinations can be marked in cm
	 1 roll each colored surveyor's flagging tape (2 colors)
	 Convex spherical canopy densiometer (Lemmon Model A), modified with taped "V"
	Clinometer
	 Bearing compass (Backpacking type)
	 Binoculars
	 1 or 2 fisherman's vest with lots of pockets and snap fittings. Used to hold the various measurement equipment (densiometer, clinometer, compass, etc.).
	 2 pair chest waders (hip waders can be used in shallower streams).
	 Current velocity meter, probe, and operating manual
	 Top-set wading rod for use with current velocity meter
	Portable Weir with 60° "V" notch (optional) and plastic sheeting to use with weir
	 Plastic bucket (or similar container) with volume graduations
	Stopwatch
	 Neutrally buoyant object (e.g., plastic golf ball with holes, small rubber ball, stick)
	 Field Methods Manual and/or laminated quick reference guide
For recording	 Covered clipboards (lightweight, with strap or lanyard)
data	 Soft (#2) lead pencils (mechanical are acceptable)
uuu	 11 plus extras Channel/Riparian Cross-section Forms
	 11 plus extras Thalweg Profile and Woody Debris Forms
	 1+ extras field Form: Stream Verification Form
	 1+ extras field Form: Field Measurement Form
	 1+ extras field Form: Discharge Form
	 1+ extras field Form: Sample Collection Form
	 1+ extras field Form: Riparian "Legacy" Trees and Invasive Alien Plants
	 The extras field Form: Ripanan Legacy Trees and invasive Allen Plants 1+ extras field Form: Channel Constraint
	 1+ extras field Form: Torrent Evidence Form
	 1+ extras field Form: Fish Gear and Voucher/Tissue Information Form
	 1+ extras field Form: Fish Collection Form
	1+ extras field Form: Slope and Bearing Form the extras field Form: Visual Assessment Form
	 1+ extras field Form: Visual Assessment Form

6.3 Periphyton

6.3.1 Summary of Method

Collect periphyton from the 11 cross-section transects ("A" through "K") established within the sampling reach. Collect periphyton samples at the same time as sediment enzyme samples (Section 6.1.3) and benthic macroinvertebrate samples (Sections 6.4.1). Prepare one composite "index" sample of periphyton for each site. At the completion of the day's sampling activities, but before leaving the site, prepare four types of laboratory samples (an ID/enumeration sample to determine taxonomic composition and relative abundances, a chlorophyll sample, a biomass sample (for ash-free dry mass [AFDM]), and a acid/alkaline phosphatase activity [APA] sample) from the composite periphyton sample.

6.3.2 Equipment and Supplies

Table 6.3-1 is a checklist of equipment and supplies required to conduct periphyton sample collection and processing activities. This checklist is similar to the checklist presented in Appendix A, which is used at the base location (Section 3) to ensure that all of the required equipment is brought to the river.

For collecting samples	 Large Funnel (15-20 cm diameter) 12-cm² area delimiter (3.8 cm diameter pipe, 3 cm tall) Stiff-bristle toothbrush with handle bent at 90° angle 1-L wash bottle for stream water 500-mL plastic bottle for the composite sample 60-mL plastic syringe with 3/8" hole bored into the end Field Operations Manual or laminated Quick Reference Guide
For recording measurements	 Sample Collection Form Soft (#2) lead pencils for recording data on field forms Fine-tipped indelible markers for filling out sample labels Sample labels (4 per set) with the same Sample ID Number Clear tape strips for covering labels

Table 6.3-1.	Equipment and supplies li	ist for periphyton at wadeable sites
--------------	---------------------------	--------------------------------------

6.3.3 Sampling Procedure

At each of the 11 transects, collect samples from the sampling station assigned during the layout of the reach. Collect the substrate selected for sampling from a depth no deeper than 0.5 m. If a sample cannot be collected because the location is too deep, skip the transect. The procedure for collecting samples and preparing a composite sample is presented in Table 6.3-2. Collect one sample from each of the transects and composite in one bottle to produce one composite sample for each site. Record the volume of the sample on the Sample Collection Form as shown in Figure 6.1-3.

Table 6.3-2. Procedure for collecting composite index samples of periphyton at wadeable sites

1. Starting with Transect "A", collect a single sample from the assigned sampling station using the procedure below.

- a) Collect a sample of substrate (rock or wood) that is small enough (< 15 cm diameter) and can be easily removed from the river. Place the substrate in a plastic funnel which drains into a 500-mL plastic bottle with volume graduations marked on it.
- b) Use the area delimiter to define a 12-cm² area on the upper surface of the substrate. Dislodge attached periphyton from the substrate within the delimiter into the funnel by brushing with a stiff-bristled toothbrush for 30 seconds. Take care to ensure that the upper surface of the substrate is the surface that is being scrubbed, and that the entire surface within the delimiter is scrubbed.
- c) Fill a wash bottle with river water. Using a minimal volume of water from this bottle, wash the dislodged periphyton from the funnel into the 500-mL bottle. If no coarse sediment (cobbles or larger) are present:
 - Use the area delimiter to confine a 12-cm² area of soft sediments.
 - Vacuum the top 1 cm of sediments from within the delimited area into a de-tipped 60-mL syringe.
 - Empty the syringe into the same 500-mL plastic bottle as above.
- d) Put the bottle in a cooler on ice while you travel between transects and collect the subsequent samples. (The samples need to be kept cool and dark because a chlorophyll sample will be filtered from the composite.)
- 2. Repeat Step 1 for transects "B" through "K". Place the sample collected at each sampling site into the single 500-mL bottle to produce the composite index sample.
- 3. If all 11 samples are not collected, record the number of transects collected and reason for any missed collection on the field forms.
- 4. After samples have been collected from all 11 transects, thoroughly mix the 500-mL bottle regardless of substrate type. Record the total estimated volume of the composite sample in the periphyton section of the Sample Collection Form.

6.3.4 Sample Processing in the Field

You will prepare four different types of laboratory samples from the composite index samples: an **ID/enumeration sample** (to determine taxonomic composition and relative abundances), a **chlorophyll sample**, a **biomass sample** (for ash-free dry mass [AFDM]), and an **acid/alkaline phosphatase activity** (APA) sample. All the sample containers required for an individual site should be sealed in plastic bags until use to avoid external sources of contamination (e.g., dust, dirt, or mud) that are present at site shorelines. Please refer to Sections 7.2.5 and 7.2.6 processing the periphyton samples.

6.4 Benthic Macroinvertebrates

6.4.1 Summary of Method

Collect benthic macroinvertebrate composite samples using a D-frame net with 500 µm mesh openings. Take the samples from the sampling stations at the 11 transects equally distributed along the targeted reach. You will proportionally sample multiple habitats at sampling stations randomly assigned on each transect. Multiple habitats will include bottom substrate as well as woody debris, macrophytes, and leaf packs. Composite all sample material and field-preserve with ~95% ethanol.

High gradient streams

 Primary samples are taken at each transect at either 25%, 50%, or 75% transect distance (according to the initial randomized pattern). Primary samples will be collected from a 1 square foot quadrat.

Low gradient streams

- Primary samples are taken at each transect at either 25%, 50%, or 75% transect distance (according to the initial randomized pattern). Primary samples will be collected from a 1 square foot quadrat.
- additional, separate samples taken at either 0%, 50%, or 100% transect distance to include edge samples (snags, undercut banks, root wads, macrophyte beds, etc.).
 Low gradient samples will be collected from a 1 linear meter sweep.

6.4.2 Equipment and Supplies

Table 6.4-1 shows the checklist of equipment and supplies required to complete the collection of benthic macroinvertebrates. This checklist is similar to the checklist presented in Appendix A, which is used at the base location to ensure that all of the required equipment is brought to the site. Record collection data on the Sample Collection Form (Fig. 6.1-2).

For collecting samples	 Modified kick net (D-frame with 500 µm mesh) and 4-ft handle Watch with timer or stopwatch Buckets, plastic, 8- to 10-qt Sieve bucket with 500 µm mesh openings (U.S. std No. 35) Watchmakers' forceps Wash bottle, 1-L capacity labeled "STREAM WATER" Funnel, with large bore spout 	 Small spatula, spoon, or scoop to transfer sample Sample jars, 1-L HDPE plastic suitable for use with ethanol 95% ethanol, in a proper container Cooler (with absorbent material) for transporting ethanol & samples Plastic electrical tape Scissors Field Operations Manual or laminated Quick Reference Guide
For recording measurements	 Composite benthic sample labels with & without preprinted ID numbers Blank labels on waterproof paper for inside of jars 	 Soft (#2) lead pencils Fine-tip indelible markers Clear tape strips Sample Collection Form

Table 6.4-1.	Equipment and supplies list for benthic macroinvertebrate collection at wadeable
sites	

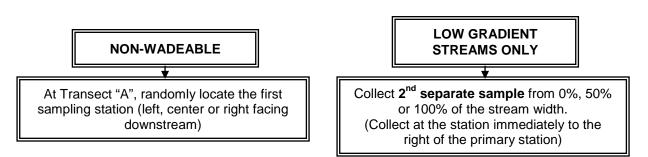

6.4.3 Sampling Procedure

Figure 6.4-1 summarizes how samples will be collected from wadeable sites. The transect sample design for collecting benthic macroinvertebrates is shown in Figure 6.4-2. This design was used in the EPA's Wadeable Streams Assessment, which provides continuity for a nationwide assessment. Collect a sample from **1-m downstream** of each of the 11 cross-section transects at the assigned sampling station. The process for selecting the sample stations is described in the Initial Site Procedures Section (Section 4). At transects assigned a "Center" sampling point where the stream width is between one and two net widths wide, pick either the "Left" or "Right" sampling point instead. If the stream is only one net wide at a transect, place the net across the entire stream width and consider the sampling point to be "Center". If a sampling point is located in water that is too deep or unsafe to wade, select an alternate sampling point on the transect at random.

The procedure for collecting a sample at each transect is described in Table 6.4-2. At each sampling point, determine if the habitat is a "riffle/run" or a "pool/glide" (any area where there is not sufficient current to extend the net is operationally defined as a pool/glide habitat). Record the dominant substrate type (fine/sand, gravel, coarse substrate (coarse gravel or larger) or other (e.g., bedrock, hardpan, wood, aquatic vegetation, etc.) and the habitat type (pool, glide, riffle, or rapid) for each sample collected on the Sample Collection Form as shown in Figure 6.1-2. As you proceed upstream from transect to transect, combine all samples into a bucket. An **additional separate sample will be taken at low gradient streams** to include edge habitat (leaf litter, organic deposits, undercut banks, root wads, macrophyte beds, etc.)

6.4.4 Sample Processing in Field

Use a 500 µm mesh sieve bucket placed inside a larger bucket full of site water while sampling to carry the composite sample as you travel around the site. It is recommended that teams carry a sample bottle containing a small amount of ethanol with them to enable them to immediately preserve larger predaceous invertebrates such as helgramites and water beetles. Doing so will help reduce the chance that other specimens will be consumed or damaged prior to the end of the field day. Once the composite sample from all stations is sieved and reduced in volume, store in a 1-liter jar and preserve with 95% ethanol. Do not fill jars more than 1/3 full of material. Multiple jars may be required if detritus is heavy (Table 6.4-3). Try to use no more than 5 jars per site. If more than one jar is used for a composite sample, use the "extra jar" label provided; record the SAME sample ID number on this "extra jar" label. **DO NOT use two different sample numbers on two jars containing one single sample**. Cover the labels with clear tape. The sample ID number is also recorded with a No. 2 lead pencil on a waterproof label that is placed inside each jar. Be sure the inside label and outside label describe the same sample.

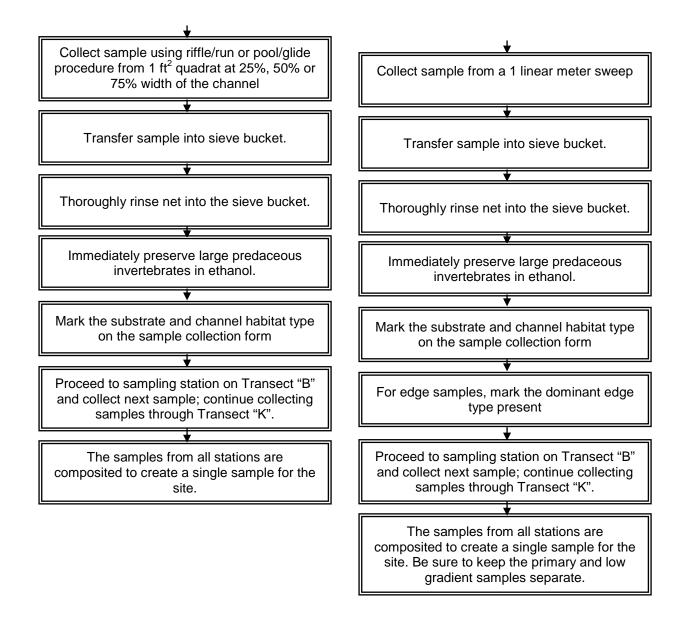


Figure 6.4-1. Benthic macroinvertebrate collection at wadeable sites.

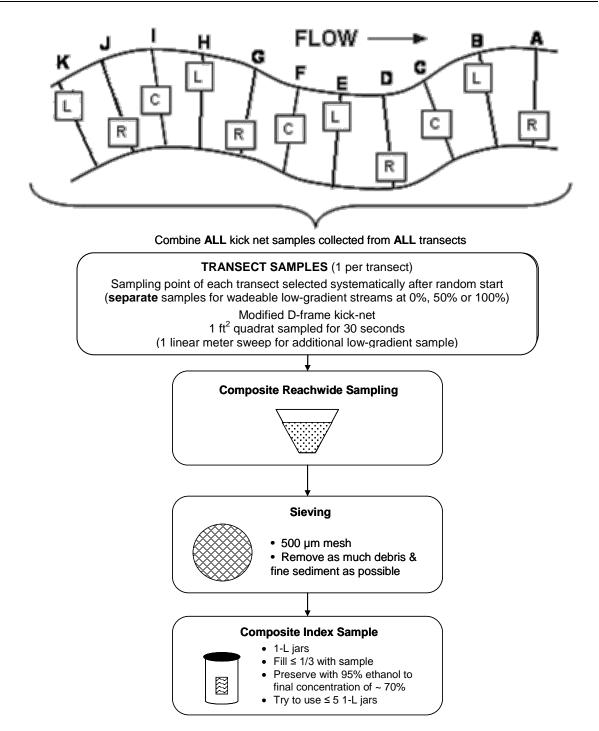


Figure 6.4-2. Transect sample design for collecting benthic macroinvertebrates at wadeable sites.

Table 6.4-2. Procedure for benthic macroinvertebrate sampling at wadeable sites

- 1. At **1 m downstream** of each transect, beginning with Transect "A", randomly locate the first sampling station (Left, Center, or Right as you face downstream) as 25%, 50%, and 75% of the wetted width, respectively. If you cannot collect a sample at the designated point because of deep water or unsafe conditions, relocate to another random point on the same transect.
- 2. Determine if there is sufficient current in the area at the sampling station to fully extend the net. If so, classify the habitat as "riffle/run" and proceed to Step 3. If not, use the sampling procedure described for "pool/glide" habitats starting at Step 9.

NOTE: If the net cannot be used, hand pick a sample for 30 seconds from about 1 ft^2 of substrate at the sampling point. For vegetation-choked sampling points, sweep the net through the vegetation within a 1 ft^2 quadrat for 30 seconds. Place this hand-picked sample directly into the sample container. Assign a "U" flag (non-standard sample) to the sample and indicate which transect(s) required the modified collection procedure in the comments section. Go to Step 13.

Riffle/Run Habitats:

3. With the net opening facing upstream, quickly position the net securely on the stream bottom to eliminate gaps under the frame. Avoid large rocks that prevent the net from seating properly on the stream bottom.

NOTE: If there is too little water to collect the sample with the D-net, randomly pick up 10 rocks from the riffle and pick and wash the organisms off them into a bucket which is half full of water.

- 4. Holding the net in position on the substrate, visually define a quadrat that is one net width wide and long upstream of the net opening. The area within this quadrat is 1 ft²
- 5. Check the quadrat for heavy organisms, such as mussels and snails. Remove these organisms by hand and place them into the net. Pick up loose rocks or other larger substrate particles in the quadrat. Use your hands or a scrub brush to dislodge organisms and wash them into the net. Scrub all rocks that are golf ball-sized or larger and which are halfway into the quadrat. After scrubbing, place the substrate particles outside of the quadrat.
- 6. Hold the D-net securely in position. Starting at the upstream end of the quadrat, vigorously kick the remaining finer substrate within the quadrat for 30 seconds (use a stopwatch).

NOTE: For samples located within dense beds of long, filamentous aquatic vegetation (e.g., algae or moss), kicking within the quadrat may not be sufficient to dislodge organisms in the vegetation. Usually these types of vegetation are lying flat against the substrate due to current. Use a knife or scissors to remove **only the vegetation that lies within the quadrat** (i.e., not entire strands that are rooted within the quadrat) and place it into the net.

- 7. Pull the net up out of the water. Immerse the net in the stream several times to remove fine sediments and to concentrate organisms at the end of the net. Avoid having any water or material enter the mouth of the net during this operation.
- 8. Go to Step 13.

Pool/Glide Habitats:

- 9. Visually define a quadrat that is one net width wide and long at the sampling point. The area within this quadrat is 1 ft².
- 10. Check the quadrat for heavy organisms, such as mussels and snails. Remove these organisms by hand and place them into the net. Pick up loose rocks or other larger substrate particles in the quadrat. Use your hands or a scrub brush to dislodge organisms and wash them into the net. Scrub all rocks that are golf ball-sized or larger and which are halfway into the quadrat. After scrubbing, place the substrate particles outside of the quadrat.
- 11. Vigorously kick the remaining finer substrate within the quadrat with your feet while dragging the net repeatedly through the disturbed area just above the bottom. Keep moving the net all the time so that

the organisms trapped in the net will not escape. Continue kicking the substrate and moving the net for 30 seconds.

NOTE: If there is too little water to use the kick net, stir up the substrate with your gloved hands and use a sieve with 500 μ m mesh size to collect the organisms from the water in the same way the net is used in larger pools.

12. After 30 seconds, remove the net from the water with a quick upstream motion to wash the organisms to the bottom of the net.

All samples:

- 13. Invert the net into a sieve bucket and transfer the sample. Remove as much gravel as possible so that the organisms do not get damaged. Inspect the net for any residual organisms clinging to the net and deposit them into the bucket. Use forceps if necessary to remove organisms from the net. Carefully inspect any large objects (such as rocks, sticks, and leaves) in the bucket and wash any organisms found off of the objects and into the bucket before discarding the object. Remove as much detritus as possible without losing organisms.
- 14. Determine the **predominant** substrate size/type you within the sampling quadrat. Fill in the appropriate circle for the dominant substrate type for the transect on the Sample Collection Form.

NOTE: If there are co-dominant substrate types, you may fill in more than one circle; note the codominants in the comments section of the form.

- Fine/sand: not gritty (silt/clay/muck <0.06 mm diam.) to gritty, up to ladybug sized (2 mm)
- Gravel: fine to coarse gravel (ladybug to tennis ball sized; 2 mm to 64 mm)
- Coarse: Cobble to boulder (tennis ball to car sized; 64 mm to 4000 mm)
- Other: bedrock (larger than car sized; > 4000 mm), hardpan (firm, consolidated fine substrate), wood of any size, aquatic vegetation, etc.). Note type of "other" substrate in comments on field form.
- 15. Identify the habitat type where the sampling quadrat was located. Fill in the appropriate circle for channel habitat type for the transect on the Sample collection Form.
 - Pool; Still water; low velocity; smooth, glassy surface; usually deep compared to other parts of the channel
 - GLide: Water moving slowly, with smooth, unbroken surface; low turbulence
 - **RI**ffle: Water moving, with small ripples, waves, and eddies; waves not breaking, and surface tension is not broken; "babbling" or "gurgling" sound.
 - **RA**pid: Water movement is rapid and turbulent; surface with intermittent "white water" with breaking waves; continuous rushing sound.
- 16. Thoroughly rinse the net before proceeding to the next sampling station. Proceed upstream to the next transect (through Transect K, the upstream end of the reach) and repeat steps 1 16. Combine all kick net samples from riffle/run and pool/glide habitats into the bucket.

Additional Sample for low gradient streams:

- 17. At low gradient stream sites, an additional separate composite sample will be taken. The sample will be collected with the same methods above, with the following modifications:
- 18. Collect the samples at 0, 50, or 100% transect distance to include edge samples (collected from leaf litter, snags, organic deposits, undercut banks, root wads, macrophyte beds, etc.).
- 19. If the primary sample was collected at the Left at Transect A, collect the additional sample at the Center of Transect A, then continue with Right at Transect B, Left at Transect C, until you collect at every transect rotating through Left, Center, and Right.
- 20. Collect the samples over 1 linear meter. Vigorously disturb the bank or bottom habitat and quickly

sweep the net to collect the loosened material.

- 21. Composite and label this sample separately from the first sample collected. This will be identified in the lab as two separate samples.
- 22. Write in the appropriate abbreviation for substrate & channel habitat type on the Sample Collection Form. For samples taken at the left or right edge of the transect, write in the appropriate abbreviation for the dominant edge type present.

Record information for each composite sample on the Sample Collection Form as shown in Figure 6.1-2(a). If a sample requires more than one jar, make sure the correct number of jars for the sample is recorded on the Sample Collection Form. **Do not fill out the collection form until you have collected (or confirmed at the site that you will collect) samples.** If forms are filled out before you arrive at the site, and then no samples are collected, a lot of time is wasted by others later trying to find samples that do not exist. Place the samples in a cooler or other secure container for transporting and/or shipping to the laboratory (see Appendix C).

Table 6.4-3. Procedure for preparing composite samples for benthic macroinvertebrates at wadeable sites

- 1. Pour the entire contents of the bucket into a sieve bucket with 500 µm mesh size. Remove any large objects and wash off any clinging organisms back into the sieve before discarding. Remove any inorganic material, such as cobble or rocks.
- 2. Using a wash bottle filled with river water, rinse all the organisms from the bucket into the sieve. This is the composite sample for the reach.
- 3. Estimate the total volume of the sample in the sieve and determine how large a jar will be needed for the sample (500-mL or 1-L) and how many jars will be required. Try to use no more than 5 jars per site.
- 4. Fill in a sample label with the Sample ID and date of collection. Attach the completed label to the jar and cover it with a strip of clear tape. Record the sample ID number for the composite sample on the Sample Collection Form. For each composite sample, make sure the number on the form matches the number on the label.
- 5. Wash the contents of the sieve to one side by gently agitating the sieve in the water. Wash the sample into a jar using as little water from the wash bottle as possible. Use a large-bore funnel if necessary. If the jar is too full pour off some water through the sieve until the jar is not more than 1/3 full, or use a second jar if a larger one is not available. Carefully examine the sieve for any remaining organisms and use watchmakers' forceps to place them into the sample jar.
 - If a second jar is needed, fill in a sample label that does not have a pre-printed ID number on it. Record the ID number from the pre-printed label prepared in Step 4 in the "SAMPLE ID" field of the label. Attach the label to the second jar and cover it with a strip of clear tape. Record the number of jars required for the sample on the Sample Collection Form. **Make sure the number you record matches the actual number of jars used.** Write "Jar N of X" on each sample label using a waterproof marker ("N" is the individual jar number, and "X" is the total number of jars for the sample).

•

- 6. Place a waterproof label inside each jar with the following information written with a number 2 lead pencil:
 - Site ID

- Collectors initials
- Type of sampler and mesh size used
- Number of stations sampled

Table 6.4-3. Procedure for preparing composite samples for benthic macroinvertebrates at wadeable sites

- Name of site
- Date of collection

Jar "N" of "X"

7. Completely fill the jar with 95% ethanol (no headspace). It is very important that sufficient ethanol be used, or the organisms will not be properly preserved. Existing water in the jar should not dilute the concentration of ethanol below 70%.

NOTE: Composite samples can be transported back to the vehicle before adding ethanol if necessary. In this case, fill the jar with stream water, which is then drained using the net (or sieve) across the opening to prevent loss of organisms, and replace with ethanol.

- 8. Replace the cap on each jar. Slowly tip the jar to a horizontal position, then gently rotate the jar to mix the preservative. Do not invert or shake the jar. After mixing, seal each jar with plastic tape.
- 9. Store labeled composite samples in a container with absorbent material that is suitable for use with 70% ethanol until transport or shipment to the laboratory.

6.5 Fish

6.5.1 Summary of Method

The fish sampling method is designed to provide a representative sample of the fish community, collecting all but the rarest fish taxa inhabiting the site. It is assumed to accurately represent species richness, species guilds, relative abundance, and anomalies. The goal is to collect fish community data that will allow the calculation of an Index of Biotic Integrity (IBI) and Observed/Expected (O/E) models. Backpack or barge electrofishing is the preferred method. If electrofishing is not possible due to safety concerns, high turbidity, or extremes in conductivity, complete the "Not Fished" section of the field form and comment why.

Streams with mean wetted widths less than 12.5 m will be electrofished in their entirety, covering all available habitats. However, the time and effort necessary to sample reaches greater than or equal to 12.5 m wide is prohibitive in the context of the survey, thus sub-sampling is required. Sub-sampling is defined by 5-10 sampling zones, each starting at a transect. In all instances electrofishing in wadeable systems should proceed in an upstream direction using a single anode. Identification and processing of fish should occur at the completion of each subreach.

6.5.2 Equipment and Supplies

Table 6.5-1 shows the checklist of equipment and supplies required to complete the fish assessment. This checklist is similar to the one presented in Appendix A, which is used at the base location to ensure that all of the required equipment is brought to the site. Record fish collection data on the Fish Collection Form, Side 1 (Fig. 6.5-1).

Table 6.5-1. Equipment and supplies — fish assessment at wadeable sites.

or collecting imples	•	Electrofishing equipment (including variable voltage pulsator unit, wiring		1 Scalpel for slitting open large fish before preservation.
		cables, generator, electrodes, dip	•	1 container of 10% buffered formalin
		nets, protective linesman gloves,	•	Several Leak-proof HDPE jars for fish
		boots, and necessary safety		voucher specimens (various sizes from

	 equipment) Extra electrofishing unit batteries Scientific collection permit Digital camera with extra memory card & battery 1 Laser rangefinder (optional) Linesman gloves 	 250 mL - 4 L) 2 non-conducting dip nets with 1/4" mesh 1 Minnow net for dipping small fish from live well 2 measuring boards (3 cm size classes) 1 set Fish ID keys Field Operations Manual and/or laminated Quick Reference Guide
For recording measurements	Sample labelsSample Collection FormClear tape strips	Soft (#2) lead pencilsFine-tip indelible markers

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		SITE ID: FW08 XX 000	DATE: D.		210112	0	80			-	PAGE:	-	of 1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Tag No.		Tally	Total Count	Vouch.	LENG		Anom. A	fortality Count	Photo(s) Taken		flag	Subreaches (Optional)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10		1444	37	20	10	1	0	0	٧,0	-		00
Speckleb Dale HH III 8 8 60 70 0 0 0 1 UPMENDUM SUCRER I III 3 3 40 40 1 3 0 8 60 70 0 0 7 8 UPMENDUM SUCRER I III 3 3 40 40 1 3 0 7 0 8 5 0 0 0 7 8 7 6 8 5 0 0 0 7 7 7 0 8 7 0 1 7 0 9 8 7 0 1	02	_	111-144-144 HW	16	M	60	200		0	70			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	05	SPECKLED	tit titt	00	00	60		0	0				O A CO EO GOI B B D D FOHOJ
UNK MODUN SUCLER 2 Hit wit in $ 2<$ $ 2$ $ 25$ $ 25$ $ 25$ $ 25$ $ 25$ $ 25$ $ 20$ $ 10$ $ 25$ Tui Caurs $ 11$ $ 2$ $ 25$ $ 20$ $ 20$ $ 20$ $ 20$ Tui Caurs $ 11$ $ 2$ $ 25$ $ 20$ $ 20$ $ 20$ $ 20$ Northern $ 11^{+}$ $ 25$ $ 20$ $ 21$ $ 2$	1		III	3	3	40	40	1	3	10			O A O CO EO GOI O BODOFOHOJ
SPECKLED $M^{1} M^{1} + M^{1}$ I_{2}	h	2	11 - 404- 11	12		45			1		-		O A O CO EO GO I O BO DO FO HO J
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	06		44	15	15	00	-		0		-		O A O CO E G GO I O B O D O F O H O J
NORTHERN PIKEMINNOL HIFTHIN 13 5 90 190 2 0 0 MOTTLED SCULPIN HIFT 1 1 0 40 85 0 0 0 MOTTLED SCULPIN HIFT 1 1 1 0 0 0 0 MOTTLED SCULPIN HIFT 1 1 1 0 0 0 UNKNOWU LAMPREY 1 1 1 1 0 0 0 0 Flag Comment Tao SMALL TD ID 2 1 0 0 0 F1 MAY BE RIVER LAMPREY 0 1 1 0 0 0 F3 MAY BE RIVER LAMPREY 0 0 0 0 0	5		11	×	0	80	06		0				0 A 0 C0 E0 G01
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0	NORTHERN PIKEM	till ture tot	13	6	06	190		×				O A O CO EO GO I O B O D O FO H O J
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	60		titte a	4	0	04	85	0	0				O A O CO EO G I I
Flag Comment $0v$ Fig Comment $0v$ Fi May BE A mixuou 07 F2 Too Sunt. 07 F3 May BE RIVER LAMPREY 07 F3 May BE RIVER LAMPREY 07 F3 May BE RIVER LAMPREY 07	0)	UNKNOWN LAMPREY	1	1	/	20		-	0	٧	1	-	O A O CO EO GO I O B O D O F O H O J
Flag Comment 0 Fi May BE A minimoru 07 F1 May BE RIVER LAMPREY 07 F3 May BE RIVER LAMPREY 07 F3 May BE RIVER LAMPREY 07													OBODOFOHO.
Flag Comment Tag F1 May BE A mialwow O7 Im6 F2 Too Sunal.L TO ID ID FIELD F3 May BE RIVER LAMPREY O7 Im6 F3 May BE RIVER LAMPREY O7 Im6			<										O A O CO EO GO I O B O D O F O H O J
F1 MAY BE A mirkuow 07 1M F2 Tao SMALL TO 1D w FIELD 07 1M F3 MAY BE RIVER LAMPREY 07 1M et 07 1M		-			Tag		Photo	File					
F3 TOO SWALL TO ID IN FIELD OT IM F3 MAY BE RIVER LAMPREY OT IM 07 IM		MAY BE A			40		16003	6					
E3 MAY BE RIVER LAMPREY 07 1M 07 1M		TOU SWALL TO			20	Ine	600	0					
		MAY BE RNER	PRGY		10			41					
	10												

Figure 6.5-1. Fish Collection Form for Small Wadeable Streams, Side 1.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
FLAG (for subreach characteristice): COVER O Macrophytes LWD Overhanging Veg. Other COVER O Macrophytes O LWD O worhanging Veg. O ther Indiation Dame O main Proto O ther Indiation Anon Max Count Current O ther Total Vouch LENGTH (mm) Anon Montality Photo Total Vouch LENGTH (mm) Anon Montality Photo Total Vouch Leng Thimm Anon Montality Photo Total Vouch Leng Thimm Anon Montality Photo Total Vouch East O O Image Photo T O So So So So So So So T I Re Zab O O Image Photo T I/O So D O D Image So T I/O So D
COVER O Macrophyses O LWD O contranging Veg. O Other Photosous Derror
Induced Other Other Other Total Vouch LENGTH (mm) Anom Anom Other Total Vouch LENGTH (mm) Anom Anom Pieto Total Vouch LENGTH (mm) Anom Anom Montality Photo Total Vouch LENGTH (mm) Anom Anom Montality Photo Total Vouch LENGTH (mm) Anom Anom Montality Photo Total O 3 J Piezo O D Immediate 3 I Piezo O O O Immediate Piezo 5 I Piezo O O O O Piezo Piezo 5 I Piezo O O O O Piezo
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
10 2 90 130 0 0 3 0 3ee 325 0 0 1m6c032e-37 3 1 1e 2se 0 0 1m6c038 3 1 1e 2se 0 0 5 1 1m6c038 0 0 5 1 1m6c038 0 0 6 1 1m6c038 0 0 7 1 1m6 2m0 0 9 1 1m6 1m6c038 1 1m6 1m6 0 1 1m6 1m6 0 1 1m6 1m6 1 1m6
3 0 300 325 0 0 1m6:0032.e37 1 0 500 0 0 1m6:0036 3 1 1m6:0036 0 0 0 5 1 1m6:0036 0 0 0 5 1 1m6:0036 0 0 0 5 1 1m6:026 0 0 0 6 1 1m6:026 0 0 0 1 1m6:026 1 1m6:026 0 0 1 1m6:026 1m6:026 1m6:026 0 0 1 1m6:026 1m6:026 1m6:026 0 0 0 1 1m6:026 1m6:026 1m6:026 1m6:026 0 0 0
1 0 500 0 0 3 1 140 230 0 0 5 1 180 270 0 0 5 1 180 270 0 0 5 1 180 270 0 0 5 1 180 270 0 0 1 180 270 0 0 1 180 270 0 0 1 180 270 0 0 1 180 270 0 0 1 180 270 0 0 1 180 270 0 0 1 180 270 0 0
3 1 190 250 0 0 5 1 180 270 0 0 1 180 270 0 0
S I Iso 270 0 Image: Second state Image: Second stat
Flag

Figure 6.5-2. Fish Collection Form for Large Wadeable Streams (Subreach A-B).

6.5.3 Sampling Procedure

At sites with a total reach length <500m, fishing will occur continuously for all habitats along the entire sample reach (40 times the average stream width), regardless of catch. At sites with a total reach length >500 m, sampling is accomplished using subreaches so that effort is distributed along the entire reach. In these streams, electrofishing will occur in sample zones beginning the zero mark at each transect on alternating banks (Figure 6.5-3). Determination of the initial stream bank sampling location at transect A (i.e., right or left bank) is determined at random. The crew should consist of one electrofishing operator, and one dip netter and an optional bucket carrier (who may also have a net to aid in transferring fish to the livewell). Sampling will proceed in an upstream direction from transect to transect.

The total reach extent fished in large wadeable streams (\geq 12.5 m) is a minimum reach length of 20 times the average stream width (20X) and a maximum reach length of 40 times the average stream width (40X). The subsampling routine is similar to boatables. Fish each subreach for a maximum of 700 seconds or until the next transect is reached. Begin sampling at a randomly determined bank at the beginning of the subreach and fish an area approximately 8m wide in an upstream direction. Fish the subreach thoroughly, covering bank habitat as well as midstream habitat for a maximum of 700 seconds. When 700 seconds are reached, stop electrofishing unless you are "pushing" a large school of fish, in which case continue fishing until you capture them (typically at some form of structure or physical barrier). At a minimum, 5 subreaches or 20 times the mean channel width is sampled. If 500 individuals are caught within this 20X, you may stop sampling. If not, continue sampling subreaches on alternating banks until 500 individuals are captured. Crews must complete each of the additional subreaches as described above, do not stop in the middle of any subreach, even if the 500 fish minimum is attained before the end of the subreach. To reduce stress and mortality, immobilized fish should be netted immediately and deposited into a live-well for processing. For safety, all crew members are required to wear non-breathable waders and insulated gloves. Polarized sunglasses and caps to aid vision are also required. Table 6.5-2 presents the procedure for electrofishing in wadeable streams.

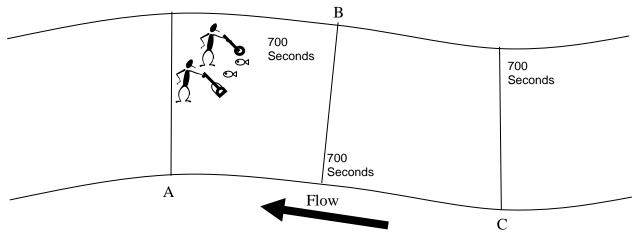


Figure 6.5-3. Transect sample design for fish sampling at wadeable sites ≥500 m (≥12.5m width).

Table 6.5-2. Procedure for electrofishing at wadeable sites <500 m

- 1. Review all collecting permits to determine if any sampling restrictions are in effect for the site. In some cases, you may have to cease sampling if you encounter certain listed species.
- 2. Search for fish even if the stream is extremely small, and it appears that sampling may produce no specimens. If none are collected, check the "NONE COLLECTED" circle on the Fish Collection Form. Explain why in comments section. Although not required, you may note amphibians and reptiles captured in the Comments.
- 3. Backpack and barge tote electrofishing will be used in wadeable streams, and direction of fishing will be in an upstream manner. If you do not sample, complete the "NOT FISHED" field on the Fish Collection Form and comment why.
- 4. At sites with a total reach length **<500 m**, fishing will occur continuously for all habitats along the entire sample reach. No subsampling.
- 5. Set unit to pulsed DC. Select initial voltage setting (150-400 V for high conductivity [>300 S/cm]; 500-800 V for medium conductivity [100 to 300 S/cm]; 900-1100 V for low conductivity [< 100 S/cm] waters). In waters with strong-swimming fish (length >200 mm), use a pulse rate of 30 Hz with a pulse width of 2 m/sec. If mostly small fish are expected, use a pulse rate of 60-70 Hz. Start the electrofisher, set the timer, and depress the switch to begin fishing. If fishing success is poor, increase the pulse width first and then the voltage. Increase the pulse rate last to minimize mortality or injury to large fish. If mortalities occur, first decrease pulse rate, then voltage, then pulse width. Start cleared clocks. Note, some electrofishers do not meter all the requested header data; provide what you can. If button time is not metered, estimate it with a stop watch and flag the data.
- 6. Once the settings on the electrofisher are adjusted properly to sample effectively and minimize injury and mortality, begin sampling at the downstream end of the reach (Transect A) and fish in an upstream direction. Depress the switch and slowly sweep the electrode from side to side. Sample all habitats and available cut-bank and snag habitat as well. Move the anode wand into cover with the current off, turn the anode on when in the cover, and then remove the wand quickly to draw fish out. In fast, shallow water, sweep the anode and fish downstream into a net. Be sure that deep, shallow, fast, slow, complex, and simple habitats are all sampled. In stretches with deep pools, fish the margins of the pool as much as possible, being extremely careful not to step or slide into deep water. Keep the cathode near the anode if fish catch is low.
- 7. Depending upon crew size, there may be from 2 to 3 people fishing small wadeable sites. Crews may choose to have more than one person holding a net, but *no more than one person should be netting at any one time*. For example, in a wide stream there may be a netter on both sides of an operator. As the operator moves the probe from the left bank to the right bank the netters will remain on one side or the other and only one netter will be actively netting at any one time. The same fishing effort can be accomplished with 1 netter moving from side to side with the probe.
- 8. The netter, with the net 1 to 2 ft from the anode, follows the operator, nets stunned individuals, and places them in a bucket.
- 9. Continue upstream until the next transect is reached. Process fish and/or change water after each subreach to reduce mortality and track sampling effort.
- 10. Complete header information on the Fish Collection Form Small Wadeable.
- 11. Repeat Steps 6 through 9 until the last subreach is finished.

Table 6.5-3. Procedure for electrofishing at wadeable sites >500 m

- 1. Review all collecting permits to determine if any sampling restrictions are in effect for the site. In some cases, you may have to cease sampling if you encounter certain listed species.
- 2. Search for fish even if the stream is extremely small, and it appears that sampling may produce no specimens. If none are collected, check the "NONE COLLECTED" circle on the Fish Collection Form. Explain why in comments section. Although not required, you may note amphibians and reptiles captured in the Comments.
- 3. Backpack and barge tote electrofishing will be used in wadeable streams, and direction of fishing will be in an upstream manner. If you do not sample, complete the "NOT FISHED" field on the Fish Collection Form and comment why.
- 4. Fishing will occur in sample zones of approximately 8M in width with the zero mark at each transect on alternating banks.
- 5. Set unit to pulsed DC. Select initial voltage setting (150-400 V for high conductivity [>300 S/cm]; 500-800 V for medium conductivity [100 to 300 S/cm]; 900-1100 V for low conductivity [< 100 S/cm] waters). In waters with strong-swimming fish (length >200 mm), use a pulse rate of 30 Hz with a pulse width of 2 m/sec. If mostly small fish are expected, use a pulse rate of 60-70 Hz. Start the electrofisher, set the timer, and depress the switch to begin fishing. If fishing success is poor, increase the pulse width first and then the voltage. Increase the pulse rate last to minimize mortality or injury to large fish. If mortalities occur, first decrease pulse rate, then voltage, then pulse width. Start cleared clocks. Note, some electrofishers do not meter all the requested header data; provide what you can. If button time is not metered, estimate it with a stop watch and flag the data.
- 6. Once the settings on the electrofisher are adjusted properly to sample effectively and minimize injury and mortality, begin sampling at the downstream end of the reach (Transect A). Randomly choose a bank on which to start and fish in an upstream direction within 8 M of the chosen bank. Depress the switch and slowly sweep the electrode from side to side sampling all habitats thoroughly and available cut-bank and snag habitat as well. Move the anode wand into cover with the current off, turn the anode on when in the cover, and then remove the wand quickly to draw fish out. In fast, shallow water, sweep the anode and fish downstream into a net. Be sure that deep, shallow, fast, slow, complex, and simple habitats are all sampled. In stretches with deep pools, fish the margins of the pool as much as possible, being extremely careful not to step or slide into deep water. Keep the cathode near the anode if fish catch is low.
- 7. When using a barge or pram, the minimum crew size for electrofishing is three. The barge operator must remain actively at the control box and navigate the barge. The probe operator will use one probe. Depending upon crew size, there may be from 1 to 2 people additional crew members. Crews may choose to have more than one person holding a net, but no more than one person should be netting at any one time. For example, in a wide stream there may be a netter on both sides of an operator. As the operator moves the probe from the left bank to the right bank the netters will remain on one side or the other and only one netter will be actively netting at any one time. The idle netter can assist the active netter by depositing fish into the live well. The same fishing effort can be accomplished with one netter moving from side to side with the probe.
- 8. Continue upstream for a maximum of 700 seconds. Process fish *after each transect* to reduce mortality and track sampling effort by transect.
- 9. Continue sampling subreaches at alternating banks until Transect F is reached. If less than 500 fish have been collected from the first five subreaches, continue sampling additional subreaches along alternating banks until 500 individuals are captured, or at a maximum, subreach J-K is finished. Crews must complete each of the additional subreaches as described above, do not stop in the middle of any subreach, even if the 500 fish minimum is attained before the end of the subreach.
- 10. Complete header information on the Fish Collection Form Large Wadeable/Boatable/Raftable.

6.5.4 Processing Fish

Processing of fish must be completed at the end of each transect; however, if fish show signs of stress (e.g., loss of righting response, gaping, gulping air, excessive mucus), change water or stop fishing and initiate processing. Similarly, State- and Federally-listed threatened or endangered species or large game fish should be processed and released as they are captured. If periodic processing is required, fish should be released in a location that prevents the likelihood of their recapture.

For streams <12.5 m wide, use the Fish Collection Form Small Wadeable. For streams ≥12.5 m wide, use the Fish Collection Form – Large Wadeable/Boatable/Raftable. Taxonomic identification and processing should only be completed on specimens greater than 25 mm total length and by crew members designated as "fish taxonomic specialists" by EPA regional coordinators. Fish are tallied by species, evaluated for maximum and minimum length, and examined for the presence of DELT (Deformities, Eroded Fins, Lesions and Tumors) anomalies. Common names of species should follow those established under the American Fisheries Society's publication, "Common and Scientific Names of Fishes from the United States, Canada and Mexico" (Nelson, et al. 2004). A list of species common to freshwater systems of the United States is presented in Appendix D.

Species not positively identified in the field should be separately retained (up to 20 individuals per species) for laboratory identification. Common names for retained species should be assigned as "unknown", followed by its common family name and sequential lettering to designate separate species (e.g., UNKNOWN SCULPIN A). For large wadeable streams, each transect has its own form. Following positive laboratory identification, field form information should be updated to reflect the actual species count and number in the Final Count field. For example, if a sample of 20 specimens of species A is later identified as 15 individuals of species A and 5 of species B, the Final Count of species A should be corrected by assigning 25% to species B and 75% to species A. Table 6.5-4 presents the procedure for processing fish.

Table 6.5-4. Procedure for processing fish at wadeable sites

- 1. Complete all header information accurately and completely. If no fish were collected, complete the "NONE COLLECTED" field on the Fish Collection Form.
- 2. Complete the information on the Fish Gear and Voucher/Tissue Sample Information Form.
- 3. For small wadeable streams (<12.5 m) use the Fish Collection Form Small Wadeable. For large wadeable streams (≥12.5 m) use the Fish Collection Form Large Wadeable/Boatable/ Raftable.
- 4. For small wadeables, use one form for the entire reach.
- 5. For large wadeables, use one form per subreach and indicate Subreach on form in "SUBREACH" Field.
- Only identify and process individuals > 25mm in total length, ideally handling specimens only once. Record the common name on the first blank line in the "COMMON NAME" Field of the Fish Collection Form.
- 7. Fill in the Tag Number. The tag number is a number starting with 01 and continuing sequentially to a number equal to the total number of species collected within the entire sample reach. Each reoccurrence of a species within the entire reach should be assigned the same tag number as it was assigned initially. For example, if a bluegill is assigned tag number 01 when processing fish from the first subreach, all bluegills from the other subreaches will also be assigned tag number 01. The purpose of the tag number is to connect species identifications with subsequent verification and

voucher collections.

- 8. If a species cannot be positively identified, assign it a sequential tag number in the Tag Number Field and leave the "COMMON NAME" Field Blank. Flag this line and indicate in the "COMMENT" field its common family name (e.g., UNKNOWN SCULPIN A). Retain a maximum subsample of 20 individuals for in-house laboratory identification of Unknowns. Do not include the number of each species retained solely for in-house lab verification in the Voucher Count column of the fish collection form. This column is reserved only for those fish that are to be sent in for independent reidentification as part of a complete voucher collection.
- 9. Process species listed as threatened and endangered first and return individuals immediately to the stream. Photograph specimens for verification purposes if conditions permit and stress to individuals will be minimal. Indicate if photographed on Fish Collection Form. If individuals are killed, prepare them as verification specimens and preserve noting them in the "MORTALITY COUNT" field.
- 10. Tally the number of individuals of each species collected in the "TALLY" box on the Fish Collection Form and record the total number in the "COUNT" field on the form.
- 11. Measure the total length of the largest and smallest individual to provide a size range for the species. Record these values in the "LENGTH" area of the Fish Collection Form. For small wadeables, this is done for the entire reach. For large wadeables, this is recorded by transect.
- 12. Examine each individual for external anomalies and tally those observed. Identify external anomalies including missing organs (eye, fin), skeletal deformities, shortened operculum, eroded fins, irregular fin rays or scales, tumors, lesions, ulcerous sores, blisters, cysts, blackening, white spots, bleeding or reddening, excessive mucus, and fungus. After all of the individuals of a species have been processed, record the total number of individuals affected in the "ANOMALIES" area of the Fish Collection Form. For small wadeables, this is done for the entire reach. For large wadeables, this is recorded by transect
- 13. Record total number of mortalities in the "MORTALITY COUNT" field due to electrofishing or handling on the Fish Collection Form.
- 14. Follow the appropriate procedure to prepare voucher specimens and/or to select specimens for tissue samples. Release all remaining individuals so as to avoid their recapture.
- 15. For any line with a fish name on the Fish Collection Form, ensure that all spaces on that line are filled in with a number, even if it is zero.
- 16. Repeat Steps 1 through 10 for all other species and subreaches.

6.5.5 Taxonomic Quality Assurance/Quality Control

6.5.5.1 Sample Preservation

Fish retained for laboratory identification/verification or voucher purposes should be placed in a large sample jar containing a 10% buffered formalin solution in a volume equal to or greater than the total volume of specimens. Individuals larger than 200 mm in total length should be slit along the right side of the fish in the lower abdominal cavity to allow penetration of the solution.

Fish retained for laboratory identification or as vouchers should be preserved in the field following the precautions outlined in the MSDS. All personnel handling 10% buffered formalin must read the MSDS (Appendix D). Formalin is a potential carcinogen and should be used with extreme caution, as vapors and solution are highly caustic and may cause severe irritation on contact with skin, eyes, or mucus membranes. Wear vinyl or nitrile gloves and safety glasses, and always work in a well-ventilated area.

6.5.5.2 Laboratory Identification

Fish that are difficult to identify in the field should be kept for laboratory identification or to verify difficult field identifications. Table 6.5-5 outlines the laboratory identification process and completing the Fish Collection Form. Field crews may use a supplemental Fish Identification Lab sheet such as that shown in Figure 6.5-4 for internal laboratory use only. Crews should retain the Fish verification sample – contact your regional EPA coordinator if you cannot store the samples at your facility.

Do not include the number of each species retained solely for in-house lab verification in the Voucher Count column of the fish collection form. This column is reserved only for those fish that are to be sent in for independent re-identification as part of a complete voucher collection.

Field crews should not retain the Fish Collection Form(s) if the laboratory identification process cannot be completed within a short period of time. If the time needed to complete the identification/verification is expected to exceed two weeks, make copies of the Fish Collection Form(s) and send the entire pack of original data forms to the Information Management Coordinator. When the identification/verification process is complete, make the necessary changes to the copied Fish Collection Form(s) and send them as soon as possible to the Information Management Coordinator as well.

Table 6.5-5. Procedure for laboratory identification of fish samples.

- 1. Fish may be retained for routine laboratory identification and verification purposes. Fish tags are provided with each site kit. Crews may use these tags at their discretion in order to identify fish at their laboratory.
- 2. Retained fish should be placed in a large sample jar containing a 10% buffered formalin solution in a volume equal to or greater than the total volume of specimens. Individuals larger than 200mm in total length should be slit along the right side of the fish in the lower abdominal cavity to allow penetration of the solution.
- 3. Following fixation for 5 to 7 days, the volume of formalin should be properly discarded and replaced with tap water for soaking specimens over a 4-5 day period. Soaking may require periodic water changes and should continue until the odor of formalin is barely detectable. Final storage of specimens is done in 45%-50% isopropyl alcohol or 70% ethanol. Formalin is a potential carcinogen and should be used with extreme caution, as vapors and solution are highly caustic and may cause severe irritation on contact with skin, eyes, or mucus membranes. Wear vinyl or nitrile gloves and safety glasses, and always work in a well-ventilated area.
- 4. Formalin must be disposed of properly. Contact your regional EPA coordinator if your laboratory does not have the capability of handling waste formalin.
- 5. Unknown fish are identified to species in the laboratory. You may use a Fish Identification Lab Sheet such as the one presented in Figure 6.5-4.
- 6. Fill in the Unknown species name in the "COMMON NAME" field of the Fish Collection Form and make certain the "FINAL COUNT" field is correct.
- 7. If species field identifications were incorrect, correct the "COMMON NAME" Field by completely erasing the Common Name and replacing the correct name. Add an additional Common Name if needed. Make certain the "FINAL COUNT" field is correct. If the "COMMON NAME" Field was incorrect or cannot be cleanly erased, cross out the line of data and fill out a new line with the

correct "COMMON NAME" and "FINAL COUNT".

6.5.5.3 Voucher Specimens

Approximately 10% of each field crews' sites will be randomly pre-selected for reidentification by an independent taxonomist. A minimum of one complete voucher is required for each person performing field taxonomy and will consist of either preserved specimen(s) or digital images representative of all species in the sample, including common species. Multiple specimens per species can be used as vouchers, if necessary (i.e., to document different life or growth stages, or sexes). Note that a complete sample voucher does not mean that all individuals of each species will be vouchered, only enough so that independent verification can be achieved.

Digital images should be taken as voucher documentation for species that are recognized as Rare, Threatened, or Endangered – they should not be killed. Digital images should also be taken of fish specimens too large for preservation.

Certain states or regions may require that more fish vouchers are taken. Check with your state/regional coordinators to determine if your team will be required to collect complete vouchers at more than 10% or your sites.

For the sample voucher, specimen containers should be labeled with the sample number, site ID number, site name, and collection date. There should be <u>no taxonomic</u> <u>identification</u> labels in or on the container, or in any of the digital photos.

Choose individual specimens that are intact and in good condition, such that reidentification will be possible. Fish that are damaged, have significant scale loss or those that have been dead for a significant amount of time prior to preservation should be avoided if possible. Fish in pristine condition and those possessing clear identification characteristics are preferred. Additionally, fish that are preserved while still live will typically flare their fins and gills and will allow for easier re-identification in the laboratory.

Place one or more representative specimens of each species in plastic mesh sleeves along with one of the corresponding tag number labels provided in your site kit. (Several fish may be placed in a single mesh sleeve, as long as they are of the same species). Ensure that the tag numbers in the voucher collection match the tag numbers on the fish collection data forms. Seal both ends of the mesh sleeve with zip ties and place it inside the voucher collection jar with the appropriate preservative. Unknown fish may be identified in the laboratory as described in section 5.5.5.2 and subsequently included in the voucher collection.

Record the total number of each fish species retained for voucher purposes in each subreach on the fish collection form. Record the voucher sample ID number on the fish gear / voucher / fish tissue collection form. If no voucher is prepared for the site, fill in the "no vouchers preserved" circle on the fish gear form.

Table 6.5-6. Procedure for vouchering fish samples.

1. Approximately 10% of each field crews' sites will be randomly pre-selected for re-identification by

an independent taxonomist. A minimum of one complete voucher is required for each person performing field taxonomy and will consist of either preserved specimen(s) and/or digital images representative of all species in the sample, even common species.

- 2. Take digital images as voucher documentation for species that are recognized as Rare, Threatened, or Endangered; or when fish specimens are too large for preservation.
- 3. For the sample voucher, label the specimen containers with the sample number, site ID number, site name, and collection date. Do not put taxonomic identification labels in or on the container.
- 4. Place one or more representative specimens of each species in plastic mesh sleeves along with one of the corresponding tag number labels provided in your site kit. (Several fish may be placed in a single mesh sleeve, as long as they are of the same species).
- 5. Ensure that the tag numbers in the voucher collection match the tag numbers on the fish collection data forms.
- 6. Seal both ends of the mesh sleeve with zip ties and place it inside the voucher collection jar with the appropriate preservative.
- 7. Unknown fish may be identified in the laboratory as described in section 5.5.5.2 and subsequently included in the voucher collection.
- 8. Record the total number of each fish species retained for voucher purposes in each subreach on the fish collection form.
- 9. Record the voucher sample ID number on the fish gear / voucher / fish tissue collection form.

10. If no voucher is prepared for the site, fill in the "no vouchers preserved" circle on the fish gear form.

6.5.5.4 Photovouchering

Digital imagery should be used for fish species that cannot be retained as preserved specimens (e.g., RTE species; very large bodied; or very common). Views appropriate and necessary for an independent taxonomist to accurately identify the specimen should be the primary goal of the photography. Additional detail for these guidelines is provided in Stauffer et al. (2001), and is provided to all field crews as a handout.

The recommended specifications for digital images to be used for photovouchering include: 16-bit color at a minimum resolution of 1024x768 pixels; macro lens capability allowing for images to be recorded at a distance of less than 4 cm; and built-in or external flash for use in low-light conditions. Specimens should occupy as much of the field of view as possible, and the use of a fish board is recommended to provide a reference to scale (i.e., ruler or some calibrated device) and an adequate background color for photographs. Information on Station ID, Site Name, Date and a unique species ID (i.e., A, B, C, etc.) should also be captured in the photograph, so that photos can be identified if file names become corrupted. All photovouchered species should have at least a full-body photo (preferably of the left side of the fish) and other zoom images as necessary for individual species, such as lateral line, ocular/oral orientation, fin rays, gill arches, or others. It may also be necessary to photograph males, females, or juveniles.

Images should be saved in medium- to high-quality jpeg format, with the resulting file name of each picture noted one the Fish Collection Form. It is important that time and date stamps are accurate as this information can also be useful in tracking the origin of photographs. It is recommended that images stored in the camera be transferred to a PC or storage device at the first available opportunity. At this time the original file should be renamed to follow the logic presented below:

F01_CT003_20080326_A.jpg

Where: **F** = fish **01** = tag number **CT003** = state (Connecticut) and site number **20080326** = date (yyyymmdd) **A** = first of several pictures of same fish (e.g., A, B, C)

Field crews should maintain files for the duration of the sampling season. Notification regarding the transfer of all images to the existing database will be provided at the conclusion of the sampling.

Fish	Identification	Lab	Sheet
1 1011	i a ci i i i i ca i ci i i i	LUD	Oncou

Site	ID	Date Coll	ected/_	/	Date(s)		
Identified/ID'd by Preservative(Field/Lab) Keys							
Used Date Data Corrected on Field Sheet// Initials							
Tag	Photo (P)	Common	Common	Count	Transect	PhotoFile	PhotoFile
no.	or	Name	Name		(if known)	(Field)	(Final)
	Specimen	(Field)	(Lab)				
	(S)						
-							

Figure 6.5-4. Fish Identification Lab Sheet.

6.6 Fecal Indicator (Enterococci)

6.6.1 Summary of Method

You will collect a fecal indicator sample at the last transect (Transect K) after all other sampling is completed. Use a pre-sterilized, 250 ml bottle and collect the sample approximately 1 m off the bank at about 0.3 meter (12 inches) below the water. Following collection, place the sample in a cooler, chill for at least 15 minutes, and maintain on ice prior to filtration of four 50 mL volumes. (Samples must be filtered and frozen on dry ice within 6 hours of collection). In addition to collecting the sample, look for signs of disturbance throughout the reach that would contribute to the presence of fecal contamination to the waterbody. Record these disturbances on the Site Assessment Form (Figure 7-2).

6.6.2 Equipment and Supplies

Table 6.6-1 provides the equipment and supplies needed for field crews to collect the fecal indicator sample. Record the fecal indicator sample data on the Sample Collection Form (Figure 6.1-3).

For collecting samples	 nitrile gloves pre-sterilized, 250 ml sample bottle sodium thiosulfate tablet Wet ice cooler
For recording measurements	 Sample Collection Form Site Assessment Form Fecal Indicator sample labels (4 vial labels and 1 bag label) Pencils (for data forms) Fine-tipped indelible markers (for labels) Clear tape strips

Table 6.6-1. Equipment and supplies list for fecal indicator sampling at wadeable sites

6.6.3 Sampling Procedure

Table 6.6-2 provides the procedure for collecting fecal indicator (i.e., Enterococci) samples at wadeable sites.

Table 6.6-2. Procedure for fecal indicator (Enterococci) sample collection at wadeable sites

Collect the Enterococci Sample

- 1. Put on nitrile gloves.
- 2. Select a sampling location at transect K that is approximately 1 m from the bank and approximately 1 m deep. Approach the sampling location slowly from downstream or downwind.
- 3. Lower the un-capped, inverted 250 ml sample bottle to a depth of 1 foot below the water surface, avoiding surface scum, vegetation, and substrates. Point the mouth of the container away from the body or boat. Right the bottle and raise it through the water column, allowing bottle to fill completely. If the depth does not reach 1 foot along the transect at 1 m from the bank, take the sample and flag it on the field form.

- 4. After removing the container from the water, discard a small portion of the sample to allow for proper mixing before analyses.
- 5. Add the sodium thiosulfate tablet, cap, and shake bottle 25 times.
- 6. Store the sample in a cooler on ice to chill (not freeze). Chill for at least 15 minutes and do not hold samples longer than 6 hours before filtration and freezing.

7.0 FINAL SITE ACTIVITIES

The activities described in this section apply to both wadeable and non-wadeable sites. Prior to leaving the site, make a general visual assessment of the site and its surrounding catchment. The objective of the site assessment is to record observations of catchment and site characteristics that are useful for future data interpretation, ecological value assessment, development of associations, and verification of stressor data. Your observations and impressions are extremely valuable.

You will filter and process the fecal indicator, *chlorophyll a*, and periphyton samples. Conduct a final check of the data forms, labels and samples. The purpose of the second check of data forms, labels and samples is to assure completeness of all sampling activities. Finally, clean and pack all equipment and supplies, and clean the launch site and staging areas. After you leave the site, report the sampling event to the Information Management Coordinator, and ship or store the samples. Activities described in this section are summarized in Figure 7-1.

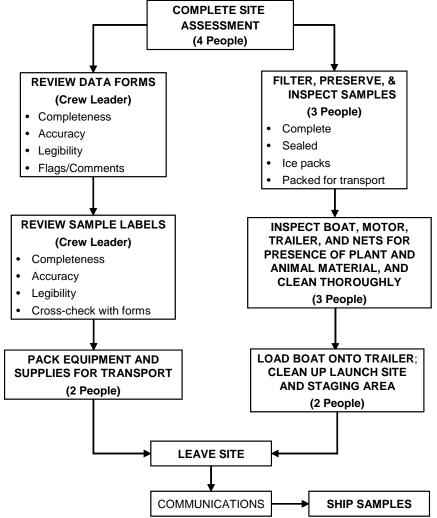


Figure 7.1. Final site activities summary.

7.1 General Site Assessment

Complete the Site Assessment Form (Figure 7-2) after sampling, recording all observations from the site that were noted during the course of the visit. This Site Assessment Form is designed as a template for recording pertinent field observations. It is by no means comprehensive, and any additional observations should be recorded in the General Assessment section.

7.1.1 Watershed Activities and Disturbances Observed

Record any of the sources of potential stressors listed in the "Watershed Activities and Disturbances Observed" section on the Site Assessment Form (Figure 7-2). Include those that were observed while on the site, while driving or walking through the site and catchment, or while flying over the site and catchment. For activities and stressors that you observe, rate their abundance or influence as low (L), moderate (M), or heavy (H) on the line next to the listed disturbance. Leave the line blank for any disturbance not observed. The distinction between low, moderate, and heavy will be subjective. For example, if there are two to three houses on a site, circle "L" for low next to "Houses." If the site is ringed with houses, rate it as heavy (H). Similarly, a small patch of clear-cut logging on a hill overlooking the site would rate a low ranking. Logging activity right on the site shore, however, would get a heavy disturbance ranking. This section includes residential, recreational, agricultural, industrial, and stream management categories.

7.1.2 Site Characteristics

Record observations regarding the general characteristics of the site on the Site Assessment Form (Figure 7-2). When assessing these characteristics, look at a 200 m riparian distance on both banks. Rank the site between "pristine" and "highly disturbed", and between "appealing" and "unappealing." Document any signs of beaver activity and flow modifications. Record the dominant land use and forest age class. Document the weather conditions on the day of sampling, and any extreme weather conditions just prior to sampling.

7.1.3 General Assessment

Record any additional information and observations in this narrative section. Information to include could be observations on biotic integrity, vegetation diversity, presence of wildlife, local anecdotal information, or any other pertinent information about the site or its catchment. Record any observations that may be useful for future data interpretation.

FV	V08 XX 000		DATE: 0.7. 1.0	1 1 2 0 0 8
WATERSHED AC	TIVITIES AND DISTURBANC	CES OBSERVED (Int	ensity: Blank=Not observed	L=Low, M=Moderate, H=Heavy)
Residential	Recreational	Agricultural	Industrial	Stream Management
M H Residences M H Maintained La L M H Construction	L M H Primitive Parks, Camping		L M H Industrial Plant L M H Mines/Quarries L M H Ol//Gas Welts	L M H Chemical Treatment L M H Angling Pressure
L M H Pipes, Drains L M H Dumping M H Roads L M H BridgerCulver	L M H TrashUtter L M H Surface Films	L M H Orchards L M H Poultry L M H Irrigation Equip L M H Water Withdraw		L M H Dredging L M H Channelization L M H Water Level Fluctuations L M H Fish Stocking
L M H Sewage Treat	ment		L M H Commercial	L M H Dams
	SITE C	HARACTERISTICS (200	m radius)	
Waterbody Character		5 S S S S S	03 02 01 03 02 01	Highly Disturbed Unappealing
Beaver	Beaver Signs Beaver Flow Modifications) Rare O Comi) Minor O Majo	
Dominant Land Use	Dominant Land Use Around 'X' O Forest If Forest, Dominant Age Class O 0 - 25 yrr	 ○ Agriculture s. ○ 25 - 75 yrs. 	 Range O Urbar O > 75 yrs. 	O Suburban/Town
	CLEAR, AIR TEMP 24 HOURS.	28° C AT 11 .	AM. LIGHT RA	IN IN THE
PREVIOUS GEI RIPARIAN DAM LOCI AWAY BY BIRDS O OBSERVE		TREAM OF) DIN 1996. DURING 1 SERS, BUT	n diversity, Local anecdo Local Cowtac K-SITE THAT NO SIGNS OF FAIS VISIT: NO EVIDENCE	tal information) T REMEMBERS A WAS WASHED T EITHER COWS AND SHEEP OF NEAR OR
PREVIOUS GEI RIPARIAN DAM LOCI AWAY BY BIRDS O OBSERVE	24 HOURS. NERAL ASSESSMENT (Bid TREES AFE CLASS MIED JUST POWNS A LARGE FLOOD R OTHER WILDLIFE IN LOW NUMB	TREAM OF) DIN 1996. DURING 1 SERS, BUT	n diversity, Local anecdo Local Cowtac K-SITE THAT NO SIGNS OF FAIS VISIT: NO EVIDENCE	tal information) T REMEMBERS A WAS WASHED T EITHER COWS AND SHEEP OF NEAR OR

Figure 7.2. Site Assessment Form.

7.2 Processing the Fecal Indicator, *Chlorophyll a*, and Periphyton Samples

7.2.1 Equipment and Supplies (Fecal Indicator)

Table 7-1 provides the equipment and supplies needed for field crews to collect the fecal indicator sample.

For processing samples	 Nitrile gloves sterile screw-cap 50-mL centrifuge tube Sterile filter holder, Nalgene 145/147 Vacuum pump (electric pump may be used if available) Sterile phosphate buffered saline (PBS) Osmotics 47 mm polycarbonate 0.4 µm sterile filters Sterile disposable forceps 4 sterile microcentrifuge tubes containing sterile glass beads Dry ice Cooler Field Operations Manual or laminated Quick Reference Guide
For recording measurements	 Sample Collection Form Soft (#2) lead pencils for recording data on field forms Fine-tipped indelible markers for filling out sample labels Fecal Indicator sample labels (4 vial labels and 1 bag label) Clear tape strips for covering labels

 Table 7.1.
 Equipment and supplies list for fecal indicator sample

7.2.2 Procedures for Processing the Fecal Indicator Sample

The fecal indicator sample **must** be filtered **before** the *chlorophyll a* and periphyton samples, since the filtering apparatus needs to be sterile for this sample. The procedures for processing the fecal indicator sample are presented in Table 7-2. The sample must be filtered and frozen within 6 hours of collection.

Table 7.2. Processing procedure—fecal indicator sample

Processing procedure—fecal indicator <u>filter blank</u> (to be done at Revisit sites only)

Enterococci filter blanks will be prepared at all revisit sites during the first visit (see Fig. 8-1). Prepare the filter blanks **before** filtering the river sample.

- 1. Set up sample filtration apparatus using same procedure as used for the river sample. Chill Filter Extraction tubes with beads on dry ice.
- 2. Aseptically transfer 4 polycarbonate filters from filter box to base of opened Petri dish. Close filter box and set aside.
- 3. Remove cellulose nitrate (CN) filter (the filter with grid design on it) from funnel and discard. Be sure to leave the support pad in the filter funnel.
- 4. Load filtration funnel with sterile polycarbonate filter on support pad (shiny side up).
- 5. Measure 10-mL of the chilled phosphate buffered saline (PBS) in the sterile graduated centrifuge tube and pour into filter funnel.
- 6. Replace cover on filter funnel and pump to generate a vacuum (do not generate more than 7 inches

Table 7.2. Processing procedure—fecal indicator sample

- of Hg of pressure). Keep pumping until all liquid is in filtrate collection flask.
- 7. Remove filter funnel from base without disturbing filter. Using sterile disposable forceps remove the filter (touching only the filter edges) and fold it in half, in quarters, in eighths, and then in sixteenths (filter will be folded 4 times).
- 8. Insert filter into chilled filter extraction tube (with beads) open end down. Replace and tighten the screw cap, insert tube(s) into bubble wrap bag on dry ice for preservation during transport and shipping.
- 9. Label the samples as "blank" on the label and field form, and package and submit these samples to the lab with the standard samples.
- 10. Repeat steps 4 to 9 for the remaining three 10-mL volumes of PBS to be filtered.

Processing procedure—fecal indicator samples (All sites)

- 1. Put on nitrile gloves.
- Set up sample filtration apparatus on flat surface and attach vacuum pump. Set-out 50-mL sterile centrifuge tube, sterile 60-mm Petri dish, 2 bottles of chilled phosphate buffered saline (PBS), Osmotics 47 mm polycarbonate sterile filter box, and 2 filter forceps.
- 3. Chill Filter Extraction tubes with beads on dry ice.
- 4. Aseptically transfer 4 polycarbonate filters from filter box to base of opened Petri dish. Close filter box and set aside.
- 5. Remove cellulose nitrate (CN) filter (the filter with grid design on it) from funnel and discard. Be sure to leave the support pad in the filter funnel.
- 6. Load filtration funnel with sterile polycarbonate filter on support pad (shiny side up).
- 7. Shake sample bottle(s) 25 times to mix well.
- 8. Measure 25-mL of the mixed water sample in the sterile graduated centrifuge tube and pour into filter funnel.
- 9. Replace cover on filter funnel and pump to generate a vacuum (do not generate more than 7 inches of Hg of pressure). Keep pumping until all liquid is in filtrate collection flask.
- 10. If the first 25 mL volume passes readily through the filter, add another 25 mL and continue filtration. If the filter clogs before completely filtering the first or second 25 mL volume, discard the filter and repeat the filtration using a lesser volume.
- 11. Pour approx. 10-mL of the chilled phosphate buffered saline (PBS) into the graduated PP tube used for the sample. Cap the tube and shake 5 times. Remove the cap and pour rinsate into filter funnel to rinse filter.
- 12. Filter the rinsate and repeat with another 10 mL of phosphate buffered saline (PBS).
- 13. Remove filter funnel from base without disturbing filter. Using sterile disposable forceps remove the filter (touching only the filter edges) and fold it in half, in quarters, in eighths, and then in sixteenths (filter will be folded 4 times).
- 14. Insert filter into chilled filter extraction tube (with beads) open end down. Replace and tighten the screw cap, insert tube(s) into bubble wrap bag on dry ice for preservation during transport and shipping.
- 15. Record the volume of water sample filtered through each filter and the volume of buffer rinsate each filter was rinsed with on the Sample Collection Form, Side 2. Record the filtration start time and finish time for each sample.
- 16. Repeat steps 6 to 15 for the remaining three 50-mL sub-sample volumes to be filtered.

7.2.3 Equipment and Supplies (*Chlorophyll a* from Water Sample)

Table 7-3 provides the equipment and supplies needed to process the *chlorophyll a* water sample.

Table 7.3.	Equipment and supplies list for chlorophyll a processing

For filtering <i>chlorophyll a</i> sample	 Whatman GF/F 0.7 µm glass fiber filter Filtration apparatus with graduated filter holder Vacuum pump (electric pump may be used if available) 50-mL screw-top centrifuge tube Aluminum foil square DI water Nitrile gloves Forceps
For recording measurements	 Sample Collection Form Sample labels #2 pencils Fine-tipped indelible markers Clear tape strips

7.2.4 Procedures for Processing the *Chlorophyll a* Water Sample

The procedures for processing *chlorophyll a* water samples are presented in Table 7-4. Whenever possible, sample processing should be done in subdued light, out of direct sunlight.

Table 7.4. Processing procedure—chlorophyll a sample

- 1. Put on nitrile gloves.
- 2. Use clean forceps to place a Whatman GF/F 0.7 µm glass fiber filter in the graduated filter holder apparatus with the gridded side of the filter facing down.
- 3. Pour 250 mL of water into the filter holder, replace the cap, and use the vacuum pump to draw the sample through the filter. If 250 mL of site water will not pass through the filter, change the filter, rinse the apparatus with DI water, and repeat the procedures using 100-mL of site water. *NOTE: IF the water is green or turbid, use a smaller volume to start with.*
- 4. Rinse the upper portion of the filtration apparatus thoroughly with DI water to include any remaining cells adhering to the sides and pump through the filter (do not exceed 7 inches of Hg). Monitor the level of water in the lower chamber to ensure that it does not contact the filter or flow into the pump.
- 5. Observe the filter for visible color. If there is visible color, proceed; if not, repeat steps 3 & 4 until color is visible on the filter or until a maximum of 2,000 mL have been filtered. Record the actual sample volume filtered on the Sample Collection Form.
- 6. Remove the bottom portion of the apparatus and pour off the water from the bottom.
- 7. Remove the filter from the holder with clean forceps. Avoid touching the colored portion of the filter. Fold the filter in half, with the colored side folded in on itself.
- 8. Place the folded filter into a 50-mL screw-top centrifuge tube and cap. Record the sample volume filtered on a chlorophyll label and attach it to the centrifuge tube. Ensure that all written information is complete and legible. Cover with a strip of clear tape. Wrap the tube in aluminum foil and place in a self-sealing plastic bag. Place this bag between two small bags of ice in a cooler.

7.2.5 Equipment and Supplies (Periphyton Sample)

Table 7-5 lists the equipment and supplies needed to process the periphyton sample.

Table 7.5.	Equipment and supplies list for periphyton sample processing

-		
For filtering	• Whatman 47 mm 0.7 micron GF/F glass fiber filter	 Aluminum foil squares
periphyton	• Whatman 47 mm 1.2 micron GF/C glass fiber filter	 Forceps
samples	 Filtration apparatus with graduated filter holder 	 deionized water in wash bottle
	 Vacuum pump (electric pump may be used) 	 plastic electrical tape
	 25 or 50-mL graduated cylinder 	 dry ice
	4 50 mL screw-top centrifuge tubes	 wet ice
	 60-mL syringe 	 coolers
For data	 Sample Collection Form 	 Fine-tipped indelible markers
recording	 Sample labels 	 Clear tape strips
	Pencils	

7.2.6 **Procedures for Processing the Periphyton Samples**

Four different types of laboratory samples are prepared from the composite index samples: an **ID/enumeration sample** (to determine taxonomic composition and relative

abundances), a **chlorophyll sample**, a **biomass sample** (for ash-free dry mass [AFDM]), and an **acid/alkaline phosphatase activity** (APA) sample. All the sample containers required for an individual site should be sealed in plastic bags until use to avoid external sources of contamination (e.g., dust, dirt, or mud) that are present at site shorelines.

7.2.6.1 ID/Enumeration Sample

Prepare the ID/Enumeration sample as a 50-mL aliquot from the composite index sample, following the procedure presented in Table 7-6. Preserve each sample with Lugol's. Record the sample ID number from the container label and the total volume of the sample in the appropriate fields on the Sample Collection Form as shown in Figure 5.1-2 and 6.1-2. Store the preserved samples upright in a container containing absorbent material.

Table 7.6. Procedure for ID/enumeration samples of periphyton

- Prepare a sample label (with a sample ID number) for the Periphyton ID sample. Record the volume of the subsample (typically 50 mL) and the volume of the composite index sample on the label. Attach completed label to a 50-mL centrifuge tube; avoid covering the volume graduations and markings. Cover the label completely with a clear tape strip.
- 2. Record the sample ID number of the label and the total volume of the composite index sample on the form.
- 3. Rinse a 60-mL syringe with deionized water.
- 4. Thoroughly mix the bottle containing the composite sample.
- 5. Withdraw 50 mL of the mixed sample into the syringe. Right after mixing, place the contents of syringe sample into the labeled 50-mL centrifuge tube.
- 6. Use a syringe or bulb pipette to add 1 mL Lugol's to the tube. Cap the tube tightly and seal with plastic electrical tape. Shake gently to distribute preservative.
- 7. Record the volume of the sample in the centrifuge tube (excluding the volume of preservative) in "Assemblage ID Subsample Vol." field of the Sample Collection Form.

7.2.6.2 Chlorophyll Sample

Prepare the chlorophyll sample by filtering a 25-mL aliquot of the composite index sample through a 47 mm 0.7 micron GF/F glass fiber filter. The procedure for preparing chlorophyll samples is presented in Table 7-7. Chlorophyll can degrade rapidly when exposed to bright light. If possible, prepare the samples in subdued light (or shade), filtering as quickly as possible after collection to minimize degradation. Keep the glass fiber filters in a dispenser inside a sealed plastic bag until use.

It is important to measure the volume of the sample being filtered accurately (±1 mL) with a graduated cylinder. During filtration, do not exceed 7 inches of Hg to avoid rupturing cells. If the vacuum pressure exceeds 7 inches of Hg, prepare a new sample. If the filter clogs completely before all the sample in the chamber has been filtered, discard the sample and filter, and prepare a new sample using a smaller volume of sample.

Table 7.7. Procedure for preparing chlorophyll samples of periphyton

1. Using clean forceps, place a Whatman GF/F 0.7 μm glass fiber filter on the filter holder gridded side down. Use a small amount of deionized water from a wash bottle to help settle the filter properly.

Attach the filter funnel to the filter holder and filter chamber, then attach the hand vacuum pump to the chamber.

- 2. Rinse the sides of the filter funnel and the filter with a small volume of deionized water.
- 3. Rinse a 25-mL or 50-mL graduated cylinder three times with small volumes of deionized water.
- 4. Mix the composite sample bottle thoroughly.
- 5. Measure 25 mL (±1 mL) of sample into the graduated cylinder. NOTE: For a composite sample containing fine sediment, allow grit to settle for 10 20 seconds before pouring the sample into the graduated cylinder.
- 6. Pour the 25-mL aliquot into the filter funnel, replace the cap, and pull the sample through the filter using the hand pump. Vacuum pressure from the pump should not exceed 7 inches of Hg to avoid rupture of fragile algal cells. NOTE: If 25 mL of sample will not pass through the filter, discard the filter and rinse the chamber thoroughly with deionized water. Collect a new sample using a smaller volume of sample, measured to ±1 mL. Be sure to record the actual volume sampled on the sample label and the Sample Collection Form.
- 7. Remove both plugs from the filtration chamber and pour out the filtered water in the chamber. Remove the filter funnel from the filter holder. Remove the filter from the holder with clean forceps. Avoid touching the colored portion of the filter. Fold the filter in half, with the colored sample (filtrate) side folded in on itself. Place the folded filter in a 50 mL centrifuge tube. Discard filtered water.
- 8. Complete a periphyton sample label for chlorophyll, including the volume filtered, and attach it to the centrifuge tube. Cover the label completely with a strip of clear tape. Place the centrifuge tube into a self-sealing plastic bag.
- 9. Record the sample ID number of the label and the total volume of the composite index sample on the form. Record the volume filtered in the "Chlorophyll" field on the Sample Collection Form. Double check that the volume recorded on the collection form matches the total volume recorded on the sample label.
- 10. Place the centrifuge tube containing the filter on dry ice.

7.2.6.3 Biomass Sample

Prepare the ash-free dry mass (AFDM) sample by filtering a 25-mL aliquot of the composite index sample through a 47 mm 1.2 micron GF/C glass fiber filter. The procedure for preparing AFDM samples is presented in Table 7-8. Keep the glass fiber filters in a dispenser inside a sealed plastic bag until use.

It is important to measure the volume of the sample being filtered accurately (±1 mL) with a graduated cylinder. During filtration, do not exceed 7 inches of Hg to avoid rupturing cells. If the vacuum pressure exceeds 7 inches of Hg prepare a new sample. If the filter clogs completely before all the sample in the chamber has been filtered, discard the sample and filter, and prepare a new sample using a smaller volume of sample.

Table 7.8. Procedure for preparing ash-free dry mass (AFDM) samples of periphyton

- 1. Using clean forceps, place a Whatman 47 mm 1.2 micron GF/C glass fiber filters on the filter holder gridded side down. Use a small amount of deionized water from a wash bottle to help settle the filter properly. Attach the filter funnel to the filter holder and filter chamber, then attach the hand vacuum pump to the chamber.
- 2. Rinse the sides of the filter funnel and the filter with a small volume of deionized water.

- 3. Rinse a 25-mL or 50-mL graduated cylinder three times with small volumes of deionized water.
- 4. Mix the composite sample bottle thoroughly.
- 5. Measure 25 mL (±1 mL) of sample into the graduated cylinder. *NOTE: For a composite sample containing fine sediment, allow grit to settle for 10 20 seconds before pouring the sample into the graduated cylinder.*
- 6. Pour the 25-mL aliquot into the filter funnel, replace the cap, and pull the sample through the filter using the hand pump. Vacuum pressure from the pump should not exceed 7 inches of Hg to avoid rupture of fragile algal cells.
- NOTE: If 25 mL of sample will not pass through the filter, discard the filter and rinse the chamber thoroughly with deionized water. Collect a new sample using a smaller volume of sample, measured to ± 1 mL. Be sure to record the actual volume sampled on the sample label and the Sample Collection Form.
- 7. Remove both plugs from the filtration chamber and pour out the filtered water in the chamber. Remove the filter funnel from the filter holder. Remove the filter from the holder with clean forceps. Avoid touching the colored portion of the filter. Fold the filter in half, with the colored sample (filtrate) side folded in on itself. Place the folded filter in a 50 mL centrifuge tube. Discard filtered water.
- 8. Complete a periphyton sample label for biomass, including the volume filtered, and attach it to the centrifuge tube. Cover the label completely with a strip of clear tape. Place the centrifuge tube into a self-sealing plastic bag.
- 9. Record the sample ID number of the label and the total volume of the composite index sample on the form. Record the volume filtered in the "Biomass" field on the Sample Collection Form. Double check that the volume recorded on the collection form matches the total volume recorded on the sample label.
- 10. Place the centrifuge tube containing the filter on dry ice.

7.2.6.4 Acid/Alkaline Phosphatase Activity Sample

Prepare the Acid/Alkaline phosphatase activity (APA) sample from a 50-mL subsample of the composite index sample. Table 7-9 presents the procedure for preparing APA samples. No field treatment (i.e., filtration, preservation) of the APA sample is necessary. Complete a label for the sample and affix it to a 50-mL centrifuge tube. Record the sample ID number, and the volume of the subsample on the Sample Collection Form (Figure 6.1-3). Check to ensure that the information recorded on the Sample Collection Form matches the corresponding information recorded on the sample label. Store APA samples frozen until shipment to the laboratory.

Table 7.9. Procedure for preparing acid alkaline phosphatase activity samples for periphyton

- 1. Prepare a sample label (with a sample number) for the APA sample. Record the volume of the sample (typically 50 mL) and the volume of the composite index sample on the label. Attach the completed label to a 50-mL centrifuge tube; avoid covering the volume graduations and markings. Cover the label completely with a clear tape strip.
- 2. Rinse a 60-mL syringe with deionized water.
- 3. Thoroughly mix the bottle containing the composite sample.
- 4. Withdraw 50 mL of the mixed sample into the syringe. Place the contents of the syringe sample into the labeled 50-mL centrifuge tube. Cap the tube tightly and seal with plastic electrical tape.
- 5. Record the sample ID number of the label and the total volume of the composite index sample on the form.
- 6. Record the volume of the sample in the centrifuge tube in the "APA Sample" field of the Sample Collection Form.
- 7. Freeze the sample immediately and keep frozen until shipping.

7.3 Data Forms and Sample Inspection

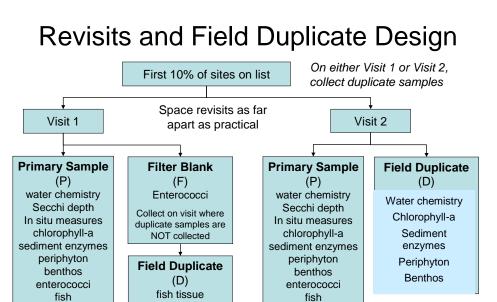
After the Site Assessment Form is completed, the Field Team Leader reviews all of the data forms and sample labels for accuracy, completeness, and legibility. The other team members inspect all sample containers and package them in preparation for transport, storage, or shipment. Refer to Appendix C for details on preparing samples for shipping.

Ensure that all required data forms for the site have been completed. Confirm that the SITE-ID, the visit number, and date of visit are correct on all forms. On each form, verify that all information has been recorded accurately, the recorded information is legible, and any flags are explained in the comments section. Ensure that written comments are legible, with no "shorthand" or abbreviations. Make sure there are no marking s in the scan code boxes. Make sure the header information is completed on all pages of each form. After reviewing each form initial the upper right corner of each page of the form.

Ensure that all samples are labeled, all labels are completely filled in, and each label is covered with clear plastic tape. Compare sample label information with the information recorded on the corresponding field data forms (e.g., the Sample Collection Form) to ensure accuracy. Make sure that all sample containers are properly sealed.

7.4 Launch Site Cleanup

Load the boat on the trailer and inspect the boat, motor, and trailer for evidence of weeds and other macrophytes. Clean the boat, motor, and trailer as completely as possible before leaving the launch site. Inspect all nets for pieces of macrophyte or other organisms and remove as much as possible before packing the nets for transport. Pack all equipment and supplies in the vehicle and trailer for transport. Keep equipment and supplies organized so they can be inventoried using the equipment and supply checklists presented in Appendix A. Lastly, be sure to clean up all waste material at the launch site and dispose of or transport it out of the site if a trash can is not available.


8.0 FIELD QUALITY CONTROL

Standardized training and data forms provide the foundation to help assure that data quality standards for field sampling are met. These Standard Operating Procedures for field sampling and data collection are the primary guidelines for all cooperators and field teams. In addition, repeat sampling, duplicate sampling, and field evaluation and assistance visits will address specific aspects of the data quality standards for the National Rivers and Streams Assessment.

8.1 Repeat and Duplicate Sampling

fish tissue physical habitat

Repeat and duplicate sampling will provide data to make variance estimates (for measurement variation and index period variation) that can be used to evaluate the NRSA design for its potential to estimate status and detect trends in the target population of sites. A summary of the repeat and duplicate sampling design is provided in Figure 8-1.

Duplicates = "measurement" variation

Revisits = "measurement" variation + index period variation

physical habitat

Figure 8.1. Summary of the repeat and duplicate sampling design.

8.1.1 Repeat Sampling

A total of 10% of the target sites visited will be revisited during the same field season by the same field team that initially sampled the site. Repeated samples and measurements are taken from the same reach as the first visit. Each state has four repeat sites; the first two wadeable and the first two non-wadeable sites in their list. If a site selected for repeat sampling is dropped, then the alternate assigned to replace it should be revisited. If a non-wadeable site is sampled with wadeable methods, the next non-wadeable site should be selected as the repeat site. The primary purpose of this "revisit" set of sites is to collect temporal replicate samples to provide variance estimates for both measurement variation and index period variation. The revisit will include the full set of indicators and associated parameters. The time period between the initial and repeat visit to a site should be as long as possible, but not less than 2 weeks. Fish tissue and PPCP water samples will only be collected on the first visit (see Section 8.1.2).

8.1.2 Duplicate Sampling

Duplicate samples will be collected for certain indicators from the sites that are revisited. They will be collected at one of the visits, not both. These duplicate samples will be collected for water chemistry, *chlorophyll a*, sediment enzymes, periphyton, benthos, enterococci, and fish tissue (not for fish community data or physical habitat). These samples and measurements are taken from the same reach as the primary sample. The samples should be taken by the same field crew and ≤ 2 days later. These spatial replicates will provide measurement variance and spatial variance estimates. Label the samples as (*primary site ID#*)-D to indicate that they are duplicate samples. Duplicates for fish tissue should be taken on the first visit, no fish tissue needs to be collected during the second visit. Duplicate PPCP water samples should also be collected during the first visit at the designated urban river sites.

In addition, a filter blank will be collected for enterococci. The teams will filter a small amount (10 mL) of sterile buffer through 4 filters, label them and write "blank" on the label and field form, and package and submit these samples to the lab. The filter blanks should be run before the sample is filtered. The filter blanks should be collected on the field visit that duplicate samples are not collected (Figure 8-1). A detailed description of the filter blanks is found in table 7-2.

8.1.3 Taking Field Duplicates

On the visit crew are taking duplicates samples, ensure that there are two site kits for supplies and materials. If you are taking duplicates on a subsequent field day follow standard sample procedures for collecting the duplicate samples. If you are collecting duplicates on the same day as the primary sample follow the modified protocols in this section. Fish tissue, both a primary and duplicate, is collected on the first visit only.

After you take the first water chemistry sample, rinse the beaker three times with stream water, replace any torn gloves, and collect a second sample with a new cubitainer following the procedures in the water chemistry sections. The water chemistry *chlorophyll a* sample can be filtered from the same container as the primary sample. If there is not sufficient water for both filters, process the primary sample, then collect a second water sample from the index site for the duplicate sample.

For transect sample duplicates (sediment enzymes, benthic macroinvertebrates, and periphyton) move 1 meter upstream of the primary sample location. At this new location upstream of the transect, take a duplicate sample following the same procedures that are used to collect the primary sample. You do not need to collect a duplicate for the low gradient samples.

8.2 **Field Evaluation and Assistance Visits**

A rigorous program of field and laboratory evaluation and assistance visits has been developed to support the National Rivers and Streams Assessment Program. These evaluation and assistance visits are explained in detail in the Quality Assurance Project Plan (QAPP) for the NRSA. The following sections will focus only on the field evaluation and assistance visits.

These visits provide a QA/QC check for the uniform evaluation of the data collection methods, and an opportunity to conduct procedural reviews as required to minimize data loss due to improper technique or interpretation of field procedures and guidance. Through uniform training of field teams and review cycles conducted early in the data collection process, sampling variability associated with specific implementation or interpretation of the protocols will be significantly reduced. The field evaluations will be based on the Field Evaluation Plan and Checklists. This evaluation will be conducted for each unique team collecting and contributing data under this program (EPA will make a concerted effort to evaluate every team, but will rely on the data review and validation process to identify unacceptable data that will not be included in the final database).

8.2.1 **Specifications for QC Assurance**

Field evaluation and assistance personnel are trained in the specific data collection methods detailed in this Field Operations Manual. A plan and checklist for field evaluation and assistance visits have been developed to detail the methods and procedures. The plan and checklist are included in the QAPP. Table 8-1 summarizes the plan, the checklist, and corrective action procedures.

Table 8.1.	General information noted during field evaluation
Field Evaluation Plan	 Regional Coordinators will arrange the field evaluation visit with each Field Team, ideally within the first two weeks of sampling. The Evaluator will observe the performance of a team through one complete set of sampling activities. If the Team misses or incorrectly performs a procedure, the Evaluator will note it on the checklist and immediately point it out so the mistake can be corrected on the spot. The Evaluator will review the results of the evaluation with the Field Team before leaving the site, noting positive practices and problems.
Field Evaluation Checklist	 The Evaluator observes all pre-sampling activities and verifies that equipment is properly calibrated and in good working order, and NRSA protocols are followed. The Evaluator checks the sample containers to verify that they are the correct type and size, and checks the labels to be sure they are correctly and completely filled out. The Evaluator confirms that the Field Team has followed NRSA protocols for locating the site. The Evaluator observes the complete set of sampling activities, confirming that all protocols are followed.

Constal information noted during field avaluation

Table 6.1. General mormation noted during neid evaluation		
	 The Evaluator will record responses or concerns, if any, on the Field Evaluation and Assistance Check List. 	
Corrective Action Procedures	 If the Evaluator's findings indicate that the Field Team is not performing the procedures correctly, safely, or thoroughly, the Evaluator must continue working with this Field Team until certain of the Team's ability to conduct the sampling properly so that data quality is not adversely affected. If the Evaluator finds major deficiencies in the Field Team operations the Evaluator must contact a NRSA QA official. 	

Table 8.1.	General information noted during field evaluation	

It is anticipated that evaluation and assistance visits will be conducted with each Field Team early in the sampling and data collection process, and that corrective actions will be conducted in real time. If the Field Team misses or incorrectly performs a procedure, the Evaluator will note this on the checklist and immediately point this out so the mistake can be corrected on the spot. The role of the Evaluator is to provide additional training and guidance so that the procedures are being performed consistent with the Field Operations Manual, all data are recorded correctly, and paperwork is properly completed at the site.

8.2.2 Reporting

When the sampling operation has been completed, the Evaluator will review the results of the evaluation with the Field Team before leaving the site (if practicable), noting positive practices and problems (i.e., weaknesses [might affect data quality] or deficiencies [would adversely affect data quality]). The Evaluator will ensure that the Team understands the findings and will be able to perform the procedures properly in the future. The Evaluator will record responses or concerns, if any, on the Field Evaluation and Assistance Check List. After the Evaluator completes the Field Evaluation and Assistance Check List, including a brief summary of findings, all Field Team members must read and sign off on the evaluation.

If the Evaluator's findings indicate that the Field Team is not performing the procedures correctly, safely, or thoroughly, the Evaluator must continue working with this Field Team until certain of the Team's ability to conduct the sampling properly so that data quality is not adversely affected. If the Evaluator finds major deficiencies in the Field Team operations (e.g., major misinterpretation of protocols, equipment or performance problems) the Evaluator must contact the following QA official:

Sarah Lehmann, EPA National Rivers and Streams Assessment Project QA Officer

The QA official will contact the Project Manager to determine the appropriate course of action. Data records from sampling sites previously visited by this Field Team will be checked to determine whether any sampling sites must be redone.

9.0 LITERATURE CITED

- Allen-Gil, S., M. Green, and D. H. Landers. 19XX. Fish abundance, instream habitat and the effects of historical land use practices in two large alluvial rivers on the Olympic Peninsula, Washington. U.S. EPA, WED. In review.
- American Red Cross. 1979. *Standard First Aid and Personal Safety*. American National Red Cross. 269 pp.
- Arend, K.K. 1999. Macrohabitat identification. Pages 75-93 in M.B. Bain and N.J. Stevenson (editors). *Aquatic habitat assessment: common methods.* American Fisheries Society, Bethesda, Maryland.
- Bain, M.B., J.T., Finn, and H.E. Brooke. 1985. Quantifying stream substrate for habitat analysis studies. North American Journal of Fisheries Management 5:499-506.
- Bain, M.B., and N.J. Stevenson (editors). 1999. *Aquatic habitat assessment: common methods.* American Fisheries Society, Bethesda, Maryland.
- Baker, J.R., D.V. Peck, and D.W. Sulton (editors). 1997. Environmental Monitoring and Assessment Program Surface Waters Field Operations Manual for Lakes. EPA/620/R-97/001. U.S. Environmental Protection Agency, Washington DC.
- Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency, Office of Water, Washington D.C.
- Bisson, P.A., J.L. Nielsen, R.A. Palmason, and L.E. Grove. 1982. A system of naming habitat types in small streams, with examples of habitat utilization by salmonids during low streamflow. In N.B. Armantrout [ed.] Acquisition and Utilization of Aquatic Habitat Inventory Information: Proceedings of the Symposium. [Portland, OR, October 1981].
- Dietrich, W.E., Kirchner, J.W., Ikeda, H., Iseya, F. 1989. Sediment supply and the development of the coarse surface layer in gravel-bedded rivers. Nature 340: 215-217.
- Dunne, T., and L.B. Leopold. 1978. *Water in environmental planning*. W.H. Freeman, New York. 818 p.
- Flotemersch, J.E.1, B.C. Autrey2, and S.M. Cormier1 (editors). 2000. *Logistics of Ecological Sampling on Large Rivers*. U.S. Environmental Protection Agency, Cincinnati OH.
- Flotemersch, J.E., J.B.Stribling, and M.J. Paul. 2006. Concepts and Approaches for the Bioassessment of Non-wadeable Streams and Rivers. EPA 600-R-06-127. U.S. Environmental Protection Agency, Cincinnati, OH.
- Frissell, C.A.; W.J. Liss, W.J.; Warren, C.E.; Hurley, M.C. 1986. A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environmental Management 10: 199-214.

- Harrelson, C.C., C.L. Rawlins, and J.P. Potyondy. 1994. Stream channel reference sites: an illustrated guide to field technique. USDA Forest Service, General Technical Report RM-245, Rocky Mountain Forest and Range Experiment Station, Fort Collins, Colorado. 61p.
- Hawkins, C.P., J.L. Kershner, P.A. Bisson, M.D. Bryant, L.M. Decker, S.V. Gregory, D.A. McCullough, C.K. Overton, G.H. Reeves, R.J. Steedman, and M.K. Young. 1993. A hierarchical approach to classifying stream habitat features. *Fisheries* 18:3-12.
- Helm, W.T. 1985. *Aquatic habitat inventory: standard methods and glossary*. American Fisheries Society, Western Division, Bethesda, Maryland.
- Kaufmann, P.R. (ed.), 1993, Physical Habitat, pp. 59-69, in R.M. Hughes (ed), *Stream Indicator* and Design Workshop, EPA/600/R-93/138, U.S. Environmental Protection Agency, Office of Research and Development, Corvallis, Oregon.
- Kaufmann, P.R. and T.R. Whittier. 1997. Habitat Assessment. Pages 5-1 to 5-26 in J.R. Baker, D.V. Peck, and D.W. Sutton editors. Environmental Monitoring and Assessment Program -Surface Waters: Field Operations Manual for Lakes. EPA/620/R-97/001. U.S. Environmental Protection Agency, Washington, D.C.
- Kaufmann, P.R., P. Levine, E.G. Robinson, C. Seeliger, and D. Peck. 1999. Quantifying Physical Habitat in Wadeable Streams. EPA/620/R-99/003. U.S. Environmental Protection Agency, Washington, D.C.
- Klemm, D. J., P. A. Lewis, F. Fulk, and J. M. Lazorchak. 1990. Macroinvertebrate Field and Laboratory Methods for Evaluating the Biological Integrity of Surface Waters. EPA 600/4-90/030. U.S. Environmental Protection Agency, Cincinnati, Ohio.
- Lemmon, P.E. 1957. A new instrument for measuring forest overstory density. Journal of Forestry 55:667-669.
- Leopold, L.B. 1994. *A view of the river*. Harvard University Press, Cambridge, Massachusetts. 298 p.
- Linsley, R.K., M.A. Kohler, and J.L.H. Paulhus. 1982. *Hydrology for engineers*. McGraw-Hill Book Co. New York, NY. 508 p.
- Moore, K.M., K.K. Jones, and J.M. Dambacher. 1993. Methods for stream habitat surveys: Oregon Department of Fish and Wildlife, Aquatic Inventory Project. Version 3.1. Oregon Department of Fish and Wildlife, Corvallis, OR 34 pp.
- Mulvey, M., L. Caton, and R. Hafele. 1992. Oregon nonpoint source monitoring protocols: stream bioassessment field manual for macroinvertebrates and habitat assessment. Oregon Department of Environmental Quality, Laboratory Biomonitoring Section. Portland, Oregon.
- National Institute for Occupational Safety and Health. 1981. Occupational Health Guidelines for Chemical Hazards (Two Volumes). NIOSH/OSHA Publication No. 81-123. U.S. Government Printing Office, Washington, D.C.

- Nelson, J.S., E.J. Crossman, H. Espinosa-Perez, L.T. Findley, C.R. Gilbert, R.N. Lea, and J.D. Williams. 2004. Common and Scientific Names of Fishes from the United States, Canada, and Mexico. American Fisheries Society, Special Publication 29, Bethesda, Maryland.
- Ohio EPA. 1990. Ohio EPA Fish Evaluation Group Safety Manual. Ohio Environmental Protection Agency, Ecological Assessment Section, Division of Water Quality Planning and Assessment, Columbus, Ohio.
- Occupational Safety & Health Administration (OSHA). 2006. Regulations (Standards 29 CFR). Substance technical guidelines for formalin - 1910.1048 App A. Occupational Safety & Health Administration. Washington, DC 20210.
- Peck, D. V., Herlihy, A.T., Hill, B.H., Hughes, R.M., Kaufmann, P.R., Klemm, D.J., Lazorchak, J.M., McCormick, F.H., Peterson, S.A., Ringold, P.L., Magee, T., Cappaert, M., 2006. Environmental Monitoring and Assessment Program-Surface Waters Western Pilot Study: Field Operations Manual for Wadeable Streams. EPA/620/R-06/003. U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC.
- Plafkin, J.L., Barbour, M.T., Porter, K.D., Gross, S.K., Hughes, R.M. (1989). "Rapid bioassessment protocols for use in streams and rivers: Benthic macroinvertebrates and fish," EPA/440/489/001, U.S. Environmental Protection Agency, Assessment and Watershed Protection Division, Washington, DC.
- Platts, W.S., Megahan, W.F., and Minshall W.G. (1983). "Methods for evaluating stream, riparian, and biotic conditions," General Technical Report INT-138, USDA Forest Service, Rocky Mountain Research Station, Ogden, UT.
- Rankin, E.T. (1995) The qualitative habitat evaluation index (QHEI) in W.S. Davis and T. Simons (eds.). *Biological Assessment Criteria; Tools for Risk-based Planning and Decision Making.* CRC Press/Lewis Publishers, Ann Arbor MI.
- Robison, E.G. and R.L. Beschta. 1990. Characteristics of coarse woody debris for several coastal streams of southeast Alaska, USA. 47(9):1684-1693.
- Robison, E.G. and P.R. Kaufmann. 1994. Evaluating two objective techniques to define pools in small streams. pgs 659-668, <u>In</u> R.A. Marston and V.A. Hasfurther (eds.) Effects of Human Induced changes on hydrologic systems. Summer Symposium proceedings, American Water Resources Association, June 26-29, 1994, Jackson Hole, Wyoming. 1182 pp.
- Stack, B.R. 1989. Factors influencing pool morphology in Oregon coastal streams. M.S. Thesis, Oregon State University. 109 p.
- Standard Methods for the Examination of Water and Wastewater, Method 10300 C,D. 20th Ed. 1998. American Public Health Association, Washington, D.C.

- Stauffer, Dr. Jay R., J. Karish and T.D. Stecko. 2001. Guidelines for Using Digital Photos as Fish Vouchers for Pennsylvania Fishes. The Pennsylvania State University and National Park Service.
- Steinman, A.D. and G. A. Lamberti. 1996. Biomass and pigments of benthic algae. P. 297. In "Methods in Stream Ecology". Hauer, F.R. and G.A. Lamberti (eds). Academic Press, San Diego, CA.
- Stevens, D. L., Jr., and A. R. Olsen. 2004. Spatially-balanced sampling of natural resources in the presence of frame imperfections. Journal of American Statistical Association:99:262-278.
- Strahler, A.N. 1957. Quantitative Analysis of Watershed Geomorphology. Trans. Am. Geophys. Un. 38,913-920.
- U.S. Coast Guard. 1987. *Federal Requirements for Recreational Boats.* U.S. Department of Transportation, United States Coast Guard, Washington, D.C.
- USDA Forest Service, 1995. A guide to field identification of bankfull stage in the western United States. Rocky Mountain Forest and Range Experiment Station, Stream Systems Technology Center, Fort Collins, Colorado (31 minute video, closed captioned).
- USDA Forest Service, 2002. *Identifying bankfull stage in forested streams in the eastern United States.* Rocky Mountain Forest and Range Experiment Station, Stream Systems Technology Center, Fort Collins, Colorado (46 minute video, closed captioned).
- USEPA. 2000a. EPA Quality Manual for Environmental Programs 5360A1. May 2000. http://www.epa.gov/quality/qs-docs/5360.pdf
- USEPA. 2000b. EPA Order 5360.1 A2 CHG2, Policy and Program Requirements for Mandatory Agency-wide Quality System, May 5, 2000. <u>http://www.epa.gov/quality/qs-docs/5360-</u> <u>1.pdf</u>
- U.S. EPA (Environmental Protection Agency). 2004. *Wadeable Streams Assessment: Field Operations Manual.* EPA 841-B-04-004. U.S. Environmental Protection Agency, Office of Water and Office of Research and Development, Washington, D.C.
- USEPA. 1986. Occupational Health and Safety Manual. Office of Planning and Management U.S. Environmental Protection Agency, Washington, D.C.
- Walsh, S. J. and M. R. Meador. 1998. Guidelines for quality assurance and quality control of fish taxonomic data collected as part of the National Water-Quality Assessment Program.
 U.S. Geological Survey, Water-Resources Investigations Report 98-4239, Raleigh, North Carolina.
- Wilcock, P.R. 1988. Sediment maintenance flows: Feasibility and basis for prescription, in *Gravel-Bed Rivers in the Environment*, edited by P.C. Klingeman et al., pp. 609-632, Water Resour. Publ., Highlands Ranch, Colo., 1998.

Wilcock, P.R. 1988. Two-fraction model of initial sediment motion in gravel-bed rivers. *Science* 280:410-412.

Wolman, M.G. (1954). "A method of sampling coarse riverbed materials," Transactions of the American Geophysical Union 35(6), 951-956.

Web Pages:

US EPA Aquatic Monitoring Research: <u>http://www.epa.gov/nheerl/arm</u> NHD Plus: <u>http://www.horizon-systems.com/nhdplus</u> This page is intentionally blank

Final Manual Date: April 2009 Page A-1

APPENDIX A

List of Equipment and Supplies

This page is intentionally blank

EQUIPMENT & SUPPLY LISTS

General	Equipment
 Field Operations Manual and/or laminated Quick Reference Guide 	Laser rangefinder (400 ft. distance range) and clear waterproof bag
 Laminated invasive species guide 	Batteries
Covered clipboards	 1% - 10% Bleach
 Filed forms and sample labels Clear tape strips for covering labels 	 Barometer or elevation chart to use for calibration
Pencils (#2) Fine-tipped indelible markers	 Calibration cups and standards for multi- probe unit
	Electrical tape
Digital camera with extra memory card & battery	Scissors
Maps and access instructions	Plastic storage tub
 Sampling permits and/or permission letters GPS unit with manual and reference card 	 Cell phone, 2-way radios, and/or walkie- talkies
	 2 pair chest waders
50 m or 100 m measuring tape with reelSurveyor's flagging tape	 1 or 2 fisherman's vest with lots of pockets and snap fittings.

Boat Equipment List		
Motor	Oars or Paddles	
Gas Can	First Aid Kit	
Lifejackets (1/person)	 Extra Boat Plug 	
Type IV PFD (Throwable Life Saving device)	 Spare Prop Shear Pin 	
Bow/Stern lights	 Emergency Tool kit 	
• Anchor with 75m line or sufficient to anchor in 50m	 Hand Bilge pump 	
depth	Fire Extinguisher	
Float to attach to anchor	Boat horn	
Sonar Unit	Spare prop	

Sample/Data Collection

- Multi-parameter water quality meter with pH, DO, temperature, and conductivity probes
- 20 cm diameter Secchi disk and calibrated sounding line, marked in 0.5 m intervals
- 3 L Nalgene beaker
- 1-2L Amber Nalgene bottle
- Tape measure (in centimeters)
- Nitrile gloves
- Calibrated PVC sounding rod, 3-m length, marked in 0.1 m increments
- Convex spherical canopy densiometer (Lemmon Model B), modified with taped "V"
- Clinometer
- Bearing compass (Backpacking type)
- Binoculars
- Surveyor's telescoping leveling rod (round profile, metric scale, 7.5m extended)
- Meter stick for bank angle measurements
- Current velocity meter, probe, and operating manual
- Top-set wading rod for use with current velocity meter
- Neutrally buoyant object (e.g., plastic golf ball with holes, small rubber ball, stick)
- Portable Weir with 60° "V" notch (optional) and plastic sheeting to use with weir
- Plastic bucket (or similar container) with volume graduations
- Petite Ponar sampler with plastic tub, drop line, and spare pinch pin. (*Standard Ponar may substitute*)
- 60-mL plastic syringe with 3/8" hole bored into the end

- Large stainless steel spoon for mixing sediment composite
- Large Funnel (15-20 cm diameter)
- 12-cm² area delimiter (3.8 cm diameter pipe, 3 cm tall)
- Stiff-bristle toothbrush with handle bent at 90° angle
- Modified kick net (D-frame, 500 µm mesh, 4-ft handle)
- Sieve-bucket, 500 μm mesh (U.S. std No. 35)
- Watch with timer or stopwatch
- Watchmakers' forceps
- Buckets, plastic, 8- to 10-qt capacity
- Plastic electrical tape
- Electrofishing equipment (boat, barge, and/or backpack units, including variable voltage pulsator unit, wiring cables, generator, electrodes, dip nets, and all safety equipment)
- Linesman gloves
- Livewell and/or buckets
- 2 Non-conducting dip nets with 1/4" mesh
- 1 Minnow net for dipping small fish from live well
- Measuring board (millimeter scale)
- Pre-sterilized, 250 ml sample bottle
- Sodium thiosulfate tablet
- 500-mL plastic bottles for the periphyton composite sample
- 25-mL or 50-mL graduated cylinder
- 1-L wash bottle for stream water
- 1-L wash bottle containing deionized water

Sample Processing/Preservation

• Coolers

• Whatman 47 mm 1.2 micron GF/C glass

Wet ice	fiber filters
Dry ice	 60 x 15 disposable Petri dishes
95% ethanol	 Phosphate buffered saline solution
10% buffered formalin	 Aluminum foil squares (3" x 6")
Lugol's solution	DI water
Sterile filtration unit (Nalgene 145/147), including filter funnel, cap, filter holder,	Small spatula, spoon, or scoop to transfer sample
and receiving chamber	• Aluminum foil (solvent-rinsed and baked)
• Vacuum hand pump and clear plastic tubing	Heavy-duty food grade polyethylene tubing
Sterile disposable forceps	Large plastic (composite) bags
• Whatman 47 mm polycarbonate 0.4 micron	Knife or scissors
filters	Plastic cable ties
 Whatman 47 mm 0.7 micron GF/F glass fiber filters 	 Scalpel for slitting open large fish before preservation

Sample Storage					
 One 4-L cube container Three 1-L Nalgene bottles Several Leak-proof HDPE jars for fish voucher specimens (various sizes from 250 mL - 4L) 500-mL plastic bottle for sediment sample 	 Sample jars, 1-L HDPE plastic suitable for use with ethanol (benthic samples) 50-mL screw-top centrifuge tube sterile microcentrifuge tubes containing sterile glass beads Coolers 				
Packaging/Shipping					

Coolers	 1-gallon self-sealing bags
Cooler liners (30-gal garbage bags)	 Packing/strapping tape
Dry ice (~60 lbs per site)	FedEx airbills
• Wet ice (~50 lbs per site; additional for	Class 9 Dangerous Goods label (for dry ice
shipping)	shipments)

A **site kit** will be provided to the field crews for each sampling site. Site kits will be shipped out based on the schedule that each field crew provides prior to the start of the sampling season. **Field crew leaders MUST provide a schedule in order to receive the site kits.** If your schedule changes, please report the change as soon as possible to the Field Logistics Coordinator (Jennifer Pitt; 410-356-8993). Prior to sampling, inspect each site kit to ensure all supplies are included.

Supplies provided in each Site Kit:

- Field Data Forms
- Sample Labels
- National Rivers and Streams Assessment Fact Sheets
- 1 4-L cube container
- 1 1-L Nalgene bottle
- 500-mL plastic bottle for sediment sample
- 1 sterile 250 mL fecal indicator bottle
- 1 Zip tie
- 2 1-L HDPE plastic sample jars suitable for use with ethanol (benthic samples)
- 5 50-mL screw-top centrifuge tubes (4 for periphyton, 1 for measuring enterococci sample for filtering and then for storing the *chlorophyll a* filter)
- 4 sterile microcentrifuge tubes containing sterile glass beads
- Funnel analytical test filter 250 mL
- Sterile disposable forceps (2)
- Sterile phosphate buffered saline (PBS)
- Large Plastic Bags
- Foam envelope
- FedEx airbills for all labs
- Dry ice box will be included in approximately every 4th site kit
- Dry ice shipping label

Supplies Provided in Each Fish Tissue Sampling Kit:

- Aluminum foil (solvent-rinsed and baked)
- Heavy-duty food grade polyethylene tubing
- Large plastic (composite) bags
- Plastic cable ties

Supplies Provided in Each Base Kit:

- Nitrile Gloves
- Clinometer
- Spherical Densiometer
- Bottle of 50 Sodium Thiosulfate Tablets
- Aluminum foil 3x6"
- 15" stainless steel spoon
- (2) D-frame Kick Net 500 µm mesh, 52" handle
- (2) Sieve bucket 500 µm
- Weighted Secchi disk
- Rectangular fiberglass surveying rod metric
- CST Berger SAL 20 Automatic Level
- Level tripod
- (2) 1 Liter Nalgene wash bottles
- 3 gallon Rubbermaid Roughneck tote
- Graduated cylinder 250 mL
- 2 Liter amber Nalgene rectangular bottle
- 500-mL plastic bottle for periphyton sample collection
- Nalgene filtering flask
- #8 silicone stopper
- Filter funnel adapter
- Whatman 47 mm polycarbonate 0.4 µ filters
- Whatman 47 mm glass fiber GF/F 0.7 μ filters
- Whatman 47 mm glass fiber GF/C 1.2 μ filters
- Disposable petri dishes 60x15
- 3 Liter Nalgene beaker
- Utility funnel 15cm diameter
- Centrifuge tube stand
- Hand vacuum pump
- 500 mL Lugol's solution
- 4 Liters of QC check solution
- Tape dispenser
- Tape strips
- ½ gallon bucket
- 60 cc syringe with 3/8" hole and tubing
- 12 cm² area delimiter
- (2) 2 mL pipet and pipet bulb
- Toothbrush bent to 90°
- 24 ct of 1 Liter Nalgene bottles

Note: Lugol's solution, calibration QC check solution, filters, 1 Liter Nalgene bottles, aluminum foil squares, and disposable nitrile gloves will be provided in the base kit; you may order more throughout the field season if needed.

This page is intentionally blank

Final Manual Date: April 2009 Page B-1

APPENDIX B

Field Forms

This page is intentionally blank

Final Manual Date: April 2009 Page B-3

BOATABLE FORMS PACKET

This page is intentionally blank

SITE NA	ME:	C	DATE: /	/_ <u>2_0</u>	VISIT:	01 02 03
SITE ID:	FW08	State of S	Site Location:		et to record oth on back.	TEAM:
		STREAM/RIVER VE	RIFICATION INFORM	ATION		
	ver Verified by (fi er (Describe Here) Local Contact	• -		Topo. Map n Comments)
Coo	rdinates	Latitude North	Longitude V	Vest	# of Satellites	Are GPS Coordinates w/i 10 Sec. of map?
МАР	Degrees, Minutes, and Seconds OR Decimal Degrees	····· ···· · ···	· · · · · · · · ·		⊖ <u>≤</u> 3	⊖ Yes
GPS	Degrees, Minutes, and Seconds OR Decimal Degrees	· · · · · · · · · · · ·	· · · · · · · ·		⊖ ≥4	O No GPS Datum Used (e.g. NAD27):
		DID YOU SA	MPLE THIS SITE	?		
		YES, check one below	C N ○	lf NO, check on	e below	
 Wadeable - Continuous water, greater than 50% wadeable Boatable Partial - Sampled by wading (>50% of reach sampled). Explain below Partial - Sampled by boat (>50% of reach sampled). Explain below. Wadeable Interrupted - Not continuous water along reach Boatable Interrupted - Not continuous water along reach Altered - Stream/River Channel Present but differs from M. p Altered - Stream/River Channel Present but differs from M. p Other (Explain in comments) Not wadeable - Need a different crew - Reschedule for this ye Other (Explain in comments) Not wadeable - Need a different crew - Reschedule for this ye Other (Explain in comments) NOACCESS Access Permission Denied Permanently Inaccessible -Fire, etc Reschedule for next year 						Υ chedule for this year chedule for this year to Reach Site)
GENERA	AL COMMENT	S:				
IRECTIO	ONS TO STRE	AM/RIVER SITE:				

SITE ID: FW08 TEAM: STREAM/RIVER REACH DETERMINATION DISTANCE (m) FROM X-SITE	SITE NAME:		DATE: / _	<i>I</i> 2 0	VISIT: C	1 0 2	0	
Distance (m) Distance (m) FROM X-SITE Total Reach Upstream Downstream Length Comment Length Length Length Comment SKETCH MAP- Arrow incloates North; Mark site L-Launch X-Index T= Take Out NOTE: If an outline map is attached here, use a continous site of clear tape across the top edge. You can also attach a separate sheet with the outline map on it. For boatable sites you can attach topo may with reach, X-site and transect locations marked.	SITE ID:	FW08			TEAM			
Comment C		STREAM/RIVE	R REACH DETERM					
Reach (m) Length (m) Length (m) (m) Length (m) (m) Length (m) (m) SKETCH MAP - Arrow Indicates Noth; Mark Site L-Launch School (m) NOTE: If an outline map is attached here, use a continuous strip of clear tape across the top edge. You can also attach a separate sheet with the outline map on it. For boatable sites you can attach topo map with reach, Assite and transect locations marked. Vou can also attach a separate sheet with the outline map on it. For boatable sites you can attach topo map with reach, Assite and transect locations marked. Vou can also attach a separate sheet with the outline map on it. For boatable sites you can attach topo map with reach, Assite and transect locations marked. Vou can also attach a separate sheet with the outline map on it. For boatable sites you can attach topo map with reach, Assite and transect locations marked. Vou can also attach asparate sheet with the outline map on it. For boatable sites you can attach topo map with reach. Vou can also attach asparate sheet with the outline map on it. For boatable sites you can attach topo map with reach. Vou can also attach asparate sheet with the outline map on it. For boatable sites you can attach topo map with reach. Vou can attach topo map with reach. For boatable sites you can attach topo map with reach. Vou can attach topo map w	Channel Width	nannel Width DISTANCE (m) FROM X-SITE						
NOTE: If an outline map is attached here, use a continuous strip of clear tape access the top edge. You can also attach topo map with reach. X-site and transect locations marked. Image: Stripping of the stripping				ed C	Comment			
NOTE: If an outline map is attached here, use a continuous strip of clear tape access the top edge. You can also attach topo map with reach. X-site and transect locations marked. Image: Stripping of the stripping			<u></u>					
NAMEBio/Chem Sampling OForms Review O		NOTE: If an outline map is attached here You can also attach a s	e, use a continuous strip of separate sheet with the outli	clear tape across the to ne map on it.	op edge.			
NAMEBio/Chem Sampling OForms Review O								
NAMEBio/Chem Sampling OForms Review O								
NAME Bio/Chem Sampling Forms Review								
NAME Bio/Chem Sampling Forms Review								
NAMEBio/Chem Sampling OForms Review O		1						
NAMEBio/Chem Sampling OForms Review O		1						
NAMEBio/Chem Sampling OForms Review O								
NAMEBio/Chem Sampling OForms Review O								
NAMEBio/Chem Sampling OForms Review O								
NAMEBio/Chem Sampling OForms Review O								
			PERSONNEL					
O O O O O O			PERSONNEL					
O O O			PERSONNEL	Sampling		Review		
			PERSONNEL	Sampling	0	Review		
O O O			PERSONNEL	Sampling	0	Review		
			PERSONNEL	Sampling	0 0	Review O O		

		EMUOD						DATE		1		1	2	0				-
	SITE ID:	FW08				CALIE				/	I	_/_	2		-			
Instru	ment manuf	acturer and I	model:			CALIE	SRATIO	ON INFORI		N								
mədu		trument ID n							One	erator:								_
	113	Thermome		Sensor F	Poadin	a –	_											_
ЕМРЕ		Reading (301301 V 30)		9 F	lag				Comn	nents						
			<u> </u>		·	_												
		Ele	vation	,	OR	Barome			Calibrati				D		ayed			
	00			Ôft	1	(mm l			Value	O m	<i>a</i> /			Val	ue	O mg		Fla
				0 m					<u></u> .	0″							/ -	
		Cal	I. STD 1 I	Descripti	on	_	Cal. S1	D 1 Value	-	Cal. ST	D 2 De	scripti	on		_	Cal. S	STD 2	2 Valu
	он					Calibra	ation Ve	rified with Q	uality Co	ontrol San	ple (Q	CS)				<u> </u>	1	
•				QC	S Des	cription				QC	S True			qcs	Mea	sured		Fla
									Ţ	•								
		0.1		Decembrati			0-1-01	D 1 Value	-4							Cal. S		N-L
		Cai	. 510 11	Descriptio	on	ſ	Cal. 51			<u> </u>	D 2 De	scripti	on		1	Cal. s		vait
									\mathbf{N}									
ONDU	JCTIVITY							rif: ∃w.`rQ	uality Co							(ue	lem	
				QC	S Des	cription		7.		QCS Tru	e (µS/ci @25%	n >)	Q	CS M	leasu	red (µS @2	/cm 5℃)	Fla
						4												
Flag								Comments										
			01	oft		Left ن	Ctr				Right Ci	hr			Righ	•		
FIELI RANSE	D MEASURM	IENTS	ÖF	Right		O Righ		O CENT	ER	<u> </u>	eft Ctr	u			Left	·		
	- Tim	ne of Day HH:MM)		:		:.					_:				:			
	DO (m	g/L) XX.X									.·.				•	_		
	Temp. (℃)XX.X										-						
	p	н хх.хх				<u>. </u>				<u> </u>	<u> </u>	<u> </u>				-		
Co	nd. (µS/cm@2	<u> </u>	`	<u> </u>	<u> </u>	<u> </u>		· <u> </u>		<u>_ </u>	<u> </u>	<u> </u>			<u> </u>			
	Corrected t	· –	ΟY	O N	7	DY (O N	ΟY	O N	<u> </u>	0	-	C) Y	0	N		
Depth	ı Disk Disap	pears (m)		•		<u> </u>					<u></u>				·			
Dept	h Disk Reap	pears (m)				·.												
	Clear to	Bottom?		>		0)		0	_			0			
Flag		Flag				Co	mment	 s										
															_	26	769	_
																20	100	

 $\overline{\Box}$

											(Init	iewed by ials): —		
		SAMP	PLE CO	OLLE	CTIC	ON FO	RM - I	304	TAB	LE (Fro	ont)			
SITE II	D: FW08	8						DAT	E:			. 0		
				WATE	R CHE	MISTRY	' (4-L CL	BITA	INER)			No Sample	Collected 🔿	
Samp	le ID	Sample Category *	Chilled						Comme	ents				
		O P O D	0											
		OP OD	0											
	WA	TER COL	UMN C	HLOR	OPHYL	L (Targe	et Volum	e = 1	000 mL	; max vol =	= 2000 mL)	No Sample	Collected 🔿	
Samp	le ID	Sample Category *	Volun Filtere (mL)	ed F	rozen					Comments	6			
<u></u>		OP OD			0									
					0									
			VATER (HEMI	STRY	PPCP (/	AMBER	د GLA	S CUBI	TAINER)		No Sample	Collected 🔿	
Sam	ole ID	Sample Category	* Chilled					N	Corrine	ents				
<u> </u>		OP OD	0			4	\diamond	\checkmark						
		O P O D	0				X							
					ТР	L'ISE OT	BENT	los			N	lo Sample (
TRANSECT	Α	В	С			Ē	F		G	н	I	J	K	
Location (L/R): Dominant	OL OR OC OL	OL OR				DL <u>OR</u> DCOL			<u>ι Ο r</u> ς Οι					
Habitat:			ÖFÖ O⊓	1Õ		O OT	ÖFÖ O⊓		F Ом Оот	Ŏ F Ŏ M O ot	ÖFÖM Oot			
Secondary Habitat: (ONE PER TRANSECT)			ОсО ОFО Оот			C O L F O M O OT		мÒ	сОL FОM) от	OCOL OFOM OT				
Substrate:	OFOC OGOOT									ОГОС ОСООТ				
Channel: (ONE PER TRANSECT)					O RA O GL			ra O gl O	P ORA RI OGL		O P O RA O RI O GL O OT			
Habitat:	-			S	ubstra	strate: Channel:								
C = Coarse Subs F = Organic Fine OT = Other (Exp	Muds / Sand	M = Macro	ophyte bec			/ Sand G = se substra	te OT = (Explain in on below)		ol GL = G ffle RA = Ra ther (Explain	apid	ection below)	
Sam	ple ID	Sample Category *	No. Jars	Pre- served					Comn	nents				
· <u> </u>		OP OD		0										
		OP OD		0										

Flag codes: K = No measurement or observation made; U = Suspect measurement or observation; F1, F2, etc. = misc. flags assigned by field crew. Explain all flags in comment sections.

*Sample Categories: P = Primary, D = Field Duplicate

		SAI	MPLE C	OLLE	ЕСТІС	ON FC	ORM -	BOA	TABL	E - (B	ack	Re ()	viewed by (initial):	
SITE	ID: _F	W08						DATE	!:	_1_		.1.2.0		
			C	OMPO	SITE P	ERIPHY	TON SA	MPLE	- Prim	ary		No	Sample C	ollected 🔿
S	ample ID		Sample Category	*	Compo	site Vol	ume (mL))	Numb	er of tra	nsect	ts sampled	1-11):	Flag
	•		Q٩											
Assem	iblage ID	(.1)	OÞ	Chlorop	hyll (.2	:)	<u> </u>	Bio	mass (.	3)			PA (.4)	
(50-	mL tube)		(GF/F	Filter)	<u> </u>		(GF	C Filte	r)		(50	-mL ṫube	<u>/</u>
Sample Vol. (mL)	Flag	Preserved	Sample Vo	ol. (mL)	Flag	Frozen	Sample	Vol. (mL)	Flag	Frozen	5	ample Vol. (mL	Flag	Frozen
		0					I							0
				CO	MPOS	TE PEF	RIPHYTC	N SAN	IPLE			No	Sample C	ollected O
Sa	ample ID		Sample Category	*	Compo	site Volu	ume (mL)		Numb	er of trai	nsect	s sampled (1-11):	Flag
			OP											
Assor	nblage ID	(1)	O P	Chloro	nhvll (2)	<u> </u>	Bion	nass (.3				PA (.4)	
(50-	-mL tube				Filter)	~)		(GF	C Filter				mL tube)
Sample Vol. (mL)	Flag	Preserved	Sample Vo	ol. (mL)	Flag	Frozen	Sample	Vol. (mL)	Flag	Frozer	n s	ample Vol. (mL) Flag	Frozen
		0	L_1				<u> </u>							0
Flag						Co	mments							
<u> </u>						-	VX							
<u> </u>							1							
Flag codes: K = No n	neasuremer	it or observat	ion made; U		A					s assigned I	by field			-
		Sample		SE			AISTRY /	ENZY	MES			No S	Sample Co	ollected 🔿
Sample	e ID	Category	* Composite	Volume	Tran eo		ed			C	ommer	nts		
						C	>							
		ΟP					<u>\</u>							
		<u>_ 0</u>			<u> </u>		/							
						<u> </u>	Farget Vol						-	llected 🔿
Sample	e ID	Sample Cate-	Time Collected	Depth Collecte		nple F ume	ilt. Start Time		Volume I (Target =	-iltered 50 mL) *	*	Filt. End Time	Time Froze	n
One unique ll	D per line	gory *	(hhmm)	(m)	(m	iL)	(hhmm)	Filt. 1	Filt. 2	Filt. 3	Filt. 4	(hhmm)	(hhmr	n) Flag
		O P												
<u></u>		00												
	<u> </u>													
<u></u>		OF												
Flag						Com	iments							
* Samplo Catogorio				Elline Die					!!	al colation and a second	0.1	d due Baaka a area	NOT !	

* Sample Categories: P = Primary; D = Field Duplicate; F = Filter Blank (Enterococci sample only) Filter blank is collected at visit where field duplicate sample is NOT taken. ** If <25 ml of buffer solution was used to rinse filter, indicate with an F flag and note in comment section which filter(s) were affected along with the approximate volume(s) of buffer solution used. 3284

		PH	AB:	CHAN	NEL/I	RIPARI	AN TR/	ANSI	ECT FORM	- BOATA	BLE (FR	ONT) _{Rev}	d by (init.):	
		-					TE:					l Time		e Time
SIT	E ID:	FW08	3			DA	IE. 	/	/_ 2	0		:		:
TR	ANSE	CT: O	A O	вос	O D	OE (ΗΟΙΟΙ	ок ох		en bank side ng down stream)		() Right
				Transect [GPS	Latitude - do	i mm ss.s		GPS Longit	ude - ddd mm ss	i.S	ng down stream)	O Lon	Ortigit
				lidstream			L 1	·		I I				
				Transect Bank										
						UBSTRATE						DE	PTH Oft	Om
SH	ORE	BOT	том			TOM SUB			(ONE)		SONAR			FLAG
DOM	SEC	-	SEC	CLASS					ttoral Depths	Flag				
RS	RS	RS	RS	RS = B	edrock	(Smooth) - (Large	r than	a car)					
RR	RR	RR	RR	RR = B	edrock	(Rough)	- (Larger	' than	a car)					
ХВ	ХВ	ХВ	ХВ	XB = La	arge Bo	oulder (10	00 to 400	0 mm) - (Meterstick	to car)				
SB	SB	SB	SB						 (Basketball to 					
СВ	СВ	СВ	CB						ball to Basket					
GC	GC	GC	GC						arble to Tenni	s ball)				
GF	GF	GF	GF						oug to marble)		-	BANK CHAR	ACTERIST	ics
SA FN	SA FN	SA FN	SA FN		· · ·				to Ladybug si	ze)				
HP	HP	HP	HP			y/Muck-			ne Substrate)				X.XX (m	ı) FLAG
WD	WD	WD	WD			(Any Size		lieuri	ne Substratej		Wetted V	viatn		
от	от	от	OT			rite comr	,	w)			Bar Wid	th		
				10x20m Plot)			Flag		CHECK IF UN		Bankfull	Width		
				art in Wetted		ACH PIECE		Drv but A	Ai ≂ Zi .II/Part .i Ban iuli C.		Bankfull	Height		
DIAME		LENGTH	5-15 m	15-30 m		> 30 m	LENGTH		15- ⁻ m	> 30 m	Incised	Height		
											BANK		1	
0.3 - 0	0.6 M							_			ANGLES			V = Near Vertical/
								⊾			CIRCLE ONE	-		Undercut
								X			v			(>75*)
0.6 - 0	0.8 m										1.		S = Stee (30-75	
											s		(30-75	` ل
0.8 - 1	.0 m										G	G = Gradua	_	
												(5-30 🤿	T	< 1
> 1.0											F	F = Flat (<5 🔿		<u> </u>
		RING/DI	STANCI	E (Optiona	l): Dete	mine slope	if feasible i	n terms	of time and distan	ces. Record GP	S INTENDE spacing		ACTUAL tra spacing xx	
coordi	lates li	practical.		Slop	and B	earing not	determine	d (use	man)					
			Back	site			acternine	u (use						
		Slope XX.X %	Bear 0-3	, ing	ance n)	Way Point#	GPS	Latitude	- dd mm ss.s	GPS	Longitude - d	dd mm ss.s		Flag
	MAIN								_					
ts a	.													
aner Doin	1ѕт								·				·	
ayr ayr	2 _{ND}								•.					
Supplemental Waypoints	3RD													
	JRD					L			· · · · · · ·					
Flag				Comm	ents									
				rement mac side 2 of this		ispect measu	irement; F1,	F2, etc.	= flags assigned by	each field crew. I	explain all flags	in comments	24	1732

04/07/2009 NRSA Channel Riparian Boatable Front

	PHAB:	CHAN	INE	L/RIPA	RIA	N TR	AN	ISE	CT F	ORN	1 - E	BOAT	ABLE (Back	Rev'd	by (ini	t.):
	SITE ID: FW	08					_		DAT	E:		_/_	/_2	2 0			
TRA	NSECT: OA OB	00	0	DOE	OF	OG	C	ЭН	01.0	ЪЪ	ок	0		sen ban acing down :		O Le	eft O Right
	VISUAL RIPARI ESTIMATES RIPARIAN VEGETATION COVER		1 = S 2 = M 3 = H	bsent (0%) pare (<10%) oderate (10- eavy (40-75% ry Heavy (>	%) 75%)	C = 0 E = E	Mixed Ione	rous eaf Eve	Flag			С(0	FISH OVER/ THER x 20m Plot)	0 = 7 1 = 5 2 = 1 3 = 1 4 = 1 In-Ch	DVER C Absent Spare Moderate Heavy Very Heav annel C circle one	(0%) (<1 (10) (40) y (>7 Cover	
	(10m x 20m Plot)			Canopy			Dan	n.	Tiag			Filam	nentous Algae			34	-
	Woody Vegetation Type	D C	Е	MN	D	СE	М	Ν					Macrophytes	0	12	3 4	
	BIG Trees (Trunk >0.3 m DBH)	0 1	2	34	0	1 2	3	4				1	Woody Debris	-	1 2	3 4	
	SMALL Trees (Trunk <0.3 m DBH)	0 1	2	34	0	1 2	3	4				Brush/\	>0.3 m (BIG) Woody Debris		1 2	3 4	
	<0.5 III DBH)		U	nderstory	(0.5 to	5 m hi	gh)						.3 m (SMALL)				
	Woody Vegetation Type	DC	Е	M N	D	СЕ	М	Ν					ees in Stream rhanging Veg.	0	12	3 4	
	Woody Shrubs & Saplings	0 1	2	34	0	12	3	4					m of Surface	0	12	34	
	Non-Woody Herbs, Grasses, & Forbs	0 1	2	34	0	1 2	3	4				Un	dercut Banks	0	12	34	
	,			Ground C	over (<	0.5 m h	nigh)		1			Bou	ulders/Ledges	0	12	34	
	Woody Shrubs & Saplings	0 1	2	34	0	1 2	3	4				Artific	ial Structures	0	12	3 4	
	Non-Woody Herbs, Grasses and Forbs	01	2	34	0	12	3	4			ĭ=	7/			NOT		
	Barren, Bare Dirt or Duff	0 1	2	34	0	12	3	4			<u>y</u>	DIGT	CHANN				1
	HUMAN INFLUENCE	0 = Not	eft Ba	nk <u>P = >10 m</u>	C = With	in 10 m Right	B = Or Ban	n Bank K			1 то		ANCE FROM				
	Wall/Dike/Revetment /Riprap/Dam	0	ΡC		0			в					(CIRCLE	ONE		
	Buildings	0	P	В	0	Р	c	. –			С	Cha	nnel is <u>Constr</u>	ained.			
	Pavement/Cleared Lot	0	PO	в	0	Р	с	-		1		_					
	Road/Railroad	0	PO	В		Р	ς	в			В	Cha	nnel is in <u>Broa</u>	ad Valley	but Cons	straine	d by Incision.
	Pipes (inlet/Outlet)	0	ΡC	; в	1_0	2	с	в			N	Cha	nnel is in <u>Narr</u>	ow Valley	/ but NO	T very	constrained.
	Landfill/Trash	0	ΡC	; в	Ĭ.	Р	С	в			u	Cha	nnel is <u>Uncon</u>	strained i	n Broad	Valley.	
	Park/Lawn	0	ΡC	В	0	Р	с	в						CHECK	ONE		
	Row Crops	0	ΡC	с в	0	Ρ	С	в				YES	I COULD R			р тығ	BANK
	Pasture/Range/Hay Field	0	ΡC	с в	0	Ρ	С	в			-	NO					
	Logging Operations	0	ΡC	В	0	Р	с	в			I⊢ĭ	NO			ILY SEE	OVER	THE BANK.
	Mining Activity	0	PO	в	0	Ρ	с	в]	י	LAG					
FI	ag			C	ommen	ts											NSITY @ BANK R (0 TO 17 MAX)
															! ,	јр 🛛	
															ро	WN	
] и	≣FT	
															R	бнт	
															FI	AG	

Flag Codes: K = no measurement made; U = suspect or non-standard measurement; F1, F2, etc. = flags assigned by each field crew. Explain all flags in comments section on this side.

04/07/2009 NRSA Channel Riparian Boatable Back

		SITE				• •						E:									
		TI	RANSECT:			0 6-	D) D-E	0	E-F	_	-					0	J-K	OTH		
BL = B CB = C GR = C SA = S FN = S	ouli obb oar and ilt/ c	DER (25 LE (64 SE TO (0.06 T(CLAY / I	SUE ARDPAN (SMOO 10 TO 4000 mm) TO 250 mm) - (TI FINE GRAVEL (2 D 2 mm) - (GRIT MUCK - (NOT GR MENT ON OTHE	- BASKETBAL ENNIS BALL TO TO 64 mm) - (IY - UP TO LAI (ITTY)	I) - (LARO L TO CAP O BASKE LADYBU	R) ETBALL G TO T	_)					GL RI CA FA	= Pc $= GI$ $= Rif$ $= Ra$ $= Ca$ $= Fa$ $= Dr$	ol ide ffle pid scade IIs	,	UES		Ch	OTH Chan annel ckwat	nel = or	Off
		` <u> </u>		REME	MBER:	A = L	Jpstre						strean	n end	of Re	ach.					
STA TION		IAG e one)	DEPTH (E UNITS: () SONAR XX	ft 🔿 m			Circle o	THA JBSTR ne Subs r each st	RATE trate Co		OFIL	E	Ci	cle on	e Chanr	ABITA iel Habita station			СН	FF AN. e one)	FLAG
0	Y	N			вн	BL	СВ	GR	SA	FN	от	РО	GL	RI	RA	СА	FA	DR	Y	N	
1	Y	N			вн	BL	СВ	GR	SA	FN	от	РО	GL	RI	RA	СА	FA	DR	Y	N	
2	Y	N			вн	BL	СВ	GR	SA	FN	от	РО	GL	RI	RA	CA	FA	DR	Y	N	
3	Y	N			вн	BL	СВ	GR	SA	FN	от	-0	ΩL	RI	RA	CA	FA	DR	Y	N	
4	Y	N			вн	BL	СВ	GR	SA	F'.	٩T	РО	GL	RI	RA	CA	FA	DR	Y	N	
5	Y	N			вн	BL	СВ	GR	SA	F.'	ОТ	PO	GL	RI	RA	CA	FA	DR	Y	N	
6	Y	N			BH	BL	СВ		۲ ۵		от	PO	GL	RI			FA	DR	Y	N	
7		N			BH	BI	-			FN	от	PO	GL	RI	RA		FA	DR		N	
8	Y				вн		63	GR	SA		от	PO	GL	RI	RA		FA	DR		N	<u> </u>
9 10	Y Y	N N			вн	BL	СВ	GR GR	SA SA	FN FN	от от	PO PO	GL	RI RI	RA RA	СА	FA FA		Y Y	N N	
11	Ŷ				вн	BL	СВ	GR	SA	FN	от	PO	GL	RI			FA		Ŷ	N	
FLA	G								сс	мме	NT										

Flag codes: K = Sample not collected; U = Suspect sample; F1, F2, etc. = flag assigned by field crew. Explain all flags in comment sections.

04/07/2009 NRSA Thalweg Boatable

								· (Initials):	
SII	SITE ID: FW08			DATE:		- - - 0	PAGE:	_ of	
O Not Fishe O Not Fishe	O Not Fished - No Permit O Not Fished - Permit Restriction		O Not Fished - Equipment Failure O Not Fished - Other (Explain Below) O Not Fished - Site Conditions Prohibit Sampling	ailure O Not Fishe Ins Prohibit Samplin	d - Other (Explai g	in Below)	O Fished - None Collected		1385
O Fished A	O Fished All 10 Subreaches O	Fished 5-9	Subreaches O Fishe	O Fished 1-4 Subreaches					
COMMENT									
Water Visibility:	O Good O Poor	Water Temp (°C):	Cond (uS)		O More than	1 method use	O More than 1 method used to collect fish?		
ELECTROFISH	O BOAT O RAFT	O BP O BA	O BANK/TOW Netters:	Anodes: Number		Diameters	O in. Wave Form: O AC	C O DC O Pulsed DC	od DC
Volts: (50-1000)		Watts: likely 400 (bp), 2500 or 5000 (boat/raft)	400 (bp), boat/raft)	Pulse Rate:	te: Iz	Amps: (may not be provided for bp)	y not be for bp)	Pulse Width (ms)	
Total Shock (button) Time (s)	k e (s)	Total	Total Fishing Time (min)	Reach Length Sampled (m)		Avg. Subre	Avg. Subreach Length (m)	Electrofish Flag:	
		1	VOUCHER SAMP	VOUCHER SAMPLE INFORMATION		O NO "CUCHERS PRESERVED	SERVED		
Sample ID	Sample Category	* Preserved			ころ	Comments			
	4 0 00	0							
	00	0							
-	-		FIS	SELINE SUSSIT HSIA		O NO SAMPLE COLLECTED	ED		
SAMPLE		-	Common Name	T tal Lengt	T tal Length(mm) Subreach Frozen	Frozen	Comments	ents	
۲.						0			
.2						0			
с <u>.</u>						0			
4.						0			
.5						0			
FLAG					COMMENT				
									Τ
Flag cv *Samp 04/07/	Flag codes: K = No measurement made, U = Susp "Sample Category P = Primary D = Field Duplicate 04/07/2009 NRSA Fish Gear	nt made, U = Sı D = Field Duplica	uspect measurement., F1 ate	,F2, etc. = flags assign.	ed by each field cre	w. Explain all fla	Suspect measurement., F1,F2, etc. = flags assigned by each field crew. Explain all flags in comments. LENGTH* - Enter single fish as minimum. icate	inter single fish as minimurr	e e

 $\langle \cdot \rangle$

Tara Tensi Tensi <tht< th=""><th></th><th></th><th>SITE ID:</th><th>FW08</th><th>LEGACY T</th><th>REE VISIBLE</th><th>SITE ID: FW08 DATE: DATE: LARGEST POTENTIAL LEGACY TREE VISIBLE FROM THIS STATION</th><th>ALIEN PLANT SPECIES PRESENT IN LEFT AND RIGHT</th><th></th></tht<>			SITE ID:	FW08	LEGACY T	REE VISIBLE	SITE ID: FW08 DATE: DATE: LARGEST POTENTIAL LEGACY TREE VISIBLE FROM THIS STATION	ALIEN PLANT SPECIES PRESENT IN LEFT AND RIGHT	
○ 0.04.1 0.752 0.515 ○ Eventions 0.44 million 0.44 million <th>L L</th> <th></th> <th>DBH (m)</th> <th>Height (m)</th> <th>Dist. from wetted margin (m)</th> <th>Type</th> <th>Taxonomic Category</th> <th>Check all that are present</th> <th></th>	L L		DBH (m)	Height (m)	Dist. from wetted margin (m)	Type	Taxonomic Category	Check all that are present	
0 0.40.1 0.753 0 0.41.0 0.753 0 0.44milition 0.	۷	0						C E Wtrmilf O W Hyacinth G Reed O Hydrilla O Ylw Fitheart Flwr Rush O E Wtrchest O Lstrife O salt Ced	
Image: Second contractions Image: Second contractions <td< th=""><th></th><th>0</th><th></th><th></th><th></th><th></th><th></th><th>O E Wtrmilf O W Hyacinth O G Reed O Hydrilla O Ylw Fitheart Flwr Rush O E Wtrchest O P Lstrife O salt Ced</th><th></th></td<>		0						O E Wtrmilf O W Hyacinth O G Reed O Hydrilla O Ylw Fitheart Flwr Rush O E Wtrchest O P Lstrife O salt Ced	
Taticity Aller Special Adder/Birch Adder/Birch Adder/Dyness/Sequola Ewytrehest Vinknown or Other Deciduous Eder/Cypress/Sequola Finder/Birch Eder/Cypress/Sequola Finder/Birch Eder/Cypress/Sequola Finder/Birch Eder/Cypress/Sequola Finder/Birch Eder/Cypress/Sequola Finder/Cypress/Sequola Entition Diniper Entition Spurce Eder/Cypress/Sequola Diniper Entition Diniper Entition Diniper Entition Diniper Entition Diniper Entition Diniper Diniper Diniper Diniper <		0				O Deciduous O Coniferous O Broadleaf Evergreen		O E Wtrmilf O W Hyacinth O G Reed O Hydrilla O Ylw Fitheart O Flwr Rush O E Wtrchest O P Lstrife O Salt Ced	
Acaccia/Mesquite Acaccia/Mesquite ut Alder/Birch Alder/Birch Alder/Birch Ash Ash Ash Ash Maple/Soxeldet WHyacinth Oak Soxeldet Oak Soxeldet Oak Soxeldet Poplan Soft riveod Villow Villow Unknown or Other Deciduous Salt Cedar Villow Filver Rush Finder/Sores/Sequoia Filver Rush Finder/Sores/Sequoia Filver Rush Finder/Sores/Sequoia Filver Rush Finder Pourgle loosestrife Unknown or Other Deciduous Salt Cedar Juniper Spruce Laafy Spurge Unknown or Other Broadleaf Evergreen Unknown or Other Broadleaf Evergreen Snuce Unknown or Other Broadleaf Evergreen Snuce Unknown or Other Broadleaf Evergreen			INSTRUCT	SNO			TAXONOMIC CATEGORIES	ALIEN SPECIES	
 ge	the state state	ential Le ential Le in your s wadeab Wadeab Trom-wac m from le ream and from k idently. t bank Non-wad Non-wad	egacy trees are def earch area, which is um limits as follows le Streams. Confin, ft and right bank an t (for W look upstream leable Rivers: Corri deable Rivers: Corri deable Rivers: Torri downstream as fa d downstream as	ned as the la sas far as yor e search to r d extending und filme search th filme search to r as you can r as you can r as you can r 10 m x 20 m	argest tree bu can see, bu no more than upstream to a widths) o no more thau f both i see ts on left and ts on left and		Mesquite ficth ficth ficth ficth ficth societ ficth above ficth allowed for an or Other Deciduous uding Douglas fir and hemlock) an or Other Confer	Eurasian water milfoil Hydrilla European water chestnut Water Hyacinth Yellow Floating Heart Purple loosestrife Giant Reed Giant Reed Salt wesh Salt Prose Leafy Spurge Leafy Spurge	ns a sec
ransects D to K continued on other side	an	all aliens wal and F	s are to be identified Plant Identification (in all states. Suide.	. See Field	Unknow Snag (D	m or Other Broadleaf Evergreen Jead tree of any species)		
	La	Insect	s D to K conti	nued on	other side]			

		SITE ID:	FW08			DATE:		/ 2 0
		LARGEST F	ARGEST POTENTIAL LE	LEGACY T	REE VISIBLE	GACY TREE VISIBLE FROM THIS STATION	ALIE RIP,	ALIEN PLANT SPECIES PRESENT IN LEFT AND RIGHT RIPARIAN PLOTS, AND INSTREAM FISH COVER PLOT
Tran T	Trees not Visible	DBH (m)	Height (m)	Dist. from wetted margin (m)	Type	Taxonomic Category		Check all that are present
	0	○ 0-0.1 ○ .75-2 ○ .13 ○ >2 ○ .375	0 <5 0 5-15 0 >30 0 >30		O Deciduous O Coniferous O Evergreen			O E Wtrmilf W Hyacinth G Reed O MF Rose O Hydrilla Y W Fltheart Fltheart Spurge O E Wtrchest P Lstrife Salt Ced
	0	○ 0-0.1 ○ .75-2 ○ .13 ○ >2 ○ .375	: 0 <5 0 5-15 0 15-30 0 >30		O Deciduous O Coniferous O Evergreen		Non	O E Wtrmilf O Hyacinth O G Reed O MF Rose O Hydrilla O Ylw Fltheart O Flwr Rush O Spurge O E Wtrchest O Lstrife O Salt Ced
	0	○ 0-0.1 ○ .75-2 ○ .13 ○ >2 ○ .375	: 0 <5 0 5-15 0 15-30 0 >30		O Deciduous O Coniferous O Evergreen		ON	C E Wtrmilf O Hyacinth C Reed O MF Rose O Hydrilla O Ylw Fltheart C Flwr Rush O Spurge O E Wtrchest O Lstrife O Salt Ced
	0	0 0-0.1 0 .75-2 0 .13 0 >2 0 .375	0 ≤5 0 5-15 0 15-30 0 >30		O Deciduous O Coniferous O Evergreen	N/L	Non	C E Wtrmilf O H yacinth C Reed O MF Rose O Hydrilla O Ylw FltheartO Flwr Rush O Spurge O E Wtrchest O Lstrife O Salt Ced
	0	○ 0-0.1 ○ .75-2 ○ .13 ○ >2 ○ .375	: 0 <5 0 5-15 0 15-30 0 >30		O Deciduous O Coniferou. O Broadleaf Evergreen			O E Wtrmilf O Hyacinth G Reed O MF Rose O Hydrilla O Ytw FltheartO Flwr Rush O Spurge O E Wtrchest O Lastrife O Salt Ced
)	\bigcirc	0 0-0.1 0 .75-2 0 .13 0 >2 0 .375	: O <5 O 5-15 O 15-30 O >30		O Deciduous O Coniferous O Evergreen			O E Wtrmilf O W Hyacinth O G Reed O MF Rose O Hydrilla O YW Fitheart O Flwr Rush O Spurge O E Wtrchest O Lstrife O Salt Ced
<u> </u>	\bigcirc	0 0-0.1 0 .75-2 0 .13 0 >2 0 .375	: 0 <5 0 5-15 0 15-30 0 >30		O Deciduous O Coniferous O Evergreen			O E Wrtmilf O Hyacinth O G Reed O MF Rose O Hydrilla O Ylw Fitheart O Flwr Rush O Spurge O E Wrtchest O Lstrife O Salt Ced
<u>צ</u>	0	O 0-0.1 O .75-2 O .13 O >2 O .375			O Deciduous O Coniferous O Evergreen			O E Wtrmilf O W Hyacinth O G Reed O MF Rose O Hydrilla O Ylw Fltheart O Flwr Rush O Spurge O E Wtrchest O P Lstrife O Salt Ced

National Rivers and Streams Assessment Field Operations Manual

CHANNEL CONSTRAINT FORM - WAI	DEABLE/BOATABLE Reviewed by (initial):
SITE ID: FW08	DATE: / /
CHANNEL CONSTRAIN	г
 CHANNEL PATTERN (Fill in one) One channel Anastomosing (complex) channel - (Relatively long major and mino Braided channel - (Multiple short channels branching and rejoining - numerous mid-channel bars.) 	· · · · · · · · · · · · · · · · · · ·
 CHANNEL CONSTRAINT(Fill in one) Channel very constrained in V-shaped valley (i.e. it is very unlikely new channel during flood) Channel is in Broad Valley but channel movement by erosion during flows do not commonly spread over valley floor or into multiple channel Channel is in Narrow Valley but is not very constrained, but limite valley floor (< ~10 x bankfull width) Channel is Unconstrained in Broad Valley (i.e. during flood it can spread out over flood plain, or easily cut new channels by erosion) 	g floods is constrained by Incision (Flood els.) d in movement by relatively narrow
CONSTRAINING FEATURES (Fill in one) Bedrock (i.e. channel is a bedrock-dominated gorge) Hillslope (i.e. channel constrained in narrow V-shaped veller) Terrace (i.e. channel is constrained by its own incision into river/streat Human Bank Alterations (i.e. constrained by rip-tap, landfill, dike, root No constraining features	
Percent of channel length with margin in contact with constraining feature:	Percent of Channel Margin Examples
Bankfull width:	100% 100%
Valley width (Visual Estimated Average): (m) Note: Be sure to include distances between both sides of valley border for valley width. If you cannot see the valley borders, record the distance you can see and mark this box.	50% 50%
Comments	
04/07/2009 NRSA Channel Constraint 2009	15186

	Reviewed by (Initials):	
ell		
31		
	TORRENT EVIDENCE	
	Please fill in any of the following that are evident. ENCE OF TORRENT SCOURING:	_
0	01 - Stream channel has a recently devegetated corridor two or more times the width of the low flow channel. This corridor lacks riparian vegetation with possible exception of fireweed, even-aged alder or cottonwood seedlings, grasses, or other herbaceous plants.	
0	02 - Stream substrate cobbles or large gravel particles are NOT IMBRICATED. (Imbricated means that they lie with flat sides horizontal and that they are stacked like roof shingles imagine the upstream direction as the top of the "roof." a torrent scour or deposition channel, the stones are laying in unorganized patterns, lying "every which way." In addit many of the substrate particles are angular (not "water-worn.")	
0	03 - Channel has little evidence of pool-riffle structure. (For example, could you ride a mountain bike down the channe	
0	04 - The stream channel is scoured down to bedrock for substantial portion of reach.	
0	05 - There are gravel or cobble berms (little levees) above bankfull level.	
0	06 - Downstream of the scoured reach (possibly several miles), the early massive deposits of sediment, logs, and othe debris.	
0	07 - Riparian trees have fresh bark scars at many points along to a stream at seemingly unbelievable heights above the channel bed.	
0	08 - Riparian trees have fallen into the channel as a res. 't o. scouring near their roots.	
EVID	ENCE OF TORRENT DEPOSITS:	
0	09 - There are massive deposits of sediment, it gs. and other debris in the reach. They may contain wood and boulder that, in your judgement, could not have been mered by the stream at even extreme flood stage.	
0	10 - If the stream has begun to erode newly and leposits, it is evident that these deposits are "MATRIX SUPPORTED." This means that the large particles like bou ders and cobbles, are often not touching each other, but have silt, sand, a other fine particles between them the tweight is supported by these fine particles in contrast to a normal stream deposit, where fines, if present, norm. It fill-in the interstices between coarser particles.)	
NO E	VIDENCE:	
0	11 - No evidence of torrent scouring or torrent deposits	
	COMMENTS	
		-
		\neg

VISU	AL ASSESSMENT FOI	RM - WADEABLE	BOATABLE (Fro	ont) ^{Reviewed by (initial)} :
SITE ID: FW0	8	_	DATE: /	/_2_0
WATERSHED ACTIV	ITIES AND DISTURBANCES OF	BSERVED (Inter	nsity: Blank=Not observed, L	.=Low, M=Moderate, H=Heavy)
Residential	Recreational	Agricultural	Industrial	Stream Management
L M H Residences L M H Maintained Lav L M H Construction L M H Pipes, Drains L M H Dumping L M H Roads L M H Bridge/Culvert	L M H Primitive Parks, Camping L M H Trash/Litter L M H Surface Films	L M H Cropland L M H Pasture L M H Livestock Use L M H Orchards L M H Poultry L M H Irrigation Equip. L M H Water Withdrawal	L M H Industrial Plants L M H Mines/Quarries L M H Oil/Gas Wells L M H Power Plants L M H Logging L M H Evidence of Fire L M H Odors	L M H Liming L M H Chemical Treatment L M H Angling Pressure L M H Dredging L M H Channelization L M H Water Level Fluctuations L M H Fish Stocking
L M H Sewage Treatm	nent		L M H Commercial	L M H Dams
Waterbody Character	Pristine (HARACTERISTICS (200 n 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5	3 02 01	Highly Disturbed Unappealing
Beaver	Beaver Flow Modifications		Minor O Major	ווע
Dominant Land Use WEATHER	Dominant Land Use Around 'X' O Forest If Forest, Dominant Age Class O - 25 yrs) > .nge () Urban () > 75 yrs.	🔿 Suburban/Town
GENI	ERAL ASSESSMENT (Bio	tic in eg, Vegetation o	liversity, Local anecdotal	information)

04/07/2009 NRSA Visual Assessment

	VISUAL	ASSE	SSME	NT FO	ORM -	WADI	EAB	LE/B	ΟΑΤ	AB	LE	(Ba	ck)	Review	ed by (ir	nitial):	
SITEI): FW08							ATE:	L	_/	1	/	2	0			
			G	ENERA	L ASS	ESSME	NT	(cont	inued)							
															-		
							_										
							\mathcal{D}										
						\square											
					_	$\overline{\mathcal{O}}$	-										
					1X												
				OF. NUI													
New Zealand	ies of plants an Mud Snail, or , and provide s	invasive j	plants or	ranii, 🧟 s	of conce	ern to a p	barticu	lar sta	te. Indi	icate y	your	level	of c				
Species	(Common Nar	ne)	Confi	dence	Pre	valence			Con	nment	ts						

Species (Common Name)	Confidence	Prevalence	Comments
	O LOW O HIGH	O DOMINANT O SPARSE O COMMON	
	O LOW O HIGH	O DOMINANT O SPARSE O COMMON	
	O LOW O HIGH	O DOMINANT O SPARSE	
	O LOW O HIGH	O DOMINANT O SPARSE O COMMON	
	O LOW O HIGH	O DOMINANT O SPARSE O COMMON	
	O LOW O HIGH	O DOMINANT O SPARSE O COMMON	
	O LOW O HIGH	O DOMINANT O SPARSE	
	O LOW O HIGH	O DOMINANT O SPARSE	
	O LOW O HIGH	O DOMINANT O SPARSE O COMMON	
	O LOW O HIGH	O DOMINANT O SPARSE O COMMON	
			07000

TRACKING AND SAMPLE STATUS - WRS							
SITE ID: FW08		Visit #: 010	2 D	nate Collected: / / 0			
SENT BY:		SENDER PHONE:					
State of Site Location:	т	EAM: I	DATE SEN	т: / / 2 0			
SHIPPED O FedEx O UPS O Hand Delivery BY: O Other: AIRBILL/TRACKING NUMBER: NUMBER:							
	Si	te Status Report					
	NOT SAMPLEABLE	Temporarily		SAMPLE STATUS			
SAMPLEABLE	O Drv - Visited	Not Sampleable		○ No Samples Collected			
⊖ Wadeable ⊖ Boatable	- ,			the samples that were collected during this site visit:			
_				er Chem (CHEM) O Enterococci (ENTE)			
○ Partial Wadeable	⊖ Wetland	⊖ Other		er Chl (WCHL) O Sediment (SEDE)			
○ Partial Boatable	○ Map Error	NO ACCESS		er Chem (PPCP) O Fish Tissue (FTIS)			
○ Wadeable Interrupted	⊖ Impounded	⊖ Access Denied		ohyton ChI (PCHL) O Fish Voucher (VERT) ohyton Bio (PBIO) O Bent Reachwide (BERW)			
O Boatable Interrupted	⊖ Other	O Inaccessible		whyton Bio (PBIO) O Bent Reachwide (BERW) whyton ID (PERI) O Bent Low Gradient (BELG)			
O Altered		⊖ Temp Inaccessible	· · · ·	inyton APA (PAPA)			
Status Comments		4					
Sample ID	Sample Type	24 nment	ts				
	СНЕМ						
	ี้ พ่ c ่ н ่ เ						
. 2	PCHL						
. 3							
<u> </u>	- · · · · · · -						
<u> </u>							
	W C H L						
. <u>.</u> 2							
	PBIO						
Sample Types	Condition Codes	Chain of Custo	dy	Contact Information			
	Filled in by recipie	ent Filled in by rec	ipient	Tracking Help:			
CHEM - Water chemistry WCHL -Water Column	C = Cracked jar	Date Received:		Marlys Cappaert			
Chlorophyll PCHL - Periphyton	F = Frozen L = Leaking	1 1		PH: 541-754-4467			
Chlorophyll PBIO - Periphyton	ML = Missing label NP = Not preserved	Received by:		Lab:			
Biomass	W = Warm			Attn: Phil Monaco, Dynamac c/o U.S. EPA			
	OK = Sample OK T = Thawed			1350 Goodnight Ave			
				Corvallis, OR 97333			
				PH: 541-754-4787			
				monaco.phil@epamail.epa.gov			
		IIS FORM TO 541-7					
		G INFO TO VOICE	MESS	AGE CENTER:			
04/07/2009 NRSA	A Tracking - WRS	541-754-4663					

 $\overline{\Box}$

		TRACKING	G - NERL	Cincinnati	
SITE ID: FW08			○ 1 ○ 2 R PHONE :	Date Collected: / / 2_0	I
State of Site Locatio SHIPPED 〇 FedEx BY: 〇 Other:	OUPS O Hand		BILL/TRACKING	SENT: / / 2 0	
Sample ID	Sample Type		Comments		Condition Code
	P P C P				
Sample Types	Condition (ry Filled in by r C = Cracked F = Frozen L = Leaking ML = Missing NP = Not pre: W = Warm OK = Sample T = Thawed	recipient Filled i jar Date Re label/_ served Receive		Contact Information nt Tracking Help: Marlys Cappaert PH: 541-754-4467 Lab: NERL -Cincinnati Attn: Dr. Angela Batt 26 W. Martin Luther King Drive MS 642 Cincinnati, OH 45268 513-569-7284 batt.angela@epa.gov	

FAX THUS FORM TO 541-754-4637 OR READ TRACKING INFO TO VOICE MESSAGE CENTER: 541-754-4663

			D samples on one			
NT BY: PHONE:				TE OF	TEAM:	
				eks. / _2 _0	· · · · · · ·	
PRESERVED sampl	es that w	ill be stored longer than	a month at a hold	ng facility.		
Date Sample Collected	Visit	Sample ID	Sample Type	# of	Comments	Cond. Code
	01					Couc
	01					
	01					
	01					
	01			<u> </u>		
	01					
	01			<u> </u>		
	01			<u> </u>		
	01			<u> </u>		
	01					
	01	<u> </u>		<u> </u>		
		· ·				
	01					
	01			<u> </u>		
	01			-		
	01			-		
	OUPS O Hand De OUPS O Hand De OUPS O Hand De	PHON UNPRESERVED samples th UPS O Hand Delivery PRESERVED samples that w Date Sample Collected MM/DD/YYY Visit O O O O O O O O O O O O O O O O O O O	PHONE: UNPRESERVED samples that will be batched and s D UPS O Hand Delivery DATE SHIPPED: PRESERVED samples that will be stored longer than Date Sample Collected 01 01 02 01	PHONE: SITE LC • UNPRESERVED samples that will be batched and shipped within 2 we • • UPS • Hand Delivery DATE SHIPPED: / • PRESERVED samples that will be stored longer than a month at a hold • Date Sample Collected Visit Sample 1D Sample Type • O 1 0.1 0.2	PHONE: SITE LOCATION: UNPRESERVED samples that will be batched and shipped within 2 weeks.) UPS O Hand Delivery DATE SHIPPED: / / 2 0 PRESERVED samples that will be stored longer than a month at a holding facility. Date Sample Collected Visit Sample ID Sample Type # of of containers 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 2 0 1 0 1 0 0 1 0 2 0 1 0 1 0 0 1 0 2 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0	PHONE: SITE LOCATION: TEAM: UNPRESERVED samples that will be batched and shipped within 2 weeks. Image: Contraction of the state

Lab	Chain of Custody	/ Sample Types	Condition Codes
 ACADEMY OF NATURAL SCIENCES - PHIL, PA BENTHIC LAB GLEC MED - DULUTH, MN MICHIGAN STATE UNIV. NERL - N. CHELMSFORD, MA 	Filled in by recipient Date Received:// Received by:	PRESERVED - RETAINED: BERW - Benthos Reach Wide BELG - Benthos Low Gradient VERT - Fish Vouchers PERI - Periphyton ID (.1) UNPRESERVED - BATCHED: SEDE - Sediment Enzyme FTIS - Fish Tissue	Filled in by recipient C = Cracked jar F = Frozen L = Leaking ML = Missing label NP = Not preserved W = Warm
	Tracking Help: Marlys Cappaert p) 541-754-4467	PAPA - Periphyton APA (.4) ENTE - Enterococci	OK = Sample OK T = Thawed 42504
FAX THIS FORM TO 541-754-4637 OR REAL 04/07/2009 NRSA Tracking - Batch/Retain 200		ESSAGE CENTER: 541-754-4663	

04/07/2009 NRSA Tracking - Batch/Retain 2009

Final Manual Date: April 2009 Page B-33

WADEABLE FORMS PACKET

 $\overline{\Box}$

	STREAM	VERIFICATION FORM - V	WADEABLE/BO	ATABLE (F	ront)	y (initial):		
SITE NA	ME:		DATE: /	1,2,0	VISIT:	01 02 03		
SITE ID:	FW08	State of State	Site Location:	Don't forge Reach Leng		TEAM:		
STREAM/RIVER VERIFICATION INFORMATION								
Stream/River Verified by (fill in all that apply)								
Coo	ordinates	Latitude North	Longitude		# of Satellites	Are GPS Coordinates w/i 10 Sec. of map?		
MAP	Degrees, Minutes, and Seconds OR Decimal Degrees	· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·		O ≤ 3	() Yes		
GPS	Degrees, Minutes, and Seconds OR Decimal Degrees				⊖ ≥4	O No GPS Datum Used (e.g. NAD27):		
			MPLE THIS SITE	?				
	() YES I	f YES, check one below	CN ()	If NO, check on	e below			
 Wadeat Boatabl Partial Partial Wadeat Wadeat Boatabl Altered 	e Sampled by wadir Sampled by boat (ole Interrupted - Not e Interrupted - Not - Stream/River Cha	ater, greater than 50% wadeable ng (>50% of reach sampled). Explain be (>50% of reach sampled). Explain below t continuous water along reach continuous water along reach nnnel Present but differ - from M. p	 Ory - Visual Ory - Visual Or, Not N Wetland (I Map Error Impounde Other (exp NON-SA Not boatal Not boatal Not wadea Other (Exp Not wadea Other (Exp No ACCC Access Pe Permanen 	visited No Definable Cham - No evidence cha d (Underneath Lak olain in comments) MPLEABLE-TE ble - Need a differe able - Need a differe olain in comments) ESS ermission Denied tly Inaccessible (U	nel) nnel/waterboc e or Pond) EMPORAR nt crew - Resc ent crew - Res	ly ever present Υ chedule for this year chedule for this year		
GENER	AL COMMENT	'S:						
		AM/RIVER SITE:				36530		
		d to define length of reach, and sketch ge am Verification 2009	eneral features of reach on	reverse side.				

SITE NAME:			DATE:	/	<i>I</i>	VISIT: C)1 ()2		
SITE ID:	FW08					TEAM	:		
	S	TREAM/RIVER	REACH DETER	RMINAT	ION				
Channel Width	DISTANCE (m) F		Total Rea		<u></u>				
lsed to Define Reach (m)	Upstream Length	Downstream Length	Length Inter (m)	naea	Comment				
		<u> </u>	[
			varate sheet with the or nap with reach, X-site a			ked.			
		Et	MP						
			RSONNEL		Bio/Chem		Forms		
	N.	PE	RSONNEL		Bio/Chem Sampling O	Habitat	Forms Review		
	N		RSONNEL		Sampling		Review		
	N.		RSONNEL		Sampling 〇	0	Review		
	N		RSONNEL		Sampling 〇 〇	0	Review 〇 〇		

	FIELD MEASURI	EMENT FORM -	WADEABLE	Reviewe (initial):	d by					
SITE	E ID: FW08	DA		, / , , , , ,						
CALIBRATION INFORMATION										
Instrument manufacturer and model:										
Instrument ID number: Operator:										
	Thermometer Sensor Reading Reading (℃) (℃)	Flag	Cor	nments						
TEMPERATURE	· · · · · · · · · ·									
DO	Elevation OR Press	metric ure(mm lg)	Calibration Value	Displayed Value	Flag					
00	Oft Om		Omg/L `O %		mg/L %					
	Cal. STD 1 Description	Cal. STD 1 Value	Cal. STD 2 D	escription C	al. STD 2 Value					
рН	Calibration Verified with Quality Control Sample (QCS)									
	QCS Descriptio	n	QCS Tru	ed Flag						
	Cal. STD 1 Description	Cal. STD 1 Value	C 1. STD 2 [escription C	al. STD 2 Value					
CONDUCTIVITY	Calit	oration Verif ^ະ ່ງ ພ , Qu	• • •							
	QCS Descriptio	n <u> </u>	QCS True (µS @2	(cm QCS Measured	(µS/cm @25℃) Flag					
		N								
Flag codes: K = No in comment section	measurement or observation made; U = Suss.	pect i easurement or ob	oservation; F1, F2, etc. =	flags assigned by field cre	ew. Explain all flags					

 Flag
 Comments

 Image: Comment state sta

Field Measurements(MID CHANNEL O OTH	ER Comments
TRANSECT: Time of Day	:	
DO(mg/L) XX.X	· · · · · · · · · · · · · · · · · · ·	
Temp. (℃) XX.X	· · · ·	
pH XX.XX	· · · ·	
Cond. (µS/cm)XX.X		
Corrected to 25℃ ?	OY ON	

04/07/2009 NRSA Field Measurement Wadeable

			D	ISCHARGE	FORM -	WADEA	BLE	Reviewed by (Initials):	
	SITE ID:	FW0	8			DAT	re: /	/ <u></u> 0	·1
		⊖ Ve	locity Ar	ea			⊖ Tin	ned Filling	
	tance Units ft		epth Units) ft 〇 cm	Velocity Oft/s XX.X		Repeat	Volume (L)	Time (s)	Flag
	Dist. from	Bank	Depth	Velocity	Flag	1			
1		0				2			
2						3			
3						4	· · · · · · · · · · · · · · · · · · ·	·	
4							·	· .	
5						5	·	·	
6									
7							Float 1	Bouyant Obj Float 2	Float 3
8						Float Di. *		110412	11041.0
9						Oft On ⊡na⊾™ime			
10						1(s)			
11						Flag			
12							Cross Section	ons on Float Reac Middle Section	h Lower Section
13						Width			
14						Oft On Depth 1	n <u> </u>		
15						Oft Oc	m		
16						Depth 2	<u> </u>		
17						Depth 3			
18						Depth 4			
19						Depui 4			
20						Depth 5	· · · · · · · · · · · · · · · · · · ·		
С	Q Value			ge is determine cord value here			O cfs	⊖m³/s Fl	AG
Fla	ıg				Com	iments			
<u> </u>									
L I									
	check associa	ated with	measurement;		asured (if not Sta		observation; Q = Una F2, etc. = Miscellaneo		14610

assigned by each field crew. Explain all fl 04/07/2009 NRSA Stream Discharge

 $\langle \cdot \rangle$

SAMPLE COLLECTION FORM - WADEABLE (Front)																							
4	6387		SITE	ID:	FW	08								DAT	E:		1			2	0		
WATER CHEMISTRY (4-L CUBITAINER) No Sample Collected													d 🔿										
Category * Chilled								Comments															
				0																			
	_	Õ		0																			
					-	IN C	HLOR	OP	HYLL (Targe	et Volu	me =	1000 m	L; m	ax vol	= 200	0 mL) N	lo Sar	nple C	ollecte	d O	
s	(Sample Categor		Volum Filtered (Froze	ən						С	omme	nts								
		O P O D				0																	
		ΟP				0																	
<u> </u>		OP		w	ATE		EMI	STRY	PPC	P (Am	nber (Jass B	ottle)				Ν	lo Sai	nple C	ollecte	d O		
Si	ample I	D		Sampl Categor		hilled	ATER CHEMISTRY PPCP (Amber Glass Bottle) Comments																
						0																	
<u> </u>	-		2	-																			
<u> </u>						0																	
									REACH WIDE BI						NTHOS SATAPI E						nple C	ollecte	dO
	TRANSECT		Α		3	C	;	D)	E		F	F			H			1		J		ĸ
SUBSTRATE Fine/Sand	CHAN. Pool	Sub.	Chan.		Chan.		Chan. O P		Chan.		: <u>han.</u> し) に し		_h <u>an</u> . ◯ ,		han.	-	Chan.	Sub.					Chan.
Gravel	Glide	OG	() GL	OG	() GL	OG	() gl	00) ge	000	5	<u> </u>) gl	000) GL	OG) gl	0 9	00	10	G () G	LOG	O GL
Coarse	Riffle	٥c	() RI	٥c	() RI	00	() ri	000) ri	0.0	~	000) ri	000) ri	O c	🔿 RI	00		0	C () R	00	O RI
Other:	Rapid	00	() ra	00	() RA	00	() ra	0.00) R.	10-	RA	0 • 0) ra	0.00) RA	00	🔿 RA	0.		A ()	0 () R	A () O	O RA
Sa	mple ID			Sample ategory *	NO	. Jars	Pre- served	d						· · · ·	Com	nents							
				O P O D			0			_													
<u></u>	<u> </u>	<u> </u>		OP OP	<u> </u>		0	+	<i>r</i>														
<u> </u>				Ōр		<u> </u>																	
Transat	•		E	•		с		<u>W-G</u> D	RAI		BEN	F	S SA	G	: 					No Sa	ample (Collect	
Transect Location (LCR):			LOC	ORO	LO		_				_	C OR	_							_		L OC	OR O
Dominant Substrate: (ONE PER TRANSECT)	-	Ос Оот	OF OG	Ос Оот	OF OG	-	-	-	-	F O C G O O	-	-			-	-		-	Ос Оот	OF OG	О ¢ О от	-	Ос Оот
Channel:	ÖР	O RA	ÖР	Ô RA	ÓΡ	O RA	O P	Ó R	A O	P ÖR	4 O F	0		P O P		P O	RAC) P	O RA	ÔΡ	O RA	ΟP	Ó RA
(ONE PER TRANSECT)	00	DT	Ū 0	от	_ C) от	_ C) ot		RI ÖG OOT	(о от		O OT		О от		0	т	¯ 0	от	¯ O	от
Dominant Edge: (L and R)	O U O R	O ™	Ōκ	Os OM	O R	Оs Ом		Os OM	00	U OS R OM						U O R O	M C) U) R	Ом	O R	Os OM	O U O R	Ом
(L and K) (ONE PER TRANSECT)			0 L	O OG OT	Οι C) O OO			GO				o o		og O	L О О от	0G () 00	O 06	OL.	O OG OT	0 L 0	O OG OT
Edge: Substrate: Channel: U = Undercut S = Snag R = Rootwad M = Macrophyte bed F = Fine/Sand C = Coarse substrate P = Pool RI = Riffle GL = Glide L = Leaf Litter OG = Organic deposits OT = Other or Co-Dominant G = Gravel OT = Other (Explain in comment section below) RA = Rapid OT = Other (Explain in comment section below)																							
Sample ID Category* No. Ja								Pre- erved						С	omm	ents							
		P D			0																		
								0															
				uremen	t or ob					t measure Field Dup		or observ	vation;	F1, F2, e	etc. =	misc. fla	igs as:	signed	by fiel	d crew.	Explair	ı all	_

04/07/2009 NRSA Sample Collection Wadeable 2009

46387 SAMPLE COLLECTION FORM - WADEABLE (Back)																
SITE	ID: _F	W08		DAT							1 2 0					
			С	COMPOSITE PERIPHYTON SAMPLE - Primary No Sample Collected (
Sa	ample ID		Sample Category *	Num	ber of tr	ansect	s sampled (ampled (0-11):								
			O P O D													
	blage ID mL tube		C	hlorophy (GF/F Fil				mass (. ^F /C Filte				PA (.4) nL tube)				
Sample Vol. (mL)	ple Vol. (mL) Flag Preserved		Sample Vo	ol. (mL) Fla	ag Froze	n Sample	Vol. (mL)	Flag Froze		n Sa	mple Vol. (mL)	Flag	Frozen			
								0					0			
COMPOSITE PERIPHYTON SAMPLE No Sample C													lected 🔿			
Sa	mple ID		Sample Category *							Number of transects sampled (
			O P O D													
(50-	Assemblage ID (.1) (50-mL tube)				hyll (.2) Filter)			nass (.3 /C Filter				A (.4) nL tube)				
Sample Vol. (mL)	Flag	Preserved	Sample Vo	ol. (mL) Fl	ag Froze	en Sample	Vol. (mL)	Flag	Froze	n Sa	mple Vol. (mL)	Flag	Frozen			
		0				<u> </u>			0				0			
Flag						Comments										
<u> </u>																
							· · ·									
						37	·									
Flag codes: K = No r	neasureme	nt or observa	ation made; U	= Suspect m	easuren m	obse vation; F	, F2, etc. :	= flags ass	igned by fi	eld crew	Explain all flags	s in comment	sections.			
				SED	MINT H	EMISTRY	/ ENZY	MES			No Sa	mple Colle	ected 🔿			
Sample	e ID	Sample Category		Volum	Trar jects	hilled		Comments								
						0										
	O P O D				0							-				
		<u> </u>		ENTER	T) IDDOCC	arget Vol	ume = :	250 mL)		No S	ample Coll	ected 🔿			
Sample	Sample ID S			Depth Sample I Collected Volume		Filt. Start	lt. Start Time		Volume Filtered (Target = 50 mL) **		Filt. End Time	Time Frozen				
One unique ID per line		Cate- gory *	Collected (hhmm)	(m)	(mL)	(hhmm)	Filt. 1	Filt. 2			(hhmm)	(hhmm)				
	O P O D															
	OP															
<u> </u>	<u> </u>	<u>0</u> •														
Flag	<u> </u>				(Comment										
 																
* Sample Categor	ia at D = Dei	morus D = E	ield Dumlicot	o, E = Filtor	Plank (Enteros	oool comple o	nluð Eilfor	blank in an	llooted et	ulait uba	o field duplicate	comple is NC	T tokon			

* Sample Categories: P = Primary; D = Field Duplicate; F = Filter Blank (Enterococci sample only) Filter blank is collected at visit where field duplicate sample is NOT taken. ** If <25 ml of buffer solution was used to rinse filter, indicate with an F flag and note in comment section which filter(s) were affected along with the approximate volume(s) of buffer solution used.

04/07/2009 NRSA Sample Collection Wadeable 2009

	PHab:		CHANNEL/RIPARIAN CROSS-SECTION FORM	CROSS-SE	ECTION FC	RM - WADEABLE	3LE Reviewed by (Initials);	(Initials):		
SITE ID:	D: FW08	DATE:		2 0	TRANSECT	T: O A O B O C O G O H O I	OD OE OF 2 OJ OK	X-tra Side Channe ⊖	6	
SUBSTRA Dis XX.	SUBSTRATE CROSS-SECTIONAL INFORMATION Dist LB Depth Size Class Embed. XXX m XXX m Code 0-100% Flat	FORMATION Embed. 0-100% Flag	FISH COVER/	0 = Absent 1 = Sparse 2 = Moderate 3 = Heavy 4 = Very Heavy	(0%) (<10%) (10-40%) (40-75%) (>75%)	VISUAL RIPARIAN ESTIMATES	Absent (0%) 1 = Sparse (<10%) 2 = Modente (10-40%) 3 = Heavy (40-75%)		D = Deciduous C = Coniferous E = Broadleaf Evergreen M = Mixed	
Left			OTHER	(circle o		DIDADIAN	4= Very Heavy ()			
4 -			:		nel Flag	VEGETATION COVER	Left Bank	Right Bank	k Flag	g
			Filamentous Algae	0 1 2 3	4		Canopy (:	(-	
Ctr			Macrophytes	0 1 2 3	4	Woody Vegetation Type	D C E M	D D D	z	
RCtr			Woody Debris >0.3 m (BIG)	0 1 2 3	4	BIG Trees (Trunk >0.3 m DBH)	0 1 2 3 4	0 1 2 3	4	
Right			Brush/Woody Debris	0 1 2 3	4	SMALL Trees (Trunk <0.3 m DBH)	0 1 2 3 4	0 1 2 3	4	
SUBSTRATE S	SUBSTRATE SIZE CLASS CODES	Embed. (%)	Live Trees or Boots	0 1 2 3	4		derstory (0.5 to 5	(L	-	
RS = Bedrock (S	smooth) - (Larger than a car)		Overhanding Ved	-		Woody Vegetation Type	D C E M	M C D	z	
RR = Bedrock (I RC = Concrete/A	Rough) - (Larger than a car) Asphalt	0	=<1 m of Surface	0 1 2 3	4	Woody Shrubs & Sablinds	0 1 2 3 4	0 1 2 3	4	
XB = Large Boul SB = Small Boul	XB = Large Boulder (1000 to 4000 mm) - (Meterstick to car) SB = Small Bouider (250 to 1000 mm) - (Baskethall to meters	ar) atarstick)	Undercut Banks	0 1 2 3	4	Non-Woody Herbs,	0 1 2 3 4	0 1 2 3	4	Τ
CB = Cobble (64	CB = Cobble (64 to 250 mm) - (Tennis ball to Basketball)	(mana)	Boulders	0 1 2 3	4	Grasses, & Forbs	ound Cover (<0.5			
GC = Coarse Gr GF = Fine Grave	GC = Coarse Gravel (16 to 64 mm) - (Marble to Tennis ball) GF = Fine Gravel (2 to 16 mm) - (Ladybug to marble)	(]]		4 (-		Woody Shrubs	2 3 4		4	
SA = Sand (0.06	SA = Sand (0.06 to 2 mm) - (Gritty - up to Ladybug size)	100	Antificial structures		4	& Saplings			,	Τ
FN = Silt / Clay / HP = Hardpan - (FN = Silt / Clay / Muck - (Not Gritty) HP = Hardpan - (Firm, Consolidated Fine Substrate)	100 0				Non-woody Herbs, Grasses and Forbs	0 1 2 3 4	0 1 2 3	4	
WD = Wood - (Any Size) OT = Other (Write comm	WD = Wood - (Any Size) OT = Other (Write comment below)					Barren, Bare Dirt or Duff	0 1 2 3 4	0 1 2 3	4	
	D ANIZ ME A SI IDEMENITS		CANOBY COVER A EAST BEMENTS	LIDEMENTS		HUMAN	0 = Not Present P = >10 m	C = Within 10 m	B = On Bank	
	N MERSONEMEN S					INFLUENCE	Left Bank	Right Bank	k Flag	a
	Deank Angle Undercut 0 - 360 Dist. (m) Flag		Ш	(0-17Max)		Wall/Dike/Revetment /Riprap/Dam	0 P C B	0 P C	B	
Left			6, 1		riag	Buildings	0 P C B	0 P C	8	
Right		Cenup	es	CenK		Pavement/Cleared Lot	0 P C B	0 0	8	
Wetted Width XXX.X m	h XXX.X m	CenL	Le	Left		Road/Railroad	В 0 0	с с о	8	
Bar Wid	Bar Width XX.X m	CenDwn	Rig	Right		Pipes (Inlet/Outlet)	0 P C B	0 P C	В	
Bankfull Width XXX.X m	h XXX.X m	_	_			Landfill/Trash	0 P C B	С 0	8	
Bankfull Height XX.X m	ht XX.X m	Flag codes: K = S etc. = flag assign	lag codes: K = Sample not collected; U = Suspect sample; F1, F2, c. = flag assigned by field crew. Explain all flags in comment	J = Suspect samp lain all flags in co	ile; F1, F2, mment	Park/Lawn	0 P	с 4 0	8	
Incised Height XX.X m	tht XX.X m	sections.				Row Crops	0 P C B	0 P C	В	
			-			Pasture/Range/Hay Field	0 P C B	0 P C	В	
	riag	201	COMMENTS			Logging Operations	0 P C B	0 0	8	
72						Mining Activity	0 P C B	0 P C	8	
89										1
04/07/20	04/07/2009 NRSA Channel Ribarian Wadeable	a								
		2								-

SITE ID:	FW08				DATE			1 2 0		TRANSECT:	SECT: O F-G	0 H-9 0		
	THAL	THALWEG PROFILE	OFILE		For	For Transect A-B ONLY:	A-B ONL)		Increment (m) X.X:) X.X:		Total Reach Length (m):	ıgth (m):	
THALWEG DEPTH (cm) (XXX)	WETTED WIDTH	BAR V Present	BAR WIDTH ¹ sent XX.X	SOFT /SMALL SEDI- MENT	CHANNEL UNIT CODE	POOL FORM CODE	SIDE CHANNEL	BACK WATER			THALWEG PROF	THALWEG PROFILE COMMENTS		
		N >		z >			z ≻	z ≻						
		z ≻		z ≻			z ≻	z ≻						
		z ≻		z ≻			z ≻	z ≻						
		z ≻		z ≻			z ≻	v ≻						
		z ≻		z ≻			z ≻	z ≻						
		z ≻		z ≻			z ≻	z ≻						
		z ≻		z ≻			z ≻	z ≻						
		z ≻		z ≻			z ≻	z ≻						
		z ≻		v ≻			z ≻	z						
		z ≻		z ≻			L X	z						
		z ≻		z ≻			z	z						
		z ≻		z ≻		C	-	z ≻						
		z ≻		z ≻		-	z ≻	v ≻						
		Y N		N Y		F	N Y	v ≻						
		X Y		N Y			v ≻	v ≻						
SUBSTRATE	Station (5 or 7)	LFT	LCTR	CTR RCTR	TR RGT	FLAG		LARGE V cm small end	LARGE WOODY DEBRIS cm small end diameter; a4.5 m leng	RIS ength)	FILL IN IF BOXES	FILL IN IF UNMARKED	FLAG	
							DIAM	DIAMETER	DIAMETER PIECES ALL/PART IN BANKFULL CHANNEL	IN BANKFULL	CHANNEL	PIECES BRIDGE ABOVE BANKFULL CHANNEL	OVE BANKFULI	- CHANNEL
FLAG		COMMENTS (for		SUBSTRATE and LWD)	d LWD)		LARG		Length 1.5-5m	5-15m	>15m	Length 1.5-5m	5-15m	>15m
							0.1-<	0.1-<0.3 m						
SUB: RS = BEDROCK RR = BEDROCK RC = CONCRET	SUBSTRATE SIZE CLASS CODES SUBSTRATE SIZE CLASS CODES RS = BEDROCK (SNUGH) - (LARGER THAN A CAR) RR = BEDROCK (ROUGH) - (LARGER THAN A CAR) RR = CONVERTERSAMAT YR = 1 CONVERTERSAMAT	ASS CODES THAN A CAR) THAN A CAR)		POOL FORM CODES N = Not a pool W = Large Woody Debris R = Rootward	yDebris PL = PL	CHANNEL UNIT CODES PP = Pool, Plunge PT = Pool, Latenth PD = Pool, Latent Scour		0.3-0.6 m						
	SB = SM BOULDER (29 TO 1000 mm, BASKETBALL TO METERST CB = COBBE (SH 10.2 mm) - TENNIS BASKETBALL GC = COARSE (SH 10.2 mm) - TENNIS BALL GC = COARSE (SAVEL (10 TO 64 mm) - LADVED TO MARLET GF = THE CARALE (21 OF 10m) - LADVED TO MARLET SA = SAND(1065 TO 2 mm) - GRITTY - UP TO LADVED SEED	- BASKETBALL - BASKETBALL IS BALL TO BASI - (MARBLE TO T DYBUG TO MARE UP TO LADYBUG	ICK)	E = Boundary of Bri F = Unknown, flux COMBINATIONS: eg. WR, BR, WRB		PB = Fool, Impoundment BD = Pool, Impoundment GL = Glide RA = Rapid CA = Concede		0.6-0.8 m						
FN = SILT/ CLAY 66 HP = HARDPAN- 60 WD = WOOD - (A	FN = SILT7 CLAY7 MUCK - (NOT GRITTY) HP = HARDPAN - (FIRM, CONSOLIDATED F WD = WOOD - (ANY SIZE)	Y) ED FINE SUBSTR	ATE)		FA =	- cascaue Falls Dry Channel		>0.8 m						

SITE ID:	FW08			DATE:	7] 	U PAGE:	۔ • • •
O Not Fished - No Permit O Not Fished - Permit Restriction	Permit mit Restrictio		O Not Fished - Equipment Failure O Not Fished - Site Conditions Pro	O Not Fished - Equipment Failure O Not Fished O Not Fished - Site Conditions Prohibit Sampling	O Not Fished - Other (Explain Below) hibit Sampling	Below) O Fished - None Collected	38243
O Fished All 10 Subreaches	Ibreaches O	Fished 5-9	Subreaches O Fishe	O Fished 1-4 Subreaches			
COMMENT							
Water Visibility: O Good	od O Poor	Water Temp (°C):	Cond (uS)		O More than 1 r	O More than 1 method used to collect fish?	
	O BOAT O RAFT		TOW No. of No. of Netters:	Anodes: Number	er Diameters	ters O in. Wave Form: O AC	C O DC O Pulsed DC
Volts: (50-1000)		Watts: likely 400 (bp), 2500 or 5000 (boat/raft)		Pulse Rate:		Amps: (may not be provided for bp)	Pulse Width (ms)
Total Shock (button) Time (s)	- - - -	Total Fishing Time (min)	hing iin)	Reach Length Sampled (m)		Avg. Subreach Length (m)	Electrofish Flag:
J			VOUCHER SAMPLE INFORMATION	E INFORMATION	ONO	O NO 'CUCHERS PRESERVED	
Sample ID	Sample Category *	* Preserved				Comments	
	4 0 0 0	0					
-	4 0 0 0	0					
-	•	-	FISH	FISH TISS'JE & A'APLES	O NO SAMPI	O NO SAMPLE COLLECTED	
SAMPLE ID	-	-	Common Name	tal Length	Length(mm) Subreach Frozen	ozen Comments	ents
- .						0	
.2						0	
.3						0	
4.						0	
.5						0	
FLAG					COMMENT		

Reviewed by (Initials):	PAGE: of	Final Subreaches count Flag (optional)																	s. LENGTH* - Enter single fish as	
]	3TH (mm)* Anom. Mortality Photo(s) Max count Count Taken	0 Y	0 V	۲0 / O	۲0 /	×0	۰۷ (۲0 /	×0	×٥	۰۷	×٥	×٥	×0	Photo File			Flag codes: K = No measurement made, U = Suspect measurement., F1,F2, etc. = tlags assigned by each flekt crew. Explain all flags in comments. LENGTH* - Enter single fish as minimum.	
FISH COLLECTION FORM - WADEABLE	<u> </u>	Total Vouch. LENC Count Count Min														Tag			t., F1,F2, etc. = flags assigned by eac	
FISH COLLE	DATE:	Tally																	rement made, U = Suspect measuremen	
	SITE ID: FW08	Common Name														Comment			1133311205 Flag codes: K = No measu minimum.	
	LIS	Tag No.													\square	Flag				

	SITE ID: FI	FW08			DATE:]		
	MAIN (a	MAIN (always used)	()	FIRST S	SUPPLEMENTAL	VTAL	SECOND	SUPPLEMENTAI	ENTAL	
TRANSECT & METHOD	Slope(%) or Elev. Diff. (cm)	BEARING 0 - 359	PROPOR- TION %	Slope(%) or Elev. Diff. (cm)	BEARING 0 - 359	PROPOR- TION %	Slope(%) or Elev. Diff. (cm)	BEARING 0 - 359	PROPOR- TION %	FLAG
		-	-		-	-	-	-	-	-
O LA										
<pre> C C C C C C C C C C C C C C C C C C C</pre>	-	-	-	•]	-	-	-	-	-	-
									-	
<pre></pre>	- -	-	-	- -	-	-	•] - -	- - -	-	-
			-							-
D <eollotr< td=""><td>- -</td><td>-</td><td>-</td><td>•]</td><td>-</td><td></td><td>- -</td><td>-</td><td>-</td><td>-</td></eollotr<>	- -	-	-	•]	-		- -	-	-	-
			-							
<pre><f ocl="" otr<br="">OHL OWT</f></pre>	- -	-	-	•		-	- -	- - -	-	-
	0 % O cm		-			-				-
	-	-	-		-	-		-	-	-
O LA O Other	r O % O cm									
G < H O CL O TR	- -	-	-	7	-	-	- -	- - -	-	-
	O % O cm									
	- -	-	-	-	-	-	•] - -	- - -	-	-
	O % O cm		-						-	
OCLOTR OHLOWT	- C		-	-			-			-
		-			-	-		-	-	-
ш				COMMENT					HOW	B Supple-
t										mental
510))	

L		FW08 OTENTIAL	LEGACY T	REE VISIBLE	SITE ID: FW08 DATE: LARGEST POTENTIAL LEGACY TREE VISIBLE FROM THIS STATION Dist. from	ALIEN PLANT SPECIES PRESENT IN LEFT AND RIGHT
Iran Irees not Visible	DBH (m)	Height (m)	wetted margin (m)	Type	Taxonomic Category	Check all that are present
\bigcirc	○ 0-0.1 ○ .75-2 ○ .13 ○ >2 ○ .375	⊖ <5 ⊖ 5-15 ⊖ 15-30 ⊖ >30		O Deciduous O Coniferous O Evergreen		O E Wtrmilf O W Hyacinth G Reed O MF Rose O Hydrilla O Ylw Fitheart Flwr Rush Spurge NONE O E Wtrchest P Lstrife O salt Ced
0	O 0-0.1 O .75-2 O .13 O >2 O .375	⊖ <5 ⊖ 5-15 ⊖ 15-30 ⊖ >30		 Deciduous Coniferous Broadleaf Evergreen 		O E Wtrmifr O W Hyacinth O Reed O MF Rose O Hyacinth O Yhy Fitheart Flwr Rush Spurge NONE O E Wtrchest P Lstrife O salt Ced
0	0 0-0.1 0 .75-2 0 .13 0 >2 0 .375	⊖ <5 ⊖ 5-15 ⊖ 15-30 ⊖ >30		O Deciduous O Coniferous O Evergreen		O E Wtrmilf O W Hyacinth O G Reed O MF Rose O Hydrilla O Ylw Fitheart O Flwr Rush O Spurge NONE O E Wtrchest O P Lstrife O Salt Ced
	INSTRUCTIONS	IONS			TAXONOMIC CAT EGORIES	ALIEN SPECIES
Potential Lc within your s within maxin Wadeabt Nadeabt Non-war nght bank <u>Non-war</u> Manual and Manual and	Potential Legacy trees are defined as the largest tree within your search area, within your search area, within your search area, within sa follows: with maximum limits as follows: Wadeable Streams: Confine search to no more than 50 m from left and right bank and extending upstream to new transect (for Y look upstream 4 channel widths) Non-wadeable Rivers: Confine search to no more than 100 m from left and right bank and extending both upstream and downstream as far as you can see confidently. Alfan Plants: Confine search to riparian plots on left and right bank and extending both upstream and downstream as far as you can see confidently. Wadeable Rivers: 10 m x 10 m Wadeable Streams: 10 m x 20 m Non-wadeable Rivers: 10 m x 20 m Not all aliens are to be identified in all states. See Field Manual and Plant Identification Guide.	nued as the la a as far as you as as far as you am 4 channe am 4 channe am 4 channe am 4 channe am 4 channe an 1 c	argest tree au can see, but on more than upstream to o no more than both ts on left and ts on left and . See Field other side		Mesquite rch ioxelde othrniwood m or Other Deci uding Douglas fi uding Douglas fi n or Other Broa lead tree of any	E WtrmilfEurasian water milfoilMyriophyllum spicatumHydrillaHydrilla verticillataHydrillaHydrilla verticillataE WtrchestEuropean water chestnutTrapa natansW HyacinthWater HyacinthEichhornia crassipesW HyacinthValue Floating HeartNymphoides peltataP LstrifePurple loosestrifeLythrum salicariaP LstrifeBuromus umbellatusSalt CedGiant ReedArundo donaxSalt CedSalt CedarBuromus umbellatusSpurgeLeafy SpurgeEuphorbia esulaSpurgeCOMMENTSCOMMENTS

ITEL: FUO8 DATE: I_{12} I_12 I_12 I_2 ITEL: FUO8 DATE: I_{12} I_12 I_12 <th colspa="2" i_12<="" th=""><th></th><th></th><th></th><th></th><th>RIPARI</th><th>AN "LEGA(</th><th>IPARIAN "LEGACY" TREES AND INVASIVE ALIEN PLANTS</th><th>ALIEN PLANTS Reviewed hv /initial)</th></th>	<th></th> <th></th> <th></th> <th></th> <th>RIPARI</th> <th>AN "LEGA(</th> <th>IPARIAN "LEGACY" TREES AND INVASIVE ALIEN PLANTS</th> <th>ALIEN PLANTS Reviewed hv /initial)</th>					RIPARI	AN "LEGA(IPARIAN "LEGACY" TREES AND INVASIVE ALIEN PLANTS	ALIEN PLANTS Reviewed hv /initial)
LARGEST POTENTIAL LEGACY TREE VISIBLE FROM THIS STATION Trees DBH Height DSL from wetted (m) DSL from wetted (m) Taxonomic Category 0.04.1<0.75-2 0.55-15 0.04.1<0.75-2 0.55-15 0.04.1 0.75-2 0.55-15 0.04			SITE ID:	FW08			DATE:	_	
Trees indication (m) DBH (m) (m) Hoight (m) (m) (m) Use to main many (m) (m) Type Taxonomic Category Check 0 0.41 0.72 0.515 0			LARGEST	POTENTIAL	LEGACY T	REE VISIBLE	FROM THIS STATION	ALIEN PLANT SPECIES PRESENT IN LEFT AND RIGHT RIPARIAN PLOTS, AND INSTREAM FISH COVER PLOT	
$ \left \begin{array}{cccc} 0.01 & 0.75 & 0.45 \\ 0.3.75 & 0.515 \\ 0.3.75 & 0.516 \\ 0.3.75 & 0.516 \\ 0.3.75 & 0.516 \\ 0.3.75 & 0.516 \\ 0.3.75 & 0.516 \\ 0.3.75 & 0.516 \\ 0.3.75 & 0.516 \\ 0.3.75 & 0.516 \\ 0.3.75 & 0.516 \\ 0.3.75 & 0.516 \\ 0.3.76 & 0.516 \\ 0.3.76 & 0.516 \\ 0.3.76 & 0.516 \\ 0.3.76 & 0.516 \\ 0.3.76 & 0.516 \\ 0.3.76 & 0.516 \\ 0.3.76 & 0.516 \\ 0.3.76 & 0.516 \\ 0.3.76 & 0.516 \\ 0.3.76 & 0.516 \\ 0.3.76 & 0.516 \\ 0.3.76 & 0.516 \\ 0.3.76 & 0.516 \\ 0.3.76 & 0.516 \\ 0.3.76 & 0.516 \\ 0.3.76 & 0.516 \\ 0.3.76 & 0.516 \\ 0.4.3 & 0.2 & 0.516 \\ 0.4.4 & 0.2 & 0.516 \\ 0.4.3 & 0.2 & 0.516 \\ 0.4.4 & 0.54 & 0.54 \\ 0.5.4 & 0.54 & 0.54 \\ 0.5.4 & 0.54 & 0.54 \\ 0.5.4 & 0.54 & 0.5$	ran	Trees not Visible	DBH (m)	Height (m)	Dist. from wetted margin (m)	Type	Taxonomic Category	Check all that are present	
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $	0	0				O Deciduous O Coniferous O Evergreen		O E Wtrmilf O Hydrilla O E Wtrchest	
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $	ш	0		2 ⊖ <5 ⊖ 5-15 ⊖ 15-30 ⊖ >30				O E Wtrmilf O Hydrilla O E Wtrchest	
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	ш	0		2 () <5 () 5-15 () 15-30 () >30		O Deciduous O Coniferous O Evergreen		O E Wtrmilf O O Hydrilla O O E Wtrchest O	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(5)	\bigcirc		2 ⊖ <5 ⊖ 5-15 ⊖ 30 ⊖ >30		O Deciduous O Coniferous O Evergreen	12	O E Wtrmilf O Hydrilla O E Wtrchest	
0.001 0.75-2 0<5	–	\bigcirc		2 ⊖ <5 ⊖ 5-15 ⊖ 15-30 ⊖ >30		O Deciduous O Coniferou. O Evergreen		O E Wtrmilf O Hydrilla O E Wtrchest	
0 0-0.1 0.75-2 0<5	_	\bigcirc		2 ⊖ <5 ⊖ 5-15 ⊖ 15-30 ⊖ >30		O Deciduous O Coniferous O Evergreen		O E Wtrmilf O Hydrilla O E Wtrchest	
0 0-0.1 0.75-2 0 < 5 0	_	\bigcirc				O Deciduous O Coniferous O Everdleaf		O E Wtrmilf O O Hydrilla O O E Wtrchest O	
	×	\bigcirc		2 () <5 () 5-15 () 15-30 () >30		O Deciduous O Coniferous O Evergreen		000	

CHANNEL CONSTRAINT FORM -	WADEABLE/BOATABLE Reviewed by (initial):
SITE ID: FW08	DATE: / /
CHANNEL CONST	RAINT
CHANNEL PATTERN (Fill in one)	
O Anastomosing (complex) channel - (Relatively long major and	d minor channels branching and reioining.)
 Braided channel - (Multiple short channels branching and rejoi numerous mid-channel bars.) 	
CHANNEL CONSTRAINT(Fill in one)	
 Channel very constrained in V-shaped valley (i.e. it is very un new channel during flood) 	likely to spread out over valley or erode a
O Channel is in Broad Valley but channel movement by erosion flows do not commonly spread over valley floor or into multiple of	
 Channel is in Narrow Valley but is not very constrained, but valley floor (< ~10 x bankfull width) 	
 Channel is Unconstrained in Broad Valley (i.e. during flood it spread out over flood plain, or easily cut new channels by erosid 	
CONSTRAINING FEATURES (Fill in one)	
O Bedrock (i.e. channel is a bedrock-dominated gorge)	· ·
ା Hillslope (i.e. channel constrained in narrow V-shaped vଧାର୍ଏ)	
O Terrace (i.e. channel is constrained by its own incision into river	/stream gravel/soil deposits)
O Human Bank Alterations (i.e. constrained b) rip- τρ, landfill, d	ke, road, etc.)
○ No constraining features	
Percent of channel length with margin	Percent of Channel Margin Examples
Percent of channel length with margin in contact with constraining feature: (0-100%)	> motorran tort
Bankfull width: (m)	100%
Valley width (Visual Estimated Average): (m	And A
Note: Be sure to include distances between both sides of valley border for valley with	ith.
If you cannot see the valley borders, record the distance you can see and mark this box.	50%
Comments	
Comments	
	15186

SI	E ID: DATE: / /						
	TORRENT EVIDENCE						
	Please fill in any of the following that are evident.						
EVID	INCE OF TORRENT SCOURING:						
0	01 - Stream channel has a recently devegetated corridor two or more times the width of the low flow channel. This corridor lacks riparian vegetation with possible exception of fireweed, even-aged alder or cottonwood seedlings, grasses, or other herbaceous plants.						
0	02 - Stream substrate cobbles or large gravel particles are NOT IMBRICATED. (Imbricated means that they lie with flat sides horizontal and that they are stacked like roof shingles imagine the upstream direction as the top of the "roof." a torrent scour or deposition channel, the stones are laying in unorganized patterns, lying "every which way." In addit many of the substrate particles are angular (not "water-worn.")						
0	03 - Channel has little evidence of pool-riffle structure. (For example, could you ride a mountain bike down the channe						
0	04 - The stream channel is scoured down to bedrock for substantial portion of reach.						
0	05 - There are gravel or cobble berms (little levees) above bankfull level.						
0	06 - Downstream of the scoured reach (possibly several miles), the earse massive deposits of sediment, logs, and othe debris.						
0	07 - Riparian trees have fresh bark scars at many points along u. e stream at seemingly unbelievable heights above the channel bed.						
0	08 - Riparian trees have fallen into the channel as a res .'* o. scouring near their roots.						
EVID							
0	that, in your judgement, could not have been mic red by the stream at even extreme flood stage.						
0	10 - If the stream has begun to erode newly and leposits, it is evident that these deposits are "MATRIX SUPPORTED." This means that the large particles like boulders and cobbles, are often not touching each other, but have silt, sand, a						
NO E	VIDENCE:						
0	11 - No evidence of torrent scouring or torrent deposits						
	COMMENTS						

04/07/2009 NRSA Torrent Evidence

VIS	UAL ASSESSMENT FO	RM - WADEABL	E/BOATABLE (Fr	ont) ^{Reviewed by (initial):}					
SITE ID: FW	/08	_		/_2_0					
WATERSHED ACT	IVITIES AND DISTURBANCES OI	BSERVED (Ir	tensity: Blank=Not observed,	L=Low, M=Moderate, H=Heavy)					
Residential	Recreational	Agricultural	Industrial	Stream Management					
L M H Residences L M H Maintained L M H Constructio L M H Pipes, Drain L M H Dumping L M H Roads L M H Bridge/Culv	Lawns L M H Parks, Campgrounds n L M H Primitive Parks, Camping is L M H Trash/Litter L M H Surface Films	L M H Cropland L M H Pasture L M H Livestock Use L M H Orchards L M H Poultry L M H Irrigation Equit L M H Water Withdra		L M H Liming L M H Chemical Treatment L M H Angling Pressure L M H Dredging L M H Channelization L M H Water Level Fluctuations L M H Fish Stocking					
L M H Sewage Tre	atment		L M H Commercial	L M H Dams					
	SITE CI	HARACTERISTICS (20)) m radius)						
Waterbody Character			$\begin{array}{c} 0.3 \\ 0.3 \\ 0.3 \\ 0.2 \\ 0.1 \\$	Highly Disturbed Unappealing					
Beaver	Beaver Signs Beaver Flow Modifications		Rare O Comm Minor Major	on					
Dominant Land Use	Dominant Land Use Around 'X' O Forest If Forest, Dominant Age Class O 0 - 25 yrs	 ○ Agriculture S. ○ 25 - 75 yre 	 ○ '.nge ○ Urban ○ > ⁷5 yrs. 	🔿 Suburban/Town					
WEATHER									
		N							
GEI	NERAL ASSESSMENT (Bio	tic in eg 👝 Vegetatio	n diversity, Local anecdota	l information)					

04/07/2009 NRSA Visual Assessment

SITE ID: FW08		DA	TE:	1	<u> 2 0</u>	
	GENER	AL ASSESSMENT (continued)			
			1.			
			$\overline{\nabla}$			
		0				
		$-\mathcal{O}$.				
	4					
		JIS INCE SPECIES O				Zahra Mussal a
Record species of plants and animals New Zealand Mud Snail, or invasive pla identification, and provide some idea o	ants or aning	s of concern to a particul	ar state. Indica	te your lev	el of confider	
Species (Common Name)	Confidence	Prevalence	Comm			
	O LOW O HIGH	O DOMINANT O SPARSE O COMMON				
		O DOMINANT O SPARSE O COMMON				
	O LOW O HIGH	O DOMINANT O SPARSE O COMMON O DOMINANT O SPARSE				
		O DOMINANT O SPARSE				
	O HIGH	O COMMON				
	O HIGH	O COMMON O DOMINANT O SPARSE				
		O COMMON O DOMINANT O SPARSE				
		O COMMON				

04/07/2009 NRSA Visual Assessment

	TRACKING	AND SAMPLE S	TATU	S - WRS	
SITE ID: FW08		Visit #: 010	2 D	ate Collected: / / 2 0	
SENT BY:		SENDER PHONE:			
State of Site Location:	1	TEAM:	DATE SEN	<u>Τ: / / 2 0</u>	
SHIPPED O FedEx O	JPS O Hand Deliv				
^{BY:} O Other:		AIRBILL/TRA	ACKING JMBER:		
	Si	ite Status Report			
SAMPLEABLE	NOT SAMPLEABLE	Temporarily Not Sampleable		SAMPLE STATUS	
⊖ Wadeable	⊖ Dry - Visited	O Not Boatable		○ No Samples Collected	
⊖ Boatable	◯ Dry - Not Visited			the samples that were collected during this site visit:	
 ○ Partial Wadeable 	⊖ Wetland	O Other		er Chem (CHEM) O Enterococci (ENTE) er Chl (WCHL) O Sediment (SEDE)	
○ Partial Boatable	⊖ Map Error	NO ACCESS		er Chem (PPCP) O Fish Tissue (FTIS)	
O Wadeable Interrupted		O Access Denied	O Perip	hyton Chl (PCHL) O Fish Voucher (VERT)	
 Boatable Interrupted 	⊖ Intpounded ◯ Other	⊖ Inaccessible	O Perip	hyton Bio (PBIO) O Bent Reachwide (BERW)	
O Altered		⊖ Temp Inaccessible		hyton ID (PERI) O Bent Low Gradient (BELG) Nyton APA (PAPA)	
Status Comments					
otatas ooninents				×	
Sample ID	Sample Type	Conment	ts		
	СНЕМ				
	W C H L				
. 2					
. 3					
<u> </u>					
2					
	PBIO				
Sample Types	Condition Codes	Chain of Custo	dy	Contact Information	
CHEM - Water chemistry	Filled in by recipie	ent Filled in by rec	ipient	Tracking Help:	
WCHL -Water Column	C = Cracked jar	Date Received:		Marlys Cappaert PH: 541-754-4467	
Chlorophyll PCHL - Periphyton	F = Frozen L = Leaking	11		111. 541-754-4407	
Chlorophyll PBIO - Periphyton	ML = Missing label NP = Not preserved	Received by:		Lab: Attn: Phil Monaco, Dynamac	
Biomass	W = Warm OK = Sample OK			c/o U.S. EPA	
	T = Thawed			1350 Goodnight Ave Corvallis, OR 97333	
				PH: 541-754-4787	
				monaco.phil@epamail.epa.gov	
L	FAX TI	HIS FORM TO 541-7	54-463	7 52109	
		IG INFO TO VOICE	MESS		
04/07/2009 NRSA	A Tracking - WRS	541-754-4663			

TRACKING - NERL Cincinnati						
SITE ID: FW08			Visit #: 0102 Date Collected: / /			
State of Site Locatio SHIPPED O FedEx BY: O Other:		TEAM: and Delivery				
Sample ID	Sample Type		Comments	Condition Code		
	P.P.C.P.					
Sample Types	Conditio	on Codes	Chain of Custody Contact Information			
PPCP - Water chemistr	y Filled in t C = Crack F = Froze L = Leakin ML = Miss	by recipient ted jar n ng sing label preserved n nple OK	Filled in by recipic nt Tracking Help: Marlys Cappaert PH: 541-754-4467 // / Received trian Lab: NERL -Cincinnati Attn: Dr. Angela Batt 26 W. Martin Luther King Drive MS 642 Cincinnati, OH 45268 513-569-7284 batt.angela@epa.gov			

FAX TH'S FORM TO 541-754-4637 OR READ TRACKING INFO TO VOICE MESSAGE CENTER: 541-754-4663

TRACKING (BATCHED <u>OR</u> RETAINED SAMPLES) National Rivers and Streams Assessment Include only all BATCHED or RETAINED samples on one form.							
SENT BY: PHONE:			STATE OF SITE LOCATION:		TEAM:	_	
BATCHED SAMPLES - UNPRESERVED samples that will be batched and shipped within 2 weeks. SHIPPED BY: O FedEx O UPS O Hand Delivery DATE SHIPPED:/ 2 0 AIRBILL/TRACKING NUMBER:							
RETAINED SAMPLES ◯ Held at address:	S - PRESERVED sampl	es that	will be stored longer than	i a month at a holdi	ng facility.		
Site ID	Date Sample Collected MM/DD/YYYY	Visit	Sample ID	Sample Type	# of Containers	Comments	Cond. Code
FW08		01 02			L		
FW08		01 02					
FW08		01 02					
FW08		01 02					
FW08		01 02					
FW08		01 02			<u>,</u>		
FW08		01 02			J		
FW08		01					
FW08		01 02	- 4				
FW08		01					
FW08		01					
FW08		C 1 O 2	<u>.</u>				
FW08		01 02					
FW08		01			<u> </u>		
FW08		01			<u> </u>		
FW08		02 01 02					

Lab	Chain of Custody	/ Sample Types	Condition Codes
 ACADEMY OF NATURAL SCIENCES - PHIL, PA BENTHIC LAB GLEC MED - DULUTH, MN MICHIGAN STATE UNIV. NERL - N. CHELMSFORD, MA NERL - CINCINNATI, OH OTHER 	Filled in by recipient Date Received:// Received by: Tracking Help: Marlys Cappaert p) 541-754-4467	PRESERVED - RETAINED: BERW - Benthos Reach Wide BELG - Benthos Low Gradlent VERT - Fish Vouchers PERI - Periphyton ID (.1) UNPRESERVED - BATCHED: SEDE - Sediment Enzyme FTIS - Fish Tissue PAPA - Periphyton APA (.4) ENTE - Enterococci	Filled in by recipient C = Cracked jar F = Frozen L = Leaking ML = Missing label NP = Not preserved W = Warm OK = Sample OK T = Thawed 42504
FAX THIS FORM TO 541-754-4637 OR REAL 04/07/2009 NRSA Tracking - Batch/Retain 200		ESSAGE CENTER: 541-754-4663	

04/07/2009 NRSA Tracking - Batch/Retain 2009

Final Manual Date: April 2009 Page C-1

APPENDIX C

Shipping and Tracking Guidelines

Tracking Forms

If you have access to a computer, fill out the electronic tracking forms

- Be careful to fill out all information accurately and completely
- If you do not have a printer, you will need to include the paper form in the cooler

3 Forms

1 - Tracking and Sample Status – WRS

- This form is filled out for the samples that are shipped immediately after each sampling event (water chemistry, AFDM, and both chlorophyll samples)
- All of these samples will go together in one cooler to the EPA Corvallis lab
- Save form according to the file naming convention on the bottom of form
- Email to address on bottom of form and print form to include in the shipping cooler

*Emailing the electronic WRS form serves as the "status report" for that sampling event

2 - Tracking (Batched and Retained Samples)

- BATCHED samples are held & shipped within 2 weeks. Send form when SHIPPED.
- RETAINED samples are stored over a month at a holding facility. Send form when COLLECTED and when SHIPPED
- Do not combine both BATCHED and RETAINED samples on the same form
- Use one tracking form for each laboratory
- Save form according to the file naming convention on the bottom of form
- Email to address on bottom of form and print form to include in the shipping cooler

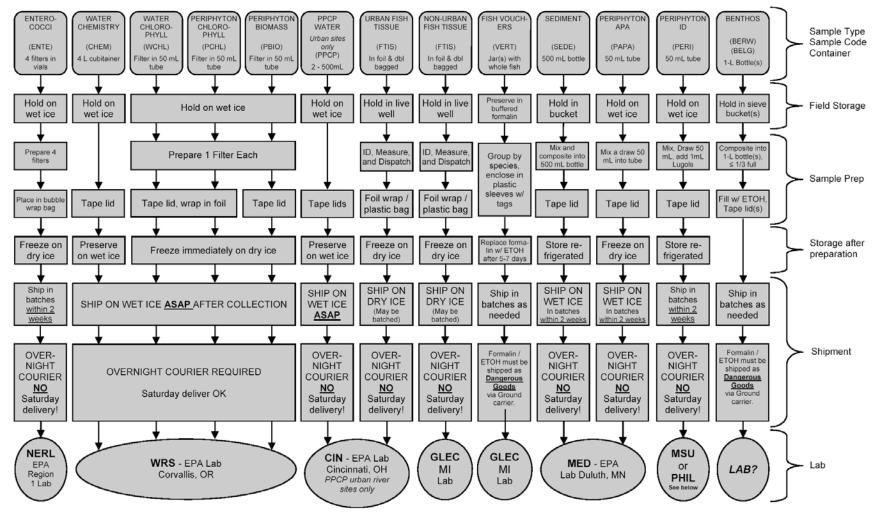
<u>3 - Tracking – NERL – Cincinnati</u>

- A subset of urban sites that are 5th order or greater will be sampled for PPCP contaminants.
- Both of the PPCP samples (water and fish tissue) will go to the EPA NERL Cincinnati lab
- Save form according to the file naming convention on the bottom of form
- Email to address on bottom of form and print form to include in the shipping cooler

If you cannot use a computer before shipping:

- Fill out the paper version of the tracking form
- Notify the Information Management Center (contact info on bottom of form) FAX form or leave voice message with ALL info from the form
- Include the form in the shipping cooler
- Make sure to FAX or leave a voice message BEFORE the form is sealed in the cooler!

Status Report


- After each site, the Field Team Leader must file a status report with the Information Management Center and the Field Logistics Coordinator to track visits/samples and to describe activities, problems, and requests
- Emailing the electronic WRS form serves as the status report!

 If the form cannot be emailed, faxing or phoning the information serves as the status report

SHIPPING GUIDELINES

Before shipping, it is very important to preserve each sample as directed in the sample collection portion of this Field Operations Manual.

- Preserve the samples as specified for each indicator before shipping (Fig. C-1).
- Be aware of the holding times for each type of sample (Table C-1):
- Enterococci samples must be filtered and frozen on dry ice within 6 hours of collection
- Fish tissue samples must be frozen on dry ice as soon as possible (hold on wet ice until freezing on dry ice).
- Fish voucher specimens are held on wet ice until being preserved in formalin in the laboratory.
- Water chemistry samples (including PPCP water samples) must be shipped within 24 hours of collection.
- *Chlorophyll a* has a longer holding time, but will be sent with the water chemistry samples since they are going to the same laboratory.
- The remaining samples must be preserved immediately upon collection; they may then be sent in batches to the appropriate laboratory.
- The sediment enzyme sample has a two week holding time.

Periphyton ID Sample (PERI) will be shipped to one of two labs depending on the state from which the sample was obtained.

Find your state below and ship the sample to corresponding lab:

MSU (Michigan State University in East Lansing, MI):

PHIL (Academy of Natural Sciences in Philadelphia, PA)

AL, AR, FL, GA, IL, IN, IA, KS, KY, LA, MI, MN, MS, MO, NE, NC, OH, OK, SC, TN, TX, WI AZ, CA, CO, CT, DE, ID, MA, MD, ME, MT, ND, NH, NJ, NM, NV, NY, OR, PA, RI, SD, UT, VA, VT, WA, WV, WY

Field Forms: All field forms should be reviewed and sent in to the Information Management Coordinator every 2 weeks

Figure C-1. Sample packaging and shipping summary

SAMPLE	PRESERVATIVE	PACKAGING FOR SHIPMENT	HOLDING TIME	
Water Chemistry	Wet ice		24 hours; ship these samples together (Corvallis lab)	
Chlorophyll a	Dry ice in field	Ship in cooler with wet ico		
Periphyton – chlorophyll a	Dry ice in field	Ship in cooler with wet ice		
Periphyton Biomass - AFDM	Dry ice in field			
Sediment enzymes	Wet ice in field; refrigerate to hold	Ship in cooler with wat ico	Batch; ship these samples together	
Periphyton - APA	Wet ice in field; hold in freezer	Ship in cooler with wet ice	every 2 weeks (Duluth lab) ¹	
Periphyton - ID	1 mL Lugol's		Batch; ship every 2	
Benthic macroinvertebrates	95% Ethanol	Ship in cooler or sturdy container	weeks	
Fish Vouchers	Formalin	container		
Fecal Indicator	Dry ice in field; hold in freezer; MUST be filtered & frozen within 6 hours of collection	Ship in cooler with DRY ICE	Batch; ship every 2 weeks (Region 1 lab)	
Fish Tissue (non urban sites)	Dry ice in field; hold in freezer	Ship in cooler with DRY ICE	Batch; ship every 2 weeks to GLEC lab	

*Urban fish tissue and PPCP water samples are only collected at pre-selected urban 5th order or greater sites

*PPCP Fish Tissue (urban sites)	Dry ice in field; hold in freezer	Ship in cooler with DRY ICE	Batch; ship every 2 weeks to EPA Cincinnati lab
*PPCP Water (urban sites only)	Wet ice	Ship in cooler with wet ice	24 hours; ship to EPA Cincinnati lab

¹Sediment enzyme samples should not be frozen and must be shipped within two weeks of sampling

When ice is used for shipment (water chemistry, *chlorophyll a*, sediment enzymes, APA, AFDM):

- Ensure that the ice is fresh before shipment; pack the entire cooler full with ice.
- Line the cooler with a large, 30-gallon plastic bag.
- Contain the ice separately within numerous 1-gallon self-sealing plastic bags. Double-bag the ice.
- Use white or clear bags and label with a dark indelible marker. Label all bags of ice as "ICE" to prevent misidentification by couriers of any water leakage as a possible hazardous material spill.
- Place bagged samples and bags of ice inside the cooler liner and seal the liner.
- Secure the cooler with strapping tape.

When dry ice is used for shipping (fish tissue and fecal indicator samples):

- Indicate dry ice on shipping airbill.
- Label cooler with a Class 9 Dangerous Goods label.
- Securely tape the cooler drainage open to prevent pressure build-up in the cooler.
- Secure the cooler with strapping tape
- See "Dry Ice Shipping Protocols" at the end of this Appendix.

WATER CHEMISTRY and CHLOROPHYLL-a (from water sample and periphyton sample)

Water Chemistry

Stored in a 4-L cube container

- · Confirm that the cube container is labeled and covered with clear tape.
- Place the cube container in a second bag inside the cooler liner.

Chlorophyll a

Two filters each stored in a 50-mL steam-top centrifuge tube wrapped with aluminum foil

- Confirm that the labels with sample IDs are completed and covered with clear tape.
- Place the centrifuge tubes in a 1-qt self-sealing plastic bag.
- Place the bag in a1-gal self-sealing plastic bag and place inside cooler liner with water chemistry sample.

SEDIMENT ENZYMES SAMPLES

Stored in 500 mL jars

- Confirm that the label with sample ID is completed and covered with clear tape.
- Place the 500 mL jar in a 1-gal self-sealing plastic bag and place inside cooler liner.

PERIPHYTON SAMPLES

ID samples preserved with Lugol's solution and sealed at the site.

- Confirm that the label with sample ID is completed and covered with clear tape.
- Verify that the bottle is sealed with electrical tape.

- Place the sealed bottles in a gallon-size self-sealing plastic bag.
- Place the bagged samples in the appropriate shipping container.
- Surround the jars with crumpled newspaper, vermiculite, or other absorbent material.
- Samples can be held and shipped in batches to the laboratory for analysis.

AFDM and APA samples held frozen until shipment

- Confirm that the label with sample ID is completed and covered with clear tape.
- Place the frozen samples in a 1-gal self-sealing plastic bag and place inside cooler liner.

BENTHIC INVERTEBRATE SAMPLES

Preserved in 95% ethanol and sealed at the site.

- Confirm that the label with sample ID is completed and covered with clear tape.
- Check to make sure jars are sealed with electrical tape.
- Place up to twenty 500-mL or ten 1-L jars in each cooler.
- Surround the jars with crumpled newspaper, vermiculite, or other absorbent material.
- Samples can be held and shipped in batches to the laboratory for analysis.

NOTE: These samples must be shipped as "DANGEROUS GOODS" and should be packaged and labeled in accordance with the requirements of the chosen courier. Alternatively, the ethanol may be decanted from the benthic invertebrate samples so that they may be shipped using standard overnight shipping:

- Allow the samples to sit for at least 1 week to adequately preserve the organisms.
- Immediately before shipping, decant the ethanol from the samples jars, leaving enough liquid to keep the samples moist.
- Make sure to use an overnight delivery so that the lab can immediately restore the ethanol to the sample jars.
- Alert the laboratory so that they are aware they will need to refill the jars immediately upon receipt.

FISH TISSUE SAMPLES

The samples need to be frozen as soon as possible after collection (within 6 hours).

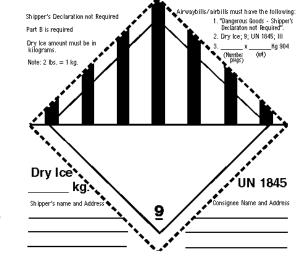
- Pack the cooler with 50 lbs of dry ice.
- Refer to the DRY ICE SHIPPING PROTOCOLS at the end of this Appendix.
- Samples may be stored on dry ice for a maximum of 24 hours. Sampling teams have the option, depending on site logistics, of:
 - shipping the samples packed on dry ice (50 pounds), via priority overnight delivery so that they arrive at the sample preparation laboratory within 24 hours of sample collection, or
 - freezing the samples within 24 hours of collection at ≤-20°C, and storing the frozen samples until shipment within 2 weeks of sample collection (frozen samples will be packed on dry ice and shipped to the sample preparation laboratory via priority overnight delivery service).

FISH VOUCHER SAMPLES

Preserved in a laboratory with formalin

- Confirm that the label with sample ID is completed and covered with clear tape.
- Check to make sure jars are sealed with electrical tape.
- Surround the jars with crumpled newspaper, vermiculite, or other absorbent material.
- Samples can be held and shipped in batches to the laboratory for analysis.

NOTE: These samples must be shipped as "DANGEROUS GOODS" and should be packaged and labeled in accordance with the requirements of the chosen courier.


FECAL INDICATOR SAMPLES

The sample needs to be filtered and frozen as soon as possible after collection (within 6 hours).

- Confirm that the container is labeled and properly sealed.
- Confirm that the bottle is labeled with the appropriate sample ID and covered with clear plastic tape.
- Place the container in the cooler and close.
- Pack the cooler with 10-15 lbs of dry ice (10 lbs if using dry ice blocks or slices, 15 lbs if using dry ice pellets).
- Refer to the DRY ICE SHIPPING PROTOCOLS at the end of this Appendix.
- Samples can be held frozen and shipped in batches to the laboratory for analysis.

DRY ICE SHIPPING PROTOCOLS

- 1. Indicate dry ice on shipping airbill
 - Fill out Section 1 and Section 3 of the Fed Ex airbill with your Sender and Recipient address and phone number.
 - In Section 4, check "FedEx Priority Overnight."
 - In Section 5, check "Other."
 - In Section 6, under "Does this shipment contain dangerous goods?":
 - Check "Yes/Shipper's Declaration not required."
 - Check "Dry Ice," and fill out "_1_x _(amt. of dry ice in kg) kg"
 - In Section 7, fill out weight and declared value of package.
- 2. Label cooler with a Class 9 Dangerous Goods label (available from FedEx) (Fig. C-2).

• Place the label on the front side of the cooler, not the top of the cooler.

• Fill out #3 in the top right hand corner of the label with the same information as in Section 6 of the FedEx airbill.

• Declare the weight of the dry ice again in the lower left hand corner.

 Fill out the Sender
 ("Shipper") and Recipient ("Consignee") address on the bottom of the label.
 C-2. Class 9 Dangerous Goods label.

Figure

3. Securely tape the cooler drainage

open to prevent pressure build-up in the cooler. This is critical to ensure proper venting of the dry ice.

- 4. Secure the cooler with strapping tape.
- 5. Place the completed airbill on the top of the cooler.

NOTE: Not all FedEx locations will accept shipments containing dry ice. Dry ice shipments can be shipped from "FedEx staffed" locations. You can also arrange for a pick-up from your lab or hotel. Dry ice shipments usually cannot be shipped from FedEx Kinko's Office and Print Centers® or FedEx Authorized ShipCenter® locations. These types of locations are differentiated on FedEX.com in the "Find FedEx Locations" feature. Please be sure to call in advance to ensure your location will accept the package for shipment.

TRACKING FORMS

A Tracking Form must be filled out to accompany each sample shipment. Please refer to Figures 3.2 and 3.3 for examples of Tracking Forms completed for both unpreserved and preserved samples. Be very careful to fill in the information correctly and legibly, especially the airbill number, Site ID, and Sample ID numbers. Use the codes on the bottom of the form to indicate sample type. The Tracking Form is to be placed in a self-sealing plastic bag and included inside the shipping container. Before sealing the container, remember to submit the status report (via email) to <u>sampletracking@epa.gov</u> (see Section 3.2.6); you will need the information on the tracking form to fill out the status report form. For preserved samples, submit a status report both when the samples are brought to the holding facility AND when they are shipped to the appropriate laboratory. For each shipment, you must fill out a scanable tracking form to include in the cooler and submit the electronic status report.

Final Manual Date: April 2009 Page D-1

APPENDIX D

Common and Scientific Names of Fishes of the United States

This page is intentionally blank

Table D-1. Common and Scientific Names of Fishes of the United States

(From: Nelson, J.S., E.J. Crossman, H. Espinosa-Perez, L.T. Findley, C.R. Gilbert, R.N. Lea, and J.D. Williams. 2004. Common and Scientific Names of Fishes from the United States, Canada, and Mexico. American Fisheries Society, Special Publication 29, Bethesda, Maryland.)

ORDER	FAMILY	SCIENTIFIC NAME	COMMON NAME
Petromyzontiformes	Petromyzontidae	lchthyomyzon bdellium	Ohio lamprey
Petromyzontiformes	Petromyzontidae	lchthyomyzon castaneus	chestnut lamprey
Petromyzontiformes	Petromyzontidae	lchthyomyzon fossor	northern brook lamprey
Petromyzontiformes	Petromyzontidae	lchthyomyzon gagei	southern brook lamprey
Petromyzontiformes	Petromyzontidae	lchthyomyzon greeleyi	mountain brook lamprey
Petromyzontiformes	Petromyzontidae	lchthyomyzon unicuspis	silver lamprey
Petromyzontiformes	Petromyzontidae	Lampetra aepyptera	least brook lamprey
Petromyzontiformes	Petromyzontidae	Lampetra appendix	American brook lamprey
Petromyzontiformes	Petromyzontidae	Lampetra ayresii	river lamprey
Petromyzontiformes	Petromyzontidae	Lampetra camtschatica	Arctic lamprey
Petromyzontiformes	Petromyzontidae	Lampetra hubbsi	Kern brook lamprey
Petromyzontiformes	Petromyzontidae	Lampetra lethophaga	Pit-Klamath brook lamprey
Petromyzontiformes	Petromyzontidae	Lampetra minima	Miller Lake lamprey
Petromyzontiformes	Petromyzontidae	Lampetra richardsoni	western brook lamprey
Petromyzontiformes	Petromyzontidae	Lampetra similis	Klamath lamprey
Petromyzontiformes	Petromyzontidae	Lampetra tridentata	Pacific lamprey
Petromyzontiformes	Petromyzontidae	Petromyzon marinus	sea lamprey
Carcharhiniformes	Carcharhinidae	Carcharhinus leucas	bull shark
Pristiformes	Pristidae	Pristis pectinata	smalltooth sawfish
Myliobatiformes	Dasyatidae	Dasyatis sabina	Atlantic stingray
Acipenseriformes	Acipenseridae	Acipenser brevirostrum	shortnose sturgeon
Acipenseriformes	Acipenseridae	Acipenser fulvescens	lake sturgeon
Acipenseriformes	Acipenseridae	Acipenser medirostris	green sturgeon
Acipenseriformes	Acipenseridae	Acipenser oxyrinchus	Atlantic sturgeon
Acipenseriformes	Acipenseridae	Acipenser transmontanus	white sturgeon
Acipenseriformes	Acipenseridae	Scaphirhynchus albus	pallid sturgeon
Acipenseriformes	Acipenseridae	Scaphirhynchus platorynchus	shovelnose sturgeon
Acipenseriformes	Acipenseridae	Scaphirhynchus suttkusi	Alabama sturgeon
Acipenseriformes	Polyodontidae	Polyodon spathula	paddlefish
Lepisosteiformes	Lepisosteidae	Atractosteus spatula	alligator gar
Lepisosteiformes	Lepisosteidae	Lepisosteus oculatus	spotted gar
Lepisosteiformes	Lepisosteidae	Lepisosteus osseus	longnose gar
Lepisosteiformes	Lepisosteidae	Lepisosteus platostomus	shortnose gar
Lepisosteiformes	Lepisosteidae	Lepisosteus platyrhincus	Florida gar
Amiiformes	Amiidae	Amia calva	bowfin
Hiodontiformes	Hiodontidae	Hiodon alosoides	goldeye
Hiodontiformes	Hiodontidae	Hiodon tergisus	mooneye
Osteoglossiformes	Notopteridae	Chitala ornata	clown knifefish
Elopiformes	Elopidae	Elops affinis	machete
Elopiformes	Elopidae	Elops saurus	ladyfish
Elopiformes	Megalopidae	Megalops atlanticus	tarpon
Anguilliformes	Anguillidae	Anguilla rostrata	American eel
Clupeiformes	Engraulidae	Anchoa mitchilli	bay anchovy

ORDER	FAMILY	SCIENTIFIC NAME	COMMON NAME
Clupeiformes	Clupeidae	Alosa aestivalis	blueback herring
Clupeiformes	Clupeidae	Alosa alabamae	Alabama shad
Clupeiformes	Clupeidae	Alosa chrysochloris	skipjack herring
Clupeiformes	Clupeidae	Alosa mediocris	hickory shad
Clupeiformes	Clupeidae	Alosa pseudoharengus	alewife
Clupeiformes	Clupeidae	Alosa sapidissima	American shad
Clupeiformes	Clupeidae	Dorosoma cepedianum	gizzard shad
Clupeiformes	Clupeidae	Dorosoma petenense	threadfin shad
Clupeiformes	Clupeidae	Harengula jaguana	scaled sardine
Clupeiformes	Clupeidae	Opisthonema oglinum	Atlantic thread herring
Cypriniformes	Cyprinidae	Acrocheilus alutaceus	chiselmouth
Cypriniformes	Cyprinidae	Agosia chrysogaster	longfin dace
Cypriniformes	Cyprinidae	Campostoma anomalum	central stoneroller
Cypriniformes	Cyprinidae	Campostoma oligolepis	largescale stoneroller
Cypriniformes	Cyprinidae	Campostoma ornatum	Mexican stoneroller
Cypriniformes	Cyprinidae	Campostoma pauciradii	bluefin stoneroller
Cypriniformes	Cyprinidae	, Carassius auratus	goldfish
Cypriniformes	Cyprinidae	Clinostomus elongatus	redside dace
Cypriniformes	Cyprinidae	Clinostomus funduloides	rosyside dace
Cypriniformes	Cyprinidae	Couesius plumbeus	lake chub
Cypriniformes	Cyprinidae	Ctenopharyngodon idella	grass carp
Cypriniformes	Cyprinidae	Cyprinella analostana	satinfin shiner
Cypriniformes	Cyprinidae	Cyprinella caerulea	blue shiner
Cypriniformes	Cyprinidae	Cyprinella callisema	Ocmulgee shiner
Cypriniformes	Cyprinidae	Cyprinella callistia	Alabama shiner
Cypriniformes	Cyprinidae	Cyprinella callitaenia	bluestripe shiner
Cypriniformes	Cyprinidae	Cyprinella camura	bluntface shiner
Cypriniformes	Cyprinidae	Cyprinella chloristia	greenfin shiner
Cypriniformes	Cyprinidae	Cyprinella formosa	beautiful shiner
Cypriniformes	Cyprinidae	Cyprinella galactura	whitetail shiner
Cypriniformes	Cyprinidae	Cyprinella gibbsi	Tallapoosa shiner
Cypriniformes	Cyprinidae	Cyprinella labrosa	thicklip chub
Cypriniformes	Cyprinidae	Cyprinella leedsi	bannerfin shiner
Cypriniformes	Cyprinidae	Cyprinella lepida	plateau shiner
Cypriniformes	Cyprinidae	Cyprinella lutrensis	red shiner
Cypriniformes	Cyprinidae	Cyprinella nivea	whitefin shiner
Cypriniformes	Cyprinidae	Cyprinella proserpina	proserpine shiner
Cypriniformes	Cyprinidae	Cyprinella pyrrhomelas	fieryblack shiner
••	••		-
Cypriniformes	Cyprinidae	Cyprinella spiloptera	spotfin shiner tricolor shiner
Cypriniformes	Cyprinidae	Cyprinella trichroistia	
Cypriniformes	Cyprinidae	Cyprinella venusta	blacktail shiner
Cypriniformes	Cyprinidae	Cyprinella whipplei	steelcolor shiner
Cypriniformes	Cyprinidae	Cyprinella xaenura	Altamaha shiner
Cypriniformes	Cyprinidae	Cyprinella zanema	Santee chub
Cypriniformes	Cyprinidae	Cyprinus carpio	common carp
			Manantial roundnose
Cypriniformes	Cyprinidae	Dionda argentosa	minnow
Cypriniformes Cypriniformes	Cyprinidae Cyprinidae	Dionda argentosa Dionda diaboli	minnow Devils River minnow

ORDER	FAMILY	SCIENTIFIC NAME	COMMON NAME
Cypriniformes	Cyprinidae	Dionda episcopa	roundnose minnow
Cypriniformes	Cyprinidae	Dionda nigrotaeniata	Guadalupe roundnose minnow
Cypriniformes	Cyprinidae	Dionda nigrotaerilata Dionda serena	Nueces roundnose minnow
Cypriniformes	Cyprinidae	Eremichthys acros	desert dace
Cypriniformes	Cyprinidae	Erimonax monachus	spotfin chub
Cypriniformes	Cyprinidae	Erimystax cahni	slender chub
Cypriniformes	Cyprinidae	Erimystax dissimilis	streamline chub
Cypriniformes	Cyprinidae	Erimystax dissirinis Erimystax harryi	Ozark chub
Cypriniformes	Cyprinidae	Erimystax insignis	blotched chub
Cypriniformes	Cyprinidae	Erimystax Insignis Erimystax x-punctatus	gravel chub
••	• •	Exoglossum laurae	0
Cypriniformes Cypriniformes	Cyprinidae Cyprinidae	Exoglossum maxillingua	tonguetied minnow cutlip minnow
Cypriniformes	Cyprinidae	Gila alvordensis	Alvord chub
•••	• •	Gila atraria	Utah chub
Cypriniformes	Cyprinidae		
Cypriniformes	Cyprinidae	Gila bicolor	tui chub Baray Laka abub
Cypriniformes	Cyprinidae	Gila boraxobius	Borax Lake chub
Cypriniformes	Cyprinidae	Gila coerulea	blue chub
Cypriniformes	Cyprinidae	Gila crassicauda	thicktail chub
Cypriniformes	Cyprinidae	Gila cypha	humpback chub
Cypriniformes	Cyprinidae	Gila ditaenia	Sonora chub
Cypriniformes	Cyprinidae	Gila elegans	bonytail
Cypriniformes	Cyprinidae	Gila intermedia	Gila chub
Cypriniformes	Cyprinidae	Gila nigra	headwater chub
Cypriniformes	Cyprinidae	Gila nigrescens	Chihuahua chub
Cypriniformes	Cyprinidae	Gila orcuttii	arroyo chub
Cypriniformes	Cyprinidae	Gila pandora	Rio Grande chub
Cypriniformes	Cyprinidae	Gila purpurea	Yaqui chub
Cypriniformes	Cyprinidae	Gila robusta	roundtail chub
Cypriniformes	Cyprinidae	Gila seminuda	Virgin chub
Cypriniformes	Cyprinidae	Hemitremia flammea	flame chub
Cypriniformes	Cyprinidae	Hesperoleucus symmetricus	California roach
Cypriniformes	Cyprinidae	Hybognathus amarus	Rio Grande silvery minnow
Cypriniformes	Cyprinidae	Hybognathus argyritis	western silvery minnow
Cypriniformes	Cyprinidae	Hybognathus hankinsoni	brassy minnow
Cypriniformes	Cyprinidae	Hybognathus hayi	cypress minnow
Cypriniformes	Cyprinidae	Hybognathus nuchalis	Mississippi silvery minnow
Cypriniformes	Cyprinidae	Hybognathus placitus	plains minnow
Cypriniformes	Cyprinidae	Hybognathus regius	eastern silvery minnow
Cypriniformes	Cyprinidae	Hybopsis amblops	bigeye chub
Cypriniformes	Cyprinidae	Hybopsis amnis	pallid shiner
Cypriniformes	Cyprinidae	Hybopsis hypsinotus	highback chub
Cypriniformes	Cyprinidae	Hybopsis lineapunctata	lined chub
Cypriniformes	Cyprinidae	Hybopsis rubrifrons	rosyface chub
Cypriniformes	Cyprinidae	Hybopsis winchelli	clear chub
Cypriniformes	Cyprinidae	Hypophthalmichthys molitrix	silver carp
Cypriniformes	Cyprinidae	Hypophthalmichthys nobilis	bighead carp
Cypriniformes		lotichthys phlegethontis	

ORDER	FAMILY	SCIENTIFIC NAME	COMMON NAME
Cypriniformes	Cyprinidae	Lavinia exilicauda	hitch
Cypriniformes	Cyprinidae	Lepidomeda albivallis	White River spinedace
Cypriniformes	Cyprinidae	Lepidomeda altivelis	Pahranagat spinedace
Cypriniformes	Cyprinidae	Lepidomeda mollispinis	Virgin spinedace
Cypriniformes	Cyprinidae	Lepidomeda vittata	Little Colorado spinedace
Cypriniformes	Cyprinidae	Leuciscus idus	ide
Cypriniformes	Cyprinidae	Luxilus albeolus	white shiner
Cypriniformes	Cyprinidae	Luxilus cardinalis	cardinal shiner
Cypriniformes	Cyprinidae	Luxilus cerasinus	crescent shiner
Cypriniformes	Cyprinidae	Luxilus chrysocephalus	striped shiner
Cypriniformes	Cyprinidae	Luxilus coccogenis	warpaint shiner
Cypriniformes	Cyprinidae	Luxilus cornutus	common shiner
Cypriniformes	Cyprinidae	Luxilus pilsbryi	duskystripe shiner
Cypriniformes	Cyprinidae	Luxilus zonatus	bleeding shiner
Cypriniformes	Cyprinidae	Luxilus zonistius	bandfin shiner
Cypriniformes	Cyprinidae	Lythrurus alegnotus	Warrior shiner
Cypriniformes	Cyprinidae	Lythrurus ardens	rosefin shiner
Cypriniformes	Cyprinidae	Lythrurus atrapiculus	blacktip shiner
Cypriniformes	Cyprinidae	Lythrurus bellus	pretty shiner
Cypriniformes	Cyprinidae	Lythrurus fasciolaris	scarlet shiner
Cypriniformes	Cyprinidae	Lythrurus fumeus	ribbon shiner
Cypriniformes	Cyprinidae	Lythrurus lirus	mountain shiner
Cypriniformes	Cyprinidae	Lythrurus matutinus	pinewoods shiner
Cypriniformes	Cyprinidae	Lythrurus roseipinnis	cherryfin shiner
Cypriniformes	Cyprinidae	Lythrurus snelsoni	Ouachita shiner
Cypriniformes	Cyprinidae	Lythrurus umbratilis	redfin shiner
Cypriniformes	Cyprinidae	Macrhybopsis aestivalis	speckled chub
Cypriniformes	Cyprinidae	Macrhybopsis australis	prairie chub
Cypriniformes	Cyprinidae	Macrhybopsis gelida	sturgeon chub
Cypriniformes	Cyprinidae	Macrhybopsis hyostoma	shoal chub
Cypriniformes	Cyprinidae	Macrhybopsis marconis	burrhead chub
Cypriniformes	Cyprinidae	Macrhybopsis meeki	sicklefin chub
Cypriniformes	Cyprinidae	Macrhybopsis storeriana	silver chub
Cypriniformes	Cyprinidae	Macrhybopsis tetranema	peppered chub
Cypriniformes	Cyprinidae	Margariscus margarita	pearl dace
Cypriniformes	Cyprinidae	Meda fulgida	spikedace
Cypriniformes	Cyprinidae	Moapa coriacea	Moapa dace
Cypriniformes	Cyprinidae	Mylocheilus caurinus	peamouth
Cypriniformes	Cyprinidae	Mylopharodon conocephalus	hardhead
Cypriniformes	Cyprinidae	Nocomis asper	redspot chub
Cypriniformes	Cyprinidae	Nocomis asper	hornyhead chub
Cypriniformes	Cyprinidae	Nocomis effusus	redtail chub
Cypriniformes	Cyprinidae	Nocomis leptocephalus	bluehead chub
Cypriniformes	Cyprinidae	Nocomis micropogon	river chub
Cypriniformes	Cyprinidae		
• •	••	Nocomis platyrhynchus Nocomis ranevi	bigmouth chub
Cypriniformes	Cyprinidae	Nocomis raneyi	bull chub
Cypriniformes	Cyprinidae	Notemigonus crysoleucas	golden shiner
Cypriniformes	Cyprinidae	Notropis albizonatus	palezone shiner

ORDER	FAMILY	SCIENTIFIC NAME	COMMON NAME
Cypriniformes	Cyprinidae	Notropis alborus	whitemouth shiner
Cypriniformes	Cyprinidae	Notropis altipinnis	highfin shiner
Cypriniformes	Cyprinidae	Notropis amabilis	Texas shiner
Cypriniformes	Cyprinidae	Notropis ammophilus	orangefin shiner
Cypriniformes	Cyprinidae	Notropis amoenus	comely shiner
Cypriniformes	Cyprinidae	Notropis anogenus	pugnose shiner
Cypriniformes	Cyprinidae	Notropis ariommus	popeye shiner
Cypriniformes	Cyprinidae	Notropis asperifrons	burrhead shiner
Cypriniformes	Cyprinidae	Notropis atherinoides	emerald shiner
Cypriniformes	Cyprinidae	Notropis atrocaudalis	blackspot shiner
Cypriniformes	Cyprinidae	Notropis baileyi	rough shiner
Cypriniformes	Cyprinidae	Notropis bairdi	Red River shiner
Cypriniformes	Cyprinidae	Notropis bifrenatus	bridle shiner
Cypriniformes	Cyprinidae	Notropis blennius	river shiner
Cypriniformes	Cyprinidae	Notropis boops	bigeye shiner
Cypriniformes	Cyprinidae	Notropis braytoni	Tamaulipas shiner
Cypriniformes	Cyprinidae	Notropis buccatus	silverjaw minnow
Cypriniformes	Cyprinidae	Notropis buccula	smalleye shiner
Cypriniformes	Cyprinidae	Notropis buchanani	ghost shiner
Cypriniformes	Cyprinidae	Notropis cahabae	Cahaba shiner
Cypriniformes	Cyprinidae	Notropis candidus	silverside shiner
Cypriniformes	Cyprinidae	Notropis chalybaeus	ironcolor shiner
Cypriniformes	Cyprinidae	Notropis chihuahua	Chihuahua shiner
Cypriniformes	Cyprinidae	Notropis chiliticus	redlip shiner
Cypriniformes	Cyprinidae	Notropis chlorocephalus	greenhead shiner
Cypriniformes	Cyprinidae	Notropis chrosomus	rainbow shiner
Cypriniformes	Cyprinidae	Notropis cummingsae	dusky shiner
Cypriniformes	Cyprinidae	Notropis dorsalis	bigmouth shiner
Cypriniformes	Cyprinidae	Notropis edwardraneyi	fluvial shiner
Cypriniformes	Cyprinidae	Notropis girardi	Arkansas River shiner
Cypriniformes	Cyprinidae	Notropis greenei	wedgespot shiner
Cypriniformes	Cyprinidae	Notropis harperi	redeye chub
Cypriniformes	Cyprinidae	Notropis heterodon	blackchin shiner
Cypriniformes	Cyprinidae	Notropis heterolepis	blacknose shiner
Cypriniformes	Cyprinidae	Notropis hudsonius	spottail shiner
Cypriniformes	Cyprinidae	Notropis hypsilepis	highscale shiner
Cypriniformes	Cyprinidae	Notropis jemezanus	Rio Grande shiner
Cypriniformes	Cyprinidae	Notropis leuciodus	Tennessee shiner
Cypriniformes	Cyprinidae	Notropis longirostris	longnose shiner
Cypriniformes	Cyprinidae	Notropis lutipinnis	yellowfin shiner
Cypriniformes	Cyprinidae	Notropis maculatus	taillight shiner
Cypriniformes	Cyprinidae	Notropis mekistocholas	Cape Fear shiner
Cypriniformes	Cyprinidae	Notropis melanostomus	blackmouth shiner
Cypriniformes	Cyprinidae	Notropis micropteryx	highland shiner
Cypriniformes	Cyprinidae	Notropis nubilus	Ozark minnow
Cypriniformes	Cyprinidae	Notropis orca	phantom shiner
Cypriniformes	Cyprinidae	Notropis ortenburgeri	Kiamichi shiner
Cypriniformes	Cyprinidae	Notropis oxyrhynchus	sharpnose shiner

ORDER	FAMILY	SCIENTIFIC NAME	COMMON NAME
Cypriniformes	Cyprinidae	Notropis ozarcanus	Ozark shiner
Cypriniformes	Cyprinidae	Notropis percobromus	carmine shiner
Cypriniformes	Cyprinidae	Notropis perpallidus	peppered shiner
Cypriniformes	Cyprinidae	Notropis petersoni	coastal shiner
Cypriniformes	Cyprinidae	Notropis photogenis	silver shiner
Cypriniformes	Cyprinidae	Notropis potteri	chub shiner
Cypriniformes	Cyprinidae	Notropis procne	swallowtail shiner
Cypriniformes	Cyprinidae	Notropis rafinesquei	Yazoo shiner
Cypriniformes	Cyprinidae	Notropis rubellus	rosyface shiner
Cypriniformes	Cyprinidae	Notropis rubricroceus	saffron shiner
Cypriniformes	Cyprinidae	Notropis rupestris	bedrock shiner
Cypriniformes	Cyprinidae	Notropis sabinae	Sabine shiner
Cypriniformes	Cyprinidae	Notropis scabriceps	New River shiner
Cypriniformes	Cyprinidae	Notropis scepticus	sandbar shiner
Cypriniformes	Cyprinidae	Notropis semperasper	roughhead shiner
Cypriniformes	Cyprinidae	Notropis shumardi	silverband shiner
Cypriniformes	Cyprinidae	Notropis simus	bluntnose shiner
Cypriniformes	Cyprinidae	Notropis spectrunculus	mirror shiner
Cypriniformes	Cyprinidae	Notropis stilbius	silverstripe shiner
Cypriniformes	Cyprinidae	Notropis stramineus	sand shiner
Cypriniformes	Cyprinidae	Notropis suttkusi	rocky shiner
Cypriniformes	Cyprinidae	, Notropis telescopus	telescope shiner
Cypriniformes	Cyprinidae	Notropis texanus	weed shiner
Cypriniformes	Cyprinidae	Notropis topeka	Topeka shiner
Cypriniformes	Cyprinidae	Notropis uranoscopus	skygazer shiner
Cypriniformes	Cyprinidae	Notropis volucellus	mimic shiner
Cypriniformes	Cyprinidae	Notropis wickliffi	channel shiner
Cypriniformes	Cyprinidae	, Notropis xaenocephalus	Coosa shiner
Cypriniformes	Cyprinidae	Opsopoeodus emiliae	pugnose minnow
Cypriniformes	Cyprinidae	Oregonichthys crameri	Oregon chub
Cypriniformes	Cyprinidae	Oregonichthys kalawatseti	Umpqua chub
Cypriniformes	Cyprinidae	Orthodon microlepidotus	Sacramento blackfish
Cypriniformes	Cyprinidae	Phenacobius catostomus	riffle minnow
Cypriniformes	Cyprinidae	Phenacobius crassilabrum	fatlips minnow
Cypriniformes	Cyprinidae	Phenacobius mirabilis	suckermouth minnow
Cypriniformes	Cyprinidae	Phenacobius teretulus	Kanawha minnow
Cypriniformes	Cyprinidae	Phenacobius uranops	stargazing minnow
Cypriniformes	Cyprinidae	Phoxinus cumberlandensis	blackside dace
Cypriniformes	Cyprinidae	Phoxinus eos	northern redbelly dace
Cypriniformes	Cyprinidae	Phoxinus erythrogaster	southern redbelly dace
Cypriniformes	Cyprinidae	Phoxinus neogaeus	finescale dace
Cypriniformes	Cyprinidae	Phoxinus oreas	mountain redbelly dace
Cypriniformes	Cyprinidae	Phoxinus saylori	laurel dace
Cypriniformes	Cyprinidae	Phoxinus tennesseensis	Tennessee dace
Cypriniformes	Cyprinidae	Pimephales notatus	bluntnose minnow
Cypriniformes	Cyprinidae	Pimephales promelas	fathead minnow
Cypriniformes	Cyprinidae	Pimephales tenellus	slim minnow
Cypriniformes	Cyprinidae	Pimephales vigilax	bullhead minnow
Shumonies	Cyprindae		

ORDER	FAMILY	SCIENTIFIC NAME	COMMON NAME
Cypriniformes	Cyprinidae	Plagopterus argentissimus	woundfin
Cypriniformes	Cyprinidae	Platygobio gracilis	flathead chub
Cypriniformes	Cyprinidae	Pogonichthys ciscoides	Clear Lake splittail
Cypriniformes	Cyprinidae	Pogonichthys macrolepidotus	splittail
Cypriniformes	Cyprinidae	Pteronotropis euryzonus	broadstripe shiner
Cypriniformes	Cyprinidae	Pteronotropis grandipinnis	Apalachee shiner
Cypriniformes	Cyprinidae	Pteronotropis hubbsi	bluehead shiner
Cypriniformes	Cyprinidae	Pteronotropis hypselopterus	sailfin shiner
Cypriniformes	Cyprinidae	Pteronotropis merlini	orangetail shiner
Cypriniformes	Cyprinidae	Pteronotropis signipinnis	flagfin shiner
Cypriniformes	Cyprinidae	Pteronotropis welaka	bluenose shiner
Cypriniformes	Cyprinidae	Ptychocheilus grandis	Sacramento pikeminnow
Cypriniformes	Cyprinidae	Ptychocheilus lucius	Colorado pikeminnow
Cypriniformes	Cyprinidae	Ptychocheilus oregonensis	northern pikeminnow
Cypriniformes	Cyprinidae	Ptychocheilus umpquae	Umpqua pikeminnow
Cypriniformes	Cyprinidae	Relictus solitarius	relict dace
Cypriniformes	Cyprinidae	Rhinichthys atratulus	eastern blacknose dace
Cypriniformes	Cyprinidae	Rhinichthys cataractae	longnose dace
Cypriniformes	Cyprinidae	Rhinichthys cobitis	loach minnow
Cypriniformes	Cyprinidae	Rhinichthys deaconi	Las Vegas dace
Cypriniformes	Cyprinidae	Rhinichthys evermanni	Umpqua dace
Cypriniformes	Cyprinidae	Rhinichthys falcatus	leopard dace
Cypriniformes	Cyprinidae	Rhinichthys obtusus	western blacknose dace
Cypriniformes	Cyprinidae	Rhinichthys osculus	speckled dace
Cypriniformes	Cyprinidae	Rhinichthys umatilla	Umatilla dace
Cypriniformes	Cyprinidae	Rhodeus sericeus	bitterling
Cypriniformes	Cyprinidae	Richardsonius balteatus	redside shiner
Cypriniformes	Cyprinidae	Richardsonius egregius	Lahontan redside
Cypriniformes	Cyprinidae	Scardinius erythrophthalmus	rudd
Cypriniformes	Cyprinidae	Semotilus atromaculatus	creek chub
Cypriniformes	Cyprinidae	Semotilus corporalis	fallfish
Cypriniformes	Cyprinidae	Semotilus lumbee	sandhills chub
Cypriniformes	Cyprinidae	Semotilus thoreauianus	Dixie chub
Cypriniformes	Cyprinidae	Snyderichthys copei	leatherside chub
Cypriniformes	Cyprinidae	Tinca tinca	tench
Cypriniformes	Catostomidae	Carpiodes carpio	river carpsucker
Cypriniformes	Catostomidae	Carpiodes cyprinus	quillback
Cypriniformes	Catostomidae	Carpiodes velifer	highfin carpsucker
Cypriniformes	Catostomidae	Catostomus ardens	Utah sucker
Cypriniformes	Catostomidae	Catostomus ardens Catostomus bernardini	Yaqui sucker
••	Catostomidae	Catostomus catostomus	-
Cypriniformes	Catostomidae	Catostomus catostomus Catostomus clarkii	longnose sucker desert sucker
Cypriniformes	Catostomidae		
Cypriniformes		Catostomus columbianus	bridgelip sucker
Cypriniformes	Catostomidae	Catostomus commersonii	white sucker
Cypriniformes	Catostomidae	Catostomus discobolus	bluehead sucker
Cypriniformes	Catostomidae	Catostomus fumeiventris	Owens sucker
Cypriniformes	Catostomidae	Catostomus insignis	Sonora sucker
Cypriniformes	Catostomidae	Catostomus latipinnis	flannelmouth sucker

ORDER	FAMILY	SCIENTIFIC NAME	COMMON NAME
Cypriniformes	Catostomidae	Catostomus macrocheilus	largescale sucker
Cypriniformes	Catostomidae	Catostomus microps	Modoc sucker
Cypriniformes	Catostomidae	Catostomus occidentalis	Sacramento sucker
Cypriniformes	Catostomidae	Catostomus platyrhynchus	mountain sucker
Cypriniformes	Catostomidae	Catostomus plebeius	Rio Grande sucker
Cypriniformes	Catostomidae	Catostomus rimiculus	Klamath smallscale sucker
Cypriniformes	Catostomidae	Catostomus santaanae	Santa Ana sucker
Cypriniformes	Catostomidae	Catostomus snyderi	Klamath largescale sucker
Cypriniformes	Catostomidae	Catostomus tahoensis	Tahoe sucker
Cypriniformes	Catostomidae	Catostomus warnerensis	Warner sucker
Cypriniformes	Catostomidae	Chasmistes brevirostris	shortnose sucker
Cypriniformes	Catostomidae	Chasmistes cujus	cui-ui
Cypriniformes	Catostomidae	Chasmistes liorus	June sucker
Cypriniformes	Catostomidae	Chasmistes muriei	Snake River sucker
Cypriniformes	Catostomidae	Cycleptus elongatus	blue sucker
Cypriniformes	Catostomidae	Cycleptus meridionalis	southeastern blue sucker
Cypriniformes	Catostomidae	Deltistes luxatus	Lost River sucker
Cypriniformes	Catostomidae	Erimyzon oblongus	creek chubsucker
Cypriniformes	Catostomidae	Erimyzon sucetta	lake chubsucker
Cypriniformes	Catostomidae	Erimyzon tenuis	sharpfin chubsucker
Cypriniformes	Catostomidae	Hypentelium etowanum	Alabama hog sucker
Cypriniformes	Catostomidae	Hypentelium nigricans	northern hog sucker
Cypriniformes	Catostomidae	Hypentelium roanokense	Roanoke hog sucker
Cypriniformes	Catostomidae	lctiobus bubalus	smallmouth buffalo
Cypriniformes	Catostomidae	Ictiobus cyprinellus	bigmouth buffalo
Cypriniformes	Catostomidae	Ictiobus niger	black buffalo
Cypriniformes	Catostomidae	Minytrema melanops	spotted sucker
Cypriniformes	Catostomidae	Moxostoma anisurum	silver redhorse
Cypriniformes	Catostomidae	Moxostoma ariommum	bigeye jumprock
Cypriniformes	Catostomidae	Moxostoma austrinum	Mexican redhorse
Cypriniformes	Catostomidae	Moxostoma breviceps	smallmouth redhorse
Cypriniformes	Catostomidae	Moxostoma carinatum	river redhorse
Cypriniformes	Catostomidae	Moxostoma cervinum	blacktip jumprock
Cypriniformes	Catostomidae	Moxostoma collapsum	notchlip redhorse
Cypriniformes	Catostomidae	Moxostoma congestum	gray redhorse
Cypriniformes	Catostomidae	Moxostoma duquesnei	black redhorse
Cypriniformes	Catostomidae	Moxostoma erythrurum	golden redhorse
Cypriniformes	Catostomidae	Moxostoma lacerum	harelip sucker
Cypriniformes	Catostomidae	Moxostoma lachneri	greater jumprock
Cypriniformes	Catostomidae	Moxostoma macrolepidotum	shorthead redhorse
Cypriniformes	Catostomidae	Moxostoma pappillosum	V-lip redhorse
Cypriniformes	Catostomidae	Moxostoma pisolabrum	pealip redhorse
Cypriniformes	Catostomidae	Moxostoma poecilurum	blacktail redhorse
Cypriniformes	Catostomidae	Moxostoma robustum	robust redhorse
Cypriniformes	Catostomidae	Moxostoma rupiscartes	striped jumprock
Cypriniformes	Catostomidae	Moxostoma valenciennesi	greater redhorse
Cypriniformes	Catostomidae	Thoburnia atripinnis	blackfin sucker
Cypriniformes	Catostomidae	Thoburnia hamiltoni	rustyside sucker

Cypriniformes Catostomidae Thoburnia rhothoeca torrent sucker Cypriniformes Catostomidae Xyrauchen texanus razotback sucker Cypriniformes Cobitidae Misgurnus anguillicaudatus oriental weathertish Characidae Astyanax mexicanus Mexican tetra Siluriformes Ictaluridae Ameiurus catus snail builhead Siluriformes Ictaluridae Ameiurus natalis yellow bullhead Siluriformes Ictaluridae Ameiurus natalis yellow bullhead Siluriformes Ictaluridae Ameiurus seracanthus spotted bullhead Siluriformes Ictaluridae Ictalurus furcatus blue catfish Siluriformes Ictaluridae Ictalurus punctatus channel catfish Siluriformes Ictaluridae Naturus balter Ozark matom Siluriformes	ORDER	FAMILY	SCIENTIFIC NAME	COMMON NAME
Cypriniformes Cobitidae Misgurnus anguillicaudatus oriental weatherfish Characiformes Ictaluridae Anteirus brunneus snail bullhead Siluriformes Ictaluridae Ameirus catus white catlish Siluriformes Ictaluridae Ameirus catus white catlish Siluriformes Ictaluridae Ameirus natalis yellow bullhead Siluriformes Ictaluridae Ameirus natalis yellow bullhead Siluriformes Ictaluridae Ameirus palycephalus flat bullhead Siluriformes Ictaluridae Ictaluris serracanthus spotted bullhead Siluriformes Ictaluridae Ictalurus pricei Yaqui catlish Siluriformes Ictaluridae Ictalurus abater Czark madtom Siluriformes Ictaluridae Notrus abater Czark madtom Siluriformes Ictaluridae Notrus elegans elegant mactom Siluriformes Ictaluridae Notrus elegans yellowfin madtom Siluriformes Ictaluridae Notrus flavater checkered madtom	Cypriniformes	Catostomidae	Thoburnia rhothoeca	torrent sucker
Cypriniformes Cobitidae Misgurnus anguillicaudatus oriental weatherfish Characiformes Ictaluridae Anteirus brunneus snail bullhead Siluriformes Ictaluridae Ameirus catus white catlish Siluriformes Ictaluridae Ameirus catus white catlish Siluriformes Ictaluridae Ameirus natalis yellow bullhead Siluriformes Ictaluridae Ameirus natalis yellow bullhead Siluriformes Ictaluridae Ameirus palycephalus flat bullhead Siluriformes Ictaluridae Ictaluris serracanthus spotted bullhead Siluriformes Ictaluridae Ictalurus pricei Yaqui catlish Siluriformes Ictaluridae Ictalurus abater Czark madtom Siluriformes Ictaluridae Notrus abater Czark madtom Siluriformes Ictaluridae Notrus elegans elegant mactom Siluriformes Ictaluridae Notrus elegans yellowfin madtom Siluriformes Ictaluridae Notrus flavater checkered madtom	Cypriniformes	Catostomidae	Xyrauchen texanus	razorback sucker
Characiformes Characidae Astyanax mexicanus Mexican tetra Siluriformes Ictaluridae Ameiurus brunneus snail bulhead Siluriformes Ictaluridae Ameiurus catus white catfish Siluriformes Ictaluridae Ameiurus netas black bulhead Siluriformes Ictaluridae Ameiurus nebulosus brown bulhead Siluriformes Ictaluridae Ameiurus patycophalus flat bulhead Siluriformes Ictaluridae Ameiurus parcatus blue catfish Siluriformes Ictaluridae Ictalurus punctatus chadwater catfish Siluriformes Ictaluridae Ictalurus punctatus chadwater catfish Siluriformes Ictaluridae Noturus albater Ozark madtom Siluriformes Ictaluridae Noturus elegans elegant madtom Siluriformes Ictaluridae Noturus flavater checkered madtom Siluriformes Ictaluridae Noturus flavater checkered madtom Siluriformes Ictaluridae Noturus flavater checkered madtom	••	Cobitidae	-	oriental weatherfish
SiluriformesIctaluridaeAmeiurus brunneussnail bullheadSiluriformesIctaluridaeAmeiurus catuswhite catishSiluriformesIctaluridaeAmeiurus melasblack bullheadSiluriformesIctaluridaeAmeiurus nataisyellow bullheadSiluriformesIctaluridaeAmeiurus palaycephalusfilat bullheadSiluriformesIctaluridaeAmeiurus palaycephalusfilat bullheadSiluriformesIctaluridaeIctalurus burcatusblue catfishSiluriformesIctaluridaeIctalurus priceiYaqui catfishSiluriformesIctaluridaeIctalurus abarerOzak madtomSiluriformesIctaluridaeIctalurus balerCatar madtomSiluriformesIctaluridaeNoturus ablaterOzak madtomSiluriformesIctaluridaeNoturus eleutherusmonutain madtomSiluriformesIctaluridaeNoturus flavatercheckered madtomSiluriformesIctaluridaeNoturus flavatercheckered madtomSiluriformesIctaluridaeNoturus flavatercheckered madtomSiluriformesIctaluridaeNoturus flavatsstonecatSiluriformesIctaluridaeNoturus gilbertiorangefin madtomSiluriformesIctaluridaeNoturus gilbertiorangefin madtomSiluriformesIctaluridaeNoturus gilbertiorangefin madtomSiluriformesIctaluridaeNoturus gilbertiorangefin madtomSiluriformesIctaluridaeNoturus prizeus <td< td=""><td>• •</td><td>Characidae</td><td></td><td>Mexican tetra</td></td<>	• •	Characidae		Mexican tetra
Siluriformes Ictaluridae Ameiurus melas black bullhead Siluriformes Ictaluridae Ameiurus natalis yellow bullhead Siluriformes Ictaluridae Ameiurus natalis yellow bullhead Siluriformes Ictaluridae Ameiurus natalis spotted bullhead Siluriformes Ictaluridae Ameiurus seracanthus spotted bullhead Siluriformes Ictaluridae Ictalurus furcatus blue catlish Siluriformes Ictaluridae Ictalurus pricei Yaqui catlish Siluriformes Ictaluridae Noturus albater Ozark madtom Siluriformes Ictaluridae Noturus elegans elegant madtom Siluriformes Ictaluridae Noturus elegans elegant madtom Siluriformes Ictaluridae Noturus elegans elegant madtom Siluriformes Ictaluridae Noturus flavater checkered madtom Siluriformes Ictaluri	Siluriformes	Ictaluridae	-	snail bullhead
Siluriformes Ictaluridae Ameiurus melas black bullhead Siluriformes Ictaluridae Ameiurus natalis yellow bullhead Siluriformes Ictaluridae Ameiurus natalis yellow bullhead Siluriformes Ictaluridae Ameiurus natalis spotted bullhead Siluriformes Ictaluridae Ameiurus seracanthus spotted bullhead Siluriformes Ictaluridae Ictalurus furcatus blue catlish Siluriformes Ictaluridae Ictalurus pricei Yaqui catlish Siluriformes Ictaluridae Noturus albater Ozark madtom Siluriformes Ictaluridae Noturus elegans elegant madtom Siluriformes Ictaluridae Noturus elegans elegant madtom Siluriformes Ictaluridae Noturus elegans elegant madtom Siluriformes Ictaluridae Noturus flavater checkered madtom Siluriformes Ictaluri				
SiluriformesIctaluridaeAmeiurus natalisyellow bullheadSiluriformesIctaluridaeAmeiurus natulosusbrown bullheadSiluriformesIctaluridaeAmeiurus platycephalusflat bullheadSiluriformesIctaluridaeAmeiurus serracanthusspotted bullheadSiluriformesIctaluridaeIctalurus furcatusblue catfishSiluriformesIctaluridaeIctalurus priceiYaqui catfishSiluriformesIctaluridaeIctalurus punctatuschannel catfishSiluriformesIctaluridaeNoturus albaterOzark madtomSiluriformesIctaluridaeNoturus baileyismoky madtomSiluriformesIctaluridaeNoturus eleganselegant madtomSiluriformesIctaluridaeNoturus elegansseleder madtomSiluriformesIctaluridaeNoturus flavatercheckered madtomSiluriformesIctaluridaeNoturus flavatercheckered madtomSiluriformesIctaluridaeNoturus flavasstonecatSiluriformesIctaluridaeNoturus flavusstonecatSiluriformesIctaluridaeNoturus grinoustadpole madtomSiluriformesIctaluridaeNoturus grinoustadpole madtomSiluriformesIctaluridaeNoturus grinoustadpole madtomSiluriformesIctaluridaeNoturus grinoustadpole madtomSiluriformesIctaluridaeNoturus grinoustadpole madtomSiluriformesIctaluridaeNoturus grinoustadpole madt				
SiluriformesIctaluridaeAmeiurus nebulosusFrown bullheadSiluriformesIctaluridaeAmeiurus platycephalusIfat bullheadSiluriformesIctaluridaeAmeiurus serracanthusspotted bullheadSiluriformesIctaluridaeIctalurus lupusheadwater catfishSiluriformesIctaluridaeIctalurus priceiYaqui catfishSiluriformesIctaluridaeIctalurus punctatuschannel catfishSiluriformesIctaluridaeNoturus albaterOzark madtomSiluriformesIctaluridaeNoturus eleganselegant madtomSiluriformesIctaluridaeNoturus eleutherusmountain madtomSiluriformesIctaluridaeNoturus flavatercheckered madtomSiluriformesIctaluridaeNoturus flavatercheckered madtomSiluriformesIctaluridaeNoturus flavatercheckered madtomSiluriformesIctaluridaeNoturus flavatercheckered madtomSiluriformesIctaluridaeNoturus flavatercheckered madtomSiluriformesIctaluridaeNoturus flavatercheckered madtomSiluriformesIctaluridaeNoturus glibertiorangefin madtomSiluriformesIctaluridaeNoturus glibertiorangefin madtomSiluriformesIctaluridaeNoturus platearnitpacehadtomSiluriformesIctaluridaeNoturus leptacanthusspeckeld madtomSiluriformesIctaluridaeNoturus leptacanthusspeckeld madtomSiluriformesIctalur				
SiluriformesIctaluridaeAmeiurus platycephalusflat bullheadSiluriformesIctaluridaeIctalurus furcatusspotted bullheadSiluriformesIctaluridaeIctalurus furcatusblue catfishSiluriformesIctaluridaeIctalurus furcatusblue catfishSiluriformesIctaluridaeIctalurus furcatuschannel catfishSiluriformesIctaluridaeIctalurus punctatuschannel catfishSiluriformesIctaluridaeNoturus albaterOzark madtomSiluriformesIctaluridaeNoturus eleganselegant madtomSiluriformesIctaluridaeNoturus eleganselegant madtomSiluriformesIctaluridaeNoturus elegansslender madtomSiluriformesIctaluridaeNoturus flavatercheckered madtomSiluriformesIctaluridaeNoturus flavatercheckered madtomSiluriformesIctaluridaeNoturus flavatercheckered madtomSiluriformesIctaluridaeNoturus furbissblack madtomSiluriformesIctaluridaeNoturus furbisscaroina madtomSiluriformesIctaluridaeNoturus grinosCarolina madtomSiluriformesIctaluridaeNoturus grinssmagined madtomSiluriformesIctaluridaeNoturus furbissmadtomSiluriformesIctaluridaeNoturus furbissmadtomSiluriformesIctaluridaeNoturus furbissmadtomSiluriformesIctaluridaeNoturus furbissmadtom <td< td=""><td></td><td>Ictaluridae</td><td></td><td>-</td></td<>		Ictaluridae		-
SiluriformesIctaluridaeAmeiurus serracanthusspotted bullheadSiluriformesIctaluridaeIctalurus furcatusblue catfishSiluriformesIctaluridaeIctalurus priceiYaqui catfishSiluriformesIctaluridaeIctalurus priceiYaqui catfishSiluriformesIctaluridaeIctalurus priceiYaqui catfishSiluriformesIctaluridaeNoturus ablaterOzark madtomSiluriformesIctaluridaeNoturus baileyismoky madtomSiluriformesIctaluridaeNoturus eleganselegant madtomSiluriformesIctaluridaeNoturus eleutherusmountain madtomSiluriformesIctaluridaeNoturus eleutherusmountain madtomSiluriformesIctaluridaeNoturus flavausstender madtomSiluriformesIctaluridaeNoturus flavausstoncetSiluriformesIctaluridaeNoturus flavausstoncetSiluriformesIctaluridaeNoturus funebrisblack madtomSiluriformesIctaluridaeNoturus gilbertiorangefin madtomSiluriformesIctaluridaeNoturus nisignismagined madtomSiluriformesIctaluridaeNoturus leptacanthusspeckled madtomSiluriformesIctaluridaeNoturus nisignismagined madtomSiluriformesIctaluridaeNoturus nisignismagined madtomSiluriformesIctaluridaeNoturus noturusfrecklebelly madtomSiluriformesIctaluridaeNoturus noturusfrecklebel	Siluriformes	Ictaluridae	Ameiurus platvcephalus	
SiluriformesIctaluridaeIctalurus furcatusblue catfishSiluriformesIctaluridaeIctalurus furcatusheadwater catfishSiluriformesIctaluridaeIctalurus priceiYaqui catfishSiluriformesIctaluridaeIctalurus punctatuschannel catfishSiluriformesIctaluridaeNoturus albaterOzark madtomSiluriformesIctaluridaeNoturus eleganselegant madtomSiluriformesIctaluridaeNoturus eleganselegant madtomSiluriformesIctaluridaeNoturus eleutherusmountain madtomSiluriformesIctaluridaeNoturus flavatercheckered madtomSiluriformesIctaluridaeNoturus flavatercheckered madtomSiluriformesIctaluridaeNoturus flavaisstonecatSiluriformesIctaluridaeNoturus flavaisstonecatSiluriformesIctaluridaeNoturus furiosusCarolina madtomSiluriformesIctaluridaeNoturus gilbertiorangefin madtomSiluriformesIctaluridaeNoturus insignismargined madtomSiluriformesIctaluridaeNoturus leptacanthusspeckel madtomSiluriformesIctaluridaeNoturus phacusspeckel madtomSiluriformesIctaluridaeNoturus phacusspeckel madtomSiluriformesIctaluridaeNoturus phacusspeckel madtomSiluriformesIctaluridaeNoturus phacusspeckel madtomSiluriformesIctaluridaeNoturus phacusprown madt				
SiluriformesIctaluridaeIctalurus lupusheadwater catfishSiluriformesIctaluridaeIctalurus priceiYaqui catfishSiluriformesIctaluridaeIctalurus punctatuschannel catfishSiluriformesIctaluridaeNoturus albaterOzark madtomSiluriformesIctaluridaeNoturus eleganselegant madtomSiluriformesIctaluridaeNoturus eleganselegant madtomSiluriformesIctaluridaeNoturus eleutherusmountain madtomSiluriformesIctaluridaeNoturus flavatercheckered madtomSiluriformesIctaluridaeNoturus flavatercheckered madtomSiluriformesIctaluridaeNoturus flavaterstonecatSiluriformesIctaluridaeNoturus flavasstonecatSiluriformesIctaluridaeNoturus flavasstonecatSiluriformesIctaluridaeNoturus guibertioragefin madtomSiluriformesIctaluridaeNoturus gyinustadpole madtomSiluriformesIctaluridaeNoturus inginismagined madtomSiluriformesIctaluridaeNoturus inginismagined madtomSiluriformesIctaluridaeNoturus nignismagined madtomSiluriformesIctaluridaeNoturus niurusfrecklebelly madtomSiluriformesIctaluridaeNoturus norusfrecklebelly madtomSiluriformesIctaluridaeNoturus norusfrecklebelly madtomSiluriformesIctaluridaeNoturus norusfrecklebelly madtom<				-
SiluriformesIctaluridaeIctalurus priceiYaqui catfishSiluriformesIctaluridaeIctalurus punctatuschannel catfishSiluriformesIctaluridaeNotrus albaterOzark madtomSiluriformesIctaluridaeNotrus balegrismoky madtomSiluriformesIctaluridaeNotrus eleganselegant madtomSiluriformesIctaluridaeNotrus eleutherusmountain madtomSiluriformesIctaluridaeNoturus exilisslender madtomSiluriformesIctaluridaeNoturus flavatercheckered madtomSiluriformesIctaluridaeNoturus flavatercheckered madtomSiluriformesIctaluridaeNoturus flavasstonecatSiluriformesIctaluridaeNoturus flavasstonecatSiluriformesIctaluridaeNoturus guiperisblack madtomSiluriformesIctaluridaeNoturus guiperisblack madtomSiluriformesIctaluridaeNoturus guiprustadpole madtomSiluriformesIctaluridaeNoturus insignismargined madtomSiluriformesIctaluridaeNoturus insignismargined madtomSiluriformesIctaluridaeNoturus noturusspeckled madtomSiluriformesIctaluridaeNoturus noturusspeckled madtomSiluriformesIctaluridaeNoturus noturusspeckled madtomSiluriformesIctaluridaeNoturus noturusspeckled madtomSiluriformesIctaluridaeNoturus stanuitsspeckled madtom<				
SiluriformesIctaluridaeIctalurus punctatuschannel catfishSiluriformesIctaluridaeNoturus albaterOzark madtomSiluriformesIctaluridaeNoturus baileyismoky madtomSiluriformesIctaluridaeNoturus eleganselegant madtomSiluriformesIctaluridaeNoturus eleutherusmountain madtomSiluriformesIctaluridaeNoturus exilisslender madtomSiluriformesIctaluridaeNoturus flavatercheckered madtomSiluriformesIctaluridaeNoturus flavausstonecatSiluriformesIctaluridaeNoturus flavausstonecatSiluriformesIctaluridaeNoturus furiosusCarolina madtomSiluriformesIctaluridaeNoturus furiosusCarolina madtomSiluriformesIctaluridaeNoturus gyinustadpole madtomSiluriformesIctaluridaeNoturus gyrinustadpole madtomSiluriformesIctaluridaeNoturus insignismargined madtomSiluriformesIctaluridaeNoturus lachneriOuachita madtomSiluriformesIctaluridaeNoturus niurusbrindled madtomSiluriformesIctaluridaeNoturus phaeusbrown madtomSiluriformesIctaluridaeNoturus phaeusbrown madtomSiluriformesIctaluridaeNoturus phaeusbrown madtomSiluriformesIctaluridaeNoturus phaeusbrown madtomSiluriformesIctaluridaeNoturus phaeusbrown madtomSiluri			•	
SiluriformesIctaluridaeNoturus albaterOzark madtomSiluriformesIctaluridaeNoturus baileyismoky madtomSiluriformesIctaluridaeNoturus eleganselegant madtomSiluriformesIctaluridaeNoturus eleutherusmountain madtomSiluriformesIctaluridaeNoturus eleutherusmountain madtomSiluriformesIctaluridaeNoturus flavatercheckered madtomSiluriformesIctaluridaeNoturus flavatercheckered madtomSiluriformesIctaluridaeNoturus flavisyellowfin madtomSiluriformesIctaluridaeNoturus funebrisblack madtomSiluriformesIctaluridaeNoturus gilbertiorangefin madtomSiluriformesIctaluridaeNoturus gilbertiorangefin madtomSiluriformesIctaluridaeNoturus gilbertiorangefin madtomSiluriformesIctaluridaeNoturus gilbertiorangefin madtomSiluriformesIctaluridaeNoturus gilbertiorangefin madtomSiluriformesIctaluridaeNoturus pidebrandileast madtomSiluriformesIctaluridaeNoturus lachneriOuachita madtomSiluriformesIctaluridaeNoturus pidebrandileast madtomSiluriformesIctaluridaeNoturus pidebrandileast madtomSiluriformesIctaluridaeNoturus pidebrandileast madtomSiluriformesIctaluridaeNoturus pidebrandileast madtomSiluriformesIctaluridaeNoturus pidebrand			-	•
SiluriformesIctaluridaeNoturus baileyismoky madtomSiluriformesIctaluridaeNoturus eleganselegant madtomSiluriformesIctaluridaeNoturus eleutherusmountain madtomSiluriformesIctaluridaeNoturus eleutherusslender madtomSiluriformesIctaluridaeNoturus flavatercheckered madtomSiluriformesIctaluridaeNoturus flavatercheckered madtomSiluriformesIctaluridaeNoturus flavatercheckered madtomSiluriformesIctaluridaeNoturus flavausstonecatSiluriformesIctaluridaeNoturus funebrisblack madtomSiluriformesIctaluridaeNoturus gilbertiorangefin madtomSiluriformesIctaluridaeNoturus gyrinustadpole madtomSiluriformesIctaluridaeNoturus gyrinustadpole madtomSiluriformesIctaluridaeNoturus hidebrandileast madtomSiluriformesIctaluridaeNoturus nignismargined madtomSiluriformesIctaluridaeNoturus miurusspeckled madtomSiluriformesIctaluridaeNoturus miurusspeckled madtomSiluriformesIctaluridaeNoturus phaeusbrown madtomSiluriformesIctaluridaeNoturus phaeusbrown madtomSiluriformesIctaluridaeNoturus phaeusbrown madtomSiluriformesIctaluridaeNoturus phaeusprown madtomSiluriformesIctaluridaeNoturus tanunsprown madtom<			-	
SiluriformesIctaluridaeNoturus eleganselegant madtomSiluriformesIctaluridaeNoturus exilismountain madtomSiluriformesIctaluridaeNoturus exilisslender madtomSiluriformesIctaluridaeNoturus flavatercheckered madtomSiluriformesIctaluridaeNoturus flavatercheckered madtomSiluriformesIctaluridaeNoturus flavasstonecatSiluriformesIctaluridaeNoturus flavasstonecatSiluriformesIctaluridaeNoturus funebrisblack madtomSiluriformesIctaluridaeNoturus gilbertiorangefin madtomSiluriformesIctaluridaeNoturus gilbertiorangefin madtomSiluriformesIctaluridaeNoturus insignismargined madtomSiluriformesIctaluridaeNoturus insignismargined madtomSiluriformesIctaluridaeNoturus leptacanthusspeckled madtomSiluriformesIctaluridaeNoturus nunitusfreckledImadtomSiluriformesIctaluridaeNoturus nunitusfreckledImadtomSiluriformesIctaluridaeNoturus nocturnusfreckled madtomSiluriformesIctaluridaeNoturus placidusNeckled madtomSiluriformesIctaluridaeNoturus stanaulipygmy madtomSiluriformesIctaluridaeNoturus stanaulipygmy madtomSiluriformesIctaluridaeNoturus trautmaniSciot madtomSiluriformesIctaluridaeNoturus stanaulipygmy madtom </td <td></td> <td></td> <td></td> <td></td>				
SiluriformesIctaluridaeNoturus eleutherusmountain madtomSiluriformesIctaluridaeNoturus exilisslender madtomSiluriformesIctaluridaeNoturus flavatercheckered madtomSiluriformesIctaluridaeNoturus flavatercheckered madtomSiluriformesIctaluridaeNoturus flavusstonecatSiluriformesIctaluridaeNoturus funebrisblack madtomSiluriformesIctaluridaeNoturus gilbertiorangefin madtomSiluriformesIctaluridaeNoturus gilbertiorangefin madtomSiluriformesIctaluridaeNoturus gilbertiorangefin madtomSiluriformesIctaluridaeNoturus gyrinustadpole madtomSiluriformesIctaluridaeNoturus gyrinustadpole madtomSiluriformesIctaluridaeNoturus lachneriOuachita madtomSiluriformesIctaluridaeNoturus miurusspeckled madtomSiluriformesIctaluridaeNoturus miurusfrecklebelly madtomSiluriformesIctaluridaeNoturus moutusfrecklebelly madtomSiluriformesIctaluridaeNoturus placidusNeosho madtomSiluriformesIctaluridaeNoturus stanaulipygmy madtomSiluriformesIctaluridaeNoturus stanaulipygmy madtomSiluriformesIctaluridaeNoturus stanaulipygmy madtomSiluriformesIctaluridaeNoturus stanaulipygmy madtomSiluriformesIctaluridaeNoturus stanaulipygmy ma			-	-
SiluriformesIctaluridaeNoturus exilisslender madtomSiluriformesIctaluridaeNoturus flavatercheckered madtomSiluriformesIctaluridaeNoturus flavisinnisyellowfin madtomSiluriformesIctaluridaeNoturus flavusstonecatSiluriformesIctaluridaeNoturus furiosusCarolina madtomSiluriformesIctaluridaeNoturus furiosusCarolina madtomSiluriformesIctaluridaeNoturus gilbertiorangefin madtomSiluriformesIctaluridaeNoturus gilbertiorangefin madtomSiluriformesIctaluridaeNoturus gilbertiorangefin madtomSiluriformesIctaluridaeNoturus gilbertiorangefin madtomSiluriformesIctaluridaeNoturus insignismargined madtomSiluriformesIctaluridaeNoturus insignismargined madtomSiluriformesIctaluridaeNoturus nurusspeckled madtomSiluriformesIctaluridaeNoturus munitusfreckleelily madtomSiluriformesIctaluridaeNoturus phaeusbrown madtomSiluriformesIctaluridaeNoturus phaeusbrown madtomSiluriformesIctaluridaeNoturus stanaulipygmy madtomSiluriformesIctaluridaeNoturus stagosusnorthern madtomSiluriformesIctaluridaeNoturus stagosusnorthern madtomSiluriformesIctaluridaeNoturus stagosusnorthern madtomSiluriformesIctaluridaeNoturus stagosus			0	
SiluriformesIctaluridaeNoturus flavatercheckered madtomSiluriformesIctaluridaeNoturus flavipinnisyellowfin madtomSiluriformesIctaluridaeNoturus funebrisblack madtomSiluriformesIctaluridaeNoturus funebrisblack madtomSiluriformesIctaluridaeNoturus furiosusCarolina madtomSiluriformesIctaluridaeNoturus gilbertiorangefin madtomSiluriformesIctaluridaeNoturus gyrinustadpole madtomSiluriformesIctaluridaeNoturus gyrinustadpole madtomSiluriformesIctaluridaeNoturus insignismargined madtomSiluriformesIctaluridaeNoturus lachneriOuachita madtomSiluriformesIctaluridaeNoturus leptacanthusspeckled madtomSiluriformesIctaluridaeNoturus munitusfrecklebelly madtomSiluriformesIctaluridaeNoturus nocturnusfrecklebelly madtomSiluriformesIctaluridaeNoturus phaeusbrown madtomSiluriformesIctaluridaeNoturus stanaulipygmy madtomSiluriformesIctaluridaeNoturus stanaulipygmy madtomSiluriformesIctaluridaeNoturus trautmaniScioto madtomSiluriformesIctaluridaeNoturus stanousnorthern madtomSiluriformesIctaluridaeNoturus stanousnorthern madtomSiluriformesIctaluridaeNoturus stanousnorthern madtomSiluriformesIctaluridaeNoturus stanous<				
SiluriformesIctaluridaeNoturus flavipinnisyellowfin madtomSiluriformesIctaluridaeNoturus flavusstonecatSiluriformesIctaluridaeNoturus funebrisblack madtomSiluriformesIctaluridaeNoturus furiosusCarolina madtomSiluriformesIctaluridaeNoturus gyilbertiorangefin madtomSiluriformesIctaluridaeNoturus gyrinustadpole madtomSiluriformesIctaluridaeNoturus gyrinustadpole madtomSiluriformesIctaluridaeNoturus insignismargined madtomSiluriformesIctaluridaeNoturus insignismargined madtomSiluriformesIctaluridaeNoturus lachneriOuachita madtomSiluriformesIctaluridaeNoturus munitusspeckled madtomSiluriformesIctaluridaeNoturus munitusfreckleelly madtomSiluriformesIctaluridaeNoturus munitusfreckleelly madtomSiluriformesIctaluridaeNoturus plaeusbrown madtomSiluriformesIctaluridaeNoturus placidusNeosho madtomSiluriformesIctaluridaeNoturus stanaulipygmy madtomSiluriformesIctaluridaeNoturus trautmaniScioto madtomSiluriformesIctaluridaeNoturus trautmaniScioto madtomSiluriformesIctaluridaeNoturus trautmaniScioto madtomSiluriformesIctaluridaeNoturus trautmaniScioto madtomSiluriformesIctaluridaeNoturus trautmaniScio				
SiluriformesIctaluridaeNoturus flavusstonecatSiluriformesIctaluridaeNoturus funebrisblack madtomSiluriformesIctaluridaeNoturus furiosusCarolina madtomSiluriformesIctaluridaeNoturus gilbertiorangefin madtomSiluriformesIctaluridaeNoturus gyrinustadpole madtomSiluriformesIctaluridaeNoturus gyrinustadpole madtomSiluriformesIctaluridaeNoturus gyrinustadpole madtomSiluriformesIctaluridaeNoturus hidebrandileast madtomSiluriformesIctaluridaeNoturus insignismargined madtomSiluriformesIctaluridaeNoturus lachneriOuachita madtomSiluriformesIctaluridaeNoturus miurusspeckled madtomSiluriformesIctaluridaeNoturus munitusfrecklebelly madtomSiluriformesIctaluridaeNoturus phaeusbrown madtomSiluriformesIctaluridaeNoturus phaeusbrown madtomSiluriformesIctaluridaeNoturus stigmosusnorthern madtomSiluriformesIctaluridaeNoturus stigmosusnorthern madtomSiluriformesIctaluridaeNoturus stigmosusnorthern madtomSiluriformesIctaluridaeNoturus stigmosusnorthern madtomSiluriformesIctaluridaeNoturus stigmosusnorthern madtomSiluriformesIctaluridaeNoturus stigmosusnorthern madtomSiluriformesIctaluridaeNoturus stigmosusnort				
SiluriformesIctaluridaeNoturus funebrisblack madtomSiluriformesIctaluridaeNoturus furiosusCarolina madtomSiluriformesIctaluridaeNoturus gilbertiorangefin madtomSiluriformesIctaluridaeNoturus gyrinustadpole madtomSiluriformesIctaluridaeNoturus gyrinustadpole madtomSiluriformesIctaluridaeNoturus insignismargined madtomSiluriformesIctaluridaeNoturus insignismargined madtomSiluriformesIctaluridaeNoturus leptacanthusspeckled madtomSiluriformesIctaluridaeNoturus miurusbrindled madtomSiluriformesIctaluridaeNoturus munitusfrecklebelly madtomSiluriformesIctaluridaeNoturus phaeusbrown madtomSiluriformesIctaluridaeNoturus phaeusbrown madtomSiluriformesIctaluridaeNoturus stanaulipygmy madtomSiluriformesIctaluridaeNoturus stanaulipygmy madtomSiluriformesIctaluridaeNoturus stagnosusnorthern madtomSiluriformesIctaluridaeNoturus tayloriCaddo madtomSiluriformesIctaluridaeNoturus stagnosusnorthern madtomSiluriformesIctaluridaeNoturus stagnosusnorthern madtomSiluriformesIctaluridaeNoturus stagnosusnorthern madtomSiluriformesIctaluridaeNoturus stagnosusnorthern madtomSiluriformesIctaluridaeNoturus stagnosus <td< td=""><td></td><td></td><td></td><td>-</td></td<>				-
SiluriformesIctaluridaeNoturus furiosusCarolina madtomSiluriformesIctaluridaeNoturus gilbertiorangefin madtomSiluriformesIctaluridaeNoturus gyrinustadpole madtomSiluriformesIctaluridaeNoturus hildebrandileast madtomSiluriformesIctaluridaeNoturus insignismargined madtomSiluriformesIctaluridaeNoturus lachneriOuachita madtomSiluriformesIctaluridaeNoturus leptacanthusspeckled madtomSiluriformesIctaluridaeNoturus murusbrindled madtomSiluriformesIctaluridaeNoturus munitusfrecklebelly madtomSiluriformesIctaluridaeNoturus nocturnusfrecklebelly madtomSiluriformesIctaluridaeNoturus phaeusbrown madtomSiluriformesIctaluridaeNoturus phaeusnorwn madtomSiluriformesIctaluridaeNoturus stanaulipygmy madtomSiluriformesIctaluridaeNoturus stanaulipygmy madtomSiluriformesIctaluridaeNoturus tayloriCaddo madtom				
SiluriformesIctaluridaeNoturus gilbertiorangefin madtomSiluriformesIctaluridaeNoturus gyrinustadpole madtomSiluriformesIctaluridaeNoturus insignismargined madtomSiluriformesIctaluridaeNoturus insignismargined madtomSiluriformesIctaluridaeNoturus lachneriOuachita madtomSiluriformesIctaluridaeNoturus leptacanthusspeckled madtomSiluriformesIctaluridaeNoturus miurusbrindled madtomSiluriformesIctaluridaeNoturus munitusfrecklebelly madtomSiluriformesIctaluridaeNoturus nocturnusfrecklebelly madtomSiluriformesIctaluridaeNoturus phaeusbrown madtomSiluriformesIctaluridaeNoturus phaeusbrown madtomSiluriformesIctaluridaeNoturus stanaulipygmy madtomSiluriformesIctaluridaeNoturus stigmosusnorthern madtomSiluriformesIctaluridaeNoturus tayloriCaddo madtomSiluriformesIctaluridaeNoturus tayloriCaddo madtomSiluriformesIctaluridaeNoturus tayloriCaddo madtomSiluriformesIctaluridaeNoturus tayloriCaddo madtomSiluriformesIctaluridaeNoturus tayloriCaddo madtomSiluriformesIctaluridaeNoturus tayloriCaddo madtomSiluriformesIctaluridaeSiluriformesflathead catfishSiluriformesIctaluridaeSatan eurystomuswidemouth blin				
SiluriformesIctaluridaeNoturus gyrinustadpole madtomSiluriformesIctaluridaeNoturus hildebrandileast madtomSiluriformesIctaluridaeNoturus insignismargined madtomSiluriformesIctaluridaeNoturus lachneriOuachita madtomSiluriformesIctaluridaeNoturus leptacanthusspeckled madtomSiluriformesIctaluridaeNoturus miurusbrindled madtomSiluriformesIctaluridaeNoturus munitusfrecklebelly madtomSiluriformesIctaluridaeNoturus nocturnusfrecklebelly madtomSiluriformesIctaluridaeNoturus nocturnusfreckled madtomSiluriformesIctaluridaeNoturus phaeusbrown madtomSiluriformesIctaluridaeNoturus stanaulipygmy madtomSiluriformesIctaluridaeNoturus stigmosusnorthern madtomSiluriformesIctaluridaeNoturus tayloriCaddo madtomSiluriformesIctaluridaeNoturus tayloriCaddo madtomSiluriformesIctaluridaeNoturus tayloriCaddo madtomSiluriformesIctaluridaeNoturus tayloriCaddo madtomSiluriformesIctaluridaeNoturus tayloriCaddo madtomSiluriformesIctaluridaeNoturus tayloriCaddo madtomSiluriformesIctaluridaePylodictis olivarisflathead catfishSiluriformesIctaluridaeTrogloglanis pattersonitoothless blindcatSiluriformesIctaluridaeClarias batrachus				
SiluriformesIctaluridaeNoturus hildebrandileast madtomSiluriformesIctaluridaeNoturus insignismargined madtomSiluriformesIctaluridaeNoturus lachneriOuachita madtomSiluriformesIctaluridaeNoturus leptacanthusspeckled madtomSiluriformesIctaluridaeNoturus miurusbrindled madtomSiluriformesIctaluridaeNoturus munitusfrecklebelly madtomSiluriformesIctaluridaeNoturus nocturnusfreckled madtomSiluriformesIctaluridaeNoturus nocturnusfreckled madtomSiluriformesIctaluridaeNoturus phaeusbrown madtomSiluriformesIctaluridaeNoturus placidusNeosho madtomSiluriformesIctaluridaeNoturus stanaulipygmy madtomSiluriformesIctaluridaeNoturus tayloriCaddo madtomSiluriformesIctaluridaeNoturus tayloriCaddo madtomSiluriformesIctaluridaeNoturus trautmaniScioto madtomSiluriformesIctaluridaeNoturus trautmaniScioto madtomSiluriformesIctaluridaeSatan eurystomuswidemouth blindcatSiluriformesIctaluridaeTrogloglanis pattersonitoothless blindcatSiluriformesClariidaeClarias batrachuswalking catfishSiluriformesAriidaeAriopsis felishardhead catfishSiluriformesClariidaePlatydoras armatulussouthern striped RaphaelSiluriformesCallichthyidaeH			-	-
SiluriformesIctaluridaeNoturus insignismargined madtomSiluriformesIctaluridaeNoturus lachneriOuachita madtomSiluriformesIctaluridaeNoturus leptacanthusspeckled madtomSiluriformesIctaluridaeNoturus miurusbrindled madtomSiluriformesIctaluridaeNoturus munitusfrecklebelly madtomSiluriformesIctaluridaeNoturus nocturnusfrecklebelly madtomSiluriformesIctaluridaeNoturus nocturnusfreckled madtomSiluriformesIctaluridaeNoturus phaeusbrown madtomSiluriformesIctaluridaeNoturus placidusNeosho madtomSiluriformesIctaluridaeNoturus stanaulipygmy madtomSiluriformesIctaluridaeNoturus stigmosusnorthern madtomSiluriformesIctaluridaeNoturus tayloriCaddo madtomSiluriformesIctaluridaeNoturus trautmaniScioto madtomSiluriformesIctaluridaePylodictis olivarisflathead catfishSiluriformesIctaluridaeSatan eurystomuswidemouth blindcatSiluriformesIctaluridaeClarias batrachuswalking catfishSiluriformesClariidaeAriopsis felishardhead catfishSiluriformesDoradidaePlatydoras armatulussouthern striped RaphaelSiluriformesCallichthyidaeHoplosternum littoralebrown hoplo				-
SiluriformesIctaluridaeNoturus lachneriOuachita madtomSiluriformesIctaluridaeNoturus leptacanthusspeckled madtomSiluriformesIctaluridaeNoturus miurusbrindled madtomSiluriformesIctaluridaeNoturus munitusfrecklebelly madtomSiluriformesIctaluridaeNoturus nocturnusfreckled madtomSiluriformesIctaluridaeNoturus nocturnusfreckled madtomSiluriformesIctaluridaeNoturus phaeusbrown madtomSiluriformesIctaluridaeNoturus placidusNeosho madtomSiluriformesIctaluridaeNoturus stanaulipygmy madtomSiluriformesIctaluridaeNoturus stigmosusnorthern madtomSiluriformesIctaluridaeNoturus tayloriCaddo madtomSiluriformesIctaluridaeNoturus trautmaniScioto madtomSiluriformesIctaluridaePylodictis olivarisflathead catfishSiluriformesIctaluridaeSatan eurystomuswidemouth blindcatSiluriformesIctaluridaeClarias batrachuswalking catfishSiluriformesClariidaeClarias batrachuswalking catfishSiluriformesDoradidaePlatydoras armatulussouthern striped RaphaelSiluriformesCallichthyidaeHoplosternum littoralebrown hoplo				
SiluriformesIctaluridaeNoturus leptacanthusspeckled madtomSiluriformesIctaluridaeNoturus miurusbrindled madtomSiluriformesIctaluridaeNoturus munitusfrecklebelly madtomSiluriformesIctaluridaeNoturus nocturnusfreckled madtomSiluriformesIctaluridaeNoturus phaeusbrown madtomSiluriformesIctaluridaeNoturus phaeusbrown madtomSiluriformesIctaluridaeNoturus stanaulipygmy madtomSiluriformesIctaluridaeNoturus stigmosusnorthern madtomSiluriformesIctaluridaeNoturus tayloriCaddo madtomSiluriformesIctaluridaeNoturus tayloriCaddo madtomSiluriformesIctaluridaeNoturus tayloriScioto madtomSiluriformesIctaluridaeNoturus trautmaniScioto madtomSiluriformesIctaluridaePylodictis olivarisflathead catfishSiluriformesIctaluridaeSatan eurystomuswidemouth blindcatSiluriformesIctaluridaeClarias batrachuswalking catfishSiluriformesClariidaeAriopsis felishardhead catfishSiluriformesDoradidaePlatydoras armatulussouthern striped RaphaelSiluriformesCallichthyidaeHoplosternum littoralebrown hoplo			-	-
SiluriformesIctaluridaeNoturus miurusbrindled madtomSiluriformesIctaluridaeNoturus munitusfrecklebelly madtomSiluriformesIctaluridaeNoturus nocturnusfreckled madtomSiluriformesIctaluridaeNoturus phaeusbrown madtomSiluriformesIctaluridaeNoturus placidusNeosho madtomSiluriformesIctaluridaeNoturus stanaulipygmy madtomSiluriformesIctaluridaeNoturus stanaulipygmy madtomSiluriformesIctaluridaeNoturus stigmosusnorthern madtomSiluriformesIctaluridaeNoturus tayloriCaddo madtomSiluriformesIctaluridaeNoturus trautmaniScioto madtomSiluriformesIctaluridaeNoturus trautmaniScioto madtomSiluriformesIctaluridaePylodictis olivarisflathead catfishSiluriformesIctaluridaeSatan eurystomuswidemouth blindcatSiluriformesIctaluridaeClarias batrachuswalking catfishSiluriformesClariidaeClarias batrachuswalking catfishSiluriformesDoradidaePlatydoras armatulussouthern striped RaphaelSiluriformesCallichthyidaeHoplosternum littoralebrown hoplo				
SiluriformesIctaluridaeNoturus munitusfrecklebelly madtomSiluriformesIctaluridaeNoturus nocturnusfreckled madtomSiluriformesIctaluridaeNoturus phaeusbrown madtomSiluriformesIctaluridaeNoturus placidusNeosho madtomSiluriformesIctaluridaeNoturus stanaulipygmy madtomSiluriformesIctaluridaeNoturus stanaulipygmy madtomSiluriformesIctaluridaeNoturus stigmosusnorthern madtomSiluriformesIctaluridaeNoturus tayloriCaddo madtomSiluriformesIctaluridaeNoturus trautmaniScioto madtomSiluriformesIctaluridaePylodictis olivarisflathead catfishSiluriformesIctaluridaeSatan eurystomuswidemouth blindcatSiluriformesIctaluridaeClarias batrachuswalking catfishSiluriformesClariidaeAriopsis felishardhead catfishSiluriformesDoradidaePlatydoras armatulussouthern striped RaphaelSiluriformesCallichthyidaeHoplosternum littoralebrown hoplo			•	•
SiluriformesIctaluridaeNoturus nocturnusfreckled madtomSiluriformesIctaluridaeNoturus phaeusbrown madtomSiluriformesIctaluridaeNoturus placidusNeosho madtomSiluriformesIctaluridaeNoturus stanaulipygmy madtomSiluriformesIctaluridaeNoturus stigmosusnorthern madtomSiluriformesIctaluridaeNoturus tayloriCaddo madtomSiluriformesIctaluridaeNoturus tayloriCaddo madtomSiluriformesIctaluridaeNoturus trautmaniScioto madtomSiluriformesIctaluridaePylodictis olivarisflathead catfishSiluriformesIctaluridaeSatan eurystomuswidemouth blindcatSiluriformesIctaluridaeTrogloglanis pattersonitoothless blindcatSiluriformesClariidaeClarias batrachuswalking catfishSiluriformesDoradidaePlatydoras armatulussouthern striped RaphaelSiluriformesCallichthyidaeHoplosternum littoralebrown hoplo				
SiluriformesIctaluridaeNoturus phaeusbrown madtomSiluriformesIctaluridaeNoturus placidusNeosho madtomSiluriformesIctaluridaeNoturus stanaulipygmy madtomSiluriformesIctaluridaeNoturus stigmosusnorthern madtomSiluriformesIctaluridaeNoturus tayloriCaddo madtomSiluriformesIctaluridaeNoturus tayloriCaddo madtomSiluriformesIctaluridaeNoturus trautmaniScioto madtomSiluriformesIctaluridaePylodictis olivarisflathead catfishSiluriformesIctaluridaeSatan eurystomuswidemouth blindcatSiluriformesIctaluridaeTrogloglanis pattersonitoothless blindcatSiluriformesClariidaeClarias batrachuswalking catfishSiluriformesAriidaePlatydoras armatulussouthern striped RaphaelSiluriformesCallichthyidaeHoplosternum littoralebrown hoplo				•
SiluriformesIctaluridaeNoturus placidusNeosho madtomSiluriformesIctaluridaeNoturus stanaulipygmy madtomSiluriformesIctaluridaeNoturus stigmosusnorthern madtomSiluriformesIctaluridaeNoturus tayloriCaddo madtomSiluriformesIctaluridaeNoturus tayloriCaddo madtomSiluriformesIctaluridaeNoturus trautmaniScioto madtomSiluriformesIctaluridaePylodictis olivarisflathead catfishSiluriformesIctaluridaeSatan eurystomuswidemouth blindcatSiluriformesIctaluridaeTrogloglanis pattersonitoothless blindcatSiluriformesClariidaeClarias batrachuswalking catfishSiluriformesAriidaeAriopsis felishardhead catfishSiluriformesDoradidaePlatydoras armatulussouthern striped RaphaelSiluriformesCallichthyidaeHoplosternum littoralebrown hoplo				
SiluriformesIctaluridaeNoturus stanaulipygmy madtomSiluriformesIctaluridaeNoturus stigmosusnorthern madtomSiluriformesIctaluridaeNoturus tayloriCaddo madtomSiluriformesIctaluridaeNoturus trautmaniScioto madtomSiluriformesIctaluridaePylodictis olivarisflathead catfishSiluriformesIctaluridaeSatan eurystomuswidemouth blindcatSiluriformesIctaluridaeTrogloglanis pattersonitoothless blindcatSiluriformesClariidaeClarias batrachuswalking catfishSiluriformesAriidaePlatydoras armatulussouthern striped RaphaelSiluriformesCallichthyidaeHoplosternum littoralebrown hoplo			-	
SiluriformesIctaluridaeNoturus stigmosusnorthern madtomSiluriformesIctaluridaeNoturus tayloriCaddo madtomSiluriformesIctaluridaeNoturus trautmaniScioto madtomSiluriformesIctaluridaePylodictis olivarisflathead catfishSiluriformesIctaluridaeSatan eurystomuswidemouth blindcatSiluriformesIctaluridaeTrogloglanis pattersonitoothless blindcatSiluriformesClariidaeClarias batrachuswalking catfishSiluriformesAriidaeAriopsis felishardhead catfishSiluriformesDoradidaePlatydoras armatulussouthern striped RaphaelSiluriformesCallichthyidaeHoplosternum littoralebrown hoplo			•	
SiluriformesIctaluridaeNoturus tayloriCaddo madtomSiluriformesIctaluridaeNoturus trautmaniScioto madtomSiluriformesIctaluridaePylodictis olivarisflathead catfishSiluriformesIctaluridaeSatan eurystomuswidemouth blindcatSiluriformesIctaluridaeTrogloglanis pattersonitoothless blindcatSiluriformesClariidaeClarias batrachuswalking catfishSiluriformesAriidaeAriopsis felishardhead catfishSiluriformesDoradidaePlatydoras armatulussouthern striped RaphaelSiluriformesCallichthyidaeHoplosternum littoralebrown hoplo				
SiluriformesIctaluridaeNoturus trautmaniScioto madtomSiluriformesIctaluridaePylodictis olivarisflathead catfishSiluriformesIctaluridaeSatan eurystomuswidemouth blindcatSiluriformesIctaluridaeTrogloglanis pattersonitoothless blindcatSiluriformesClariidaeClarias batrachuswalking catfishSiluriformesAriidaeAriopsis felishardhead catfishSiluriformesDoradidaePlatydoras armatulussouthern striped RaphaelSiluriformesCallichthyidaeHoplosternum littoralebrown hoplo			•	
SiluriformesIctaluridaePylodictis olivarisflathead catfishSiluriformesIctaluridaeSatan eurystomuswidemouth blindcatSiluriformesIctaluridaeTrogloglanis pattersonitoothless blindcatSiluriformesClariidaeClarias batrachuswalking catfishSiluriformesAriidaeAriopsis felishardhead catfishSiluriformesDoradidaePlatydoras armatulussouthern striped RaphaelSiluriformesCallichthyidaeHoplosternum littoralebrown hoplo			-	
SiluriformesIctaluridaeSatan eurystomuswidemouth blindcatSiluriformesIctaluridaeTrogloglanis pattersonitoothless blindcatSiluriformesClariidaeClarias batrachuswalking catfishSiluriformesAriidaeAriopsis felishardhead catfishSiluriformesDoradidaePlatydoras armatulussouthern striped RaphaelSiluriformesCallichthyidaeHoplosternum littoralebrown hoplo				
SiluriformesIctaluridaeTrogloglanis pattersonitoothless blindcatSiluriformesClariidaeClarias batrachuswalking catfishSiluriformesAriidaeAriopsis felishardhead catfishSiluriformesDoradidaePlatydoras armatulussouthern striped RaphaelSiluriformesCallichthyidaeHoplosternum littoralebrown hoplo			-	
SiluriformesClariidaeClarias batrachuswalking catfishSiluriformesAriidaeAriopsis felishardhead catfishSiluriformesDoradidaePlatydoras armatulussouthern striped RaphaelSiluriformesCallichthyidaeHoplosternum littoralebrown hoplo			-	
SiluriformesAriidaeAriopsis felishardhead catfishSiluriformesDoradidaePlatydoras armatulussouthern striped RaphaelSiluriformesCallichthyidaeHoplosternum littoralebrown hoplo				
SiluriformesDoradidaePlatydoras armatulussouthern striped RaphaelSiluriformesCallichthyidaeHoplosternum littoralebrown hoplo				-
Siluriformes Callichthyidae Hoplosternum littorale brown hoplo			-	
			-	
Siluriformes Loricariidae Hypostomus plecostomus suckermouth catfish		•	-	-
	Siluriformes	Loricariidae	Hypostomus plecostomus	suckermouth catfish

ORDER	FAMILY	SCIENTIFIC NAME	COMMON NAME
Siluriformes	Loricariidae	Pterygoplichthys anisitsi	southern sailfin catfish
Siluriformes	Loricariidae	Pterygoplichthys disjunctivus	vermiculated sailfin catfish
Siluriformes	Loricariidae	Pterygoplichthys multiradiatus	Orinoco sailfin catfish
Siluriformes	Loricariidae	Pterygoplichthys pardalis	Amazon sailfin catfish
Esociformes	Esocidae	Esox americanus	redfin pickerel
Esociformes	Esocidae	Esox lucius	northern pike
Esociformes	Esocidae	Esox masquinongy	muskellunge
Esociformes	Esocidae	Esox niger	chain pickerel
Esociformes	Umbridae	Dallia pectoralis	Alaska blackfish
Esociformes	Umbridae	Novumbra hubbsi	Olympic mudminnow
Esociformes	Umbridae	Umbra limi	central mudminnow
Esociformes	Umbridae	Umbra pygmaea	eastern mudminnow
Salmoniformes	Osmeridae	Hypomesus nipponensis	wakasagi
Salmoniformes	Osmeridae	Hypomesus olidus	pond smelt
Salmoniformes	Osmeridae	Hypomesus pretiosus	surf smelt
Salmoniformes	Osmeridae	Hypomesus transpacificus	delta smelt
Salmoniformes	Osmeridae	Osmerus mordax	rainbow smelt
Salmoniformes	Osmeridae	Spirinchus thaleichthys	longfin smelt
Salmoniformes	Osmeridae	Thaleichthys pacificus	eulachon
Salmoniformes	Salmonidae	Coregonus artedi	cisco
Salmoniformes	Salmonidae	Coregonus autumnalis	Arctic cisco
Salmoniformes	Salmonidae	Coregonus clupeaformis	lake whitefish
Salmoniformes	Salmonidae	Coregonus hoyi	bloater
Salmoniformes	Salmonidae	Coregonus johannae	deepwater cisco
Salmoniformes	Salmonidae	Coregonus kiyi	kiyi
Salmoniformes	Salmonidae	Coregonus laurettae	Bering cisco
Salmoniformes	Salmonidae	Coregonus nasus	broad whitefish
Salmoniformes	Salmonidae	Coregonus nigripinnis	blackfin cisco
Salmoniformes	Salmonidae	Coregonus pidschian	humpback whitefish
Salmoniformes	Salmonidae	Coregonus reighardi	shortnose cisco
Salmoniformes	Salmonidae	Coregonus sardinella	least cisco
Salmoniformes	Salmonidae	Coregonus zenithicus	shortjaw cisco
Salmoniformes	Salmonidae	Oncorhynchus clarkii	cutthroat trout
Salmoniformes	Salmonidae	Oncorhynchus gilae	Gila trout
Salmoniformes	Salmonidae	Oncorhynchus gorbuscha	pink salmon
Salmoniformes	Salmonidae	Oncorhynchus keta	chum salmon
Salmoniformes	Salmonidae	Oncorhynchus kisutch	coho salmon
Salmoniformes	Salmonidae	Oncorhynchus mykiss	rainbow trout
Salmoniformes	Salmonidae	Oncorhynchus nerka	sockeye salmon
Salmoniformes	Salmonidae	Oncorhynchus tshawytscha	Chinook salmon
Salmoniformes	Salmonidae	Prosopium abyssicola	Bear Lake whitefish
Salmoniformes	Salmonidae	Prosopium coulterii	pygmy whitefish
Salmoniformes	Salmonidae	Prosopium cylindraceum	round whitefish
Salmoniformes	Salmonidae	Prosopium gemmifer	Bonneville cisco
Salmoniformes	Salmonidae	Prosopium spilonotus	Bonneville whitefish
Salmoniformes	Salmonidae	Prosopium williamsoni	mountain whitefish
Salmoniformes	Salmonidae	Salmo salar	Atlantic salmon
Salmoniformes	Salmonidae	Salmo trutta	brown trout

ORDER	FAMILY	SCIENTIFIC NAME	COMMON NAME
Salmoniformes	Salmonidae	Salvelinus alpinus	Arctic char
Salmoniformes	Salmonidae	Salvelinus confluentus	bull trout
Salmoniformes	Salmonidae	Salvelinus fontinalis	brook trout
Salmoniformes	Salmonidae	Salvelinus malma	Dolly Varden
Salmoniformes	Salmonidae	Salvelinus namaycush	lake trout
Salmoniformes	Salmonidae	Stenodus leucichthys	inconnu
Salmoniformes	Salmonidae	Thymallus arcticus	Arctic grayling
Percopsiformes	Percopsidae	Percopsis omiscomaycus	trout-perch
Percopsiformes	Percopsidae	Percopsis transmontana	sand roller
Percopsiformes	Aphredoderidae	Aphredoderus sayanus	pirate perch
Percopsiformes	Amblyopsidae	Amblyopsis rosae	Ozark cavefish
Percopsiformes	Amblyopsidae	Amblyopsis spelaea	northern cavefish
Percopsiformes	Amblyopsidae	Chologaster cornuta	swampfish
Percopsiformes	Amblyopsidae	Forbesichthys agassizii	spring cavefish
Percopsiformes	Amblyopsidae	Speoplatyrhinus poulsoni	Alabama cavefish
Percopsiformes	Amblyopsidae	Typhlichthys subterraneus	southern cavefish
Gadiformes	Gadidae	Lota lota	burbot
Gadiformes	Gadidae	Microgadus tomcod	Atlantic tomcod
Mugiliformes	Mugilidae	Agonostomus monticola	mountain mullet
Mugiliformes	Mugilidae	Mugil cephalus	striped mullet
Mugiliformes	Mugilidae	Mugil curema	white mullet
Atheriniformes	Atherinopsidae	Labidesthes sicculus	brook silverside
Atheriniformes	Atherinopsidae	Membras martinica	rough silverside
Atheriniformes	Atherinopsidae	Menidia audens	Mississippi silverside
Atheriniformes	Atherinopsidae	Menidia beryllina	inland silverside
Atheriniformes	Atherinopsidae	Menidia extensa	Waccamaw silverside
Beloniformes	Belonidae	Strongylura marina	Atlantic needlefish
Cyprinodontiformes	Aplocheilidae	Rivulus hartii	giant rivulus
Cyprinodontiformes	Aplocheilidae	Rivulus marmoratus	mangrove rivulus
Cyprinodontiformes	Fundulidae	Fundulus albolineatus	whiteline topminnow
Cyprinodontiformes	Fundulidae	Fundulus bifax	stippled studfish
			western starhead
Cyprinodontiformes	Fundulidae	Fundulus blairae	topminnow
Cyprinodontiformes	Fundulidae	Fundulus catenatus	northern studfish
Cyprinodontiformes	Fundulidae	Fundulus chrysotus	golden topminnow
Cyprinodontiformes	Fundulidae	Fundulus cingulatus	banded topminnow
Cyprinodontiformes	Fundulidae	Fundulus confluentus	marsh killifish
Cyprinodontiformes	Fundulidae	Fundulus diaphanus	banded killifish
Cyprinodontiformes	Fundulidae	Fundulus dispar	starhead topminnow
Cyprinodontiformes	Fundulidae	Fundulus escambiae	russetfin topminnow
Cyprinodontiformes	Fundulidae	Fundulus euryzonus	broadstripe topminnow
Cyprinodontiformes	Fundulidae	Fundulus grandis	Gulf killifish
Cyprinodontiformes	Fundulidae	Fundulus heteroclitus	mummichog
Cyprinodontiformes	Fundulidae	Fundulus jenkinsi	saltmarsh topminnow
Cyprinodontiformes	Fundulidae	Fundulus julisia	Barrens topminnow
Cyprinodontiformes	Fundulidae	Fundulus kansae	northern plains killifish
Cyprinodontiformes	Fundulidae	Fundulus lineolatus	lined topminnow
Cyprinodontiformes	Fundulidae	Fundulus luciae	spotfin killifish

ORDER	FAMILY
Cyprinodontiformes	Fundulidae
••	Fundulidae
Cyprinodontiformes	Fundulidae
Cyprinodontiformes	
Cyprinodontiformes	Fundulidae
Cyprinodontiformes	Poeciliidae
Cyprinodontiformes	Goodeidae
Cyprinodontiformes	Cyprinodontidae
	-

Fundulus notatus Fundulus nottii Fundulus olivaceus Fundulus parvipinnis Fundulus pulvereus Fundulus rathbuni Fundulus rubrifrons Fundulus sciadicus Fundulus seminolis Fundulus stellifer Fundulus waccamensis Fundulus zebrinus Leptolucania ommata Lucania goodei Lucania parva Belonesox belizanus Gambusia affinis Gambusia amistadensis Gambusia gaigei Gambusia geiseri Gambusia georgei Gambusia heterochir Gambusia holbrooki Gambusia nobilis Gambusia rhizophorae Gambusia senilis Gambusia speciosa Heterandria formosa Poecilia formosa Poecilia latipinna Poecilia mexicana Poecilia reticulata Poecilia sphenops Poeciliopsis gracilis Poeciliopsis occidentalis Xiphophorus hellerii Xiphophorus maculatus Xiphophorus variatus Crenichthys baileyi Crenichthys nevadae Empetrichthys latos Empetrichthys merriami Cyprinodon arcuatus Cyprinodon bovinus Cyprinodon diabolis Cyprinodon elegans Cyprinodon eremus Cyprinodon eximius

SCIENTIFIC NAME

COMMON NAME

blackstripe topminnow bayou topminnow blackspotted topminnow Guadalupe cardinalfish bayou killifish speckled killifish redface topminnow plains topminnow Seminole killifish southern studfish Waccamaw killifish plains killifish pygmy killifish bluefin killifish rainwater killifish pike killifish western mosquitofish Amistad gambusia Big Bend gambusia largespring gambusia San Marcos gambusia Clear Creek gambusia eastern mosquitofish Pecos gambusia mangrove gambusia blotched gambusia Tex-Mex gambusia least killifish Amazon molly sailfin molly shortfin molly guppy Mexican molly porthole livebearer Gila topminnow green swordtail southern platyfish variable platyfish White River springfish Railroad Valley springfish Pahrump poolfish Ash Meadows poolfish Santa Cruz pupfish Leon Springs pupfish Devils Hole pupfish Comanche Springs pupfish Sonoyta pupfish Conchos pupfish

ORDER	FAMILY	SCIENTIFIC NAME	COMMON NAME		
Cyprinodontiformes	Cyprinodontidae	Cyprinodon macularius	desert pupfish		
Cyprinodontiformes	Cyprinodontidae	Cyprinodon nevadensis	Amargosa pupfish		
Cyprinodontiformes	Cyprinodontidae	Cyprinodon pecosensis	Pecos pupfish		
Cyprinodontiformes	Cyprinodontidae	Cyprinodon radiosus	Owens pupfish		
Cyprinodontiformes	Cyprinodontidae	Cyprinodon rubrofluviatilis	Red River pupfish		
Cyprinodontiformes	Cyprinodontidae	Cyprinodon salinus	Salt Creek pupfish		
Cyprinodontiformes	Cyprinodontidae	Cyprinodon tularosa	White Sands pupfish		
Cyprinodontiformes	Cyprinodontidae	Cyprinodon variegatus	sheepshead minnow		
Cyprinodontiformes	Cyprinodontidae	Jordanella floridae	flagfish		
Gasterosteiformes	Gasterosteidae	Apeltes quadracus	fourspine stickleback		
Gasterosteiformes	Gasterosteidae	Culaea inconstans	brook stickleback		
Gasterosteiformes	Gasterosteidae	Gasterosteus aculeatus	espinocho		
Gasterosteiformes	Gasterosteidae	Pungitius pungitius	ninespine stickleback		
Gasterosteiformes	Syngnathidae	Microphis brachyurus	opossum pipefish		
Gasterosteiformes	Syngnathidae	Syngnathus scovelli	Gulf pipefish		
Synbranchiformes	Synbranchidae	Monopterus albus	Asian swamp eel		
Scorpaeniformes	Cottidae	Clinocottus acuticeps	sharpnose sculpin		
Scorpaeniformes	Cottidae	Cottus aleuticus	coastrange sculpin		
Scorpaeniformes	Cottidae	Cottus asper	prickly sculpin		
Scorpaeniformes	Cottidae	Cottus asperrimus	rough sculpin		
Scorpaeniformes	Cottidae	Cottus baileyi	black sculpin		
Scorpaeniformes	Cottidae	Cottus bairdii	mottled sculpin		
Scorpaeniformes	Cottidae	Cottus beldingii	Paiute sculpin		
Scorpaeniformes	Cottidae	Cottus bendirei	Malheur sculpin		
Scorpaeniformes	Cottidae	Cottus caeruleomentum	Blue Ridge sculpin		
Scorpaeniformes	Cottidae	Cottus carolinae	banded sculpin		
Scorpaeniformes	Cottidae	Cottus cognatus	slimy sculpin		
Scorpaeniformes	Cottidae	Cottus confusus	shorthead sculpin		
Scorpaeniformes	Cottidae	Cottus echinatus	Utah Lake sculpin		
Scorpaeniformes	Cottidae	Cottus extensus	Bear Lake sculpin		
Scorpaeniformes	Cottidae	Cottus girardi	Potomac sculpin		
Scorpaeniformes	Cottidae	Cottus greenei	Shoshone sculpin		
Scorpaeniformes	Cottidae	Cottus gilosus	riffle sculpin		
•	Cottidae	Cottus hubbsi			
Scorpaeniformes	Cottidae		Columbia sculpin		
Scorpaeniformes	Cottidae	Cottus hypselurus Cottus klamathensis	Ozark sculpin		
Scorpaeniformes			marbled sculpin		
Scorpaeniformes	Cottidae	Cottus leiopomus	Wood River sculpin		
Scorpaeniformes	Cottidae	Cottus marginatus	margined sculpin		
Scorpaeniformes	Cottidae	Cottus paulus	pygmy sculpin		
Scorpaeniformes	Cottidae	Cottus perplexus	reticulate sculpin		
Scorpaeniformes	Cottidae	Cottus pitensis	Pit sculpin		
Scorpaeniformes	Cottidae	Cottus princeps	Klamath Lake sculpin		
Scorpaeniformes	Cottidae	Cottus rhotheus	torrent sculpin		
Scorpaeniformes	Cottidae	Cottus ricei	spoonhead sculpin		
Scorpaeniformes	Cottidae	Cottus tenuis	slender sculpin		
Scorpaeniformes	Cottidae	Leptocottus armatus	Pacific staghorn sculpin		
Scorpaeniformes	Cottidae	Myoxocephalus quadricornis	fourhorn sculpin		
Scorpaeniformes	Cottidae	Myoxocephalus thompsonii	deepwater sculpin		

ORDER	FAMILY	SCIENTIFIC NAME	COMMON NAME
Perciformes	Centropomidae	Centropomus ensiferus	swordspine snook
Perciformes	Centropomidae	Centropomus parallelus	smallscale fat snook
Perciformes	Centropomidae	Centropomus pectinatus	tarpon snook
Perciformes	Centropomidae	Centropomus undecimalis	common snook
Perciformes	Moronidae	Morone americana	white perch
Perciformes	Moronidae	Morone chrysops	white bass
Perciformes	Moronidae	Morone mississippiensis	yellow bass
Perciformes	Moronidae	Morone saxatilis	striped bass
Perciformes	Centrarchidae	Acantharchus pomotis	mud sunfish
Perciformes	Centrarchidae	Ambloplites ariommus	shadow bass
Perciformes	Centrarchidae	Ambloplites cavifrons	Roanoke bass
Perciformes	Centrarchidae	Ambloplites constellatus	Ozark bass
Perciformes	Centrarchidae	Ambloplites rupestris	rock bass
Perciformes	Centrarchidae	Archoplites interruptus	Sacramento perch
Perciformes	Centrarchidae	Centrarchus macropterus	flier
Perciformes	Centrarchidae	Enneacanthus chaetodon	blackbanded sunfish
Perciformes	Centrarchidae	Enneacanthus gloriosus	bluespotted sunfish
Perciformes	Centrarchidae	Enneacanthus obesus	banded sunfish
Perciformes	Centrarchidae	Lepomis auritus	redbreast sunfish
Perciformes	Centrarchidae	Lepomis cyanellus	green sunfish
Perciformes	Centrarchidae	Lepomis gibbosus	pumpkinseed
Perciformes	Centrarchidae	Lepomis gulosus	warmouth
Perciformes	Centrarchidae	Lepomis humilis	orangespotted sunfish
Perciformes	Centrarchidae	, Lepomis macrochirus	bluegill
Perciformes	Centrarchidae	, Lepomis marginatus	dollar sunfish
Perciformes	Centrarchidae	Lepomis megalotis	longear sunfish
Perciformes	Centrarchidae	Lepomis microlophus	redear sunfish
Perciformes	Centrarchidae	Lepomis miniatus	redspotted sunfish
Perciformes	Centrarchidae	, Lepomis punctatus	spotted sunfish
Perciformes	Centrarchidae	Lepomis symmetricus	bantam sunfish
Perciformes	Centrarchidae	Micropterus cataractae	shoal bass
Perciformes	Centrarchidae	, Micropterus coosae	redeye bass
Perciformes	Centrarchidae	Micropterus dolomieu	smallmouth bass
Perciformes	Centrarchidae	Micropterus notius	Suwannee bass
Perciformes	Centrarchidae	, Micropterus punctulatus	spotted bass
Perciformes	Centrarchidae	Micropterus salmoides	largemouth bass
Perciformes	Centrarchidae	Micropterus treculii	Guadalupe bass
Perciformes	Centrarchidae	Pomoxis annularis	white crappie
Perciformes	Centrarchidae	Pomoxis nigromaculatus	black crappie
Perciformes	Percidae	Ammocrypta beanii	naked sand darter
Perciformes	Percidae	Ammocrypta bifascia	Florida sand darter
Perciformes	Percidae	Ammocrypta clara	western sand darter
Perciformes	Percidae	Ammocrypta meridiana	southern sand darter
Perciformes	Percidae	Ammocrypta pellucida	eastern sand darter
Perciformes	Percidae	Ammocrypta vivax	scaly sand darter
Perciformes	Percidae	Crystallaria asprella	crystal darter
Perciformes	Percidae	Etheostoma acuticeps	sharphead darter
Perciformes	Percidae	Etheostoma aquali	coppercheek darter
	. 0101000		

ORDER	FAMILY	SCIENTIFIC NAME	COMMON NAME		
Perciformes	Percidae	Etheostoma artesiae	redspot darter		
Perciformes	Percidae	Etheostoma asprigene	mud darter		
Perciformes	Percidae	Etheostoma baileyi	emerald darter		
Perciformes	Percidae	Etheostoma barbouri	teardrop darter		
Perciformes	Percidae	Etheostoma barrenense	splendid darter		
Perciformes	Percidae	Etheostoma basilare	corrugated darter		
Perciformes	Percidae	Etheostoma bellator	Warrior darter		
Perciformes	Percidae	Etheostoma bellum	orangefin darter		
Perciformes	Percidae	Etheostoma bison	Buffalo darter		
Perciformes	Percidae	Etheostoma blennioides	greenside darter		
Perciformes	Percidae	Etheostoma blennius	blenny darter		
Perciformes	Percidae	Etheostoma boschungi	slackwater darter		
Perciformes	Percidae	Etheostoma brevirostrum	holiday darter		
Perciformes	Percidae	Etheostoma burri	brook darter		
Perciformes	Percidae	Etheostoma caeruleum	rainbow darter		
Perciformes	Percidae	Etheostoma camurum	bluebreast darter		
Perciformes	Percidae	Etheostoma cervus	Chickasaw darter		
Perciformes	Percidae	Etheostoma chermocki	vermilion darter		
Perciformes	Percidae	Etheostoma chienense	relict darter		
Perciformes	Percidae	Etheostoma chlorobranchium	greenfin darter		
Perciformes	Percidae	Etheostoma chlorosoma	bluntnose darter		
Perciformes	Percidae	Etheostoma chuckwachatte	lipstick darter		
Perciformes	Percidae	Etheostoma cinereum	ashy darter		
Perciformes	Percidae	Etheostoma collettei	creole darter		
Perciformes	Percidae	Etheostoma collis	Carolina darter		
Perciformes	Percidae	Etheostoma colorosum	coastal darter		
Perciformes	Percidae	Etheostoma coosae	Coosa darter		
Perciformes	Percidae	Etheostoma corona	crown darter		
Perciformes	Percidae	Etheostoma cragini	Arkansas darter		
Perciformes	Percidae	Etheostoma crossopterum	fringed darter		
Perciformes	Percidae	Etheostoma davisoni	Choctawhatchee darter		
Perciformes	Percidae	Etheostoma denoncourti	golden darter		
Perciformes	Percidae	Etheostoma derivativum	stone darter		
Perciformes	Percidae	Etheostoma ditrema	coldwater darter		
Perciformes	Percidae	Etheostoma douglasi	Tuskaloosa darter		
Perciformes	Percidae	Etheostoma duryi	blackside snubnose darter		
Perciformes	Percidae	Etheostoma edwini	brown darter		
Perciformes	Percidae	Etheostoma etnieri	cherry darter		
Perciformes	Percidae	Etheostoma etowahae	Etowah darter		
Perciformes	Percidae	Etheostoma euzonum	Arkansas saddled darter		
Perciformes	Percidae	Etheostoma exile	lowa darter		
Perciformes	Percidae	Etheostoma flabellare	fantail darter		
Perciformes	Percidae	Etheostoma flavum	saffron darter		
Perciformes	Percidae	Etheostoma fonticola	fountain darter		
Perciformes	Percidae	Etheostoma forbesi	Barrens darter		
Perciformes	Percidae	Etheostoma fragi	Strawberry darter		
Perciformes	Percidae	Etheostoma fricksium	Savannah darter		
Perciformes	Percidae	Etheostoma fusiforme	swamp darter		

ORDER	FAMILY	SCIENTIFIC NAME	COMMON NAME		
Perciformes			acile slough darter		
Perciformes	Percidae	Etheostoma grahami	Rio Grande darter		
Perciformes	Percidae	Etheostoma gutselli	Tuckasegee darter		
Perciformes	Percidae	Etheostoma histrio	harlequin darter		
Perciformes	Percidae	Etheostoma hopkinsi	Christmas darter		
Perciformes	Percidae	Etheostoma inscriptum	turquoise darter		
Perciformes	Percidae	Etheostoma jessiae	blueside darter		
Perciformes	Percidae	Etheostoma jordani	greenbreast darter		
Perciformes	Percidae	Etheostoma juliae	yoke darter		
Perciformes	Percidae	Etheostoma kanawhae	Kanawha darter		
Perciformes	Percidae	Etheostoma kantuckeense	Highland Rim darter		
Perciformes	Percidae	Etheostoma kennicotti	stripetail darter		
Perciformes	Percidae	Etheostoma lachneri	Tombigbee darter		
Perciformes	Percidae	Etheostoma lawrencei	headwater darter		
Perciformes	Percidae	Etheostoma lepidum	greenthroat darter		
Perciformes	Percidae	Etheostoma longimanum	longfin darter		
Perciformes	Percidae	Etheostoma luteovinctum	redband darter		
Perciformes	Percidae	Etheostoma lynceum	brighteye darter		
Perciformes	Percidae	Etheostoma maculatum	spotted darter		
Perciformes	Percidae	Etheostoma mariae	pinewoods darter		
Perciformes	Percidae	Etheostoma microlepidum	smallscale darter		
Perciformes	Percidae	Etheostoma microperca	least darter		
Perciformes	Percidae	Etheostoma moorei	yellowcheek darter		
Perciformes	Percidae	Etheostoma neopterum	lollypop darter		
Perciformes	Percidae	Etheostoma nianguae	Niangua darter		
Perciformes	Percidae	Etheostoma nigripinne	blackfin darter		
Perciformes	Percidae	Etheostoma nigrum	johnny darter		
Perciformes	Percidae	Etheostoma nuchale	watercress darter		
Perciformes	Percidae	Etheostoma obeyense	barcheek darter		
Perciformes	Percidae	Etheostoma okaloosae	Okaloosa darter		
Perciformes	Percidae	Etheostoma olivaceum	sooty darter		
Perciformes	Percidae	Etheostoma olmstedi	tessellated darter		
Perciformes	Percidae	Etheostoma oophylax	guardian darter		
Perciformes	Percidae	Etheostoma osburni	candy darter		
Perciformes	Percidae	Etheostoma pallididorsum	paleback darter		
Perciformes	Percidae	Etheostoma parvipinne	goldstripe darter		
Perciformes	Percidae	Etheostoma percnurum	duskytail darter		
Perciformes	Percidae	Etheostoma perlongum	Waccamaw darter		
Perciformes	Percidae	Etheostoma phytophilum	rush darter		
Perciformes	Percidae	Etheostoma podostemone	riverweed darter		
Perciformes	Percidae	Etheostoma proeliare	cypress darter		
Perciformes	Percidae	Etheostoma pseudovulatum	egg-mimic darter		
Perciformes	Percidae	Etheostoma punctulatum	stippled darter		
Perciformes	Percidae	Etheostoma pyrrhogaster	firebelly darter		
Perciformes	Percidae	Etheostoma radiosum	orangebelly darter		
Perciformes	Percidae	Etheostoma rafinesquei	Kentucky darter		
Perciformes	Percidae	Etheostoma ramseyi	Alabama darter		
. 51511011105	1 5101040	_noootonia ramooyi			

ORDER	FAMILY	SCIENTIFIC NAME	COMMON NAME		
Perciformes	Percidae	Etheostoma rubrum	bayou darter		
Perciformes	Percidae	Etheostoma rufilineatum	redline darter		
Perciformes	Percidae	Etheostoma rupestre	rock darter		
Perciformes	Percidae	Etheostoma sagitta	arrow darter		
Perciformes	Percidae	Etheostoma sanguifluum	bloodfin darter		
Perciformes	Percidae	Etheostoma scotti	Cherokee darter		
Perciformes	Percidae	Etheostoma sellare	Maryland darter		
Perciformes	Percidae	Etheostoma serrifer	sawcheek darter		
Perciformes	Percidae	Etheostoma simoterum	snubnose darter		
Perciformes	Percidae	Etheostoma smithi	slabrock darter		
Perciformes	Percidae	Etheostoma spectabile	orangethroat darter		
Perciformes	Percidae	Etheostoma squamiceps	spottail darter		
Perciformes	Percidae	Etheostoma stigmaeum	speckled darter		
Perciformes	Percidae	Etheostoma striatulum	striated darter		
Perciformes	Percidae	Etheostoma susanae	Cumberland darter		
Perciformes	Percidae	Etheostoma swaini	Gulf darter		
Perciformes	Percidae	Etheostoma swannanoa	Swannanoa darter		
Perciformes	Percidae	Etheostoma tallapoosae	Tallapoosa darter		
Perciformes	Percidae	Etheostoma tecumsehi	Shawnee darter		
Perciformes	Percidae	Etheostoma tetrazonum	Missouri saddled darter		
Perciformes	Percidae	Etheostoma thalassinum	seagreen darter		
Perciformes	Percidae	Etheostoma tippecanoe	Tippecanoe darter		
Perciformes	Percidae	Etheostoma trisella	trispot darter		
Perciformes	Percidae	Etheostoma tuscumbia	Tuscumbia darter		
Perciformes	Percidae	Etheostoma uniporum	current darter		
Perciformes	Percidae	Etheostoma variatum	variegate darter		
Perciformes	Percidae	Etheostoma virgatum	striped darter		
Perciformes	Percidae	Etheostoma vitreum	glassy darter		
Perciformes	Percidae	Etheostoma vulneratum	wounded darter		
Perciformes	Percidae	Etheostoma wapiti	boulder darter		
Perciformes	Percidae	Etheostoma whipplei	redfin darter		
Perciformes	Percidae	Etheostoma zonale	banded darter		
Perciformes	Percidae	Etheostoma zonifer	backwater darter		
Perciformes	Percidae	Etheostoma zonistium	bandfin darter		
Perciformes	Percidae	<i>Gymnocephalus cernuus</i>	ruffe		
Perciformes	Percidae	Perca flavescens	yellow perch		
Perciformes	Percidae	Percina antesella	amber darter		
Perciformes	Percidae	Percina aurantiaca	tangerine darter		
Perciformes	Percidae	Percina aurolineata	goldline darter		
Perciformes	Percidae	Percina aurora	pearl darter		
Perciformes	Percidae	Percina austroperca	southern logperch		
Perciformes	Percidae	Percina brevicauda	coal darter		
Perciformes	Percidae	Percina burtoni	blotchside logperch		
Perciformes	Percidae	Percina caprodes	logperch		
Perciformes	Percidae	Percina carbonaria	Texas logperch		
Perciformes	Percidae	Percina copelandi	channel darter		
Perciformes	Percidae	Percina crassa	Piedmont darter		
	i ciciuac	1 5101110 010330			

ORDER	FAMILY	SCIENTIFIC NAME	COMMON NAME		
Perciformes	Percidae	Percina evides	gilt darter		
Perciformes	Percidae	Percina fulvitaenia	Ozark logperch		
Perciformes	Percidae	Percina gymnocephala	Appalachia darter		
Perciformes	Percidae	Percina jenkinsi	Conasauga logperch		
Perciformes	Percidae	Percina kathae	Mobile logperch		
Perciformes	Percidae	Percina lenticula	freckled darter		
Perciformes	Percidae	Percina macrocephala	longhead darter		
Perciformes	Percidae	Percina macrolepida	bigscale logperch		
Perciformes	Percidae	Percina maculata	blackside darter		
Perciformes	Percidae	Percina nasuta	longnose darter		
Perciformes	Percidae	Percina nevisense	chainback darter		
Perciformes	Percidae	Percina nigrofasciata	blackbanded darter		
Perciformes	Percidae	Percina notogramma	stripeback darter		
Perciformes	Percidae	Percina oxyrhynchus	sharpnose darter		
Perciformes	Percidae	Percina palmaris	bronze darter		
Perciformes	Percidae	Percina pantherina	leopard darter		
Perciformes	Percidae	Percina peltata	shield darter		
Perciformes	Percidae	Percina phoxocephala	slenderhead darter		
Perciformes	Percidae	Percina rex	Roanoke logperch		
Perciformes	Percidae	Percina roanoka	Roanoke darter		
Perciformes	Percidae	Percina sciera	dusky darter		
Perciformes	Percidae	Percina shumardi	river darter		
Perciformes	Percidae	Percina squamata	olive darter		
Perciformes	Percidae	Percina stictogaster	frecklebelly darter		
Perciformes	Percidae	Percina suttkusi	Gulf logperch		
Perciformes	Percidae	Percina tanasi	snail darter		
Perciformes	Percidae	Percina uranidea	stargazing darter		
Perciformes	Percidae	Percina vigil	saddleback darter		
Perciformes	Percidae	Sander canadensis	sauger		
Perciformes	Percidae	Sander lucioperca	zander		
Perciformes	Percidae	Sander vitreus	walleye		
Perciformes	Lutjanidae	Lutjanus griseus	gray snapper		
Perciformes	Gerreidae	Diapterus auratus	Irish pompano		
Perciformes	Gerreidae	Eucinostomus harengulus	tidewater mojarra		
Perciformes	Gerreidae	Eugerres plumieri	striped mojarra		
Perciformes	Haemulidae	Orthopristis chrysoptera	pigfish		
Perciformes	Sparidae	Archosargus probatocephalus	sheepshead		
Perciformes	Sparidae	Lagodon rhomboides	pinfish		
Perciformes	Sciaenidae	Aplodinotus grunniens	freshwater drum		
Perciformes	Sciaenidae	Bairdiella chrysoura	silver perch		
Perciformes	Sciaenidae	Bairdiella icistia	bairdiella		
Perciformes	Sciaenidae	Cynoscion nebulosus	spotted seatrout		
Perciformes	Sciaenidae	Cynoscion xanthulus	orangemouth corvina		
Perciformes	Sciaenidae	Leiostomus xanthurus	spot		
Perciformes	Sciaenidae	Micropogonias undulatus	Atlantic croaker		
Perciformes	Sciaenidae	Sciaenops ocellatus	red drum		
Perciformes	Elassomatidae	Elassoma alabamae	spring pygmy sunfish		
Perciformes	Elassomatidae	Elassoma boehlkei	Carolina pygmy sunfish		

ORDER	FAMILY	SCIENTIFIC NAME	COMMON NAME			
Perciformes	Elassomatidae	Elassoma evergladei	gladei Everglades pygmy sunfish			
Perciformes	Elassomatidae	Elassoma okatie	bluebarred pygmy sunfish			
Perciformes	Elassomatidae	Elassoma okefenokee	Okefenokee pygmy sunfish			
Perciformes	Elassomatidae	Elassoma zonatum	banded pygmy sunfish			
Perciformes	Cichlidae	Astronotus ocellatus	oscar			
Perciformes	Cichlidae	Cichla ocellaris	butterfly peacock bass			
Perciformes	Cichlidae	Cichlasoma bimaculatum	black acara			
Perciformes	Cichlidae	Cichlasoma citrinellum	midas cichlid			
Perciformes	Cichlidae	Cichlasoma cyanoguttatum	Rio Grande cichlid			
Perciformes	Cichlidae	Cichlasoma managuense	jaguar guapote			
Perciformes	Cichlidae	Cichlasoma meeki	firemouth cichlid			
Perciformes	Cichlidae	Cichlasoma nigrofasciatum	convict cichlid			
Perciformes	Cichlidae	Cichlasoma octofasciatum	Jack Dempsey			
Perciformes	Cichlidae	Cichlasoma salvini	yellowbelly cichlid			
Perciformes	Cichlidae	Cichlasoma urophthalmus	Mayan cichlid			
Perciformes	Cichlidae	Geophagus surinamensis	redstriped eartheater			
Perciformes	Cichlidae	Hemichromis letourneuxi	African jewelfish			
Perciformes	Cichlidae	Heros severus	banded cichlid			
Perciformes	Cichlidae	Oreochromis aureus	blue tilapia			
Perciformes	Cichlidae	Oreochromis mossambicus	Mozambique tilapia			
Perciformes	Cichlidae	Oreochromis niloticus	Nile tilapia			
Perciformes	Cichlidae	Oreochromis urolepis	Wami tilapia			
Perciformes	Cichlidae	Sarotherodon melanotheron	blackchin tilapia			
Perciformes	Cichlidae	Tilapia mariae	spotted tilapia			
Perciformes	Cichlidae	Tilapia zillii	redbelly tilapia			
Perciformes	Embiotocidae	Cymatogaster aggregata	shiner perch			
Perciformes	Embiotocidae	Hysterocarpus traskii	tule perch			
Perciformes	Eleotridae	Dormitator maculatus	fat sleeper			
Perciformes	Eleotridae	Eleotris amblyopsis	largescaled spinycheek			
Perciformes	Eleotridae		smallscaled spinycheek			
Perciformes	Eleotridae	Eleotris perniger Eleotris picta				
Perciformes	Eleotridae	Gobiomorus dormitor	spotted sleeper			
Perciformes	Eleotridae		bigmouth sleeper guavina			
		Guavina guavina	8			
Perciformes	Gobiidae	Acanthogobius flavimanus	yellowfin goby			
Perciformes	Gobiidae	Awaous banana	river goby			
Perciformes	Gobiidae	Clevelandia ios	arrow goby			
Perciformes	Gobiidae	Ctenogobius boleosoma	darter goby			
Perciformes	Gobiidae	Ctenogobius claytonii	Mexican goby			
Perciformes	Gobiidae	Ctenogobius fasciatus	blotchcheek goby			
Perciformes	Gobiidae	Ctenogobius pseudofasciatus	slashcheek goby			
Perciformes	Gobiidae	Ctenogobius shufeldti	freshwater goby			
Perciformes	Gobiidae	Eucyclogobius newberryi	tidewater goby			
Perciformes	Gobiidae	Gillichthys mirabilis	longjaw mudsucker			
Perciformes	Gobiidae	Gobioides broussonetii	violet goby			
Perciformes	Gobiidae	Gobiosoma bosc	naked goby			
Perciformes	Gobiidae	Lophogobius cyprinoides	crested goby			
Perciformes	Gobiidae	Microgobius gulosus	clown goby			
Perciformes	Gobiidae	Neogobius melanostomus	round goby			

ORDER	FAMILY	SCIENTIFIC NAME	COMMON NAME
Perciformes	Gobiidae	Proterorhinus marmoratus	tubenose goby
Perciformes	Gobiidae	Tridentiger barbatus	Shokihaze goby
Perciformes	Gobiidae	Tridentiger bifasciatus	shimofuri goby
Perciformes	Belontiidae	Trichopsis vittata	croaking gourami
Perciformes	Channidae	Channa marulius	bullseye snakehead
Pleuronectiformes	Paralichthyidae	Citharichthys spilopterus	bay whiff
Pleuronectiformes	Paralichthyidae	Paralichthys lethostigma	southern flounder
Pleuronectiformes	Pleuronectidae	Platichthys stellatus	starry flounder
Pleuronectiformes	Achiridae	Trinectes maculatus	hogchoker

Final Manual Date: April 2009 Page E-1

APPENDIX E

PPCP and PFC Samples at Selected Urban Sites

This page is intentionally blank

EPA's Office of Science and Technology (OST) within the Office of Water is collaborating with the Office of Research and Development's National Exposure Research Laboratory in Cincinnati, Ohio to conduct a study of contaminants of emerging concern (CECs) within the framework of the National Rivers and Streams Assessment (NRSA). These CECs include pharmaceuticals and personal care products (PPCPs), along with perfluorinated compounds (PFCs). This study involves collection of ambient water (water chemistry) samples and fish tissue samples at about 150 urban river sites. These sites comprise a statistical subset within the 1800 sites selected for NRSA sampling. The urban river sites were assigned to the PPCP and PFC Study based on 5th order or greater Strahler stream order. The majority of these sites will be boatable, but a few of them will be wadeable. PPCP and PFC water and fish tissue samples need to be collected at the boatable and wadeable sites in this subset of urban river locations to maintain the statistical integrity of the data.

PPCP Water Chemistry Samples

The water chemistry protocols for collection of PPCP water samples are identical to the general water chemistry sample collection protocols for the NRSA water quality indicators. OST will provide field teams with coolers and 500 ml (0.5 L) amber glass bottles for the PPCP water samples. Water for the PPCP samples will be collected using the beaker provided for collection of other water chemistry samples. Field teams will use river water from the beaker to rinse the sample bottles and caps before filling each of the sample bottles completely with water from the beaker to eliminate air from the bottle. After fastening the caps tightly on the sample bottles, the field crews will place the samples in the cooler on wet ice. Field teams will collect two 500 ml PPCP water samples at all the urban river sites (boatable and wadeable) except the repeat urban river sites. At the repeat urban river sites, field teams will collect four 500 ml PPCP water samples during the first site visit only.

- 1. Collect the PPCP water samples mid-channel at the X-site (located via GPS). Samples are taken mid-channel, at a depth of 0.5 meters or at mid-depth if the site is less than 1 meter deep.
- 2. Put on nitrile gloves. Avoid touching the inside of the container to prevent contamination. Make sure not to handle sunscreen or other chemical contaminants until after the sample is collected.
- 3. Pre-rinse the beaker with river water 3 times, discarding rinse water downstream. Hold the container so the opening faces upstream. Collect the sample at a depth of 0.5 meters below the surface, with the beaker slightly angled as you pull it to the surface.
- 4. Rinse each PPCP sample bottle with a small amount of the sample water before filling the sample bottle with water from the beaker.
- 5. Fill the two 500 ml amber glass bottles (or four 500 ml amber glass bottles during the first visit at urban river repeat sites) using water from the beaker. After filling each sample bottle completely to eliminate air from the bottle, fasten the cap firmly on the bottle. Make sure that the label is complete and taped over with clear tape, and then place the sample bottles in the PPCP water sample cooler on wet ice.
- 6. Water samples collected at the pre-selected urban PPCP sites must be shipped to the EPA CINCINNATI lab ON MONDAYS THROUGH THURSDAYS. Do not send PPCP water samples to the EPA Corvallis lab. Please follow the instructions provided in the PPCP urban site water sample supply cooler.

Please use the following special instructions for shipping PPCP water samples:

- PPCP water samples collected from the pre-selected urban river sites must be shipped on wet ice to the EPA CINCINNATI LAB within 3 days of collection (for delivery at the lab on the fourth day) using the pre-addressed FedEx airbill provided in the PPCP water sample cooler.
- There is **No Saturday, Sunday, or Federal Holiday Delivery** at the EPA CINCINNATI LAB, so PPCP water coolers must be shipped on Monday through Thursday.
- <u>IMPORTANT NOTE:</u> PPCP water samples have a holding time of 4 days. Therefore, PPCP water samples cannot be collected on Friday, held on wet ice over the weekend, and shipped on Monday or they will exceed the sample holding time.

PFC Water Chemistry Samples

The first 4 steps of the procedures for collecting PFC water samples are identical to the PPCP water sample collection procedures except that the PFC sample bottles are rinsed 3 times with water from the sampling beaker before filling them. However, there are four important differences in the remaining procedures for collecting PFC water samples: PFC samples contain 1 L of water (twice the volume of PPCP samples); water collected for PFC analysis requires HDPE bottles; PFC samples are preserved with a nitric acid solution; and PFC sample bottles are shipped in coolers at ambient temperatures with no ice. OST will provide field teams with coolers and 1 L HDPE bottles for the PFC samples, along with the labels, stickers, pre-addressed airbills, and other forms necessary for shipping the coolers. As for the PPCP water samples, water for the PFC samples will be collected using the beaker provided for collection of other water chemistry samples. Field teams will use river water from the beaker to rinse the HDPE sample bottles 3 times before filling them almost to the top. Space is left at the top of the bottle to add 5 ml of a nitric acid solution to preserve the samples. The filled HDPE water bottles are placed in the cooler with no ice and shipped at the ambient temperature within 3 days to the laboratory designated for PFC analysis. Field teams will collect two 1 L PFC water samples at all the urban river sites that are sampled in 2009 (both boatable and wadeable urban sites that are 5th order or greater) except the repeat urban river sites. At the repeat urban river sites, field teams will collect four 1 L PFC water samples during the first site visit only.

- 1. Collect the PFC water samples mid-channel at the X-site (located via GPS). Samples are taken mid-channel, at a depth of 0.5 meters or at mid-depth if the site is less than 1 meter deep.
- 2. Put on nitrile gloves. Avoid touching the inside of the container to prevent contamination. Make sure not to handle sunscreen or other chemical contaminants until after the sample is collected.
- 3. Pre-rinse the beaker with river water 3 times, discarding rinse water downstream. Hold the container so the opening faces upstream. Collect the sample at a depth of 0.5 meters below the surface, with the beaker slightly angled as you pull it to the surface.
- 4. Rinse each PFC sample bottle 3 times with sample water before filling the sample bottle with water from the beaker.
- 5. Fill the two 1 L HDPE bottles (or four 1 L HDPE bottles during the first visit at urban river repeat sites) using water from the beaker. All sample bottles should only be filled to the

top of the cylindrical portion of the bottle, leaving the shoulder and the neck empty to allow room for the preservative (5 ml of 35% nitric acid) to be added.

- 6. Add 5 ml of 35% nitric acid, supplied in the premeasured ampoules, into the sample, cap tightly, place an orange EP HNO₃ sticker onto the water collection bottles to indicate that the preservation agent has been added, and mix well. Only the contents of the ampoule should be added to the sample the opened ampoule should not be placed into the sample bottles.
- 7. Make sure that the labels are complete and taped over with clear tape, and then place the sample bottles in the PFC water sample cooler. Return sample bottles to the original shipping container (coolers) and maintain at ambient temperature. **Do not cool with wet or dry ice.**
- 8. Water samples collected at the pre-selected urban PFC sites must be shipped to the designated lab ON MONDAYS THROUGH THURSDAYS. Do not send PFC water samples to the EPA Corvallis lab. Please follow the instructions provided in the PFC urban site water sample supply cooler.

Please use the following special instructions for shipping PFC water samples:

- PFC water samples collected from the pre-selected urban river sites must be shipped at ambient temperature (**without wet or dry ice**) to the designated lab within 3 days of collection (for delivery at the lab on the fourth day) using the pre-addressed FedEx airbill provided in the PFC water sample cooler.
- There is **No Saturday, Sunday, or Federal Holiday Delivery** at the designated lab, so PFC water coolers must be shipped on Monday through Thursday.

PPCP Fish Tissue

A single fish tissue composite sample will be collected at the approximately 150 designated urban river sites, except at the repeat urban river sites where two duplicate fish tissue samples will be collected during the first site visit. The urban river fish composite samples will provide tissue for analysis of PPCP chemicals and for analysis of the list of EMAP chemicals. An important exception is that fish tissue samples will be collected at all urban sites that are \geq 5th order and wadeable. Field crews will use the protocols outlined in Section 5.6 of the Field Operations Manual to collect the fish tissue samples at both the boatable and wadeable urban river sites. These protocols are summarized below. Please note in step 15 that fish tissue samples collected at urban river sites are shipped directly to the EPA CINCINNATI LAB.

- 1. Put on clean nitrile gloves before handling the fish. Do not handle any food, drink, sunscreen, or insect repellant until after the composite sample has been collected, measured, and wrapped.
- 2. Rinse potential target species/individuals in ambient water to remove any foreign material from the external surface and place in clean holding containers (e.g., livewells, buckets). Return non-target fishes or small specimens to the river or stream.
- 3. Retain one predator species composite from each site. The composite must consist of five fish of adequate size to provide a total of 500 grams of edible tissue for analysis (refer to Table 5.6-2 for minimum species length guidelines). Select fish for each composite based on the following criteria:

- all are of the same species,
- all satisfy legal requirements of harvestable size (or weight) for the sampled river, or at least be of consumable size if no legal harvest requirements are in effect,
- all are of similar size, so that the smallest individual in a composite is no less than 75% of the total length of the largest individual, and
- all are collected at the same time, i.e., collected as close to the same time as possible, but no more than one week apart (Note: Individual fish may have to be frozen until all fish to be included in the composite are available for delivery to the designated laboratory).

Accurate taxonomic identification is essential in assuring and defining the organisms that have been composited and submitted for analysis. Under no circumstances should individuals from different species be used in a single composite sample.

- 4. Measure each individual fish to determine total body length. Measure total length of each specimen in millimeters, from the anterior-most part of the fish to the tip of the longest caudal fin ray (when the lobes of the caudal fin are depressed dorsoventrally).
- 5. Record sample number, species retained, specimen length, location collected, and sampling date and time on the Fish Collection Form (Figure 5.5-1) in black ink. Mark "URBAN" next to the site identification number at the top left of the fish form, and write primary or duplicate in the comment section. Make sure the sample identification numbers recorded on the collection form match those on the sample labels.
- 6. Sign and date the Fish Collection Form.
- 7. Remove each fish retained for analysis from the clean holding container(s) (e.g., livewell) using clean nitrile gloves. Dispatch each fish using a clean wooden bat (or equivalent wooden device).
- 8. Wrap each fish in extra heavy-duty aluminum foil, with the dull side in (foil provided by EPA as solvent-rinsed, oven-baked sheets).
- 9. Prepare a Sample Identification Label for each sample, ensuring that the label information matches the information recorded on the Fish Collection Form. **Be sure to include fish species and specimen length on each label.**
- 10. Cut a length of food grade tubing (provided by EPA) that is long enough to contain each individual fish and to allow extra length on each end to secure with cable ties. Place each foil-wrapped specimen into the appropriate length of tubing. Seal each end of the tubing with a plastic cable tie. Attach the fish sample label to the outside of the food-grade tubing with clear tape and secure the label by taping around the entire fish (so that tape sticks to tape).
- 11. Place all the wrapped fish in the composite from each site in a large plastic bag and seal with another cable tie.
- 12. After each sample is packaged, place it immediately on dry ice for shipment. If samples will be carried back to a laboratory or other facility to be frozen before shipment, wet ice can be used to transport wrapped and bagged fish samples in the coolers to a laboratory or other interim facility.
- 13. If possible, keep all (five) specimens designated for a particular composite in the same shipping container (ice chest) for transport.
- 14. Samples may be stored temporarily on dry ice (replenishing the dry ice daily). You have the option, depending on site logistics, of:
 - shipping the samples packed on dry ice in sufficient quantities to keep samples frozen for up to 48 hours (50 pounds are recommended), via priority overnight

delivery service (e.g., Federal Express), so that they arrive at the sample preparation laboratory within less than 24 hours from the time of sample collection, or

- freezing the samples within 24 hours of collection at ≤20°C, and storing the frozen samples until shipment within 3 weeks of sample collection (frozen samples will subsequently be packed on dry ice and shipped to the sample preparation laboratory via priority overnight delivery service).
- 15. Fish Tissue samples collected at the pre-selected urban PPCP sites must be shipped to the EPA CINCINNATI lab. Do not send PPCP fish tissue samples to the GLEC lab. Please follow the instructions provided in the PPCP site fish tissue supply cooler. Be sure to include fish species and specimen lengths for all fish tissue samples on the Sample Tracking Form (Figure E-1).

PPCP Contacts

For any questions about collecting, handling, or shipping PPCP water or fish tissue samples, please contact Leanne Stahl in the Office of Science and Technology at EPA or Blaine Snyder of Tetra Tech, Inc. using the information below.

Leanne Stahl USEPA/OST (4305T) 1200 Pennsylvania Avenue, NW Washington, DC 20460 (202) 566-0404 (phone) (202) 566-0409 (fax) stahl.leanne@epa.gov Blaine Snyder Tetra Tech, Inc. 400 Red Brook Blvd., Suite 200 Owings Mills, MD 21117 (410) 356-8993 (phone) (410) 356-9005 (fax) Blaine.Snyder@tetratech.com Please use the tab button to navigate through this form.

TRACKING (BATCHED AND RETAINED SAMPLES) National Rivers and Streams Assessment									
Choose One: X BATCHED* SAMPLES RETAINED** SAMPLES Do not combine both BATCHED and RETAINED samples on the same form – please complete a separate form.									
				ALTFATER	ples on the se		piedse coi	inprete a separate form.	
	Sender Ph	_						XXX-XXX-XXXX	
State	of Site Locat	tion:	OH					2 digit state code	
		am:							
	Date Ship							MM/DD/YYYY	
	Shipped			Ex UPS		ery 🗌 O	ther		
				r please spec	ify:				
			861012	2765368					
For Retaine Holding Facil								Street address, City, State & Zip Code	
Site ID (FW08XXXXX)	Date Colle MM/DD/Y		Visit	Sample ID	Sample Type	# of Jars		Comments	
FW08OH033	07/07/2		1	524309.1	FTIS	1	SMALLMO	OUTH BASS 400 MM	
FW08OH033	07/07/2		1	524309.2	FTIS	1	SMALLMO	DUTH BASS 330 MM	
FW08OH033	07/07/2		1	524309.3	FTIS	1	SMALLMOUTH BASS 298 MM		
FW08OH012	07/15/2		1	522039.1	FTIS	1	-		
FW08OH012	07/15/2		1	522039.2	FTIS	1	CHANNEL CATFISH 458 MM		
FW08OH012	07/15/2008		1	522039.3	FTIS	1	CHANNEL CATFISH 460 MM		
FW08OH012	07/15/2008		1	522039.4	FTIS	1	CHANNEL CATFISH 498 MM		
FW080H012	07/15/2		1	522039.5	FTIS	1	CHANNEL	CATFISH 430 MM	
FW08	07/10/2	000	1		BERW	-			
FW08			1		BERW				
FW08			1		BERW				
FW08			1		BERW				
FW08			1		BERW				
FW08			1		BERW				
FW08			1		BERW				
FW08			1		BERW				
Shipped	ta Lah	Earr	ple Typ	o.c.					
MED - DULUT				RETAINED	Tracking Assistance Tracking Help:		astance	Completed Forms Send completed electronic tracking	
X NERL				Reach Wide	Mariys Cappa	Mariys Cappaert		forms to:	
FISH TISSUE				Low Gradient	Ph: 541-754	-140/		sampletracking@epa.gov	
PERIPHYTON			- Fish Vou		Electronic Fo Michelle Gov			OR you can fax a printed copy to 541-	
BENTHIC LAB			Periphyto	n ID (.1) - BATCHED	Ph: 541-754			754-4637 OR call info to 541-754-4663	
FISH MUSEUN OTHER (list)			- Sedimen					747 Call Into to 241-/24-4003	
	below)		Fish Tissu						
				on APA (.4)					
C 61 DD - 6777	ID Data College		Enteroco		he first filter it	shed For	and Merry	are batching samples for multiple sites	

Save file as BR_SITE ID_Date Collected. For Site ID & Date Collected use the first Site listed. For example, if you are batc with the first ID listed as FW080R123 collected on 05/05/2008, then the file name would be BR_FW080R123_05_05_08. atching samples for multiple sites

*BATCHED - samples that will be batched and shipped within 2 weeks. Send sample information when SHIPPED. **RETAINED - samples that will be stored longer than a month at a holding facility. Send sample information when COLLECTED, and then when shipped to designated lab.

NRSA - Batch/Retain Form - 5/08/2008

Figure E-1. Example Sample Tracking Form showing fish tissue samples, fish species, and specimen lengths